Cal-B/C Training Module 8d Cal-B/C Park-and-Ride (PnR) Understanding Project Input Sheets and Data

About This Module

This module will...

- Build on Modules 4d and 7d to provide more details on how to get data for your benefit-cost analysis (BCA) using Cal-B/C Park-and-Ride
- Identify data sources to use for demand, operational, and project cost data

\star This module is covered in this presentation

Previous Modules...

- Module 1 provided a basic introduction on benefit-cost analysis (BCA) and a general overview of how to conduct a BCA
- Module 2 described the Cal-B/C suite of tools, discussed the types of projects that can be evaluated, and provided guidance on which tools to use for various project types
- Module 3 presented the Cal-B/C results page, detailed what each output measure means, and explained how they are calculated
- Module 4d presented an overview of how Cal-B/C Park-and-Ride works including a review of all worksheets and inputs
- This current module complements Module 4d
- Module 5 highlighted the information in the Parameters worksheet and discussed key assumptions used by Cal-B/C
- Module 6a provided detailed information on how Cal-B/C Park-and-Ride calculates benefits
- Module 7d presented the approach to starting a Cal-B/C Park-and-Ride analysis

Requirements for Making Full Use of This Module

- Basic understanding of traffic engineering and transportation planning methodologies, data and terminology
- Useful to understand Park-and-Ride operational characteristics
- Working knowledge of travel demand modeling concepts and data
- Ability to navigate websites and download relevant data
- Knowledge of Microsoft Excel and data analysis features
- Pivot tables and charting tools to manipulate data

Cal-B/C Park-and-Ride Data Entry Worksheets Overview

Review: Cell Color-Coding

- Cal-B/C Park-And-Ride requires few user inputs, but allows you to enter more inputs when data is available
- Cells in the worksheets are color-coded:
- Green cells indicate required data
- You must input values for Cal-B/C to work for the particular analysis being performed
- Cal-B/C descriptions tell you what cells need to be used for a given analysis
- Red cells provide default values that you can change if needed
- For example, Cal-B/C provides default values for average vehicle occupancy (AVO)

- Blue cells contain values calculated by the model for No Build and Build Scenarios
- You can override the values in these cells if better data is available

Suggested Data Sources for Evaluations in Cal-B/C Park-And-Ride

Traffic and Transit Passenger Demand and Performance Data

- Regional travel demand model data
- $3^{\text {rd }}$ party data sources
- Caltrans Performance Measurement System (PeMS)
- Caltrans Managed Lane Annual Report
- Federal Transit Administration (FTA) National Transit Database
- Transit operator schedules (for local and express buses)
- Public agency Park-and-Ride inventory data
- Other sources for data (Field data collection, crowd-sourced data)

Traffic Collision and Safety Data

- Caltrans Traffic Accident Surveillance and Analysis System (TASAS)
- California Highway Patrol (CHP) Statewide Integrated Traffic Records System (SWITRS)
- Other Sources (e.g., Transportation Research Board publications)

Suggested Data Sources for Evaluations in Cal-B/C Park-And-Ride (cont.)

Project Cost Data

- Project Study Report (PSR) or other Project Initiation Document
- Project Report (PR)
- Regional Transportation Improvement Program (RTIP)
- State Highway Operations and Protection Program (SHOPP)
- FTA capital cost database

Suggested Data Sources for Cal-B/C PnR Evaluations by Input Item

Section Title		Data Input Item	$\begin{gathered} \text { Cell } \\ \text { Location(s) } \end{gathered}$	Suggested Data Sources (for required input cells; or to update Cal-B/C estimates or default values)
1A) Project Data	Type of Project		D11	Depends on proposed project
	Project Location		D13	Depends on proposed project location
	Length of Construction Period		D15	Project Initiation Document (PID)/Project Study Report (PSR)/Project Report (PR) or other source
1B) Park-and-Ride Lot Information	Lot Desig	n - Number of Parking Spaces	D23	Depends on proposed project
	Park-and-Ride Demand	Typical Percent Filled (for current or opening year)	D27	PnR inventory/field data collection, modeling/forecasting
		Number of Years until Lot Reaches Capacity	D28	Modeling/Forecasting or field observations of other lots
		Number of Bicycle/Pedestrian Users	D29	Modeling/Forecasting, field data collection, surveys
		Average Vehicle Occupancy of Lot Users	D30	Calculated by Cal-B/C; Modeling/Forecasting; Caltrans Managed Lane Annual Report

Suggested Data Sources for Cal-B/C PnR Evaluations by Input Item (cont.)

Section Title	Data Input Item			$\begin{array}{\|c\|} \hline \text { Cell } \\ \text { Location(s) } \\ \hline \end{array}$	Suggested Data Sources (for required input cells; or to update Cal-B/C estimates or default values)
1C) Destination Information	Destination Description	Destination Name		M11	Depends on proposed project and destination
		Distance from Park-and-Ride Lot (miles)		M12	Depends on proposed project and destination
		Distance to Next Lot (miles)		M13	Depends on proposed project and destination
		Parking Cost at Destination (avg \$/day)		M14	3 3rd party data sources (i.e. Parkopedia, Google Maps)
	Demand for Travel to Destination	Percent of Lot Users to Destination		M17	Modeling/Forecasting; FTA National Transit Database
		Distribution (percent)	New Transit Riders	M19	Modeling/Forecasting; FTA National Transit Database
			Existing Transit Riders	M20	Transit operator data, Modeling/Forecasting; FTA National Transit Database
			New Carpoolers	M21	Modeling/Forecasting
			Existing Carpoolers	M22	PnR inventory/field data collection, Modeling/Forecasting

Suggested Data Sources for Cal-B/C PnR Evaluations by Input Item (cont.)

Suggested Data Sources for Cal-B/C PnR Evaluations by Input Item (cont.)

Section Title	Data Input Item		Cell Location(s)	Suggested Data Sources (for required input cells; or to update Cal- B/C estimates or default values)		
1D) Project Direct Project Costs	lnitial Project Costs (Support, R/W, Const.)	W12-Y12	Subsequent Costs (O\&M, Rehab)	Z12/AA12		PS\&E, PR, PSR/PAED, RTIP/SHOPP, FTA Capital Cost database; other
:---						
planning documents						

Park-and-Ride Lot Information Traffic and Transit Passenger Demand and Performance Data

Regional Travel Demand Models

- Can help identify top destinations by examining Origin-Destination (OD) patterns
- "Select link" analysis as from travel demand model to identify top ODs on a corridor
- Traffic demand model expertise needed for this analysis

Travel Demand Model

Table E-3: Model Results for Step 4 Expansion of Airway Lot and Shuttle from Bernal Lot (2030)							밈ㅁ
Facility Type	2015 Observed Results			2030 Modeled Values			
	Parking Capacity	Transit Parking	Percent Utilization	Parking Capacity	Transit Parking	Percent Utilization	ogram.
BART Stations	4076	4076	100\%	4626	4620	100\%	
ACE Stations	846	720	85\%	846	841	99\%	
Satellite Lots 1-580	447	16	4\%	794	426	54\%	
Satellite Lots I-680	92	36	39\%	292	242	83\%	
Existing Satellite Lots	539	117	22\%	886	468	53\%	
New Satellite Lots	-	-	-	200	200	100\%	
Total Satellite	539	52	10\%	1086	668	62\%	
Total Park-and-Ride	5461	4849	89\%	6558	6130	93\%	$\left.\right\|_{\text {splans }} ^{\text {state-of- }}$

$3^{\text {rd }}$ Party Transit Navigation Apps

Home Cities Covered

- Can be used to input estimate travel times
- Can provide estimated travel time for local and express buses based on schedules
- Examples:
- Public transit operator apps
- Google Maps Transit
- Apps such as Transit App, Moovit

From Enter a location

If you provide a transportation service that is open to the public, and operates with fixed
schedules and routes, we welcome your participation - it is simple and free.

Join Transit Partner Program

Caltrans Performance Measurement System (PeMS)

- PeMS can be used to get travel times from pre-defined routes and corridors
- Other features can be used to estimate travel times between the Park-and-Ride lot and the destinations by facility
- Provides real-time and historical performance data in a range of presentation styles and downloadable data sets
- Data includes:
- Speeds
- VMT/VHT to find speeds
- Data that can be used in Cal-B/C includes:
- HOV and Non-HOV Travel Time

- More detailed PeMS training may be needed calculate data
- Apply for an account at http://pems.dot.ca.gov/

PeMS - Corridors and Routes

- Corridors and Routes features on PeMS provide travel time calculations
- PeMS Corridors and Routes are pre-defined freeway segments that PeMS remembers
- A key benefit of corridors and routes is that they allow for travel time comparisons that can differentiate between HOV and mainline (non-HOV) lanes
- A limitation is that PeMS only starts collecting the data after you create your route

PeMS - Corridor Level Analysis

- Allows user to identify major corridors from PnR location to various destinations
- Select Aggregates for VMT
- Select dates
- Fall and/or Spring
- Non-holiday, mid-week
- Can export Aggregates to Excel or Text files
- Calculate average speeds for travel time estimates
- Select Quantity : Q (VMT/VHT)

- Average speed for corridor = Q = VMT/VHT
- Do opposite direction, if needed

PeMS - Time of Day Contours

- Another way to calculate HOV vs non-HOV travel time data is from Time of Day Contours
- Select Performance -> Spatial Analysis -> Time of Day Contours
- Select dates
- Example: 1 week in Fall and/or Spring
- Non-holiday, mid-week
- Select HOV or Mainline
- Can export Aggregates to Excel or Text files
- Calculate travel time estimates using postmile distances and aggregate speeds

Maps RealTime \mid Peformance \mid Inventerx
Califernia
Freeway Details

Freeway Details	
Directional Distance	72.4 mi
Controllers	131

View this page for another part of $1405-\mathrm{N}$. View this page for another freeway.. View epposite direction of trave Tools Holidays
Data Clearinghouse peMS User Manual Transit PeMS User Manual Lane Closure Manual District TCR Training Guide peMS Forum (External Site) System Administration

PeMS - Hourly Summary

- Another way to get HOV vs non-HOV travel time data is from Hourly Summaries
- Select Performance -> Spatial Analysis -> Hourly Summaries
- Select dates
- 1 week in Fall and/or Spring, non-holiday, midweek
- Select HOV or Mainline
- Select VMT, then VHT
- Average speed for route = VMT/VHT
- Can export to Excel or Text files
- Calculate travel time estimates using postmile distances and average aggregate speeds.

Caltrans Managed Lane Annual Report

- Caltrans district offices prepare annual reports with statistics on managed facilities (e.g., express lanes, HOV lanes, HOT lanes)
- Provides vehicle classification and occupancy counts during peak travel periods for managed lanes and adjacent general purpose lanes at select locations
- Data that can be used in Cal-B/C Park-and-Ride includes:
- AVO statistics for managed lane and adjacent general purpose lane

FTA National Transit Database (NTD)

- Estimate local and express bus speeds if no other data is available
- Estimate transit in-vehicle speeds and travel times based on other similar systems (Vehicle Service Miles/Vehicle Service Hours)
- Obtain parking facility information for existing facilities (e.g., number of parking spaces, capital expenses)
- https://www.transit.dot.gov/ntd

Bus Schedules on Similar Corridors

- Comparable locations and route lengths can be used to estimate headways and travel time by Express or Local Bus

Public Agency Park-and Ride Inventory Data

- Some Caltrans districts and public agencies have published inventory data available
- Data can be used to estimate number of parking spaces and number of bicycle/pedestrians
- Examples:
- Caltrans District 4 - https://dot.ca.gov/caltrans-near-me/district-4/d4-popular-links/park-and-ride-lots
- Caltrans District 11 - https://dot.ca.gov/caltrans-near-me/district-11/programs/district-11-planning-local-assistance/district-11-park-ride-program
- SANDAG -
https://www.icommutesd.com/commuters/ParkNRide.aspx

Module 8d: Traffic and Transit Demand Data

Field Data Collection

- Used when automatically collected data may not be available
- Travel Time Studies (Probe / Floating Vehicles)
- Vehicle Classification and Occupancy Counts

Field Data Collection - Surveys

- Park-and-Ride Surveys and Inventories
- May be needed to supplement regional travel demand models
- Can be used to estimate:
- Top 3 destinations for a potential PnR facility
- Number of bicycle/pedestrian users
- Distribution of new/existing transit and carpool riders
- Average carpool size and wait time

Traffic Collision Data

Traffic Accident Surveillance and Analysis System (TASAS) Transportation Systems Network (TSN) Reports

- Highway inventory database which contains the current and historical collisions on the SHS
- Data/Reports accessible through Caltrans Staff
- Data that can be used in Cal-B/C includes:
- Accident Rate (per million vehicle-miles)
- Percent Fatal Accidents (Pct Fat)
- Percent Injury Accidents (Pct Inj)
- https://dot.ca.gov/programs/research-innovation-system-information/office-of-highway-system-information-performance

Statewide Integrated Traffic Records System (SWITRS)

- Database with detailed data gathered from a collision scene by CHP and local law enforcement
- California accident data by locations, dates and collision types
- Used for collision data off the State Highway System (SHS) TASAS should be used for SHS projects
- Downloadable but requires extensive data manipulation
- Data that can be used in Cal-B/C includes:
- Accident Rate (per million vehicle-miles)
- Percent Fatal Accidents (Pct Fat)
- Percent Injury Accidents (Pct Inj)
- https://iswitrs.chp.ca.gov/Reports/jsp/index.jsp

Project Cost Data

Project Costs - Direct Initial Costs

- The level of detail for cost estimates depends on where the project is in the development process
- Regional Transportation Improvement Programs (RTIP) and Caltrans State Highway Operation and Protection Program (SHOPP) have project costs broken down by "capital" and "support", but without details

Note: Remember to enter costs in thousands of dollars (1000\$). Otherwise, you will not get a correct Benefit/Cost Ratio

Project Costs - Direct Initial Costs

- Pre-planning stages are more difficult - Caltrans has a project cost database that has rule-of-thumb cost guides
- Cost estimates for Park-and-Ride facilities depend on the type of lot
- Other sources for Park-and-Ride initial and subsequent costs include other regional Park-and-Ride projects

	CONSTRUCTION COST ESTIMATES PER PARKING STALL (2012\$/stall)						
Type of Facility	Low		Middle		High		Source(s)
Above Ground Multi-Level Stucture	\$	9,000	\$	16,000	\$	46,000	New York City Park and Ride Study
Below Ground	\$	30,000	\$	53,000	\$	76,000	New York City Park and Ride Study
Leased Lot	\$	5.00	\$	8.55	\$	15.00	Riverside County Transportation Commission (RCTC) Contract Lease Rates. 2012 FTIP
Surface Lot	\$	2,500	\$	10,000	\$	21,000	San Joaquin Council of Governments Park-and-Ride Lot Master Plan Study

Element	Low		Middle			High	Source(s)
Right of Way (ROW) Average Land Cost per Acre (US 2012 Dollars)	\$	30,000	\$	500,000	\$	2,000,000	Review of vacant land prices in Southern California using www.zillow.com, www.landwatch.com, and from ROW cost estimates from the 2010 FTIP.
Preliminary Engineering/Design Cost as a \% of Construction Cost		5.00\%		7.50\%		10.00\%	Valley Metro Regional Public Transportation Authority: RPTA Park and Ride Reprioritization Study
Average Annual Maintenance and Operations (M\&O) Costs per Parking Stall (US 2012 Dollars)	\$	120	\$	400	\$	875	Based on M\&O estimates from OCTA. Typical ranges are 10-30\% of Total Construction Costs according to . Park \& Ride Stakeholder Survey for District 12 Project

Project Costs - Federal Transit Administration (FTA) Capital Costs Database

- Microsoft Access database that can be used to estimate order-of-magnitude costs
- Contains "as-built" costs for federally funded projects including bus rapid transit
- Uses the FTA Standard Cost Category (SCC) codes for comparisons among transit operators

Project Costs - Subsequent Costs

- Caltrans and regional agencies have estimates for maintenance and operating costs for various facilities
- Transit annual operating expenses can be estimated from NTD data tables
- Park and Ride revenue data may be available
- Subsequent costs should be entered as a NET increase or decrease from the No Build case
- May be positive (e.g., increased cost for operating and maintaining the lot)
- May be negative (e.g., avoided maintenance or rehabilitation)

Project Costs - Mitigation Costs

- Mitigation costs (in thousands of dollars) include costs to protect communities and the environment from negative impacts
- Include wetland and community preservation as well as sound walls to reduce highway or rail transit noise
- Plans, PS\&E, PR, and PSR will provide mitigation cost estimates (with details found in the appendices)
- Often these costs can be included in the "construction" costs for a project and may not need to be entered into Cal-B/C as a separate costs
- Soundwalls and environmental mitigations are examples of mitigations that are built into the cost of projects presented in PRs
- On-going mitigation costs that continue after the project construction is completed will be included in PRs

Project Costs - Savings to Transit Agency

- For projects with a Transit Vehicle Location (AVL) TMS Strategy, Cal-B/C will estimate annual cost savings to the transit agency
- Based on the Transit Agency Costs data entry and the Transit Travel Time and Agency Cost Savings parameters

Conclusion

In this module, you learned...

- About potential data sources for data input and project costing for Cal-B/C Park-and-Ride
- How to get data from these sources

What's Next?

- Modules 9d walks through a Park-and-Ride project example showing how to perform a BCA analysis
- Module 10 is the final module in this training series and provides additional information and data sources for BCA in Cal-B/C tools

