Cal-B/C Training Module 4a
How Cal-B/C Sketch Works
About This Module
Module 4a: About This Module

This module will...

- Build on Modules 1, 2, and 3 to provide a detailed understanding of how Cal-B/C Sketch works
- Help you decide if Cal-B/C Sketch is the right tool for your project
- Provide an overview of the Cal-B/C Sketch tool and individual worksheet tabs
- Show where and how data is entered into Cal-B/C Sketch
- Summarize how to interpret benefit-cost analysis (BCA) results
Previous Modules…

- **Module 1** provided a basic introduction to BCA and a general overview of how you conduct a BCA.

- **Module 2** described the Cal-B/C suite of tools, discussed the types of projects that can be evaluated, and provided guidance on which tools to use for various project types.

- **Module 3** presented the Cal-B/C results page, detailed what each output measure means and explained how they are calculated.
Is Cal-B/C Sketch the right tool for you?

- California Transportation Commission endorses the use of Cal-B/C tools for grant applications and local partnership program applications
- Module 2 can help you select the right tool(s) for your job
- Cal-B/C Sketch can be used to evaluate 29 types of projects
 - Interchange, local roads, and roundabout projects cannot be evaluated in Sketch, but can be evaluated in Cal-B/C Corridor
- If travel demand model (TDM) or micro-simulation model data is available, you should consider Cal-B/C Corridor
- Cal-B/C Sketch cannot evaluate Active Transportation, Park and Ride Facility, or Intermodal Freight Facility projects
- Cal-B/C Sketch results can be combined with other Cal-B/C tool results

<table>
<thead>
<tr>
<th>Project Type</th>
<th>Cal-B/C Project Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial Signal Management</td>
<td>Transportation Management Systems (TMS)</td>
</tr>
<tr>
<td>Auxiliary Lane</td>
<td>Highway Operational Improvement</td>
</tr>
<tr>
<td>Bus Transit</td>
<td>Rail or Transit Capacity Expansion</td>
</tr>
<tr>
<td>Bus Rapid Transit (BRT)</td>
<td>Transportation Management Systems (TMS)</td>
</tr>
<tr>
<td>Bypass</td>
<td>Highway Capacity Expansion</td>
</tr>
<tr>
<td>Freeway Connector</td>
<td>Highway Operational Improvement</td>
</tr>
<tr>
<td>General Highway</td>
<td>Highway Capacity Expansion</td>
</tr>
<tr>
<td>Highway-Rail Grade Crossing</td>
<td>Rail or Transit Capacity Expansion</td>
</tr>
<tr>
<td>HOT Lane Addition</td>
<td>Highway Capacity Expansion</td>
</tr>
<tr>
<td>HOT Lane Conversion</td>
<td>Highway Operational Improvement</td>
</tr>
<tr>
<td>HOV Connector</td>
<td>Highway Operational Improvement</td>
</tr>
<tr>
<td>HOV Drop Ramp</td>
<td>Highway Operational Improvement</td>
</tr>
<tr>
<td>HOV Lane Addition</td>
<td>Highway Capacity Expansion</td>
</tr>
<tr>
<td>HOV-2 to HOV-3 Conversion</td>
<td>Highway Operational Improvement</td>
</tr>
<tr>
<td>Incident Management (IM)</td>
<td>Transportation Management Systems (TMS)</td>
</tr>
<tr>
<td>Intersection</td>
<td>Highway Capacity Expansion</td>
</tr>
<tr>
<td>Light-Rail (LRT)</td>
<td>Rail or Transit Capacity Expansion</td>
</tr>
<tr>
<td>Off-Ramp Widening</td>
<td>Highway Operational Improvement</td>
</tr>
<tr>
<td>On-Ramp Widening</td>
<td>Highway Operational Improvement</td>
</tr>
<tr>
<td>Passenger Rail</td>
<td>Rail or Transit Capacity Expansion</td>
</tr>
<tr>
<td>Passing Lane</td>
<td>Highway Capacity Expansion</td>
</tr>
<tr>
<td>Pavement</td>
<td>Highway Capacity Expansion</td>
</tr>
<tr>
<td>Queuing</td>
<td>Highway Capacity Expansion</td>
</tr>
<tr>
<td>Ramp Metering (RM)</td>
<td>Transportation Management Systems (TMS)</td>
</tr>
<tr>
<td>Ramp Metering Signal Coordination</td>
<td>Transportation Management Systems (TMS)</td>
</tr>
<tr>
<td>Transit Vehicle Location (AVL)</td>
<td>Transportation Management Systems (TMS)</td>
</tr>
<tr>
<td>Transit Vehicle Signal Priority</td>
<td>Transportation Management Systems (TMS)</td>
</tr>
<tr>
<td>Traveler Information (TI)</td>
<td>Transportation Management Systems (TMS)</td>
</tr>
<tr>
<td>Truck Only Lane</td>
<td>Highway Capacity Expansion</td>
</tr>
</tbody>
</table>
Cal-B/C Sketch System and User Requirements

Cal-B/C System Requirements

- Designed for a Windows environment, tested on Microsoft Excel 2013 and later versions
- Cal-B/C Sketch file is approximately 700 kilobytes (KB) in size

Cal-B/C User Requirements

- Working knowledge of spreadsheets, particularly Microsoft Excel
- Understanding of benefit-cost analysis
- Ability to interpret results in a transportation planning context
02

Cal-B/C Sketch Overview
Overview of Cal-B/C Sketch 7.2

- Simple, **sketch** planning model
- Set up as an **interconnected**, multi-sheet **spreadsheet**
 - **Project Information** and **Model Inputs** worksheets are primary locations for data entry
 - BCA results presented in the **Results** worksheet
- Contains **default values** and lookup tables to standardize analysis
- Performs calculations automatically from project input data
- Estimates **speeds from volumes** when speed data not available
- Estimates **four user benefits**

Contact: eab@dot.ca.gov
Website: https://dot.ca.gov/programs/transportation-planning/economics-data-management/transportation-economics
Module 4a: Cal-B/C Sketch Overview

Worksheet Layout in Cal-B/C Sketch

<table>
<thead>
<tr>
<th>Title</th>
<th>Instructions</th>
<th>1) Project Information</th>
<th>2) Model Inputs</th>
<th>3) Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Project Description/ Type of Project</td>
<td>Default calculations for:</td>
<td>BCA results</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Highway Geometric and Traffic Data</td>
<td>- Speeds</td>
<td>- Itemized Benefits ($)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Highway Collision Data</td>
<td>- Volumes</td>
<td>- Emission Savings (Tons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rail and Transit Data</td>
<td>- Collisions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Costs</td>
<td>- Additional ramp and arterial inputs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Person-trip verification for HOV/HOT projects</td>
<td></td>
</tr>
</tbody>
</table>

| | | | | Calculates No Build and Build Fuel and Non-Fuel Costs by: |
| | | | | - Year |

| | | | | - Facility |
| | | | | - Mode |

				Calculates No Build and Build Collision Costs by:
				- Year
				- Facility
				- Mode

				Calculates No Build and Build Running and Starting Emissions and Costs:
				- Year
				- Facility
				- Mode

				Tabulates final results, including:
				- Net present value
				- Internal rate of return

| | | | | Key default analysis parameters and assumptions for all Cal-B/C tools |
Cell Color-Coding

- **Cal-B/C Sketch** requires few user inputs, but allows for more inputs when data is available

- **Green** cells indicate required data
 - Must input values depending on analysis being performed
 - Cal-B/C descriptions tell you what cells need to be used for a given analysis
 - Example: for a highway project, highway traffic data must be entered in the appropriate green cells. Rail transit data in this case does not need to be entered

- **Red** cells provide default values that can be changed if needed
 - Examples: default values for percent trucks and average vehicle occupancy (AVO)

- **Blue** cells contain values calculated by the model for No Build and Build Scenarios
Project Information Worksheet
Module 4a: Project Information Worksheet

1) Project Information Worksheet

- Primary data entry worksheet
- For most projects, this will be the only worksheet used
- Other worksheets should be modified if project specific information is available

1A Project Data
- Required for all projects

1B Highway Design and Traffic Data
- Roadway geometrics
- Traffic Demand and Speed Data
- Not all sections need to be filled in

1C Highway Accident (i.e., Collision) Data
- Study area accident rates
- Statewide average accident rates

1D Rail and Transit Data
- Service demand characteristics (e.g., person trips)
- Service supply characteristics

1E Project Costs

Macro Button (for intersection projects)
- Saves Road 1 project information
- Clears cells for Road 2 data enter

Model should be run for both roads for intersection or bypass highway projects, and may be run twice for connectors. Press button below to prepare model to enter data for second road. After data are entered, results reflect total project benefits.

Prepare Model for Second Road
1A) Project Data

- Optional, but can include unique project identifiers: Caltrans District, Project Name (w/ route number and postmiles), Expenditure Authorization (EA) number, Planning and Programming Number (PPNO)

Type of Project

- Pull-down menu allows user to select one of 29 project types
- Text above pull-down menu indicates data entry requirements for each section
1A) Project Data

<table>
<thead>
<tr>
<th>District:</th>
<th>HQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT:</td>
<td>Hypothetical Project</td>
</tr>
</tbody>
</table>

PROJECT DATA

- **Type of Project**: Check AADTs & trips in sections 1B & 2D
- **HOT Lane Conversion**

Project Location

- **Length of Construction Period**: [2] years
- **One- or Two-Way Data**: [1] enter 1 or 2
- **Current**: [5] hours

Project Location

- Used to estimate emission benefits using values appropriate for each region
- Used to look up the percentage of travel during the peak period

Length of Construction Period

- Years needed to construct project
- Project opening date assumed to occur at the end of the construction period

One- or Two-Way Data

- Indicates if Section 1B data is for travel in one direction or two directions. For example, Caltrans Annual Average Daily Traffic (AADT) volumes are reported for 2-way traffic, but the Performance Measurement System (PeMS) volumes can be one-way traffic
Length of Peak Period(s)

- Helps determine peak/non-peak volumes and speeds for emissions and operating cost benefit calculations
- Value entered should be the total number of daily hours that are considered peak hours for travel
- Example: if peak period is four hours from 3PM to 7PM, then enter a “4”
1B) Highway Design and Traffic Data – Highway Design

Roadway Type (i.e., Freeway, Expressway, or Conventional Highway)
- “F” (freeway), “E” (expressway), or “C” (conventional highway) indicates roadway type
- Inputs are case sensitive and should be entered in upper case

Number of General Traffic Lanes
- Mainline traffic lanes along the roadway section (Required input for all highway projects)
- Do not include short auxiliary lanes or ramp merge lanes general traffic lane count

Number of HOV/HOT Lanes
- For HOV-to-HOT lane conversions - same number of lanes for No Build and Build

HOV Restriction (2 or 3)
- Cal-B/C allows a “2” for a two-person or “3” for a three-or more person restriction

Exclusive ROW (Right-of-Way) for Buses
- Input used if the highway contains an exclusive busway or bus lanes

Highway Free-Flow Speed
- Design speed for the highway section

Ramp Design Speed (if auxiliary lane/off-ramp project)
- For auxiliary lanes, speed is average speed during acceleration (for on-ramps), merging, or decelerating (for off-ramps)
Module 4a: Project Information Worksheet

1B) Highway Design and Traffic Data – Travel Demand, Weaving, and Trucks

Average Daily Traffic (ADT)
- Enter general purpose highway traffic for current and forecast year
- Forecast year is 20 years after the project opening date
- Cal-B/C uses straight-line/linear interpolation to estimate future year volumes
- Induced demand can be included in analysis

Average Hourly HOV/HOT Lane Traffic
- If segment has existing HOV/HOT lane, enter current year average hourly HOV/HOT volumes
- Both HOT lane or HOV-2 to HOV-3 conversions affect both AVO and can induce demand

Percent of Induced Trips in HOV (if HOT or 2-3 conversion)
- Percentage of forecast ADT is in HOV/HOT lanes (Required for all highway projects)

Percent Traffic in Weave
- Used for operational improvement projects

Percent Trucks
- Include RVs if significant % of travel, otherwise use readily available truck percent data

Truck Speed
- Trucks/RV average speed on a grade with no passing lanes
- Required input for passing lane projects
- Future speeds are automatically calculated
1B) Highway Design and Traffic Data – On Ramp Volumes

Hourly Ramp Volume
- Section only required for auxiliary lane and on-ramp widening projects
- Used to estimate traffic volumes affected by weaving for auxiliary lanes and effectiveness of ramp metering for on-ramp widening projects
- Cell automatically calculated for peak and non-peak periods based on ramp volume and length of peak period
- Peak period 1,350 vehicles per hour (VPH) for auxiliary lanes; 800 VPH for on-ramps assumed

Metering Strategy
- Required for on-ramp widening projects with ramp metering
- “1”, “2”, or “3” required to indicate the number of vehicles per green
- “D” indicates dual metering
1B) Highway Design and Traffic Data – Queue Formation

- This section only requires data entry for highway queuing and for rail grade separation projects

Arrival Rate
- Enter VPH contributing to the queue
- Should be estimated only for the time that the queue grows
- Cal-B/C estimates queue dissipation automatically

Departure Rate
- Enter VPH leaving the queue
1B) Highway Design and Traffic Data – Pavement Condition

- This section only requires data entry for pavement projects

International Roughness Index (IRI)

- Enter the IRI in the No Build and Build scenarios
- Cal-B/C Sketch will calculate Year 20 values using standard parameters
- Forecast year (Year 20) IRI values and be overridden if better data is available

- IRI is the standard measure used by the Federal Highway Administration (FHWA) for pavement condition
- Measured in California by vehicles driving along a road and capturing deviations from a smooth pavement condition
1B) Highway Design and Traffic Data – Average Vehicle Occupancy (AVO)

General Traffic AVO

- Cal-B/C uses standard AVO estimates based on the most recent California Statewide Travel Survey.
- Many regional and local agencies have more updated No Build and Build AVO data available.

High Occupancy Vehicle (HOV) Occupancy

- Data entry required if the analysis roadway has an HOV or HOT lane.
- Estimate can vary widely from freeway to freeway, so appropriate values must be entered in this section.
- Caltrans District Managed Lanes Annual Report reports AVOs for both general purpose and HOV/HOT lanes at select locations.
1C) Highway Accident Data – Actual 3-Year Accident Data

Total Accidents/Fatal/Injury/Property Damage Only

- Enter actual number of collisions along the analysis corridor over the most recent 3-Year period
- Collision data can come from a range of sources:
 - State Highway System (SHS) - Caltrans Traffic Accident Surveillance and Analysis System (TASAS)
 - Local arterial collisions- California Highway Patrol (CHP) Statewide Integrated Traffic Records System (SWITRS)
 - Rail grade crossing collisions - Federal Highway-Rail Crossing Accident database or the Federal Railroad Administration Web Accident Prediction System (WBAPS)
- Collision rates calculated using ADT values from Section 1B
- Collision Rate = ADT x highway segment length x 365 days/1,000,000
- Calculated rates can be overridden if better data available

NOTE: Current practice at Caltrans and agencies refers to vehicular incidents or “accidents” as “collisions” or “crashes.” Current versions of Cal-B/C still refer to collisions/crashes as accidents
1C) Highway Accident Data – Statewide Basic Average Accident Rate

Rate Group

- Cal-B/C Sketch uses the change in accident rate group to estimate the safety benefits of roadway projects
- Enter appropriate rate groups for No Build and Build scenarios
- This information is for record-keeping purposes only
 - Cal-B/C relies on average accident rates and percentages by accident type for analysis
- Latest information for State Highways can be found in annual collision reports, which provide rate group data in the “Basic Accident Rate Tables”
Module 4a: Project Information Worksheet

1D) Rail and Transit Data – Person Trip Data

Annual Person Trips
- Enter passenger trips on transit for both Base (Year 1) and the Forecast year for both the No Build and Build scenarios
- Forecast (Year 20) is project completion date plus 20 years

Percent Trips during Peak Period
- Cal-B/C Sketch provides a default estimate of the ratio of peak period to daily ridership that can be overridden

Percent New Trips from Parallel Highway
- Improved transit may attract new trips from parallel highways
 - In practice, percentage of new transit trips from highways ranges between 50 and 80 percent
1D) Rail and Transit Data – Transit Service and Collision Data

Annual Vehicle-Miles
- Enter number of vehicle-miles of transit or rail service operated on the line each year
- Estimates needed for Base (Year 1) and Forecast (Year 20) after the opening date for both No Build and Build scenarios
- For passenger rail projects, number of vehicle-miles is total number of train car miles (i.e., multiply train miles x average number of cars per train)

Average Vehicles per Train
- Enter number of train cars used in an average train consist
- Can be used above to calculate vehicle-miles
- Vehicle-Miles and vehicles/train used by Cal-B/C to estimate annual emissions caused by transit

Reduction in Transit Accidents (collisions)
- Enter percentage change in collisions due to project
- Enter a value only if project specifically addresses safety
1D) Rail and Transit Data – Transit Travel Times

- Enter data only for
- Travelers experience time differently depending on how they perceive their movement from point “A” to point “B”
- Transit users assign a higher value of time when waiting than when traveling in the transit vehicle

In-Vehicle Travel Time

- In-vehicle time is the time spent in the bus or train
- Enter average travel time spent in the transit vehicle for both No Build non-Peak and Peak periods
- Cal-B/C estimates future travel time, but can be overridden
- If TMS project, enter average travel time for all affected routes

Out-Of-Vehicle Time

- Out of vehicle time impacts estimated by Cal-B/C for Automatic Vehicle Location (AVL) projects
- Out-of-vehicle savings for other types of projects can be overridden
1D) Rail and Transit Data – Highway Grade Crossing

- At grade highway grade crossings increase travel times as vehicles queue while waiting for trains to pass
- Collisions with trains also eliminated with railroad grade crossing construction

Annual Number of Trains
- Annual number of trains is total number of freight & passenger trains
- Total number of annual trains passing by grade crossing in current year
- Number of annual trains forecast to pass in Year 20 following grade crossing construction
- Year 1 estimates often unavailable, so Cal-B/C estimates year based on current and Year 20 inputs

Average Gate Down Time (minutes)
- Average time (minutes) crossing gate is closed for train to pass
- Can vary by train type: longer, slower moving freight trains and shorter, faster moving passenger trains
- Enter an average estimated gate down time that combines impact of both freight and passenger trains
1D) Rail and Transit Data – Transit Agency Costs (TMS Projects Only)

- For TMS projects, Cal-B/C requires total annual capital, operating, and maintenance expenditures
- Cal-B/C calculates cost reductions for new expenditures due to transit TMS
- Cal-B/C then estimates agency cost savings and records them as negative costs
1E) Project Costs - Overview

- All project costs entered into seven costing columns
- Project costs should be entered as incremental costs
- Costs must be entered in thousands of dollars ($1,000)
- Project costs must be in the same year as economic parameters used for benefit calculations
- Up to eight (8) years of initial project costs allowed
- Costs must be entered for each year consistent with "Length of Construction Period" entered in Section 1A
- Following construction, project opens and there are 20 years during the project operating period
1E) Project Costs – Direct Project Costs

Initial Costs
- Project support - engineering design and management
- Right-of-way acquisition costs
- Construction costs
- Each project should incur no initial project costs after the project opens
- Assumes construction funding expended by opening day
- All costs entered in constant dollars

Subsequent Costs
- Costs incurred after the project is constructed and open
- Maintenance and operating (M&O) costs
- Rehabilitation costs - pavement overlay, vehicle, track, or station refurbishment
- All costs entered in constant dollars

Direct Project Costs Table

<table>
<thead>
<tr>
<th>Year</th>
<th>Construction Period</th>
<th>Initial Costs</th>
<th>Subsequent Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Project support includes engineering design and management costs.

Note: All costs entered in constant dollars.
Module 4a: Project Information Worksheet

1E) Project Costs – Mitigation, Transit Agency, and Total Costs

Mitigation
- Costs to mitigate community and environmental impacts
 - Examples: Wetland and community preservation, sound walls to reduce highway or rail transit noise
- All costs entered in constant dollars

Transit Agency Cost Savings
- Calculated automatically after project opening
- Savings to transit agency due to efficiency improvements

Total Costs
- Calculated automatically
- Include project cost in constant dollars and net present value for each year
- Values are in total dollars and not in thousands of dollars like other columns
1) Bypass, Intersection, and Truck Only Lane Projects Macro

- When two roads involved in an analysis, Sketch requires data for both roads
- Button runs a macro that clears Project Information worksheet to be ready for data entry for the second road
- Detailed calculations for the first road are lost
 - Good practice to save a copy of analysis before entering information for second road
- Intersection projects - macro clears highway information box, so traffic and highway geometric data can be entered for intersecting road
- Bypass projects - macro clears highway information under No Build project column and calculates Build column traffic on bypass road as No Build traffic minus traffic on existing roads
- Truck only lane projects - macro clears No Build column, since truck only lane does not currently exist and estimates Build traffic as having only truck traffic
Model Inputs Worksheet
2) Model Inputs Worksheet

- Can review and replace calculated values
- Worksheet shows Cal-B/C estimated values and provides space to change values as needed

2A Highway Speed and Volume Inputs
 - Peak and non-peak periods
 - HOV, non-HOV, weaving, and truck volumes and speeds

2B Highway Accident Rates and adjustment factors
 - Fatal, Injury, PDO accidents.

2C Ramp and Arterial Inputs
 - Aggregate ramp and arterial volumes and speeds for Year 1 and Year 20

2D Annual Person Trips
 - Provides annual person-trip estimates for HOV conversion and HOT lane projects
 - Provided for review purposes only. If needed, ADT and AVO inputs can be adjusted in Project Information worksheet

- Note: Important to complete “Reason for Change” if changes made
- FHWA grant reviewers closely examine overridden values
- Should have citing documents available
2A) Model Inputs – Highway Speed and Volume Adjustments

- Can change volumes and speeds in the green cells
 - Include a reason for the change in the white “Reason for Change” column
- Both Year 1 and Year 20 estimates
- Peak and Non-Peak estimates
- Volumes and Speeds for
 - HOV
 - General Purpose (i.e., Non-HOV)
 - Trucks
2B) Model Inputs - Highway Accident Rate Adjustments

- Cal-B/C forecasts Build accident rates by calculating ratio of current accident rates to statewide average
- If segment accident rates > statewide average, Build accident rates will be above average
- If project designed to lower accident rates to statewide average, Cal-B/C estimate (in blue cells) must be manually overridden
- Cal-B/C assumes (through the adjustment factor) that differential remains the same for Build facility
- Changing factor to 1.0 results in accident rates at statewide averages for that facility type
- Cal-B/C calculations consistent with collision reduction factors found in the Caltrans Highway Safety Improvement Program (HSIP) Guidelines
2C) Model Inputs - Ramp and Arterial Inputs

- Used for TMS projects
- Allows for arterial and ramp volume and speed inputs
2D) Model Inputs – Annual Person-Trips Validation

- Provided for validation purposes only
- Calculates annual person-trip data based on inputs in the Project Information worksheet for HOV conversion and HOT lane projects
- If total trips do not match, ADT and AVO data in project information worksheet should be adjusted
05 Results Worksheet
3) Model Results

- Results calculated over 20-year project lifecycle
- Life-Cycle Costs - present values of all net project costs
- Life-Cycle Benefits - sum of present value project benefits
- Net Present Value = Life-Cycle Benefits - Lifecycle Costs
- Benefit/Cost Ratio - Life-Cycle Benefits/Lifecycle Costs
 - >1 means project has a positive economic value
- Rate of Return on Investment - Discount rate at which benefits and costs are equal.
- Payback Period - Number of years it takes for net benefits (lifecycle benefits minus lifecycle costs) to equal initial construction costs
- Emission reductions – positive value = a reduction in emissions

Life-Cycle Costs (mil. $)
<table>
<thead>
<tr>
<th>Item</th>
<th>Total 20-Years</th>
<th>Average Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life-Cycle Costs</td>
<td>$756.9</td>
<td></td>
</tr>
<tr>
<td>Life-Cycle Benefits</td>
<td>$7,316.1</td>
<td></td>
</tr>
<tr>
<td>Net Present Value</td>
<td>$5693.9</td>
<td></td>
</tr>
</tbody>
</table>

Benefit/Cost Ratio
- 1.7

Rate of Return on Investment
- 13.9%

Payback Period
- 9 years

Results

<table>
<thead>
<tr>
<th>Item</th>
<th>Total 20-Years</th>
<th>Average Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 Emissions Saved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COE Emissions Saved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx Emissions Saved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM10 Emissions Saved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO2 Emissions Saved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YOC Emissions Saved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Additional Information
Detailed Calculations

- Discussed in more detail in Module 6a
- Produces detailed calculations for each benefit category (i.e., Travel Time, Vehicle Operating, Accidents, and Emissions)
- Final Calculations Worksheet tabulates benefits and calculates the results
- Year by year calculations, and in most cases, by mode and facility
- Benefits are functions of user data inputs and assumptions from the parameters worksheet:
 - Travel time savings = f (volume, speed)
 - Vehicle operating cost savings = f (volume, speed, fuel consumption, wear factors)
 - Accident cost savings = f (volume, accident rate, facility type)
 - Emission cost savings = f (volume, speed, emission rate)
Module 4a: Additional Information

Cal-B/C Sketch Documentation

- User’s Guide
 - User-focused model overview with step-by-step instructions and project example
 - Describes model framework, project types, and updated parameters

- Parameter Guide
 - Describes economic values and parameters
Conclusion
In this module, you learned…

- How Cal-B/C Sketch works
- How to determine if Cal-B/C Sketch is the right tool for your project evaluation
- Cal-B/C color-coding and worksheet layout
- Where and how data is entered into Cal-B/C Sketch
What’s Next?

- Get more information on a different Cal-B/C tool and how it works
 - Module 4b (Cal-B/C Corridor)
 - Module 4c (Cal-B/C Active Transportation)
 - Module 4d (Cal-B/C Park & Ride)
 - Module 4e (Cal-B/C Intermodal Freight)
- Find out more about Cal-B/C assumptions and parameters
 - Module 5: Understanding Cal-B/C Assumptions and Parameters
- Module 6a: Calculations
- Start an analysis!
 - Module 7a (Cal-B/C Sketch)
 - Module 7b (Cal-B/C Corridor)
 - Module 7c (Cal-B/C Active Transportation)
 - Module 7d (Cal-B/C Park & Ride)
 - Module 7e (Cal-B/C Intermodal Freight)