Table of Contents

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Issue Date</th>
<th>Title</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-0.00</td>
<td>04-22-2019</td>
<td>General</td>
<td>Updated Sections 19-0.00 and 90-0.0</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>4-0.0</td>
<td>08-31-2015</td>
<td>Scope of Work</td>
<td>Updated Section 112-0.0</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>5-0.00</td>
<td>04-22-2019</td>
<td>Control of Work</td>
<td>Updated Section 112-0.0</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>16-0.00</td>
<td>08-30-2019</td>
<td>Temporary Facilities</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>19-0.00</td>
<td>12-31-2020</td>
<td>Earthwork</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>46-0.0</td>
<td>11-16-2018</td>
<td>Ground Anchors and Soil Nails</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>47-0.0</td>
<td>12-20-2018</td>
<td>Earth Retaining Systems</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>48-0.00</td>
<td>04-22-2019</td>
<td>Temporary Structures</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>49-0.00</td>
<td>04-22-2019</td>
<td>Piling</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>50-0.0</td>
<td>11-16-2018</td>
<td>Prestressing Concrete</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>51-0.0</td>
<td>01-18-2019</td>
<td>Concrete Structures</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>53-0.00</td>
<td>04-22-2019</td>
<td>Shotcrete</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>56-0.0</td>
<td>12-20-2018</td>
<td>Overhead Sign Structures, Standards, and Poles</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>60-0.00</td>
<td>08-31-2020</td>
<td>Existing Structures</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>90-0.0</td>
<td>12-31-2020</td>
<td>Concrete</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>110-0.0</td>
<td>(Blank – Removed 01-31-20)</td>
<td></td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>112-0.0</td>
<td>11-30-2020</td>
<td>Decks</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>115-0.0</td>
<td>03-19-1998</td>
<td>Electrical and Mechanical Equipment</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>120-0.0</td>
<td>08-30-2013</td>
<td>Falsework</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>122-0.00</td>
<td>12-05-2017</td>
<td>Shoring</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>124-0.0</td>
<td>01-02-1999</td>
<td>Demolition</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>125-0.0</td>
<td>03-30-2015</td>
<td>Blank – Moved to Section 51 on 03-30-15</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>130-0.0</td>
<td>08-31-2020</td>
<td>Foundations</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>132-0.0</td>
<td>07-29-2010</td>
<td>Miscellaneous Buildings</td>
<td>Removed Section 175</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>Section No.</td>
<td>Issue Date</td>
<td>Title</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-0.0</td>
<td>04-11-2003</td>
<td>Miscellaneous Construction Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140-0.0</td>
<td></td>
<td>Miscellaneous Concrete Structures (currently no entries)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145-0.0</td>
<td>12-20-2018</td>
<td>Miscellaneous Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150-0.0</td>
<td>05-30-2018</td>
<td>Overloads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155-0.0</td>
<td>02-20-1997</td>
<td>Paint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160-0.0</td>
<td>11-16-2018</td>
<td>Prestressed Concrete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>161-0.0</td>
<td>04-27-1987</td>
<td>Pumping Plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>162-0.0</td>
<td>07-01-1999</td>
<td>Railings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165-0.0</td>
<td>10-31-2012</td>
<td>Reinforcing Steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>168-0.0</td>
<td>12-20-2018</td>
<td>Signs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170-0.0</td>
<td>07-01-2001</td>
<td>Structural Steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175-0.0</td>
<td></td>
<td>(Blank – Removed 09-17-20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180-0.0</td>
<td>06-08-2012</td>
<td>Welding</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(This page left intentionally blank.)
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>04-22-2019</td>
<td>Original issue</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Memo No Issue Date Title
----------- --------------- ----------------------------
1-1.09 04/22/2019 General – Freeze-Thaw Areas
General – Freeze-Thaw Areas

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>04-22-2019</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (S.C.) responsibilities and procedures for verifying that applicable concrete freeze-thaw preservation measures are incorporated in the finished construction project. Design details which have produced adequate structures in mild climates have resulted in expensive maintenance problems on structures which are subject to the freeze-thaw cycle, deicing chemicals, and chain wear.

Caltrans Bridge Memo to Designers (M.T.D.) 8-2, Protection against Deicing Chemicals and Freeze-Thaw Environment, Attachment 3, Freeze-Thaw Areas, identifies severe climate areas that can be exposed to freeze-thaw conditions. The severe climate areas are listed by County, State Route, and post-mile limits. M.T.D. 8-2 is used to verify that a project is in a severe weather area and requires additional design consideration, such as the use of corrosion resistant reinforcing steel, modifications to the concrete mix design, and curing methods. Structures located near severe weather areas may be exposed to deicing chemicals that are carried by vehicle traffic.

Prior to reviewing this Bridge Construction Memo (B.C.M.), it is essential to review the Contract Specifications 1-1.09, General – Freeze-Thaw, applicable to your specific project, that this B.C.M. is based on as identified in the title block above. The information in the contract specifications typically will not be repeated in the text of this B.C.M.
Process Inputs

1. Trigger activity from process sequence for bridges, sign structures, buildings, walls, project development teams, or constructability reviews
2. Location of the project
3. Freeze-thaw requirements listed in the contract documents

Procedure

1. All work associated with this process is charged as Project-Direct – Construction, or Project-Direct – Preconstruction.

2. Inspection of field work for this process is:
 a. Benchmark as needed for verification of reinforcing steel freeze-thaw requirements.
 b. Continuous for concrete placement activities.

3. Before construction begins:
 a. Review Concrete Technology Manual for freeze thaw background information.
 b. Verify project locations and whether any are in a freeze-thaw area. If the project is not in a freeze-thaw area do not perform the following steps.
 c. Verify required freeze-thaw elements are included in the contract documents.
 d. Discuss any discrepancies with project locations and freeze-thaw areas with the Project Designer and prepare a change order if necessary.
 e. Discuss freeze-thaw requirements, such as epoxy coated reinforcement samples for Materials Engineering and Testing Services (M.E.T.S.), with the Contractor at the pre-construction conference.
 f. Verify all concrete mix designs for severe weather freeze-thaw areas meet contract requirements per B.C.M. 90-1.01C, Concrete – Submittals.

4. During construction:
 a. For epoxy-coated reinforcement:
 i. Inspect, handle, and store in accordance with the Special Provisions, B.C.M. 52-2.01A(3), Reinforcement – Epoxy-Coated Reinforcement and Epoxy-Coated Prefabricated Reinforcement, and the Construction Manual, Section 4-52, Reinforcement.
 ii. Verify epoxy-coated reinforcement has been approved by M.E.T.S.
iii. Provide minimum concrete cover as shown in contract documents.

b. For concrete:
 i. Verify delivered concrete meets the authorized concrete mix design submittal requirements (e.g., air entrainment).
 ii. Perform required freeze-thaw concrete field testing (air entrainment) in accordance with Construction Manual, Table 6-1.17, Materials Acceptance Sampling and Testing Requirements: Concrete.
 iii. Verify concrete curing method complies with contract documents (e.g., water method for concrete barriers).

c. For additional details needed in freeze-thaw environment (e.g., bent sealing under deck expansion joints, polyester concrete overlay, etc.), perform work in accordance with Special Provisions and applicable B.C.Ms.

d. Collect, review, and file certificates of compliance (e.g., concrete, epoxy-coated rebar).

e. Document all inspection and construction activities for freeze-thaw requirements in the Daily Reports per B.C.M. C-4.04, Daily and Weekly Reports.

f. File all test results and Daily Reports in the appropriate category in the project records as specified in the Construction Manual 5-102, Organization of Project Documents.

Process Outputs

1. Materials incorporated into the work meet the contract specifications for freeze-thaw. Certificates of compliance (e.g., concrete, epoxy-coated rebar):

2. Daily Reports: Document all inspection and construction activities for freeze-thaw requirements in the Daily Reports per B.C.M. C-4.04, Daily and Weekly Reports

Attachments

None
Table of Contents

<table>
<thead>
<tr>
<th>Standard Specification Section</th>
<th>Standard Specification Title</th>
<th>Commentary Revision Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1.07</td>
<td>Value Engineering</td>
<td>08-31-15</td>
</tr>
<tr>
<td>4-1.07A</td>
<td>General</td>
<td>08-31-15</td>
</tr>
<tr>
<td></td>
<td>- Construction Manual</td>
<td></td>
</tr>
<tr>
<td>4-1.07B</td>
<td>Value Engineering Change Proposal</td>
<td>08-31-15</td>
</tr>
<tr>
<td></td>
<td>- Resources, Review and Determination Procedure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Proposal Concept Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- VECP Investigation Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Roles / Responsibility</td>
<td></td>
</tr>
<tr>
<td>Attachment 1</td>
<td>VECP Analysis Report Template</td>
<td>08-31-15</td>
</tr>
</tbody>
</table>
4-1.07 Value Engineering

4-1.07A General

Construction Manual

Additional information is available in the *Construction Manual*, Section 3-405, *Value Engineering*.

4-1.07B Value Engineering Change Proposal

Resources, Review and Determination Procedure

Additional information is available in the:

- *Structure Design Alert*¹ dated July 1, 2014.

The Division of Engineering Services (DES) is responsible for providing technical concurrence on structure related Value Engineering Change Proposals (VECPs). Acceptance of the VECP is a district/region responsibility. The Deputy District Director for Construction (DDDC) in each district makes the final determination if a VECP is acceptable based in part on the technical recommendation of DES.

It is critical that VECPs are thoroughly vetted and not rejected or accepted without full consideration. If a determination is made that a structure related VECP is:

- Acceptable to DES, that decision should be made at the lowest level possible and concurred at the level just above those making the decision.
- Unacceptable to DES, that decision must be validated by an appropriate team of DES Deputies (Structure Construction [SC], Structure Design [SD], and Material Engineering and Testing Services/Geotechnical Services [METS/GS]) before the determination is transmitted to the district.

Proposal Concept Stage

When the proposal concept is presented, the appropriate DES Representatives (Structure Representative, Structure Design Project Engineer, Bridge Construction Engineer (BCE), and SD Branch Chief) should participate in the meeting between the Contractor and the Engineer. To ensure an adequate understanding of the *Proposal Concept*, invite all parties from DES³ and Structure Maintenance & Investigations, to participate as appropriate. It is important that fatal flaws in the *Proposal Concept* be discussed early before the Contractor prepares a VECP.

The DES Representatives must **confer and concur as to the DES decision for the Proposal Concept**. If a *Proposal Concept* is found to be unacceptable (rejected), the next level (Area Construction Manager (ACM) and SD Office Chief) should review it. If they concur with the

¹ http://onramp.dot.ca.gov/hq/des/sd/docs/structure_design_alerts/sda_20140701.pdf
³ Appropriate DES parties could include Geotechnical Services, Earthquake Engineering, Structures Office Engineer (Specifications), Hydraulics, etc.
rejection, the Proposal Concept and VECP Analysis Report should be forwarded to the next level (DES Deputies) for review. The DES Deputy Division Chiefs for SC, SD, and METS/GS will make the determination for DES on whether the VECP Proposal Concept is unacceptable.

Submit the DES decision in writing to the Resident Engineer. The decision to proceed with the Proposal Concept should be made at the lowest level possible and concurred at the level just above those making the decision. The decision to accept a Proposal Concept must be documented on the VECP Analysis Report, for which a template is provided in Attachment No. 1.

For structure related items, the review times required by DES will vary depending upon the complexity of the Proposal Concept, as multiple functional units within DES will need to review and provide input on the VECP. Convey to the Resident Engineer the review times required by DES to the Resident Engineer for their discussion with the Contractor.

VECP Investigation Stage

During the VECP investigation stage, the BCE will facilitate the review by all DES functional units and Structure Maintenance and Investigations to ensure all stakeholders have provided input and to ensure timely completion of the investigation.

The DES functional unit representatives should confer and concur as to the DES decision for the VECP. If the representatives find the VECP to be unacceptable, the next level (Area Construction Manager (ACM)/Office Chief) should review the VECP; if they concur with the rejection, the BCE should arrange for a meeting between the DES Deputy Division Chiefs for SD, SC, and METS/GS to review the VECP. Prior to the meeting, provide the VECP Analysis Report to the Deputy Division Chiefs.

The VECP Analysis Report will provide:
- All pertinent contract information along with a description of the VECP.
- Structures affected.
- Positive aspects of the VECP.
- Reasons the VECP should be rejected.
- The recommendation(s) of the Structure Representative and Project Engineer.

Submit the DES decision, in writing, to the Resident Engineer. The decision to proceed with the VECP should be made at the lowest level possible and concurred at the level just above those making the decision. The decision must be documented in the VECP Analysis Report.

Roles / Responsibility

Structure Representative – Collaborate with the Structure Design Project Engineer on the DES recommendation to the VECP.

4 SD, METS/GS, and Program/Project and Resource Management (PPRM)/Special Funded Projects

California Department of Transportation ♦ Bridge Construction Records and Procedures Manual ♦ August 2015
Structure Design Project Engineer – Evaluate the VECP for technical soundness and collaborate with the Structure Representative on the DES recommendation to the VECP.

Bridge Construction Engineer – Facilitate the review by all DES units to ensure timely completion. If needed, arrange for a meeting with the Deputy Division Chiefs from SC, SD, METS/GS and PPRM. Work with the ACM to review the Structure Representative’s and Project Engineer’s recommendation to the VECP.

Structure Design Branch Chief – With the BCE, review the Structure Representative’s and Project Engineer’s recommendation to the VECP.

Area Construction Manager – In cases of rejection of the VECP, verify that the VECP has been properly vetted. Confer with the SD Office Chief on the recommendations to the VECP. Meet with the Deputy Division Chiefs to review the cause for rejection. Confirm the recommendation from DES to the District, or return the VECP to the Structure Representative and Project Engineer for continued review.

Structure Design Office Chief – In cases of rejection to the VECP, verify that the VECP has been properly vetted. Confer with the ACM on the recommendations to the VECP. Meet with the Deputy Division Chiefs to review the cause for rejection. Confirm the recommendation to the District or return the VECP to the Structure Representative and Project Engineer for continued review and evaluation.

Division of Engineering Services Deputy Division Chief – In cases of rejection of the VECP, verify that the VECP has been properly vetted. Confirm the DES recommendation to the District or return the VECP to the Structure Representative and SD Project Engineer for continued review and evaluation.
The following is a sample *VECP Analysis Report* that can be used as a template:

Structure Construction – Value Engineering Change Proposal Analysis (VECP) Report

Insert Date

Project Information

- Dist-EA
- Dist-Co-Rte-PM
- Structure or bridge name
- Br. No.

Description of VECP

Provide a description of the VECP

- Reduce any cost of construction.
- Reduce construction activity duration.
- Reduce traffic congestion.
- Permit issues.
- Impact on other projects.
- Project impacts, including traffic, schedule, later stages.
- Peer reviews.
- Overall proposal merits.
- Review times required by the Department and other agencies.
- Etc.

Structure(s) Affected: *(Identify any structures that are affected)*

Chronology:

Proposal Concept received: (date)

Proposal Concept accepted or rejected: (date)

VECP received: (date)

VECP accepted or rejected: (date)

Change Order issued: (date)

Elapsed review time: _____ days

Introduction:

This report presents the results of the review for the *(insert type of review completed, i.e. Proposal Concept or VECP).*

Discussion:

Positive Aspects of the VECP – *List and clarify*
Reasons the VECP should be rejected – This portion of the report would describe specific deficiencies found with the Proposal Concept or VECP that would be cause for rejection i.e.

Recommendation of the Structure Representative:
Authorization – No exceptions were found with the VECP (number or title of VECP or other unique identifier).

Rejection:
Structure Construction does not accept the VECP. The (insert type of review completed, i.e. Proposal Concept or VECP) for (identify specific location) of the (Bridge name, Br. No.), based upon the analysis that found the deficiencies listed above.

If you have any questions regarding this report, please contact Structure Representative at (XXX) XXX-XXXX.

Steve Street, P.E.
Structure Representative
Structure Construction
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>04-22-2019</td>
<td>Original issue</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

## Memo No	Issue Date	Title
5-1.01 | xx/xx/20xx | Control of Work – General
5-1.02 | xx/xx/20xx | Control of Work – Contract Components
5-1.03 | xx/xx/20xx | Control of Work – Engineer’s Authority
5-1.09 | xx/xx/20xx | Control of Work – Partnering
5-1.17 | xx/xx/20xx | Control of Work – Character of Workers
5-1.20C | xx/xx/20xx | Control of Work – Railroad Relations
5-1.23 | xx/xx/20xx | Control of Work – Submittals
5-1.26 | xx/xx/20xx | Control of Work – Construction Surveys
5-1.30 | xx/xx/20xx | Control of Work – Noncompliant and Unauthorized Work
5-1.36 | 04/22/2019 | Control of Work – Property and Facility Preservation
5-1.37B | xx/xx/20xx | Control of Work – Maintenance and Protection – Load Limits
5-1.38 | xx/xx/20xx | Control of Work – Maintenance and Protection Relief
5-1.43A-D | xx/xx/20xx | Control of Work – Potential Claims
5-1.43E | xx/xx/20xx | Control of Work – Alternative Dispute Resolution
5-1.46 | xx/xx/20xx | Control of Work – Final Inspection and Contract Acceptance

Control of Work – Property and Facility Preservation

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>04-22-2019</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (S.C.) responsibilities and procedures for assisting the Resident Engineer with administration of preservation of existing property and facilities.

This process addresses preservation, protection, and when applicable rearrangement of:

1. Highway improvements and facilities
2. Adjacent property
3. Waterways
4. Environmentally sensitive areas
5. Lands administered by other agencies
6. Railroads and railroad equipment
7. Nonhighway facilities, including utilities
8. Survey monuments
9. Department's instrumentation
10. Temporary work
11. Roadside vegetation not to be removed.
Prior to reviewing this Bridge Construction Memo (B.C.M.), it is essential to review the Contract Specification, Section 5-1.36, Control of Work – Property and Facility Preservation, applicable to your specific project, that this B.C.M. is based on, as identified in the title block above. The information in the contract specifications typically will not be repeated in the text of this B.C.M.

Process Inputs

1. Written notification of damage to existing utilities and other improvements
2. Written notification of unidentified utilities
3. Work plan for protecting railroad facilities
4. Work plan for protecting non-railroad facilities (if required)

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.
2. Inspection of field work for this process is:
 a. Intermittent during daily site visits to verify existing facilities remain in service.
3. Before construction begins:
 a. Coordinate with Resident Engineer the division of work for inspection and administration tasks, including:
 i. Initial, periodic, and final inspections
 ii. Agency requirements, communication, and coordination
 iii. Protection, relocation, and repair of existing facilities.
 b. Review contract documents to identify existing facilities.
 c. Conduct a visual inspection of the project limits to verify location of existing facilities and document facilities not identified in the contract documents
 d. Document with condition of the existing facilities; including photographs of the existing facilities. If necessary:
 i. Replace facilities that have deteriorated sufficiently beyond intended use.
 ii. Relocate or protect facilities to prevent damage.
 e. Document existing survey monuments and high-water marks as outlined in Attachment 1, Preservation of Property.
 f. Record elevations of high-water marks if structures are widened, repaired, or replaced.
g. Based on field review and contract documents, notify the Contractor if a work plan showing the systems to be used to protect facilities is required.

h. Review railroad guidelines in B.C.M. 5-1.20C, *Control of Work – Railroad Relations and Construction Manual*, Section 3-520B, *Railroad Property*, regarding protecting railroad property, if applicable:

i. Review and authorize work plan for protecting railroad facilities.

j. Coordinate with other agencies with facilities to be relocated or protected as outlined in *Construction Manual*, Section 3-520, *Property and Facility Preservation*.

k. Coordinate with Resident Engineer to protect and relocate state owned facilities.

l. Verify utilities have been located prior to excavating.

i. Coordinate with other agencies to provide protection or relocate facilities or objects.

4. During construction:

a. Conduct a visual inspection of the project limits to verify existing facilities remain in service and are in the same condition prior to the start of work.

b. Verify suitable protection devices are in place to prevent property damage.

c. Work with the Resident Engineer to coordinate with other agencies to provide protection or relocate facilities or objects.

d. Coordinate with the railroad flagger to provide protection of railroad facilities.

e. Notify the Resident Engineer if existing survey monuments require relocation.

f. Upon written notification from the Contractor of damage to existing utilities or of unidentified utilities:

i. Notify the Resident Engineer and coordinate response.

g. Order the Contractor to make necessary repairs to return the facility to service.

h. Document all inspection, construction, and quality assurance activities in the *Daily Reports* per B.C.M. C-4.04, *Daily and Weekly Reports*.

5. Following construction:

a. Document existing facilities that remain in place and are in the same condition as prior to construction on the as-builts per *Construction Manual*, Section 5-104, *As-Built Plans* and B.C.M. 99-01000-1.10, *Building Construction – As-Built Drawings*.

b. Replace high water marks.
c. Coordinate with the District to replace survey monuments and benchmarks.

d. Verify that the Contractor restores or repairs any facilities or improvement damaged by the Contractor’s operation.

e. File all correspondence and Daily Reports in the appropriate category in the project records as specified in the Construction Manual, Section 5-102, Organization of Project Documents.

Process Outputs

1. Successful completion of project
2. Existing facilities successfully preserved and protected
3. Daily Reports

Attachments

1. Preservation of Property
Preservation of Property

General Information
Structure Construction operations frequently occur in areas where there are existing utilities or other improvements which must be protected from damage and preserved or relocated. It is general practice to show utilities or other improvements on the plans, or list them in the Special Provisions. There are occasions; however, when utilities or improvements which exist in the construction area, are not shown on the plans or in the specifications, or are shown on the plans in a location other than where they are found in the field.

The Resident Engineer is responsible for the overall contract administrative duties associated with protecting and relocating utilities and improvements. All such items must be protected from damage or relocated in accordance with the following details.

Protecting Utilities and Improvements
The Standard Specifications require the Contractor to preserve and protect from damage, existing highway improvements or facilities, existing utility facilities, existing property improvements, etc., whether they are publicly or privately owned, and which are located within or adjacent to the highway right-of-way.

In connection with facilities and improvements, which are identified on the plans or in the Special Provisions, the Engineer has the authority to require the Contractor to furnish and install suitable protective devices to prevent property damage, and to require the Contractor to restore or repair any facility or improvement which may have been damaged by the Contractor's operations.

However, the Contractor's general responsibility includes only the installation of such devices as are necessary to protect against their operations. Any permanent protection which may be required, but which is not a part of the contract, must be authorized by a change order.

In the event, that the Contractor discovers underground facilities not identified on the plans or in the Special Provisions, the Contractor must immediately give the Engineer written notification of the existence of such facilities. Such facilities must be relocated or protected from damage, as directed by the Engineer, and the Contractor will be paid for such work as extra work.

Utility Relocation
The Construction Manual, Section 3-520, Property and Facility Preservation, covers this subject except for railroad work. All questions concerning permanent and/or temporary
Preservation of Property

relocation of railroad facilities, including related utilities such as telegraph and signal communication lines, are handled through the Division of Right of Way and Land Surveys, Railroad Coordination and Utility Relocation Office.

Relocation of Survey Monuments and Bench Marks

Caltrans is required by the Professional Land Surveyor’s Act, Section 8771, Setting of Monuments in General; Monument Perpetuation, to arrange for the relocation of all monuments of record belonging to other governmental agencies if highway construction would otherwise result in their destruction.

Relocation of survey monuments and government bench marks will be handled by the District. The Structure Representative should notify the Resident Engineer when survey monuments are encountered and need to be relocated.

Existing High-Water Marks

Some existing structures have high water marks painted on them. If these structures are widened, repaired or replaced, the elevation of the previously painted high-water mark should be taken and recorded. If these high-water marks are lost during construction, they should be replaced at the completion of the work.
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>08-30-2019</td>
<td>Original issue.</td>
<td>Richard Foley</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEMO NO.</th>
<th>ISSUE DATE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-4</td>
<td>08/30/2019</td>
<td>Temporary Traffic Control – Maintaining Traffic</td>
</tr>
</tbody>
</table>
Temporary Traffic Control – Maintaining Traffic

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>08-30-2019</td>
<td>Original issue.</td>
<td>Richard Foley</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (SC) responsibilities and procedures for assisting the Resident Engineer (R.E.) with authorization of traffic control submittals and maintaining traffic during contract structure work.

Structure Construction staff may assist the R.E. with temporary traffic control activities during structure work at the RE’s request, provided SC resources permit.

Prior to reviewing this Bridge Construction Memo (BCM), it is essential to review the contract specifications 12-4, Temporary Traffic Control – Maintaining Traffic, that this BCM is based on as identified in the title block above. The information in the contract specification(s) typically will not be repeated in the text of this BCM.

Process Inputs

1. Contractor lane closure request
2. Traffic handling plans required in contract documents
3. Contractor submitted required or requested contingency plans for maintaining traffic.
Procedure

1. All work associated with this process is charged as: (1) Project-Direct – Construction, (2) Project-Direct – Preconstruction.

2. Inspection of field work for this process is:
 a. Intermittent

3. All SC staff are expected to be familiar with Construction Manual (CM), Chapter 2-2, Traffic.

4. Before construction begins:
 a. Review structure work plan submittals for conformance with traffic control requirements of the contract documents. Discuss with the district RE:
 i. Potential impact of structure work affecting traffic.
 ii. Traffic work windows and structure work done within them.
 iii. Determine if contingency plans are required per the Special Provisions or a plan needs to be requested. Review and provide input to the RE for authorization.
 iv. Determine if impact to traffic for structures work can be reduced.
 b. RE handles all necessary notices to all local agencies regarding temporary traffic control unless other arrangements are made.
 c. Inform the RE of proposed closing of structures to traffic so the RE can inform District Traffic Management Center (TMC) and HQ Permits.
 d. Assist RE with coordinating traffic handling needs between interested parties (SC, contractor, District TMC, CHP, District Construction Safety Coordinator (CSC), District Public Information office, public, etc.)
 e. Review maintaining traffic requirements for structure operations, pay attention to the following:
 i. Authorized traffic handling plans when required.
 ii. Authorized contingency plan when required for structure work. Refer to CM 4-1203C(1b), Contingency Plans for Closures.
 iii. Discuss the responsibilities and procedures per CM Chapter 2-204, Responsibilities and Procedures. Ensure field staff obtain all necessary contact information prior to night work starting, including:
 1. Resident Engineer.
 2. State Representative on Projects Administered by Others.
 3. District Construction Safety Coordinator (CSC).
5. Construction Engineer.
6. Bridge Construction Engineer.

iv. Authorized Falsework submittal (All BCMs in Bridge Construction Records and Procedures Manual, Section 120, Falsework):
 1. If traffic and/or pedestrian openings are specified, refer to BCM C-4.14, Notice of Change of Clearance or Permit Rating, prior to erection of falsework over the roadway.
 2. Pedestrian openings are in compliance with the Temporary Pedestrian Facilities Handbook
 3. Verify construction operations can be completed within specified traffic closure windows.
 4. Verify that the contractor has a contingency plan for unanticipated events.

v. Authorized Guying Plan:
 1. Do not authorize connection of guying cables to traffic control k-rail.

vi. For large crane picks refer to relevant Construction Procedure Directives (CPD), which currently includes CPD 01-11, Hoisting Operations near Public Traffic and Pedestrians:
 1. Placement of pre-fabricated rebar cages (e.g., CIDH concrete piling, column).
 2. Hoisting over or next to live traffic.
 3. Critical crane picks.
 4. Overhead wires.

vii. Authorized Bridge Removal Plan:
 1. Construction operations can be completed within specified traffic closure window and a contingency plan is in place for unanticipated events

5. During construction, collaborate with RE on traffic control roles and responsibilities. Based on that discussion:
 a. For structure operation, verify the contractor submitted lane closure request and that closure request have been authorized.
 b. Before the start of structure operations, coordinate with District RE to verify required traffic control is in place and has been checked (drive through):
 i. Discuss with the RE any local agency requirements.
c. Monitor SC field activities for compliance with contract requirements and authorized submittals.

d. Verify the contractor maintains temporary traffic control devices through the construction work zone, as needed, refer to CA MUTCD Part 6, *Maintaining Traffic Control* For example:

i. K-rails must conform to Standard Specifications (SS), Section 12-3.20, *Type K Temporary Railing*, as well as other requirements of the Contract Documents (white paint, bolted connections, etc.).

ii. Gawk screens must conform to 2018 SS, Section 12-3.21, *Temporary Traffic Screens*.

e. Minimize public inconvenience:

i. Monitor contractor’s means and methods conform to the responsibilities specified in 2018 SS, Section 7-1.03, *Legal Relations and Responsibility to the Public – Public Convenience*.

f. Public safety:

i. Ensure contractor’s means and methods conform to the responsibilities specified in 2018 SS, Section 7-1.04, *Legal Relations and Responsibility to the Public – Public Safety*.

g. Prior to ending traffic control, measure applicable horizontal and vertical clearances for conformance:

i. Prior to reopening a road after construction that impairs vertical or horizontal clearances, measure the widths and heights for conformance:

 1. Horizontal traffic openings are measured from toe to toe of temporary railings. Vertical traffic openings measurements are the minimum vertical clearance across the entire traveled way.

 2. Record the measurements in the Daily Report and promptly forward to all affected parties per *BCM C-4.14, Notice of Change of Structure Clearance or Permit Rating*.

ii. Verify the contractor allows sufficient time within the work shift to perform required job site cleanup (operate sweeper trucks for sediment control) in conformance with authorized plans (e.g., work plan, Water Pollution Control Plan (WPCP)/Storm Water Pollution Prevention Plan (SWPPPP), etc.).

h. The structure representative will inform the RE when structures are opened and closed to traffic.
i. Record when structures are opened or closed to traffic in the Daily Reports and SC Weekly Newsletter. Document all inspection, construction, and quality assurance activities, pertinent to this BCM, in the reports per BCM C-4.04, Daily and Weekly Reports.

6. Safety:
 a. Keep the RE informed of any unsafe conditions or problem areas.
 b. Take immediate action to address field deficiencies in traffic control with contractor. Record notes and photos in Daily Report.
 c. Coordinate with District RE to request CHP enforcement (COZEEP) as needed.
 d. Night work:
 i. Use approved night work attire and personal protection equipment at all times during any night shift.
 ii. Operate Caltrans vehicle (amber flashing lights, etc.) in accordance with Construction Manual, Chapter 2-2 (and Caltrans Code of Safe Practices)
 iii. Verify that contractor’s work lights do not create conditions hazardous to the public, per 2018 SS, Section 7-1.04, Public Safety.

Process Outputs

1. Daily Reports and SR newsletters
2. Safe traffic handling through and around construction zones with minimized public inconvenience

Attachments

None
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>08-30-2019</td>
<td>Original issue</td>
<td>Richard Foley</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memo No</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-2.02</td>
<td>08/30/2019</td>
<td>Temporary Facilities – Temporary Pedestrian Facilities</td>
</tr>
</tbody>
</table>
Temporary Facilities – Temporary Pedestrian Facilities

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>08-30-2019</td>
<td>Original issue.</td>
<td>Richard Foley</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (SC) roles and responsibilities for temporary pedestrian facilities constructed by the Contractor to facilitate structure work.

Structure Construction reviews submittals and administers construction and maintenance of temporary pedestrian facilities to allow for safe passage of pedestrians through structure construction work zones.

Prior to reviewing this Bridge Construction Memo (BCM), it is essential to review contract specifications, Section 16-2.02, Temporary Facilities – Temporary Pedestrian Facilities, that this BCM is based on as identified in the title block above. The information in the contract specifications typically will not be repeated in the text of this BCM.

Process Inputs

1. Authorized temporary structure shop drawings with pedestrian opening
2. Temporary pedestrian facility shop drawings
3. Authorized bridge removal work plan
Procedure

1. All work associated with this process is charged as Project-Direct – Construction.
2. Inspection of field work for this process is:
 a. Benchmark during construction and maintenance.
3. Before construction begins:
 b. Complete temporary pedestrian facilities on-line training per relevant Construction Procedure Directive (CPD), which currently includes CPD 17-1, Permanent Pedestrian Facilities Inspection Training (every 3 years).
 c. Discuss the locations and requirements for temporary pedestrian facilities during the preconstruction conference. There are temporary pedestrian facilities that:
 i. Do not require shop drawings, but instead require the contractor to install them in compliance with the Temporary Pedestrian Facilities Handbook or the Contract Plans.
 ii. Require shop drawing:
 1. Temporary pedestrian facilities with a protective overhead covering.
 d. Review temporary structure shop drawings and bridge removal plans with pedestrian openings.
 e. Review and authorize temporary pedestrian facility submittals from the Contractor:
 i. For submittal involving railroad, discuss additional requirements with SC Falsework Engineer and obtain railroad approval prior to authorization.
4. During Construction:
 a. Inspect and verify construction of the temporary pedestrian facility is in conformance with the contract documents, Temporary Pedestrian Facilities Handbook, and authorized shop drawings.
 i. This process is for temporary pedestrian facilities. The Temporary Pedestrian Facilities Handbook emphasizes the importance of accommodating pedestrians with disabilities through and around work zones. Thus, the contractor must specify measures that will be taken to
correct any non-conformance while the temporary facility is in use. Any non-conformance must be remedied immediately.

b. Document all inspection, construction, and quality assurance activities, pertinent to this BCM, in the Daily Reports per BCM C-4.04, Daily and Weekly Reports.

Process Outputs

1. Authorized temporary pedestrian facility submittals:
 2. Temporary Structure Analysis Report if required:

Attachments

None
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12-31-2020</td>
<td>Added BCMs 19-3.01D(2) and 19-3.03B(1-4)</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>1</td>
<td>08-31-2020</td>
<td>Added BCM 19-6.03D</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>0</td>
<td>12-05-2017</td>
<td>Original issue</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Memo No	Issue Date	Title
19-1.03B | 12/05/2017 | Earthwork – General – Construction – Unsuitable Material |
19-1.03D | 12/05/2017 | Earthwork – General – Construction – Buried Man-Made Objects |
19-3.01A | xx/xx/20xx | Earthwork – Structure Excavation and Backfill – Summary |
19-3.01C | 12/05/2017 | Earthwork – Structure Excavation and Backfill – Submittals |
19-3.01D(2) | 12/31/2020 | Earthwork – Structure Excavation and Backfill – Quality Assurance – Stability Test for Ground Anchor and Soil Nail Walls |
19-3.03B(1-4) | 12/31/2020 | Earthwork – Structure Excavation and Backfill – Construction – Structure Excavation |
19-3.03E | xx/xx/20xx | Earthwork – Structure Excavation and Backfill – Construction – Structure Backfill |
19-3.03K | xx/xx/20xx | Earthwork – Structure Excavation and Backfill – Construction – Ground Anchor and Soil Nail Walls |
19-3.04 | 12/05/2017 | Earthwork – Structure Excavation and Backfill – Payment |
19-4 | xx/xx/20xx | Earthwork – Rock Excavation |
19-6.03D | 08/31/2020 | Earthwork – Embankment Construction – Settlement Periods and Surcharges |
Earthwork – General – Construction – Unsuitable Material

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12-05-2017</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background
This process establishes Structure Construction (SC) responsibilities and procedures for identifying, removing, and replacing unsuitable material found below structure excavation limits.

Process Inputs
1. Discovery of unsuitable material.

Procedure
1. All work associated with this process should be charged to the Project-Direct - Construction, unless otherwise directed.
2. Field work for this process is:
 a. Benchmark inspection for structure excavation.
3. Discovery of unsuitable material by inspection or notification from Contractor.
4. Perform a field review and material testing (if necessary) to gather data.
5. Review contract documents.
6. Contact resources in SC and the Division of Engineering Services (DES).
7. Determine available options and select course of action.
8. Inform District and Contractor.
9. Issue a Change Order if needed.
10. Document discovery, work affected, and action taken in the daily reports per BCM C-4.04, Daily and Weekly Reports, and other correspondence.
Process Outputs

1. Response to notification of unsuitable material.
2. Daily reports.
3. Change Order and any plan revisions.

Attachments
Earthwork – General – Construction – Buried Man-Made Objects

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12-05-2017</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background
This process establishes Structure Construction (SC) responsibilities and procedures for review and administration of buried man-made objects removed from the work area by the Contractor.

Caltrans cannot hold the Contractor responsible for objects buried underground prior to purchase of Caltrans right-of-way, or not located on existing As-built drawings.

Process Inputs
1. Notice of buried man-made objects from Contractor.

Procedure
- All work associated with this process should be charged to the *Project-Direct-Construction*, unless otherwise directed.
 1. Field work for this process is:
 a. Benchmark inspection for structure excavation.
 2. Upon receipt of Contractor’s notice of buried man-made object:
 a. Investigate.
 b. Determine response.
 3. If object appears to be hazardous¹:
 a. Secure area.
 b. Notify District Hazardous Waste Coordinator and Resident Engineer (RE).
 4. Inform RE and Contractor of your findings:

¹ 2015 Standard Specifications, Section 14-11.02, Discovery of Unanticipated Asbestos and Hazardous Substances.
a. Support RE in development of Change Order if warranted.
 • Estimated cost to remove.
 • Anticipated delay to critical path.

b. Notify Bridge Construction Engineer as required by local protocols.

c. Provide Notice to Proceed, if warranted.

5. Document work performed to remove the buried man-made object.

6. If warranted, write a Change Order for work performed.

Process Outputs
1. Documentation to RE to support Change Order if warranted.
2. Direction to contractor from RE to remove buried man-made object.
3. Documentation of work performed to remove buried man-made object.

Attachments
Earthwork – Structure Excavation and Backfill – Submittals

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12-05-2017</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background
This process establishes Structure Construction (SC) responsibilities and procedures for review and authorization of earthwork submittals, including:

- Shop drawings for cofferdams.
- Shop drawings for soldier pile walls.
- Collaborative review of shop drawings for ground anchors and soil nail walls with Structure Design.
- Controlled low-strength material.
- Stability test results for ground anchors and soil nail walls.

Process Inputs
1. Contractor’s submittal(s).

Procedure
1. All work associated with this process should be charged to the Project-Direct-Construction, unless otherwise directed.
2. Receive submittal; check that submittal meets the requirements of the contract documents.
3. For excavations utilizing temporary structures:
 b. When authorizing or rejecting shop drawings, send a Temporary Structure Plan Analysis Report per BCM C-4.12, Shop Drawing Review of Temporary Structures. Attachment No. 1 is a sample authorization letter for a shoring plan.
c. When temporary shoring structures are installed as part of an Encroachment Permit, conform to the Division of Traffic Operations’ Memorandum titled: *Temporary Ground Anchor (Tieback) Encroachments*, dated July 26, 2017. See Attachment No. 2.

4. For soldier pile walls:
 a. Review the shop drawings for contract compliance per BCM 5-1.23, *Control of Work – Submittals* and the Standard Specifications (SS)\(^1\).

5. For ground anchor and soil nail walls:
 a. Coordinate the review with the project designer per the *Foundation Manual, Chapter 11, Ground Anchors & Soil Nails*, and Memo to Designers 5-14, *Review of Shop Drawings for Ground Anchors*, or Memo to Designers 5-18 Attachment A, *Soil Nail Working Drawings Review Process (Interim)*.
 b. Authorize or reject the shop drawings based on the project designer’s recommendation.

6. For Stability Test results:
 a. Review the submittal for the specified wall zone.
 b. Determine whether the exposed excavated face maintains integrity per the SS\(^2\).

7. For Controlled Low Strength Material:
 a. Typically this is District work. If this is structure work, review the mix design in accordance with the requirements of the contract documents.

8. Notify the Contractor of authorization or rejection of all submittals in writing.

Process Outputs

Attachments
Attachment No. 1: Sample Authorization Letter.
Attachment No. 2: Temporary Ground Anchor Encroachments Memo.

\(^1\) 2015 SS, Section 5-1.23B(2), *Shop Drawings*.
\(^2\) 2015 SS, Section 19-3.01D(2), *Stability Test for Ground Anchor and Soil Nail Walls*.
July 20, 2016

Mr. Hold M. Back
Temporary Works Engineer
Design-Right Engineers
1344 Lucky Lane
Sacramento, CA, 95816

Dear Mr. Back:

Shoring Plan Analysis Report

Project Information:
02-XXXXX4
02-XXX-70-50.6/51.7
Spring Forward Overhead (Widen)
Br. No. 09-9000

Type of Structure Reviewed: Shoring Plan for Bents 2 and 3 – Option 2

Chronology:
Plans were received: 5/3/16
Review completed: 7/17/16
Elapsed review time: 75 days

Introduction:
This report presents the results of an independent engineering review of Opt. 2 of the proposed shoring for Bents 2 and 3 for Spring Forward Overhead (Widen).

Discussion:
Authorization: No exceptions were found.

Conclusion:

“Provide a safe, sustainable, integrated and efficient transportation system
to enhance California’s economy and livability”
Mr. Hold M. Back
July 20, 2016
Page 2

The shoring plan for Bents 2 and 3, Opt. 2, for Spring Forward Overhead, 09-9000, is authorized based upon an independent engineering analysis and found acceptable and is authorized to the extent provided in the Standard Specifications, Section 5-1.23, *Submittals*.

The contractor’s attention should be directed to their responsibilities pursuant to the Standard Specifications, Section 5-1.23, *Submittals*, and Standard Specifications 7-1.04, *Public Safety* as well as the *Construction Safety Orders*.

The shoring at Bents 2 and 3 must be constructed to conform to the shoring working drawings and the materials used must be of the quality necessary to sustain the stresses required by the shoring design and the workmanship must be of such quality that the shoring will support the loads imposed without excessive settlement and take up beyond that shown on the shoring drawings.

If you have any questions, please contact me at (555) 555-7334.

Sincerely,

IVE WATCHING
Structure Representative for Ron Road, Resident Engineer

C: My Boss, Area Bridge Construction Engineer
Head Guru, Caltrans Temporary Structures Engineer
Engineering Service Center
Memorandum

To: DISTRICT DIRECTORS
 DEPUTY DISTRICT DIRECTORS
 Traffic Operations

From: AMARJEET S. BENIPAL
 Acting Chief
 Division of Traffic Operations

TIMOTHY CRAGGS
Chief
Division of Design

JENNIFER LOWDEN
Chief
Division of Right of Way and Land Surveys

MICHAEL D. KEEVER
Chief
Division of Engineering Services

Date: July 26, 2017

Subject: TEMPORARY GROUND ANCHOR (TIEBACK) ENCROACHMENTS

This memorandum provides guidance and processing requirements for non-highway-related temporary ground anchor (tieback) requests.

A temporary tieback is defined as a tieback that is de-tensioned when it is no longer needed for structural support and abandoned within the state highway right-of-way after project completion. A permanent tieback is defined as a tieback that remains in tension and is used for structural support after project completion. Permanent tiebacks that are not part of a state highway improvement project are prohibited on all state highway rights-of-way.

Temporary tieback encroachment requests must be authorized through the encroachment policy exception process. In addition, an executed Right of Way/Airspace Use Agreement (UA) is required between the applicant/developer and Caltrans to compensate for use of airspace and/or property.

Request for an Encroachment Policy Exception

The applicant must justify the need and character of the encroachment policy exception, as described in PDPM Chapter 17, Section 3. In addition, the applicant must provide the District Encroachment Permits (EP) Office the following documents:

1. Documentation demonstrating that there are no other feasible, alternative designs that do not encroach into state highway right-of-way.

2. A minimum of six complete sets of plans. A 3-D computer model with all dimensions identified (X, Y and Z) and the model can be in any format (.dgn etc). The plans must include all construction details including those of the temporary shoring wall. The visual 3-D computer model must identify all existing subsurface highway infrastructure and
utilities within state highway right-of-way, relative to all objects proposed to be placed. The plans must delineate all proposed objects relative to the state highway right-of-way and roadway features.

3. A geotechnical report and recommendations, which must include applicable elements similar to those in the Foundation Reports for Earth Retaining Systems. For access to Caltrans guidance on Foundation Reports for Earth Retaining Systems, refer to: http://www.dot.ca.gov/hq/esc/geotech/geo_manual/page/FR_ERS_June2017.pdf

4. Structural plans and design calculations. Tiebacks must be installed in compliance with current Caltrans practices for temporary tiebacks.

5. Drainage plans showing existing and proposed drainage facilities within the vicinity of the tiebacks and existing Caltrans facilities.

6. Assessment of potential impacts and risks of all proposed objects to the existing highway infrastructure (including utilities) within state highway right-of-way.

Processing Requirements

The District EP Office must not issue an encroachment permit for temporary tiebacks without an approved encroachment policy exception, executed UA, and recommendation from all reviewers.

Unlike most encroachment permits involving a UA, the District EP Office will lead the review of temporary tieback permit requests. The District EP Office will circulate the application package to functional units including but not limited to the District Division of Design, District Division of Right of Way, Division of Engineering Services (Structure Policy and Innovation and Geotechnical Services) and Division of Maintenance - Structure Maintenance and Investigations, for their review, processing, and recommendation. Tieback installations must be placed in such a manner as to avoid affecting highway traffic operations, maintenance, or obstructing removal of the tieback for any future transportation improvements in the state highway right-of-way.

After obtaining electronic and paper as-built plans from the Division of Engineering Services-Structure Construction (with locations of de-tensioned tiebacks provided by permittee and authorized by the Structure Construction), the District EP Office will forward a copy of the electronic as-built plans to the District Utility Engineering Work Group.

The District Right of Way units understand the maximum 60-day time constraints of issuing an encroachment permit, and are responsible for preparing, coordinating, and expeditiously executing a UA. For temporary tieback requests, the Right of Way Program will develop a UA for temporary site use and will charge the Fair Market lease rate. Entering into a UA and the payment of the Fair Market lease rate addresses the private use of state highway right-of-way. It also addresses the Federal Highway Administration (FHWA) regulations relating to

"Provide a safe, sustainable, integrated and efficient transportation system to enhance California's economy and livability"
management of airspace on interstate highways for non-highway purposes, which are included in title 23 Code of Federal Regulations sections 710.403 and 710.405.

For encroachments on interstate highways, the Headquarters Division of Design, Office of Project Support, will facilitate the FHWA review and consideration for approval.

The attached Temporary Ground Anchors (Tiebacks) Special Provisions must be included with all encroachment permits to install temporary tiebacks within the state highway right-of-way.

The Office of Structure Construction will perform inspections of installation and management of temporary tiebacks. The Structure Representative will: confirm ground anchors are de-tensioned and physically detached from the shoring wall; confirm there are no impacts to state structures, utilities, drainage, or other features as a result of installation of the temporary excavation support and grouting; verify the as-built plans represent the actual locations of ground anchor and appurtenance installations that will remain in the state highway right-of-way.

For questions regarding this memorandum or the attachment, you may contact:

1. Yin-Ping Li, Chief, Office of Encroachment Permits and Engineering Support, Division of Traffic Operations at (916) 654-5548, or by e-mail at Yin-Ping.Li@dot.ca.gov
2. Carol Hanson, Chief, Office of Real Property Services, Division of Right of Way at (916) 654-3536, or by e-mail at Carol.Hanson@dot.ca.gov
3. Linda Fong, Chief, Office of Project Support, Division of Design at (916) 653-8559, or by e-mail at Linda.Fong@dot.ca.gov
4. Susan Hida, Chief, Office of State Bridge Engineer Support, Division of Engineering Services at (916) 227-8738, or by e-mail at Susan.Hida@dot.ca.gov

Attachment:
Temporary Ground Anchors (Tiebacks) Special Provisions

C: Malcolm Dougherty, Director
Kome Ajise, Chief Deputy Director
Karla Sutliff, Deputy Director, Project Delivery
Steve Takigawa, Deputy Director, Maintenance and Operations
Rachel Falsetti, Chief, Division of Construction
Matthew Schmitz, Director, Project Delivery, Federal Highway Administration
Thomas A. Ostrom, Deputy Division Chief, Structure Policy and Innovation, Division of Engineering Services
Daniel H. Spear, Acting Deputy Division Chief, Geotechnical Services, Division of Engineering Services
Steve Altman, Deputy Division Chief, Structure Construction, Division of Engineering Services
Susan Hida, Chief, Office of State Bridge Engineer Support, Division of Engineering Services

"Provide a safe, sustainable, integrated and efficient transportation system to enhance California's economy and livability"
Carol L. Hanson, Chief, Office of Real Property Services, Division of Right of Way and Land Surveys
Linda Fong, Chief, Office of Project Support, Division of Design
Yin-Ping Li, Chief, Office of Encroachment Permits and Engineering Support, Division of Traffic Operations
District Encroachment Permit Engineers

"Provide a safe, sustainable, integrated and efficient transportation system to enhance California's economy and livability"
1. The tiebacks must be de-tensioned and physically detached from the shoring wall once the permittee’s foundation construction is complete. No future access to the tiebacks will be allowed once they have been detached.

2. Tieback installations shall not be placed in such a manner to impact traffic operations, maintenance, or obstruct any future transportation improvements in the state right-of-way.

3. Permanent tiebacks are prohibited. Tiebacks shall not be used to support the completed structure.

4. The shoring wall shall not be located within the state highway right-of-way.

5. The shoring wall shall be monitored during construction to determine any lateral movement.

6. The temporary wall must not create perched ground water that affects the foundation strength of state structures and facilities.

7. Should any underground facilities or utilities be encountered during the installation of the tiebacks, work must stop and the Caltrans representative shall be immediately notified. Work will not continue until Caltrans agrees to an alternate strategy (including the possible need to redesign) or other mitigation.

8. Deformation impacting state structures, roadways, utilities, drainage, or other features as a result of installation of the temporary excavation support and grouting, is not permitted. Should unanticipated deformation or other impacts occur, the Caltrans representative shall be immediately notified, and work will cease until Caltrans agrees to an alternate strategy (including the possible need to redesign) or other mitigation.

9. Upon completion of the installation and subsequent de-tensioning of the tiebacks, the permittee must submit as-built plans, prepared in accordance with Caltrans’ CADD Users Manual, of all objects installed and to be abandoned in state highway right-of-way and submit as-built plans to Structure Construction for their authorization.
Earthwork – Structure Excavation and Backfill – Quality Assurance – Stability Test for Ground Anchor and Soil Nail Walls

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12-31-2020</td>
<td>Original Issue</td>
<td>Richard Foley</td>
</tr>
</tbody>
</table>

Click here for previous versions Contact SC Technical Team K for questions

Background

This process establishes Structure Construction (SC) responsibilities and procedures for administration of soil stability testing performed by the contractor for ground anchor and soil nail walls.

Soil stability testing is required for excavation lift heights greater than 5 feet or an exposure duration longer than 1 work shift.

Submittals pertaining to soil stability testing are reviewed and authorized per the Contract Specifications, Section 19-3.01C, Earthwork – Structure Excavation and Backfill – Submittals.

Prior to reviewing this Bridge Construction Memo (BCM), it is essential to review the Contract Specifications, Section 19-3.01D(2), Earthwork – Structure Excavation and Backfill – Quality Assurance – Stability Test for Ground Anchor and Soil Nail Walls, that this BCM is based on as identified in the title block above. The information in the contract specifications typically will not be repeated in the text of this BCM.
Process Inputs

1. Authorized shop drawings

Procedure

1. All work associated with this process is charged as [Project-Direct – Construction](#).

2. Inspection of field work for this process is:
 a. **Intermittent** for inspection of soil stability testing.

3. Before construction begins:
 b. Discuss soil stability testing requirements and the contingency plan with the contractor.
 c. For example photographs and information of ground anchors and soil nail walls, review the 2019 [Winter Training](#) presentations:
 i. **Q. Ground Anchors and Soil Nails General**
 ii. **R. Ground Anchors**
 iii. **S. Soil Nails**

 These are large files and may take a while to load.

4. During construction:
 a. Verify soil stability testing is performed per authorized submittals and contract requirements.
 b. If soil stability test requirements are met, authorize wall excavation height and exposure time limits:
 i. Notify the contractor in writing of test results.
 c. If during excavation for soil stability testing the soil conditions are different than anticipated, contact the project’s Geotechnical Designer and Structure Designer. The design could be impacted, either increasing or reducing the reinforcement needed or modifying the wall limits.
 d. If the exposed excavated face does not maintain its integrity:
 i. Direct the contractor to stabilize the excavated face as described in the authorized shop drawings.
ii. Discuss with the contractor whether additional soil stability tests will be performed or if modifications to the authorized excavation submittals need to be made.

iii. Consult with the Geotechnical Designer and Structure Designer.

e. Document all inspection, construction and quality assurance activities, pertinent to the BCM, in the daily reports per *BCM C-4.04, Daily and Weekly Reports*.

5. Following an authorized stability test:

a. Be aware that face instability may occur at any time during wall construction and thus must be monitored. Instability must be addressed per *BCM 19-3.03K, Earthwork – Structure Excavation and Backfill – Construction – Ground Anchor and Soil Nail Walls*.

6. File all test results and Daily Reports in the appropriate category in the project records as specified in the Construction Manual *5-102, Organization of Project Documents*.

Process Outputs

1. Authorized Soil Stability Test results

2. Daily Reports

Attachments

Attachment 1, Excavated Exposed Face Instability
Excavated Exposed Face Instability

Following are examples of excavated wall faces that did not maintain integrity and stability.

Figure 1. Native sandy silt material that will not maintain a vertical stable cut.

Figure 2. Another example of wall face instability due to sandy material.
Excavated Exposed Face Instability

Figure 3. Material that stands initially, may slough over time as the soil loses moisture. Thus, even apparently good soil material may slough.

Figures 4 through 9 depict a time lapse event that led to a wall failure. Work occurred on a Friday shift culminating in a wall collapse Monday morning.

Figure 4. Improper berm and native sandy material sloughing on Friday from behind the previously constructed 2 layer/rows of soil nails.
Excavated Exposed Face Instability

Figure 5. As work progressed through the day and afternoon more material sloughs from behind the wall due to construction activity and loss of moisture.

Figure 6. Picture from inside and behind shotcrete to illustrate the amount of material loss. Note the exposed soil nail from the previously completed row above.
Excavated Exposed Face Instability

Wall Instability Leading To Wall Failure

Figures 4 through 6 depict what contributed to the wall failure that is depicted in Figures 7 through 9 that was observed the following Monday morning.

Figure 7. Wall collapsed due to progressive loss of material from behind the wall, noted in the previous pictures. Notice the deteriorated berm and loss of material.

Figure 8. With the loss of the supporting soil behind the wall, the wall failed similar to a beam in bending. The top portion of the wall buckled outward and broke.
Excavated Exposed Face Instability

Figure 9. Illustrating the magnitude of material loss due to wall face instability and potential safety hazard for the travelling public. The berm being placed is to stabilize the failed section to prevent further collapse.
Earthwork – Structure Excavation and Backfill – Construction – Structure Excavation

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12-31-2020</td>
<td>Original Issue</td>
<td>Richard Foley</td>
</tr>
</tbody>
</table>

Click here for previous versions
Contact [SC Technical Team](#) for questions

Background

This process establishes Structure Construction (SC) responsibilities and procedures for structure excavation work, for typical excavations, soldier pile walls, pier columns, and cofferdams, including the construction of protective systems required per [BCM 7-1.02K(6)(b), Legal Relations and Responsibility to the Public - Occupational Safety and Health Standards – Excavation Safety](#). The end of this process concludes with the acceptance of completed structure excavations.

Additional unique requirements related to this process are detailed in:

- **BCM 19-3.03K**, *Earthwork – Structure Excavation and Backfill – Ground Anchor and Soil Nail Walls.*

It is important for SC personnel to have all necessary authorized submittals required for worker and facility protection prior to the start of structure excavation work to best assure the safe performance of structure excavation.

Prior to reviewing this Bridge Construction Memo (BCM), it is essential to review the contract specifications 19-3.03B, *Earthwork – Structure Excavation and Backfill – Construction – Structure Excavation*, that this BCM is based on as identified in the title.
block above. The information in the contract specifications typically will not be repeated in the text of this BCM.

Process Inputs

1. The start of structure excavation work.
2. The contractor’s Underground Service Alert (USA) notice to begin excavation.

Procedure

1. All work associated with this process is charged as [Project-Direct – Construction](#).
2. Field work for this process is:
 a. **Intermittent** inspection for structure excavation work and installation of protective systems.
 b. **Continuous** inspection for structure excavation work and installation of protective systems if public safety or preservation of property is a concern, or when a change order (C.O.) is required for buried man-made objects or unsuitable material.
3. Before construction begins:
 b. Review the Geotechnical Design Report (GDR) and/or the Final Foundation Report (FFR), which includes foundation recommendations, settlement requirements, and the Geotechnical Services contact.
 c. Review the Resident Engineer (RE) pending file for the:
 1. Engineer’s Estimate quantity calculations for anomalies.
 2. Project Risk Register for excavation risks such as buried man-made objects or unsuitable material.
 d. Discuss with the contractor:
 i. Timely notification of Underground Service Alert (USA). Request a copy.
iii. The requirements of the contract documents; particularly unique issues such as vibration restrictions and handling of contaminated (or potentially contaminated) soil.

iv. Timely request of quantity adjustments (if needed) prior to performing extra work.

4. During construction:
 a. For all structure excavation work:
 i. Inspect and evaluate structure excavation work in progress:
 1. Verify the field conditions match the authorized submittals assumptions and the contractor’s method or materials are as planned.
 2. Verify soil types/classifications encountered during structure excavation work match the assumed conditions in the authorized earthwork submittals and/or Contract Documents using:
 a. Inspection tools such as a pocket penetrometer or Torvane (BCM 122-3.0) can be useful for verifying soil conditions.
 b. Geotechnical Services to assist with the classification of the in-situ materials if needed.
 c. Additional information contained in the Trenching and Shoring Manual, Sections 2.2.3, Soil Classification; 3.1, Soil Identification, Classification, Description and Presentation, and Appendix A, excerpts of California Occupational Safety and Health Standards for Excavations (see Soil Classification on page A-19).

 3. Inspection of excavations where water is present requires additional precautions. See Cal/OSHA requirements under Title 8 CCR Subchapter 4, Construction Safety Orders, Article 6, Excavations § 1541, General Requirements (h), Protection from hazards associated with water accumulation. and BCM 19-3.03B(5), Earthwork – Structure Excavation and Backfill – Construction – Structure Excavation – Water Control and Foundation Treatment.

 4. Follow BCM 19-1.03D, Earthwork – General – Construction – Buried Manmade Objects, if buried man-made objects are encountered.
 ii. Verify that the contractor’s competent person is inspecting the site in accordance with the Construction Safety Orders and the authorized excavation plan.
 iii. Require resubmittal for any deviations encountered during structure excavation work of the authorized submittals, including assumed soil types/classifications.
iv. Determine whether the depth of the structure excavation needs to be changed from that shown in the contract documents. See [BCM 19-3.01A, Earthwork - Structure Excavation and Backfill – Summary], and [BCM 51-1.03C-D, Concrete Structures - General - Preparation and Placing Concrete]. Authorize change order work if needed. See [BCM 19-1.03B, Earthwork – General – Construction – Unsuitable Material]:

1. Contact Geotechnical Services as needed for assistance in determining the soil at the planned footing elevations or with identification of unsuitable materials.

v. Accept structure excavation work, upon satisfactory inspection of foundation material at planned footing elevation, by letter to the contractor.

b. For Soldier Pile Walls:

i. Confirm excavation and construction of soldier pile walls meets the requirements of the contract documents and the authorized shop drawings.

ii. Evaluate whether boulders that interfere with lagging need to be removed and authorize change order work if needed.

c. For Pier Columns:

i. Review requirements for excavation work for pier columns contained within the contract Special Provisions.

ii. Confirm excavation and bracing used to support the pier column excavation meet the requirements of the contract documents. See [Foundation Manual, Chapter 10, Pier Columns].

d. For Cofferdams:

i. Confirm construction of the cofferdam meets the requirements of the contract documents and the authorized shop drawings.

5. Document all inspection, construction, and quality assurance activities, pertinent to this BCM, in the daily reports per [BCM C-4.04, Daily and Weekly Reports].

6. File all test results and daily reports in the appropriate category in the project records as specified in the Construction Manual [5-102, Organization of Project Documents].
Process Outputs

1. Daily Reports
2. Authorized change order work (BCM C-4.09)
3. Accepted structure excavations

Attachments

None
Earthwork – Structure Excavation and Backfill – Payment

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12-05-2017</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background
This process establishes Structure Construction (SC) responsibilities and procedures for payment and any quantity changes and adjustments that may be necessary due to spread footing elevations and changes in seal course.

Process Inputs
2. Structures RE Pending File.
3. As-builts of existing facilities.

Procedure
1. All work associated with the process should be charged to Project-Direct-Construction, unless otherwise directed.
2. Fieldwork for this process is intermittent inspection.
3. Review contract documents, foundation report(s), and as-builts.
4. Write a letter advising spread footing elevation is approximate.
5. Investigate field conditions and write letter confirming if seal course is needed and if the bottom of the footing elevation is revised.
6. Write Change Order(s) for agreements resulting in additional work if needed.
7. Request revised plan sheets if appropriate.

1 *Foundation Manual, Chapter 3, Contract Administration, Section 3-1, Introduction.*
2 *2015 Standard Specifications (SS), Section 51-1.03C(1), General, and the Foundation Manual, Chapter 3, Contract Administration, Section 3-3, Change Orders.*
3 *2015 SS, Section 51-1.03C(1), General.*
8. Document all changes on as-builts.

Process Outputs

1. Letter to Contractor advising spread footing and/or seal course elevations are approximate.
2. Letter to Contractor confirming need for seal course and/or footing elevation revision.
3. Progress pay documents
4. Change Orders if needed.
Earthwork – Embankment Construction – Settlement Periods and Surcharges

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>08-31-2020</td>
<td>Original Issue</td>
<td>Richard Foley</td>
</tr>
</tbody>
</table>

Click here for previous versions
Contact SC Technical Team K for questions

Background

This process establishes Structure Construction (SC) responsibilities and procedures for monitoring settlement periods and surcharges, including the installation of settlement monitoring devices.

Settlement periods and surcharges are established in the contract documents but can be lengthened or shortened by SC staff as needed. Settlement monitoring devices are generally required in the contract documents when anticipated settlements are large. If settlement monitoring devices are not required but are needed; they should be ordered by the engineer as change order work.

Prior to reviewing this Bridge Construction Memo (BCM), it is essential to review the contract specifications 19-6.03D, Earthwork – Embankment Construction – Settlement Periods and Surcharges, that this BCM is based on as identified in the title block above. The information in the contract specifications typically will not be repeated in the text of this BCM.

Process Inputs

1. Project Supplemental Information: Information Handout
2. R.E. Pending File
3. Foundation Manual; Chapter 4, Footing Foundations, Section 5, Ground Improvement/Soil Modification
Procedure

1. All work associated with this process is charged as: Project-Direct – Construction

2. Inspection of field work for this process is:
 a. Intermittent during platform installation.
 b. Benchmark during settlement period.

3. Before embankment construction begins:
 a. Review contract documents, R.E. pending file, the Geotechnical Design Report and/or the Final Foundation Report, which includes foundation recommendations, settlement requirements, and the Geotechnical Services contact:
 i. If settlement monitoring devices are not specified in the contract’s Special Provisions, confirm with the geotechnical designer that settlement monitoring devices are not needed.
 ii. When settlement monitoring devices are specified, inform the geotechnical designer that the project has started and the schedule for the monitoring devices:
 1. If large settlements are expected, consideration for its potential effect on nearby (adjacent) infrastructure should be evaluated; i.e. damage to existing or new construction. Discuss this with the geotechnical designer.
 b. Discuss with the contractor the placement and requirement to not disturb the settlement hubs:
 i. If the settlement hubs or settlement platform is damaged or disturbed it must be remedied promptly. The settlement period may need to be extended for the time between the last measurement and the reestablishment of the monitoring.
 c. Discuss required embankment construction restrictions, settlement period, surcharges (if applicable), and required settlement monitoring devices with the contractor.
 d. When settlement monitoring devices not specified in the contract are ordered, issue a change order for settlement platform construction in a timely manner.

4. During embankment construction:
 a. Coordinate with District Survey Branch, if necessary, to establish settlement hubs and a bench mark sufficiently away from the work to be unaffected by the embankment settlement.
b. Coordinate installation of settlement monitoring devices, if required, with the Foundation Testing and Instrumentation Branch and the contractor according to California Test (CT) 112, Method for Installation and Use of Embankment Settlement Devices.

5. During embankment settlement period:
 a. As soon as the embankment (and surcharge, if applicable) is complete, install settlement monitoring hubs. Usually, four (4) hubs is enough but larger than standard areas require additional hubs.
 b. Verify that the contractor installed protection for monitoring the settlement hubs and equipment. Regularly check that they are not disturbed.
 c. Record settlement accurately at prescribed intervals to monitor progress and provide information to the geotechnical designer:
 i. When settlement monitoring devices are used, record and monitor per CT 112 for settlement monitoring devices.
 d. Coordinate with the geotechnical designer to determine when the settlement period is complete:
 i. Notify the contractor in writing immediately:
 ii. When settlement monitoring data indicates the period should be extended, notify the contractor in writing immediately when the decision is made.
 iii. Notify the RE of settlement period completion and changes for coordination with the contractor’s Critical Path Method updates.
 e. Document all inspection, construction, and quality assurance activities, pertinent to this BCM, in the Daily Reports per BCM C-4.04, Daily and Weekly Reports.

6. File all test results and Daily Reports in the appropriate category in the project records as specified in the Construction Manual 5-102, Organization of Project Documents.

7. For additional information, refer to the Foundation Manual, Chapter 4, Footing Foundations, Section 4-5, Ground Improvement/Soil Modification.

Process Outputs

1. Record of settlement device readings
2. Letter(s) to the contractor
3. Change Order for settlement platform installation if needed
4. Daily Reports
Attachments

None
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11-16-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEMO NO. | ISSUE DATE | TITLE |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>46-1</td>
<td>11/16/2018</td>
<td>Ground Anchors and Soil Nails – General</td>
</tr>
<tr>
<td>46-2</td>
<td>11/16/2018</td>
<td>Ground Anchors</td>
</tr>
<tr>
<td>46-3</td>
<td>11/16/2018</td>
<td>Soil Nails</td>
</tr>
</tbody>
</table>
Ground Anchors and Soil Nails – General

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11-16-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (SC) responsibilities and procedures for review and authorization of general submittals for ground anchor and soil nail walls.

This process also includes research investigation when required by the contract documents.

Review and authorization of shop drawings for ground anchor walls are coordinated with Structure Design per MTD 5-14, Review of Shop Drawings for Ground Anchors.

Review and authorization of shop drawings for soil nail walls are coordinated with Structure Design per MTD 5-18, Attachment A, Soil Nail Working Drawings Review Process.

Test data submittals are required for all performance and proof-tested ground anchors, and all verification, proof, and supplemental-tested soil nails. Specific load testing procedures are in BCM 46-2, Ground Anchors, and BCM 46-3, Soil Nails.

Process Inputs

1. Contractor submittals:
 a. Shop drawings for ground anchors and soil nails:
 i. Test data
 ii. Grout mix design
 iii. Certified calibration charts for each jack and gauge
 b. Shop Drawings for ground anchor and soil nail wall excavations
 c. Form CEM 3101, Notice of Materials to be Used
d. Storm Water Pollution Prevention Plan (SWPPP) or Water Pollution Control Program (WPCP)

e. Test samples for strand coating and encapsulation corrosion-inhibiting grease

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.

2. Inspection of field work for this process is:
 a. Benchmark for review and authorization of submittals.

3. Before construction begins:
 a. Discuss steps for submission, review, and authorization of ground anchor or soil nail shop drawings with the Contractor.
 b. Verify the Contractor submitted shop drawings to the Structure Design (SD), Documents Unit.
 c. Coordinate ground anchor and soil nail shop drawing review responsibilities with the Designer:
 i. For ground anchors, review MTD 5-14, Review of Shop Drawings for Ground Anchors.
 ii. For soil nails, review MTD 5-18, Attachment A, Soil Nail Working Drawings Review Process.
 d. Check status of submitted shop drawings using Tracker Web.
 e. Receive unchecked shop drawings from the Documents Unit.
 f. Review unchecked shop drawings and provide comments to the Designer:
 i. See Foundation Manual, Section 11-2, Sub Horizontal Ground Anchors, and Section 11-5, Soil Nails.
 ii. See Foundation Manual, Appendix K-6, Ground Anchor Wall Construction Checklist, and Appendix K-7, Soil Nail Wall Construction Checklist.
 g. Receive authorization or rejection of shop drawings from SD Document Unit, notify the Contractor in writing
 h. Review Form CEM-3101, Notice of Materials to be Used. Ensure all Soil Nail/ Ground Anchor materials are listed. Notify the Contractor of discrepancies.
 f. Review Storm Water Pollution Prevention Plan (SWPPP) or Water Pollution Control Program (WPCP) for grout control and drilling dust containment.
 i. When research investigation is specified, coordinate:
 i. Research equipment installation procedures with the Division of Engineering Services (DES) Design team and the Contractor.
4. During construction:
 a. For load testing, review test data submitted for each completed ground anchor or soil nail test as work progresses.
 b. For revised shop drawings, see step 3 above.
 c. Document all inspections, construction, and quality assurance activities in the Daily Reports per BCM C-4.04, Daily and Weekly Reports.

5. Following construction:
 a. File all submittals in the project records as specified in the Construction Manual.
 b. Record information necessary for Final Completion Records:
 i. Any As-built changes
 ii. Project Final Report

Process Outputs

1. Authorized shop drawings
2. Installed research equipment
3. Daily Reports
4. Project Final Records

Attachments

None
Ground Anchors

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11-16-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (SC) responsibilities and procedures for review and authorization of quality assurance testing, materials, and construction of ground anchors.

Review and authorization of specific submittals for ground anchors is usually performed in conjunction with the general submittals identified in BCM 46-1, Ground Anchors and Soil Nails – General.

Process Inputs

1. Authorized shop drawings per BCM 46-1, Ground Anchors and Soil Nails – General.
2. Revised shop drawings when necessary

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.
2. Inspection of field work for this process is:
 a. Intermittent for Material Field release.
 b. Intermittent for drilling holes for ground anchors.
 c. Continuous for insertion, and grouting of ground anchors.
3. Before construction begins:
 a. Review authorized shop drawings.
 b. Coordinate material inspection for ground anchor with Materials Engineering and Testing Services (METS):
c. Coordinate a pre-operation meeting with the Contractor to discuss the construction of ground anchors. Consider inviting the METS Representative, Geotechnical Engineer, and Structure Design Engineer to the pre-operation meeting.

d. Verify the Contractor submitted certified calibration chart for each jack and gauge system proposed for use by the Contractor.

e. Review *Foundation Manual, Section 11-2, Sub Horizontal Ground Anchors.*

4. During construction:

a. Verify construction methods are in accordance with contract documents:
 i. Water and grout control methods
 ii. Drilling methods and contingencies for caving and hard drilling.
 iii. Ground anchor or soil nail installation methods:
 1. Use of centralizers
 2. Installation adjacent to traffic if applicable
 3. Grouting methods and contingencies for secondary grouting

b. Verify ground anchor materials delivered to the job site have been released for construction:
 i. Match orange tags to *Form TL-29, Report of Inspection of Material.*

c. For load testing:
 i. Review certified calibration chart for each jack and gauge system proposed for use by the Contractor and verify contract requirements are met.
 ii. Verify jacking equipment and movement measuring system are stable.
 iii. Verify load increments are held for the specified time frames and measurements taken per the requirements of the contract documents.
 iv. Request and review test data in accordance with the requirements of the contract documents.

d. Accept or reject ground anchors based on the results of load testing:
 i. For rejected ground anchors, do not allow a retest until post-grouting has been performed.
 ii. For rejected ground anchors where post-grouting does not result in a passing load test, consult the Structure Design Engineer and Geotechnical Engineer for possible solutions.
e. When research investigation is specified, coordinate research equipment installation with the Contractor’s operations.

f. Document all inspections, construction, and quality assurance activities in the Daily Reports per BCM C-4.04, Daily and Weekly Reports.

5. Following construction:
 a. File all submittals in the project records as specified in the Construction Manual.
 b. Record information necessary for Final Completion Records:
 i. Any As-built changes
 ii. Project Final Report

Process Outputs

1. As-built shop drawings
2. Reports and testing results for accepted Ground Anchors (material and function)
3. Daily Reports
4. Project Final Records

Attachments

None
Soil Nails

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11-16-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (SC) responsibilities and procedures for review and authorization of quality assurance testing, materials, and construction of soil nails.

Review and authorization of specific submittals for soil nails is usually performed in conjunction with the general submittals identified in BCM 46-1, Ground Anchors and Soil Nails – General.

Process Inputs

1. Authorized shop drawings per BCM 46-1, Ground Anchors and Soil Nails – General
2. Test boring report and revised shop drawings when necessary

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.
2. Inspection of field work for this process is:
 a. Intermittent for Material Field release.
 b. Intermittent for drilling holes for soil nails.
 c. Continuous for insertion, and grouting of soil nails.
3. Before construction begins:
 a. Review authorized shop drawings.
 b. Coordinate material inspection for soil nails with Materials Engineering and Testing Services (METS).
c. Coordinate a pre-operation meeting with the Contractor to discuss the construction of soil nails. Consider inviting the METS Representative, Geotechnical Engineer, and Structure Design Engineer to the pre-operation meeting.

d. Verify the Contractor submitted a certified calibration chart for each jack and gauge system proposed for use.

4. During construction:

a. Verify construction methods are in accordance with contract documents:

 i. Water and grout control methods

 ii. Drilling methods and contingencies for caving and hard drilling

 iii. Ground anchor or soil nail installation methods:

 1. Use of centralizers

 2. Installation adjacent to traffic if applicable

 3. Grouting methods and contingencies for secondary grouting

b. Verify soil nail materials delivered to the job site have been released for construction:

 i. Match orange tags to *Form TL-29, Report of Inspection of Material*.

c. For load testing:

 i. Review certified calibration chart for each jack and gauge system proposed for use by the Contractor and verify contract requirements are met.

 ii. Verify jacking equipment and movement measuring system are stable.

 iii. Verify load increments are held for the specified time frames and measurements taken per the requirements of the contract documents.

 iv. Request and review test data in accordance with the requirements of the contract documents.

d. Accept or reject soil nails based on the results of load testing:

 i. For soil nails rejected during verification testing:

 1. Consult with the designers to determine the cause of failure.

 2. If the cause of failure is the Contractor’s installation methods, require revised shop drawings per the requirements of the contract documents.

 3. If the cause of failure is inadequate length of the soil nail, write a Change Order to:

 a. Revise soil nail lengths or design pullout resistance values.
b. Require horizontal borings and test boring report submittal.

ii. For soil nails rejected during proof testing:
1. Require revised shop drawings per the requirements of the contract documents.

iii. For soil nails rejected during supplemental testing:
1. Apply the deduction specified in the contract documents to the soil nails represented by the supplemental test.

iv. For pullout failure, the Contractor must submit the pullout failure load with test data.

e. Document all inspection, construction, and quality assurance activities in the Daily Reports per BCM C-4.04, Daily and Weekly Reports.

5. Following construction:
 a. File all submittals in the project records as specified in the Construction Manual.
 b. Record information necessary for Final Completion Records:
 i. Any As-built changes
 ii. Project Final Report

Process Outputs

1. Reports and testing results for accepted soil nails (material & function)
2. Contract Change Order when specified
3. Daily Reports

Attachments

None
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12-20-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Memo No

<table>
<thead>
<tr>
<th>Memo No</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>47-2</td>
<td>12/20/2018</td>
<td>Earth Retaining Systems – Mechanically Stabilized Embankment</td>
</tr>
<tr>
<td>47-6</td>
<td>12/20/2018</td>
<td>Earth Retaining Systems – Alternative Earth Retaining Systems</td>
</tr>
</tbody>
</table>
Background

This process establishes Structure Construction (SC) responsibilities and procedures to administer mechanically stabilized embankments (MSE), including:

1. Review and authorization of submittals.
3. Quality assurance during construction.

This process applies to MSE. The contract documents may permit the Contractor to propose use of an alternative earth retaining system instead of the MSE shown in the contract documents. If the Contractor proposes to use an alternative earth retaining system, refer to the Standard Specifications (SS)\(^1\).

Process Inputs

1. Shop Drawings.
2. Foundation Report.
3. Test Data for button head wire couplers.
5. Excavation plans, if needed.

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.

\(^1\) 2018 SS, Section 47-6, Earth Retaining Systems – Alternative Earth Retaining Systems.
2. Inspection of field work for this process is:
 a. Intermittent for placement of leveling pads, soil reinforcement, filter fabric, face panels, and structure backfill.

3. Before construction begins:
 a. Review MSE submittals. Request assistance from Structure Designer, Geotechnical Services and METS if necessary.
 b. Review the layout plans and verify the top of wall elevations versus the District grid grades, drainage plans, and underground utility plans. Verify the locations of the soil reinforcement to ensure no conflict with utilities.
 c. Review Construction Considerations section of the Foundation Report and contact report author if there are any questions or unusual geotechnical requirements, such as settlement monitoring, surcharge, etc.
 d. Check contract documents for Surcharge Loading and monitoring requirements.
 e. Set up a pre-construction meeting with the Contractor to discuss MSE construction. Invite representatives from METS, Structure Design (SD), Geotechnical Services, MSE wall specialist, District Construction, and the Materials Lab as needed.
 f. Review and authorize the final texture of the sample facing panel and concrete mix design. The sample panel must be stored for later comparison to the finished product.
 g. Remind the Contractor to submit the construction staking request for the wall layout line, beginning of the wall, end of the wall, and respective elevations. Coordinate review of District related items with the Resident Engineer (RE).
 h. Confirm with the Contractor the schedule of material procurement and sampling.
 i. Review and authorize the erection procedures. Confirm with the Contractor on adequate equipment to lift and set panels.
 j. Review and authorize the excavation plan, if required. See BCM 7-1.02K(6)(b), Legal Relations and Responsibility to the Public – Occupational Safety and Health Standards – Excavation Safety.

4. During construction:
 a. Verify sloping or shoring installation if required.
 b. Provide QA to verify that the leveling pad is constructed properly. Verify the wall layout line (LOL) is per plan.
 c. Verify proper material storage and handling. Geosynthetic reinforcement, polyurethane foam, and filter fabric must be stored away from sunlight.
 d. Upon delivery of materials onsite:
 i. Check for inspection release tags (Form TL-0624, Inspection Release Tag) and match with Form TL-0029, Report of Inspection of Material.
ii. Take photos of release tags that are applied directly onto the system elements, such as, stenciled on panels or etched into concrete block.

iii. Document quantities.

iv. Check for Certificates of Compliance and Buy America Certification.

v. Check for damage incurred during the delivery and request a repair plan from the contractor as needed.

e. Verify proper material storage and handling. Geosynthetic reinforcement, polyurethane foam, and filter fabric must be stored away from sunlight.

f. Sample and test the backfill material for gradation and quality requirements listed in the contract documents. The District Materials Laboratory typically performs gradation, plasticity index (PI), and sand equivalent (SE) tests. Corrosive tests (i.e., chlorides, sulfates, and resistivity) are performed by the Sacramento METS Laboratory. Obtain a copy of test results from the RE.

g. Inspect all materials incorporated into the work prior to placement. Once constructed, it is difficult to remove and replace. Check concrete elements for cracks, spalls, surface irregularities, dimensions, and misaligned connections. Check for broken (popped) welds or damage to the galvanized coating on the metallic elements. Check for damage and correct alignment of the machine direction of geosynthetic reinforcement.

h. Verify the vertical wall layout line (LOL) is referenced and at the right batter to account for the backfill displacement. Monitor wall alignment and vertical displacement. Check against Standard Specifications\(^2\) and the authorized drawings and notify the Contractor promptly so timely corrections are made.

i. Verify all joints are protected with engineering filter fabrics prior to backfilling.

j. Verify the Contractor installs the drainage system, if required, per plan before backfilling. Coordinate with the RE.

k. Coordinate QA backfill and compaction testing with the District Materials Lab.

l. Verify that backfilling is done with proper equipment to avoid damage to the panels:

 i. Do not allow sheepsfoot rollers for compaction of select granular backfill within the limits of the soil reinforcement. Handheld or hand-guided compacting equipment must be used within three feet of the facing panels.

m. Verify facing layout is in proper configuration and at proper spacing prior to backfilling. Verify bearing pads in vertical panel joints or space bars are placed between two adjacent panels to maintain the spacing of the interlocked panels.

n. Verify the Contractor correctly connects and uses the correct configuration of soil reinforcement to the facing. The soil reinforcement may vary throughout the length of the wall. It is of utmost importance that the panel type and soil reinforcement coincide with the requirements shown on the authorized plans.

o. Verify soil reinforcement is placed in the proper alignment and on the level surface, 2-inches higher to avoid down drag by the compaction of the backfill.

i. Soil reinforcement must be installed perpendicular to the back of the panel, unless otherwise noted.

ii. Verify the condition of the soil reinforcement and tension prior to backfilling.

iii. Verify top layer of soil reinforcement is aligned with the profile grade of the top of panels, and when necessary slopes down to avoid a negative super elevation.

p. Verify that all inspection wires are in place according to the contract documents:

i. Verify the locations of wires are centered in the opening of the panels.

ii. Verify that the threaded ends of the wires are clean and covered per details.

iii. Verify that the panel openings are completed with caps or fill per details.

q. Verify the Contractor grades the backfill to slope away from the wall face at the end of each shift to keep surface run off away from the panels if a significant rain event is anticipated. Surface water, if not controlled, will migrate the fines from the structure backfill into the pervious material, possibly causing excessive backfill settlement.

r. Confirm top of wall profile elevations match the cross section and super elevations of the roadway section. Do not allow the Contractor to drive equipment directly on soil reinforcement.

s. Once any anticipated settlement is complete, the concrete coping can be formed and placed.

t. Verify all reinforcing steel for the coping, and the slab and barrier when required before concrete placement.

u. If the Contractor elects to form coping or barrier slabs by attaching the formwork (including, for example, overhang braces) to MSE panels, request the contractor to submit forming plans that show their form system in detail, including calculations, signed by an engineer registered in California.

i. Verify that the Contractor has obtained MSE wall designer’s concurrence to attach formwork.

ii. Verify that the form attachment to the MSE panels has adequate bearing capacity.

iii. Do not allow installation of supporting bolts through the panel joints. There have been instances where the overhang forms collapsed because there is not enough bearing area to support the load.
v. Document all inspection, construction, and quality assurance activities in the Daily Reports per BCM C-4.04, *Daily and Weekly Reports.*

5. Following Construction:
 a. File all submittals in the project records as specified in the *Construction Manual.*
 b. Record information necessary for Required Documents:
 i. Any as-built changes.

Process Outputs

1. Authorized test reports.
2. Written notification of submittal authorization.
3. Daily Reports.

Attachments

Attachment 1, *Mechanically Stabilized Embankment Retaining Wall Construction Checklist.*
Mechanically Stabilized Embankment
Construction Checklist

I. SOURCES OF INFORMATION

- *Bridge Design Specifications*, Section 5, *Retaining Walls*.
- *Bridge Design Aids* – Chapter 3-8, *Mechanically Stabilized Embankments*.
- Earth Retaining Systems Committee web page at https://des.onramp.dot.ca.gov/structure-policy-innovation/earth-retaining-systems

II. PROPRIETARY EARTH RETAINING SYSTEMS

The contract Special Provisions usually gives the contractor the option of choosing one of the proprietary systems listed in the Department’s current list of pre-qualified earth retaining systems. These systems are alternatives to the fully detailed State system shown on the contract plans. The pre-qualified list can be accessed from the SC home page under “Field Resources.”

III. POTENTIAL PROBLEMS

<table>
<thead>
<tr>
<th>Observation</th>
<th>Potential Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Distortion:</td>
<td>• Weak or improper bearing material.</td>
</tr>
<tr>
<td>• Differential settlement that causes panels to contact each other resulting in chipping or spalling.</td>
<td>• Inadequate compaction and/or poor-quality foundation material 1.</td>
</tr>
<tr>
<td>• Low spot in the wall profile.</td>
<td>• Leveling pad not constructed per the tolerances specified in the approved shop plans.</td>
</tr>
<tr>
<td>• Overall wall leaning.</td>
<td></td>
</tr>
</tbody>
</table>

Wall Leaning Out (away from backfill).

- Backfill material pushed against back of wall before being compacted on the strips.
- Excessive or vibratory compaction on uniform fine sand (more than 60% passing a No. 40 sieve).
- Panels not battered sufficiently.
- Large backfill placing and/or compaction equipment working within the 3’ zone from the back of the wall.
- Backfill material dumped too close to the free end of reinforcing strips, then spread towards back of wall, causing bulge in strips and pushing panels out.
<table>
<thead>
<tr>
<th>Observation</th>
<th>Potential Cause</th>
</tr>
</thead>
</table>
| Wall Leaning In (towards backfill). | • Excessive batter set in panels for select granular backfill material being used.
 • Inadequate compaction of backfill.
 • Panels excessively battered.
 • Improper Compaction of lower backfill levels.
 • Settlement of the original ground behind the wall. |
| Localized differential distortion between adjacent panels that causes points of inflection and excessively wide joints. | • Adjacent panels set at different battered angles. |
Earth Retaining Systems – Alternative Earth Retaining Systems

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12-20-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (SC) responsibilities and procedures to administer Alternative Earth Retaining Systems (AERS), including:

1. Review and authorization of submittals.
3. Quality assurance during construction.

Alternative earth retaining systems (AERS) are listed on the Authorized Material List (AML), and may be used when specified in the contract documents. Shop drawings for alternative earth retaining systems are reviewed and authorized by the Designer. SC staff and the Earth Retaining Systems technical specialist in Structure Policy and Innovation (SP&I) assist with the review as described in MTD 5-16, Review of Working Drawings for Proprietary Earth Retaining Systems.

The AERS shall comply with contract documents specific to the type of AERS submitted:

Process Inputs

1. AERS submittals and shop drawings.
2. Foundation Report.
4. Excavation plans, if needed.

Procedure

1. All work associated with this process is charged as [Project-Direct – Construction](#).
2. Inspection of field work for this process is:
 a. Intermittent.
3. Before construction begins:
 a. Verify that the Contractor submits the alternative earth retaining systems (AERS) shop drawings to Structure Design (SD) Document Unit.
 i. Only one type of wall shall be used at each wall location.
 ii. Shop drawings shall include the manufacturer’s installation manual, system specific information such as design parameters, materials notes, construction procedures, erection sequencing, tensioning or spacing details, etc.
 iii. When the submitted shop drawings are authorized with minor corrections, ensure that the Contractor incorporates the minor corrections into the final construction.
 b. For technical assistance during AERS shop drawing review and construction may be provided by:
 i. Structure Designer.
 ii. METS Representative.
 iii. DES Structure Policy & Innovation – MSE Senior Technical Specialist.
 iv. Geotechnical Services.
 v. Manufacturer Representative.
 c. Coordinate with RE:
 i. Notify RE Documents Unit may mail authorized Shop Drawings to RE.
 ii. Request RE review shop drawings for conflicts with roadway plans, utilities, drainage, etc.
 iii. Request RE forward all AERS related District QA testing to SR.
 d. SR will review the AERS shop drawings:
 i. Verify proposed system is authorized for use.
 ii. Review Standard Specification:

 iv. Review Construction Considerations Section of the Foundation Report and contact report author if there are any questions or unusual geotechnical requirements, such as settlement monitoring, surcharge, etc.

 v. Review BCM 19-6.03D, Earthwork – Embankment Construction – Settlement Periods and Surcharges, for Surcharge Loading and monitoring requirements.

 vi. Verify top of wall elevations versus the district grid grades, drainage plans, and underground utility plans. Coordinate review of district related items with RE.

 vii. Verify the locations of structural elements for any potential conflict with utilities. Coordinate review of district related items with RE.

 viii. Verify the bottom of facing elevations are at or below the project plans.

 ix. Provide shop drawing review comments to Structure Designer. The Structure Designer Authorizes shop drawings.

 e. Receive rejection or authorization of the AERS shop drawings from the Documents Unit. Document Unit forwards authorization/rejection to contractor. Verify Contractor was notified.

 f. Set up a pre-construction meeting with the Contractor to discuss Alternative ERS construction. Invite representatives from METS, SD, Geotechnical Services, ERS specialist, District Construction, and Materials Lab. Remind Contractor of requirement for onsite Qualified Manufacturers Representative during first 10 vertical feet of erection and backfill and submittal of Form 3101, *Notice of Materials to be Used*.

 g. Remind the Contractor to submit the construction staking request for the authorized system, including: wall layout line, beginning of wall, end of wall, and respective elevations.

 h. Confirm with the Contractor the schedule of material procurement and sampling.

 i. Review and authorize the final texture of the sample facing panel and concrete mix design. The sample panel must be stored for later comparison to the finished product.

 j. Review and authorize the erection procedures. Confirm with the Contractor on adequate equipment to lift and set panels.

4. During construction:
a. Meet and work with the qualified representative of the alternative system manufacturer

b. Upon delivery of materials onsite:
 i. Check for inspection release tags (Form TL-0624, Inspection Release Tag) and match with Form TL-0029, Report of Inspection of Material.
 ii. Take photos of source inspection release information that are applied directly onto the system elements such as stenciled on panels or etched into concrete block.
 iii. Document Quantities
 iv. Check for Certificates of Compliance and Buy America Certification.
 v. Verify proper material storage and handling.
 vi. Check for damage incurred during the delivery and request a repair plan from the contractor as needed.

c. Verify sloping or shoring installation specific to the authorized AERS.

d. Verify the Contractor installs drainage system, if required, per authorized plans before backfilling. Coordinate with RE.

e. Coordinate QA backfill and compaction testing with District Materials Staff.

f. Verify that backfilling is done with proper equipment to avoid damage to the structural elements.

g. Verify the Contractor grades the backfill to slope away from the wall face at the end of each shift to keep surface run off away from the facing if a significant rain event is anticipated. Surface water, if not controlled, will migrate the fines from the structure backfill into the pervious material, possibly causing excessive backfill settlement.

h. Verify wall cap profile elevations to match the cross section and super elevations of the roadway section.

5. Document all inspection, construction, and quality assurance activities in the Daily Reports per BCM C-4.04, Daily and Weekly Reports.

6. Following Construction:
 a. File all submittals in the project records as specified in the Construction Manual.
 b. Record information necessary for Required Documents:
 i. Any as-built changes.

Process Outputs

1. Complete project records for each wall that is an alternative ERS (including materials certifications and test results).
2. As-built plans and shop drawings.
3. Daily Reports.

Attachments

None.
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>04-22-2019</td>
<td>Original issue</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Memo No Issue Date Title

<table>
<thead>
<tr>
<th>Memo No</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>48-1A</td>
<td>xx/xx/20xx</td>
<td>Temporary Structures – General – Contractor Designed Temporary Bridges</td>
</tr>
<tr>
<td>48-1B</td>
<td>xx/xx/20xx</td>
<td>Temporary Structures – General – Shoring</td>
</tr>
<tr>
<td>48-1C</td>
<td>xx/xx/20xx</td>
<td>Temporary Structures – General – Work Platforms and Trestles</td>
</tr>
<tr>
<td>48-2.01C</td>
<td>xx/xx/20xx</td>
<td>Temporary Structures – Falsework – Submittals</td>
</tr>
<tr>
<td>48-2.01D</td>
<td>xx/xx/20xx</td>
<td>Temporary Structures – Falsework – Quality Assurance</td>
</tr>
<tr>
<td>48-2.03</td>
<td>xx/xx/20xx</td>
<td>Temporary Structures – Falsework – Construction</td>
</tr>
<tr>
<td>48-3.01C</td>
<td>xx/xx/20xx</td>
<td>Temporary Structures – Temporary Supports – Submittals</td>
</tr>
<tr>
<td>48-3.01D</td>
<td>xx/xx/20xx</td>
<td>Temporary Structures – Temporary Supports – Quality Assurance</td>
</tr>
<tr>
<td>48-3.03</td>
<td>xx/xx/20xx</td>
<td>Temporary Structures – Temporary Supports – Construction</td>
</tr>
<tr>
<td>48-4.01C</td>
<td>xx/xx/20xx</td>
<td>Temporary Structures – Temporary Decking – Submittals</td>
</tr>
<tr>
<td>48-4.03</td>
<td>xx/xx/20xx</td>
<td>Temporary Structures – Temporary Decking – Construction</td>
</tr>
<tr>
<td>48-5.01C</td>
<td>xx/xx/20xx</td>
<td>Temporary Structures – Jacking Superstructure – Submittals</td>
</tr>
<tr>
<td>48-5.01D</td>
<td>xx/xx/20xx</td>
<td>Temporary Structures – Jacking Superstructure – Quality Assurance</td>
</tr>
<tr>
<td>48-5.03</td>
<td>04/22/2019</td>
<td>Temporary Structures – Jacking Superstructure - Construction</td>
</tr>
</tbody>
</table>
Temporary Structures – Jacking Superstructure – Construction

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>04-22-2019</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (S.C.) responsibilities and procedures for installation and removal of jacking support systems.

This process is generally used for lowering a bridge superstructure constructed above grade into its final position.

Additional unique requirements for jacking superstructures are detailed in:

- Bridge Construction Memo (B.C.M.) 48-2.03, Temporary Structures – Falsework – Construction.

Prior to reviewing this B.C.M., it is essential to review the Contract Specification, Section 48-5.03, Temporary Structures - Jacking Superstructure- Construction, applicable to your specific project, that this B.C.M. is based on as identified in the title block above. The information in the contract specifications typically will not be repeated in the text of this B.C.M.
Process Inputs

1. Authorized Jacking Support System Submittals per B.C.M. 48-5.01C, Temporary Structures – Jacking Superstructure - Submittals
2. Jack/Pressure Gauge Calibration Charts
3. Load cell calibration documents
4. Completed initial survey for displacement monitoring

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.
2. Inspection of field work for this process is:
 a. Continuous for all jacking operations.
3. Before construction begins:
 a. Review authorized jacking support system submittals:
 i. Discuss the redundant system of support for jacking activities with the Contractor.
 b. Coordinate traffic control and local agency requirements with the Resident Engineer and the Contractor.
 c. Discuss safety requirements and operational protocols per the project-specific Code of Safe Practices (C.O.S.P.) with S.C. staff assigned to the operation.
 d. Verify jack and pressure gauge or load cell have been calibrated within 6-months of use or repair by an authorized laboratory.
 e. Verify that the railroad or other right of way entities have been informed of the Contractors proposed schedule for the jacking operation.
4. During construction:
 a. Verify the Contractor’s jacking system matches the certified calibration charts per B.C.M. 48-5.01D, Temporary Structures – Jacking Superstructure – Quality Assurance.
 b. During installation of temporary jacking supports, confirm that the Contractor is following the requirements of the authorized temporary jacking supports submittal.
 c. Coordinate final walk through with the Bridge Construction Engineer prior to jacking.
d. Verify that the jacking loads are applied in conformance with the authorized temporary jacking supports submittal and requirements of the contract documents.

e. Verify that the Contractor performs displacement monitoring activities per B.C.M. 48-5.01D, Temporary Structures – Jacking Superstructure – Quality Assurance, and the authorized temporary jacking supports submittal.

f. Monitor the jacking system for unplanned activities, including excessive displacement, equipment failures or unanticipated jack loads, per the authorized shop drawing. Ensure that the Contractor and operations comply with applicable safety requirements. Refer to Construction Manual, Section 2-103, Managing Safety Hazards.

g. During removal of the temporary jacking supports, confirm that the Contractor is following the requirements of the temporary jacking supports submittal.

h. Verify that all attachments are removed, and concrete surfaces are repaired.

i. Document all inspection, construction, and quality assurance activities in the Daily Reports per B.C.M. C-4.04, Daily and Weekly Reports.

j. Review and file all displacement monitoring records and Daily Reports in the appropriate category in the project records as specified in the Construction Manual, Section 5-102, Organization of Project Documents.

k. Monitor the structure for unanticipated displacements, cracking or damage, and authorize corrective measures.

Process Outputs

1. Daily Reports
2. Displacement monitoring records

Attachments

None
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>08-30-2019</td>
<td>Posted BCM 49-3.02A(3) and 49-3.02B</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>1</td>
<td>04-22-2019</td>
<td>Posted BCM 49-5.01D(4)(c)</td>
<td>Steve Altman</td>
</tr>
<tr>
<td>0</td>
<td>09-04-2018</td>
<td>Original Issue</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Memo No | Issue Date | Title |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>49-1.01C</td>
<td>09/04/2018</td>
<td>Piling - General - Submittals</td>
</tr>
<tr>
<td>49-1.01D(3)</td>
<td>09/04/2018</td>
<td>Piling - General - Quality Assurance - Load Test Piles</td>
</tr>
<tr>
<td>49-1.01D(4)</td>
<td>09/04/2018</td>
<td>Piling - General - Quality Assurance - Dynamic Monitoring</td>
</tr>
<tr>
<td>49-2.01A(3)</td>
<td>09/04/2018</td>
<td>Driven Piling - Submittals</td>
</tr>
<tr>
<td>49-2.01A(4)(c)</td>
<td>xx/xx/20xx</td>
<td>Driven Piling - Quality Assurance - Department Acceptance</td>
</tr>
<tr>
<td>49-2.01C</td>
<td>xx/xx/20xx</td>
<td>Driven Piling - Construction</td>
</tr>
<tr>
<td>49-2.01D</td>
<td>xx/xx/20xx</td>
<td>Driven Piling - Payment</td>
</tr>
<tr>
<td>49-2.02</td>
<td>09/04/2018</td>
<td>Driven Piling - Steel Pipe Piling</td>
</tr>
<tr>
<td>49-2.03</td>
<td>09/04/2018</td>
<td>Driven Piling - Structural Shape Steel Piles</td>
</tr>
<tr>
<td>49-2.04</td>
<td>xx/xx/20xx</td>
<td>Driven Piling - Precast Prestressed Concrete Piling</td>
</tr>
<tr>
<td>49-2.05</td>
<td>xx/xx/20xx</td>
<td>Driven Piling - Steel Sheet Piling</td>
</tr>
<tr>
<td>49-3.01</td>
<td>xx/xx/20xx</td>
<td>Cast-In-Place Concrete Piling - General</td>
</tr>
<tr>
<td>49-3.02A(3)</td>
<td>08/30/2019</td>
<td>Cast-In-Drilled-Hole Concrete Piling - Submittals</td>
</tr>
<tr>
<td>49-3.02A(4)(b)</td>
<td>xx/xx/20xx</td>
<td>Cast-In-Drilled-Hole Concrete Piling - Quality Assurance - Preconstruction Meeting</td>
</tr>
<tr>
<td>49-3.02A(4)(c)</td>
<td>xx/xx/20xx</td>
<td>Cast-In-Drilled-Hole Concrete Piling - Quality Control</td>
</tr>
<tr>
<td>49-3.02A(4)(d)</td>
<td>xx/xx/20xx</td>
<td>Cast-In-Drilled-Hole Concrete Piling - Department Acceptance</td>
</tr>
<tr>
<td>49-3.02B</td>
<td>08/30/2019</td>
<td>Cast-In-Drilled-Hole Concrete Piling - Materials</td>
</tr>
<tr>
<td>49-3.02B(6)</td>
<td>xx/xx/20xx</td>
<td>Cast-In-Drilled-Hole Concrete Piling - Materials - Slurry</td>
</tr>
<tr>
<td>49-3.02C</td>
<td>xx/xx/20xx</td>
<td>Cast-In-Drilled-Hole Concrete Piling - Construction</td>
</tr>
<tr>
<td>Memo No</td>
<td>Issue Date</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>49-3.03C</td>
<td>xx/xx/20xx</td>
<td>Driven Steel Shells Filled with Concrete and Reinforcement - Construction</td>
</tr>
<tr>
<td>49-3.03D</td>
<td>xx/xx/20xx</td>
<td>Driven Steel Shells Filled with Concrete and Reinforcement - Payment</td>
</tr>
<tr>
<td>49-4.03</td>
<td>xx/xx/20xx</td>
<td>Steel Soldier Piling - Construction</td>
</tr>
<tr>
<td>49-5.01C</td>
<td>xx/xx/20xx</td>
<td>Micropiling - Submittals</td>
</tr>
<tr>
<td>49-5.01D(3)</td>
<td>xx/xx/20xx</td>
<td>Micropiling - Quality Assurance - Preconstruction Meeting</td>
</tr>
<tr>
<td>49-5.01D(4)(c)</td>
<td>04/22/2019</td>
<td>Micropiling - Quality Control - Load Testing</td>
</tr>
<tr>
<td>49-5.01D(5)</td>
<td>xx/xx/20xx</td>
<td>Micropiling - Department Acceptance</td>
</tr>
<tr>
<td>49-5.02</td>
<td>xx/xx/20xx</td>
<td>Micropiling - Materials</td>
</tr>
<tr>
<td>49-5.03</td>
<td>xx/xx/20xx</td>
<td>Micropiling - Construction</td>
</tr>
<tr>
<td>49-6.01C</td>
<td>xx/xx/20xx</td>
<td>Alternative Piling - Submittals</td>
</tr>
<tr>
<td>49-6.01D(3)</td>
<td>xx/xx/20xx</td>
<td>Alternative Piling - Quality Assurance - Preconstruction Meeting</td>
</tr>
<tr>
<td>49-6.01D(4)</td>
<td>xx/xx/20xx</td>
<td>Alternative Piling - Quality Control - Load Testing</td>
</tr>
<tr>
<td>49-6.01D(5)</td>
<td>xx/xx/20xx</td>
<td>Alternative Piling - Department Acceptance</td>
</tr>
<tr>
<td>49-6.02</td>
<td>xx/xx/20xx</td>
<td>Alternative Piling - Materials</td>
</tr>
<tr>
<td>49-6.03</td>
<td>xx/xx/20xx</td>
<td>Alternative Piling - Construction</td>
</tr>
</tbody>
</table>
Piling – General – Submittals

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>09-04-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes the Structure Construction (SC) responsibilities and procedures for review and authorization of general piling submittals that apply to all piling specified in Section 49 of the contract specifications.

This process addresses protecting the public during piling construction, provides a means for reducing project costs by revising specified tip elevations, and identifies required submittals when test borings are required in the contract.

Process Inputs

1. Pile Handling Work Plan describing measures to be used to provide for the safety of traffic and the public.

2. Value Engineering Change Proposal (VECP) for revisions to specified tip elevations shown or installation methods:
 a. Test Boring Report and Log of Test Borings, if specified

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.

2. For Pile Handling Work Plan:
 a. Discuss the requirements of the Pile Handling Work Plan during the preconstruction conference.1

1 Foundation Manual, Chapter 3, Contract Administration
b. Receive, review, and authorize the Pile Handling Work Plan:
 i. Review public safety requirements
 ii. Review work zone layout for material and equipment conflicts, especially for cranes or other “boomed” equipment
 iii. Review and plan for any utility conflicts
 iv. Discuss storage of materials

c. Notify the Contractor in writing of authorization or rejection of the submittal.

3. For VECP revisions to specified tip elevations or installation methods:
 a. Receive, review, and authorize the VECP
 b. Notify the Contractor in writing of authorization or rejection of the submittal

4. If test borings are specified in the contract documents:
 a. Discuss the requirements of testing borings during the preconstruction conference:
 i. Direct the Contractor to submit four (4) copies of the Test Boring Report and the Log of Test Borings to the Structure Design (SD) Documents Unit.
 ii. If corrections are required, direct the contractor to submit one (1) copy of the corrected test boring report and the log of test borings to SD Documents Unit.
 b. Receive notification of the submittal from the Contractor.
 c. Coordinate the review with the Structure and Geotechnical Designer.
 d. Act upon the recommendations of the Structure and Geotechnical Designer.

Process Outputs

1. Authorized submittals

Attachments

None

2 [BCM 7-1.04](#), *Legal Relations and Responsibility to the Public – Public Safety*
3 [BCM 4-1.07](#), *Scope of Work – Value Engineering*
Piling – General – Quality Assurance – Load Test Piles

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>09-04-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (SC) responsibilities and procedures for review and administration of load test piles, which include submittal review, coordination with the Contractor, coordination with Geotechnical Services (GS), and authorization of specified tip revisions for contract piling.

Pile load tests are specified in the contract documents:

1. When piles are installed in soils with variable geologies or poor-quality soils where there is no other means to determine capacity.
2. To validate design assumptions.
3. To provide sufficient information to modify the design tip elevation when there is a potential for large cost savings.
4. When driven piles are too large (typically larger than 36-inch diameter) to use dynamic monitoring for bearing acceptance criteria.

Pile load tests may be combined with dynamic monitoring per BCM 49-1.01D(4), Piling – General – Quality Assurance – Dynamic Monitoring:

1. To calibrate bearing acceptance criteria to the pile load test.
2. To evaluate capacity of static load test anchor piles.

Process Inputs

1. Pile Load Testing specified in the contract documents
2. Form CEM-3101, Notice of Materials to be Used
3. Authorized Pile Handling Work Plan per BCM 49-1.01C, Piling – General – Submittals
4. Static Pile Load Test request form
5. Authorized Pile Installation Plan for CIDH piling per BCM 49-3.02A(3), Cast-In-Drilled-Hole Concrete Piling – Submittals
6. Driving System Submittal for driven piling per BCM 49-2.01A(3), Driven Piling – General – Submittals

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.
2. Inspection of field work for this process is:
 a. Continuous for inspection of load test and anchor pile construction and testing.
3. Prior to pile load testing:
 a. Review contract documents and verify anchor pile layouts are correctly shown.
 b. If dynamic monitoring is required in conjunction with pile load tests, review the requirements of BCM 49-1.01D(4), Piling – General – Quality Assurance – Dynamic Monitoring.
 c. Notify Foundations Testing and Instrumentation (FTI) of scheduled pile load testing using the Static Pile Load Test Request Form.
 d. Discuss requirements for pile load testing with FTI prior to the preconstruction conference.
 e. Discuss requirements for pile load testing with the Contractor at the preconstruction conference.
 f. Review authorized Pile Handling Plan per BCM 49-1.01C, Piling – General – Submittals.
 g. Review Contractor’s schedule to make sure that there is a sufficient window to perform the test and generate a report.
 h. Discuss logistical requirements for performing the pile load test with FTI and the Contractor and issue a Change Order according to the Foundation Manual, Chapter 8-3, Contract Administration of Static Pile Load Testing & Pile Dynamic Analysis.
 i. Review the Project-specific Code of Safe Practices for pile driving operations.
 j. Assist the Contractor and FTI with preparing the load test pile for load testing according to the Foundation Manual Chapter 8-4, Inspection Requirements During Static Load Testing and PDA:
 i. Coordinate installation of pile load test instrumentation package with FTI and the Contractor.
k. Inspect and verify construction of the load test pile and anchor piling according to Foundation Manual Chapter 8-4, Inspection Requirements During Static Load Testing and PDA:

 i. For driven load test and anchor piling, log pile details such as blow count and stroke on Form SC-4805, Log Pile Sheet, and provide to FTI.

 ii. For CIDH load test and anchor piling, provide authorized pile submittals per BCM 49-3.02A(3), Cast-In-Drilled-Hole Concrete Piling – Submittals, to FTI.

 iii. Document inspection of construction of the test pile and anchor piling in the daily reports.

4. During pile load testing:

 a. Discuss pile driving operation safety at a Tailgate Safety meeting prior to start of field work.

 b. Assist FTI with pile load testing as needed according to the Foundation Manual Chapter 8, Static Pile Load Testing and Pile Dynamic Analysis.

 c. Suspend any of the Contractor’s operations in conflict with the pile load testing work until pile load testing is completed.

5. Following pile load testing:

 a. Receive the Pile Load Test report from FTI.

 b. Review the Pile Load Test report and coordinate with the Geotechnical Designer and the Structure Designer to obtain Recommendations.

 c. Notify the Contractor of final specified tip elevations in writing.

 d. Issue a change order to implement revised specified tip elevations.

Process Outputs

1. Static Pile Load Test Request Form
2. Form SC-4805, Log Pile Sheet (for driven load test piles):
3. Daily reports
4. Static Pile Load Test report
5. Revisions to specified tip elevations
6. Change Order to implement revised specified tip elevations

Attachments

None
Piling – General – Quality Assurance – Dynamic Monitoring

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>09-04-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (SC) responsibilities and procedures for review and administration of dynamic monitoring of driven piling, which includes coordination with the Contractor, coordination with Geotechnical Services (GS), and authorization of bearing acceptance criteria for contract piling.

Dynamic monitoring of driven piling is specified in the contract documents:

1. When the piles to be driven are too large (typically 18-inch to 36-inch diameter) to use the Gates Formula per BCM 49-2.01A(4)(c), Driven Piling – Quality Assurance – Department Acceptance, for bearing acceptance criteria.
2. When ground conditions are not well known and bearing acceptance criteria needs to be established for the control zone.
3. To monitor driving stresses in order to prevent pile damage.

Dynamic monitoring may be required with pile load testing per BCM 49-1.01D(3), Piling – General – Quality Assurance – Load Test Piles:

1. To calibrate bearing acceptance criteria to the pile load test.
2. To evaluate capacity of static load test anchor piles.

Process Inputs

1. Dynamic Monitoring specified in the contract documents
2. Form CEM-3101, Notice of Materials to be Used
3. Authorized Pile Handling Work Plan per BCM 49-1.01C, Piling – General – Submittals
4. **Pile Driving Analysis Test Request Form**

5. Authorized Driving System Submittal per BCM 49-2.01A(3), Driven Piling – General – Submittals

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.

2. Inspection of field work for this process is:
 a. **Continuous** for inspection of piles driven with dynamic monitoring.

3. Prior to pile dynamic monitoring:
 a. Review contract documents and identify control zones for piles to be dynamically monitored.
 b. If pile load testing is required in conjunction with dynamic monitoring, review the requirements of BCM 49-1.01D(3), Piling – General – Quality Assurance – Load Test Piles.
 c. Notify Foundation Testing and Instrumentation (FTI) of scheduled pile dynamic monitoring using the Pile Driving Analysis Test Request Form.
 d. Discuss requirements for pile dynamic monitoring with FTI prior to the preconstruction conference.
 e. Discuss requirements for pile dynamic monitoring with the Contractor at the preconstruction conference.
 f. Discuss Contractor’s planned production pile driving procedures with FTI to confirm pile installation procedures for production piling match those used during dynamic monitoring.
 g. Review authorized Pile Handling Work Plan, see BCM 49-1.01C, Piling – General – Submittals.
 h. Review Contractor’s schedule to make sure that there is a sufficient window to perform pile dynamic monitoring, generate a report, and generate bearing acceptance criteria.
 i. Discuss logistical requirements for performing dynamic monitoring with the Contractor according to the Foundation Manual Chapter 8-3, *Contract Administration of Static Pile Load Testing & Pile Dynamic Analysis*.
 k. Assist the Contractor and FTI with preparing the pile(s) for dynamic monitoring according to the Foundation Manual Chapter 8-4).

4. During pile dynamic monitoring:
a. Discuss pile driving operation safety at a Tailgate Safety meeting prior to start of field work.

b. Inspect and verify construction of the pile being dynamically monitored according to Foundation Manual Chapter 8-4, Inspection Requirements during Static Load Testing and PDA.

 i. Assist FTI with pile dynamic monitoring as needed.

 ii. Document inspection of construction of the pile being dynamically monitored in the daily reports.

 iii. Log pile details, blow count and stroke on Form SC-4805, Log Pile Sheet, and provide to FTI.

c. Suspend any of the Contractor’s operations in conflict with the pile dynamic monitoring work until dynamic monitoring is completed.

5. Following pile dynamic monitoring:

 a. Receive the Dynamic Monitoring Test report and bearing acceptance criteria from FTI.

 b. Review the Dynamic Monitoring Test report and coordinate with the Geotechnical and Structural Designers to obtain final specified tip elevations.

 c. Notify the Contractor of final specified tip elevations and bearing acceptance criteria in writing.

 d. If necessary, issue a change order to implement revised specified tip elevations.

Process Outputs

1. Pile Driving Analysis Test Request Form
2. Form SC-4805, Log Pile Sheet
3. Daily reports:
4. Dynamic Monitoring Test report
5. Bearing acceptance criteria
6. Revisions to specified tip elevations
7. Change Order to implement revised specified tip elevations

Attachments

None
Driven Piling – General – Submittals

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>09-04-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes the Structure Construction (SC) responsibilities and procedures for review and authorization of general driven piling submittals, including the Driving System Submittal (DSS), Pile and Driving Data forms, and printed hammer energy readouts for pile driving hammers with no way of visually observing the ram stroke.

These are in additional to general submittals for piling described in BCM 49-1.01C, Piling – General – Submittals.

Process Inputs

1. Form CEM-3101 – Notice of Materials to be Used
2. Driving System Submittal from the Contractor
3. Pile and Driving Data form submittals from the Contractor
4. Printed hammer energy readouts from the Contractor
5. Authorized Pile Handling Plan submittal from the Contractor per BCM 49-1.01C

Procedure

1. All work associated with this process is charged as Project-Direct - Construction.
2. Before construction begins:
 a. Using Form CEM-3101, confirm piles meeting the contract requirements are being procured and that Materials Engineering and Testing Services (METS) has been notified.
b. Discuss requirements for Pile and Driving Data forms and Driving Systems Submittal (DSS) requirements during the preconstruction meeting.

c. Notify Foundation Testing and Instrumentation (FTI) of pile driving requirements for the project and provide necessary documents.

d. Review and authorize or reject the submitted Pile and Driving Data forms:
 i. Discuss any questions about the Pile and Driving Data forms with FTI.
 ii. Discuss issues preventing authorization of the Pile and Driving Data forms with the Contractor.

e. Perform an initial review of the submitted DSS for completeness:
 i. Review the DSS with the Resident Engineer to verify compliance with any additional project requirements and request contingency plan from the Contractor as needed.
 ii. Request additional information from the Contractor if needed until the DSS is complete.

f. Review the DSS for completeness. Forward the complete DSS to FTI for review, per the instructions on the FTI website. Authorize or reject the DSS based on FTI recommendation. Refer to the Foundation Manual, Section 7-5, Nominal Resistance/Bearing Capacity and Appendix K-1, Driven Piling Construction Checklist.

g. If not previously authorized, perform a concurrent review of the Pile Handling Plan submitted per BCM 49-1.01C and verify compatibility of the Pile Handling Plan, Pile and Driving Data forms, and the DSS.

h. Notify the Contractor in writing of rejection or authorization of the DSS.

3. During construction:

 a. For double-acting pile driving hammers or other hammer types where the ram stroke cannot be visually observed:
 i. Receive the printed readout of hammer energy for each pile during driving operations from the Contractor.
 ii. Determine pile acceptance using the printed readout hammer energy delivered at the pile specified tip elevation.

Process Outputs

1. Authorized Pile and Driving Data forms:
 a. Customers: Structure Representative, District

1 *Foundation Manual*, Section 7-5, Nominal Resistance/Bearing Capacity
b. Customer Expectations: Timely review, can be used for pile construction and acceptance

2. Driving Systems Submittal Review Report from FTI:
 a. Customers: Structure Representative
 b. Customer Expectations: Timely review, conclusions clearly stated

3. Authorized Driving Systems Submittal:
 a. Customers: District, Contractor, Assistant Structure Representatives
 b. Customer Expectations: Contract requirements are met, timely review and authorization

Attachments

None.
Driven Piling – Steel Pipe Piling

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>09-04-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (SC) responsibilities and procedures for review and authorization of submittals, quality assurance, and construction activities specifically for steel pipe piling.

This process is in addition to general activities for driven piling described in BCM 49-2.01A(3), Driven Piling – Submittals; BCM 49-2.01A(4)(c), Driven Piling – Quality Assurance – Department Acceptance; BCM 49-2.01C, Driven Piling – Construction; and BCM 49-2.01D, Driven Piling – Payment.

This process is also in addition to field welding procedures described in BCM 11-2, Welding Quality Control.

Process Inputs

1. Contractor-submitted driven steel pipe piling submittals
2. Form CEM-3101, Notice of Materials to be Used
3. Form TL-29, Report of Inspection of Material
4. Field welding submittals and personnel qualifications and certifications described in BCM 11-2, Welding Quality Control

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.
2. Inspection of field work for this process is:
a. Continuous for installation of steel pipe piling.
b. Intermittent for field welding of steel pipe piling.

3. Before construction begins:
 a. Discuss shop drawing review and authorization, certificates of compliance, steel pipe piling fabrication, welding inspection requests for Class N steel pipe piling, and field welding requirements with the Contractor and METS Representative:
 i. Review AWS D1.1 Requirements.
 ii. Verify the proposed steel pipe piling fabrication facility is on the Department’s Authorized Facility Audit list.
 b. Review the Welding Quality Control Plan in conjunction with METS per BCM 11-2, Welding Quality Control.
 c. Review certificates of compliance for steel pipe piling for conformance with the requirements of the contract documents:
 i. Contact METS Representative for assistance in the review as needed.
 ii. Verify that materials match certification documents.
 d. Authorize or reject submittals. Notify the Contractor in writing.

4. During construction:
 a. Coordinate inspection of field welded splices with the METS Representative as needed.
 b. Document all construction activities in the Daily Reports.

Process Outputs

1. Authorized submittals

Attachments

None
Driven Piling – Structural Shape Steel Piling

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>09-04-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (SC) responsibilities and procedures for review and authorization of submittals, quality assurance, and construction activities specifically for structural shape steel piles.

These are in addition to general activities for driven piling described in BCM 49-2.01A(3), Driven Piling – Submittals, BCM 49-2.01A(4)(c), Driven Piling – Quality Assurance – Department Acceptance, BCM 49-2.01C, Driven Piling – Construction, and BCM 49-2.01D, Driven Piling – Payment.

This process is also in addition to field welding procedures described in BCM 11-2, Welding Quality Control.

Process Inputs

1. Contractor-submitted structural shape steel pile submittals
2. Form CEM-3101, Notice of Materials to be Used
3. Form TL-29, Report of Inspection of Material
4. Field welding submittals and personnel qualifications and certifications described in BCM 11-2, Welding Quality Control

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.
2. Inspection of field work for this process is:
a. **Continuous** for installation of structural shape steel piling.

b. **Intermittent** for field welding of structural shape steel piling.

3. Before construction begins:

 a. Confirm steel that meets the contract requirements is being procured and that Materials Engineering and Testing Services (METS) has been notified through Form CEM-3101, *Notice of Materials to be Used*.

 b. Review the **Welding Quality Control Plan (WQCP)** in conjunction with METS per BCM 11-2, *Welding Quality Control*.

 c. Authorize or reject submittals. Notify the Contractor in writing.

 d. Perform timely field verification that the materials delivered meet contract requirements and were not damaged in shipping:

 i. Collect Inspection Tags and match them with the appropriate Form TL-29, *Report of Inspection of Material*.

 ii. Make note on material condition.

4. During construction:

 a. Confirm field welded splices meet the requirements of the contract documents.

 b. Document all construction activities in the Daily Reports.

Process Outputs

1. Authorized submittals

3. Daily Reports

Attachments

None
Cast-In-Drilled-Hole Concrete Piling – Submittals

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>08-30-2019</td>
<td>Original issue.</td>
<td>Richard Foley</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (SC) responsibilities and procedures for the review and authorization of Cast-In-Drilled-Hole (CIDH) concrete piling submittals. Cast-In-Drilled-Hole concrete piling submittals include those received prior to construction and during construction. Not all submittals listed in the “Inputs” section will be required for each CIDH pile. The requirement for each submittal is based on the pile diameter, ground conditions, and construction issues encountered during CIDH piling construction.

Prior to reviewing this Bridge Construction Memo (BCM), it is essential to review the contract specifications, Section 49-3.02A(3), Cast-In-Drilled-Hole Concrete Piling – Submittals, that this BCM is based on as identified in the title block above. The information in the contract specifications typically will not be repeated in the text of this BCM.

Process Inputs

1. CIDH Pile Installation Plan
2. Slurry Test Record
3. Inspection Pipe and Reinforcing Cage Coupler Log
4. Concrete Placement Log
5. Coring Logs and Concrete Cores
6. Testing Report (for tests performed by the Contractor on rejected piles)
7. Mitigation Plans
8. Mitigation Report
9. Plastic Spacer Manufacturer’s Data and sample

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.
2. Inspection of field work for this process is Benchmark.
3. Before construction begins:
 a. Review submittal requirements and identify when each submittal is needed per the contract documents, **Foundation Manual, Sections 6-6, Inspection and Contract Administration; 9-8, Inspection and Contract Administration; 9-9, Pile Acceptance Testing; 9-10, Defective Piles; and 9-11, Pile Mitigation and Acceptance:**
 i. CIDH concrete piling constructed without inspection pipes do not require submittals for Slurry Test Records, Inspection Pipe and Reinforcing Cage Couplers, Coring Logs and Concrete Cores, Testing Reports, Mitigation Plans, or Mitigation Reports.
 b. Develop a spreadsheet or other means to track the status of all CIDH concrete piling submittals for complete and timely review.
 c. Discuss concerns with designers, Foundation Testing and Instrumentation (FTI), and SC Substructure Engineer (CIDH Pile Mitigation Committee Chair).
 d. Identify environmental and other physical conditions that affect CIDH piling construction during a preconstruction jobsite visit.
 e. Prior to the CIDH Concrete Piling Preconstruction Meeting, receive and review the Pile Installation Plan.
 f. Discuss submittal requirements, including complete and timely submittals, during the CIDH Concrete Piling Preconstruction Meeting per **BCM 49-3.02A(4)(b), Cast-In-Drilled-Hole Concrete Piling – Quality Assurance – Preconstruction Meeting.**
 g. Following the CIDH Concrete Piling Preconstruction Meeting, review any revisions to the Pile Installation Plan per the contract documents, **Foundation Manual, Sections 6-6.1, Pile Installation Plan, and 9-8, Inspection and Contract Administration.**
 h. Authorize or reject the Pile Installation Plan. Notify the contractor in writing. Review and authorize revisions to resubmittals
i. Receive, review, and authorize the plastic spacer submittal. Notify the contractor in writing. Refer to BCM 49-3.02B, *Cast-In-Drilled-Hole Concrete Piling – Materials*, for additional information.

4. During construction:
 a. For all CIDH concrete piling:
 i. Confirm receipt of the Concrete Placement Log following concrete placement.
 b. For CIDH concrete piling with Inspection Pipes:
 i. Confirm receipt of the Inspection Pipe and Reinforcing Cage Coupler Log following concrete placement.
 ii. Confirm receipt of the Slurry Test Record following concrete placement.
 iii. Prior to acceptance testing of constructed CIDH concrete piling:
 1. Forward Concrete Placement Logs, Inspection Pile, and Reinforcing Steel Coupler Logs to FTI.
 2. For CIDH concrete piling where the inspection pipes are blocked and the contractor replaces the blocked inspection pipe with a cored hole per the BCM 49-3.02C, *Cast-In-Drilled-Hole Concrete Piling – Construction*:
 a. Confirm receipt of the Coring Logs and Concrete Cores.
 b. Forward Coring Logs to FTI for coordinated review and recommendations per the contract documents, and the *Foundation Manual, Section 9-9, Pile Acceptance Testing*.
 iv. Following acceptance testing of CIDH concrete piling with inspection pipes:
 1. For CIDH concrete pile testing performed by the contractor on a rejected pile:
 a. Confirm receipt of the testing report.
 b. Forward the testing report to FTI for coordinated review and recommendations per the *Foundation Manual, Section 9-11, Pile Mitigation and Acceptance*.
 c. Authorize or reject the acceptance testing report. Notify the contractor in writing.
 2. Mitigation plans for rejected CIDH concrete piles requiring mitigation:
 a. Confirm receipt of the Pile Mitigation Plan:
 i. Review the mitigation plan and verify that it is complete.
b. Forward the complete Pile Mitigation Plan to FTI and the **DES Chair of Pile Mitigation Committee** for coordinated review and recommendations per the *Foundation Manual, Section 9-11.6, Pile Mitigation Plan Development and Authorization Procedures*.

c. Authorize or reject the mitigation plan based on the CIDH Pile Mitigation Plan Review committee recommendations. Notify the contractor in writing.

d. Review and authorize resubmittals

3. Mitigation reports for CIDH concrete piling requiring mitigation:

a. Confirm receipt of the mitigation report per the contract documents, *Foundation Manual, Section 9-11.11, Procedures for Authorizing the Pile Mitigation Work Performed in the Field and Pile Acceptance*:

i. Review the mitigation report and verify that it is complete.

ii. Forward the complete mitigation report to the CIDH Pile Mitigation Plan Review committee for coordinated review and recommendations per the *Foundation Manual, Section 9-11.11*

5. File submittals records in the appropriate category in the project records as specified in the Construction Manual 5-102, *Organization of Project Documents*.

Process Outputs

Authorized CIDH concrete piling submittals

Attachments

None
Cast-In-Drilled-Hole Concrete Piling – Materials

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>08/30/2019</td>
<td>Original issue.</td>
<td>Richard Foley</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (SC) responsibilities and procedures for authorizing materials used in the construction of Cast-In-Drilled-Hole (CIDH) concrete piling, as well as slurry sampling and testing requirements for CIDH concrete piling constructed under slurry.

This process is in addition to general activities for cast-in-place concrete piling described in BCM 49-3.01, Cast-In-Place Concrete Piling – General.

Additional unique requirements for material review and authorization are detailed in:

- BCM 6-2.01, Control of Material-Quality Assurance-General
- BCM 6-2.03, Control of Material-Quality Assurance-Department Acceptance

CIDH concrete piling materials may include, but is not limited to, the following:

1. Concrete:
 a. Aggregate
 b. Cementitious Materials
 c. Admixture(s)
2. Permanent Steel Casings
3. Grout
4. Slurry:
a. Mineral
b. Synthetic
c. Water
5. Spacers
6. PVC Inspection pipes

Prior to reviewing this Bridge Construction Memo (BCM), it is essential to review the contract specifications, Section 49-3.02B, Piling – Cast-In-Place Concrete Piling – Cast-In-Drilled Hole Concrete Piling - Materials, that this BCM is based on as identified in the title block above. The information in the contract specifications typically will not be repeated in the text of this BCM.

Process Inputs

1. CIDH Concrete Piling Submittals per BCM 49-3.02A(3), CIDH Concrete Piling Submittals
2. Form CEM-3101, Notice of Materials to Be Used
3. Form TL-29, Report of Inspection of Material
4. Certificates of compliance
5. Suppliers’ test reports on the physical and chemical properties of the slurry and any proposed slurry chemical additives, including material safety data sheets (SDS).

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.
2. Inspection of field work and associated office work for this process is:
 a. Benchmark for inspection and verification of materials used during construction.
3. Before construction begins:
 a. Review the Foundation Manual, Chapter 6, Cast-In-Drilled-Hole Piles; Chapter 9, Slurry Displacement Piles; and Appendix K2, CIDH Pile Construction Checklist, for information pertinent to CIDH piling materials.
 b. Discuss with the Contractor CIDH piling materials to be used via Form CEM-3101, Notice of Materials to be Used. See BCM 49-3.02A(4)(b), CIDH Piling – Quality Assurance – Preconstruction Meeting, for unique tasks related to conducting a preconstruction meeting.
c. Discuss with the Materials Engineering and Testing Services (METS) Representative any materials to be inspected and released via Form TL-0029, *Report of Inspection of Material*, and which materials are to be field released via Form **SC-4102, Material Inspected and Released on Job**. Utilize the forms to justify any Material on Hand payments.

d. Discuss field welding requirements per the contract documents and **AWS D1.1, Structural Welding Code-Steel**, with the Contractor and METS representative.

e. Review and authorize submittals:

 i. Verify concrete mix design, cementitious material content, and aggregate gradation requirements are met:
 1. Refer to **BCM 90-1.01C, Concrete – Submittals**

 ii. Verify cementitious material content, and aggregate gradation requirements are met for the grout mix design or slurry cement backfill mix design for use with permanent steel casings.

 iii. Review certificates of compliance and mill certificates.

 iv. Verify spacers and PVC inspection pipes meet the requirements of the contract documents and are field released via Form **SC-4102, Material Inspected and Released on Job**.

 v. Verify synthetic slurry and any proposed additives are authorized for use as shown in the contract documents, and that appropriate certifications for trained contractor employees are submitted per BCM 49-3.02A(3), **CIDH Concrete Piling-Submittals**. For additional information refer to **Attachment 1, CIDH Concrete Piling – Materials**.

 vi. Verify spacers meet the requirements of the contract documents per **Attachment 1, CIDH Concrete Piling – Materials**.

 vii. Discuss with Foundation Testing and Instrumentation Branch (FTI) any issues related to PVC inspection pipe materials.

 f. Verify permanent steel casings are inspected and released by the METS Representative.

4. During construction:

 a. Discuss project-specific issues or concerns regarding materials with the METS Representative, FTI, the SC Substructure Engineer, the Bridge Construction Engineer, or the Area Construction Manager, as applicable.

 b. See **BCM 49-3.02C, Cast-In-Drilled Hole-Concrete Piling – Construction**, for SC responsibilities and procedures for inspection and authorization of CIDH concrete piling materials during construction
c. Document all inspection, construction, and quality assurance activities, pertinent to this BCM (material verification) in the Daily Reports per BCM C-4.04, Daily and Weekly Reports.

5. File all materials records and Daily Reports in appropriate category in the project records as specified in the Construction Manual 5-102, Organization of Project Documents.

Process Outputs

1. Certificate of compliances and mill certificates
2. Form TL-29 Report of Inspection of Material, and orange tags
3. Form SC-4102, Materials Inspected and Released on Job

Attachments

[Attachment 1] CIDH Concrete Piling - Materials
CIDH Concrete Piling – Materials

Slurry Testing for CIDH Piling:

Testing requirements for each of the slurries are listed in the contract documents. If the contractor proposes to use slurry admixtures, discuss the type, concentration and mixing with the Structure Construction (SC) Substructure Engineer. All questions regarding the use of slurries can be directed to the SC Substructure Engineer.

SC has slurry test kits for use in the field. Witness the contractor’s quality control testing of slurry and then randomly perform quality assurance testing using the kit. If your field office does not have a kit, contact your Bridge Construction Engineer.

The slurry test kits include equipment for testing density, sand content, marsh funnel viscosity, and pH. The test procedures for density, marsh funnel viscosity, and sand content can be found in the *Recommended Practice for Field Testing Water-based Drilling Slurry* by the American Petroleum Institute, accessed through the Caltrans account on the IHS Markit website¹.

Extensive background and commentary on slurry (including the reasons for testing slurry) are in the *Foundation Manual*, Chapter 9, *Slurry Displacement Piles*.

Key inspection considerations are summarized as follows:

- Before the slurry operation starts, verify that the contractor’s sampling and testing equipment is adequate.
- Verify the contractor is proportioning, mixing, agitating (or circulating) per the specifications. Sand can quickly settle out, especially with synthetic slurries. Mixing or agitating ensures accurate test results.
- Verify the contractor takes slurry samples at the correct elevations.
- Slurry test results from the same hole (but different elevations) may vary, but each test result must conform to the requirements of the contract documents.

For synthetic slurry (not mineral slurries), occasionally take a sample and send it in to METS to verify that the chemistry still matches the pre-approved product chemistry. On the sample testing ticket request that a copy of the results be sent to the CIDH Pile Mitigation Committee Chair. Send about 8 ounces (200 ml) of the mixed slurry to:

¹ You must make a User Account, then search for (API RP 13B-1)
Allowing the Use of Plastic Spacers in CIP Concrete Piles

Plastic spacers are used to ensure concentric spacing for the entire reinforcing steel cage in Cast-In-Place (CIP) concrete piles. It allows travel of the cage along the wall of the drilled shaft excavation minimizing dislodging soils and accumulation of loose material in the bottom of the excavation. It provides for adequate clearance for fresh concrete to flow up the annular space between the cage and the side of the excavation as well as to maintain a minimum concrete cover. The main concern for usage of plastic spacers for CIP piles is the difference in the coefficient of thermal expansion between the plastic and concrete.

To address this concern, the industry standards and the Concrete Reinforcing Steel Institute (CRSI) recommend that all plastic-side-form spacers should have at least 25% of their gross plane area perforated to compensate for the difference in the coefficient of thermal expansion between the plastic and concrete.

Plastic spacers used in CIP piles between the outside of the pile bar reinforcing cage and the side of the drilled hole must meet the following criteria:

- Spacers must be used near the bottom, the top, and at intervals not exceeding 10 feet vertically or per manufacturer’s recommendation, whichever is less.
- The spacers must be of sufficient size, composition, and durability to support the lateral loads placed by the reinforcing cage upon the sidewall of the shaft. The spacers must also be capable of withstanding impacts during the construction process.
- A minimum of 3 spacers are required at each level or per manufacturer’s recommendation, whichever is greater.
- The spacers must be of adequate dimension to ensure an annular space of not less than 3 inches between the outside of the pile bar reinforcing cage and the side of the excavation along the entire length of the CIP pile.
CIDH Concrete Piling – Materials

- Plastic spacers must conform to the provisions in Section 3.4, *All-Plastic Bar Supports*, and Section 3.5, *Side-Form Spacers*, of the *Concrete Reinforcing Steel Institute Manual of Standard Practice*, attached below.

- Plastic spacers must be commercially manufactured. Examples of commercially manufactured plastic spacers are shown below.
CIDH Concrete Piling – Materials

Sections 3.4. and 3.5. of the CRSI, *Manual of Standard Practice, 28th Edition*

3.4. All-Plastic Bar Supports

The industry practices presented in this section are intended to serve as a guide for the selection and utilization of all-plastic bar supports used to position reinforcing bars in reinforced concrete.

All-plastic bar supports may have a snap-on action or other method of attachment. All-plastic supports are lightweight, non-porous and chemically inert in concrete. Properly designed, all-plastic bar supports should have rounded seating to avoid punching holes in the formwork and should not deform under load when subjected to normal temperatures encountered in use nor should they shatter or severely crack under impact loading when used in cold weather.

All-plastic bar supports will not rust, therefore eliminating blemishes on the surface of the concrete. These supports are particularly suitable in situations of moderate to severe exposure or when grinding of the concrete is necessary.

All plastic bar supports may be used to support epoxy-coated reinforcing bars (see Section 3.6). These bar supports provide maximum rust protection, i.e., Class 1.

3.5. Side-Form Spacers

A side-form spacer is a type of bar support which is used to maintain side concrete cover on the reinforcing bars against a vertical form, such as for walls and columns. Spacers can also be used to align a reinforcing bar cage in a drilled shaft. Spacers can be made of steel wire, precast concrete, or plastic. Examples of side-form spacers are SBC wire bar supports, DSSS and DSWS precast concrete bar supports, and WS, DSWS and VLWS all-plastic bar supports.

Typically, these supports are not shown on the design or contract drawings. There are numerous variations in the placer’s requirements making it difficult for the supplier to estimate. Estimating, detailing or furnishing these materials is not a normal industry practice unless by special arrangement with the General Contractor or placer. Unless agreed to between the buyer and the seller, these materials will not normally be included in the supplier’s bid.
CIDH Concrete Piling – Materials

* Published with permission of the Concrete Reinforcing Steel Institute

Sample of Commercially Manufactured Plastic Spacer.
Micropiling – Quality Control – Load Testing

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>04-22-2019</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (S.C.) responsibilities and procedures for micropile load testing performed by the Contractor, including arrangements for the Department to verify the test loads using Department furnished load cells.

Additional unique requirements for Micropiling are detailed in:

- Bridge Construction Memo (B.C.M.) 49-5.01C, Micropiling – Submittals.
- B.C.M. 49-5.01D(5), Micropiling – Quality Assurance – Department Acceptance.

Prior to reviewing this B.C.M., it is essential to review the Contract Specification, Section 49-5.01D(4)(c), Micropiling – Quality Control – Load Testing, applicable to your specific project, that this B.C.M. is based on, as identified in the title block above. The information in the contract specifications typically will not be repeated in the text of this B.C.M.

Process Inputs

1. Authorized micropile submittals.
2. Contractor notification of load testing operation.
3. Grout test results for each load test pile.
Procedure

1. All work associated with this process is charged as Project-Direct – Construction.

2. Inspection of field work for this process is:
 a. Continuous for all Contractor-performed micropile load testing.

3. For technical assistance during load testing contact the:
 a. Structure and Geotechnical Designer.
 b. S.C. Substructure Engineer and B.C.E.

4. Before construction begins:
 a. Review contract documents including the:
 i. Special Provisions for load testing and verification requirements.
 iii. Authorized shop drawings and installation plan per B.C.M. 49-5.01C, Micropiling – Submittals.
 b. Review the Foundation Manual, Chapter 13, Micropiles, Appendix J, Micropiles, and Appendix K5, Micropile Checklist, for information pertinent to load testing of micropiling.
 c. Verify grout has attained the compressive strength specified in the contract documents.
 d. Remind the Contractor to notify the Engineer prior to performing each load test.
 e. Discuss with the Foundation and Instrumentation Branch (F.T.I.), the availability and schedule for verification of test loads using Department-furnished load cells or performing load testing (if applicable).
 f. Verify that Department-furnished load cells are calibrated.
 g. Obtain training from F.T.I., if necessary, on how to operate the calibrated load cells.
 h. Notify the Contractor to furnish the resources necessary to install and support the Department's testing equipment at the load testing location and to remove the equipment after the testing is complete, upon the request of the S.R.
 i. Review the project-specific Code of Safe Practices and Foundation Manual, Chapter 13-2.9, Safety, for micropiling operation.
 j. Verify that the Contractor can record load test data.
5. During construction:
 a. Be present at the jobsite during load testing.
 b. Verify that the Contractor’s testing equipment complies with the authorized micropiling submittals.
 c. Verify that the Contractor measures and records the micropile movements for both verification and proof loading testing per the tables in the contract documents.
 d. Document all inspection, construction, and quality assurance activities, including load testing work, in the Daily Reports per B.C.M. C-4.04, Daily and Weekly Reports.

6. Following construction:
 a. Verify load test data are sealed and signed by an engineer who is registered as a civil engineer in the State of California.
 b. For interpretation of load test data (acceptance/rejection), refer to B.C.M. 49-5.01D(5), Micropiling – Quality Assurance – Department Acceptance.

7. File all load test data and Daily Reports in the appropriate category in the project records as specified in the Construction Manual, Section 5-102, Organization of Project Documents.

Process Outputs

1. Load Test Data
2. Daily Reports

Attachments

None
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11-16-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

[Click here](#) for previous versions

<table>
<thead>
<tr>
<th>MEMO NO.</th>
<th>ISSUE DATE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-1.01C</td>
<td>11-16-2018</td>
<td>Prestressing Concrete - General - Submittals</td>
</tr>
<tr>
<td>50-1.01D(1-2)</td>
<td>11-16-2018</td>
<td>Prestressing Concrete - General - Quality Assurance</td>
</tr>
<tr>
<td>50-1.01D(3)</td>
<td>11-16-2018</td>
<td>Prestressing Concrete - General - Department Acceptance</td>
</tr>
<tr>
<td>50-1.02</td>
<td>11-16-2018</td>
<td>Prestressing Concrete - General - Materials</td>
</tr>
<tr>
<td>50-1.03A</td>
<td>11-16-2018</td>
<td>Prestressing Concrete - Construction - General</td>
</tr>
<tr>
<td>50-1.03B</td>
<td>11-16-2018</td>
<td>Prestressing Concrete - General - Construction - Prestressing</td>
</tr>
</tbody>
</table>
Prestressing Concrete – General – Submittals

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11-16-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes the shared responsibilities and procedures of Structure Construction (SC) and Structure Design (SD) (or their representative) for review and authorization of prestress submittals, including prestressing shop drawings, alternative prestressing systems, test samples, grouting plans, and daily grouting reports.

Process Inputs

1. Prestressing system shop drawings per 2015 Standard Specifications (SS)\(^1\)
2. Alternative prestressing system shop drawings (VCEP) per SS\(^2\)
3. Test samples per SS\(^3\)
4. Grouting plan per SS\(^4\)
5. Daily grouting reports per SS\(^5\)

Procedure

1. All work associated with this process should be charged to the Project Direct - Construction.
2. Structure Documents Unit will:
 a. Process the prestressing submittal documents accordingly.

\(^1\) 2015 SS, Section 50-1.01C(3), Prestressing Concrete – Shop Drawings
\(^2\) 2015 SS, Section 50-1.01C(4), Prestressing Concrete – Alternative Prestressing Systems for Cast-in-Place Prestressed Box Girder Bridges
\(^3\) 2015 SS, Section 50-1.01C(5), Prestressing Concrete – Test Samples
\(^4\) 2015 SS, Section 50-1.01C(6), Prestressing Concrete – Grouting Plan
\(^5\) 2015 SS, Section 50-1.01C(7), Prestressing Concrete – Daily Grouting Report
3. Review the contract documents (contract plans, SS, and Standard Plans) for the requirements for each submittal according to SS Section 50-1.01, *Prestressing Concrete – General*, RE Pending File, and Caltrans *Prestress Manual* Section 2, *Prestress Shop Drawings*.

4. For the prestressing shop drawings:
 a. Establish contact with the Structure Designer.
 b. Perform initial shop drawing review and provide comments to Structure Designer.
 c. Complete a joint review of the shop drawing submittal according to:
 i. *Bridge Memos to Designers, Section 11-1*, *Prestressed Concrete – Shop Drawing Review*.
 d. Check for any duct and rebar conflicts and resolve with the Designer.
 e. Structure Designer authorizes the prestressing shop drawings, per *Bridge Memo to Designers, Section 11-1, Prestressed Concrete – Shop Drawing Review*.
 f. The Structure Representative and the Contractor will receive all reviewed (rejected or authorized) shop drawings from SD, Documents Unit.

5. For alternative prestressing system shop drawings:
 a. Follow the protocol for review of prestressing shop drawings.
 b. Review BCM 4-1.07B, *Value Engineering Change Proposal (VECP)* requirements.
 c. Provide input to the Resident Engineer (RE) regarding acceptability of VECP.
 d. Structure Designer authorizes the VECP drawings, per *Bridge Memo to Designers, Section 11-1, Prestressed Concrete – Shop Drawing Review*.

6. For all other prestressing submittals:
 a. Test samples:
 i. Materials Engineering and Testing Services (METS) will verify and authorize test samples for acceptance
 b. Grouting plans and daily grouting reports:
 i. Review and authorize the grouting plan per Caltrans *Prestress Manual* Section 2, *Prestress Shop Drawings* and Appendix C, *Inspection Checklist*.
 ii. If grouting plans are on a separate submittal, they are reviewed and authorized by SC project field staff.
iii. SC project field staff review each daily grouting report and reject any that are incomplete.

7. Keep project team (RE, METS, Structure Designer) informed on the status of the final shop drawing submittals.

Process Outputs

1. Authorized prestressing shop drawings
2. Authorized test samples
3. Authorized grouting plan
4. Authorized daily grout reports
5. Electronic copies of the as-built shop drawings submitted by the Contractor
6. Electronic as-built shop drawings submitted by Local Agency Engineer

Attachments

None
Prestressing Concrete – General – Quality Assurance

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11-16-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes the responsibilities and procedures of Structure Construction (SC) for prestressing quality assurance. This includes review of materials release and quality acceptance, the Contractor’s prestressing equipment calibration and certification, pressure testing ducts and duct demonstrations, void investigation, and the Contractor’s personnel qualification requirements.

The contract documents have specific requirements for each Quality Assurance (QA) activity. This is for the purpose of specification compliance and assurance that each prestressed structure or structural element performs as designed.

Department Acceptance is covered in BCM 50-1.01D(3), Prestressing Concrete – General – Quality Assurance – Department Acceptance.

Process Inputs

1. CEM-3101, Notice of Materials to be Used, per Standard Specifications (SS)¹.
2. Prestressing submittals per BCM 50-1.01C, Prestressing Concrete – General Submittals
3. Lot numbers and tags for prestressing materials per SS².
4. Equipment proposed for prestressing per SS³.

¹ 2015 SS, Section 6-1.01, Control of Materials, General
² 2015 SS, Section 50-1.01D(1), Prestressing Concrete – Quality Assurance – General
³ 2015 SS, Section 50-1.01D(2)(b), Prestressing Concrete – Quality Assurance – Quality Control – Equipment and Calibration
5. Contractor to schedule the calibration of the jacking equipment and pressure gauges with Materials and Engineering Testing Services (METS) per SS\(^3\).

6. Notification from the Contractor for pressure testing of prestressing ducts per SS\(^4\).

7. Notification from the Contractor to witness duct demonstrations per SS\(^5\).

8. Notification from the Contractor for duct void investigations per SS\(^6\).

9. Copy of certificate to verify technician is certified as a Level 2 Bonded PT Field Specialist per SS\(^7\).

10. Copy of certificate to verify technician is certified as a Grouting Technician per SS\(^7\).

Procedure

1. All work associated with this process should be charged to the [Project Direct - Construction](#).

2. Field work for this process is:
 a. Continuous inspection is required for pressure testing ducts, duct demonstrations for post-tensioned members, and void investigation.
 b. Inspection as required to ensure contract compliance with project plans and specifications, materials, and workmanship acceptance.

3. Before construction begins:
 a. Review authorized prestressing shop drawing submittals to verify materials contract compliance.
 b. Verify all material released by METS matches individual lot numbers and release tags:
 i. Materials not inspected and released by METS must be field released.
 c. Verify prestressing equipment has been calibrated in accordance with the requirements of the contract documents and calibration charts.
 d. Verify qualifications of Contractor personnel performing prestressing and grouting operations.

4. During construction:

\(^4\) 2015 SS, Section 50-1.01D(2)(c), *Prestressing Concrete – Quality Assurance – Quality Control – Pressure Testing Ducts*

\(^5\) 2015 SS, Section 50-1.01D(2)(d), *Prestressing Concrete – Quality Assurance – Quality Control – Duct Demonstrations for Post-Tensioned Members*

\(^6\) 2015 SS, Section 50-1.01D(2)(e), *Prestressing Concrete – Quality Assurance – Quality Control – Void Investigation*

\(^7\) 2015 SS, Section 50-1.01D(2)(f), *Prestressing Concrete – Quality Assurance – Quality Control – Personnel Qualification*
a. Verify prestressing ducts meet pressure testing requirements of the contract documents per SS\(^8\).

b. Verify prestressing ducts meet demonstration requirements of the contract documents per SS\(^9\).

c. Verify void investigation of ducts is performed and any voids are filled with secondary grout per SS\(^10\).

e. Document all inspection, construction, and quality assurance activities in the Daily Reports per BCM C-4.04, *Daily and Weekly Reports*.

Process Outputs

1. Daily reports
2. Prestressing quality assurance documentation

Attachments

Attachment 1, SC-4305, *Air Pressure Test – Prestress Ducts*

\(^8\) 2015 SS, Section 50-1.01D(2)(c), *Prestressing Concrete – Quality Assurance – Quality Control – Pressure Testing Ducts*

\(^9\) 2015 SS, Section 50-1.01D(2)(d), *Prestressing Concrete – Quality Assurance – Quality Control – Duct Demonstrations for Post-Tensioned Members*

\(^10\) 2015 SS, Section 50-1.01D(2)(e), *Prestressing Concrete – Quality Assurance – Quality Control – Void Investigation*
AIR PRESSURE FIELD MONITORING CHART

AIR PRESSURE TEST - PRESTRESS DUCTS

SC-4305 (NEW 11/16/18)

<table>
<thead>
<tr>
<th>Test By:</th>
<th>Bridge Number:</th>
<th>Contract Number:</th>
</tr>
</thead>
</table>

Location | Air Pressure

<table>
<thead>
<tr>
<th>Date</th>
<th>Frame No.</th>
<th>Tendon ID</th>
<th>PSI Start</th>
<th>PSI @1 Min²</th>
<th>PSI End</th>
<th>Time Held</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. SS 50-1.01D(2)(c), requires pressure test after stressing. Contractor may perform an initial test prior to deck placement.
2. Repair leaks and retest if a pressure loss exceeds 25 psi.
Prestressing Concrete – General – Quality Assurance – Department Acceptance

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11-16-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (SC) responsibilities and procedures for performance of departmental acceptance activities for accepting prestressing concrete components, including sample testing, grout testing, and verification of prestressing forces.

The contract documents have specific requirements for each of these activities for the purpose of verification that each prestressed structure performs as designed.

Process Inputs

1. CEM-3101, Notice of Materials to be Used
2. Authorized prestressing submittals per BCM 50-1.01C, Prestressing Concrete – General – Submittals, including Daily Grouting Reports
3. Lot numbers and tags for prestressing materials
4. Calibration data for prestressing equipment proposed for prestressing per Standard Specifications (SS)

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.
2. Inspection of field work for this process is:
 a. Continuous for all Department Acceptance activities performed during prestressing operations.

1 2015 SS, Section 6-1.01, Control of Materials – General
2 2015 SS, Section 50-1.01D(1), Prestressing Concrete – Quality Assurance – General
3 2015 SS, Section 50-1.01D(2)(b), Equipment and Calibration
3. Before construction begins:
 a. Obtain a pressure cell unit and a standby unit.
 b. Contact SC equipment manager (916-227-7777) if repairs are needed.
 c. Verify all material released by Materials Engineering and Testing Services (METS) matches individual lot numbers and release tags.
 d. Verify any physical damage to prestressing steel, reject if not in compliance.
 e. Perform field samples for couplers used to extend bars. Verify compliance with tensile strength of bars as specified, reject if not in compliance.
 f. Prepare Form SC-4301, Post-Tensioning Field Monitoring Chart, for field operations:
 i. Verify calculated prestressing steel elongations using authorized shop drawings and METS material release data
 h. Understand the operational procedure for the use of strain indicator.

4. During construction:
 a. During prestressing operations:
 i. Verify Contractor’s jack and gauges using Department’s pressure cell and strain indicator using the following:
 1. Prestressing Manual, Appendix B, Strain Indicator Pressure Cell, is used as reference information.
 2. Caltrans Prestress Manual, Section 7, Prestressing Jacks and Section 8, Prestressing Operation
 ii. Complete Form SC-4301, Post-Tensioning Field Monitoring Chart, as prestressing operation is completed.
 iii. Verify grouting operation takes place within 10 days after strand installation. If it is more than 10 days, corrosion inhibitor in ducts is required.
 b. During grouting operations:

4 Prestress Manual, Section 8, Prestressing Operation
i. Perform California Test Methods (CTM) 541, Method of Test for Flow of Grout Mixtures (Flow Cone Method), at the point of introduction and egress of grout from the duct. Document test results in the inspector’s daily report\(^5\).

5. Complete documentation of quality assurance activities, which include METS sample testing, physical condition of prestressing steel, verification of prestressing forces, and grout testing.

6. Document all inspection, construction, and quality assurance activities in the Daily Reports per BCM C-4.04, Daily and Weekly Reports.

Process Outputs

1. Daily Reports

Attachments

None

\(^5\) Prestress Manual, Section 9, *Grouting Operation*
Prestressing Concrete – General – Materials

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11-16-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

Prestressing materials are a major element and component of Structure Construction (SC) work. This process establishes SC responsibilities and procedures for inspecting and authorizing all prestressing materials that are incorporated into the structure.

Review and authorization of materials for prestressing steel and anchorage systems is usually performed in conjunction with Materials Engineering and Testing Services (METS) and coordinated with the METS Representative.

Review and authorization of prestressing submittals is performed per BCM 50-1.01C, Prestressing Concrete – General - Submittals.

Process Inputs

1. **Form CEM-3101, Notice of Materials to be Used and per the Standard Specifications (SS)**¹

2. Contractor-submitted prestressing materials, including:

 a. SS 50-1.02B, Prestressing Concrete – Materials – Prestressing Steel
 b. SS 50-1.02C, Prestressing Concrete – Materials – Grout
 c. SS 50-1.02D, Prestressing Concrete – Materials – Ducts
 d. SS 50-1.02E, Prestressing Concrete – Materials – Vent
 e. SS 50-1.02F, Prestressing Concrete – Materials – Permanent Grout Caps
 f. SS 50-1.02G, Prestressing Concrete – Materials – Debonding Sheathing

¹ 2015 SS, Section 6-1.01, Control of Materials – General.
g. SS 50-1.02H, *Prestressing Concrete – Materials – Anchorage System*

Procedure

1. All work associated with this process is charged as [Project-Direct – Construction](#).
2. Inspection of field work for this process is:
 a. **Benchmark** for review and authorization of materials delivered to the jobsite.
3. Before construction begins:
 a. Confirm that the Contractor has submitted **Form CEM-3101, Notice of Materials to Be Used**, for all prestressing materials.
 b. Materials not released by METS can be field released by using **Form CEM-4102, Material Inspected and Released on the Job**.
 c. Accept cement by the **Certificate of Compliance** per 2015 SS^2.
 d. Confirm that the Contractor understands that materials inspection from METS is requested using **Form TL-38, Inspection Request**.
 e. Discuss materials release procedure with the METS Representative:
 i. Determine which materials will be released using **Form TL-28, Notice of Materials to be Inspected at Job Site**.
 ii. Determine which materials will be released using **Form TL-29, Report of Inspection of Material**.
 iii. Confirm the materials for which METS will issue **Form TL-608, Notice of Materials to be Furnished**.
4. During construction:
 a. Review and verify authorized prestressing materials delivered to the job site prior to installation.
 i. Review all materials for conformance with the requirements of the contract specifications.
 ii. Refer to Caltrans *Prestress Manual* for additional information for inspecting prestressing materials.
 iii. Field release materials inspected using **Form TL-28, Notice of materials to be Inspected at Job Site**.

^2 2015 SS, Section 90-1.02B(2), *Concrete – Cementitious Materials – Cement*
iv. Materials not released by METS can be field released by using form CEM-4102, *Material Inspected and Released on the Job*.

vi. For prestressing strands, collect release tags and A-area and E-modulus of elasticity numbers.

Review references include:

viii. Verify corrosion inhibitors meet contract requirements. Ensure product data sheet and a material safety data sheet are provided.

ix. Verify corrosion inhibitors are used in accordance to 2015 SS and refer to BCM 50-1.01D(3), *Prestressing Concrete – General – Quality Assurance – Department Acceptance*.

x. Check storage site for adequate protection of all prestressing materials.

b. Document all inspection, construction, quality assurance, and field review of all prestressing materials in the Daily Reports per BCM C-4.04, *Daily and Weekly Reports*.

Process Outputs

1. Authorized prestressing materials, ready for installation
2. Daily Reports
3. Completed field release form CEM-4102 and Certificates of Compliance

Attachments

None

3 2015 SS Section 50-1.01D(3), *Prestressing Concrete – Quality Assurance – Department Acceptance*
Prestressing Concrete – General – Construction – General

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11-16-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

[Click here](#) for previous versions

Background

Prestressing concrete is a major component of structure construction work. This process establishes Structure Construction (SC) responsibilities and procedures for general construction of prestressing concrete work, including:

1. Authorization of partial prestressing of precast concrete members.
2. Placement and protection of prestressing steel.
4. Prestressing duct placement.
5. Placement of duct vents.

The prestressing operation for pre-tensioned and post-tensioned members is performed per BCM 50-1.03B, *Prestressing Concrete – General – Construction – Prestressing*.

Review and authorization of partial prestressing of precast concrete members under this process is usually performed in conjunction with Materials Engineering and Testing Services (METS) and coordinated with the METS Representative.

Process Inputs

1. Authorized prestressing submittals per BCM 50-1.01C, *Prestressing Concrete – General – Submittals*.
2. Authorized prestressing materials per BCM 50-1.02, *Prestressing Concrete – General – Materials*.
3. Epoxy coated strand per the 2015 Standard Specifications (SS)\(^1\)

4. Ducts per 2015 SS\(^2\)

5. Vents per 2015 SS\(^3\)

6. Form TL-28, Notice of Materials to be Inspected at Job Site

7. Form TL-29, Report of Inspection of Material

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.

2. Inspection of field work for this process is:
 a. Intermittent for placement of prestressing ducts, vents, and prestressing strands.

3. Before construction begins:
 a. For precast members:
 i. Coordinate with the METS Representative to verify:
 1. Epoxy-coated strand is protected and repairs to damaged coatings are performed.
 2. Whether partial prestressing will be allowed prior to the precast member attaining the required concrete strength.
 3. Whether precast members that have been partially prestressed can be moved.
 b. For post-tensioned members:
 i. Verify prestressing materials delivered to the job site are authorized for use including:
 1. Field authorize materials included on Form TL-0028, Notice of Materials to be Inspected at Job Site.

4. During construction:
 a. Verify ducts and vents are placed in accordance with the requirements of the authorized shop drawings and the contract documents:
 b. Verify prestressing steel is protected from corrosion:

\(^1\) 2015 SS, Section 50-1.03A(2), Prestressing Concrete – Construction – Epoxy-Coated Strand

\(^2\) 2015 SS, Section 50-1.03A(3), Prestressing Concrete – Construction – Ducts

\(^3\) 2015 SS, Section 50-1.03A(4), Prestressing Concrete – Construction – Vents
i. Refer to *Prestress Manual*, Section 4, *Prestressing Strands/Bars* and Appendix C, *Inspection Checklist*

c. When corrosion inhibitor is used, refer to the manufacturer recommendation for dosage.

d. Verify prestressing steel is protected from electric welding operations. Refer to *Attachment 1, Electric Welding of Prestressing Strands*.

e. Document all inspection, construction, and quality assurance activities in the Daily Reports per *BCM C-4.04, Daily and Weekly Reports*.

f. Document and notify the Contractor of all non-conformances.

Process Outputs

1. Daily reports
2. Authorized prestressing materials incorporated into the work
3. Complete field release form CEM-4102, *Material Inspected and Released on the Job*; *Form TL-0028, Notice of Materials to be Inspected at Job Site* and *Form TL-0029, Report of Inspection of Material*:

Attachments

Attachment 1, Electric Welding of Prestressing Strands
Electric Welding of Prestress Strand

The issue of field welding prestressing strand typically arises when contractors want to arc weld the ends of the strands together to a pulling head. Welding the ends together prevents the individual strands from slipping in the bundle when the tendon is pulled through the duct.

The main concern with electrical welding of prestress strands is that stray current from the welding procedure may arc and pit a portion of the strand far from the actual weld location. The pitting damage to the strand may adversely affect the service life and performance of the post-tensioning system.

The use of pulling grips or non-electrical based welding of the strand ends (e.g. oxyacetylene brazing, chemical, etc.) are acceptable methods for pulling long prestress strands. Pulling grips are used extensively in the electrical industry and have been successfully used to pull long prestress tendons. Regardless of the method used, all damage to the strands caused by the pulling system must be removed (cut back) from the portion to be incorporated into the final work.
Prestressing Concrete – General – Construction – Prestressing

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11-16-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

Prestress (PS) operations and their required equipment and materials are a major element of structure construction work. This process establishes Structure Construction (SC) responsibilities and procedures for verifying the ability to meet contract requirements for all prestressing construction operation activities including:

1. Prestress force application, distribution, and maximum strand tensile stress requirements for post-tensioned members.
2. Cast-in-place PS anchorage installation details.
3. Prestress strand or tendon grouting and venting requirements to bond PS strand or tendons to post-tensioned members.
4. Prestress requirements for strand in pre-tensioned (precast) members, including debonded strands.

Review and authorization of pre-tensioning of precast concrete members under this process is usually performed in conjunction with Materials Engineering and Test Services (METS) and coordinated with the METS Representative.

The majority of this process is implemented during the prestressing operation, only after the following processes have been completed or completed concurrently as described in the following BCMs:

1. **50-1.01C**, Prestressing Concrete – General – Submittals
2. **50-1.01D(1-2)**, Prestressing Concrete – General – Quality Assurance
3. **50-1.01D(3)**, Prestressing Concrete – General – Department Acceptance
4. \textit{50-1.02}, Prestressing Concrete – General – Materials
5. \textit{50-1.03A}, Prestressing Concrete – General – Construction

Process Inputs

1. Authorized prestressing system shop drawings
2. Certificates of compliance/material releases for: prestressing strand, anchoring systems, anchor wedges, and cement
3. Hydraulic jack and gauges calibration charts submittals
4. Compressive strength results for bridge superstructure concrete
5. Authorized grouting submittal
6. Pre-tensioned members submittal

Procedure

1. All work associated with this process is charged as \textit{Project-Direct – Construction}.
2. Inspection of field work for this process is:
 a. \textit{Continuous} for all PS activities
3. Before construction begins:
 a. Pre-tensioned Precast Concrete Members:
 i. Discuss pre-tensioning operations with the METS Representative.
 ii. Pre-tensioning occurs in casting yards under supervision of the METS Representative.
 b. Post-Tensioning Operation:
 i. Post the required restricted work area signs and delineations required during stressing operations\(^1\).
 ii. Verify that the required concrete strength and age requirements are achieved prior to post-tensioning tendons.
 iii. Inspect placement of anchorages in accordance with authorized shop drawings and test for any voids in the concrete near the anchorage areas. If voids are detected verify that they are properly repaired prior to stressing:
 1. See Attachment 1, \textit{Patching Concrete Under Prestress Bearing Plates}.

\(^1\) Cal/OSHA Construction Safety Orders Section 1711, Reinforcing Steel and Post-Tensioning in Concrete Construction
iv. Prepare Form SC-4301, Post Tensioning Field Monitoring Chart, for monitoring the prestressing operation. Use actual manufacture A and E values for elongation calculations.

c. Grouting Operation:
 i. Review the authorized Grouting Plan.
 ii. Verify that the Contractor has adequate grouting equipment, qualified personnel, authorized materials, and procedures ready for grouting.

4. During Construction:
 a. Post-Tensioning Operation:
 i. Read Prestress Manual, Section 8, Prestressing Operation and Appendix C-Inspection Checklist.
 ii. Inspect post-tensioning strand placement in the ducts and verify the number of strands in each tendon that matches with prestress shop drawing.
 iii. Install the Department pressure cell and strain indicator on the Contractor’s post-tensioning equipment.
 iv. Verify the Contractor adheres to the post-tensioning sequences for the tendons in accordance with the authorized shop drawings.
 v. Record and verify actual tendon or strand elongations and compare results to the theoretical values shown on Form SC-4301, Post Tensioning Field Monitoring Chart. When differences are greater 5%, do not cut strands and determine appropriate course of actions.
 vi. Record any strand issues, such as breaking or slippage through the anchor wedges, on the daily reports. Determine mitigation resolution before proceeding.
 vii. Verify the final force in the prestressing tendons matches the force shown on the authorized shop drawings and Form SC-4301, Post Tensioning Field Monitoring Chart.
 viii. Verify that the Contractor properly seats the strand wedges and trims off excess strand lengths in order to fit inside grout cap or fit specific job purpose.
 b. Grouting Operation:
 i. Read Prestress Manual, Section 9, Grouting Operation.
 ii. Verify that the Contractor uses correct grout mix proportions or follows manufacture recommendation for pre-bagged mix.
 iii. Verify that the Contractor has standby grout mixer and pump.
 iv. Verify that pumping of grout starts within 30 minutes of mixing.
v. Verify that grout is flowable in extreme ambient conditions and that, if ambient conditions will affect flow, adjustments are made to maintain the temperatures of the grout ingredients needed to assure consistent grout flow.

vi. Verify that grouting pressures stay consistent. Note actual grouting pressures and verify that they remain within specified ranges allowed.

vii. When grouting pressures reach 150 psi (possible blockage exists), the Contractor stops injecting grout and develops mitigation plans.

viii. Verify that flow of grout injection is one-way flow only when moving to the “next-vent” and if not, stop the grouting operation.

ix. Verify that quantity of grout placed in each duct substantially matches expected grout volumes. When grout leaks are observed, or quantity exceeds theoretical values, stop the operation and determine mitigation plans.

x. Verify there is no cross grouting between ducts. When cross grouting is observed, develop mitigation plans.

xi. Verify that the consistency of the effluent grout through vents and grout caps is equivalent to the consistency of the injected grout.

xii. Test that effluent grout using California Test Method (CTM) 541, Method for Flow of Grout Mixtures (Flow Cone Method), at specified intervals.

xiii. Perform CTM 541 at both the inlet and outlet(s).

xiv. Verify that the Contractor locks off at 5-psi of grout pressure when the inlet valve is closed.

xv. Verify cleanup and disposal is in accordance with the contract documents and authorized Water Pollution Control Program (WPCP)/Stormwater Pollution Prevention Plan (SWPPP).

c. Document all inspection, construction, and quality assurance activities in the Daily Reports per BCM C-4.04, Daily and Weekly Reports.

5. Following construction:

 a. Post-Tensioning Operations:

 i. Take administration deduction if broken or slipped prestress stands occurs.

 b. After Grouting Operation:

 i. Verify that excessive Contractor-produced vibrations are not occurring within 100 feet of the grouted ducts in the frame for 24 hours after grouting.

 ii. Allow grout to cure for a period of 24 hours.

 iii. Receive and review Daily Grouting Reports.

3 Prestress Manual, Section 9, Grouting Operation
iv. File all post-tensioning forms and reports in the project records.

6. Payment:
 a. Refer to future **BCM 9-1.16, Payment – Progress Payments**, for:
 i. Materials on hand.
 ii. Monthly progress payments (partial payments for lump sum item).
 iii. Broken or slipped strands (administrative deduction).

7. Stressing incomplete bridges:
 a. On rare occasions, usually due to unforeseen emergency situations, the Contractor may desire to post-tension partially completed bridges. All requests to stress partially completed bridges should be discussed with the Bridge Construction Engineer, Area Construction Manager, and Structure Design (SD) Project Engineer.
 b. Refer to future SD **Bridge Memo to Designers** (MTD) for stressing incomplete bridges.

Process Outputs

1. Form SC-4301, *Post Tensioning Field Monitoring Chart*
2. Daily Reports

Attachments

1. **BCM 50-1.03B, Attachment 1, Patching Concrete Under Prestress Bearing Plates**
Patching Concrete Under Prestress Bearing Plates

Epoxy tends to creep or flow under sustained high stress. Therefore, when patching or replacing concrete immediately behind a prestress bearing plate or in the bearing seat area, the repair shall not be made with material that uses epoxy as a binder. However, epoxy may be used for bonding the repair material to the existing concrete.

Extensive repairs should be re-poured rather than dry-packed. The concrete used in the repair area should have attained the strength required for the structure concrete before the stressing operation is started.
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>03-30-2015</td>
<td>Original Issue.</td>
<td>Rob A. Stott</td>
</tr>
<tr>
<td>1</td>
<td>01-18-2019</td>
<td>Added BCM 51-1.03C and 51-1.03F(1-4). Removed BCM 51-1.03C(2) and BCM 51-1.03F(3).</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

MEMO NO ISSUE DATE TITLE
51-1 xx/xx/20xx Concrete Structures – Deck Contours and Geometrics
51-1.01C xx/xx/20xx Concrete Structures – General – Submittals
51-1.01D xx/xx/20xx Concrete Structures – General – Quality Assurance
51-1.02 xx/xx/20xx Concrete Structures – General – Materials
51-1.03C 01/18/2019 Concrete Structures – General – Construction – Preparation
51-1.03C(2) Blank. Removed on 01/18/19. Moved to BCM 51-1.03C, Attachment 1, Form Panels
51-1.03D xx/xx/20xx Concrete Structures – General – Construction – Placing Concrete
51-1.03D(4) 03/30/2015 Concrete Structures – General – Construction – Placing Concrete – Construction Joints
51-1.03E(1) xx/xx/20xx Concrete Structures – General – Miscellaneous Construction – General
51-1.03E(2) 03/30/2015 Concrete Structures – General – Miscellaneous Construction – Placing Mortar
51-1.03E(3) xx/xx/20xx Concrete Structures – General – Miscellaneous Construction – Drill and Bond Dowels
51-1.03E(4) xx/xx/20xx Concrete Structures – General – Miscellaneous Construction – Drill and Grout Dowels
51-1.03E(5) xx/xx/20xx Concrete Structures – General – Miscellaneous Construction – Drill and Bond Dowels (Chemical Adhesive)
51-1.03E(9) xx/xx/20xx Concrete Structures – General – Miscellaneous Construction – Utility Facilities
51-1.03E(11) xx/xx/20xx Concrete Structures – General – Miscellaneous Construction – Diaphragm Bolsters
<table>
<thead>
<tr>
<th>MEMO NO</th>
<th>ISSUE DATE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>51-1.03E(12)</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – General – Miscellaneous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Construction – Hinge Tiedowns</td>
</tr>
<tr>
<td>51-1.03F(1-4)</td>
<td>01/18/2019</td>
<td>Concrete Structures – General – Finishing Concrete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blank. Removed on 01-18-19. Information is in the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concrete Technology Manual, Chapter 5, *Concrete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Construction, in the section on Surface Finishes, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCM 162-3, Finishing of Concrete Barriers</td>
</tr>
<tr>
<td>51-1.03F(3)</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – General – Miscellaneous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Construction – Hinge Tiedowns</td>
</tr>
<tr>
<td>51-1.03F(5)(a)</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – General – Finishing Roadway</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surfaces – General</td>
</tr>
<tr>
<td>51-1.03F(5)(b)</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – General – Finishing Roadway</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surfaces – Bridge Deck Surface Texture</td>
</tr>
<tr>
<td>51-1.03F(6)</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – General – Finishing Pedestrian</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overcrossing Surfaces</td>
</tr>
<tr>
<td>51-1.03G</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – General – Finishing Concrete –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concrete Surface Textures</td>
</tr>
<tr>
<td>51-1.03H</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – General – Curing Concrete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Structures</td>
</tr>
<tr>
<td>51-1.04</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – General – Payment</td>
</tr>
<tr>
<td>51-2.01</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – Joints – General</td>
</tr>
<tr>
<td>51-2.02A</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – Sealed Joints – General</td>
</tr>
<tr>
<td>51-2.02B</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – Sealed Joints – Type A and AL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Joint Seals</td>
</tr>
<tr>
<td>51-2.02C</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – Sealed Joints – Type B Joint Seals</td>
</tr>
<tr>
<td>51-2.02D</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – Sealed Joints – Joint Seal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assemblies with a Movement Rating of 4 Inches or Less</td>
</tr>
<tr>
<td>51-2.02E</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – Sealed Joints – Joint Seal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assemblies with a Movement Rating Over 4 Inches</td>
</tr>
<tr>
<td>51-2.02F</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – Sealed Joints – Asphaltic Plug</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Joint Seals</td>
</tr>
<tr>
<td>51-3.02</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – Bearings – Elastomeric Bearing Pads</td>
</tr>
<tr>
<td>51-3.03</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – Bearings – PTFE Spherical Bearings</td>
</tr>
<tr>
<td>51-4.01C</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – Precast Concrete Members –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Submittals</td>
</tr>
<tr>
<td>51-4.01D</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – Precast Concrete Members –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>51-4.02</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – Precast Concrete Members –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Materials</td>
</tr>
<tr>
<td>51-4.03</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – Precast Concrete Members –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Construction</td>
</tr>
<tr>
<td>51-5</td>
<td>xx/xx/20xx</td>
<td>Concrete Structures – Approach Slabs</td>
</tr>
<tr>
<td>51-6</td>
<td>03/30/2015</td>
<td>Concrete Structures – Mass Concrete</td>
</tr>
</tbody>
</table>
51-1.03D(4) Construction Joints

Concrete Technology Manual
Additional information regarding girder stem to deck joints can be found in the Concrete Technology Manual, Chapter 5 Concrete Construction.

Stem to Deck Construction Joint
In 2010, the Structure Maintenance and Investigations (SM&I) group discovered horizontal shear failure between the stem to deck interface in both T-Beam and Box Girder cast-in-place reinforced concrete structures. The shear failure in some cases progressed enough to warrant bridge replacement.

The Division of Engineering Services (DES) Reinforced Concrete Committee evaluated this issue with the objective of increasing horizontal shear capacity at the girder stem to deck interface. In addition to other changes in design practice and procedures, it was concluded that horizontal shear capacity across the stem to deck interface increases significantly when the construction joint is intentionally roughened to minimum amplitude of ¼". To help assure that proper attention is given to the critical construction joint between the girder stem and the deck, the specifications have been amended.

Figures 1 through 3 depict acceptable roughened surfaces. A hand-held garden rake was used to obtain the roughened surface in these examples.

Figure 1: Example of Acceptable Roughened Surface.
During the roughening operation, care should be exercised to avoid the following:
- Excessive dislodging of coarse aggregates when using the roughening tool.
- Floating/troweling of the top surface of the stem forcing coarse aggregate into the paste and making the surface too smooth.
- Excessive vibration causing the cement paste to rise and cover coarse aggregates.

In addition to the above, it is also extremely important that the surface of the construction joint be abrasively cleaned per the specifications\(^1\), prior to placement of deck concrete. All laitance, curing compound, and loosened particles of concrete must be removed.

A rough clean construction joint can go a long way in assuring the structural integrity throughout the life of the bridge.

\(^1\) 2010 SS, Section 51-1.03D(4), *Construction Joints*
For projects that are using *Standard Specifications* dated earlier than 2010, your attention is directed to the Division of Construction’s Construction Procedure Directive (CPD) 10-8, *Stem to Deck Construction Joint*\(^2\) for more details on how to incorporate the modified joint detail into their projects.

If a change order is required, it will be implemented at no additional cost. It has been determined that the desired roughness can be obtained with insignificant additional effort. Furthermore, removal of the requirement to expose the aggregate by blasting strengthens the *no additional cost* determination.

51-1.03E(2) Placing Mortar

Filling Bolt Holes
Mortar used for filling bolt holes may include additives that reduce shrinkage and cracking of the patch and to provide a better bond between the patch and the existing concrete. Mortar additives (shrinkage reducers, water reducers, bonding agents, etc.) are acceptable provided they meet the following requirements:

1. The additive must not have polyvinyl acetate as the active ingredient.
2. The additive must be acrylic based.

For questions on whether a particular additive is acceptable contact your regional Structural Materials Representative (SMR)\(^3\).

51-6 Mass Concrete

51-6.01 General

Concrete Technology Manual
Refer to the Concrete Technology Manual, Chapter 7, Caltrans Advancements/High Performance Concrete, for additional information.

51-6.01C Submittals

Contractor Requested Construction Joint
Mass concrete is typically identified in the contract by the minimum dimension of an element exceeding 7 feet. Contractors may attempt to have the mass concrete provisions waived by proposing a construction joint at a dimension less than 7 feet. Creating a construction joint below the mass concrete dimension does not ensure that the peak curing temperature or temperature differential is adequately controlled. Such proposals must be evaluated in the context of a complete Thermal Control Plan (TCP). The placement of construction joints is not at the Contractors’ discretion and their introduction requires Structure Design and Structure Construction approval. The Structure Representative must verify that the Contractor adequately addresses all issues related to the TCP.

51-6.01D(2) Temperature Monitoring

Temperature Monitoring - Not Optional
Caltrans’ ongoing evaluation of the mass concrete specifications, including the current minimum dimension, is dependent upon the data collected from the mass concrete temperature monitoring requirements. Temperature monitoring requirements are not to be waived.
Concrete Structures – General – Construction – Preparation

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01-18-2019</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (SC) Quality Assurance (QA) roles and responsibilities for preparation of footings for concrete placement, constructing and removing forms for concrete surfaces, and the design and installation of permanent steel deck forms.

The condition of the forms contributes to the aesthetics of the finished surface of the concrete, so it is important to discuss forms with the Contractor prior to installation.

Process Inputs

1. Completed footing excavation
2. Existing concrete surface to be roughened
3. Structure elements ready for form placement
4. Structure elements ready for form removal
5. Authorized locations ready for permanent steel deck form placement
6. Submittals: BCM 51-1.01 Concrete Structures – General

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.
2. Inspection of field work for this process is:
 a. Continuous inspection while footings are excavated, placement and removal of forms.
3. Before Construction Begins:

b. Forms:
 i. Determine whether changes in the footing dimensions or elevations are needed. If changes are needed, contact Structures Design to issue a Change Order.
 ii. See *Foundation Manual Chapter 4-8, Foundation Problems and Solutions*, and the Final Foundation Report in the RE Pending File.
 iii. Verify the orientation of the excavated area for footing construction.
 iv. Verify methods of controlling water per 2018 Standard Specifications (SS), Section 13, *Water Pollution Control*.
 v. Verify that existing concrete surfaces are roughened.
 vi. Request form design submittal from the Contractor if needed.
 vii. Discuss with the Contractor contract requirements and aesthetic expectations for conditions. Inform the Contractor that any form deficiencies must be corrected prior to concrete placement.
 viii. Discuss with the Contractor the anticipated rate of concrete placement.

c. Permanent Steel Deck forms:
 i. Discuss design, installation, and repair requirements with the Contractor.
 ii. Review and authorize shop drawings, see BCM 51-1.01C(2), *Concrete Structures – General – Submittals – Permanent Steel Deck Forms*.

4. During Construction:
 a. Verify safe access for inspection is provided by the Contractor.
 b. Forms:
 i. Verify that forms, materials, and construction meet all contract requirements.
 ii. Verify form dimensions and orientations.
 iii. Verify forms remain at the line and grade constructed during concrete placement. Check for form blow out.
 iv. Verify that the Contractor complies with contract requirements where form removal is required.
 c. Permanent Steel Deck forms (if specified):
 i. Inspect and field release Permanent Steel Deck Forms once they arrived on the jobsite.

1 *2018 SS*, Section 51-1.01C(1), *Concrete Structures – General – Submittals – General*
ii. Request assistance from Materials Engineering and Testing Services, if necessary, on field releasing this material. Document field release using Form CEM 4102, Material Inspected and Released on Job.

iii. Verify that the galvanized form surfaces are not damaged before installation. If they are damaged, the Contractor must repair per contract requirements.

iv. Verify placement of steel deck forms.

d. Document all inspection, construction, and quality assurance activities in the Daily Reports per BCM C-4.04, Daily and Weekly Reports.

5. Following Construction:

a) Complete and submit all daily reports to the SR.

b) Calculate and make payment to the Contractor.

c) Complete and file all reports including daily, weekly, and monthly.

d) Complete As-Built changes as necessary.

Process Outputs

1. Daily reports:

a. Customers: Districts

b. Customer Expectations: Prompt and accurate

2. Forms are inspected and are ready for concrete placement:

a. Customers: All interested parties

b. Customer Expectations: Structure component built to line and grade, conformance with contract drawings, aesthetics

Attachments

Attachment 1, Form Panels

2 **2018 SS**, Section 51-1.03C(2)(c)(iii), *Concrete Structures – Construction – Preparation – Forms – Permanent Steel Deck Forms – Installation*
Form Panels

Industry Practices

For other than exposed surfaces, form panels may consist of surfaced lumber, plywood, steel, and in some cases synthetic materials, depending on the type of construction and the surface finish required. For exposed surfaces the degree of care taken by the contractor when building forms often determines the amount of subsequent work needed to obtain the required finished surface. Below are some industry acceptable practices:

1. Form panels that have minor damage or are damaged (damaged corners, holes, delaminations, and scars) after installation, and cannot be reasonably replaced, may be repaired when using acceptable method and materials, such as wood fillers, resin products (Bondo), and wood or cork plugs.

2. Expanding foam may be used to ensure forms are placed flush against concrete in areas around columns and abutments. Care must be taken when determining the product’s expansion capabilities. Excess foam that protrudes into the concrete section must be trimmed off.

3. Acceptable materials to form the exterior girder and soffit radius sweep may include steel, PVC, or 1/8" veneer plywood sheeting. All materials must be adequately supported at the joist and throughout the spans to prevent the development of discontinuities between form panel sections during concrete placement.

4. New plywood next to old plywood will produce an unacceptable non-uniform concrete surface. One method proven successful to age the new forming material is to apply cement and water paste, allow the paste to dry, and then remove it. The dried cement paste absorbs the fresh wood sugar from the new plywood and ages the wood so that the finished concrete will have a color and texture similar to the color and texture of the seasoned plywood forms.

5. Prefabricated soffit forming panels (gang forms) are used with conventional falsework systems. These prefabricated soffit forming panels typically consist of an eight-foot (8 ft.) wide and up to 40 ft. long panel comprised of plywood nailed to 2 x 8 joist. See Figure 1. The use of prefabricated soffit panels has proven to be a reliable and efficient falsework soffit forming system.

When the soffit gang form panels are erected onto the falsework stringers they are typically placed with a gap between each panel. This gap aids in the erection and removal of the panel system. This gap is bridged with a form filler panel (filler strip of plywood). See Figure 2.
Figure 3 depicts a typical completed soffit that was formed with gang forms.

Building paper must not be used to patch cracks or holes in “lost deck” forms. Metal or wood is acceptable provided it does not infringe on the required deck thickness.

Pieces of reinforcing steel may be cast into the interior faces of box girder stems to support “lost deck” forms. When these pieces of reinforcing are used, they should be no larger than a #6, 0.75”Ø bar and must be at least 1” clear from any permanent reinforcing.
Workmanship

Poor workmanship and materials can lead to undesirable results. Common examples of this are:

1. Loose form filler strips (i.e. not firmly nailed to the joist).
2. Damaged and work panels from overuse.
3. New placement plywood forming sheets next to seasoned sheets.
4. Non-uniform filler strip widths.
5. Non-uniform form line patterns. Skewed bridges exacerbate this.

All of the above can be successfully mitigated with the timely enforcement of this specification.
Concrete Structures – General – Finishing Concrete

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01-18-2019</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (SC) responsibilities and procedures for finishing concrete, including ordinary surface finish, Class 1 surface finish, and Class 2 surface finish.

Concrete surface finish is what the travelling public and other interested parties see, and they judge the quality of the structure based on the quality of the concrete surface finish.

Process Inputs

1. Authorized Concrete Mix Design
2. Contractor’s Forming System workplans
3. Contractor’s Concrete Placement Plan

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.
2. Inspection of field work for this process is:
 a. Intermittent inspection
3. Before construction begins:
 b. Discuss with the Contractor the factors which affect the final finishing of concrete surface (Form design, materials, method of construction, concrete mix design, mitigations for any potential severe weather, etc.).
c. Discuss applicable surface finish criteria (Ordinary, Class 1 or Class 2) and locations where each applies with the Contractor.

d. Discuss with the Contractor the proposed means and methods for achieving each surface finish requirements.

e. Discuss the Contractor’s concrete placement, curing concrete, and forms removal plans since these activities contribute to the final surface finish.

4. During construction:

 a. Verify safe access for inspection is provided by the Contractor.

 b. Verify pour rate and ensure proper concrete consolidation.

 c. Verify concrete for exposed surfaces have been consolidated, struck off, and properly cured.

 d. Monitor concrete forms for potential failure. Verify failures are repaired before finishing concrete placement.

 e. When forms are removed, verify concrete is cured properly, inspect concrete surfaces, and if there are rock pockets, mark the limits of rock pockets that require removal and replacement of concrete.

 f. Verify that ordinary surface finish has been complete.

 g. Verify that Class 1 or Class 2 surface finishes are applied per the location per contract requirements.

 h. In the field, request a test area for Class 1 and Class 2 surface finishes to be used as the acceptance criteria.

 i. Document and elevate any disagreement on surface finish to be resolved as soon as possible.

 j. Structure Representative discuss and agree on surface finish with Bridge Construction Engineer to limit any potential claims.

 k. Verify that the entire area achieves the required Class 1 or Class 2 surface finish.

 l. Document with photos from various angles.

5. Following Construction:

 a. Discuss lesson learned with the Contractor and staff.

 b. Document all inspection, construction, and quality assurance activities in the Daily Reports per BCM C-4.04, Daily and Weekly Reports.

 c. Calculate and make payment to the Contractor.

Process Outputs

1. Finished Concrete Surface:
a. Customers: All interested parties
b. Customer Expectations: Aesthetically pleasing, meets contract requirements

2. Daily Reports:
 a. Customers: Districts
 b. Customer Expectations: Prompt and accurate

3. Photos:
 a. Customers: All interested parties
 b. Customer Expectations: Awards, marketing, news, lesson learned, etc.

Attachments

None
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>04-22-2019</td>
<td>Original issue</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memo No</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>53-1</td>
<td>04/22/2019</td>
<td>Shotcrete - General</td>
</tr>
<tr>
<td>53-2</td>
<td>04/22/2019</td>
<td>Structural Shotcrete</td>
</tr>
<tr>
<td>53-3</td>
<td>xx/xx/20xx</td>
<td>Sculpted Shotcrete</td>
</tr>
</tbody>
</table>
Shotcrete – General

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>04-22-2019</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (S.C.) responsibilities and procedures for authorization of submittals, quality assurance, materials, construction, and payment for shotcrete.

This process applies generally to all applications of shotcrete. Specific requirements for structural and sculpted shotcrete are included in B.C.M. 53-2, Structural Shotcrete, and B.C.M. 53-3, Sculpted Shotcrete.

Prior to reviewing this B.C.M., it is essential to review Contract Specifications, Section 53-1, Shotcrete – General, applicable to your specific contract, that this B.C.M. is based on, as identified in the title block above. The information in the contract specifications typically will not be repeated in the text of this B.C.M.

Process Inputs

1. Form CEM-3101, Notice of Materials to be Used.
2. Concrete Mix Design and other submittals.
3. Structure Resident Engineer (R.E.) Pending File (verification of quantities for payment)

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.
2. Inspection of field work for this process is:
 a. Benchmark inspection earthwork
 b. Intermittent inspection of rebar placement and form construction
 c. Continuous inspection for shotcrete application

3. References:

4. Before construction begins:
 a. Review process criteria:
 i. Contract Documents.
 ii. Structure RE Pending File for verification of quantities.
 b. Review and authorize or reject submittals. Notify the Contractor in writing.
 i. Review the Stormwater Pollution Prevention Plan/Water Pollution Control Plan for compliance with shotcrete work.
 c. Review guidelines on sampling, testing, and release of material:
 i. Construction Manual, Chapter 6-2, Sampling and Testing.
 ii. B.C.M. 6-2.03, Control of Materials – Quality Assurance – Department Acceptance.
 d. Verify all structural materials are included in Form CEM-3101, Notice of Materials to be Used.
 e. For colored shotcrete, coordinate with designer and architect for color approval.
 i. If colored shotcrete, propose test panel to verify color.

5. During construction:
 a. Follow steps of Construction Manual, Section 4-5303, Construction Details – Shotcrete – During the Course of Work:
 i. Submit survey request if needed.
 b. Confirm that all field personnel have copies of authorized submittals.
 c. Perform additional required sampling and testing per B.C.M. 53-2, Shotcrete – Structural Shotcrete and 53-3, Shotcrete – Sculpted Shotcrete.
 d. Monitor vertical surfaces and verify no slough-off occurs especially during the wet-mix process. Notify the S.R. if sloughing occurs.
e. Verify field measurements for payment. See B.C.M. 9-1.16, Payment – Progress Payments, for additional information.

f. Record as-built changes on designated as-built plans per B.C.M. C-5.04, Project Completion Records – As-Built Plans.

g. Document all inspection, construction, and quality assurance activities in the Daily Reports per B.C.M. C-4.04, Daily and Weekly Reports.

h. File all test results and Daily Reports in the appropriate category in the project records as specified in the Construction Manual 5-102, Organization of Project Documents.

6. Following Construction:

a. Submit Final Completion Records to S.C. headquarters:
 i. Report of Completion per B.C.M. C-5.06, Project Completion Records – Report of Completion
 ii. As-Builts per B.C.M. C-5.04, Project Completion Records – As-Built Plans

Process Outputs

1. Authorized materials and submittals (as required):
2. Concrete testing results
3. Daily Reports
4. As-Builts

Attachments
Structural Shotcrete

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>04-22-2019</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (S.C.) responsibilities and procedures for authorization of submittals, quality assurance, materials, construction, and payment for structural shotcrete.

This process applies specifically to the application of structural shotcrete. General requirements for shotcrete are included in Bridge Construction Memo (B.C.M.) 53-1, Shotcrete - General.

Prior to reviewing this B.C.M., it is essential to review the Contract Specifications, Section 53-2, Shotcrete – Structural Shotcrete, applicable to your specific project, that this B.C.M. is based on as identified in the title block above. The information in the contract specifications typically will not be repeated in the text of this B.C.M.

Process Inputs

Contractor submittals for structural shotcrete.

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.
2. Inspection of field work for this process is:
 a. Intermittent inspection of earth work and form construction.
 b. Continuous inspection for structural shotcrete application, and coring test samples.
3. Review B.C.M. 53-1, Shotcrete – General, for general shotcrete process tasks for all construction phases.

5. Before construction begins:
 a. Review and authorize submittals:
 i. Notify the Contractor in writing.
 ii. Contractor's quality control plan.
 iii. Concrete mix designs.
 iv. Preconstruction test panel and test core results.
 b. Verify that the test panel is constructed in accordance with the contract and authorized submittals.

6. During construction:
 a. Verify production shotcrete operations comply with the contract and authorized submittals.
 b. Determine locations for required sampling and testing.
 c. Accept or reject shotcrete placement per the requirements of the contract documents based on:
 i. Visual inspection of production test cores.
 ii. Production core compressive strength test results:
 1. Accept or reject work accordingly (e.g., 95% minimum, below 95%, below 85%).
 d. Document all inspection, construction, and quality assurance activities in the Daily Reports per B.C.M. C-4.04, Daily and Weekly Reports.

7. File all test results and Daily Reports in the appropriate category in the project records as specified in the Construction Manual 5-102, Organization of Project Documents.

Process Outputs

1. Authorized Structural Shotcrete submittals
2. Production test core compressive strength results
3. Completed structural shotcrete elements
Attachments

None
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12-20-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

### MEMO NO	ISSUE DATE	TITLE
56-2.01C | 12/20/2018 | Overhead Sign Structures – Submittals |
56-2.03 | 12/20/2018 | Overhead Sign Structures – Construction |
Overhead Sign Structures, Standards, and Poles – Submittals

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12-20-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process establishes Structure Construction (SC) roles and responsibilities for review and authorization of overhead sign structure shop drawings and the Contractor’s Quality Control Program prior to fabrication and erection of sign structures.

Process Inputs

1. Sign Structure Shop Drawings.
2. Quality Control (QC) program from each sign structure fabricator including the Welding Quality Control Plan (WQCP).
3. Quality Control program for the installation of the sign structure.

Procedure

1. All work associated with this process is charged to Project-Direct – Construction.
2. Inspection of field work for this process is:
 a. Benchmark for review of submittals and shop drawings.
3. Coordinate with the RE on any changes to electrical work, sign panel sizes or placement, and survey requests as it affects the sign structure.
4. Coordinate with the MR on the review and authorization of the shop drawings and QC program.
5. Consult with the Structure Design and/or SP&I Signs Specialist for unusual details or circumstances.
6. Develop a submittal log:
 a. Document submittal review milestones.
 b. Document conversations, review notes, and reasons for review delays.
 c. Monitor the review time.

7. Perform an initial review of submittals for completeness and return any incomplete document immediately. The submittals need to contain the basic information needed to successfully perform a review.

8. Review the Contractor’s CPM with the RE to verify that specified review times are accounted for in the baseline schedule.

9. Receive overhead sign shop drawings and QC Program for each proposed fabricator in accordance with Standard Specifications (SS)\(^1\).

10. Receive QC program for the installation of the sign structure in accordance with Standard Specifications\(^1\).

11. Verify that the fabrication shop is on the Authorized Facility Audit List.

12. Review Shop drawings and QC Program in conjunction with:
 a. Applicable Plans and Specifications:
 i. Note orientation of steel members: major/minor axes, compression/tension members. Make sure shop drawings matches what is shown on the contract plans, including direction of truss braces.

 b. Overhead Sign Structures Guide:
 i. Section 5, *Shop Drawings* (including erection and QC program).
 c. BCM 56-2.01C, Attachment 1, *Additional Information for Shop Drawing Reviews*.
 d. BCM 11-2, *Welding Quality Control*.
 e. Consult with MR on materials issues, including proposed substitutions, Buy America requirements, and QC Program.
 f. Consider lane closure and night work safety requirements, e.g. work lights. Consult with the Resident Engineer for duration and work space limitations.

13. Verify that the Contractor is not introducing changes to the basic design of overhead sign structure specified in the contract documents. Changes can only be allowed with the Department’s authorization and through a Change Order.

\(^1\) 2018 SS, Section 56-2.01C(3), *Overhead Sign Structures, Standards, and Poles – Overhead Sign Structures – Submittals – Shop Drawings*
14. Document the authorization or rejection of the submittals. The SR provides all final submittal authorization. Stamp each authorized page with the authorizations stamp.

15. Provide copy of authorized submittal to the Contractor along with a reminder regarding the timely notification on the start of fabrication.

16. Provide copy of authorized submittal to METS.

17. Document all submittal activities in the Daily Reports per BCM C-4.04, Daily and Weekly Reports.

Process Outputs

1. Authorized or Rejected submittals.

Attachments

Attachment 1, Additional Information for Shop Drawing Review.
Additional Information for Shop Drawing Reviews

Review Sign Structure, Standards, and Pole shop drawings in accordance with contract documents, Overhead Sign Structures Guide, and the information in this Attachment.

Perform an initial review to determine if the shop drawing submittal is complete. Return the document if it is determined to be incomplete. A complete shop drawing submittal will contain the following as a minimum:

1. All items listed under 2018 Standard Specifications (SS), Section 56-2.01C(2), Overhead Sign Structures, Standards, and Poles – Overhead Sign Structures – Shop Drawings.
2. Identification of the project number.
3. Identification of the sign or pole and their location relative to the contract plans.
4. Identification of individual components including their dimensions and material type.
5. Details showing the orientation of the sign or pole structure.
6. Details showing the orientation of member sections.
7. Welding and other connection.
8. Any proposed changes to the contract documents.

Review the drawings based upon the contract plan sheets, Standard Plan sheets, including any addenda issued prior to the bid opening date, and any revised plan sheets included with the contract plans.

Sign Structure Shop Drawing Review

General

1. Verify that the location of the sign structure is correct. Refer to the sign plan sheets. Bridge mounted signs will also be shown on the bridge plan sheets.
2. Verify that the direction and orientation of the truss is in the correct plane.
3. Check the electrical plan sheets for any power and communication connections to the structure.

Post

1. Verify that the top of foundation elevation is not below finished grade. Coordinate with the roadway grading plan sheets. A field survey may be necessary for further confirmation.
2. Verify that the height of the foundation above finished grade is acceptable to the District. There may be aesthetic or safety issues with exposed foundations.
3. Verify the horizontal offset of the pole from the Edge of Travel Way (ETW) is correct. If it is less than 12'-0", additional safety features will be required such as metal beam guard railing. Work with the Resident Engineer to mitigate these situations.

4. Verify that the orientation of hand holes at the bottom of the pole faces away from the traveled way. If the pole is located in the median, consult with the Resident Engineer.

5. Verify the orientation of the base plate bolt pattern matches and supports the correct orientation of the truss or connecting mast arm. This is especially important for non-circular poles or custom poles and arms.

6. Verify the orientation of the post is correct. This is especially critical for non-circular poles or custom poles and arms.

7. Verify the length of pole is sufficient to achieve the required vertical clearance.

8. If there are electrical/communication connections to the structure, verify that appropriate openings are provided in the baseplate and wire supports are provided in the pole. Be sure to check the number and diameters of conduits to verify that they will fit into the baseplate. Consult with the Sign Specialist if the number of conduits or sizes cannot be reduced, requiring an increase to the base plate cutout.

Truss and Structural Frame

1. Verify that beveled washers are specified when fasteners are utilized on sloped steel flange surfaces.

2. Verify that the orientation of the individual truss members is correct.

3. Verify that connection details are specified for all locations.

4. Keep in mind that fillet welds between sections, like the safety railing base plates and support beams, can only be performed when one plate overhangs the other. If both plates are of the same width, a partial penetration weld will be required for this connection.

Standards and Pole Shop Drawing Review

General

1. Verify that the location of the Standard or Pole is correct. Refer to the sign (S) plan sheets or electrical (E) plan sheets.

2. Confirm that the fabricator is on the Materials Engineering and Testing Services (METS) Authorized Facility Audit List.

3. Verify that the height of the foundation above finished grade is acceptable to the District. There may be aesthetic or safety issues with the exposed foundation.

4. Verify the horizontal offset of the pole from the ETW is correct. If it is less than 12'-0", additional safety features will be required such as metal beam guard railing.
5. Verify that the orientation of hand holes at the bottom of the pole is correct for its position adjacent to traffic.

Pole

1. Verify that the top of the foundation elevation is not below nor too high above the finished grade.

2. Verify that the direction of hand holes at the bottom of the pole face away from the traveled way. If the pole is located in the median, consult with the Resident Engineer.

3. If there are electrical/communication connections to the structure, verify that appropriate openings are provided in the baseplate and wire supports are provided in the pole. Be sure to check the number and diameters of conduits to verify that they will fit into the baseplate. Consult with the Sign Specialist if the number of conduits or sizes cannot be reduced, requiring an increase to the base plate cutout.

4. Verify the orientation of the base plate bolt pattern matches and supports the correct orientation of the pole. This is especially important for non-circular poles.

5. Verify that an installation procedure and/or verification windows are provided for poles and standards that are spliced with slip fit joints. Verification windows provide visual indicators that the upper half of a pole is sufficiently seated into the lower section.

Quality Control Plan for Field Installation

Upon receipt of the field installation plan, perform a cursory review to determine if the document is complete. At a minimum the plan is to address:

1. Personnel: including the identification of the person in charge of the operation.

2. Size, number, and type of equipment being utilized.

3. Method of handling the sign or pole structure component during installation in a safe manner.

4. Make reference to the shop drawings or provide the method of tightening anchor bolts and high strength fastener assemblies.

Return the submittal if this is incomplete. The submittal needs to present a clear plan of how the Contractor will erect the sign or pole structure in a safe and controlled manner.

Some items to consider are:

1. A field check to be performed prior to installation by the Contractor that the foundations are correctly spaced for a two-pole sign structure.

2. The use of tag lines to control the truss or pole during lifting to prevent any unplanned incursions into traffic.
3. The use of a secondary pick line to control the base plate during the erection of the pole or support posts to prevent damage. On larger poles, the baseplate may sustain damage if the pole is tipped up on the edge of the baseplate.

4. Does the plan provide for additional safety measures if the operation occurs at night under lane closure?
 a. Sufficient lighting?
 b. Sufficient workspace behind the cones inside the lane closure? Consult with the Resident Engineer if additional space is required or the Contractor proposes to work closer than 6’ from the cones.

5. Will the amount of work planned be completed within the allocated work window?
Overhead Sign Structures – Construction

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12-20-2018</td>
<td>Original issue.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Click here for previous versions

Background

This process also establishes Structure Construction (SC) roles and responsibilities for construction inspection of overhead sign and bridge mounted sign structures, including inspection for existing sign structures.

In addition, SC also assists Materials Engineering and Testing Services (METS) with quality assurance of overhead sign and bridge mounted sign structures, including quality control for non-destructive testing, walkway safety railing, and Department acceptance of structural materials. Quality assurance requirements are described in Standard Specifications (SS), Section 56-2.01D, Quality Assurance.

Process Inputs

1. Fabricated and METS released sign structure
2. Overhead sign support structure in place:
 a. Overhead sign structure pile foundation in place per BCM 49-3.02C, Cast-In-Drilled-Hole Concrete Piling – Construction
 b. Overhead sign structure spread or driven pile footing sign foundation in place
 c. Bridge or other structure ready to receive bridge mounted sign structure
3. Notice of Materials to be Used, CEM-3101
4. METS inspection and release documentation
Procedure

List the general steps needed to perform the process with the inputs received to deliver the outputs required. Include links to technical documentation for further information on the procedural step. Don’t get too detailed, leave that for the SC Technical Team to determine.

1. All work associated with this process is charged as Project-Direct – Construction.

2. Inspection of field work for this process is:
 a. Continuous for erection and installation of overhead sign structures.
 b. Benchmark for review of Quality Control Program.

3. Before construction begins:
 a. Review and perform work in accordance with:
 i. Authorized overhead sign structure submittals, per BCM 56-2.01C, Overhead Sign Structures, Standards, and Poles – Submittals.
 ii. BCM 56-2.03 Attachment 1, Sign Structure Installation Guide.
 iii. BCM 56-2.03 Attachment 2, Sign Structure Fastener Installation Guide.
 b. Coordinate with District construction:
 i. Traffic work window for overhead sign structure installation.
 ii. Traffic control.
 iii. All work to be performed during overhead sign structure installation.
 iv. Agency/utility impacts.
 v. Coordination for Department-furnished sign materials.
 vi. Cover sign panels if not for immediate use.
 c. Discuss protocol for overhead sign structure fabrication with the Contractor during the preconstruction conference:
 i. Verification that the fabricator is on the METS Authorized Facility Audit List.
 ii. Use of the CEM-3101, Notice of Materials to be Used, and Form TL-0038, Inspection Request.
 iii. Request contractor notify SR of delivery to fabrication site.
 iv. Discuss any potential issues identified during shop drawing review regarding the authorized shop drawings.
d. Review the Contractor’s CPM schedule for the fabrication, delivery and installation of the sign structure.

e. Request copy of CEM-3101 from RE.

f. Contact MR regarding inspection of materials, fabrication, and welding non-destructive testing of overhead sign structure fabrication:

i. Forward authorized overhead sign shop drawings and welding quality control plan.

ii. Verify and obtain a copy of METS inspection forms TL-0028, Notice of Materials to be Inspected at the Jobsite, or TL-0608, Notice of Materials to be Furnished.

g. Contact the Structure Policy and Innovation (SP&I) Overhead Sign Structure Specialist for technical expertise to resolve irregular construction issues.

h. Review the authorized quality control (QC) program submitted with the shop drawings. See BCM 56-2.01 C, Overhead Sign Structures, Standards, and Poles – Submittals.

i. Verify the overhead sign structure location has specified horizontal and vertical clearances.

j. Prepare Form TR-0020, Notice of Change in Horizontal or Vertical Clearance, and submit to the Construction/Maintenance Liaison (Permits) with horizontal and vertical clearances. Report the impaired clearance 15 days prior to erecting sign structure over traffic.

k. Verify the concrete elements supporting the overhead sign structure have attained the required time and compressive strength.

l. Verify the height and elevation of anchor bolt assembly (when applicable).

m. Verify the inspection and release of the overhead sign structure with MR.

n. Upon delivery of the overhead sign structure:

ii. Check for Certificates of Compliance and Buy America Certification.

iii. Review Construction Manual:

1. Table 6-2.1, Inspection of Fabricated and Manufactured Materials.

2. Table 6-2.2, Materials Acceptance Based on Authorized Material List.

3. Table 6-2.3, Materials Accepted by Certificate of Compliance.

iv. Check the sign structure for damage incurred during the delivery:

1. If any damage is discovered, request a repair plan from the contractor.
v. Check the walkway safety railing wobble per the requirements of the contract documents.

vi. Verify the overhead sign structure delivered is the correct one authorized for the specified location and orientation with the roadway.

vii. Verify that all connection hardware complies with the contract requirements, have been authorized, and/or are listed on Authorized Material Lists (AML), etc.

viii. Contact the MR if no Form TL-0029 was received or there are no inspection release tags.

ix. Check the overall condition of the overhead sign structure to verify compliance with the contract requirements.

x. Authorize installation of the overhead sign structure if it conforms to the requirements of the authorized shop drawings.

o. Department-furnished material:

i. Review the contract for any requirements for Department-furnished material.

ii. Resident Engineers will coordinate for Department-furnished sign materials to be ordered and ready for timely delivery.

iii. Make a physical inspection and inventory to confirm that all Department-furnished sign materials are delivered in good condition.

iv. Verify correct spelling of messages on sign panels.

v. After delivery, the Contractor is responsible for any damage to Department-furnished materials.

4. During construction:

a. Review lane closure request to verify that the duration and closure limits are sufficient to support the operation and provide feedback to the Resident Engineer.

b. Conduct a pre-erection meeting with the Contractor to discuss:

 i. The Installation Quality Control Program

 ii. Safety (work lights, COZEEP, contingency plan, etc.)

 iii. Splices

 iv. Inspection hold points (if necessary)

 v. Fastener installation and timing of verification

 vi. Verification of staging area (and closure limits) for equipment and installation

c. Field procedures for installation of new or relocated overhead sign structures and bridge mounted signs:
i. SR disseminates the latest authorized QC program and shop drawings to all SC field staff:
 1. Verify that the Contractor is using the same copy.

ii. Coordinate inspection with the MR for any field welding. Review WQCP and check Certified Welding Inspector (CWI) requirements.

iii. Coordinate installation of conduits, boxes, and other electrical appurtenances with the District. For relocated structures, verify openings are sized to support new conduit installation.

iv. Overhead sign structures:
 1. Verify that installation of the structure complies with the project requirements and conforms to the authorized Quality Control Plan.
 2. Deviations to the QC program require discussion with the Structure Representative prior to the change.
 3. Verify installation of the fasteners through Direct Tension Indicators (DTI) or torque, verified by an approved method. See Attachment 2, Sign Structure Fastener Installation Verification Guide.
 4. Verify that the tightening of anchor bolt nuts for poles is performed incrementally and in an alternating pattern to evenly apply force to the connection. Anchor bolts are tensioned to a snug tight condition unless otherwise specified.
 5. Verify rake (lean) of the posts, such that the truss, will be level relative to the traveled way.
 6. Verify that the measured impaired is greater or equal to the clearance previously reported to Construction/Maintenance Liaison (Step 3j). Do not allow sign structure to be installed if the measured clearance is less than the previously reported. Discuss with SR for corrective action. Report final values to the Construction/Maintenance Liaison.
 7. Verify that mortar is placed under base plate per Standard Specification (SS).

v. Bridge mounted sign structures:
 1. Verify that anchors have been or will be installed in accordance with the manufacturer’s recommendations to the correct position and dimension.
 2. Verify that anchorages will not penetrate prestressing ducts in post-tensioned box girder bridges.
 3. Resin capsule anchorages (RCAs) are restricted to certain conditions:

1 2018 SS, Section 56-3.01C(2)(a), Overhead Sign Structures, Standards, and Poles – Construction – Foundation – General
a. Do not allow their usage in positions where the anchorage is subject to direct, sustained tension.

b. Their usage is allowed when attachments are made in specific locations. Refer to Attachment 2, Sign Structure Fastener Installation Guide and the Overhead Sign Structures Guide for additional guidance on the use of resin capsule anchorages and locations where their usage is allowed.

vi. Upon completion of installation, verify that all temporary shipping, and lifting attachments are removed from the structure. Have the Contractor repair any damage to the structure resulting from the removal of these attachments, including galvanization or painting systems per SS.

vii. Measure horizontal and vertical clearances and report if less than those provided from previous notice per BCM C-4.14, Notice of Change of Structure Clearance or Permit Rating:

1. Record As-built elevations (and vertical clearance) on sign detail plan sheets.

d. Existing Sign Structures:

i. Remove or salvage overhead sign structure:

1. Confirm removal depths of foundation with the Contractor.
2. Request, review, and authorize removal plan.
3. Coordinate with receiving site on the timing of a salvage operation (when applicable).

ii. Modify overhead sign structure:

1. Review the condition of the structure.
2. Verify that existing structures to be modified agree with as-built drawings.
3. Initiate a Change Order to replace any portion of the structure that cannot be reused.

5. Refer to Attachment 1, Sign Structure Installation Guide, for complete instructions.

6. Authorize installation of the overhead sign structure if it conforms to the requirements of the authorized shop drawings.

7. Document all field revisions to the contract documents in as-builts. Provide copy to pertinent party.

8. Document all inspection, construction, and quality assurance activities in the Daily Reports per BCM C-4.04, Daily and Weekly Reports.

2 2018 SS, Section 75-1.02B, Miscellaneous Metal – Materials - Galvanizing
Process Outputs

2. Form TR-0020, *Notice of Change in Vertical or Horizontal Clearance*.
3. Field welding QA forms (if field welding is performed).
4. Welding Inspection Reports.
5. Buy America Certification from the manufacturer for Federal Aid projects.
6. Certificates of compliance.
7. Daily Reports.
8. As-builts.
9. Installed overhead sign structure.

Attachments

Attachment 1, *Sign Structure Installation Guide*.

Attachment 2, *Sign Structure Fastener Installation Guide*.
Sign Structure Installation Guide

1. The Structure Representative (SR) will disseminate the latest authorized plans and shop drawings to all SC field staff:
 a. The Assistant Structure Representative (ASR) will verify that the Contractor is using the same copy.

2. Review the 2018 Standard Specifications (SS) Sections 49, Piling; Section 55, Steel Structures; Section 56, Overhead Sign Structures, Standards, and Poles; and the Special Provisions.

3. Review the Overhead Sign Structures Guide (e.g., Section 7, Installation).

4. Check that the SR authorized the Shop Drawings and the Welding Quality Control Plan (WQCP). Verify that the method of sign or pole erection utilizes measures to control lateral movement to prevent incursion into traffic.

5. When applicable, review welding requirements in Specials and authorized WQCP. Refer to Overhead Sign Structures Guide, Section 3, Welding.

6. Check the station, offset, and elevation of the sign relative to plans. Check that the sign has vertical clearance necessary, or specified, based upon baseplate elevation.

7. Check the foundation and bolt template for proper orientation. (Generally, with the long axis of the foundation parallel to the traveled way.)

8. Review the log of test borings to determine the potential groundwater elevations and possible effects on foundation work.

9. Verify that spread footing foundations are against competent undisturbed soil. Refer to the Foundation Manual, Chapter 4, Footing Foundations.

10. Verify CIDH pile footings for size, depth, and clean bottom. Additionally, refer to Overhead Sign Structures Guide, Section 6, Foundations and Anchorages and the Foundation Manual Chapter 14-3.1, Overhead Sign Structure Pile Foundations. A CIDH may require wet hole method if groundwater is encountered. Check both types in accordance with the authorized shop drawings and contract documents.

11. Review the authorized mix design prior to placement of concrete and field verify that all loads delivered are in compliance.

12. Check electrical contract plan sheets for lighting requirements of the sign to allow for conduit installation in the sign foundation. Verify that the post base plate opening can accommodate the conduits. Consult with Electrical Design to reduce the number of conduits or size if there are space issues.

13. Verify the Contractor’s method for maintaining anchor bolt spacing, orientation, and alignment during concrete placement.
Sign Structure Installation Guide

14. Check the spacing, orientation, and elevation of the finished anchor bolts. Note any differences (or settlement).
 a. Always make sure the anchor bolt assembly is set to err on the conservative side to exceed (rather than reduce) vertical clearance requirement.

15. Verify that the concrete has been in place seven full days prior to erection of the sign structure.

16. Prior to drilling anchors into the side of a precast/prestressed (PC/PS) girder, verify that the prestressing steel is not in conflict.

17. Anchor Bridge Mounted sign structures as detailed on the contract plans and shop drawings. Verify that authorized anchorages and bonding agents are used. Do not allow the use of chemical anchors in a tension or withdrawal condition.

18. Check the sign structure for damage in transit after delivery to the project site. Collect the Materials Engineering and Testing Services (METS) Material Release Tags.

19. Check the authorized shop drawings and verify that all components of the sign manufactured accordingly. Refer to the Overhead Sign Structures Guide, Section 7, Installation.
 a. For single post signs with cantilevered truss, verify post is shown on the correct side of the truss.

20. Review connection details in authorized shop drawings and applicable contract requirements. Refer to the Overhead Sign Structures Guide for detailed information. Also see Bridge Construction Records and Procedures Manual (BCRP) Section 170, Structural Steel.

21. Conduct a pre-erection safety meeting with the Contractor and ASRs prior to erection of the sign and discuss all requirements of the authorized Quality Control Plan:
 a. Sign handling is safe and appropriate:
 1) Verification of staging area (and closure limits) for equipment and installation.
 b. Splices of sign are correctly assembled.
 c. Direct tension indicators (DTI) installation or torque verified by an approved method.
 d. Discuss fastener tension verification to coordinate inspection times and access (for QA acceptance).

22. Verify the rake (lean) of the post, of a post-type sign structure, such that the truss will be level relative to the traveled way.

23. Verify that the Contractor adheres to the erection plan and discuss changes to the plan with the SR prior to the actual change.

24. Measure the vertical clearance of the completed sign structure and complete the Vertical Clearance Diagram for Sign Structures contained in the Construction Manual,
Sign Structure Installation Guide

Form TR-0020, Notice of Change in Vertical or Horizontal Clearance. Take measurements at the point of minimum vertical clearance. Re-measure the vertical clearance if the surfacing below is altered during the life of the contract.

25. If the measured vertical clearance is less than the minimum values shown on the contract plans:
 a. Remove the truss and do not reset pending corrective plan.
 b. Consideration of removal of the truss is dependent upon the vertical clearance of the upstream and downstream structures.

26. Complete the As-Built plans and submit them to the District Resident Engineer and to Structure Construction headquarters, as appropriate.
Sign Structure Fastener Installation Guide

The following is a summary of information to aid personnel charged with the responsibility of inspecting bolted connections for overhead sign structures.

Unless otherwise specified, all bolts and nuts must conform to the specifications of ASTM Designation A307. Also, unless otherwise specified, A-307 bolts should be furnished with commercial quality washers, have hex heads and nuts, and should be "snug tight". A-307 bolts should be of such length that they extend entirely through the nut (or nuts), but not more than 1/4 inch beyond. A-307 bolts in shear must have not more than one thread within the grip.

Anchor bolts for sign foundations must conform to the specifications of ASTM Designation F1554 Grade 55, weldable steel. These bolts, washers, and nuts are to be galvanized as specified. Tighten anchor bolts to prevent removal by hand (snug-tight).

Where high-strength bolts are specified for overhead sign structures, the bolts, nuts, and washers must conform to the specifications of ASTM Designation A-325. ASTM A-325 requires that the bolt head be marked "A-325". In addition, the bolt head may be marked with 3 radial lines spaced 120 degrees apart. High-strength nuts will be marked with the number "2" or "2H", by three equally spaced circumferential lines, or by the letters "D" or "DH". These fastener assemblies are zinc coated by the mechanical deposition processes.

High-strength bolts used in overhead sign structures are tightened by any method using an alternating snugging and tensioning pattern in order to obtain the required tension. Do not allow the reuse of tensioned bolts.

As indicated in Standard Specifications, Section 55-1.02E(6)(c), Steel Structures – Materials - Fabrication – Installation, a (flat) hardened washer must be installed under the high-strength nut or bolt head, whichever will be turned to tension the bolt, regardless of the method used to tension the bolt, or the type of connection design. Lock washers are not an allowable substitute.

For overhead sign structures, measurement of the bolt tension of field connections must be by approved direct tension indicators (DTI) furnished by the Contractor. Assembly of high strength bolted connections for sign structures may be performed with galvanizing or paint on the contact surfaces.

If raised-lug washer-type direct tension indicators are used, one indicator must be furnished and installed with each bolt in accordance with the following:

- Washer-type tension indicators must be installed so that the lugs bear against the head of the fastener, which is not turned during tightening. After snugging up all bolts of the joint, tightening must progress from the most rigid part of the joint to the free edges. Bolts are tightened until at least 50% of the gaps on each indicator are between 0.000 and
Sign Structure Fastener Installation Guide

0.005 inch. Reject assemblies where all the protrusions are completely crushed. The perimeter of DTI gaps need to be sealed with caulking.

The threads of nuts and bolts are to be properly prepared to prevent “galling” and excessive friction losses. A-307 and high strength nuts and bolts are to have their threads properly tapped to accommodate for galvanization. These fastener assemblies are mechanically galvanized and do not require that the nut threads be “chased.” The nuts are to receive a lubricant that is clean and dry to the touch. No attempt should be made to tension a high-strength fastener assembly that is not properly lubricated. The bolt threads will usually gall and strip before the required bolt tension is reached. Nuts for HS bolts that are specified to be snug-tight must not be lubricated.

Bridge Mounted Signs

Design will primarily specify the use of resin capsule anchorages (RCA) to support bridge mounted sign structures. They will not be placed where they are subjected to direct, sustained tension applications due to their susceptibility to creep.

Prior to installation, verify that the resin capsule anchors are on the METS Authorized Material Lists.

Installation of the RCAs must follow the manufacturer’s recommendations including the use of recommended drilling equipment. Do not allow installation in cored holes.

Verify that the installations are in holes that are clean and dry.

Do not allow the loading of the RCAs until the adhesive cure time has elapsed (shown in the Authorized Material List).

If mechanical anchorages are specified on the plans, check the Special Provisions for specific requirements. Do not allow the use of headed bolts inserted into wedge anchors. The use of drop-in (expansion) anchors and headed bolts may give questionable results. There is no way of confirming whether the drop-in anchor assembly has seated firmly in the concrete or if the headed bolt is cinched up against the mounting bracket.

For additional information relative to expansion anchors refer to BCM 135-5.0, Mechanical Anchorage Devices. A complete list of expansion anchors that have been approved by the Transportation Laboratory is available on the METS Authorized Material Lists.
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Memo No.</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-2.02A(3-4)</td>
<td>xx/xx/20xx</td>
<td>Existing Structures – Structure Removal – Submittals and Quality Assurance</td>
</tr>
<tr>
<td>60-2.02C</td>
<td>08/31/2020</td>
<td>Existing Structures – Structure Removal – Construction</td>
</tr>
<tr>
<td>60-3.02</td>
<td>xx/xx/20xx</td>
<td>Existing Structures – Bridge Deck Repair & Preparation</td>
</tr>
<tr>
<td>60-3.03B</td>
<td>xx/xx/20xx</td>
<td>Existing Structures – Methacrylate Resin Bridge Deck Treatment</td>
</tr>
<tr>
<td>60-3.04B</td>
<td>xx/xx/20xx</td>
<td>Existing Structures – Deck Overlays – Polyester Concrete Overlays & Expansion Dams</td>
</tr>
<tr>
<td>60-3.04D</td>
<td>xx/xx/20xx</td>
<td>Existing Structures – Deck Overlays – Concrete Overlays</td>
</tr>
<tr>
<td>60-3.05B</td>
<td>xx/xx/20xx</td>
<td>Existing Structures – Repair Spalled Surface Area</td>
</tr>
<tr>
<td>60-3.05C</td>
<td>xx/xx/20xx</td>
<td>Existing Structures – Epoxy Crack Injection</td>
</tr>
<tr>
<td>60-3.05D</td>
<td>xx/xx/20xx</td>
<td>Existing Structures – Heat Straighten Steel Girders</td>
</tr>
<tr>
<td>60-4</td>
<td>xx/xx/20xx</td>
<td>Existing Structures – Modifying Structures – General</td>
</tr>
<tr>
<td>60-4.04</td>
<td>xx/xx/20xx</td>
<td>Existing Structures – Modifying Structures – Coring Concrete</td>
</tr>
<tr>
<td>60-4.06</td>
<td>xx/xx/20xx</td>
<td>Existing Structures – Modifying Structures – Steel Column Casings</td>
</tr>
<tr>
<td>60-4.08</td>
<td>xx/xx/20xx</td>
<td>Existing Structures – Modifying Structures – Prestressing Steel Girders</td>
</tr>
<tr>
<td>60-4.09</td>
<td>xx/xx/20xx</td>
<td>Existing Structures – Modifying Structures – Bridge Joint Restrainers</td>
</tr>
</tbody>
</table>
Existing Structures – Structure Removal – Bridge Removal – Construction

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>08-31-2020</td>
<td>Original Issue</td>
<td>Richard Foley</td>
</tr>
</tbody>
</table>

Click here for previous versions

Contact SC Technical Team A for questions

Background

This process establishes Structure Construction (SC) responsibilities and procedures for inspection of bridge removal activities, including determining the need for additional exploratory work for unforeseen damage prior to bridge removal, protective covers, and assessing whether aspects of bridge removal work can be classified as preliminary work.

Prior to reviewing this Bridge Construction Memo (BCM), it is essential to review Contract Specifications, Section 60-2.02C, Existing Structures – Structure Removal – Construction, that this BCM is based on as identified in the title block above. The information in the contract specifications typically will not be repeated in the text of this BCM.

Process Inputs

1. Authorized Bridge Removal Work Plan
2. Authorized Debris Containment and Collection Plan
3. As-Built Drawings for existing structures
4. Authorized Lead Compliance Plan
5. Authorized Water Pollution Control Plan and other environmental requirements/submittals
Procedure

All work associated with this process is charged as Project-Direct – Construction.

1. Inspection of field work for this process is:
 a. Continuous for bridge removal and installation, jacking, and removal of temporary supports.

2. Before construction begins:
 a. Review:
 i. Contract documents, permits, licenses, and agreements.
 ii. Construction site.
 iii. Railroad demolition guidelines (if applicable).
 iv. As-built plans.
 v. Authorized submittals (see Input section of this BCM).
 vi. Construction Manual, Chapter 4, Section 60, Existing Structures.
 b. Document condition of existing structures to remain.
 c. Determine whether additional exploratory work of existing bridge members for unforeseen damage is needed.
 d. Conduct a pre-bridge removal meeting:
 i. The following responsible parties should attend:
 1. Contractor
 2. Engineer of Record for bridge removal work plan.
 3. Demolition subcontractor (if applicable).
 4. District (Resident Engineer, and others as required; for example, Public Information Officer, Traffic Operations).
 5. Railroad representative (if applicable).
 6. Assistant Structure Representatives assigned to the work.
 ii. Discuss and coordinate among the responsible parties, including but not limited to:
 1. Authorized bridge removal work plan.
 2. Key contact persons and phone numbers.
5. Removal of any items to be salvaged and stored.
7. Personnel Protective Equipment including fall protection, respirators, etc.
8. Hazardous material handling, storage, and removal.
10. Protecting adjacent facilities and utilities.
11. Lane closure schedule (if applicable).
12. Contingency plan (if applicable).

e. If the contractor wants to perform preliminary bridge removal work, determine allowable activities that can be performed. Consider the following:
 i. Structural stability during and after each partial demolition segment.
 ii. The partial removal component is no longer in use by the public or Caltrans.
 iii. The necessary protective measures are in place.

f. If railroad is involved, schedule railroad flagman and observer (if required), at least two weeks in advance of removal operation.

3. During construction:
 a. Verify that the engineer of record for the bridge removal work plan is present during removal operations.
 b. If railroad is involved, verify flagman and railroad observer (if required) are present.
 c. Coordinate traffic control and local agency requirements with resident engineer and contractor.
 d. Verify conformance with the authorized bridge removal work plan and contract documents.
 e. Verify required work area monitoring is being performed in accordance with contract documents.
 f. Verify hazardous materials are stored and removed in accordance with:
 i. Authorized Debris Containment and Collection Plan.
 ii. Authorized Lead Compliance Plan.
 iii. Authorized Water Pollution Control and other Environmental Requirements/Submittals.
g. Verify work practices and worker health and safety conform to California Code of Regulations, Title 8, *Construction Safety Orders*.

h. Review daily inspection reports prepared by engineer signing the bridge removal work plan

i. Document all inspection, construction, and quality assurance activities, pertinent to this BCM, in the Daily Reports per *BCM C-4.04, Daily and Weekly Reports*.

4. Following construction:
 b. File all correspondence and daily reports in the appropriate category in the project records as specified in the *CM 5-1.02, Organization of Project Documents*.

Process Outputs

1. Daily Reports
2. Disposal Documentation
3. As-Builts

Attachments

None
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12-31-2020</td>
<td>Added 90-5</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>1</td>
<td>01-31-2020</td>
<td>Removed 90-1.0</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>0</td>
<td>09-30-2014</td>
<td>Original issue.</td>
<td>-</td>
</tr>
</tbody>
</table>

QMS BCMs *(Aligns with Sections of the Contract Specification)*

<table>
<thead>
<tr>
<th>Memo No.</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-1</td>
<td>xx/xx/20xx</td>
<td>Concrete – General</td>
</tr>
<tr>
<td>90-3</td>
<td>xx/xx/20xx</td>
<td>Rapid Setting Concrete</td>
</tr>
<tr>
<td>90-4</td>
<td>xx/xx/20xx</td>
<td>Precast Concrete</td>
</tr>
<tr>
<td>90-5</td>
<td>12/31/2020</td>
<td>Self-Consolidating Concrete</td>
</tr>
<tr>
<td>90-6</td>
<td>xx/xx/20xx</td>
<td>Lightweight Concrete</td>
</tr>
</tbody>
</table>

Non-QMS BCMs *(Will be replaced by QMS BCMs)*

<table>
<thead>
<tr>
<th>Memo No.</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-1.0</td>
<td></td>
<td>(Blank – Removed 01-31-2020)</td>
</tr>
<tr>
<td>90-2.0</td>
<td>09/30/2014</td>
<td>Control of Cement Content in Concrete</td>
</tr>
<tr>
<td>90-3.0</td>
<td>09/30/2014</td>
<td>Removing the Requirements of CA Test 515 from Structural</td>
</tr>
<tr>
<td>90-4.0</td>
<td>09/30/2014</td>
<td>Concrete Mix Design Database</td>
</tr>
<tr>
<td>90-5.0</td>
<td>09/30/2014</td>
<td>Concrete Placement During Hot Weather</td>
</tr>
<tr>
<td>90-6.0</td>
<td>09/30/2014</td>
<td>Minimizing Early Age Concrete Bridge Deck Cracks</td>
</tr>
<tr>
<td>90-7.0</td>
<td></td>
<td>Blank – Moved to Section 51 on 03-30-15</td>
</tr>
<tr>
<td>90-8.0</td>
<td></td>
<td>Blank – Moved to Section 51 on 03-30-15</td>
</tr>
</tbody>
</table>
Self-Consolidating Concrete

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12-31-2020</td>
<td>Original Issue</td>
<td>Richard Foley</td>
</tr>
</tbody>
</table>

Click here for previous versions
Contact SC Technical Team B for questions

Background

This process works in conjunction with other BCMs to establish Structure Construction (SC) responsibilities and procedures for fulfillment of general requirements for submittals, quality assurance, and materials for self-consolidating concrete (SCC).

Review and authorization of a basic SCC mix design submittal is performed per BCM 90-1, Concrete – General.

Self-Consolidating Concrete construction is performed per BCM 51-1.03C-D, Concrete Structures – General – Construction – Preparation and Placing Concrete, with modifications as specified in Standard Specifications (SS) section 90-5, Concrete – Self-Consolidating Concrete, and contract special provisions.

This process covers the planning work required prior to the actual SCC placement and preparation of quality assurance concrete strength test cylinders used for the trial batch test report. The Materials Engineering and Testing Services (METS) Representative and/or the local District materials lab representative may assist in submittal review and quality assurance activities.

Prior to reviewing this Bridge Construction Memo (BCM), it is essential to review the contract specifications 90-5, Self-Consolidating Concrete, that this BCM is based on as identified in the title block above. The information in the contract specifications typically will not be repeated in the text of this BCM.
Process Inputs

1. SCC Mix design submittal
2. Concrete placement procedure
3. Mix design prequalification trial batch test report
4. Aggregate gradation information submittal
5. Mock-up submittal (if applicable):
 a. Details (falsework, formwork drawings) and placement procedure.
 b. Field Quality Control test sampling and results including:
 i. Fine Aggregate moisture control
 ii. Slump flow test
 iii. Visual stability test

Procedure

1. All work associated with this process is charged as Project-Direct – Construction.
2. Inspection of field work for this process is continuous inspection for all SCC placement and quality assurance activities at the jobsite.
3. Before construction begins:
 a. Prepare for upcoming construction activities. Review contract documents for SCC requirements and the Concrete Technology Manual, Chapters 7, Caltrans Advancements/High Performance Concrete, and 9, Job Control Sampling and Testing, to develop an understanding of SCC mixes, forming, and testing.
 b. Review and authorize/reject the SCC mix design. In addition, verify admixtures are chemically compatible and do not augment or counteract desired qualities. Notify the contractor in writing.
 c. Review and authorize/reject the SCC placement procedure. Verify that the contractor is aware that SCC self levelling flow characteristics can vary with the temperature and that the admixtures may need periodic adjustment to maintain specified flow characteristics. The contractor should also realize that forms for sloped shapes may need a top lid to contain the SCC until it sets. Notify the contractor in writing.
d. Review and authorize/reject the SCC Trial Batch test report based on conformance to the contract specifications, Section 90-5.01D(2)(c), *Prequalification of Mix Design*. Notify the contractor in writing.

e. Review the certificates of compliance for cementitious materials and aggregate gradations. Notify the contractor in writing when rejecting unacceptable gradations.

4. During construction:

a. If a mock-up is specified:

i. Authorize or reject mock-up details and placement procedures. Notify the contractor in writing.

ii. Determine if temperature controls are needed and if the forms require insulation.

iii. Plan for matching environmental conditions of the mock-up pour with those of the actual pour.

iv. Authorize the mock-up design details, concrete placement procedures, and testing plan.

v. Authorize or reject the mock-up forms based on field inspection for contractual requirements, such as dimensions and mortar tightness. Notify the contractor in writing.

vi. Inspect SCC placement during mock-up placement activities. Verify that the flow characteristics meet specified requirements.

 b. Administer SCC use in construction under BCM 51-1.03C-D, *Concrete Structures – General – Construction – Preparation and Placing Concrete*.

c. Verify the authorized mix design is delivered to the project.

d. Verify the SCC flow characteristics meet specification requirements.

e. Verify the SCC quality control field testing is performed in accordance with and meets the requirements of the contract documents.

f. Collect the certification information for each concrete delivery truck.
g. Document all inspection, construction, and quality assurance activities in the Daily Reports per BCM C-4.04, *Daily and Weekly Reports*.

h. Pay the estimated quantity. Refer to BCM C-4.07, *Preparation of Progress Payment Documents*.

5. Following construction:

 a. File all test results and Daily Reports in the appropriate category in the project records as specified in the Construction Manual 5-102, *Organization of Project Documents*.

Process Outputs

1. Authorized SCC mix design
2. Authorized trial batch test report
3. Authorized mock-up design/procedure submittals
4. Mock-up Acceptance or Rejection
5. Field Testing and Analysis Results

Attachments

None
Control of Cement Content in Concrete

The Standard Specifications (SS)\(^1\) require that the cement content of concrete mixtures be verified in accordance with procedures described in California Test 518. As stated in the SS\(^2\), “…For testing purposes, supplementary cementitious materials (SCM) are considered to be cement. …” Although California Test 518 is titled *Method of Test for Unit Weight of Fresh Concrete*, it also gives instructions for determining the volume of concrete(s) per batch, and determining the cement content (CCA) in pounds per cubic yard of concrete produced.

Form DS-OS C68, *Worksheet for California Test 518, Unit Weight of Fresh Concrete*, was originally developed by Materials Engineering and Testing Services (METS) and modified by Structure Construction (SC) (Form SC-3702) to facilitate the calculations process to determine that the cement content complies with specification requirements. (Attachments No. 1 and No. 2 are examples of completed Form SC-3702 (formerly form DS-OS C68.).)

Unit Weight Testing

For concrete mixes, the goal is to obtain the required cement content in each cubic yard of concrete. If it were practical to accurately weigh all the ingredients required to produce one cubic yard of concrete, mix them thoroughly, and place them in an accurate cubic yard measure, then determining the proper amount of cement would be easy. If the batch which contained the specified amount of cement overflowed the cubic yard measure, it would actually not contain enough cement per cubic yard. If the batch did not fill the cubic yard measure, it would actually contain more cement than required per cubic yard. In the event that the mix contained too much or too little cement per cubic yard, adjustments would have to be made to produce nearly an exact cubic yard containing the specified amount of cement per cubic yard. Since it is not practical to check the cement content by making use of a cubic yard measure, the unit-weight test is used to provide the necessary data needed to make adjustments to the mix design and to make corresponding adjustments to the load weight.

In effect, these two procedures are the same, except that in the unit-weight test, a small sample, that is practical to handle, is used, and the volume produced per load is calculated by simple proportion. The unit-weight test is limited to the determination of the unit-weight of fresh concrete in pounds per cubic foot, but does include equations that may be used for calculating the volume of concrete per load and the actual cement content of the concrete produced.

In reviewing the calculations, only two factors are needed to calculate the volume of the load. The calculation for volume of load is as shown below:

\(^1\) 2010 SS, Section 90-1.01, General.

\(^2\) 2010 SS, Section 90-1.01D(2), Cementitious Material Content.
\[W = \text{Unit weight in pounds per cubic foot (the net weight of concrete in the calibrated bucket times the calibration factor)} \]

\[W_t = \text{Total scale weight in pounds per load of all the ingredients in the load of concrete.} \]

\[S = \text{Volume of concrete produced in cubic feet per load.} \]

Then \[S = \frac{W_t}{W} \]

By simple proportion the total weight in pounds-per-load of concrete, divided by its unit weight in pounds-per-cubic-foot, equals the quantity in the load in cubic feet. The important thing to remember is that you must have the actual weights of the water, cement and aggregates going into the load.

It is important to note that the unit-weight test does not check batching accuracy. The Field Engineer must first be assured that scales at the batch plant are accurate by the State Bureau of Weights and Measures inspection and seal. Batching accuracy can then be checked by observing the batching operation and by requiring the Contractor to determine the gross and tare weights on the mixer truck. The gross minus tare weight method should only be used as a rough check of batching accuracy, not as the value to be used in the calculations of batch volume\(^3\).

To determine the cement content of the concrete being produced, the actual weight of cement included at the batch plant will need to be known. The weight of cement should be verified by observation of the scale weights as the batch is being produced. The calculation for cement content is shown below:

\[*CC = \text{Cement content in pounds per cubic yard.} \]

\[W_a = \text{Number of pounds of cement in the load (verified by observation or recording equipment record).} \]

\[S = \text{Volume of concrete produced per load in cubic feet (determined from unit weight as described above).} \]

Then by proportion: \[CC/27 = W_a/S \text{ or } CC + 27W_a/S \]

*Note: \(CC \) = the actual weight of all cementitious materials.

The cement content in pounds per cubic yard is to 27 cubic feet per cubic yard, as the number of pounds in the load is to the number of cubic feet in the load. The number of pounds of cementitious material in the load, must be the actual amount of cement, as determined by plant scales. Weighing is the only way to know exactly how much cement is in the load.

\(^3\) 2010 Standard Specifications (SS) Section 90-1.02F(3)
When the unit-weight test is to be performed, the actual batching of the load to be checked should be observed and scale weights recorded for use in determination of load volume. The mixer drum should also be checked prior to batching to be sure that a significant quantity of water is not left in the drum and unaccounted for in batch weights. If you have not verified by observation or been assured by automatic recording batching equipment records that the intended amounts of cementitious material, water and aggregate were actually batched into the mixer, then the subject test and subsequent calculations cannot be used to determine the cement content.
<table>
<thead>
<tr>
<th>Test No.</th>
<th>Test By</th>
<th>Date</th>
<th>Mix No.</th>
<th>Pour No.</th>
<th>Load Cy</th>
<th>Delivery Slip No.</th>
<th>Penetration (Kelly Ball)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Example #1 for BCM 100-2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F = Calibration Factor for Measure

1. Gross Wt. of Measure, Concrete and Cover Plate: 98.08 lb
2. Wt. of Measure and Cover Plate: 24.25 lb
3. Net Wt. of Concrete Sample (line 1 minus line 2): 73.83 lb

W = Unit Wt. of Concrete Sample (line 3 times F)

- Line 1: 148.10 lb/ft³

Wₚ = Total Wt. of Cementitious Material Per Load, As Batched.

- 4725 lb

W₂₁ = Total Wt. of Fine Aggregate #1 Per Load, Incl. Moisture, As Batched.

- 8673 lb

W₂₂ = Total Wt. of Fine Aggregate #2 Per Load, Incl. Moisture, As Batched.

- 12250 lb

W₃₁ = Total Wt. of Coarse Aggregate #1 Per Load, Incl. Moisture, As Batched.

- 2044 lb

W₃₂ = Total Wt. of Coarse Aggregate #2 Per Load, Incl. Moisture, As Batched.

- lb

W₆₁ = Total Wt. of Water Per Load As Added at Plant. (8.33 Lbs Per Gal)

- 2044 lb

W₆₂ = Total Wt. of Water Per Load As Added at Job Site. (8.33 Lbs Per Gal)

- lb

S = Volume of Concrete Per Load in Cubic Ft.

\[S = \frac{W_a + W_{11} + W_{12} + W_{C1} + W_{C2} + W_{W1} + W_{W2}}{W} \]

\[= \frac{27992/148.1}{W} = 189.00 \text{ ft} \]

CY = Volume of Concrete Per Load in Cubic Yard = S/27 = 7.00 \text{ yd}

CC\(^*\) = Cementitious Material Content in Lb Per Cubic Yard of Concrete

Produced = Wₐ/Cy = 675.00 Lb/Yd

File Category 37

Notes:

* Refer to *California Test 18, Step D, Calibration of Measure*, for calculating the Calibration Factor.

CC\(^*\) = the actual weight of all cementitious material (cement and supplementary cementitious material).
STATE OF CALIFORNIA . DEPARTMENT OF TRANSPORATION

WORKSHEET FOR CALIFORNIA TEST 518

FORM SC-3702 (Formerly DS-OSC 68) (REV. 09/30/14)

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>TEST BY</th>
<th>Example #2 for BCM 100-2.0</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIX NO.</td>
<td>POUR NO.</td>
<td>LOAD CY</td>
<td>7</td>
</tr>
<tr>
<td>DELIVERY SLIP NO.</td>
<td>PENETRATION (KELLY BALL)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F = CALIBRATION FACTOR FOR MEASURE

1. **GROSS WT. OF MEASURE, CONCRETE AND COVERPLATE.**
 - 95.54 lb
2. **WT. OF MEASURE AND COVER PLATE**
 - 24.25 lb
3. **NET WT. OF CONCRETE SAMPLE** (line 1 minus line 2)
 - 71.29 lb

\[W = \text{UNIT WT. OF CONCRETE SAMPLE} \times \text{F} \]

- **W** = 143.0 lb/ft³

Wₜₐ = TOTAL WT. OF CEMENTITIOUS MATERIAL PER LOAD, AS BATCHED.

- 5593 lb

W₁₁ = TOTAL WT. OF FINE AGGREGATE #1 PER LOAD, INCL MOISTURE, AS BATCHED.

- 9394 lb

W₁₂ = TOTAL WT. OF FINE AGG. #2 PER LOAD, INCL MOISTURE, AS BATCHED.

W₁₃ = TOTAL WT. OF COARSE AGG. #1 PER LOAD, INCL MOISTURE. AS BATCHED.

- 10024 lb

W₂₁ = TOTAL WT. OF WATER PER LOAD AS ADDED AT PLANT. (8.33 LBS PER GAL)

- 2015.3 lb

W₂₂ = TOTAL WT. OF WATER PER LOAD AS ADDED AT JOB SITE. (8.33 LBS PER GAL)

S = VOLUME OF CONCRETE PER LOAD IN CUBIC FT.

\[
S = \frac{W_{ₜₐ} + W₁₁ + W₁₂ + W₁₃ + W₂₁ + W₂₂ + W₂₂}{W} = \frac{27026.3}{143} = 188.98 \text{ ft}
\]

CY = VOLUME OF CONCRETE PER LOAD IN CUBIC YARD = S/27 =

- 7.00 yd

CC = CEMENTITIOUS MATERIAL CONTENT IN LB PER CUBIC YARD OF CONCRETE

\[\text{PRODUCED} = \frac{W_{ₜₐ}}{\text{CY}} = \frac{799.06}{7.00} = 799.06 \text{ Lb/Yd} \]

NOTES:

* Refer to *California Test 18*, Step D, *Calibration of Measure*, for calculating the *Calibration F Factor.*

CC = the actual weight of all cementitious material (cement and supplementary cementitious material).
Removing the Requirements of CA Test 515 from Structural Concrete

California Test 515, *Method of Test for Relative Mortar Strength of Portland Cement Concrete Sand*, (CT 515) is for the purpose of determining the compressive strength developed by mortar using a given concrete sand, in relation to that developed by mortar using Ottawa sand, and indirectly measures the concrete-making properties of the sand being tested.

At the time this test was developed, the Department was responsible for producing a basic mix design and specifying the cement content. To concrete mix designers, the results of CT 515 provided assurance that the sand proposed for use would not result in an excessive amount of water to obtain the required workability. Currently, Portland cement concrete (PCC) is specified by either strength or by cementitious material content and requires the Contractor to propose mix designs and supply cementitious materials to meet those requirements.

Per CT 515, test samples are prepared with a fixed amount of cement and sand, while water is added until a required flow is achieved. This produces different water/cement ratios which affects compressive strength. When manufactured sands are tested, their angularity and surface profiles require additional water to achieve the required flow, lowering the mortar compressive strength results. This can lead to rejection of otherwise suitable sand for PCC.

The concrete industry and specifications have evolved so that PCC produced today is more than a mixture of aggregate, water, and cement. It is more commonly a mixture of aggregate, water, admixtures (i.e. water reducers, plasticizers, etc.), cementitious, and supplementary cementitious materials that are designed for a given strength and workability.

Provided that fine aggregates meet soundness, durability, sand equivalent, and organic impurity tests, and concrete mix designs meet the other specified requirements, the Department is confident that the requirements of CT 515 can be removed from the Specifications. Engineering needs will still be met, and removal of this requirement can produce additional benefits of utilizing the existing aggregate supply.

When compared to natural sands, manufactured sands are generally characterized as having sharp, angular shaped particles. These properties may result in higher water demand, and concretes that are generally hard to pump or finish. Increased angularity of the fine aggregate in a concrete mix may produce concrete that requires extra effort to place, consolidate and finish. These potential issues can be managed with proper proportioning (mix design) of concrete which may include the use of chemical admixtures such as water reducers and superplastizers.
Contracts Using the 2006 Standard Specifications

For contracts using the 2006 Standard Specifications (SS), the specifications\(^1\) requires fine aggregates used in concrete to meet quality requirements and one of those is mortar strengths relative to Ottawa sand (CT 515).

Concrete for structures that was not specified by compressive strength was to contain a minimum amount of cementitious material based upon the element of the structure. The specifications\(^2\) states that if the specified 28-day compressive strength is greater than 3,600 pounds per square inch, the concrete shall be designated by compressive strength and 42 days will be allowed to obtain the specified strength.

The *Construction Manual*\(^3\) requires that the frequency of sampling for compressive strength of concrete for bridges and major structures be 1 set of cylinders for every 300 yd\(^3\) or as required for acceptance. Minimum 1 set per job and class (mix design) of concrete for each day’s production of critical structural elements.

Contracts Using the 2010 Standard Specifications

For contracts using the 2010 Standard Specifications, the specifications\(^4\) no longer requires that fine aggregates used in concrete meet the mortar strengths relative to Ottawa sand (CT 515).

The minimum required compressive strength for all concrete elements in structures is specified\(^5\) as follows:

Except for minor structures, the minimum required compressive strength for concrete in structures or portions of structures shall be the strength specified, or 3,600 pounds per square inch at 28 days, whichever is greater.

If the specified 28-day compressive strength is 3,600 pounds per square inch or greater, the concrete is designated by compressive strength. For concrete with a 28-day compressive strength greater than 3,600 pounds per square inch, 42 days are allowed to attain the strength described.

The specifications\(^6\) requires that if the concrete has a described 28-day compressive strength greater than 3,600 pounds per square inch, or if prequalification is specified, prequalification of materials, mix proportions, mixing equipment, and procedures proposed for use will be required prior to placement of the concrete.

\(^1\) 2006 SS, Section 90-2.02B, *Fine Aggregates.*

\(^2\) 2006 SS, Section 90-1.01, *Description.*

\(^3\) [Http://www.dot.ca.gov/hq/construc/constmanual/](http://www.dot.ca.gov/hq/construc/constmanual/)

\(^4\) 2010 SS, Section 90-1.02C(3), *Fine Aggregate.*

\(^5\) 2010 SS, Section 90-1.01D(5), *Compressive Strength.*

\(^6\) 2010 SS, Section 90-1.01D(5)(b), *Prequalification.*

All Structure Construction personnel should continue to ensure that quality assurance testing for structural concrete is kept current with the requirements of the Construction Manual, i.e. compressive strength tests for every 300 yd³ or as required for acceptance and that job sampled compressive strength tests are taken on the earliest use of a concrete mix.
Concrete Mix Design Database

The Materials Engineering and Testing Services (METS), Office of Structure Materials has developed a Concrete Mix Design Check Program that stores mix designs in a database. The Concrete Mix Design Check Program verifies that the materials in the concrete mix design meet contract specifications\(^1\). As the database is populated, the Structure Construction (SC) Structure Representatives may save time when a concrete mix design submittal duplicates a previously checked concrete mix design. This database will enhance the Department’s ability to analyze the effect of using a specific material, e.g., aggregate from a specific source or a manufacturer’s blended cement as well as identify common components of mix designs when material research is occurring.

A volume based concrete mix design check program is available for use on the Structure Construction (SC) Intranet\(^2\). At this time the Concrete Mix Design Check Program verifies the concrete mix design meets the contract specifications, but does not perform volume based calculations. The program is being modified to perform volume based calculations, until then, it is necessary to perform use both programs.

When checking concrete mix designs, SC Structure Representatives are to use the Concrete Mix Design Check Program. Prior to starting the program, it is helpful to fill out the Concrete Mix Design Submittal Checklist, Form SC-4303, as shown in Attachment No. 1. Then proceed as follows:

1. Open the following link: http://onramp.dot.ca.gov/hq/esc/mets/structure_materials/
2. Start the Concrete Mix Design Check Program by inputting the Contract Number (District EA, xxxxxxx4 or Project ID, 10 digits EFIS No.) for your project in the Projects field and click Go. If the EA is not recognized, contact the local Structure Materials Representative for assistance.
3. Click on the Concrete Mix Designs tab.
4. Check the list of approved mix designs for that specific project to see if your mix design has already been approved or not.
5. To check a new Mix Design:
6. Enter j2guest in the User ID field and enter “guest” in the password field.
7. Click on the Concrete Mix Designs tab.
8. Click on the Add a new concrete mix design for this project bar.
9. Begin by entering data into fields on each tab and save data before moving to the next tab. Tab subject headings are listed below:
 - SSPs
 - Cement
 - Aggregates
 - Admixtures
 - Cast in Place
 - SCM
 - Gradation
 - Water

\(^1\) 2010 Standard Specifications, Section 90, Concrete.
10. Remember to click Save before opening a new information tab.
11. The related equation check results are available by clicking on the last tab, Results. A final report is available by clicking on the View Report link at the top of the results page. Both documents can then be printed for the project records.

If issues should arise during the use of the concrete mix design program, contact your Structural Materials Representative (SMR).³

CONCRETE MIX DESIGN SUBMITTAL CHECKLIST

The mix design check program requires detailed material information that could be overlooked when the submittal is prepared. The review process can be shortened by giving the following checklist to the Contractor at the preconstruction meeting and using the checklist as an initial check when a mix design submittal is received.

A) CONCRETE USAGE

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Is the concrete designated by compressive strength?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>If the concrete is for approach slab or bridge deck, is shrinkage data available?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Is certified test data or trial batch test results data available?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Does the data include:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date of mixing,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mixing equipment and procedures used,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The size, weight, type and source of all ingredients used,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penetration or slump, if applicable,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The air content,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The age at testing and strength of all tested cylinders.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B) CEMENT

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>On Authorized Material List?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Conforms to ASTM C-150?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>If Type II, III, or V Portland Cement does it contain more than .60% by mass of alkali materials?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Autoclave Expansion > .50%?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>If Type II Portland Cement does Tricalcium Silicate Cement exceed 65%?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C) BLENDED CEMENT

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Blended Cement used? (If No, skip to D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Blended Cement Materials on Authorized Material List?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D) SUPPLEMENTARY CEMENTITIOUS MATERIALS (SCM’s)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>All SCM’s on Authorized Material List?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D-1) FLYASH

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Is Flyash Used? (If No, skip to D-2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Meets AASHTO M295, Class F?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Alkali total (expressed as equivalent Na₂O+0.658 K₂O) included?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CaO content included?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D-2) ULTRA FINE FLYASH

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Is Ultra Fine Flyash used? (If No, skip to D-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Meets AASHTO M295, Class F?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sulfur Trioxide (SO₃) content included?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Loss on ignition % included?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D-2) ULTRA FINE FLYASH

- **Yes**/No Alkali total (expressed as equivalent Na$_2$O·0.658 K$_2$O) included?
- **Yes**/No Particle size distribution included?
- **Yes**/No Strength Activity Index included?
- **Yes**/No Expansion at 16 days via ASTM C1567 included?

D-3) RAW OR CALCINED NATURAL POZZOLAN

- **Yes**/No Is Raw or Calcined Natural Pozzolan used? (If No, skip to D-4)
- **Yes**/No Meets AASHTO M295, Class N?
- **Yes**/No Alkali total (expressed as equivalent Na$_2$O·0.658 K$_2$O) included?
- **Yes**/No CaO content included?

D-4) METAKAOLIN

- **Yes**/No Is Metakaolin used? (If No, skip to D-5)
- **Yes**/No Meets AASHTO M295, Class N?
- **Yes**/No Silicon dioxide (SiO$_2$) and Aluminum Oxide (Al$_2$O$_3$) content included?
- **Yes**/No Calcium Oxide (CaO) content included?
- **Yes**/No Sulfur trioxide (SO$_3$) content included?
- **Yes**/No Loss on ignition included?
- **Yes**/No Alkali total (expressed as equivalent Na$_2$O·0.658 K$_2$O) included?
- **Yes**/No Particle size distribution included?
- **Yes**/No Strength Activity Index included?

D-5) GROUND GRANULATED BLAST FURNACE SLAG (GGBFS)

- **Yes**/No Is Ground Granulated Blast Furnace Slag Used? (If No, skip to D-6)
- **Yes**/No AASHTO M302 Grade 100 or 120?

D-6) SILICA FUME

- **Yes**/No Is Silica Fume used?
- **Yes**/No Meets AASHTO M307?
- **Yes**/No Reduction in mortar expansion included?

E) AGGREGATE

- **Yes**/No Are the coarse and fine aggregates on the innocuous aggregates list?
- **Yes**/No Are proposed gradation(s) included?
- **Yes**/No Aggregates on Innocuous Aggregates List?
 (If Yes, reduced “X” allowed in the 2010 *Standard Specifications*, Section 90-1.02B(3), *Supplementary Cementitious Materials*)

E-1) COARSE AGGREGATE

- **Yes**/No Loss via CT 214 included?
- **Yes**/No Loss in Los Angeles Rattler included (CT 211)?
- **Yes**/No Cleaness Value included (CT 227)?
E-2) FINE AGGREGATE

- **Loss via CT 214 included (*waived if durability index of fine aggregate is 60 or greater)?**
 - Yes ☐ No ☐

- **Durability Index via CT 229 included (*only necessary if CT 214 does not meet qualifications)?**
 - Yes ☐ No ☐

- **Organic Impurities Results Included (CT 213)?**
 - Yes ☐ No ☐

- **Sand Equivalent Included (CT 217)?**
 - Yes ☐ No ☐

F) CHEMICAL ADMIXTURES

- **Chemical Admixture(s) Used (If No, skip to G)?**
 - Yes ☐ No ☐

- **On Authorized Material List?**
 - Yes ☐ No ☐

- **Dosage verified per plans or manufacturer’s recommendations?**
 - Yes ☐ No ☐

G) AIR ENTRAINING ADMIXTURE

- **Air-Entraining Admixture(s) Specified or Used?**
 - Yes ☐ No ☐

- **On Authorized Material List?**
 - Yes ☐ No ☐

- **Dosage verified per plans or manufacturer’s recommendations?**
 - Yes ☐ No ☐
Concrete Placement During Hot Weather
(Criteria for weather-related non-working days)

If concrete placement is the controlling item of work, if all of the following applicable practices are employed, and the Contractor cannot produce concrete which complies with the specified temperature; the placement of concrete must not be commenced and a non-working day allowed:

1. Chipped or crushed ice is used in place of all mixing water, provided that a commercial supply of ice is available within 80 kilometers (50 miles), measured along the highway, of the project. If a commercial supply of ice is not available within 80 kilometers of the project, the coolest available water is utilized for mixing, i.e., well water instead of above ground stored water.

2. Coarse aggregate stockpiles are kept continuously wet to maximize evaporative cooling.

3. Concrete pours are scheduled so that placement of the concrete is completed prior to 12:00 noon.

1 2010 Standard Specifications, Section 8-1.05, Time.
2 2010 Standard Specifications, Section 1-1.07B.2.2.1, Glossary – working day.
Minimizing Early Age Concrete Bridge Deck Cracks

One of the primary factors affecting concrete durability is concrete shrinkage and the resultant cracking that serves as a pathway for corrosive materials like de-icing salts. The Standard Specifications (SS) place limits on shrinkage by requiring that the contractor-proposed concrete mix designs for bridge decks and approach slabs include AASHTO1 T160, 28-day shrinkage test results as part of the mix design. Overall shrinkage in the forms of autogenous and drying shrinkage is collectively limited by specifications to 0.045 percent for bridge decks and 0.05 percent for approach slabs2. The review process does not end with the mix design check. The Structure Representative must verify that concrete delivered to the project is consistent with the approved mix, as variations in aggregate gradation, cleanliness value, sand equivalence, cementious material content, and water-cement ratio can significantly increase the amount of shrinkage that will occur after the concrete has hardened.

Cracking that occurs before concrete has set is referred to as plastic cracking. Concrete finishing and curing operations can directly affect the development of plastic cracks; this type of cracking occurs on concrete surfaces as the top layer dries and shrinks quicker than the moist inner concrete. Initially, bleed water rises within fresh concrete until it reaches the surface and evaporates, but as the internal water supply is depleted, the bleed water flow diminishes. Surface drying starts when the evaporation rate exceeds the bleed rate. Usually associated with warm weather concreting, plastic cracking can occur whenever the shrinkage strain exceeds the surface strength. Unless additional moisture is provided to the surface, plastic cracks can appear. Plastic cracks are shallow, usually less than 2 inches deep, irregular in pattern, and spaced about 1 to 3 feet apart. In any 500 sq ft portion of a new deck surface, if there are more than 50 feet of cracks having a width at any point of over 0.02 inch, a Contractor repair action is required per the Standard Specifications3. The standard repair for excessive cracking is methacrylate treatment. An example of plastic cracks on the bridge deck surface is shown in the Figure No. 1.

1 AASHTO is the American Association of State Highway and Transportation Officials.
2 SS 2010, Section 90-1.02A General.
3 SS 2010, Section 51-1.01D(4)(d) Crack Intensity.
Chapter 5, Figure 5-22, of the *SC Concrete Technology Manual*, is an Evaporation Rate Nomograph\(^4\), which relates the following environmental factors to determine the evaporation rate:

1. Air temperature.\(^5\)
2. Relative humidity.
3. Concrete temperature.
4. Wind velocity.

When the nomograph originated approximately 50 years ago, bleed water typically replaced surface water until evaporation rates increased to about 0.2 pounds per square foot per hour where surface drying began to occur. The seven precautions listed below were developed to counteract plastic cracking and should be contemplated by the Contractor as part of the concrete placement plan.

1. Ensure aggregate stockpiles are maintained in the saturated surface dry condition.
2. Ensure surfaces coming into contact with fresh concrete, like forms and subgrade, are thoroughly moistened prior to placement.
3. Erect temporary windbreaks to reduce wind velocity over the concrete surface.
4. Erect temporary sunshades to reduce concrete surface temperatures.
5. Cool the mixing water and aggregates in extreme conditions to keep the fresh concrete temperature low.
6. Reduce time between placing and start of curing, by eliminating delays during construction.
7. Use water fogging sprays to maintain high humidity and surface moisture.

Because of advancements in concrete technology, the threshold for precautionary measures can occur at a much lower evaporation rate. For example, if a high range water reducing admixture is

\(^4\) American Concrete Institute (ACI) 308, *Standard Practice for Curing Concrete*

used, the water/cement ratio will be reduced and the final set time could be extended; the result is
that the amount of water that can bleed to the surface will be reduced, the time when fresh
concrete is exposed to plastic cracking is extended, and the risk of plastic cracking is increased.
Another example is the situation where an ultrafine supplementary cementitious material (SCM)
like silica fume is included in the concrete mix. Ultrafine SCMs block the capillaries that bleed
water would normally follow to reach the surface, so the amount of bleed water that reaches the
surface is reduced and the risk of plastic cracking is increased.

The Standard Specifications6 require two curing methods for bridge decks, the water cure and the
curing compound method. The water cure specifications require the application of water as a fine
mist to maintain bridge deck surface moisture until curing medium is applied. If the curing
medium is not being applied, water misting must be used until concrete has set, then the deck
must be continuously sprinkled until the end of cure.

For the best results, mist should be finely atomized water which gradually falls to the bridge
deck. A good indication that the water spray is appropriately atomized is that the particles
descend at approximately 1 foot per second. Misting should be sprayed from an upwind position
over the bridge deck, not onto the deck, raising the humidity in the air above the deck. As the
spray falls to the bridge deck, the objective is to maintain a surface sheen but avoid runoff, which
would erode the surface.

Curing compound is applied to bridge deck concrete after finishing the surface, immediately
before the moisture sheen disappears from the concrete surface but before drying shrinkage or
craze cracks start to appear.7 Curing compound is applied at a nominal rate of 150 square feet per
gallon, such that there is uniform coverage without any thin areas or surface runs, by a power-
operated spraying device. The curing compound is applied to facilitate concrete strength gain
during the cure process; it does not preclude the possibility of plastic cracking, as shown in
Figure No. 2.

If there is a delay in the placement of curing compound that may lead to surface dryness and
cracking, surface fogging is required to keep the surface moist8. After applying curing
compound, per the water method, the surface must be misted until covered with curing medium9.

6 2010 SS, Section 51-1.03H or 2006 SS, Section 90-7 \textit{Curing Concrete Structures}
7 2010 SS, Section 90-1.03B(3) or 2006 SS, Section 90-7.01B \textit{Curing Compound Method}
8 2010 SS, Section 90-1.03B(2) or 2006 SS, Section 90-7.01A \textit{Water Method}
9 2010 SS, Section 90-1.03B(2) or 2006 SS, Section 90-7.01A \textit{Water Method}
Figure No. 2: Example of Plastic Cracking Occurring After Curing Compound Application.
(This page left intentionally blank.)
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Memo No.</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>112-1.0</td>
<td>09/02/1974</td>
<td>Longitudinal Deck Construction Joints</td>
</tr>
<tr>
<td>112-2.0</td>
<td>11/01/1982</td>
<td>Testing Bridge Deck Surfaces for Compliance with the Straightedge or Profilograph Requirements</td>
</tr>
<tr>
<td>112-2.1*</td>
<td>09/15/1999</td>
<td>Profile Counts of Deck Profilographs</td>
</tr>
<tr>
<td>112-3.0</td>
<td>09/02/1974</td>
<td>Supports for Finishing Machines</td>
</tr>
<tr>
<td>112-4.0</td>
<td>11/30/2020</td>
<td>Friction Testing of Bridge Decks</td>
</tr>
<tr>
<td>112-5.0</td>
<td>06/17/2014</td>
<td>Methacrylate Deck Crack Treatment</td>
</tr>
<tr>
<td>112-5.1*</td>
<td>-</td>
<td>(Blank – Removed 06-17-14)</td>
</tr>
<tr>
<td>112-5.2*</td>
<td>-</td>
<td>(Blank – Removed 06-17-14)</td>
</tr>
<tr>
<td>112-6.0</td>
<td>05/27/2011</td>
<td>Quieter Bridge Deck Construction</td>
</tr>
</tbody>
</table>
(This page left intentionally blank.)
Longitudinal Deck Construction Joints

Expanded Metal Lath Forms

Expanded metal lath may be used to form longitudinal deck construction joints provided the joint is constructed in compliance with the following requirements.

1. A continuous wood strip, the height of the bottom steel clearance, shall be securely fastened to the deck form.

2. Another continuous wood strip, the height of the top steel clearance, shall be fastened securely on top of the top steel. This strip shall be set to grade and held firmly in place by means independent of the reinforcing steel.

3. The expanded metal lath shall be securely fastened between these wood strips.

4. Concrete along the face of the metal lath form must be cured by the water method.

5. Before the second pour is made, wood strips must be removed and any fractured concrete removed. Metal lath that is firmly embedded in concrete may remain in place provided it has the same clearance from the concrete surface as the specified steel clearance. Any loose mesh must be removed.
Testing Bridge Deck Surfaces for Compliance with the Straight Edge or Profilograph Requirements

General Information

All deck surfaces must be tested to be assured of compliance with the Bridge Deck Finishing Specifications. Note that the Specifications have the following requirements:

1. Concrete decks or concrete approach slabs, which are to be covered with one inch or more of another material, will be tested both longitudinally and transversely with a 12-foot long straightedge.

2. The completed roadway surfaces of structures, approach slabs, and the adjacent 50 feet of approach pavement will be tested with a bridge profilograph in the longitudinal direction, and with a 120-foot straightedge in the transverse direction.

Note that if a concrete deck were specified to have a two inch AC overlay, it would be necessary to test the concrete deck both longitudinally and transversely with a 120-foot straightedge prior to placing the AC overlay; and then after placing the overlay, the AC surface should be tested longitudinally with a bridge profilograph and transversely with a 120-foot straightedge.

Straightedging Deck Surfaces

When the Specifications require the use of a straightedge to check deck surfaces, the decks must be systematically checked with a 120-foot straightedge over the entire area. This should be done as soon as the concrete can be walked upon without damaging the deck surface, and should be completed prior to the time that the deck surface is covered with rugs, mats, or other material that would interfere with the straightedging operations. Any places which do not meet specifications should be marked with red spray paint.

It is the Contractor's responsibility to straightedge the deck while the concrete is wet. Structure Construction personnel should not straightedge wet concrete except under unusual circumstances.

Profilograph Testing of Deck Surfaces

When the Specifications require the use of the Bridge Profilograph to check deck surfaces, the deck will be tested with the profilograph in accordance with the Test Method No. Calif. 547. High points in excess of 0.25 inch should be marked with red spray paint. It shall be the Contractor's responsibility to schedule the profilograph testing operations. The Contractor shall
request testing at least 7 days prior to need, and shall ensure that the entire area to be tested has been cleared and cleaned of all obstructions.

Because the Districts currently have the expertise in maintaining highway profilographs, they will also have the responsibility for storing and maintaining the bridge profilographs. Therefore, when bridge profilographs are needed, they should be obtained from the District Construction or Materials Department. The method of handling the profilographs varies somewhat in the various Districts. It will therefore be necessary for the Structure Representative to become familiar with the procedures, and persons to contact, in the District in which he is working. When not actually in use on a project, the profilograph should be returned to the proper District authority.

Letter to Contractor

As soon as possible after testing the deck with the profilograph and/or the straightedge, a letter should be written to the Contractor advising him that the deck has been checked for compliance with the profilograph requirements and/or the straightedge requirements. The letter should describe the specific locations that fail to meet the straightedge specifications, or describe any deficiencies in meeting the profilograph specification. The letter should state that the specific deficiencies must be corrected before the contract can be accepted. After the deficiencies have been corrected, or if the entire deck initially complies with the applicable straightedge or profilograph requirements, then write the Contractor a letter stating that the deck was checked and that it complies with the profilograph requirements and/or the straightedge requirements whichever is applicable. (See Attachment No. 1 for a sample letter relative to concrete decks or concrete approach slabs which are to be covered with one inch or more of another material. See Attachment No. 2 for a sample letter relative to the completed surfaces of bridge decks, approach slabs, and adjoining 50 feet of approach pavement.)

The Specifications allow the Engineer to point out a contract deficiency to the Contractor at any time. However, once the Engineer has completely satisfied himself that the deck surface complies with the Specifications, and has given the Contractor a letter advising him of this; it is the mark of an ethical Engineer to consider the matter closed.
The finished surface of the deck concrete at __
Bridge No. ______ has been tested for compliance with the straightedge requirements in Section 51-1.17, *Finishing Bridge Decks*, of the Standard Specifications.

(USE EITHER)

All areas tested were found to comply with the specified straightedge requirements.

(OR)

Areas that do not meet the straightedge requirements have been marked, and are located as noted below:

(EXAMPLES) Sta. 300+52 (5 ft. to 15 ft. from RT. EOD)
Sta. 301+60 (10 ft. from Rt. EOD)
Hinge in Span 3 (Entire bridge width)
Transversely across longitudinal construction joint. (Sta. 300+10 to 302+10)

These deficiencies must be corrected before the ______________________________ overlay is placed. (describe overlay)

Notification shall be given to the Resident Engineer prior to performing the corrective action.
The completed surface of (bridge deck) (approach slab) (adjoining 50 feet of approach pavement) at Bridge No. ________, Bridge Name ______________________ has been tested for compliance with the profilograph requirements and the transverse straightedge requirements of the Standard Specifications.

(USE EITHER)

All areas tested were found to comply with the specified profilograph (and) (or) the transverse straightedge requirements.

(AND/OR)

The profilograph trace indicates that there are high points in excess of 0.25 inch and that the profile count exceeds 5 per hundred feet. High points in excess of 0.25 inch have been marked with red spray paint. A profile trace is available for your examination at the Resident Engineer's office. The completed surface must be ground in accordance with the requirements in Standard Specifications Section 42, *Groove and Grind Pavement*, until the specified smoothness tolerances are met.

(AND/OR)

Straightedging in a transverse direction indicated that the roadway surface varied more than 0.02 foot from the lower edge of a 120-foot long straightedge at the following locations: Areas that do not meet the straightedge requirement have been marked, and are located as noted below:

(EXAMPLE) 4 foot from the left EOD between Sta 300+00 and Sta. 300+75.

Longit. const. jt. at center of left bridge between Sta. 300+50 and Sta. 301+10.

These deficiencies must be corrected before the contract can be accepted. Notification shall be given to the Resident Engineer prior to performing the corrective action.
Subject: Profile Counts of Deck Profilographs

This Bulletin clarifies references to 'profile count' in Section 51-1.17, Finishing Bridge Decks, of the Standard Specifications. The 1992 edition of the specification states that:

The surfaces shall have a profile trace showing no high points in excess of 0.25-inch and the portions of the surfaces within the traveled way shall have a profile count of 5 or less in any 100-foot section.

This “profile count” refers to the summation of the height of scallops that are greater than 0.03" high and measured to the nearest 0.05" and expressed in tenths of inches. Thus, a count of 5 would reflect 0.5" of scallops recorded in a 100 ft section of profile trace. This is outlined in California Test 547.

The 1995/1999 editions of the specification states:

The surfaces shall have a profile trace showing no high points in excess of 6.35 mm, and the portions of the surfaces within the traveled way shall have a profile count of 13 or less in any 30-m section.

This profile count refers to the same criteria as listed above for the 1992 specification with the exception that the value is expressed in millimeters. Thus, if you had a count of five after following the procedure in California Test 547, you would multiply this value by 2.54 to obtain the “metric” value of the profile count.
Use the templates required by California Test 547 and perform the evaluation in accordance with the test method. When reporting the “count”, you **multiply the count** (which represents tenths of an inch in a hundred feet) by **2.54** to obtain the “count” to compare to the metric specification reference (i.e. a count of 7 using the templates would equate to a metric profile count of 17.8).

c: BCR&P Manual Holders
 Consultant Firms
 BFelker, Construction Program Manager

 “Providing the technical expertise for quality built structures”
Supports for Finishing Machines

RAILS

The Standard Specifications require that "Rails for support and operation of finishing machines or hand-operated strike-off devices shall be completely in place and firmly secured for the scheduled length for concrete placement before placing of concrete will be permitted."

"Rails" as used in this specification shall be interpreted to be the continuous structural members which are readily adjustable for elevation, and which support the finishing equipment. These "Rails" must be in place for the entire length of the pour.

Various devices may be placed on top of these rails for purposes of wearing or spacing. Such devices do not have to be full length and may be "leap-frogged" around the finishing equipment.
Friction Testing of Bridge Decks

After deck surfaces and approach slabs have been textured, the engineer tests the coefficient of friction of the concrete surfaces under California Test 342\(^1\). Refer to Standard Specifications\(^2\) for coefficient of friction testing requirements.

Newly Constructed Bridge Decks

Coefficient of friction testing must be performed on each deck. The test must be performed at a location which is representative of that portion of the deck surface exhibiting the lowest coefficient of friction. Once the representative area has been tested and shown to meet the specification, more tests will not be required unless, in the opinion of the Structure Representative, the test results are not representative of the bridge deck skid resistance.

Schedule the skid test 25 days in advance.

Existing Structures Bridge Deck Treatment

Coefficient of friction testing must be performed on the treated test area for the methacrylate\(^3\) or the trial overlay for polyester\(^4\), and the test result must comply with the specifications. The treated test area or trial overlay will then be authorized and used as a standard of comparison for the production work. Using this comparative process will allow Caltrans to better use the available friction testing resources.

Methacrylate Resin Bridge Deck Treatment

The following are some of the requirements for methacrylate resin bridge deck treatment:

- The contractor is to notify the engineer at least 15 days before treating the test area.

\(^1\) Method of Test for Surface Skid Resistance with the California Portable Skid Tester

\(^2\) 2018 Standard Specifications (SS), Section 51-1.01D(3)(b)(iii), Coefficient of Friction.

\(^3\) 2018 SS, Section 60-3.03B, Methacrylate Resin Bridge Deck Treatment

\(^4\) 2018 SS, Section 60-3.04B, Polyester Concrete Overlays
• The test area demonstrates:
 1. Compliance with the specifications.
 2. That the work will be completed within the time allowed.
• The engineer performs friction testing of the treated test area. Ten days will be allowed after completion of the test area for the engineer to perform the testing.
• The test area must be authorized before the contractor starts deck treatment activities.
• The authorized test area will be the standard of comparison in determining the acceptability of treated deck surfaces.
• The engineer may perform testing under California Test 342 to verify the coefficient of friction of the treated deck surfaces.

The authorized test area will provide a standard of comparison for the Structure Representative to make a visual inspection between the treated test area and the production work for acceptance. The Structure Representative may perform additional testing to verify the coefficient of friction if the contractor’s materials, methods, or procedures have changed from those used on the test area.

There are additional specification requirements that need to be met before authorizing traffic or equipment onto the treated deck surface (overlay). See BCM 112-5.0, Methacrylate Deck Crack Treatment, for additional information.

See Scheduling Skid Testing below.

Polyester Concrete Overlays

The following are some of the requirements for polyester concrete overlays:

- The contractor is to notify the engineer at least 15 days before constructing the trial overlay.
- Trial overlay demonstrates:
 1. Compliance with the specifications.
 2. That the work will be completed within the time allowed.
- The engineer performs friction testing of the trial overlay. Ten days will be allowed after completion of the trial overlay for the engineer to perform the testing.
- Trial overlay area must be authorized before the contractor starts production overlay activities.
• The authorized trial overlay will be the standard of comparison in determining the acceptability of polyester concrete overlay.

• The engineer may perform testing under California Test 342 to verify the coefficient of friction of the polyester concrete overlay.

The authorized trial overlay will provide a standard of comparison for the Structure Representative to make a visual inspection between the trial overlay and the production work for acceptance. The Structure Representative may perform additional testing to verify the coefficient of friction if the contractor’s materials, methods, or procedures have changed from those used on the trial overlay.

Trial overlays should be constructed at a location within the project limits that will facilitate testing and inspection by the engineer and also simulate climate and weather conditions. The depth/thickness of the concrete base for the trial overlay must have the size, strength, and load capacity to accommodate the equipment used for the work. A minimum 4” slab thickness is recommended. After acceptance of all polyester concrete overlay surfaces the trial overlay and concrete base must be disposed of.

See Scheduling Skid Testing below.

Scheduling Skid Testing

To meet the 10-day test window requirement, and to ensure that there are no delays to the contract, the tests will have to be scheduled as soon as possible. Between the 15-day notification by the contractor prior to performing the test area or trial overlay, and the 10-day allowance to perform the testing, this should be sufficient time to schedule and complete the test.

Coefficient of friction testing can be arranged by contacting the appropriate staff listed on the instruction tab of *Request for Portable Skid Test* form.

Structure Construction inspection personnel witnessing the skid test must verify that the skid test machine has valid calibration under *California Test 114*.
Methacrylate Deck Crack Treatment

Methacrylate deck crack treatment uses methacrylate resin to seal cracks in concrete bridge decks and is designed to be a crack sealer only. It is not a surface overlay. Methacrylate resin is used to repair newly placed decks that exceed the crack intensity limits and to rehabilitate existing bridge decks that have deteriorated over time.

Typically, the resin is applied to the deck surface by hand or mechanically sprayed and spread with a broom or squeegee. In general, the application of methacrylate on a bridge deck is a simple process. However, careful inspection is needed to assure the treatment is effective and that the treated surface maintains a desirable roadway surface condition.

Attachment No. 1 contains inspection guidelines to assist Structure Construction personnel when inspecting a methacrylate application.

Additional information regarding methacrylate is available in the Concrete Technology Manual.
Methacrylate Deck Treatment Inspection Guidelines

Prior to Starting Work

- Review Standard Specification\(^1\).
- Review and authorize the Contractor’s program for public safety associated with the use of methacrylate resin as required in the Special Provisions.
- Verify the methacrylate was tested and released by METS (Form TL-0101, *Sample Identification Card*).
- Verify the sand and absorbent material meets the specification\(^2\) requirements.
- Refer to BCM 112-4.0, *Friction Testing of Bridge Decks*, for instructions on obtaining verification of the coefficient of friction for the test area.
- Hold a meeting with the Contractor to discuss the required test area, skid testing, application equipment, safety, abrasive cleaning methods, and a contingency plan if the resin does not cure in time.

During Construction Operations

- Prior to treating the required deck areas, ensure that the methacrylate deck treatment has been performed on a test area and the results are accepted. The main purpose of conducting a test area is to obtain the necessary information (i.e., application rate, initiator/promoter amount, set time, coefficient of friction, etc.) to assure that the work within the traveled way can be completed without disruption to the traveling public.

- The concrete deck surface must be cleaned prior to methacrylate application. Steel shot blasting is specified to prepare the deck surface. If the deck surface becomes contaminated before the methacrylate is applied the deck surface must be cleaned again\(^3\). Check the contract Special Provisions for other specified deck cleaning methods, if any.

- Prior to applying the methacrylate, weather conditions and deck surface temperature should be checked. Current specifications limit the relative humidity to 85 percent or lower at the time of treatment. The deck surface needs to be dry and between 50 to 100 degrees F.

- Methacrylate resin can be applied by hand or with mechanical equipment. If mechanical sprayers are used they must be the *airless* type. Compressed air spray application creates

\(^1\) 2010 Standard Specifications (SS), Section 15-5, *Bridge Rehabilitation* and Section 51-1.01D(4)(d), *Crack Intensity*.

\(^2\) 2010 SS, Section 15-5.05B, *Materials*.

\(^3\) 2010 Standard Specifications (SS), 15-5.01C(2), *Prepare Concrete Deck Surfaces*, or 2006 Special Provisions (SP), *Clean Bridge Deck*.
mist and cannot be used. Typical application involves hand placing with buckets and spreading with a squeegee or broom.

- The resin must be placed within 5 minutes of the initiator being mixed. Excess material needs to be distributed (by a squeegee or broom) within 10 minutes of resin placement. The redistribution of the excess material is important to ensure cracks are completely filled and to avoid thick glassy spots that may reduce the coefficient of friction. Spread rates are specified in the contract specifications; the exact spread rate is determined by the Engineer and will vary depending on the surface condition, aggregate type, and roughness of the deck surface. The specifications suggest an application rate of 90 ft²/gal. As a rule of thumb, 100 ft²/gal (2.45 m²/liter) is a good starting point for normal concrete. Lightweight concrete will require more resin and may reduce the spread rate to about 65 ft²/gal (1.6 m²/liter). For very dense concrete, less resin is required and the spread rate can increase to about 175 ft²/gal (4.29 m²/liter). As a rule of thumb the surface above cracks should be slightly wet with resin, 20 minutes after application. This is an indicator that the cracks are completely filled. If dry after 20 minutes, increase the amount of resin being applied. If ponding is evident, reduce the amount of resin. It is essential that the resin remains fluid long enough (40 to 90 minutes) for the cracks to be filled. If rapid gelling occurs the material should be rejected.

- Methacrylate resin must only be applied to the deck area. The Contractor is required to protect or avoid placing resin on other parts of the structure (e.g., barrier rails, joints, drainage facilities, etc). It is important to ensure resin does not leak or drip into waterways, roadways, or parking areas below the bridge. Sealing of joints and scupper drains is one method to prevent this.

- Sand is applied to increase skid resistance. Careful inspection of the deck surface after the sand application is needed to assure that the sand adheres to the deck. Any areas found absent of sand adhesion must be abrasively blasted. Vacuum attachments must be used during abrasive blasting operations.

- Apply absorbent material. The absorbent material removes oily residue that can form and prevents tracking of residue onto the adjacent pavement.

Prior to Opening the Treated Area to Traffic, the Following Requirements Must be Met

1. The treated surface is tack free and not oily.
2. The applied sand cover adheres and resists brushing by hand.
3. Excess sand and absorbent material has been removed.
4. No material will be tracked beyond the limits of treatment by traffic.
5. The treated deck should be comparable to the test area.

Typical Problems Associated with Bridge Deck Methacrylate Resin Treatment Operations

4 2010 SS, Section 15-5.05C, Construction, or 2006 SP, Bridge Deck Methacrylate Resin Treatment
5 2010 SS, Section 15-5.05C, Construction, or 2006 SP, Bridge Deck Methacrylate Resin Treatment
- Oiliness—The tack, or the oiliness, of methacrylate resin can create serious problems, especially in cold night closures. Opening traffic lanes prior to the complete cure of the resin can cause the tracking of residue, oiling of cars, and/or reduced skid resistance. This issue is due to oxygen inhibition of the top surface. Methacrylate resin cures from the lack of oxygen, thus the exposed surface tends to cure last. Even if the bulk of the resin sets up and can resist penetration with a screwdriver, the surface can still be covered with an oily sheen. Modern methacrylate resins contain additives to prevent this phenomenon.

- Inability to spread material - Heat and sunlight can cause methacrylate to set faster. Occasionally, the resin will set before the material is spread. This causes the worst case for crack sealing as it prevents the resin from properly flowing into the cracks.

- Sand does not adhere—Resin that sets prior to applying sand will result in the creation of glassy spots. The glassy areas may have reduced skid resistance and remedial work to repair these areas would be required. Methods that have been proven effective are to abrasively blast the glassy areas. For larger areas where the sand was not promptly applied and didn’t adhere, resin and sand can be reapplied (time permitting).
Quieter Bridge Deck Construction

Background

Quiet pavement strategies produce traffic noise reduction benefits over time without compromising safety, ride quality, and durability of pavement surfaces. The noise emitted from the highway system has become a subject of complaint and environmental impact to residents, specifically to those in urban areas. The primary traffic sources of generated noise are classified into three categories: propulsion, aerodynamics, and tire/pavement interface. At highway speed the dominant noise is generated at the tire/pavement interface. Engineers throughout the world have been researching methods to reduce the noise impacts of highway systems beyond building sound barriers. These methods include improvement of the roadway pavement types and textures to reduce tire/pavement interface noise.

The standard bridge deck texture method used by California contractors is transverse texturing which has proven to be significantly louder than longitudinally tined Portland Concrete Cement (PCC) pavement measured by the On-Board Sound Intensity (OBSI) method. Experience has shown that contractors aggressively texture the bridge deck to ensure meeting the specified minimum coefficient of friction value. Aggressive texturing often results in a uniformly unbalanced or uneven surface known as shingling which further increases the vehicle tire noise.

Quiet Pavement Research (QPR) has shown that traffic noise can be minimized by incorporating quiet pavement strategies in construction practices at little or no additional cost. QPR has found that for rigid pavement including bridge decks longitudinal grinding and grooving, or longitudinal tining are two textures that can be used to reduce tire noise. Research has found that these two methods produce less tire/pavement interface noise than the transverse texturing method currently used on most California bridge decks. The texturing is almost identical to that used on PCC pavement highways. Tire noise measured by the OBSI method on California bridge decks that are transversely textured range from 105 decibels (dB) to 112 dB. For comparison, tire noise measurements for longitudinal tining range from 103 dB to 105 dB, for longitudinal grinding and grooving range from 100 dB to 103 dB, and for flexible pavement range from 95 dB to 105 dB. An increase in 10 dB is perceived as double the noise to the human ear. Grinding has reduced the tire noise on bridge decks by as much as 10 dB and has been used as an interim measure to remedy noisy transversely textured bridge decks.

Longitudinal grinding and grooving of PCC roadways and bridge decks produce adequate coefficient of friction results for bridge decks. Grinding is typically used to remedy surfaces that do not meet friction requirements. The primary purpose of the longitudinal grooving applied to the ground surface is to increase water channeling below the tire.
The PCC pavement Standard Specification Section 40-1.10, Final Finishing, requires an initial texture created with a burlap rug or broom device which produces striations parallel to the centerline. The purpose of the initial texture is to slightly roughen the surface to achieve the required friction. This is also necessary to achieve the required friction on longitudinally tined bridge decks. Similar to grooving, the primary purpose of longitudinal tining is to increase water channeling below the tire.

There are many polyester concrete bridge decks in service on the state highways today that have been tined longitudinally. The longitudinally tined polyester concrete bridge deck surfaces have resulted in lower than expected tire noise compared to a transversely tined bridge deck and have easily exceeded the minimum friction requirement. Figure No. 1 is an example of a longitudinally tined polyester concrete bridge deck surface.

For more information on quieter pavement technology see the report on the Offices of Structure Construction Website Bridge Deck Tire Noise Research at the following intranet link:

Current Practice

Bridge decks are textured in accordance with Standard Specification Section 51-1.17, Finishing Bridge Decks, which addresses smoothness, friction, and crack intensity with no limitation for tire noise. The contractor chooses the means and method to achieve the specification requirements that are defined by:

- An upper limit for smoothness and crack intensity.
- A minimum friction value.

No practice currently exists to limit tire noise on bridge decks.

New Practice

All new bridge deck projects advertised after January 1, 2011 include the Standard Special Provision (SSP), Bridge Deck Surface Texture. This specification provides the following two options for bridge deck texturing:

1. Longitudinal grinding and grooving.
2. Longitudinal tining.

The requirements for bridge decks which address smoothness, friction and crack intensity remain unchanged.

A longitudinal tined texture can easily be accomplished on a bridge deck. Longitudinal tining machines are commercially available but are not mandatory. The longitudinal tining machine will accommodate a bridge deck with a variable cross slope, a crown, or superelevation. The contractor may propose another technique or device to achieve the requirements of the specification.

Following are construction aspects that should be ensured when using the longitudinal grinding and grooving option and the longitudinal tining option:
Longitudinal Grinding and Grooving Option:

- The bridge deck thickness will be increased ¼ inch.
- The concrete mix design must meet the specification requirements for cementitious material and quality aggregates to ensure the deck surface durability.
- The bridge deck drains and other permanent fixtures should be set to the final grade per the contract plans.
- All recessed areas that will not be accessible by the grinding blades such as the area adjacent to bridge deck drains should be hand textured longitudinally to match adjacent concrete, while the concrete is wet.
- The 18 to 20 inches of bridge deck surface adjacent to the barrier rail will be inaccessible by the grinding blades. This area should be hand textured longitudinally to match adjacent concrete, while the concrete is wet.
- Figure No. 2 is an example of a bridge deck surface using the *longitudinal grinding and grooving* option.

Longitudinal Tining Option:

- The contractor must drag burlap or a light broom longitudinally in advance of the tining operation to ensure that the surface friction is adequate. Attention should be paid to the texture operation to ensure the burlap or other tools used to roughen the surface in front of the tining operation are evenly weighted and produces a flat roughened surface.
- The concrete mix design must meet the specification requirements for cementitious material and quality aggregates to ensure the deck surface durability.
- The concrete mix design water content and corresponding slump is important to ensure the specified tining texture can be achieved and is consistent.
- Ensure that the concrete will be delivered timely per the specifications. It is desirable to place as much deck as possible for each longitudinal tining pass to minimize starts and stops in the tining pattern.
- Close attention must be paid to the concrete consistency to ensure the finish tines or intrusions are consistent with the requirements of the specifications.
- Ensure the finishing tools (tine, burlap, broom, etc.) are properly adjusted and kept clean.
- Each tine should be a rectangular shape and the width should be between 3/32” and 1/8”.
- The tining should produce a negative intrusion into the surface and not produce any positive texture.
- Ensure the tining spaces are evenly spaced at 3/4”.
- Ensure the depth of the tining is between 3/32" and 1/8". (The distance from the edge of a quarter to the top of President Washington's head is about 1/8”.)
- Figure No. 3 is an example of a PCC bridge deck using the *longitudinal tining* option.
- Figure No. 4 is an example of a tining tool used for the *longitudinal tining* option.
- Grinding for smoothness, when necessary per Standard Specification Section 51-1.17, *Finishing Bridge Decks*, is still required.

Attention to all the details associated with placing the bridge deck concrete will result in a higher quality bridge deck that is quieter.
Special Situations

A bridge may be in a noise sensitive area if it is adjacent to a residential area, hospital, school, park, or hotel. For projects within a noise sensitive area, defined by the Division of Pavement, Pavement Policy Bulletin, PPB 09-02, Quieter Pavement Strategies for Noise Sensitive Areas, and the SSP Bridge Deck Surface Texture, the district may request that only the longitudinal grinding and grooving option be specified. If a bridge project is in a noise sensitive area and the SSP Bridge Deck Surface Texture is not in place, or to address any other quiet bridge deck questions or concerns, contact OSC Headquarters for assistance. PPB 09-02 is available at the following intranet link:

http://onramp.dot.ca.gov/hq/maint/pavement/Quieter_Pavements.htm

Figure No. 1: Example of Longitudinally Tined Polyester Concrete Bridge Deck Surface.

Figure No. 2: Example of a PCC Bridge Deck Using the “Longitudinal Grinding and Grooving” Option.
Figure No. 3: Example of a PCC Bridge Deck Using the *Longitudinal Tining* Option.

Figure No. 4: Example of the Tining Tool used for the *Longitudinal Tining*
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>MEMO NO.</th>
<th>ISSUE DATE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>115-1.0</td>
<td>03/01/1998</td>
<td>Inspection of Electrical, Mechanical, Water and Wastewater Work</td>
</tr>
</tbody>
</table>

Denotes the document is a Bridge Construction Bulletin

RALPH P. SOMMARIVA, Chief
Office of Structure Construction
(This page left intentionally blank.)
Inspection of Electrical, Mechanical, Water and Wastewater Work

It is the Structure Representative’s responsibility to ensure that all electrical, mechanical, water and wastewater (EMW&W) work complies with the plans and specifications. However, EMW&W work is a specialized and complex type of work with which the Structure Representative may not be totally familiar.

In order to be assured that the EMW&W work complies with the plans and specifications, the Structure Representative is encouraged to contact the Electrical, Mechanical, Water and Wastewater Branch (Telephone 916-227-8337 calnet 498-8337) to keep them informed of the work progress, to discuss any problems encountered, and to make arrangements to have EMW&W personnel make periodic inspections of the work as it progresses towards completion.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>MEMO NO.</th>
<th>ISSUE DATE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>120-1.0</td>
<td>08/30/2013</td>
<td>Submitting Falsework Shop Drawings</td>
</tr>
<tr>
<td>120-2.0</td>
<td>08/30/2013</td>
<td>Impaired Clearances at Falsework Traffic Openings</td>
</tr>
<tr>
<td>120-2.1</td>
<td>05/20/2010</td>
<td>Reporting of Impaired Clearances at Falsework Traffic Openings</td>
</tr>
<tr>
<td>120-3.0</td>
<td>05/30/1995</td>
<td>Falsework Shear Values for Bolts/Anchors in Concrete</td>
</tr>
<tr>
<td>120-4.0</td>
<td>06/13/2003</td>
<td>Reviewing and Submitting Temporary Support (Guying Plans) & Working Drawings</td>
</tr>
<tr>
<td>120-5.0</td>
<td>04/30/2008</td>
<td>Field Review of Temporary Structures (Falsework)</td>
</tr>
<tr>
<td>120-6.0</td>
<td>04/30/2008</td>
<td>Contractor Standard Falsework Details</td>
</tr>
</tbody>
</table>

ROBERT A. STOTT
Deputy Division Chief
Structure Construction
Division of Engineering Services
(This page left intentionally blank.)
Submitting Falsework Shop Drawings

Falsework Drawings
Directions for submittal of falsework shop drawings to the Structure Construction Falsework Specialist are included in the Falsework Manual, Chapter 2, Review of Falsework Drawings.¹

Falsework Specialist
Structure Construction Falsework Specialist has the following responsibilities pertaining to falsework:

- Participate in falsework research projects and provide input relative to changes in specifications and policy.
- Perform a cursory review of all falsework shop drawings and calculations for falsework adjacent to or over railroads and forward the drawings and calculations to the railroad for their review and acceptance. The Falsework Specialist is the liaison between the project and the railroad.
- **Spot check** falsework shop drawings and calculations for falsework not adjacent to or over railroads. The drawings to be **spot checked** are selected at random with the objective of ascertaining compliance with current falsework directives and policies.
- Act as consultant to the Structure Representative and provide guidance with complicated falsework problems and resolve questions involving falsework policy.
- Act as liaison between Structure Design and the Structure Representative to review all drawings and calculations for contractor-designed temporary bridges or other temporary facilities which cross a traveled way being used by public traffic.

Attachment No. 1 contains an example of an authorization letter that may be used as guidance when authorizing a falsework submittal. This must be accompanied by a Temporary Structure Plan Analysis Report. See Falsework Manual, Chapter 2, Review of Falsework Drawings, and Bridge Construction Memo 3-6.0, Shop Drawing Review for Temporary Structures.

¹ http://dschq.dot.ca.gov/sc_manuals/falsework/Chapter_2.pdf
SAMPLE
FALSEWORK SHOP DRAWING AUTHORIZATION LETTER

STATE OF CALIFORNIA—CALIFORNIA STATE TRANSPORTATION AGENCY

DEPARTMENT OF TRANSPORTATION
<Your Office Address>
<Your Office Phone>

Date: <Date>

File: <Project Name>
<Co/Rte./Pm>
<Job EA>

<Contractor Name>
<Contractor Address>

Dear: <Responsible Person>,

The falsework shop drawings for Camarillo Overhead and Separation (Widen), Bridge No. 52-16, as revised December 1, 2012, have been reviewed and are authorized to the extent provided in the Standard Specifications, Section 5-1.23.

Your attention is directed to your responsibilities pursuant to the Standard Specifications, Sections 5-1.23, 7-1.04, and 48-2.0, as well as the Construction Safety Orders.

You are reminded that the falsework must be constructed to conform to the falsework drawings, that the materials used must be of the quality necessary to sustain the stresses required by the falsework design, and that the workmanship must be of such quality that the falsework will support the loads imposed on it without excessive settlement or take up beyond that shown on the falsework drawings.

Sincerely,

Resident Engineer

c:

Enclosure:

“Caltrans improves mobility across California”

BRIDGE CONSTRUCTION RECORDS & PROCEDURES MANUAL
BCM 120-1.0
ATTACHMENT No.1
08/30/2013
PAGE 1 OF 1
Impaired Clearances at Falsework Traffic Openings

To ensure the movement of goods across the State Highway System (SHS) it is necessary to provide traffic openings through construction projects. During bridge construction, openings through the falsework allow the passage of traffic to meet this requirement. When these traffic openings through the falsework restrict the height of vehicles using the SHS, it is necessary to notify the Division of Traffic Operations, Office of Truck Services. The Highway Design Manual mandates that traffic openings should have a vertical clearance of at least 15 feet and clearances less than 15 feet require a design exemption. The timely notification of temporary impaired clearances due to falsework is essential to the safe routing of oversize vehicles and ensuring the safety of the traveling public, the contractor’s personnel and Caltrans staff.

The Structure Representative shall submit written notice to the Resident Engineer when falsework will temporarily impair clearance on the State highway or roadway. This notification is accomplished by completing form TR-0029 or TR-0019, Notice of Change in Clearance or Bridge Weight Rating. Time requirements for notification of impaired clearance are found in the Standard Specifications, Section 7-1.04, Public Safety, and are usually no less than 20 and not more than 90 days prior to the impairment. The Construction Manual still requires that the notification to the Transportation Permits Branch be within 15 days, the 5-day difference is for the Structure Representative to complete the calculations and give them to the Resident Engineer.

The detailed procedures for notification of temporary impaired clearances are contained in the:

- Bridge Construction Records and Procedures Manual, Bridge Construction Memo 2-20.0, Notice of Change in Structure Clearance or Permit Ratings.
- Construction Manual, Section 3-703A, Temporary Clearance and Bridge Permit Rating Changes.

The notification to the Resident Engineer should give anticipated dimensions of the impaired opening. The anticipated clearance should be calculated from the contractor’s falsework submittal and verified using actual field dimensions. Structure Representatives, when performing the clearance calculations, should include an allowance for: falsework stringer deflection, adjustment of falsework grades, changes in pavement elevations, settlement, etc. The attached form SC-12.6.1, Report of Falsework Clearance, provides a methodology for determining the clearance under falsework at traffic openings. It should be filed in Category 12.6, Falsework Plan, of the project files.

1 2006 Standard Specifications, Section 7-1.09, Public Safety.
2 Review the Contract Special Provisions for amendments or changes to these requirements.
The Structure Representative, immediately after the clearance is impaired, shall verify the dimensions of the impaired opening and notify the Resident Engineer of any necessary revisions to the clearance ensuring that allowances for settlement, stringer deflection, etc. continue to be taken into account. If the clearance is less, the Structure Representative should consider halting operations and removing the stringers already set, until clearance issues are resolved. The instructions within this section apply to any falsework being set over a traveled way, even if the resulting clearance satisfies legal height or load limitations. When the temporary impaired clearance is removed, the Structure Representative shall give the Resident Engineer written notice of the restored or revised clearance.

When falsework will not be removed by the tentative end date, an update within 15 days of the tentative end date previously submitted, needs to be made to the Transportation Permits Branch.

Structure Representative Responsibilities

- Determines the theoretical clearance of the falsework traffic opening.
- Verifies that the opening clearance is greater than or equal to the dimensions for traffic openings given in the Contract Special Provisions.
- Completes the form TR-0019 or TR-0029, *Notice of Change in Clearance or Bridge Weight Rating*.
- Reports the impaired clearance to the Resident Engineer or Transportation Permits Branch or both, depending on District protocols, 15 days prior to erecting falsework.
- Verifies Transportation Permits Branch received the *Notice of Change in Clearance or Bridge Weight Rating*, (return fax).
- Measures the clearance when the impairment is placed.
- Verifies that the measured clearance is greater or equal to the clearance previously reported.
- Takes appropriate action if the measured clearance is less than that previously reported.
- Submits a revised clearance if it is different or if the ultimate clearance will be less than previously reported.
- Submits a revised clearance prior to falsework being lowered if the clearance will be less than that previously reported.
- Attach a copy of the Contract Special Provision page showing the traffic opening requirements for the structure under consideration to the file copy.
- If applicable attach copies of Contract Change Orders that modify the dimensions of the traffic opening listed on the *Notice of Change in Clearance or Bridge Weight Rating* to the file copy.
- Have the Bridge Construction Engineer review and initial the *Notice of Change in Clearance or Bridge Weight Rating*.

Bridge Construction Engineer Responsibilities

- Ensures that the determination of the theoretical clearance is correct.
- Ensures the Contract Special Provision requirements have been met.
• Reviews the *Notice of Change in Clearance or Bridge Weight Rating* and if it is correct, *initials* the *Notice of Change in Clearance or Bridge Weight Rating*.

Structure Construction Oversight Engineer Responsibilities

• With Local Agency Structure Representative:
 o Ensures that the determination of the theoretical clearance is correct.
 o Ensures the Contract Special Provision requirements have been met.
 o Reviews the *Notice of Change in Clearance or Bridge Weight Rating*, and if it is correct, *initials* the *Notice of Change in Clearance or Bridge Weight Rating*.
Department of Transportation

REPORT OF FALSEWORK CLEARANCE
Form No. SC-12.6.1 (New 04/08) Formerly DS-OS C108

Date:

Bridge name:

Br. No.:

Co/Rte/PM:

Direction of travel:

Determination of falsework clearance:

a) Calculated or Measured Minimum vertical clearance: ____________
 Allowances:

b) Pavement elevation changes (- or 0) ____________

c) Adjustment of Falsework grades (- or 0) ____________

d) Falsework settlement (-) ____________

e) Falsework stringer deflection (-) ____________

f) Release of sand jacks (wedging) (-) ____________

g) Calculated ultimate actual clearance¹ ____________

h) Clearance to report² ____________

¹ This value must be greater than that given in the Special Provisions.
² Calculated ultimate actual clearance rounded down to the nearest 3”

The clear horizontal opening is ____________ feet wide.

Remarks:
Instructions for Determination of Falsework Clearance

Use this form as an aid in determining the clearance at falsework openings. Reference BCM 120-2.0.

a) Prior to falsework erection this value is calculated by subtracting the falsework depth (soffit plywood, joist, nailers, and stringer) below the bridge soffit from the difference in elevation between the bridge soffit and roadway.

After falsework erection this value is the measured distance between the roadway and the lowest edge of the falsework (generally the bottom flange of the stringer).

b) If there are plans to pave the roadway under the structure prior to removal of the falsework, the net thickness of the overlay will need to be subtracted from the clearance. The net thickness is used to account for any grinding that may take place prior to the placement of the final surfacing.

c) If the falsework is adjusted upwards a value of zero can be used to provide a slight buffer to the clearance.

d) The probable or anticipated settlement of the falsework.

e) Although the stringer deflection is generally compensated by the use of camber strips, the stringer itself will still deflect.

f) If traffic will be allowed under the structure between the time sand jacks (wedging) is blown (removed) and stringers are removed, this allowance needs to be included.

g) This is equal to the value of: value a) minus the summation of values b) through f).

h) This is the value of g) rounded down to the nearest 3”, i.e. 16'-5.75” would become 16'-3” and 16'-1” would become 16'-0”.

This is the value that should be used in form TR-0029, *Notice of Change in Clearance or Bridge Weight Rating*, when reporting to the Resident Engineer.
Subject: Reporting of Impaired Clearances at Falsework Traffic Openings

Background

To ensure the movement of goods across the State Highway System (SHS) it is necessary to provide traffic openings through construction projects. During bridge construction, openings through the falsework allow the passage of traffic to meet this requirement. When these traffic openings through the falsework restrict the height of vehicles using the SHS, it is necessary to notify the Division of Traffic Operations, Office of Truck Services. The Highway Design Manual mandates that traffic openings should have a vertical clearance of at least 15 feet and clearances less than 15 feet require a design exemption.

Recent events including field changes of the vertical clearance to less than 15 feet and incorrectly reporting the actual vertical clearance have required the Offices of Structure Construction to implement a quality assurance step into the process of reporting changes to vertical and horizontal clearances. The quality assurance review will require the Bridge Construction Engineer to review the “Notice of Change in Clearance or Bridge Weight Rating” before initial submission to the Resident Engineer or Truck Services.

Current Practice

Structure Representative:
- Determines the theoretical clearance of the falsework traffic opening using the guidance in BCM 120-2.0
- Verifies that the opening clearance is greater than or equal to the dimensions for traffic openings given in the Contract Special Provisions.
- Completes the form Form TR-0019 or TR-0029.
- Reports the impaired clearance to the Resident Engineer or Office of Truck Services or both depending on District protocols 15 days prior to erecting falsework.
- Verifies Office of Truck Services received the “Notice of Change in Clearance or Bridge Weight Rating.” (return fax).
Measures the clearance when the impairment is placed.
- Verifies that the measured clearance is greater or equal to the clearance previously reported.
- Takes appropriate action if the measured clearance is less than that previously reported.
- Submits a revised clearance if it is different or if the ultimate clearance will be less than previously reported.
- Submits a revised clearance prior to falsework being lowered if the clearance will be less than that previously reported.

New Practice

In addition to the above procedures the following additional duties have been added to the roles of:

Structure Representative:
- Attach a copy of the Contract Special Provision page showing the traffic opening requirements for the structure under consideration to the file copy.
- If applicable attach copies of Contract Change Orders that modify the dimensions of the traffic opening listed on the “Notice of Change in Clearance or Bridge Weight Rating” to the file copy.
- Have the Bridge Construction Engineer review and initial the “Notice of Change in Clearance or Bridge Weight Rating”.

Bridge Construction Engineer:
- Ensures that the determination of the theoretical clearance is correct.
- Ensures the Contract Special Provision requirements have been met.
- Reviews the “Notice of Change in Clearance or Bridge Weight Rating” and if it is correct initial the “Notice of Change in Clearance or Bridge Weight Rating.”
- Ensures remaining steps of the process are understood.

OSC Oversight Engineer
- With Local Agency Structure Representative:
 - Ensures that the determination of the theoretical clearance is correct.
 - Ensures the Contract Special Provision requirements have been met.
 - Reviews the “Notice of Change in Clearance or Bridge Weight Rating” and if it is correct initial the “Notice of Change in Clearance or Bridge Weight Rating.”
 - Ensures remaining steps of the process are understood.

Related Guidance

Bridge Construction Records and Procedures, BCM 120-2.0, Impaired Clearances at Falsework Traffic Openings
Bridge Construction Records and Procedures, BCM 2-20.0, Notice of Change in Structure Clearance or Permit Rating
Construction Manual, Section 3-705, Public Safety
Standard Specifications, 7-1.09, Public Safety
Contract Special Provisions, Maintaining Traffic and/or Order of Work
Highway Design Manual, Section 204.8, Grade Line of Structures
Falsework Shear Values for Bolts/Anchors in Concrete

General Information

It is extremely important to consider the effect on concrete of bolts loaded in shear parallel to the face of the concrete especially within 6 inches of a concrete edge. Examples of these loading conditions are bolts inserted in the edge of decks which may support vertical falsework loads, or for pins which may be placed in decks and loaded horizontally as shear resistance for K-Rail.

Bar reinforcing steel under, and perpendicular to, the axis of a bolt imbedded in an edge of deck provides some resistance to shear failure of the concrete. Bar reinforcing steel under, but parallel to the bolt axis (without perpendicular reinforcing), provides little additional resistance to concrete shear failure. Unreinforced concrete will offer the least resistance to concrete shear failure.

Bolts or anchors inserted into concrete with impact drills or hammers will generally exhibit lower shear resisting capacity because of potential fracturing of the concrete. The lowest shear resisting capacity may well be furnished by wedge fit type anchors in holes made by impact tools since the wedging action can induce additional fracturing of the concrete.

Research

Bolts of 60 ksi tensile strength, approximately 5/8" in diameter and approximately 11-7/8" long, were cast about 7-7/8" deep at various edge distances (d) up to about 6 inches in unreinforced concrete blocks. The bolts were load tested at right angles to the block surfaces after the concrete had gained sufficient strength. Published test results of concrete failure due to the lateral loads on the bolts showed that the modes of failure consisted of concrete failure with and without wedge cones, or with pullout cones, or by shear failure of the bolts.

Test results for concrete shear strengths adjusted to an averaged concrete compressive strength $f_{c'}$ of approximately 3,000 psi have been plotted in Figure 1. Assuming that the shear strength of concrete is a function of $f_{c'}$, a family of curves related to the 3,000 psi curve were generated and included in Figure 1. The curves of Figure 1 represent ultimate values which need to be adjusted with an appropriate safety factor which is determined from Table 1.
FIGURE 1

One of the most common usages of embedded bolts is depicted in Figure 2. Figure 2 depicts one direction of loading with respect to the concrete surface and shows dimension d which represents the distance from the edge of the concrete to the center line of the bolt.

Permitted Use

Determine the distance the loaded bolt will be from the loaded edge 1 or change in section, of the concrete. The term “bolt” shall be meant to include inserts, rods, or other similar devices. Haunched concrete sections similar to the underside of bridge deck overhang sections, should not be given additional value. Select a concrete shear strength related to an appropriate ultimate concrete strength curve from Figure 1. Divide the selected ultimate concrete shear strength value by an appropriate safety factor as determined from Table 1.

Table 1 lists minimum safety factor values to be used for cast-in-place bolts. A minimum safety factor of 2 may be used where reinforcing is located normal to the axis of the bolt in the concrete shear loaded zone provided the reinforcing is located between the concrete face and the midpoint of the embedded bolt length. This reinforcing must extend through the concrete failure zone (See Figure 2) to sound concrete. Otherwise use a safety factor of 2.25 or higher.

A minimum safety factor of 2.75 may be used when reinforcing steel located parallel to the bolt axis (without reinforcing normal to the bolt axis) will be within the shear loaded zone and will have a length reaching to at least the midpoint of the embedded bolt. If no parallel reinforcing will be within a shear loaded zone use the higher safety factor of 3.0.
Safety Factors:

<table>
<thead>
<tr>
<th>Reoirding Type</th>
<th>Cast – In – Place Bolt</th>
<th>Bolt Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar (s) within 2" of the concrete face located normal to the bolt axis on the loaded side of the bolt.</td>
<td>2.0 – 2.5</td>
<td>2.25 – 2.50</td>
</tr>
<tr>
<td>Bars parallel to the bolt axis on the loaded side of the bolt (no normal reinforcing).</td>
<td>2.75 – 3.0</td>
<td>2.75 – 3.0</td>
</tr>
<tr>
<td>No reinforcing on the loaded side of the bolt.</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Torque tightened bolts, regardless of location of reinforcing</td>
<td>3.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Table 1

Shear loaded zones are depicted in Figure 2 and are described as follows:

- **Cone Pullout** - A cone with the apex situated behind the embedded end of the bolt with the center line of the cone on the axis of the bolt and with sides sloping a minimum of 45° away from the bolt axis.

- **Trapezoidal Wedge** - A trapezoid volume with the base on the concrete surface a distance d from the bolt center line, having sides sloping inward at 45° angles meeting a plane of length equal to the bolt diameter at the opposite side of the bolt, and with this area having a volumetric length equal to the length of the embedded portion of the bolt.

FIGURE 2

When information about reinforcing on the loaded side of a bolt cannot be verified the highest safety factor will be used. No increase or reduction in the safety factor value, will be given to bolts with embedded bolt heads.
Figure 3 illustrates a single bolt placed in a deck overhang. Bolts shall not be spaced closer than 8 times the d dimension or 3.5 times the sum of the embedment lengths of adjacent bolts whichever is larger. The 8 times the d dimension is a recommendation made in the published test results. The 3.5 (two times the tangent of 60°) times the sum of the embedment lengths is based on evidence that the concrete can fracture or fail in shear at an angle of 60° to the axis of the bolt.

![Figure 3](image)

FIGURE 3

Since one of four types of failure modes occurred during testing no adjustments need be made for various bolt sizes up to 5/8" in diameter. For bolts larger than 5/8" diameter use dimension d as being equal to the distance from the edge of the concrete to the nearest portion of the bolt hole (In Figure 3 this dimension would be d minus one-half the bolt diameter).

It is always a good idea to test load a typical section of falsework supported by bolts or inserts to twice the anticipated loading at a safe location.

Example:

Assume 5,000 psi concrete in a deck overhang with no bottom mat reinforcing for which holes for 5/8" bolts are to be drilled 3.75 inches from the soffit with air tools for torque type bolt inserts that are to be used for supporting a falsework system for removal of concrete railing. Determine bolt capacity and minimum bolt spacing for 5 inches of maximum embedment.

From Figure 1 the ultimate value for shear failure may be selected as 10.1 Kips, and from Table 1 the safety factor value should be no less than 3.0.

Assumed safe working load for the bolt = 10.1/3.0 = 3.4 Kips. Minimum bolt spacing is the larger of 8(d) or 3.5(5" + 5"):

\[
8(3.75) = 30.0 \text{ Inches} \\
3.5(5" + 5") = 35.0 \text{ Inches} \text{ + This governs}
\]
References:

Additional Information

Consult the Bridge Construction Records and Procedures Manual Memo 135-5.0 and Memo 168-2.0 regarding bolts in concrete. Additional information on concrete anchorage devices may be found in Section 75-1.03 of the Standard Specifications. While these references pertain to permanent installations, the guidelines are worthy of note. Installation for temporary work do not require Translab approval. It is important however, that manufacturer's recommendations be followed except where there will be obvious deviations from this memo.
Volume II

REVIEWING AND SUBMITTING TEMPORARY SUPPORT (GUYING PLANS) & WORKING DRAWINGS

Temporary support (guying) plans submitted by the Contractor must be reviewed by the Offices of Structure Construction staff thoroughly and independently. You may find the following references useful during this review:

- Standard Specifications:
 Section 52-1.07, ‘Placing’
 Section 7-1.09, ‘Public Safety’

- Falsework Manual:
 Section 4-5, ‘Cable Bracing Systems’
 Falsework Memo No. 9, ‘Short Poured-In-Place Concrete Piles to Resist Uplift and Lateral Loads’.

- Contract specific Special Provisions

The minimum horizontal load to be allowed for wind on steel cages shall be the sum of the products of the wind impact area and the applicable wind pressure value for each height zone. The wind impact area is the total projected area of the cage. Wind pressure values shall be determined from the following table:

<table>
<thead>
<tr>
<th>HEIGHT ZONE (METERS ABOVE GROUND)</th>
<th>WIND PRESSURE VALUE (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>960</td>
</tr>
<tr>
<td>9-15</td>
<td>1200</td>
</tr>
<tr>
<td>15-30</td>
<td>1440</td>
</tr>
<tr>
<td>Over 30</td>
<td>1675</td>
</tr>
</tbody>
</table>

Temporary support plans shall include sufficient detail to ensure stability of reinforcing cages during all phases of construction. The plan shall also include provisions for keeping stable the column cage and forms during the transition from one stage to the next as well as a list of all equipment to be utilized to handle the erection.

Copies of working drawings and design calculations per Section 52-1.07, ‘Placing’ of the Standard Specifications shall be submitted to the Offices of Structure Construction HQ in Sacramento after approval by the Structure Representative.
When such plans as described by the previous paragraph are adjacent to railroads, the procedure for approving these plans will be in accordance with the requirements for submitting falsework when railroad companies are involved. A complete explanation of this procedure may be found in the Falsework Manual Section 2-1.06B, ‘Procedure when Railroad Company Approval is Required’.
FIELD REVIEW OF TEMPORARY STRUCTURES (FALSEWORK)

Temporary structures erected by contractors in connection with the construction of state highway structures need to remain safe, stable, and serviceable throughout their design life. Failure of these temporary structures (falsework) could be catastrophic. The OSC practice is to use all contract requirements, experience, and ‘best engineering practice’ to prevent falsework failures.

OSC staff will have the following responsibilities as a minimum to ensure a safely constructed system:

Structure Representative / Assistant Structure Representative

- Ensure that falsework plan(s), materials incorporated, and construction methods meet contract requirements and the best general practices represented in the Falsework Manual.
- Ensure that falsework is designed for the intended loads that may act upon it.
- Perform an independent stress analysis of the contractor’s submitted falsework system.
- Ensure that all pertinent load tests are performed and properly documented.
- Ensure that falsework is constructed as per the approved plan.
- Ensure that the contractor’s falsework plan demonstrates stability during all phases of erection and removal.
- Ensure that the falsework plan and construction meets all California Department of Occupational Safety and Health (Cal OSHA) applicable safety orders.
- Ensure that the falsework is inspected and certified by the contractor’s falsework designer or his authorized representative pursuant to the requirements in Article 1717 of the Construction Safety Orders, the Caltrans Standard Specifications, and the contract special provisions.
- Ensure that jacking and displacement monitoring systems are approved and in place prior to jacking.
- Work closely with the contractor’s falsework foreman to coordinate all aspects of erecting, grading, and removing the falsework safely.

OSC Oversight Engineer

- With Local Agency Structure Representative, perform a field review of falsework installations prior to placing or removing concrete, or jacking of temporary support systems. (See BCM 2-19.0, “Administration of Special Funded Projects.”)
Bridge Construction Engineers

- With Structure Representatives perform a field review of falsework installations prior to placing or removing concrete, or jacking of temporary support system.

Area Construction Managers

- Periodically perform a field review of falsework installations with Bridge Construction Engineers in their areas.
CONTRACTOR STANDARD FALSEWORK DETAILS

Contractors typically use standard falsework details to supplement their project specific falsework plans. As an attempt to accelerate bridge construction Contractors have submitted their standard falsework details to Sacramento for approval.

The Sacramento office of Structure Construction has reviewed some of these details and has placed the reviewed Contractor’s Standard Falsework Details, calculations, and the State’s review calculations on the OSC Intranet site to facilitate a Structure Representative’s review of a contractor’s standard falsework details.

Considering the wide and varied usage of these details by contractors the Sacramento office of Structure Construction is offering the following practice for use by Structure Representatives when reviewing falsework with standard falsework details:

- Access the OSC intranet site
- Locate the Falsework Technical Team (intranet) Page
- Find the Contractor’s Standard Details Link
- Find the detail indicated for use
- Review the detail and related calculations to ensure it matches your submittal and intended use.
- The limitation of use for the detail is shown, if your intended use is different, you may need to perform the check calculation yourself.
- Details on the standard falsework drawings should be listed on the falsework plans to ensure that only those details indicated to be used are reviewed and approved as part of the plan.

Use of a detail from a falsework standard details that is available on the website still requires the contractor to submit the standard details and supporting design calculations to the Engineer along with working drawings and calculations for falsework proposed for use at bridges.

The use of the standard falsework details available on the OSC Intranet are intended solely for the Structure Representative’s use in checking falsework submitted by the contractor/owner of the standard falsework details. Use of a checked standard detail from the intranet for a set of plans submitted by another contractor is ethically improper and is not to occur.

The proper use of these standard falsework details and associated calculations requires a thorough understanding of the principles of civil engineering design, familiarity with falsework specifications and the use of sound engineering judgment.
Process for submission and review of Contractor Standard Falsework Details:

Contractor submits 6 sets of Standard Falsework Details and 3 sets of supporting calculations to:

 Falsework Engineer
 Offices of Structure Construction
 Mail Station 9-2/11H
 1801 30th Street
 Sacramento, CA 95816

Falsework Engineer will perform an independent review of the Standard Falsework Details. This is an iterative process with the Contractor to determine “limits of use” for the individual details within the drawings.

Upon approval of the Standard Falsework Details, the drawings and supporting calculations (Contractor and State) will be posted on the OSC Intranet site.
(This page left intentionally blank.)
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12-05-17</td>
<td>BCM 122-3.0, Converted from BCB to BCM and updated.</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEMO NO.</th>
<th>ISSUE DATE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>122-1.0</td>
<td>06/01/1997</td>
<td>Submitting Shoring Plans</td>
</tr>
<tr>
<td>122-2.0*</td>
<td>10/15/2002</td>
<td>Support from Roadway Geotechnical Engineering</td>
</tr>
<tr>
<td>122-3.0</td>
<td>12/05/2017</td>
<td>Torvane Usage for Sloped Excavations</td>
</tr>
</tbody>
</table>

* Denotes Bridge Construction Bulletin (BCB).
Submitting Shoring Plans

General Information

Review of shoring plans shall be in accordance with the guidelines and policy set forth in the Office of Structure Construction Trenching and Shoring Manual.

Shoring Which is Not Adjacent to or Under a Railroad

When the Structure Representative has completed reviewing the shoring plans and calculations, and has determined that the shoring plans meet specification requirements, a letter shall be sent to the Contractor stating that the drawings have been reviewed and approved. This letter authorizes the Contractor to begin constructing shoring. Note that the Contractor must not begin shoring construction until such time as this letter has been issued to the Contractor. The letter should state that the approval is to the extend provided under Section 5-1.02 of the Standard Specifications. This letter should also direct the Contractor's attention to his/her responsibilities under Sections 5-1.02 of the Standard Specifications. It should remind the Contractor of the requirement that the shoring must conform to the shoring plans, that the materials used must be of the quality necessary to sustain the stresses required by the shoring design, and that the workmanship shall be of such quality that the shoring will support the loads imposed on it without excessive movement (See Attachment No. 1 for an example of a properly prepared shoring approval letter.)

For shoring that is not adjacent to or under a railroad, it is mandatory that one copy of the shoring plans, and one copy of the Structure Representatives calculations be submitted to the Sacramento Office of Structure Construction, immediately after they have been reviewed and approved by the Structure Representative.

A letter of transmittal must accompany all shoring plans and calculations that are submitted to the Office of Structure Construction Falsework Review Unit. Include a copy of the approval letter that was issued to the Contractor.

The Structure Representative should retain one set of the approved shoring plans and calculations in the job files.

Shoring Adjacent to or Under Railroads

When shoring is adjacent to or crosses under a railroad, additional requirements must be complied with. Any shoring within 15' of the centerline of tracks is considered adjacent.
The Structure Representative will check the shoring plans, and if necessary, return them to the Contractor for correction. After shoring plans and calculations have been reviewed by the Structure Representative and he/she is satisfied that the shoring plans meet specifications, the following items are to be sent to the Office of Structure Construction.

1. Five copies of Contractor's shoring plans if the Union Pacific (Southern Pacific), Burlington Northern Sante Fe or Western Pacific railroad are involved.

2. Three copies of Manufacturers' data relative to manufactured devices.

3. Three copies of Contractor's calculations.

4. Three copies of the Structure Representative's calculations.

Note: One copy of the above is for the Sacramento Office of Structure Construction's use, and the other copies are forwarded to the railroad by the Office of Structure Construction. In the event that railroad personnel at the job site need copies of the above information, they are to obtain it from their headquarters.

When the above noted data is submitted to the Office of Structure Construction, it shall be accompanied by a letter of transmittal in which the Structure Representative will list the information submitted, and state that the shoring plans and calculations have been reviewed and that they are considered to be satisfactory. The Office of Structure Construction will review this data. The Structure Representative should not stamp the shoring plans 'Approved' until they have been notified that the railroad has reviewed and accepted the shoring plans.

Incomplete or unsatisfactory data will be returned to the Structure Representative for correction. Upon confirming that the plans and calculations are complete and satisfactory, the information will be forwarded to the railroad for their review and acceptance.

When the Sacramento Office of Structure Construction and railroad reviews are complete, and the Sacramento Office of Structure Construction advises the Structure Representative that the railroad considers the shoring plans to be satisfactory, the Structure Representative will send a letter to the Contractor stating that the plans have been reviewed and approved. This letter authorizes the Contractor to begin constructing the shoring. Note that the Contractor must not begin shoring construction until such time as the approval letter has been issued to the Contractor. (See Attachment No. 1 for an example of a properly prepared shoring approval letter.)

Shoring Review Unit

A Shoring Review Unit will be operational in the Sacramento Office and this unit will perform the following functions:

1. Participate in shoring research projects and provide input relative to changes in specifications and policy.
2. Review all shoring plans and calculations for shoring adjacent to or under railroads and forward the plans and calculations to the railroad for their review and approval. The Shoring Review Unit provides the liaison between the job and the railroad.

3. "Spot Check" shoring plans and calculations for shoring not adjacent to or under railroads. The plans to be "spot checked" are selected at random with the objective of ascertaining that current shoring directives and policies are being complied with.

4. Act as consultant to the Structure Representative and provide guidance with complicated shoring problems and resolve questions involving shoring policy.
Sample Construction Co.
Sample Lane
Sample, CA 00000-0000

Gentlemen:

The shoring plans for the temporary retainment of soil and embankment material at Abutment 1 of General Avenue Overcrossing, Bridge No. 2B-X4X, dated August 14, 1989, have been reviewed and are approved to the extent provided in Section 5-1.02 of the Standard Specifications. [Add the following when using the contractor’s/consultant’s soil parameters; This approval is based upon the soil parameters submitted by your consultant.] [Add when needed for trench shields. Note that your submittal did not include calculations from the trench shield design engineer. It is therefore understood that your licensed engineer has verified that the shields themselves are capable of sustaining the loads allowed by the shield manufacturer.]

Your attention is directed to your responsibilities pursuant to Section 5-1.02 and 7-1.09, of the Standard Specifications as well as the Construction Safety Orders.

You are reminded that the shoring must be constructed to conform to the shoring drawings, that the materials used must be of the quality necessary to sustain the stresses required by the shoring design, and that the workmanship shall be of such quality that the shoring will support the loads imposed on it without excessive movement.

Sincerely,

Y.Y. Resneer
Resident Engineer

By

W.W. Strurep
Structure Representative

c:
Subject: Support from Roadway Geotechnical Engineering

Shoring systems requiring the use of slope stability (i.e. excavation exceeding the Cal OSHA sloping or benching requirements) should be reviewed by the Roadway Geotechnical Engineering unit for adequacy. To obtain assistance from the Roadway Geotechnical Engineering unit, contact the appropriate Geotechnical Design Branch (North, South, West) that your project is in using the following link:

http://onramp.dot.ca.gov/hq/esc/gs/design.shtml

cc: BCR&P Manual Holders
R. Pieplow, HQ Const.
Consultant Firms
J. Van Velsor, Geotech.Services
Subject: Torvane Usage for Sloped Excavations

The Torvane (or Shearvane) is a soil-testing tool utilized for rapid determination of cohesive soils’ undrained shear strength (Su). The use of a Torvane is an acceptable practice according to Cal/OSHA\(^1\) for determining the maximum allowable slope of an excavation.

Projects utilizing a Torvane will also require the following conditions be met and addressed with each shoring submittal:

- Tension cracks must be prevented from developing at the top of the excavation.
- Water must be prevented from ponding at the top of and the toe of the slope.
- Soil must be consistent and homogeneous throughout the excavation.
- Cal/OSHA requirements must be adhered to at all stages of the excavation.

In situations where the contractor is proposing to use a Torvane, consult the Trenching and Shoring Senior Specialist in the HQ Structure Construction at (916) 227-8060 for assistance.

\(^1\) Cal/OSHA §1541.1, Appendix A (d)(2)(D) (https://www.dir.ca.gov/title8/1541_1.html).
(This page left intentionally blank.)
Table of Contents

<table>
<thead>
<tr>
<th>Memo No.</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>124-2.0*</td>
<td>01/02/1998</td>
<td>Demolition Plan Review</td>
</tr>
<tr>
<td>124-3.0*</td>
<td>05/19/1999</td>
<td>Demolition Over and/or Adjacent to Union Pacific RailroadCompany Tracks</td>
</tr>
</tbody>
</table>

Denotes the document is a Bridge Construction Bulletin
Subject: Demolition Plan Review

This bulletin has been developed to assist field personnel responsible for the administration and review of bridge demolition plans. It is intended to address the current field issues regarding review of demolition plans and the quality assurance measures to be employed when reviewing demolition operations. The review and processing of the demolition plan should be documented thoroughly.

One copy of the approved drawings, one copy of the engineer’s calculations, and the Structure Representative’s calculations are to be submitted to the Sacramento office of Structure Construction, along with a copy of the approval letter sent to the contractor.

During the review, if it becomes apparent additional assistance is required due to the complexity of the structural analysis; the responsible design unit (OSD, CCMB, EFPB) will provide assistance. Before requesting assistance, discuss the plan with the Bridge Construction Engineer (Senior Bridge Engineer) responsible for your project to obtain agreement that assistance is required. Once agreement is attained, contact the Design Senior or Project Manager responsible for your project and request assistance. A written request may be required depending on the complexity of the analysis.

The attachments are intended to be a guideline and not an all-inclusive list for bridge removal review. Bridge removal is a very important item to inspect for safety concerns regarding the public and contract personnel. Safety always comes first and if something does not look appropriate, do not compromise safety.

If further assistance is needed, contact the appropriate Sacramento OSC HQ Staff Engineer or Senior assigned to your district.
Attachment
C: BCR&P Manual Holders
Consultant Firms
BGauger, Construction Program Manager
Bridge Demolition Plan Reviews

1. Recommend the Contractor investigate the as-built conditions of the structure and determine if special conditions exist (column pins and deck hinge(s) that may need to be restrained during bridge removal operations).

 A. Designer should include as-built plans for the structure to be removed in the RE Pending File, or the Structure Representative should request these upon first review of the RE Pending file.
 B. The Contractor should obtain as-builts from the district in which the work is situated per Standard Specifications.

2. Inform the Contractor to submit a complete bridge removal/demolition plan, prepared by an engineer who is registered as a Civil Engineer in the State of California, at least ten days prior to commencing demolition unless the Special Provisions state otherwise. This plan should detail the procedures and sequence for removing portions of bridge(s), including all features necessary to remove the bridge(s) in a safe and controlled manner. The stability of the structure must be demonstrated by calculations at each stage of removal. (This section does not apply when bridge removal is only specified for bridge railing work and/or widening work that requires small amounts of bridge removal.)

3. Remind the contractor that any vertical shoring used to stabilize the structure during removal operations shall conform to the provisions set forth in SS 51-1.06 Falsework of the Standard Specifications (unless otherwise noted in the Special Provisions).

4. If the contractor is removing a portion of a bridge (e.g. barrier rail only, edge of deck for a widening), the removal operations shall be performed without damage to any portion of the structure that is to remain in place. In such cases, tools with a manufacturer’s rated striking energy in excess of 1625 J (1,200 foot pounds) per blow shall not be used for breaking or removing concrete which is attached to or supported by the bridge. (SS 15. 4.02)

Pre-Job Meeting

Discuss the following items at the pre-job meeting:

- Standard Specifications (SS).
- Special Provisions (SP).
- Cal-OSHA Construction Safety Orders.
- Falsework Manual (if necessary).

The Standard Specifications requires the Contractor to submit a demolition plan at least ten days prior to the beginning of bridge removal work. However, due to the complexity of a structure, the Special Provision may allow additional time.
Initial Review

Perform an initial review and check for contract compliance. The plan must be generally suitable for the site conditions to be encountered and should provide adequate information clearly outlining the removal procedure proposed by the Contractor. The following are some basic items to check before your formal review.

1. Review the details and proposed staging of the removal operation. The plan should show the methods and sequence of removal. (SS 15-4)

2. Verify that the bridge removal plan is prepared by an engineer who is registered as a Civil Engineer in the State of California

3. Calculations for vertical shoring, restraining systems for columns and deck hinges should be included, if applicable.

4. The design calculations shall be adequate to demonstrate the stability of the structure during all stages of the removal operations.

5. A complete Contractor’s equipment list with attachments, dimensions, axle loadings and equipment weights should be shown along with proposed placement locations to check for possible structure overloads. (SS 7-1.02)

6. Timeline, milestones, and contingency plans need to be included when dealing with traffic or other potential safety problems, traffic delays, and construction windows.

7. Protection of existing utilities and non-highway facilities should be covered. (SS 7.1.11 Preservation of Property).

8. The location of temporary hand railing and barrier railing for bridge decks should be shown for staged bridge removal. This detail is necessary for the protection of the employees and the public.

Formal Review

1. The safe work areas for the contractor’s personnel and Caltrans personnel should be shown on the demolition plan. The protection of public traffic (vehicles and/or pedestrians) and private property must be covered thoroughly in the demolition plan, including the safe routing of public traffic during demolition operations.

2. The location of the demolition equipment and the method in which the equipment is used to remove the structure should be reviewed. This may assist you in evaluating the stability of the structure under live loads during bridge removal. This is extremely important when a portion of the structure is to remain standing and equipment is to stay on the structure.
3. A freely falling mass or a falling mass attached to a cable, rope, or chain shall not be used above or within 9m (30 feet) horizontally of any area open to the public unless adequate protective shields are in place (SS 15.4.02), and/or unless otherwise noted in the Special Provisions.

4. The impact and possible damage due to excessive demolition debris falling and collecting on roadway section, adjacent structure, supporting falsework, protective cover, or even structural elements supporting the structure being removed need to be investigated. Again, the equipment loads should be considered in combination with debris build up. If needed, debris shields shall be used to protect the surrounding area, structural elements, and falsework and shall be detailed and shown on the demolition plan. Also, ensure there is a provision on the plans for dust control.

5. A timeline should be noted for each operation if traffic control is involved. When working within a “time-window”, progress should be monitored against planned progress milestones and a contingency plan should be agreed upon prior to the start of removal operations if work falls behind planned progress.

6. The bridge removal plan shall conform to the requirements in Section 5-1.02, *Plans and Working Drawings*, of the Standard Specifications. The number of sets of drawings and design calculations and times for review for any bridge removal plans shall be the same as specified for falsework drawings in Section 51.1.06A, *Falsework Design and Drawings*, of the Standard Specifications. (Unless otherwise specified in the Special Provisions.)

7. One copy of the approved drawings, the engineer’s calculations, and the Structure Representative’s calculations are to be submitted to the Sacramento office of Structure Construction, along with a copy of the approval letter sent to the contractor.

Other Agency Requirements

1. The Contractor shall conform to all local sound, water, noise, and air pollution control requirements per Standard Specification Section 7, Special Provisions, and/or applicable permits.

2. The Contractor must get a disposal permit for disposal of material outside the highway right of way per Standard Specification Section 7-1.13.

3. A Cal-OSHA permit is required for the demolition of any structure greater than 10.9 m (36 feet) in height. (Cal-OSHA Article 2 Section 341, *Permit Requirements*)

4. If railroad review of the demolition plan is required on your contract, make sure to inform the agency well in advance of the work, especially if the demolition work is a critical item on the project schedule. Information regarding working with Railroads can usually be found in the Special Provisions Section, *Relations with Railroad Company*. Also, inform the Contractor at the pre-job meeting regarding the possible time delay by impromptu plan submittal and revisions. The procedure for approving these plans is
identical to that used for falsework plan approval. The instructions can be found in the Falsework Manual Section 2-1.06B *Procedure when Railroad Company Approval is Required.*
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>08-31-2020</td>
<td>Removed 130-16.0</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>2</td>
<td>08-30-2019</td>
<td>Revised 130-7.0, 130-10.0, & 130-12.0. Deleted 130-14.0 & 130-15.00</td>
<td>Richard Foley</td>
</tr>
<tr>
<td>1</td>
<td>09-04-2018</td>
<td>Revised 130-1.0</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Memo No	Issue Date	Title
130-1.0 | 09/04/2018 | Foundation Testing and Instrumentation Branch |
130-2.0 | | (Blank – Removed 09-04-18) |
130-3.0 | | (Blank – Removed 06-30-14) |
130-4.0 | 06/30/2014 | Pile Driving Acceptance Criteria |
130-5.0 | 12/09/2011 | Steel H-Pile Lugs |
130-5.0 Att. No. 1 | 12/09/2011 | Steel H-Pile Lug Drawing |
130-6.0 | 06/30/2014 | Payment for Piling |
130-7.0 | 08/30/2019 | CIDH Concrete Piling |
130-8.0 | 12/09/2011 | CIDH Pile Mitigation Committee |
130-9.0 | 06/30/2014 | CIDH Pile Installation Plan and Concrete Test Batch |
130-10.0 | 08/30/2019 | Testing of CIDH Piling |
130-11.0 | 06/30/2014 | Simple Repair of CIDH Piling |
130-12.0 | 08/30/2019 | Mitigation of CIDH Piling |
130-13.0 | 06/30/2014 | CIDH Pile Information Submittal |
130-14.0 | | (Blank – Removed 08-30-19) |
130-15.0 | | (Blank – Removed 08-30-19) |
130-16.0 | | (Blank – Replaced with BCM 19-6.03D on 08-31-20) |
130-17.0 | | (Blank) |
130-18.0 | | (Blank – Removed 06-30-14) |
<table>
<thead>
<tr>
<th>Memo No</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>130-19.0</td>
<td>06/30/2014</td>
<td>Reference to the Foundation Manual – Appendix K for Construction Checklists for Foundation Work</td>
</tr>
<tr>
<td>130-20.0</td>
<td>02/09/2011</td>
<td>CIDH Pile Preconstruction Meeting</td>
</tr>
<tr>
<td>130-20.0 Att. No. 1</td>
<td>12/09/2011</td>
<td>CIDH Pile Preconstruction Meeting Agenda/Minutes</td>
</tr>
<tr>
<td>130-20.0 Att. No. 1.1</td>
<td>12/09/2011</td>
<td>Attendance Sheet CIDH Pile Preconstruction Meeting</td>
</tr>
<tr>
<td>130-20.0 Att. No. 1.2</td>
<td>12/09/2011</td>
<td>CIDH Wet vs. Dry (Inspection Tube Requirements)</td>
</tr>
<tr>
<td>130-20.0 Att. No. 1.2</td>
<td>12/09/2011</td>
<td>CIDH Wet vs. Dry (Inspection Tube Requirements)</td>
</tr>
<tr>
<td>130-20.0 Att. No. 1.3</td>
<td>12/09/2011</td>
<td>CIDH Drilling & Concrete Placement</td>
</tr>
<tr>
<td>130-20.0 Att. No. 1.4</td>
<td>12/09/2011</td>
<td>Synthetic Slurry Test Record</td>
</tr>
<tr>
<td>130-20.0 Att. No. 1.5</td>
<td>12/09/2011</td>
<td>Concreting Yield Plot</td>
</tr>
<tr>
<td>130-20.0 Att. No. 1.6</td>
<td>12/09/2011</td>
<td>GGL Inspection Tube Verification</td>
</tr>
<tr>
<td>130-20.0 Att. No. 1.7</td>
<td>06/30/2014</td>
<td>CIDH Pile Acceptance Test Request Form</td>
</tr>
<tr>
<td>130-20.0 Att. No. 1.8</td>
<td>12/21/2012</td>
<td>Pile Design Data Form</td>
</tr>
<tr>
<td>130-20.0 Att. No. 1.9</td>
<td>12/09/2011</td>
<td>Pile Mitigation Procedure</td>
</tr>
<tr>
<td>130-20.0 Att. No. 1.10</td>
<td>12/09/2011</td>
<td>Mitigation Timeline – General Draft</td>
</tr>
<tr>
<td>130-21.0</td>
<td>06/30/2014</td>
<td>CIDH Pile Non-Standard Mitigation Meeting</td>
</tr>
<tr>
<td>130-22.0</td>
<td>06/30/2014</td>
<td>Seal Courses</td>
</tr>
</tbody>
</table>
Foundation Testing and Instrumentation Branch

The Foundation Testing and Instrumentation Branch, Office of Geotechnical Support, Geotechnical Services, provides statewide foundation testing services which include:

- Static load tests for compression, tension, and lateral capacities of piles.
- Pile Dynamic Analysis.
- Nondestructive testing of Cast-In-Drilled-Hole (CIDH) piles (Gamma-Gamma and Crosshole Sonic Logging).
- CIDH Pile Mitigation Review.
- Pile Drivability Studies.
- Field acceptance criteria by wave equation analysis.
- Sonic Caliper Testing.
- Shaft bottom inspection utilizing the Shaft Inspection Device (SID).
- Geotechnical Testing Consultation.

For contracts that require any of the listed testing services, contact Foundation Testing and Instrumentation (FTI) in Sacramento. Foundation testing request forms can be downloaded from the FTI website.
Pile Driving Acceptance Criteria

Projects with standard driven pile foundations specify the *Gates Formula* to determine nominal driving resistance. The *Gates Formula* is:

\[R_u = (7 \times (E_r)^{1/2}\log_{10} (0.83 \times N)) - 550 \]

Where:
- \(R_u \) = Calculated nominal driving resistance in kiloNewtons.
- \(E_r \) = Energy rating of hammer at observed field drop height in Joules.
- \(N \) = Number of blows per 300 millimeters (maximum of 96).

In US Customary units:

\[R_u = (1.83 \times (E_r)^{1/2}\log_{10} (0.83 \times N)) - 124 \]

Where:
- \(R_u \) = Calculated nominal driving resistance in Kips.
- \(E_r \) = Energy rating of hammer at observed field drop height in foot-pounds.
- \(N \) = Number of blows per foot (maximum of 96).

In order to verify that the proposed hammer can develop the required minimum energy as required by the specifications\(^1\), use the manufacturer’s maximum energy rating and the nominal driving resistance to calculate the maximum acceptable blow count (not exceeding 96 blows per foot which is equivalent to a penetration rate of not less than 1/8 inch per blow). Hammer data is typically submitted by the Contractor and can be found at the hammer manufacturer website or by contacting the Foundation Testing Branch (FTB). See BCM 130-1.0, *Foundation Testing Branch*.

When calculating the number of blows for the required nominal driving resistance, \(E_r \) can be calculated by multiplying the hammer ram weight by the observed stroke.

A simple spreadsheet (PileEquation-Gates.xls) used to calculate the \(N \) value can be found on the SC Homepage under *Downloads/Forms*\(^2\):

Appendix E of the *Foundation Manual* provides examples for calculations for minimum hammer energy, establishing a blow count chart, battered pile blow count chart, and other examples.

1. 2010 SS, Section 49-2.01C(2), *Driving Equipment*, or 2006 SS Section 49-1.05, *Driving Equipment*.
It is important to note that:

- The Gates Formula uses nominal values. Nominal resistance and nominal driving resistance of a given pile are shown in the Pile Data Table on the contract plans.

- The nominal driving resistance is always equal to or greater than the nominal resistance. This is because the nominal driving resistance accounts for driving resistance through unsuitable penetrated soil layers (very soft, liquefiable, scorable, etc.) which do not contribute to the design nominal resistance.

- Even under ideal hammer operations, the energy dissipation from impact and losses to the hammer mechanism may greatly reduce the actual energy delivered to the pile during driving. Additional losses may occur due to improper or inadequate hammer use, changing fuel setting, using interchangeable ram, etc. Be aware of reductions in actual hammer energy. Using a false high hammer energy value in the Gates Formula will give false high nominal resistance results.

When requested by the geotechnical designer, the special provisions will include a driving system submittal section. When submitted by the Contractor, forward this submittal to the FTB for review.

The Gates Formula should not be used when the driven pile diameter is greater than or equal to 18-inches or the required nominal driving resistance exceeds 600 kips. In such cases the Special Provisions will include appropriate test method(s) for the verification of the axial nominal resistance during installation and the pile acceptance criteria. These tests include pile dynamic monitoring and/or a pile load test. Contact the FTB for dynamic monitoring or a pile load test.
Volume II

STEEL H-PILE LUGS

Pile lugs are welded onto steel H-piles prior to driving. The lug increases the friction resistance of the pile so that the bearing is achieved with a shorter pile. Welding of steel pilings, including attachment of lugs, must conform to Standard Specifications\(^1\) (SS). The detail for a pile lug is shown in Attachment No. 1.

When recommended by Geotechnical Services, the pile lug detail will be shown on the plans. Review the special provisions for measurement and payment. Lugs that are shown on the plans are paid as furnishing piling per the SS.

When lugs are not shown on the plans, and when the piles are driving longer than anticipated, immediately contact Geotechnical Services. An option to the use of lugs is to let the piles set up and to re-drive (and check bearing) a day or two later.

The Contractor may request lugs or the Engineer may order lugs. Savings from reducing the length of the pile must be compared with the cost for furnishing, welding and performing welding quality control on the lugs. Lugs might not be economical when there is no other welding on the job.

Lugs installed at the direction of the Engineer are paid for as change order work as stated in the SS\(^2\).

\(^1\) SS 2010, Section 11 or SP 2006, Section 8-3.

\(^2\) SS 2010, Section 49-2.01C(1) or SS 2006, Section 49-6.02.
Tee section cut from steel pile

4'-0" or as directed by the Engineer

SECTION A-A

PILE LUG

Bridge Construction Memo No. 130-5.0
Attachment No. 1
December 9, 2011
Page 1 of 1
Measurement and Payment for Piling

Measurement and payment clauses are in the Standard Specifications (SS), the Special Provisions (SP) and the Construction Manual. Review these documents.

Measurement

The SS\(^1\) specify how piles are measured and paid for. However, the requirements of the SS vary depending on the version used when the contract was written.

Contracts using Section 49-6.01 of the 2006 SS provide for measurement of piling as follows:

\[\text{The length of timber, steel, and precast prestressed concrete piles, and of cast-in-place concrete piles consisting of driven shells filled with concrete, shall be the greater of the following:} \]

\[A. \text{ The total length in place in the completed work, measured along the longest side, from the tip of the pile to the plane of pile cut-off. } \]

\[B. \text{ The length measured along the longest side, from the tip elevation shown on the plans or the tip elevation ordered by the engineer, to the plane of pile cut-off. } \]

Piling that extends beyond the tip elevation shown on the plans, as ordered by the Engineer, to meet design requirements, will be measured under the provisions of Part A; while piling that fails to reach the tip elevation shown on the plans, but has been determined to be suitable for the design, will be measured in accordance with Part B.

Contracts using amended versions of Section 49-6.01 of the 2006 SS provide for measurement of piling as follows:

\[\text{The length of timber, steel, and precast prestressed concrete piles, and of cast-in-place concrete piles consisting of driven shells filled with concrete, shall be measured along the longest side, from the tip elevation shown on the plans to the plane of pile cut-off.} \]

Contracts using revised versions of Section 49-2.01D of the 2010 SS provide for measurement of piling as follows:

\[\text{Furnish piling is measured along the longest side of the pile from the specified tip elevation shown on the plans to the plane of pile cutoff.} \]

\(^1\) 2010 SS, Section 49-2.01D, Payment, or 2006 SS, Section 49-6, Measurement and Payment.
Piling that fails to reach tip elevations shown on the plans, but has been determined to be adequate and approved by the Designer, will be measured along the longest side, from the tip elevation shown on the plans to the plane of cut-off elevation.

Payment

Materials on Hand

Bridge Construction Memo (BCM) 6-4.0, *Partial Payments*, addresses the differences between *Materials on Hand but not yet incorporated in the work*, and payments for *furnishing materials*. Refer to BCM 6-4.0 prior to making payments for piling.

When the SP qualify the material for *Materials on Hand* and it does not meet the requirements for “furnishing”, payment may be made as *Materials on Hand* at the Contractor’s request.

Precast concrete piling, steel piling, steel shells for cast-in-steel-shell concrete piling, and permanent steel casing for cast-in-drilled-hole concrete piling are typically listed in the SP as being eligible for payment for *Materials on Hand but not yet incorporated in the work*.

Bar reinforcing steel used in cast-in-place concrete piling is typically listed in the SP as being eligible for payment for *Materials on Hand but not yet incorporated in the work*.

Section 3-906E, *Materials on Hand*, of the *Construction Manual*, June 2013, states: “…In general, accept only completely fabricated units, ready for installation on the project with the following exceptions:

Piling—Steel plate used for steel pipe piling and driven steel shells filled with concrete and reinforcement as described in Section 49, “Piling,” of the Standard Specifications may be considered acceptable as raw material. However, pay for such material as raw material only until shop fabrication of the pile is 100% complete. After shop fabrication is complete, the estimated fabricated value may be paid, subject to other specified restrictions and administrative guidelines.”

Furnish and Drive

The following guidelines have been established to ensure uniform practice throughout the State for partial payments for piling. Refer to BCM 6-4.0, *Partial Payments*, for additional instructions regarding payment for Furnish Piling items.

- When steel or precast concrete piling of proper length are delivered to the job site ready for driving, the specification requirements for *furnishing* have been met and the material should be paid under *furnish piling* item on the progress pay estimate. Piles stored offsite, or onsite but not ready for driving, are to be considered as Materials-on-Hand.

- Portions of piling, such as steel shells for cast-in-place concrete piles, as described in Section 49-3 of the 2010 SS, are not complete piling and cannot be paid under the *furnishing* contract item. When the steel shells for cast-in-steel-shell concrete piles have

2 2010 SP, Section 9-1.16C or 2006 SP, Section 5.
been driven and the concrete and reinforcing steel have been placed to provide a complete pile, the contract item for furnishing may be paid.

- For steel pipe piling, full payment on the furnish item will not be made until the piling is on site and all field welds are completed and approved. This work includes welding of splices, and shear rings, when shown on the plans or required in the Special Provisions.
- The concrete filling material for cast-in-steel-shell concrete piling is paid under the furnish item while the placement of said material is paid under the drive item. This is particularly important when making item adjustments.
- For cast-in-drilled-hole concrete piling, permanent casing is paid as a separate item, but temporary casing is fully compensated in the piling item. Rock sockets are paid as a separate Cast-In-Drilled-Hole (Rock Socket) item.
- Bar reinforcing steel for cast-in-place concrete piling greater than or equal to 24 inches or 600 mm diameter is paid as a separate item. For smaller diameter cast-in-place concrete piling, bar reinforcing steel is included in the cast-in-place concrete piling item.
- For Cast-In-Drilled-Hole (CIDH) concrete piling constructed using the Wet Method (refer to BCM 130-7.0, CIDH Concrete Piling, for definition), payment for the CIDH concrete piling item and rock socket item (if applicable) will be made only after acceptance testing has been performed and the pile is accepted by the Engineer.

Pile Tip Revisions

The SS3 specify how piles are paid for when the Engineer revises the pile tip.

Contracts using amended versions of the 2006 SS provide for payment for piling as follows:

When pile tips are revised by the Engineer for timber, steel, and precast prestressed concrete piles, and for cast-in-place concrete piles consisting of driven shells filled with concrete, the additional length required, including all materials, equipment, and labor for furnishing, splicing, and installing the piling, will be paid for as extra work as provide in Section 4-1.0D, “Extra Work”.

Contracts using the 2010 SS provide for payment for piling as follows:

If the Engineer revises the pile tip elevation for driven piles, the work involved in furnishing, splicing, and driving the additional length of pile is change order work.

The length of piling that extends beyond the tip elevation shown on the plans, as ordered by the Engineer to meet design requirements, will be paid for as Extra Work or change order work.

3 2010 SS, Section 49-2.01C(1), General, and 2010 SS, Section 49-3.03C(1), General; or SS 2006, Section 49-6.02, Payment.
CIDH Concrete Piling

Cast-In-Drilled-Hole (CIDH) concrete piling can be grouped in two categories: the first is CIDH piling without inspection pipes (dry method), and the second is CIDH piles with inspection pipes (wet method).

It is assumed that concrete placed in dry conditions is structurally sound. Piles less than 24 inches (600 mm) in diameter are designed assuming that the concrete will be placed in a dry or a dewatered hole. For these small diameter CIDH piles, if water is encountered and dewatering does not work, immediately contact the geotechnical engineer or CIDH Pile Mitigation Committee Chairperson. The pile type may be inappropriate for the site conditions.

Concrete that is placed under slurry or placed in a dewatered hole using temporary casing must be inspected for quality. If there is soil contamination, slurry mixed with concrete, or zones of low density concrete, repairs might be required to make the concrete structurally sound.

A chronological outline for contract administration of CIDH piling without inspection pipes is shown below:

1. CIDH Pile Preconstruction Meeting:
 a. Conduct meeting per the Special Provisions and BCM 130-20.0, Cast in Drilled Hole (CIDH) Pile Reconstruction Meeting.

2. Pile placement plan:
 a. Review the plan
 b. Respond to the contractor

3. Pile Construction

4. Payment

A chronological outline for contract administration of CIDH piling with inspection pipes is shown below:
1. CIDH Pile Preconstruction Meeting:
 a. Conduct meeting per the Special Provisions and **BCM 130-20.0, Cast in Drilled Hole (CIDH) Pile Reconstruction Meeting.**

2. Pile Placement Plan:
 a. Review the plan.
 b. Respond to the contractor.
 c. Send a copy of the authorized placement plan to the **CIDH Pile Mitigation Committee Chair.**

3. Test batch of concrete:
 a. Witness the test.
 b. Review the results.
 c. Respond to the contractor.
 d. For piles with inspection pipes, send a copy of the approved mix design and test results to the CIDH Pile Mitigation Committee Chair.

4. Pile Construction:
 a. Contractor logs concrete placement and submits copy within one working day.
 b. Contractor makes access for testing.
 c. Witness Contractor’s probe of inspection pipes.
 d. Reject a pile if an inspection pipe is blocked.
 e. Notify the Foundation Testing and Instrumentation Branch (FTI) of blocked inspection tubes and request guidance. (See **BCM 130-10.0, Testing of CIDH Piling.**)

5. Testing:
 a. Use the **CIDH Pile Acceptance Test Request Form** to schedule testing with FTI so that testing can be completed as soon as possible.
 b. FTI performs tests and sends report.

6. Pile Acceptance or Rejection:
 a. Send a letter to the contractor either accepting or rejecting a pile based on the FTI recommendations. For accepted piling, complete payment for that pile. Do not pay for rejected piling and continue with steps 7-13 below.

7. Suspend depositing of concrete (under slurry or with use of temporary casing to control groundwater):
 a. The contractor submits revised pile placement plan to correct methods that resulted in anomalies.
b. Review revised pile placement plan.

c. Notify the contractor when the plan is approved and slurry work can resume.

8. Pile Design Data Form:

a. Immediately contact the structures project design engineer, the project geotechnical designer, and the corrosion specialist (Corrosion Technology Branch at Translab) to ensure that they complete the Pile Design Data Form (PDDF) included in the FTI report.

b. Based on the completed PDDF, determine whether the rejected pile requires repair and if so, the feasibility of repairing the rejected pile. Consult with the CIDH Pile Mitigation Committee.

c. Send a copy of the completed PDDF to the members in the CIDH Pile Mitigation Committee and allow 2 working days for a cursory check.

d. Send appropriate letter and information to the contractor (See BCM 130-10.0, Testing of CIDH Piling.)

9. CIDH Pile Non-Standard Mitigation Meeting. (This meeting is necessary only when a non-standard mitigation method is required, see BCM 130-12.0, Mitigation of CIDH Piling, for different mitigation methods.)

a. Conduct meeting per the Special Provisions and BCM 130-21.0, CIDH Pile Non-Standard Mitigation Meeting.

10. Pile Mitigation Plan:

a. Contractor submits plan.

b. Directly review if it is for simple repairs.

c. Coordinate review with CIDH Pile Mitigation Committee for non-simple mitigation by sending a copy of the proposed Mitigation Plan to FTI and the CIDH Pile Mitigation Committee Chairperson.

d. Get a consensus with CIDH Pile Mitigation Committee.

e. Conduct a CIDH Pile Mitigation Review Meeting per BCM 130-12.0, Mitigation of CIDH Piling. This meeting is necessary only when a non-standard mitigation plan is rejected by the Designer.

f. Review and respond to the contractor until the plan can be approved.

11. Pile Mitigation:

a. The contractor submits the post mitigation report. Send a copy of this report to the members of the CIDH Pile Mitigation Committee.

12. CIDH Pile Information:
a. Verify that all final data has been submitted on the CIDH Pile Information form to the CIDH Pile Mitigation Committee Chairperson.

13. Complete Payment

Details for contract administration of CIDH piles are provided in BCMs 130-8.0 to 130-21.0.
Volume II

CIDH PILE MITIGATION COMMITTEE

The CIDH Pile Mitigation Committee does the following:

- Provides technical support to Structure Representatives
- Reviews the Pile Design Data Form
- Reviews CIDH Pile Mitigation Plans to ensure statewide consistency for construction means and construction administration
- Ensure final acceptance of pile after repair mitigation work is completed.
- Liaisons with Industry
- Serves on Structure Design’s Substructure Technical Committee
- Coordinates with METS, Corrosion Technology Branch

Members of the CIDH Pile Mitigation Committee consist of the CIDH Pile Committee Chair, the Foundation Testing Branch (FTB) Office Chief, the Project Engineer, and the Geotechnical Designer.

Current contact information for the CIDH Pile Mitigation Committee Chair is identified on the Offices of Structure Construction link at: http://onramp.dot.ca.gov/hq/oscnet/sc_people/hq_people.htm#os3.

Mail: Caltrans Courier
Engineering Services, OSC
P.O. Box 168041, Mail Station 9-2 11H
Sacramento, CA 95816-8041

Current contact information for the Foundation Testing Branch office chief is identified on the Office of Geotechnical Support link at: http://www.dot.ca.gov/hq/esc/geotech/geo_support/geo_support.html.

Mail: Caltrans
Transportation Laboratory, Geotechnical Services
5900 Folsom Blvd, Mail Station 5
Sacramento, CA 95819-4612
CIDH Pile Installation Plan and Concrete Test Branch

All Cast-In-Drilled-Hole (CIDH) Piling
The Contractor is required to submit a Pile Installation Plan for all CIDH piling. A listing of the plan requirements is in the Standard Specifications (SS) and Special Provisions (SP)\(^1\); concrete mix design is one of the items. Reject the Pile Installation Plan if it is not complete, not appropriate, or not adequate for the site conditions and project requirements. Notify the Contractor in writing when the Pile Installation Plan is authorized.

CIDH Piling with Inspection Pipes and Testing
When inspection pipes and testing are required, additional items are required and these are listed in the specifications\(^1\).

The specifications\(^2\) require a concrete test batch for concrete to be placed under slurry. The Contractor must submit the Pile Installation Plan prior to producing the test batch, and at least 15 days prior to constructing piling. Verify that the placement time is consistent with the proposed mix design. Potential issues that should be addressed for placement of concrete under slurry are detailed in the *Foundation Manual*, Chapter 9, *Slurry Displacement Piles*.

Witness the Contractor’s testing of a batch of concrete. Receive the test batch results and review for performance, as well as consistency with the Pile Installation Plan. If the performance of the test batch and the Pile Installation Plan do not match, then reject the plan. The Contractor is required to revise the Pile Installation Plan (including the mix design) until the plan and the test batch results are consistent. If the mix design requires revision, then another testing of a batch of concrete is required.

For piling with inspection pipes and testing, send a copy of the authorized Pile Installation Plan and authorized mix design (including the approved test batch results) to the CIDH Pile Committee Chairperson.

\(^1\) 2010 SS, Section 49-3.02A(3)(b), *Pile Installation Plan*, or 2006 SP
\(^2\) SS 2010, Section 49-3.02A(4)(c), *Concrete Test Batch*, or 2006 SP
Testing of CIDH Piling

Testing

The Foundation Testing and Instrumentation Branch (FTI), located in Sacramento, provides statewide foundation testing services. The FTI's workload fluctuates widely throughout the year; therefore, in order to provide timely services, advance notice will be required for scheduling Gamma-Gamma testing, especially at the beginning of a new contract. Notify FTI thirty (30) days before testing is needed, or as early as possible. Obtain the current version of the CIDH Pile Acceptance Test Request Form from FTI's website.

Complete the form, providing an estimated date for testing, and fax the form to the FTI number provided on the form. The FTI will assign an engineer who will contact you for further scheduling and foundation testing on your project.

Coordinate the Contractor’s pile construction operations with FTI. Notify FTI so piling can be tested as soon as possible. Remember, Gamma-Gamma testing can be performed even before the concrete is cured. It is important to inform FTI as soon as possible so the Contractor does not construct numerous CIDH piles before FTI can perform testing. The goal is to avoid having to reject several piles with the same problem. If the Contractor’s construction methods do not work, the Contractor needs to correct the methods prior to depositing any additional concrete for Cast-In-Drilled-Hole (CIDH) piles with inspection tubes.

In order for FTI to perform Gamma-Gamma testing, inspection pipes should be completely accessible for the Gamma-Gamma probe and free of water (Contractors will typically fill tubes with water during construction. They should be purged prior to testing.) The Contractor checks the inspection pipes for accessibility by passing a probe (a 1-1/4- inch diameter by 4-1/2 feet long rigid cylinder) through the length of the pipe. The Engineer must witness the entire probe check of the inspection pipes. When the inspection pipes are confirmed to be clear, immediately notify FTI using the CIDH Pile Acceptance Test Request Form so that testing can be performed. Ensure that the Contractor has provided access to the pile for the FTI Engineer. If an inspection pipe is blocked, this is considered to be an anomaly and the pile will immediately be rejected. The Contractor can core a hole to mitigate a blocked pipe. Coring must be performed in

1 Foundation Testing Request Forms
accordance with the requirements of the Standard Specifications (SS). The Contractor logs the coring operation and provides the cored materials to the Engineer. Send a copy of the coring report to the FTI for review and evaluation of the portion of the pile represented by coring. No Gamma-Gamma testing is performed in the cored holes. Although the specifications require coring to mitigate a blocked tube, there are cases where coring may not be necessary. For example, if the blockage is within the bottom one pile diameter, and the pile does not require end bearing, then it is likely that the pile is adequate from a structural and geotechnical standpoint without verification of the concrete condition below the blocked zone. Therefore, it is recommended to contact FTI or the CIDH Pile Mitigation Committee Chair for guidance prior to coring for blocked tubes.

The Foundation Testing and Instrumentation Branch will perform testing and submit a *Pile Acceptance Test Report*. The FTI will transmit the report via mail and e-mail to the Structure Representative (SR), Structure Construction Headquarters (SC HQ), Structure Design, Geotechnical Services, and the Corrosion Engineer.

If the pile is free of anomalies, FTI will recommend pile acceptance. If the pile has an anomaly, the location and details will be provided, and FTI will recommend rejection. Follow the recommendation in the FTI report and immediately notify the Contractor of either pile acceptance or rejection. A sample rejection letter is shown in Attachment No. 1.

Rejected Piling

If an anomaly is found, the pile is rejected. An anomaly may be due to soil contamination, a zone of low-density concrete, or slurry mixed with concrete. An anomaly may or may not represent a defect in the CIDH pile. Therefore, each anomaly must be investigated separately.

In some cases, FTI will release a *Gamma-Gamma Logging Acceptance Test Report* and then might choose to do additional testing (such as cross-hole sonic logging) to better define the type and limits of an anomaly. When FTI plans to do additional testing, do not wait on these results; send the rejection letter. The FTI decision whether to perform additional tests will be evaluated and presented in the Gamma-Gamma report.

When a pile is rejected, suspend all depositing of concrete under slurry (or suspend using temporary casing to control groundwater) until the Contractor submits a revised pile placement plan. The revised plan must explain how the anomaly occurred and what changes are made to avoid the same problem. Immediately notify the Contractor when a revised pile placement plan has been reviewed, the new plan is acceptable, and the work may resume.

In the pile test report, FTI will include the *Pile Design Data* form. A sample form is shown in Attachment No. 2. Completion of this form requires input from the project

2 [2015 SS](#), Section 49-3.02C(5), *Vertical Inspection Pipes*.

BRIDGE CONSTRUCTION RECORDS & PROCEDURES MANUAL

BCM 130-10.0

08/30/19

PAGE 2 OF 7
Structural Designer, the project Geotechnical Designer and the Corrosion Specialist (contact Corrosion Technology Branch at Translab). Do not allow excessive delays to occur in completing this form. If one or more of the responsible persons are unable or unwilling to provide the data needed to complete this form in a timely manner, immediately elevate this to the CIDH Pile Committee Chairperson. After completing this form submit it to the CIDH Pile Mitigation Committee and allow at least two working days for review. Discuss the pile design requirements with the CIDH Pile Mitigation Committee to determine whether the rejected pile requires mitigation, and if so, to determine viable mitigation methods (refer to BCM 130-12.0, Mitigation of CIDH Piling). A pile with multiple anomalies may have multiple Pile Design Data forms.

Based on the Pile Design Data information and the discussion of whether the rejected pile requires mitigation, proceed with one of the following actions:

Determine that the anomaly does not affect the necessary design performance and that the anomaly does not affect the necessary corrosion resistance, so mitigation is not required (consensus with the CIDH Pile Mitigation Committee is required). The Contractor can forego mitigation that is not required and accept an administrative deduction or mitigate the pile for full payment. Notify the Contractor in writing. A sample letter is shown in Attachment No. 3.

Determine that a simple repair can be used. See BCM 130-11.0, Simple Repair of CIDH Piling. Notify the Contractor in writing. A sample letter is shown in Attachment No. 4.

Determine that the anomaly must be mitigated and evaluate viable mitigation methods (refer to BCM 130-12.0, Mitigation of CIDH Piling). Notify the Contractor in writing. A sample letter is shown in Attachment No. 4.

For anomalies that require a non-standard mitigation plan, the Contractor is required to hold a CIDH Pile Non-Standard Mitigation Meeting per the Special Provisions (refer to BCM 130-21.0, CIDH Pile Non-Standard Mitigation Meeting). Notify the Contractor in writing. A sample letter is shown in Attachment No. 4.
Month date, year

File: <Project Name>

<Co/Rte./Pm>
<Job EA>

<Contractor Name>
<Contractor Address>

Dear <Responsible Person>,

The attached CIDH pile acceptance test report for piles <pile numbers>, dated <report date>, has indicated the presence of anomalies in pile <pile number>, located at Bridge No. xx-xxxx, <Bridge Name>. Pile <rejected pile number> is hereby rejected in accordance with the specifications

You are reminded of your responsibilities in the specifications, which require “…written changes to the methods of pile construction…” before concrete placement in the remaining piles, with inspection pipes, can continue. No concrete placement for these piles will be allowed until your revised pile installation plan has been received and authorized by the Engineer.

An investigation is being performed to determine whether mitigation of pile <pile number> is required, and if so, whether pile <pile number> can be repaired or must be supplemented or replaced. You will be notified of the results of this investigation as soon as it has been completed.

Edit As Appropriate

As indicated in the Gamma-Gamma Logging Acceptance Test Report, the Foundation Testing Branch will (will not) perform additional testing to further evaluate the rejected pile. You may perform your own testing on the rejected pile.

Sincerely,

Resident Engineer
Attachments <Pile Acceptance Test Report

1 2015 SS, Section 5-1.30, Noncompliant and Unauthorized Work.
2 2015 SS, Section 49-3.02A(4)(d)(iii), Rejected Piles

“Provide a safe, sustainable, integrated and efficient transportation system to enhance California’s economy and livability”
Sample Pile Design Data Form

1 Foundation Testing

Name: Phone: Date:

Anomaly Overview
Testing Performed □ GGL □ CSL
Shaft Diameter:
Cutoff Elev:

Section A-A

Section B-B

Tip Elev:

Anomaly Description
Section A-A:

Section B-B:

2 Geotechnical

Name: Phone: Date:

Required Nominal Resistance of Shaft (per contract plans)
Compression: ________ kips Tension: ________ kips
Lowest Estimated Groundwater Elevation: ________

Remaining Required Nominal Resistance To Be Developed
Below Each Anomalous Section:
Section A-A: Compression ________ Tension ________ kips
Soil and/or Rock Type: ____________
Shaft is geotechnically □ Acceptable □ Unacceptable
Section B-B: Compression ________ Tension ________ kips
Soil and/or Rock Type: ____________
Shaft is geotechnically □ Acceptable □ Unacceptable
Comments:

3 Structural

Name: Phone: Date:

As-Designed Capacity of Shaft
Section A-A: Shear: ________ Moment: ________
Section B-B: Shear: ________ Moment: ________

Maximum Demand of Shaft at Section A-A
Shear: ________ Moment: ________
Shaft is structurally □ Acceptable □ Unacceptable

Maximum Demand of Shaft at Section B-B
Shear: ________ Moment: ________
Shaft is structurally □ Acceptable □ Unacceptable
Comments:

4 Corrosion

Name: Phone: Date:

For anomalies between the top of pile and 3 feet below the lowest estimated groundwater level at the site, corrosion results listed in the Geotechnical report are used to assess the need for repair. For situations where results are not available, soil samples may be obtained adjacent to the anomaly and tested in accordance with California Test (CT) 643 (Parts 2, 3 and 4) and if necessary, CT 417 and CT 422 to determine soil corrosivity. For anomalies outside these limits, and where no stray current source can be identified, or for non-corrosive soil conditions, no consideration of corrosion potential is required.

Corrosion Potential at Section A-A:
Corrosion Potential at Section B-B:

5 Construction

Considering parts 2-4 of this form,

Sec. A-A is: □ Acceptable with Administrative Deduction □ Unacceptable, Mitigation is Required
Sec. B-B is: □ Acceptable with Administrative Deduction □ Unacceptable, Mitigation is Required

Bridge Name: Bridge No.: Abut/Bent:
Dist-Co.-Rte: EA: Pile:
Structure Rep.: Phone: Fax:
Month date, year

File: <Project Name>

<Co/Rte./Pm>
(Job EA)

<Contractor Name>
<Contractor Address>

Dear: <Responsible Person>,

Please refer to my letter dated <letter date> regarding the rejection of pile <pile number>, located at Bridge No. xx-xxxx.

An investigation of anomaly(ies) was performed by the Engineer and it was determined that mitigation work is not required. If you elect not to mitigate the anomaly(ies), payment will be reduced for the anomaly(ies) in conformance with the specifications 1. Full payment will be made if mitigation is completed and accepted.

Please inform me of your decision to either mitigate or take a reduction in payment.

Sincerely,

Resident Engineer

1 2015 SS, Section 49-3.02A(4)(d)(iii), Rejected Piles.
"Provide a safe, sustainable, integrated and efficient transportation system to enhance California’s economy and livability"
Month date, year

File: <Project Name>

<Co/Rte./Pm>
(Job EA)
<Contractor Name>
<Contractor Address>

Dear <Responsible Person>,

Please refer to my letter dated <letter date> regarding the rejection of pile <pile number>, located at Bridge No. xx-xxxx.

An investigation of the rejected pile performed by the Engineer has determined that mitigation work is required.

Action 3:
You are reminded of your responsibilities in the specifications which require “a plan for repair, removal, or replacement of the rejected piling” before the rejected pile can be accepted.

Action 4:
You are reminded of your responsibilities in the specifications which require “schedule and hold a CIDH Pile Non-Standard Mitigation Meeting within five business days after the Engineer’s determination whether the rejected pile requires mitigation”.

Attached is a copy of the original pile acceptance test report, < the cross-hole sonic pile test report if available>, and the pile design requirements to aid you in the preparation of the pile mitigation plan.

Please submit a pile mitigation plan to this office for review and approval as soon as possible.

Sincerely,

Resident Engineer

Attachments <Pile Acceptance Test Reports, Pile Design Data form>

1 2015 SS, Section 49-3.02(A)(d)(iii), Rejected Piles.

“Provide a safe, sustainable, integrated and efficient transportation system to enhance California’s economy and livability”
Simple Repair of CIDH Piling

A Simple repair is allowed for piling with the following conditions:

- The anomaly is within 5 feet of the top of the pile.
- There are no other repairs in the same pile.
- The repair area can be made completely visible.

Simple repairs consist of excavation of soils and then removal and replacement of defective concrete. Excavation of soils below five feet will reduce the geotechnical capacity of the pile and is not allowed. If the Contractor wants to excavate more than five feet from the top of the pile, this is not a simple repair and the process in BCM 130-12, Mitigation of CIDH Piling, must be used.

If permanent casing is within five feet of the top of the pile, it might not be feasible to make the defective concrete completely visible, and this is not a simple repair. The CIDH Pile Mitigation Committee must be consulted when an anomaly is inside the permanent casing.

Prior to starting simple repairs, the Contractor is required to submit the pile mitigation plan. Although the CIDH Pile Mitigation Committee is available for consultation on simple repairs, it is not required to send the mitigation plan to the CIDH Pile Mitigation Committee for review and consensus.

After the simple repairs are completed and approved, submit the CIDH Pile Information (see BCM 130-13.0, CIDH Pile Information Submittal), along with the Contractor’s post mitigation report, to the CIDH Pile Mitigation Committee Chair.
Mitigation of CIDH Piling

A rejected pile is only required to be mitigated to the extent needed for the pile to perform as intended by the design requirements. The CIDH Pile Mitigation Committee, BCM 130-8.0, CIDH Pile Mitigation Committee, will provide technical support to the Structure Representative, and assist in the review of submittals for repair, so that mitigation work is appropriate for the design, and administered consistently statewide. Common anomalies and mitigation measures are included in the Foundation Manual, Chapter 9, Slurry Displacement Piles. If the contractor proposes to do the anomaly investigation, immediately consult with the CIDH Pile Mitigation Committee.

As presented in Bridge Construction Memo (BCM) 130-10.0, the Pile Design Data Form will indicate whether the rejected pile requires mitigation and facilitates determining the feasibility of using a grouting repair method to mitigate the pile. Grouting repair cannot be expected to restore cross sections in zones of high moment demand.

Mitigation of a defective CIDH pile can be grouped into four methodologies:

Standard Repair Methodology:

1. Unearth and Recast (Basic Repair).
2. Pressure Grout (Grouting Repair).

Non-Standard Repair Methodology:

3. Structural Bridging.
4. Replacement/Supplement.

The first two methods are considered standard repair methods and are covered by the Association of Drilled Shaft Contractors (ADSC) Standard Mitigation Plan. Standard Mitigation Plan refers to the fact that the plan is of an established procedure; it does not endorse that method to address a particular anomaly repair. The latest version of this plan can be accessed through the Foundation Testing and Instrumentation Branch.

If it is feasible, an anomaly can be mitigated with repairs (basic, grouting, structural bridging). If it is not feasible to repair the anomaly, then the pile has to be replaced or supplemented with additional piling. The repair strategy is at the option of the contractor, and subject to Caltrans approval. No additional payment is made for any type of mitigation of rejected piling.

For anomalies that require a non-standard mitigation plan (i.e. basic repair or grouting repair are not feasible/acceptable), the contractor is required to schedule a CIDH Pile
Non-Standard Mitigation Meeting, per the specifications, to address a viable non-standard mitigation plan (structural bridging and replacement/supplement) in a timely manner. **BCM 130-21, CIDH Pile Non-Standard Mitigation Meeting**, provides guidance for conducting this meeting.

The contractor must have a pile mitigation plan submitted to the Structure Representative, and the Structure Representative must approve it before the mitigation work begins. A list of the plan requirements is in the specifications. When a contractor selects the ADSC Standard Mitigation Plan, all applicable contractual elements of the mitigation plan, as presented in the specifications, need to accompany the ADSC Standard Mitigation Plan.

Review the mitigation plan to ensure it is complete. Call the **CIDH Pile Mitigation Committee Chair** if there are questions. Send copies of the plan to the CIDH Pile Mitigation Committee. The mitigation plan will be reviewed by the Foundation Testing and Instrumentation Branch. Consensus from the committee is required before the plan can be accepted. The committee chair will send the consensus with written recommendations to the Structure Representative.

Notify the contractor if the plan is rejected (typically due to insufficient detail or inappropriate procedures). A sample letter for approval of the pile mitigation plan submitted to the Contractor is shown in Attachment No. 1.

Generally, the pile can be accepted if the mitigation work is performed in accordance with the provisions of the approved pile mitigation plan. However, there are circumstances when the pile must be retested. Acceptance criteria of a mitigated pile (i.e. retesting, coring) will be provided in the mitigation plan review report. The acceptance criteria must be included in the pile mitigation plan approval letter (Attachment No. 1).

After the repair, supplemental, or replacement work is complete and approved, the contractor submits a post mitigation report per the specifications. Send a copy of the post mitigation report to the CIDH Pile Mitigation Committee. Upon completion of the piling work, submit the CIDH Pile Information (see **BCM 130-13.0, CIDH Pile Information Submittal**) to the CIDH Pile Mitigation Committee Chair.

2. **2015 SS**, Section 49-3.02A(3)(g), Mitigation Plans.
Month day, year

File: <Project Name>
 <Co/Rte./Pm>
 <Job EA>

<Contractor Name>
<Contractor Address>

Dear:< Responsible Person>,

The CIDH pile mitigation plan, dated <date>, submitted for pile <abutment/bent number, pile number> at the <bridge name, bridge number> has been reviewed and is satisfactory.

<CONTINGENCIES PARAGRAPH- If the mitigation plan is approved. Contingent upon anything, list it here.>

<CRITERIA FOR PILE ACCEPTANCE PARAGRAPH- Certain criteria might be required after the mitigation work is completed to show the mitigation was successful (i.e. additional Gamma-Gamma testing, Cross-hole Sonic Logging or coring). List it here.>

You are reminded of your responsibilities¹, which require: For each rejected pile, submit a mitigation plan for repair, supplementation, or replacement. The mitigation plan must...

Sincerely,

Resident Engineer

¹ 2015 SS, Section 49-3.02A(3)(g), Mitigation Plans.

"Provide a safe, sustainable, integrated and efficient transportation system to enhance California’s economy and livability"
CIDH Pile Information Submittal

Structure Construction maintains a database on CIDH pilings that have been tested for anomalies. After a test report from the Foundation Testing Branch (FTB) is sent to the Structure Representative, the CIDH Pile Mitigation Committee Chair will send an electronic copy of *CIDH Pile Information* form (Attachment No. 1) to the Structure Representative.

When all of the CIDH piles are complete for a given contract, the Structure Representative will make one submittal of the final results to the CIDH Pile Mitigation Committee Chair. A sample of a completed form is shown in Attachment No. 2.

If there are piles for a contract that require mitigation, wait to complete this form until after mitigation is completed and the piles are accepted.
MEMORANDUM

To: ROBERT A. STOTT
DEPUTY DIVISION CHIEF
STRUCTURE CONSTRUCTION
DIVISION OF ENGINEERING SERVICES, MS 9-2/11H

ATTENTION: CHAIRMAN – PILE MITIGATION COMMITTEE

From: <NAME>
Structure Representative
<Field Office Address>
<City, CA Zip>
<Phone #>

Subject: CIDH Pile Information for Piles Tested by the Foundation Testing Branch (FTB)

<table>
<thead>
<tr>
<th>Project No.:</th>
<th>Project Name/Location:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge/Structure No.:</td>
<td>Bridge/Structure Name:</td>
</tr>
<tr>
<td>Abut/Bent/RW/SW No.:</td>
<td>Prime Contractor:</td>
</tr>
<tr>
<td>Const. Phase: (if applicable)</td>
<td>Drilling Contractor:</td>
</tr>
<tr>
<td>Slurry Type: (water, SlurryPro, etc)</td>
<td>Concrete Mfr & Mix Design No.:</td>
</tr>
<tr>
<td>Max. Concrete Aggregate Size:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PILE No.</th>
<th>From Acceptance Test Report, PILE was ACCEPTED (A) OR REJECTED (R)?</th>
<th>IF Pile was REJECTED, List ANOMALY X-Sections (A-A,B-B,etc)</th>
<th>FOR ANOMALY X-SECTIONS</th>
<th>IF Mitigation Required, was Mitigation DUE to GEOTECH (G), STRUCTURE DESIGN (S), and/or CORROSION (C) concerns?</th>
<th>Describe Repair Method (simple repair, excavate/chip/concrete, waterblasting/grout, etc) OR Amount of Administrative Deduction Taken ($$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See BCM 130-13.0, Attachment 2, for an example of a completed form. Sheet _____ of _____ pages

"Provide a safe, sustainable, integrated and efficient transportation system to enhance California’s economy and livability."
MEMORANDUM

SERIOUS DROUGHT.
Help save Water!

To: ROBERT A. STOTT
DEPUTY DIVISION CHIEF
STRUCTURE CONSTRUCTION
DIVISION OF ENGINEERING SERVICES, MS 9-2/11H

Date: 6/30/2014

ATTENTION: CHAIRMAN – PILE MITIGATION COMMITTEE

From: BASSEM KABBARA
Structure Representative
1129 S. Woodruff Ave.
Downey, CA 90241
(562) 401-3333

Subject: CIDH Pile Information for Piles Tested by the Foundation Testing Branch (FTB)

<table>
<thead>
<tr>
<th>PILE No.</th>
<th>From Acceptance Test Report, PILE was ACCEPTED (A) OR REJECTED (R)?</th>
<th>IF Pile was REJECTED, List ANOMALY X-Sections (A-A,B-B,etc)</th>
<th>Was MITIGATION REQUIRED? (Yes/No)</th>
<th>IF Mitigation Required, was Mitigation DUE to GEOTECH (G), STRUCTURE DESIGN (S), and/or CORROSION (C) concerns?</th>
<th>FOR ANOMALY X-SECTIONS</th>
<th>Describe Repair Method (simple repair, excavate/chip/concrete, waterblast/grout, etc) OR Amount of Administrative Deduction Taken ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td>A-A</td>
<td>Y</td>
<td>G, S, C</td>
<td>Simple Repair</td>
<td>Water Jet/Permeation Grouting</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>A-A</td>
<td>Y</td>
<td>G, S, C</td>
<td>Simple Repair</td>
<td>Core drill center, replace w/conc.</td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td>A-A</td>
<td>Y</td>
<td>S</td>
<td>Simple Repair</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>R</td>
<td>A-A</td>
<td>N</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Max. Concrete Aggregate Size: 3/8"

"Provide a safe, sustainable, integrated and efficient transportation system to enhance California’s economy and livability"
Reference to the Foundation Manual–Appendix K for Construction Checklists for Foundation Work

Construction checklists for the following foundation work are located in Appendix K of the *Foundation Manual*:

- Driven Pile.
- Cast-in-Drilled-Hole (CIDH) Pile.
- Cofferdam Seal-Course.
- Footing Foundation.
- Micropile.
- Ground Anchor.
- Soil Nail Wall.

These checklists have been developed to assist field personnel in preparing documents and inspecting fieldwork to ensure compliance with contract requirements.

The checklists can be downloaded from the Structure Construction (SC) Intranet link⁴.

For questions, contact the SC Substructure Technical Team. A list of the team members is available at the SC Intranet link².

Volume II

CAST-IN-DRILLED-HOLE (CIDH) PILE PRECONSTRUCTION MEETING

For all projects advertised after January 2012 (and in some cases by addendum) a section titled “CIDH Pile Preconstruction Meeting” should be added to the 2010 Standard Specifications¹.

The purpose of the Preconstruction CIDH Pile Meeting is to establish contacts and communication protocol for the Contractor, the Engineer and their representatives involved in CIDH pile design and construction, and to afford all parties a common understanding of the construction process, acceptance testing, and mitigation of CIDH piles. Attendance for this meeting is mandatory for the Resident Engineer, Structure Representative, Assistant Structure Representatives, Foundation Testing Branch and CIDH Pile Mitigation Committee representatives, Structural and Geotechnical Designers that are providing construction support for the project, Contractor’s Project Manager, Drilling Subcontractor’s Project Manager, Project Superintendent, Drilling Subcontractor’s Superintendent/Foreman, and the Reinforcing Steel Subcontractor’s Foreman/Superintendent.

Bridge Construction Memo (BCM) 130-20.0, Attachment Number 1 is a general meeting agenda to assist you with understanding the steps involved in construction, acceptance testing and mitigation of CIDH piles. However, bear in mind that these are reminders only. Review the general meeting agenda with regard to your specific project and modify the meeting agenda as necessary. Certain steps may or may not be included depending upon their applicability to a specific project.

¹ SS 2010, Section 49-3.02A(4)(b).
CIDH Pile Preconstruction Meeting

Agenda / Minutes

Facilitator: Structure Representative:

Invitees:
- Resident Engineer:
- Assistant Structure Rep.:
- Foundation Testing Branch Rep.:
- CIDH Pile Mitigation Committee Rep.:
- Structural Designer:
- Geotechnical Designer:
- Contractor’s Project Manager:
- Drilling Subcontractor’s Project Manager:
- Project Superintendent:
- Drilling Subcontractor’s Superintendent/Foreman:
- Reinforcing Steel Subcontractor’s Foreman/Superintendent:

Purpose:
Establish contacts and communication protocol for the contractor, the engineer, and their representatives involved in CIDH pile design and construction, and to afford all parties a common understanding of the construction process, acceptance testing, and mitigation process of CIDH piles.

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic*</th>
<th>Who</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Welcome and Self Introduction</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Project Background</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Pile Installation Plan</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Emergency Plan</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Acceptance Testing</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Pile Design Data Form</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Mitigation Process</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Timelines and Critical Path Activities</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Special Structural, Geotechnical, and Corrosion Design Requirements</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Future Meetings</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Adjourn Meeting</td>
<td></td>
</tr>
</tbody>
</table>

* These topics are reminders only. Items will or will not be included depending upon their applicability to a specific project.
Topic 1: Welcome and Self Introduction

a. Attendance Sheet (see attachments)
b. Introduction statements about each person’s responsibilities during construction of CIDH piles.

Topic 2: Project Background

Topic 3: Pile Installation Plan

Pile Installation Plan Submittal Review:

a. Concrete mix design, certified test data, and trial batch reports.
b. Drilling or coring methods and equipment.
c. Proposed method for casing installation and removal, if necessary.
d. Plan view drawing of pile showing reinforcement. Include inspection pipes on the drawing, if inspection pipes are required.
e. Methods for placing, positioning, and supporting bar reinforcement and inspection pipes.
f. Methods and equipment for determining:

 f.1 Depth of concrete

 f.2 Theoretical volume of concrete to be placed, including the effects on volume if casings are withdrawn

 f.3 Actual volume of concrete placed (see Attachment No. 5)
g. Methods and equipment for verifying that the bottom of the drilled hole is clean before placing concrete. How much loose material will be permitted?
h. Methods and equipment for preventing upward movement of reinforcement, including the means of detecting and measuring upward movement during concrete placement activities.

For concrete placed under slurry, include complete descriptions, details, and supporting calculations in the pile installation plan for:

i. Wet vs. Dry (see Attachment No. 2)

j. Concrete batching, delivery, and placing systems, including time schedules and capacities. Time schedules must include the time required for each concrete placing activity at each pile.

k. Concrete placing rate calculations. If requested, base calculations on the initial pump pressures or static head on the concrete and losses throughout the placing system, including anticipated head of slurry and concrete to be displaced.

l. Suppliers’ test reports on the physical and chemical properties of the slurry and any proposed slurry chemical additives, including MSDSs.

m. Slurry testing equipment and procedures.

n. Methods of removal and disposal of excavation, slurry, and contaminated concrete, including removal rates.

o. Methods and equipment for slurry agitating, recirculation, and cleaning
Topic 4: Emergency Plan

a. Sidewall sloughing or water inflow during concrete placement.
b. Broken tremie, breach of tremie seal, tremie blockage, tremie removal and reinsertion
c. Temporary casing removal, breach of casing seal.
e. Rebar cage movement
f. Who is authorized to make the decision to abandon concrete placement and remove rebar cage?

Topic 5: Acceptance Testing

a. CIDH Pile Acceptance Test Request Form (see Attachment No. 7)
b. The Dept. performs acceptance testing using GGL to test the concrete density of the pile for homogeneity.
c. Run dummy probe prior to testing. PVC tubes must be dry prior to GGL testing.
d. Blocked tubes and coring. Blockage at the bottom of the pile may not need coring (See BCM 130-10.0)
e. GGL Acceptance Test Report by FTB (distribution list – emails)
f. Allow 15 days for providing GGL Acceptance Test Report
g. CSL/additional testing selected by FTB. GGL report will address additional testing. Contractor may also do their own testing when the state does not elect to do so.
h. Allow Dept. 20 additional days to perform and report CSL/additional testing. Allow Dept. 10 days to review CSL/additional testing by Contractor.
i. If pile is rejected, suspend concrete placement until revised installation plan is authorized

Topic 6: Pile Design Data Form (PDDF)

a. “Simple Repair” anomaly does not require a PDDF.
b. Section 1 of the PDDF to be completed by the FTB (see Attachment No. 8)
c. Section 2 of the PDDF to be completed by the Geotechnical Designer.
d. Section 3 of the PDDF to be completed by the Structural Designer.
e. Section 4 of the PDDF to be competed by the Corrosion Engineer.
f. Allow Dept. 30 days to determine if rejected pile requires mitigation (PDDF completion)
g. If CSL/additional testing was performed, remember to add 20 or 10 days per Topic 5h or 5i, respectively.
h. If anomaly does not require mitigation Contractor may repair the anomaly or pay administrative deduction
i. If anomaly requires mitigation follow mitigation process (Topic 7).

Topic 7: Mitigation Process

Bridge Construction Memo 130-20.0
Attachment No. 1
December 9, 2011
Page 3 of 6
a. Pile Mitigation Procedure Flowchart (see Attachment No. 9)
b. Contractor proposal/Caltrans review and approval
b. Simple Repair (ADSC Standard CIDH Anomaly Mitigation Plan “A”)
c. Basic Repair (ADSC Standard CIDH Anomaly Mitigation Plan “A”)
d. Grouting Repair (ADSC Standard CIDH Anomaly Mitigation Plan “B”)
e. Structural Bridging Repair
e.1 PDDF indicating Basic/Grouting Repair not acceptable
e.2 CIDH Pile Mitigation VA Meeting (see BCM 130-12.0)
e.3 CIDH Pile Mitigation Plan Review Meeting (see BCM 130-12.0)
f. Supplementation/Replacement
f.1 Not feasible to repair pile
f.2 CIDH Pile Non-Standard Mitigation Meeting (see BCM 130-21.0)
f.3 CIDH Pile Mitigation Plan Review Meeting (see BCM 130-12.0)

Topic 8: Timelines – Critical Path Activities
a. Acceptance Testing and Mitigation Timeline (see Attachment No. 10)

Topic 9: Structural, Geotechnical, & Corrosion Design Requirements
a. Communicate design/performance requirements (i.e. Did geotechnical designer add one pile diameter to the bottom of the pile?)
b. Verify construction methods do not impact performance requirements
c. Structural Construction Considerations (construction joint, splice zones, isolation casing, column to shaft connection detail in Type II shaft, location of inspection tubes, bundling of longitudinal rebar, rebar splicing, concrete cover)
d. Geotechnical Construction Considerations (end bearing, skin friction, permanent casing, rock socket)
e. Corrosion Construction Considerations (Corrosive soil, lowest ground water elevation).

Topic 10: Future Meetings
a. CIDH Pile Non-Standard Mitigation Meeting (see BCM 130-21.0)
b. CIDH Pile Mitigation Plan Review Meeting (see BCM 130-12.0)

Topic 11: Safety
a. Applicable Construction Safety Orders.
b. For CIDH Piles 30 inches or greater in diameter and deeper than 20 ft’, Cal-OSHA Mining and Tunneling Safety Orders apply. (see BCM 145-5.0)
c. MSDS for all drilling slurries and chemical additives

Topic 12: Adjourn Meeting
<table>
<thead>
<tr>
<th>Action Item No. 1</th>
<th>Who:</th>
<th>Due:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action Item No. 2</td>
<td>Who:</td>
<td>Due:</td>
</tr>
</tbody>
</table>

Bin List

Bridge Construction Memo 130-20.0

ent No. 1

December 9, 2011

Page 5 of 6
ATTACHMENTS

1. CIDH Pile Preconstruction Meeting Attendance Sheet
2. CIDH Wet vs. Dry
3. CIDH Drilling & Concrete Placement Record
4. Synthetic slurry Test Record
5. Concreting Yield Plot
6. GGL Inspection Tube Verification
7. CIDH Pile Acceptance Test Request Form
8. Pile Design Data Form (PDDF)
9. Pile Mitigation Procedure Flowchart
10. General Mitigation Timeline
Attendance Sheet

CIDH Pile Preconstruction Meeting

Date:

Time:

Location:

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Phone</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CIDH Wet vs. Dry
(Inspection Tube Requirements)

Vertical inspection pipes for acceptance testing shall be provided in all CIDH concrete piling 24 inches in diameter and larger, except when the holes are dry or when the holes are dewatered without the use of temporary casing in a manner that controls ground water.

<table>
<thead>
<tr>
<th></th>
<th>Entirely Dry</th>
<th>Dewatered</th>
<th>Slurry</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Temp. Casing</td>
<td>No Tubes</td>
<td>No Tubes</td>
<td>Tubes</td>
</tr>
<tr>
<td>Temp. Casing</td>
<td>No Tubes</td>
<td>Tubes</td>
<td>Tubes</td>
</tr>
</tbody>
</table>

Based on FHWA Publication No. FHWA – IF – 99 – 025, OSC concludes that there are situations in which the use of the dry method for constructing CIDH piles when encountering small amounts of water is appropriate. As a guideline the following two conditions must be fulfilled:

1. Less than 12 inches of water accumulates above the base over an hour period when no pumping is allowed.
2. Maximum 3 inches of water in the bottom of the hole at the time of concrete placement and the pile design does not require end bearing. This must be verified through discussions with the designers to gain full understanding of the foundation design prior to start of pile construction.
<table>
<thead>
<tr>
<th>Elevation (ft)</th>
<th>Drilled Depth (ft)</th>
<th>Time</th>
<th>Drilling Tool</th>
<th>Depth to Slurry (ft)</th>
<th>Drill string #</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DEPARTMENT OF TRANSPORTATION

SYNTHETIC SLURRY TEST RECORD

OSC-SLR01 (REV. 10/2011)

<table>
<thead>
<tr>
<th>Location</th>
<th>Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Synthetic Slurry</td>
<td>Date</td>
</tr>
<tr>
<td>Slurry Testing Performed by</td>
<td></td>
</tr>
<tr>
<td>Inspector(s)</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>

MIXING TANK PRIOR TO DELIVERY TO THE DRILLED HOLE

<table>
<thead>
<tr>
<th>Density</th>
<th>Acceptable</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td><=</td>
<td>pcf</td>
<td>pcf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Viscosity</th>
<th>to</th>
<th>seconds/quart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PH</th>
<th>between</th>
<th>to</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sand Content</th>
<th><=</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DURING DRILLING

Mid-Height

<table>
<thead>
<tr>
<th>Density</th>
<th>Acceptable</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td><=</td>
<td>pcf</td>
<td>pcf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Viscosity</th>
<th>to</th>
<th>seconds/quart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PH</th>
<th>between</th>
<th>to</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sand Content</th>
<th><=</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom of Hole

<table>
<thead>
<tr>
<th>Density</th>
<th>Acceptable</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td><=</td>
<td>pcf</td>
<td>pcf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Viscosity</th>
<th>to</th>
<th>seconds/quart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PH</th>
<th>between</th>
<th>to</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sand Content</th>
<th><=</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRIOR TO FINAL CLEANING OF THE BOTTOM OF THE HOLE

Mid-Height

<table>
<thead>
<tr>
<th>Density</th>
<th>Acceptable</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td><=</td>
<td>pcf</td>
<td>pcf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Viscosity</th>
<th>to</th>
<th>seconds/quart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PH</th>
<th>between</th>
<th>to</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sand Content</th>
<th><=</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom of Hole

<table>
<thead>
<tr>
<th>Density</th>
<th>Acceptable</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td><=</td>
<td>pcf</td>
<td>pcf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Viscosity</th>
<th>to</th>
<th>seconds/quart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PH</th>
<th>between</th>
<th>to</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sand Content</th>
<th><=</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bridge Construction Memo 130-20.0
Attachment No. 1.4
December 9, 2011
Page 1 of 2
FINAL CLEANING OF THE BOTTOM OF THE HOLE

Mid-Height

<table>
<thead>
<tr>
<th>Acceptable</th>
<th>Measured</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td><= _______ pcf</td>
<td>_______ pcf</td>
</tr>
<tr>
<td>Viscosity</td>
<td>to _______ seconds/quart</td>
<td>_______ seconds/quart</td>
</tr>
<tr>
<td>PH</td>
<td>between _______ to _______</td>
<td>_______ pH</td>
</tr>
<tr>
<td>Sand Content</td>
<td><= _______ %</td>
<td>_______ %</td>
</tr>
</tbody>
</table>

Bottom of Hole

<table>
<thead>
<tr>
<th>Acceptable</th>
<th>Measured</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td><= _______ pcf</td>
<td>_______ pcf</td>
</tr>
<tr>
<td>Viscosity</td>
<td>to _______ seconds/quart</td>
<td>_______ seconds/quart</td>
</tr>
<tr>
<td>PH</td>
<td>between _______ to _______</td>
<td>_______ pH</td>
</tr>
<tr>
<td>Sand Content</td>
<td><= _______ %</td>
<td>_______ %</td>
</tr>
</tbody>
</table>

PRIOR TO CONCRETE PLACEMENT

Mid-Height

<table>
<thead>
<tr>
<th>Acceptable</th>
<th>Measured</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td><= _______ pcf</td>
<td>_______ pcf</td>
</tr>
<tr>
<td>Viscosity</td>
<td>to _______ seconds/quart</td>
<td>_______ seconds/quart</td>
</tr>
<tr>
<td>PH</td>
<td>between _______ to _______</td>
<td>_______ pH</td>
</tr>
<tr>
<td>Sand Content</td>
<td><= _______ %</td>
<td>_______ %</td>
</tr>
</tbody>
</table>

Bottom of Hole

<table>
<thead>
<tr>
<th>Acceptable</th>
<th>Measured</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td><= _______ pcf</td>
<td>_______ pcf</td>
</tr>
<tr>
<td>Viscosity</td>
<td>to _______ seconds/quart</td>
<td>_______ seconds/quart</td>
</tr>
<tr>
<td>PH</td>
<td>between _______ to _______</td>
<td>_______ pH</td>
</tr>
<tr>
<td>Sand Content</td>
<td><= _______ %</td>
<td>_______ %</td>
</tr>
</tbody>
</table>
Concreting Yield Plot

Cutoff Elevation

Actual Concrete Placed

Theoretical Volume of Excavation

Casing Toe Level

Tremie Toe Level

\[\frac{V_{\text{actual}}}{V_{\text{theoretical}}} = \frac{128.0}{117.1} = 1.09 \]
GGL INSPECTION TUBE VERIFICATION
OSC-GGL (REV. 09/2010)

LOCATION

INSPECTOR

RIGID CYLINDER TEST PROBE SIZE
(Check box if verified)

- 1.25 inch diameter AND 4.5 feet long
- Inspection Tubes are Clear

(If inspection tube fails, identify the tube, record the depth of blockage and contact the Foundation Testing Branch)

NOTES
CIDH Pile Acceptance Test Request Form

Project Name: Structure Rep:
Dist/Co/Unit/PM: Office Phone #: ()
EA No. & Activity Code: Fax #: ()
Bridge No: Pager #: ()
Date of Request: Cell Phone #: ()

<table>
<thead>
<tr>
<th>Abutment or Bent Location</th>
<th>Pile Numbers</th>
<th>Pile Diameter</th>
<th>Pile Length</th>
<th>Date Ready for Testing</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please submit forms to the above FAX number by 11:00 am Friday for testing to be scheduled during the following week.
Please update all Estimated dates as dates can be confirmed or as piles become ready for testing.
Inspection tubes must be verified as capable of passing the specified dummy probe prior to a pile being ready for testing.

For FTB Office Use Only

<table>
<thead>
<tr>
<th>Tracking Number</th>
<th>FT & I Rep</th>
<th>Date Tested</th>
<th>Date of Report</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

For individuals with sensory disabilities, this document can be made available in Braille, large print, audiotape, or recorded dictaphone upon request. To receive one of these alternate formats, please call 1-800-323-8695 or TTY 711 of the State's EEO Officer, Division of Engineering Services. P.O. Box 105346, Mail Stop 9 Room 160, Sacramento, CA 95865-5341.
<table>
<thead>
<tr>
<th>Foundation Testing</th>
<th>Geotechnical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Date: Phone:</td>
<td>Name: Date:</td>
</tr>
</tbody>
</table>

Anomaly Overview
- **Testing Performed**
 - □ GGL
 - □ CSL

Required Nominal Resistance of Shaft (per contract plans)
- Compression: \[\text{__________ kips} \]
- Tension: \[\text{__________ kips} \]

Lowest Estimated Groundwater Elevation:

Remaining Required Nominal Groundwater Elevation To Be Developed

Below Each Anomalous Section:
- **Section A-A**
 - Compression: \[\text{__________ kips} \]
 - Tension: \[\text{__________ kips} \]
- **Section B-B**
 - Compression: \[\text{__________ kips} \]
 - Tension: \[\text{__________ kips} \]

Soil and/or Rock Type:

Shaft Diameter:

Cutoff Elev:

Tip Elev:
- **Section A-A**
- **Section B-B**

Anomaly Description

Section A-A:

Section B-B:

Structural

As-Designed Capacity of Shaft

Section A-A:
- Shear: \[\text{_______} \]
- Moment: \[\text{_______} \]

Section B-B:
- Shear: \[\text{_______} \]
- Moment: \[\text{_______} \]

Maximum Demand of Shaft at Section A-A

Shear: \[\text{_______} \]
Moment: \[\text{_______} \]

Shafts are structurally
- **Acceptable**
- **Unacceptable**

Maximum Demand of Shaft at Section B-B

Shear: \[\text{_______} \]
Moment: \[\text{_______} \]

Shafts are structurally
- **Acceptable**
- **Unacceptable**

Comments:

Corrosion

Consideration is
- □ Required
- □ Not required

For anomalies between the top of pile and 3 feet below the lowest estimated groundwater level at the site, corrosion results listed in the Geotechnical report are used to assess the need for repair. For situations where results are not available, soil samples may be obtained adjacent to the anomaly and tested in accordance with California Test (CT) 643 (Parts 2, 3 and 4) and if necessary, CT 417 and CT 422 to determine soil corrosivity. For anomalies outside these limits, and where no stray current source can be identified, or for non-corrosive soil conditions, no consideration of corrosion potential is required.

Corrosion Potential at Section A-A:

Corrosion Potential at Section B-B:

Construction

Considering parts 2-4 of this form,

Sec. A-A is:
- □ Acceptable with Administrative Deduction
- □ Unacceptable, Mitigation is Required

Sec. B-B is:
- □ Acceptable with Administrative Deduction
- □ Unacceptable, Mitigation is Required

Bridge Name:

Bridge No.:

Abut/Bent:

Dist-Co.-Rte:

EA:

Pile:

Structure Rep.:

Phone:

Fax:
Pile Mitigation Procedure

Pile Rejected
- Is the anomaly a simple repair? (BCM 130-11.0)
 - **YES**
 - The Structure Rep may allow the Contractor to remove and replace the concrete as verified by visual inspection WITHOUT sending the mitigation to the PMC for review and consent.
 - **NO**
 - Conside to repair, replacement or supplement

- Obtain the Structural, Geotech & Corrosion design requirements.
- Does the pile require mitigation?
 - **YES**
 - Conduct a CIDH Pile Mitigation VA meeting; if applicable (see BCM’s 130-10.0 and 130-21.0).
 - Transmit Attachment #4.
 - Contractor must submit a formal mitigation plan. Forward complete mitigation plan submittal to PMC for review and approval
 - **NO**
 - Mitigation plan is accepted by the PMC and Structure Rep. (Issue Attachment 1, BCM 130-12)

- Contractor performs mitigation work.
- Is the mitigation plan acceptable to the Structure Rep?
 - **YES**
 - Contractor performs mitigation and provides documentation as required by PMC and Structure Rep.
 - **NO**
 - Contractor must submit stamped post mitigation report. Forward report to PMC chairperson

Pile Accepted
- Contractor may immediately notify perform CSL and/or Contractor of pile coring to investigate acceptance or rejection.
- Obtain the Structural, Geotech & Corrosion design requirements.
- Conduct a CIDH Pile Mitigation VA meeting; if applicable (see BCM’s 130-10.0 and 130-21.0).
- Transmit Attachment #4.
- Contractor must submit stamped post mitigation report. Forward report to PMC chairperson

BCM-Bridge Construction Memo
CIDH-Cast in Drilled Hole
CSL-Cross-Hole Sonic Logging
FTB-Foundation Testing Branch
PDDF-Pile Design Data Form
PMC-Pile Mitigation Committee (BCM 130-8.0)
* Time provided for the review by the Engineer may vary.

The Engineer shall review the Standard Specifications for the time allowed.
<table>
<thead>
<tr>
<th>DATE</th>
<th>TASK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Contractor places concrete</td>
</tr>
<tr>
<td>2.0</td>
<td>Contractor informs SR Pile is ready for GGL</td>
</tr>
<tr>
<td>2.1</td>
<td>SR informs FTB pile is ready for GGL</td>
</tr>
<tr>
<td>2.2</td>
<td>FTB performs GGL testing</td>
</tr>
<tr>
<td>2.3</td>
<td>FTB releases GGL report rejecting Pile</td>
</tr>
<tr>
<td>2.4</td>
<td>GGL report is submitted to Cont.(BCM 130-10 Attach. 1)</td>
</tr>
<tr>
<td>3.0</td>
<td>Is CSL needed? Contractor or FTB performs CSL</td>
</tr>
<tr>
<td>3.1</td>
<td>Contr./FTB releases CSL report, pile remains rejected</td>
</tr>
<tr>
<td>3.2</td>
<td>SR informs Contractor of continued rejection</td>
</tr>
<tr>
<td>4.0</td>
<td>SR forwards PDDF (GGL only, or GGL&CSL) to designers</td>
</tr>
<tr>
<td>4.1</td>
<td>SR forwards revised PDDF (GGL or GGL&CSL) to designers</td>
</tr>
<tr>
<td>4.2</td>
<td>Designers complete PDDF indicating inadequate pile</td>
</tr>
<tr>
<td>4.3</td>
<td>SR informs Contractor of inadequate pile</td>
</tr>
<tr>
<td>5.0</td>
<td>CIDH Pile Non-Standard Mitigation Meeting (see BCM 130-21)</td>
</tr>
<tr>
<td>6.0</td>
<td>SR informs Contr. to submit mitigation plan (BCM 130-10 Attach. 4)</td>
</tr>
<tr>
<td>7.0</td>
<td>Contractor submits complete mitigation plan</td>
</tr>
<tr>
<td>7.1</td>
<td>SR forwards mitigation plan to PMC for review</td>
</tr>
<tr>
<td>7.2</td>
<td>Designers approve mitigation plan</td>
</tr>
<tr>
<td>7.3</td>
<td>FTB approves mitigation plan</td>
</tr>
<tr>
<td>7.4</td>
<td>PMC approval letter to SR</td>
</tr>
<tr>
<td>7.5</td>
<td>SR informs Contr. of plan approval (BCM 130-12 Attach. 5)</td>
</tr>
<tr>
<td>8.0</td>
<td>Pile mitigation operations begin</td>
</tr>
<tr>
<td>9.0</td>
<td>Mitigation completion</td>
</tr>
<tr>
<td>9.1</td>
<td>Contractor submits post mitigation report</td>
</tr>
<tr>
<td>10.0</td>
<td>SR forwards post mitigation report to PMC</td>
</tr>
</tbody>
</table>

If additional information is submitted to the Engineer that modifies the size, shape, or nature of the anomaly, the Contractor shall allow 20 additional days for the subsequent analysis.
CIDH Pile Non-Standard Mitigation Meeting

The purpose of the CIDH Pile Non-Standard Mitigation Meeting is to bring together the Contractor, the Engineer, and their representatives involved in Cast-In-Drilled-Hole (CIDH) pile mitigation to address a Non-Standard CIDH Pile Mitigation Plan1 in a timely manner. It is intended to quickly eliminate any nonviable mitigation methodology and focus all efforts on finding optimal alternatives to mitigate the pile repair. The meeting will provide a forum for free exchange of information so that one or more viable repair solutions can be identified. Identifying these usable repair strategies should not be viewed as directing a Contractor’s work or plan. Ultimately, it is the Contractor’s responsibility to select, develop, and submit the pile mitigation plan. In many cases, the completion of the CIDH pile is a critical path item affecting the schedule, and in these circumstances it is imperative that the project team communicate effectively so that a satisfactory mitigation plan can be developed and executed with minimal impact on the schedule and delivery of the project. Attendance of this meeting is mandatory for the following:

- Resident Engineer.
- Structure Representative.
- Assistant Structure Representatives.
- Foundation Testing Branch.
- CIDH Pile Mitigation Committee representatives.
- Structural and Geotechnical Designers who are providing construction support for the project.
- Contractor’s Project Manager.
- Project Superintendent.
- Drilling Subcontractor’s Project Manager.
- Superintendent/Foreman.
- Mitigation Plan Designer.

Attachment 1 is a general meeting agenda to guide you with understanding the key topics that need to be addressed during this meeting for timely development of a non-standard mitigation plan. However, these are reminders only. Review the general meeting agenda with regard to your specific project and modify the meeting agenda as necessary. Certain topics may or may not be included, depending upon their applicability to a specific project.

1 See BCM 130-12.0, Mitigation of CIDH Piling.
CIDH Pile Non-Standard Mitigation Meeting Agenda Minutes

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Who</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Welcome and Self Introduction</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Anomaly Description based on GGL, CSL and/or Coring</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>PDDF Review (Struct., Geotech. and Corrosion Design Requirements)</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Limitation of Grouting Repair*</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Alternative Repair Methods (i.e. Structural Bridging)</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Supplementation/Replacement</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Discuss successful solution used in past pile mitigation</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Mitigation Plan Design Requirements</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Timelines and Critical Path Activities</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Future Meetings</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Adjourn Meeting</td>
<td></td>
</tr>
</tbody>
</table>

* These topics are reminders only. Items will or will not be included depending upon their applicability to a specific project.

** Any questions regarding a Caltrans decision to not permit grouting may be asked at this time. If a type of repair deemed as non-viable by Caltrans, all further discussions should exclude those options.
Topic 1: Welcome and Self Introduction

a. Attendance Sheet (see attachments)
b. Introduction statements about each person's responsibilities during construction of CIDH piles.

Topic 2: Anomaly Description based on GGL, CSL, and/or Coring

a. Characterize the defect – Define Nature, Location, and Extent

Topic 3: PDDF Review (Struct., Geotech and Corrosion Design Requirements)

a. Discuss the effect on structural resistance and serviceability.
b. Discuss the effect on geotechnical resistance and serviceability.
c. Discuss the effect on corrosion design and serviceability.

Topic 4: Limitation of Grouting Repair

a. High pressure water jets are capable of nozzle pressures up to 20,000 psi and can cut limited quantities of concrete at close range if the jet can be directed and is not shadowed by reinforcing steel. It is not normally feasible to remove large quantities of concrete or other semi-structural material in this manner.
b. This technique can be used to remediate and improve concrete which has inclusions of soil or low strength concrete. Grouting cannot be expected to restore cross sections in zones of high moment demand. Post-treatment cores or cross-hole sonic logs should show improvement, but will not be free of anomalies.
c. Grouting within the shaft may not be effective if the defects to be treated include zones on the outside of the reinforcing cage in granular soils below groundwater. In such a case, attempts to hydroblast outside the shaft would erode unstable soils which might be expected to cave. Jet grouting around the perimeter of the shaft is a technique which might be considered.
d. If the shaft is structurally sufficient except for concerns regarding the concrete cover on the reinforcement, or if a void exists between the outside of the shaft and the soil, then grouting around the perimeter may be considered.

Topic 5: Alternative Repair Methods (i.e. Structural Bridging)
a. Increase the structural strength of a defective pile without complete removal of the defect.
b. Install structural steel or pipe section cast into the central portion of the pile with regular or high strength concrete.
c. Additional member designed to restore structural strength to meet design requirements.
d. It may be possible to extend a central drilled section into formation below tip to increase geotechnical capacity of the CIDH pile.
e. Structural enhancement can also be accomplished by drilling holes in the shaft and grouting in additional rebar or high strength bars.
f. Micropiles can be installed by drilling through the pile in order to anchor the pile into underlying formation. It may be possible to install these by drilling through existing inspection tubes.

Topic 6: Supplementation/Replacement

a. In some cases where the strength or stiffness of a drilled shaft is less than required, the most effective remediation strategy might be to add additional deep foundation elements (CIDH, driven, micropile). These might be designed to supplement or even completely replace the defective CIDH pile.
b. Incorporating additional deep foundation elements into a common cap with the existing CIDH pile must address the issue of strain compatibility.

Topic 7: Discuss Successful Solution Used in Past Pile Mitigation

Topic 8: Mitigation Plan Design Requirements

a. Provide the Contractor’s mitigation plan designer with design information (i.e. moment and shear diagrams) necessary for completion of mitigation plan.

Topic 9: Timelines and Critical Path Activities

Topic 10: Safety

a. Applicable Construction Safety Orders.
b. For CIDH Piles 30 inches or greater in diameter and deeper than 20 ft', Cal-OSHA Mining and Tunneling Safety Orders apply (see BCM 14-5.0).

Topic 11: Future Meetings
a. CIDH Pile Mitigation Plan Review Meeting (see BCM 130-12.0).

<table>
<thead>
<tr>
<th>Topic 12: Adjourn Meeting</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Action Item No. 1</th>
<th>Who:</th>
<th>Due:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action Item No. 2</td>
<td>Who:</td>
<td>Due:</td>
</tr>
</tbody>
</table>

Bin List
ATTACHMENTS

1. CIDH Pile Non-Standard Mitigation Meeting Attendance Sheet
<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Phone</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Seal Courses

Seal courses are used to control water so that concrete for footings and pile caps can be placed in the dry condition. Seal courses may also be used at the bottom of open ended Cast-In-Steel-Shell (CISS) piles to maintain water control, especially when high hydraulic heads and permeable soil plugs are present. Occasionally the use of a seal course is included in the design of the footing or pile cap, and is shown on the plans. Seal courses used to facilitate the construction of falsework or structure excavations will not be shown on the plans but can be used by the Contractor in lieu of dewatering methods.

Specifications for seal courses shown on the plans are different than for those done at the Contractor’s option. For seal courses, the topics of Water Control and Foundation Treatment\(^1\), Concrete Placed Under Water\(^2\), and Payment\(^3\) \& \(^4\), are covered in different sections of the Standard Specifications (SS).

The thickness of the seal course within a cofferdam depends on the hydrostatic head. Seal course thickness calculations can be found in the Caltrans Foundation Manual, Appendix I.

When seal course concrete is shown on the plans (with limits and thicknesses), there is typically an item for seal course concrete in the Engineer’s Estimate. If not, then it should be addressed in the provisions for Structural Concrete, Bridge Footing.

Full compensation for seal course concrete, not shown on the plans for excavations and cofferdams, is considered to be included in the price paid for structure excavation or the contract price paid for the item of work requiring excavation, and no separate payment is made.

Seal course limits and thicknesses need to be shown.

\(^1\) 2010 SS, Section 19-3.03D, Water Control and Foundation Treatment, or 2006 SS, Section 19-3.04, Water Control and Foundation Treatment.

\(^2\) 2010 SS, Section 51-1.03D(3), Concrete Placed Under Water, or 2006 SS, Section 51-1.10, Concrete Deposited Under Water.

\(^3\) 2010 SS, Section 19-3.04, Payment, or 2006 SS, Sections 19-3.07, Measurement, and 19-3.08, Payment.

\(^4\) 2010 SS, Section 51-1.04, Payment, or 2006 SS, Section 51-1.22, Measurement.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>MEMO NO.</th>
<th>ISSUE DATE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>132-1.0</td>
<td>04/27/1987</td>
<td>Working Drawings and Material Submittals for Buildings</td>
</tr>
<tr>
<td>132-2.0</td>
<td>12/10/1987</td>
<td>Joint Review of Building Projects</td>
</tr>
<tr>
<td>132-2.1*</td>
<td>05/01/1998</td>
<td>Inspection of Building-Related Transportation Facilities</td>
</tr>
<tr>
<td>132-2.2*</td>
<td>07/29/2010</td>
<td>Clean Renewable Energy Bond (CREB) Project Inspection</td>
</tr>
<tr>
<td>132-3.0</td>
<td>08/05/1985</td>
<td>Parts Lists, Service Instruction, Manufacturer’s Warranties, and Operating and Maintenance Instructions</td>
</tr>
<tr>
<td>132-4.0</td>
<td>05/10/1982</td>
<td>Changes Involving Building Projects</td>
</tr>
</tbody>
</table>

*Denotes the document is a Bridge Construction Bulletin

Robert A. Stott, Deputy Division Chief
Offices of Structure Construction
Working Drawings and Material Submittals for Buildings

The submittal of shop plans or equipment lists as specified in the Standard Specifications, the General Conditions, and/or the Special Provisions, requires that each submittal be completely identified. The Structure Representative should caution the Contractor early in the contract (this could be done at the pre-job conference) that this is a contract requirement, and that failure to comply will result in delay of approval of his submittals. (Attachment No. 1 to this Bridge Construction Memo is a sample of an equipment submittal which properly identified the equipment that the Contractor proposes to use.) The Contractor should also be informed that failure to make submittals that are not complete and not grouped in logical order also tends to delay the approval process.

The procedure for review and approval of working drawings and material submittals for buildings is a coordinated effort between the Architecture and Transit Branch, and Construction.

Attached is Memo to Architects A-5-11 (Attachment #2) Review of Working Drawings and Material Submittal for Buildings. The design memo covers the procedures required for review and approval of working drawings and material submittals, including responsibilities of Structure Representatives on construction projects. Structure Representatives should comply with the applicable instructions in Memo to Architects. A-5-1 in-so-far as possible.

Unless otherwise stipulated in the Special Provisions, the Contractor (subcontractor or fabricator) is to submit all working drawings and material submittals directly to the Office of Structure Design, Document Unit, P.O. Box 942874, Sacramento 94274-0001. This includes original submittals and resubmittals. The Structure Representative is not to accept submittals unless it is so stipulated in the Special Provision.

The working drawing and material submittals approval procedure is administered by the Special Services Group of Office of Structure Design. The group maintains a record of all working drawings and/or material submittals, and distributes copies to all interested parties, during all phases of the approval procedures. This relieves the Structure Representative of tedious administrative details necessary to insure that working drawings are distributed to the right people at the right time. One copy of all submittals will be forwarded to the Structure Representative on the same day that they are received in Sacramento.

The responsibility for checking working drawings and material submittals is shared by the Architect and the Structure Representative. Working drawings and/or material submittals shall not be returned to the Contractor until the Architect has discussed and resolved the details with the Structure Representative. The comments returned to the Contractor must be acceptable to both the Architect and the Structure Representative.
Agastat' timing relays 7000 series

Bridgeport Maint. Station
09-MNO-5722
Cont. No. 09-056404

Model Number Code

-AGASTAT-
7000 Series Timing Relay

Contact Arrangement
1-Single Pole, Double Throw
2—Double Pole, Double Throw
4—Four Pole, Double Throw

Call Voltage
A. 120 V 60 Hz
B. 220 V 50 Hz
C. 240 V 60 Hz
D. 220 V 50 Hz
E. 24 V 60 Hz
F. 127 V 50 Hz
G. 115 V 50 Hz
H. 12 V 60 Hz
I. 6 V 60 Hz
J. 208 V 60 Hz
K. Dual Voltage (combines A & D)

Time Range
A. .1 to 1 Sec.
B. .5 to 5 Sec.
C. 1.5 to 15 Sec.
D. 5 to 50 Sec.
E. 20 to 200 Sec.
F. 1 to 10 Min.
H. 3 to 30 Min.
J. 1 to 10 Min.
K. 3 to 120 Min.

Aux. Switch Options
L

Optional Features
A—Quick Connect Terminals
B—Plug-In Connectors
C—Plug-In Reelstice (Screw Term.)
D—Plug-In Reelstice (Quick-connect Term.)
E—Total Enc., W/Bottom Connection
H—Temp. Sealed (Consult Factory)
M—Dusttight
O—CSA Approval
V—Watertight
W/NEMA-4
X—Panelmount Kit

Note: As shown above, the Contractor must show all options, accessories, and modifications to be furnished. Arrows, circles, or written notes may be used to identify the characteristics of the furnished item.
MEMO TO ARCHITECTS:

Procedure

The instructions in this memo apply to shop drawings and material submittals for buildings. Generally, this will apply to all projects prepared by Architectural Design.

Note:

The procedures covered in this Memo will also apply to Mechanical & Electrical (Building or related) projects. The responsibilities may be covered appropriately by inserting “M & E Engineer” whenever any reference is made to “Architect.”

Structure Representative = Construction representative or Resident Engineer.

To provide uniform treatment in checking shop drawings and material submitted for buildings, the following procedure shall be followed:

1. The responsibility for checking shop drawings is shared by the Architect and the Structure Representative. Shop drawings shall not be returned to the Contractor until the Architect has discussed and resolved the details with the Structure Representative. The comments returned to the Contractor must be acceptable to both the Architect and the Structure Representative.

 A brief file memo shall be written by the Architect to document controversial decisions or to keep other involved parties informed. For example, a memo is required for any change or clarification of details in contract plans. A copy of the memo is to be sent to the Structure Representative.

2. All submittals of shop drawings and materials will be received by the Documents Unit for distribution. The initial distribution of drawings will be:

 1 copy to RE or Structure Rep
 *4 copies to Architect

 *Including Mechanical/Electrical submittals, Structural submittals, and Landscape/Irrigation submittals.

 Architect will make distributions.

Replaces Memo to Architects A – 5 – 1
Dated September 1981
The number of samples of each material may vary. The Documents Unit will submit all samples to the Architect, who will determine and record the disposition.

The Architect will check the drawings and:

a) Sheets that do not require correction. All four copies will be stamped “Approved” and distributed as shown below.

```
PRINTS REVIEWED BY STATE OF CALIFORNIA
DEPARTMENT OF TRANSPORTATION
OFFICE OF STRUCTURES – TRANSPORTATION ARCHITECTURE
APPROVED
PURSUANT TO SECTION 5-1.02 OF THE STANDARD SPECIFICATIONS
```

1 copy will be retained by the Architect
3 copies will be returned to the Documents Unit who will make the following distribution:

1 copy to RE or Structure Rep
2 copies to Contractor

b) Sheets that have minor corrections. The Architect will stamp each of these sheets as shown and indicate all corrections in red on all four copies. The distribution will be the same as 2a.

```
PRINTS REVIEWED BY STATE OF CALIFORNIA
DEPARTMENT OF TRANSPORTATION
OFFICE OF STRUCTURES – TRANSPORTATION ARCHITECTURE
APPROVED
SUBJECT TO NOTATIONS INDICATED IN RED
PURSUANT TO SECTION 5-1.02 OF THE STANDARD SPECIFICATIONS
```

c) Sheets that have revisions. Only those sheets that require the corrections will be stamped as shown. Notes added to the sheet shall make it clear why the submittal is not approved. The distribution will be the same as 2a.

```
PRINTS REVIEWED BY STATE OF CALIFORNIA
DEPARTMENT OF TRANSPORTATION
OFFICE OF STRUCTURES DESIGN
NOT APPROVED
PLEASE RESUBMIT
```

d) Corrected copies received from the Contractor will be processed identical to the procedures outlined in 2, 2(a), 2(b) or 2(c) as required.

3. For contracts under General Conditions, the following stamps will be used under 2(a), (b) or (c):

a)

PRINTS REVIEWED BY STATE OF CALIFORNIA
DEPARTMENT OF TRANSPORTATION
OFFICE OF STRUCTURES DESIGN
APPROVED
PURSUANT TO SECTION 2-1.04 OF THE GENERAL CONDITIONS

DATE

b)

PRINTS REVIEWED BY STATE OF CALIFORNIA
DEPARTMENT OF TRANSPORTATION
OFFICE OF STRUCTURES DESIGN
APPROVED
SUBJECT TO NOTATIONS INDICATED IN RED
PURSUANT TO SECTION 2-1.04 OF THE GENERAL CONDITIONS

DATE

c)

PRINTS REVIEWED BY STATE OF CALIFORNIA
DEPARTMENT OF TRANSPORTATION
OFFICE OF STRUCTURES DESIGN
NOT APPROVED
PLEASE RESUBMIT

DATE
4. For Contracts under General Specifications (under $25,000.), the following stamps will be used under 2(a), (b), or (c):

(a) PRINTS REVIEWED BY STATE OF CALIFORNIA
DEPARTMENT OF TRANSPORTATION
OFFICE OF STRUCTURES DESIGN
APPROVED
Pursuant to Section 5.02 of the General Specification

(b) PRINTS REVIEWED BY STATE OF CALIFORNIA
DEPARTMENT OF TRANSPORTATION
OFFICE OF STRUCTURES DESIGN
APPROVED SUBJECT TO NOTATIONS INDICATED IN RED
Pursuant to Section 5.02 of the General Specification

(c) PRINTS REVIEWED BY STATE OF CALIFORNIA
DEPARTMENT OF TRANSPORTATION
OFFICE OF STRUCTURES DESIGN
NOT APPROVED
PLEASE RESUBMIT

______ DATE ______

______ DATE ______

______ DATE ______
Guide for Checking shop Drawings

As a means of establishing uniform practice and avoiding omissions, but not as a substitute for common sense, the following outline is submitted as a general guide for the checking of the shop drawings. Some items are included which should fall within the duties of the Structure Representative. An overlap may avoid an oversight. These items will be reviewed in the discussion between the Architect and the Structure Representative.

If the individual Project Architect feels that certain factors need not be considered, or that others should be added, it is his prerogative to do so, providing the Structure Representative is agreeable.

1. Read the Standard Specifications (or General Conditions) and the Special Provisions for the particular job. The Special Provisions may modify the usual procedure. Read the correspondence file. There may have been changes approved by the Office of Construction since the contract was let. Call Structure Representative to establish a working relationship and to become familiar with any pending changes or special problems.

2. Changes from the contract plans or specification, regardless of magnitude, should not be allowed unless they have been discussed and approved by the Structure Representative and the Project Architect. Revisions may be satisfactory structurally or architecturally, but create administrative problems. Changes requiring Contract Change Orders as determined by the Structure Representative need special attention. These change orders could be grouped into two categories:

 a) Those involving changes requested by the State and minor changes requested by the fabricator where there is no question on approval of the change order by both parties. The shop drawings can be approved, but the note “Contract Change Order to be processed” must be added to each detail sheet involved.

 b) Those involving changes requested by the Contractor, other than those covered in 2a. These should be returned to the Contractor with the note “Request must be made by the contractor for a Contract Change Order.” The Contractor may ask that the shop drawings be held by Architectural Design pending such negotiation. Architectural Design should not hold any plans without such a request.

3. All submittals shall be properly identified. This is covered in the Special provisions under Section 2-1.04 General Condition projects and 12-1.06 of Standard Specification projects. Bridge Construction Memo 132.1.0 instructs the Structure Representative to caution the Contractor of the importance of this identification (this could be done at the pre-job conference). Tabulated below are specific actions to be taken to assure proper identification:
a) If the project designer does not attend the pre-job conference be sure to notify the R.E. prior to the meeting to stress the importance of properly identifying shop plans.

b) Inform the Contractor (via the Documents Unit) on the first returned transmittal of sets received with marginal identification. A call to the R.E. to discuss the problem is also in order at this time.

c) Return seriously unidentified shop plans (via the Documents Unit) without checking (unstamped) when the practice continues after sufficient warning. This option should only be used as a last resort and only after getting the Senior’s approval. When you exercise this* option a call to the R.E. and H.O. construction is mandatory.

Earl R. Latham
Joint Review of Building Projects

Near the completion of a building project, the Structure Representative should arrange for a joint review of the project with representatives of other organizations who have a vested interest in the facility. The purpose of this review is to accomplish the following:

1) Review the operation of the facility.

2) Inform the Maintenance Regional Manager or the operators of the facility of the beginning date of the one year guarantee period and who to contact for guarantee work (this should also be covered in the transmittal letter required in Bridge Construction Memo 132-3.0).

3) Discuss manufacture's warranties, service instructions, etc.

4) Discuss work that may be required after contract acceptance.

5) Review all design features that should be handled differently on future projects. These features should also be noted in the comprehensive letter which gives suggestions for improving the design or construction of building projects. (Refer to Bridge Construction Memo 2-8.0.)

The Structure Representative should arrange for the following to attend the review:

1) Maintenance Regional Manager or his representative for building projects which will be operated and maintained by State Maintenance forces.

2) A representative of the organization that will be operating and maintaining the facility for building projects not operated and maintained by State Maintenance forces.

3) The project architect. The Architect will arrange for Headquarters representation at the review in accordance with instruction in the Transportation Architecture Manual (See Attachment No. 1).

At his discretion, the Area Bridge Construction Engineer may determine that minor construction projects do not warrant this joint review. Routine projects having a value under $35,000 such as Minor B contracts would fall into this category. If the review is not held, it is still required that input is obtained from Structure Design and that the appropriate people are informed about the operation of the facility and about the guarantee provisions and who to contact for guarantee work.
It is important that the Maintenance Regional Manager be kept informed regarding job progress on building projects which will be operated and maintained by State Maintenance forces. Therefore, he should be contacted prior to the start of the project work and encouraged to make periodic visits to the job site as the work progresses.
MEMO TO ARCHITECTS:

The attached Bridge Construction Memo 132-2.0 outlines a joint review upon completion of building projects. The Architect shall arrange for headquarters representation at this review. Typical representation would be:

Office of Business Management (OBM) Projects

Architect
Structures M & E Engineer(s)
OBM or H.Q. Maintenance Representation

Safety Roadside Rest Areas

Architect
Structures M & E Engineer(s)
Landscape Architect
Sanitary Engineer
H.Q. Maintenance Representation

Truck Weight & Inspection Stations

Architect
Structures M & E Engineer(s)
CHP Representative
Interagency Liaison with the CHP
H.Q. Maintenance Representation

Also attached is Bridge Construction Memo 132-3.0 that gives background on parts lists, service instructions, manufacturer's warranties and operating and maintenance instructions.

Earl R. Latham
Design Supervisor

Attachment
Subject: Inspection of Building-Related Transportation Facilities

It is the Structure Representative’s responsibility to ensure that all building-related transportation facilities work complies with the plans and specifications. However, some of this work is specialized and complex which the Structure Representative may not be totally familiar.

In order to be assured that the construction of building-related transportation facilities complies with the plans and specifications, the Structure Representative is encouraged to arrange a meeting between themselves and the ESC Project Design Team (Architect, Mechanical, Electrical, etc.) prior to start of construction of the facility. This meeting can be arranged by contacting either the Transportation Architecture Branch (Telephone 916-227-3962, calnet 498-3962) or the lead architect for the project as shown on the General Plan Sheet. This pre-construction meeting between the Office of Structure Construction, Transportation Architecture Branch and Electrical, Mechanical, Water and Wastewater Branch should be used to discuss clarifications to the plans or specifications and should be held prior to the pre-construction meeting with the Contractor.

A similar meeting between the above parties should be arranged at the completion of the project to review administrative and technical issues that may need refinement prior to future use of details, as well as procedures that worked well and should be considered for future projects. This meeting should be held in addition to the meeting required for the “Joint Review of Building Projects” as outlined in Bridge Construction Memo 132-2.0.

Structure Representatives are also referred to Bridge Construction Memo 115-l.0, Inspection of Electrical, Mechanical, Water and Wastewater Work.

C: BCR&P Manual Holders
 Consultant Firms
 RETravis, Transportation Architecture Branch
 DLScharosch, Electrical, Mechanical, Water and Wastewater Branch
 BGAuger, Construction Program Manager
Subject: Clean Renewable Energy Bond (CREB) Project Inspection

California Department of Transportation (Caltrans) has initiated a program dedicating $20 million to solar energy systems at 70 facilities throughout the state, providing California taxpayers an estimated $52.5 million in avoided energy costs over 25 years.

Instead of burning fossil fuels to produce electricity, the photovoltaic panels will harvest energy from the sun, producing more than three million kilowatt-hours of electricity each year and eliminating 2.8 million pounds of greenhouse gases annually.

Construction of these systems will be accomplished by 60 different contracts. The contract types will include Minor A, Minor B, and Major. A few of the contracts will have multiple sites.

It is the Offices of Structure Construction’s (OSC) responsibility to provide contract administration and inspection for the CREB contracts. Therefore, the OSC Staff will act as the Resident Engineer (RE) and Structure Representative (SR).

The CREB projects are unique and challenging and a guide has been developed to assist the RE/SR with the technical and administration aspects of the CREB projects. The information in the “CREB Project Inspection and Administration Guide” will be updated as needed and is located at the intranet link:

http://dschq.dot.ca.gov/OSCHQDownloads/misc/CREB_Admin_Guide.pdf
Parts Lists, Service Instructions, Manufacturer’s Warranties and Operating and Maintenance Instructions

The special provisions for building projects generally require that certain operating and maintenance instructions be submitted in duplicate.

The special provisions for building projects also require that parts lists, service instructions and manufacturer's warranties for products installed in the work shall be delivered to the Engineer.

It is the Structure Representative's responsibility to see that the required parts lists, service instructions, manufacturer's warranties and operating and maintenance instructions are furnished by the Contractor.

If lists, warranties, or instructions are furnished in duplicate, one copy is to be sent to the District Maintenance Engineer and the other copy is to be given to the operators of the facility. If only a single copy is furnished, it should be given to the operators of the facility.

The parts lists, service instructions, manufacturer’s warranties and operating instructions, furnished to the operator of the facility, and/or to the District Maintenance Engineer, should be accompanied by a transmittal letter. This letter should list all of the instructions, warranties, or parts lists furnished, and give the name, address and phone number of the Prime Contractor. A copy of this letter should be forwarded to the Sacramento Structure Construction Office.
Changes Involving Building Projects

Before making any changes involving building projects, the Structure Representative must contact the appropriate section of Structures Design, Architectural and Transit Branch, to inform them of the proposed change, and to obtain their concurrence for the proposed change. Contact with Structures Design may be made either in writing, by telephone, or in person.

When the Contract Change Order Letter of Transmittal is prepared, the Structure Representative must include the following information: Name of person contacted in Structures Design, the method of contacting the person in Structures Design, and a statement that the person contacted concurred with the necessity for, and the provisions of the proposed change.

See Bridge Construction Memo 7-2.0 for additional information concerning Structure Construction change order policy.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>MEMO NO.</th>
<th>ISSUE DATE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>135-1.0</td>
<td>01/20/1983</td>
<td>Epoxy Adhesives</td>
</tr>
<tr>
<td>135-2.0</td>
<td>04/16/1990</td>
<td>Bridge Deck Expansion Joints and Joint Seals</td>
</tr>
<tr>
<td>135-2.1*</td>
<td>01/20/2000</td>
<td>Release and Reporting of Values for Type B Joint Seals</td>
</tr>
<tr>
<td>135-3.0</td>
<td>04/16/1990</td>
<td>Compressive Deflections of Fiberglass or Steel Reinforced Elastomeric Bearing Pads</td>
</tr>
<tr>
<td>135-4.0</td>
<td>(Blank)</td>
<td></td>
</tr>
<tr>
<td>135-5.0</td>
<td>04/11/2003</td>
<td>Mechanical Anchorage Devices</td>
</tr>
</tbody>
</table>

*Denotes the document is a Bridge Construction Bulletin

DOLORES M. VALLS
Deputy Division Chief
Structure Construction
Epoxy Adhesives

General Information and Instructions for Use

Epoxy adhesives are very good construction materials. They are, however, somewhat complicated, so there are certain rules that must be followed when using them. Some of these rules are seemingly insignificant, but experience has shown that if they are not closely followed, failure is likely to occur. As a step toward reducing epoxy failures, the adhesive selection, mixing and placing requirements for good performance will be reviewed.

Epoxy adhesives in their pure form are very hard and extremely brittle, and have undesirable properties for structural use. These physical properties can be altered to fit a wide spectrum of hardness and flexibility by judicious selection of hardening and flexibilizing agents. It is only natural, then, that there is a correct epoxy adhesive formulation for each type of job requirement: high strength epoxy to resist high stresses, flexible epoxy to resist high thermal changes.

All State Specification epoxies are of the two component type. One component is the epoxy resin and the other is the hardening agent. To these components are added coloring, stiffening agents, and flexibilizers as required. Some epoxies are designed as 1:1 mix ratio of the components, others as a 2:1. They are also designed to have a specific pot life at a certain temperature. When the two components are combined, there are two very important rules which must be followed: (1) mixing proportions as shown on the container must not be changed, (2) the components must be thoroughly blended. One should never try to alter the pot life of an epoxy by changing the prescribed mixing ratio. Doing so would result in a very undesirable epoxy. State Specification epoxies with designed pot lives from a few minutes to about 40 minutes are available. Hence, if the epoxy on hand is either too fast or too slow for a designated job, it should not be used; one which has a pot life that is more compatible with the job requirements should be obtained. The temptation to add solvents to reduce viscosity, extend working time or improve application characteristics must be avoided. Such usage could cause poor adhesion, high shrinkage and a "cheesy" effect.

The surface receiving the epoxy adhesive must be clean, sound, and dry. Probably the most frequently ignored requirement for a receiving surface is cleanliness. This is especially true when saw-cutting has been done. It is often assumed that a freshly sawed surface is clean since it has been continuously washed by the saw-blade cooling water, when actually a fine residue is left by the water. To insure a clean saw cut surface, it should be sandblasted before application of the epoxy. Cracked or loose sections of concrete near the surface should be located by striking the
concrete with a hammer or by dragging a chain over it. Hollow sounds are indicative of fractured concrete. Loose concrete must be removed.

In respect to strength and permeability, rules which have been developed for portland cement concrete are also applicable to epoxy concrete. The primary difference between the two concretes is that cement, with water for hydration, is the binder in one whereas epoxy is the binder in the other. Similar conditions produce similar results in each. For instance, a uniform gradation of sand and aggregate produces a stronger product than does a single or gap gradation; the richer the mix the less permeable the final product, etc. It follows then that regular concrete sand and gravel, thoroughly dried, usually produces a good epoxy concrete mixture. The maximum size aggregate, as in regular PCC, is determined by job conditions: Depth of section, reinforcing steel restrictions, etc.

The ratio of epoxy to aggregate for a strong, dense mix depends to a great extent on the gradation and maximum size aggregate used. Rule of thumb epoxy/aggregate-ratios (by volume) for good aggregate gradation of various maximum sizes are: 1/5 for 1 inch 1/4 for pea gravel, and 1/3 for 20 mesh sand. Whenever possible, make sample mixes using different ratios of mixed epoxy and aggregates. By comparing these sample mixes, it will be possible to select the mixed epoxy/aggregate mix that is most appropriate to the work. Since the viscosity of epoxies varies considerably with temperature, the mixing ratio of mixed epoxy to aggregate may have to be adjusted to maintain workability whenever there is a drop in temperature. When making the sample mixes, use the same compactive effort that it is anticipated will be used when placing the mix on the job. A good mix design is evident if the sample exhibits a mixed epoxy rich surface when compacted in this manner. A mixed epoxy rich surface results when the mix contains more mixed epoxy than is necessary to coat the aggregate and fill the voids. If an epoxy patch is placed on an exposed deck, an epoxy rich surface will be dangerously slippery.

Required skid resistance can be obtained by broadcasting dry sand on the surface while the epoxy is still fluid enough to receive it.

In an epoxy concrete mixture, it is most important that the epoxy resin components be blended first and then thoroughly mixed into the sand or sand and aggregate. Sides and bottom of mixing containers should be scraped clean during the mixing operation. The mixing operation within the limitation imposed by the pot life must be completed and the mixed epoxy/aggregate placed and compacted before the pot life is exceeded. The results of improper mixing are: non-uniform curing, cheesy or sticky areas, brittle areas poor adhesion and poor performance. The sand and aggregate has to be clean and dry to ensure proper bonding by an epoxy adhesive. Often it is incorrectly assumed that since epoxy will successfully bond wet concrete to dry concrete, good epoxy concrete can be obtained with damp aggregate. This is a false assumption.

In an epoxy rich mixture, there appears to be enough free epoxy to provide bond to the concrete surface against which it is to be placed. However, experience has shown that this is not true. Therefore, to ensure proper bond, the surface must be primed with pure epoxy adhesive just prior to placing the epoxy aggregate concrete.

Epoxy concrete varies as its counterpart PCC in placing characteristics. Epoxy concrete is too sticky and viscous to be effectively vibrated with a spud type vibrator. Surface vibration with a
flat plate has not been tried, but may work. The most effective proven way to place epoxy concrete is to work it around reinforcing steel and into corners by hand. Rodding it with a 1 x 1 helps, but generally the springing or bulking characteristic of the material makes rodding somewhat ineffective. Rodding is most effective after the material has been in place a few minutes and some bleeding of the pure epoxy has occurred.

When epoxy concrete is to be placed in thickness greater than 2" it should be placed and compacted in lifts of 2" or less thickness.

The surface of an epoxy concrete can be finished with either a wood float or steel trowel as desired. The steel trowel is superior to a wood float in sealing the surface of an epoxy mixture.

Temperature is a critical parameter in the curing of epoxy, the higher the temperature the faster the cure (and generally the higher the strength.) This fact becomes important when epoxies are used for patches or seals on decks and the controlling factor for opening the deck to traffic is curing of the epoxy.

Curing of epoxy can be accelerated by externally applied heat. Best results for placement in cold weather is to heat the concrete receiving surface, preheat the epoxy components and aggregates before any mixing is done, and then heat the mixture after it is placed. Preheating the individual components will probably significantly decrease pot life. Experimentally determine the reduction of pot life at the temperature of application. The in-place heating should not be done by direct flame onto the epoxy, but rather by radiant heaters, or by heated air such as is provided by heating a steel plate elevated above the epoxy surface, or by heating the inside of a "tent" erected over the work. Heat lamps directed towards the epoxy is also another good source of heat. The heat of the PCC surface at time of placement, heat of the components before mixing, or heat of the epoxy concrete after placing, should not be greater than about 110° F. When heating the PCC surface, a heater which will not contaminate the surface should be used.

When epoxy is used to bond fresh concrete to hardened concrete, the fresh concrete should be as dry as working condition will allow and must be placed while the epoxy is still fluid. If the epoxy reaches a firm but still tacky state, a new coat of epoxy must be applied onto the hardened concrete before the concrete is placed. If, on the other hand, the epoxy cures beyond the tacky state, it should be sandblasted before the new epoxy coat is applied.

Epoxy concrete dams at expansion joints or epoxy repaired joint spalls should be protected during the epoxy curing period from harmful pressures caused by joint closure as the structure expands. Easily compressed plastic foam materials placed in the joint provides good protection. Forms against which the epoxy concrete is to be placed shall be coated with paraffin or silicone grease, or covered with polyethylene sheet to prevent bond. The epoxy concrete should not be allowed to flow under the forms and encroach into the space reserved for joint closure. If the material is allowed to flow into this space, failure of the repair is certain when the joint closes against it.

Epoxy injection or pressure sealing cracks with epoxy can be done with 8040-O1E-01, 8040-O1E-02, or 8040-O1E-03 material. However, most epoxy injection on contract jobs is done by a subcontractor specialist using epoxy he normally uses for injection work. The Transportation
Laboratory should be consulted before permitting the use of other than State Specification epoxies for injection or any other type epoxy work. The coefficient of thermal expansion for epoxy adhesives is roughly 5 times that of concrete. This large a difference can be tolerated for most epoxies down to approximately 15°F because they are still flexible enough at this temperature to "give" under the stress induced by volume change differences. However, since the flexibility of epoxies varies as the temperature, the coefficient difference becomes critical at lower temperatures. Without proper flexibility in the epoxy system, the differential volume change will usually cause shear failure in the concrete, which is generally weaker than the epoxy. There is still sufficient residual flexibility at the lower temperatures in the epoxies designed to bond new concrete to old when their in-place thickness is 1/8 inch or less. These epoxies, however, cannot be used in greater thickness, or in epoxy concrete, or in epoxy mortar; more flexible epoxies are available for these uses.

The exact plastic flow characteristic of epoxy is still undetermined. Hence, until more knowledge is gained on this subject, epoxies should not be used in a manner that will subject them to sustained axial loads.

Where there is no abrasion and a protective coating is required, such as area of edge of deck to drip groove and around scuppers, Design has been using an epoxy enamel such as found in Section 91-4.04 of the Standard Specifications.

Rules, regardless of how complete they may be, are effective only to the extent to which they are followed. In the epoxy use rules discussed, each is a vital link in the process which produces a successful job. Consequently, the degree of success, as measured by in-use performance, of an epoxy application is dependent on the attention given to the adhesive selection, mixing and placing requirements.

For additional information concerning epoxies, contact Tom Shelly (916) 739-2346, ATSS 497-2346, of the Transportation Laboratory.

Safety Precautions

The following precautions are to be followed by all field personnel who are involved with the use of epoxy resin materials:

- The exposed parts of the face, neck and hands should be protected with barrier creams and plastic or rubber gloves be worn during the mixing, blending and placing operations.

- When resins or solvents come in contact with the skin, it should be washed with soap and water. **Do not use solvents** to clean epoxy from the skin, use soap and water.

- Goggles or face shields should be worn to prevent vapor or liquid splashes from coming in contact with the eyes. If uncured resins or solvents do come in contact with the eyes, they should be flushed continuously for ten minutes and then receive medical attention.

- Contaminated clothing, rags, gloves, etc., should not be reused.
• Good ventilation must be provided for the preparation and use of epoxy resin concrete; and since there entails a fire hazard, fire-fighting equipment must be maintained at all operations.

Following are listed seventeen safety rules which should be followed to offset the hazards inherent in the use of epoxy resins:

1. Inform workers of the hazards of epoxy resin operations and show them how to avoid contact.

2. Provide special isolated areas in the plant for mixing, molding, curing, casting, and tooling of epoxy resins.

3. Install ventilated hoods in mixing areas to prevent the spread of hazardous vapors.

4. Limit mixing to only a few workers.

5. Ventilate grinding, sawing, drilling or polishing operations where epoxy resins are used.

6. Supply protective sleeves and cotton liners under rubber gloves to workers in molding operations.

7. Provide water-soluble skin protective gels.

8. Supply neutral or acid soap instead of alkaline, powdered or abrasive cleansing agents.

9. Don't permit workers to use acetone or solvents to cleanse the skin.

10. Replace clean-up rags with disposable paper towels.

11. Institute a strong housekeeping program that immediately washes up spills and keeps tables, machinery, tools, floors, walls and windows free of particles and dust.

12. Provide goggles and respirators when epoxy resins are sprayed.

13. Cover benches and seats in mixing areas with disposable paper.

14. Throw away empty epoxy resin containers and drums.

15. Enforce a program of individual worker sanitation which requires washing before eating, before relief periods, after work, and after any contact with epoxy resins.

16. When possible, mechanize blending, mixing, and pouring operations.

17. Prohibit the wearing of clothing soiled by epoxy resins.
Bridge Deck Expansion Joints and Joint Seals

Construction Policy:

A. General

All deck expansion joints and joint seals, except for special cases, will be specified by seal type and M.R. (Movement Rating). The success or failure of joint seals will depend greatly on the enforcement of the specifications. Questions concerning joint seals will be handled in normal channels through the Construction Engineers and the Structure Construction Office.

It is the Structure Representative's responsibility to:

1. Determine the proper groove width or installation width for the joint seal used, and to complete the applicable portions of the Joint Movements Calculations sheet (Form DS-D129).
2. Install movement recording scribes on all expansion joints.

B. Special Details

Check details such as water stop, formed joint openings, hinge restrainers, rollers or rockers, conduits, etc., for proper setting and movement capacity. All components in an expansion joint must be capable of withstanding more than the anticipated movement for a particular joint.

Joints to be sealed under rehabilitation contracts must first be cleaned of all existing seal material, joint filler, dirt and debris to the top of the waterstop. If the joints do not have a waterstop, or the waterstop is damaged, it is essential that the joint be cleaned down to the bearing or hinge seat. Care should be taken so that existing utilities and encroachments spanning joints are not damaged by the cleaning operations. Carefully inspect the condition of the existing joint and the face of the saw cut. It may not be necessary to resaw cut the joint. If not, a change order may be written to eliminate the saw cutting with a credit to the State.

All dimensions of the existing joint must be verified to be compatible with the new seal, including the depth. All joint damage shall be repaired as directed by the Engineer. Sawcutting or grinding may be required in addition to abrasive blast cleaning of joints. Cleaning joints below the existing damaged waterstop and repairing the existing joint damage shall be considered to be specified extra work. Cost of repair of damage caused by the contractors operations shall be borne by the contractor. Getting a satisfactory joint may require the repairs of spalls, cracks, and
expansions dams, and this is usually classed as other work. Supplemental funds should have been provided for all above noted extra work.

C. **Saw Cutting**

1. **Type "A" and "AL" Seals**

 Joints to be sealed with type "A" Seals are to be saw cut to the dimensions shown on the contract plans. If for some reason the saw cut width has to be increased slightly to maintain a uniform groove width or to expose good sound concrete, it is essential to maintain a 1 to 3 depth to width ratio of the polyurethane seal.

 Joints sealed under rehabilitation contracts with type "A" (modified) seals, shall have a groove width \geq one inch and \leq 1.75 inches. Joint seal depth shall equal $1/3$ the joint width but must be $\geq 1/2$ inch, (see Attachment No. 5).

 The 1 to 3 depth to width ratio does not apply to the type "AL" seal. (Saw cut not required).

2. **Type "B" Seals**

 In new construction, type "B" seals are to be saw cut as follows:

 Joint movement calculation sheets, which include saw cut information, will be furnished by Design upon the request of the Structure Representative, when they are not included in the R.E. Pending File. (Attachment #2 is an example of a completed Joint Movement Calculation Sheet.)

 Saw cutting shall not be started until the Type "B" seal material has been tested and released. The Transportation Laboratory will furnish each job with a copy of the test report showing the M.R. (Movement Rating) of the Type "B" seal groove width limits, (W_1 & W_2) which are necessary to determine the saw cut widths. The M.R. of the Type "B" seal must be equal to or greater than that shown on the contract plans.

 The minimum saw cut (groove) depth is to be checked by cutting, a 1/2" to 1" section of the actual seal to be used and placing it between two flat surfaces, such as 1" x 4" x 8", e.g. Place the top of the seal to the dimensions shown on the contract standard plan and compress it to the W_2 position. At this position determine the saw cut depth required per the standard plans.

 At the time saw cutting is to begin, determine the groove or saw cut width as described on the joint movement calculation sheet shown in the example (Attachment No. 2). Mark and check the initial saw cut so that it can be used later to check the tolerance of the completed joint. This is very important because the joints are usually moving while the saw cutting is in operation. It is the Contractor's responsibility to adjust the cut accordingly to match the initial saw cut width and maintain the tolerances specified for the completed joint.
In new construction projects joint geometry is readily controllable, i.e. the size of the saw cut is set to accommodate the joint seal. Rehabilitation projects differ from new construction projects in that the width and condition of the joints require special consideration. The new joint seal must provide the required movement rating and also must be of sufficient size to fit the existing joint after saw cutting.

Rehabilitation projects require that both the Minimum \(W_1 \) (the maximum joint width at minimum temperature, after prestress shortening), and the M.R. be indicated on the plans. To ensure a correct fit, the \(W_1 \) of the joint seal must be greater than the minimum \(W_1 \) of the joint.

The Special Provisions require that the joint size be verified prior to ordering the seals. A joint should be re-measured only after that joint and its adjacent joints have been cleaned. Record the concrete temperature at the time of measurement.

Calculate the minimum \(W \), required for the joints using the actual measurements.

\[
\text{Min } W_1 = W_e \frac{1}{2} \left(\frac{T_{\text{str}} - T_{\text{min}}}{1} \right) \frac{(4)}{(100)}
\]

Where:

- \(\text{Min } W_1 \) = Maximum joint width in inches
- \(W_e \) = Existing joint width in inches (measured at the widest point)
- \(1/2 \) = Minimum practical concrete removal (1/4 inch each side of the joint)
- \(T_{\text{str}} \) = Structure temperature, deg F (measured at the time the existing joint width was measured, \(W_e \))
- \(T_{\text{min}} \) = Minimum temperature at structure site – from form DS-D129
- \(1 \) = Temperature range at structure site - from form DS-D129
- \(2 \) = Thermal movement in inches/100 feet - from form DS-D129
- \(4 \) = Contributable length in feet - from form DS-D129

Compare these recalculated \(W_1 \)'s with the minimum \(W_1 \)'s shown on the plans. If they agree within 0.1 inch, the data shown on the plans does not need to be revised. If the new \(W_1 \)'s do not agree with the values shown on the plans, prepare a contract change order to revise the \(W_1 \)'s and state whether or not the movement ratings have changed.

If a calculated \(W_1 \) exceeds 4.25 inches, a compression seal should not be used. Contact the chairman of the Joint Seal Committee for a recommended course of action to follow.

Again, saw cutting should not start until test data for the seal to be used is available. Saw cut widths should be set to provide the minimum joint width possible. Due to the variables involved, saw cut widths should be calculated using the formulas given below and the narrower width chosen, provided it will work.

\[
S_1 = W_1 - \frac{1}{2} \left(\frac{T_{\text{str}} - T_{\text{min}}}{1} \right) \frac{(4)}{(100)}
\]
\[S_2 = \frac{1}{W_2} \left(\frac{T_{\text{max}} - T_{\text{str}}}{1} \right) \left(\frac{4}{100} \right) \]

\[S_3 = W_e + \frac{1}{2} = \text{Minimum practical saw cut width} \]

Where:

- \(S_1, S_2, S_3 \) = possible saw cut widths
- \(W_1 \) = \(W_1 \) taken from test report (R-29)
- \(W_2 \) = \(W_2 \) taken from test report (R-29)
- \(W_e \) = Existing joint width in inches (measured at widest point)
- \(1/2 \) = minimum practical concrete removal (1/4 inch each side of joint)
- \(T_{\text{str}} \) = Structure temperature, deg F (taken at the time of measurement of \(W_e \))
- \(T_{\text{min}} \) = Minimum temperature at structure site - from form DS-D129
- \(1 \) = Temperature range at structure site - from form DS-D129
- \(2 \) = Thermal movement in inches/100 feet - from form DS-D129
- \(4 \) = Contributary length in feet - from form DS-D129.

D. Installation

1. **Type "A" and "AL" Seals:**

 Be thoroughly familiar with the contract specifications and details and enforce them.

 It is essential that the polyethylene foam be placed at a uniform depth to preclude excessively thin or thick sections. There is a successful relationship between the cohesion and the adhesion of the polyurethane seal if the proper shape and dimensions shown on the Standard Plan are maintained. Cut templates out of plywood to check the surface depths of the polyethylene foam and the polyurethane.

 Type A (modified) seals require placing the joint seal and rod stock 3 inches up into the curb or rail on the low side of the deck at the curb or rail joint that lines up with the deck joint.

2. **Type "B" Seals:** (Attachment #1 gives the properties for some brands of Type "B" seals.)

 Again be thoroughly familiar with the contract plans and specifications and enforce them.

 Repair all spalls and grind chamfer in advance of installing the seal.

 As a final check, prior to installation, it is recommended to use a thin section of joint seal material and use it to check the saw cut depth throughout the length of joint. Place the seal section in the planned position and check to see that the dimensions shown on the Standard Plan are maintained. Most joint seal failures result from improper saw cuts or from the seal being placed too near the deck surface.
Bend type "B" seals 6 inches up into the curb or barrier rail on the low side of the deck. If the curb or rail joints don't line up with the deck joint, an attempt must be made to abut the joint seal to the face of the curb or rail so that it will provide a water tight seal.

3. Joint Seal Assemblies:

Details of a joint seal assembly are shown on the contract plans. The Structure Representative is to calculate the installation width of the joint seal assembly. Calculations are to be shown on the Joint Movements Calculations (DS-D129) sheet using a W_2 equal to 1/2 inch minimum at maximum temperature.

The Special Provisions permit alternate joint seal assemblies which the Contractor may use in lieu of the joint seal assembly detailed on the Contract Plans.

If the Contractor proposes to use an alternate joint seal assembly, the Structure Representative shall send two copies of the initially submitted working drawings to Structures Design for a determination as to the adequacy of the proposed alternate joint seal assembly. When submitting the working drawings, point out that they detail a contractor proposed alternate joint seal assembly, and that they are submitted for an informal review by the Joint Seal Committee and by Structures Design.

If an alternate joint seal assembly is incorporated in the contract work, the Structure Representative should make the necessary changes on the "As Built" plans to indicate the details of the alternate joint seal assembly. An additional sheet may be necessary to show the "As Built" details. Do not submit the shop plans as "As Built" plans.

Note that prestressed concrete structures are expected to initially shorten about 0.50 in./100 ft. due to stressing. The total long-term shortening is anticipated to be 1.00 in./100 ft. for post-tensioned bridges and somewhat less for pretensioned bridges. The difference between the long-term shortening (1.00 in.) and the initial shortening is equal to 0.5 in./100 ft. This is the value shown on the Joint Movements Calculations" form (DS-D129) as "Anticipated Shortening for Post Tensioned Concrete Structures". For unusual situations when a substantial amount of time has elapsed between stressing and the placement of joint seals, an estimate may be made of the amount of prestress shortening that has occurred. Refer to Attachment No. 10 for an example.

4. Modular Joint Seal Assemblies (MR over 4")

Refer to the Special Provisions for details concerning the installation of modular joint seal assemblies. Any questions can be directed to your area Senior or the Joint Seal Committee.

5. Open Joint and Experimental Test Seals

Obtain the necessary brochures on installation procedures from your Construction Senior or the Chairman of the Joint Seal Committee if they are not included in the R.E. Pending File.
The proper installation width of open joints or experimental joint seals will be calculated from the Joint Movement Calculation Sheet. Determine the minimum width at maximum temperature (\(W_2 \)) and insert this in Column 5. The adjustment of the width for temperature at time of installation will be the same as for the Type B Seal.

E. Expansion Joint Scribes

Scribes are to be placed at all expansion joints as shown on the attached instruction sheet (Attachment No. 3). Placement of the scribes at a location other than that shown may be required when special barrier rails are used. Use the 8" steel railing scribe, 3/4" x 8" 24 gauge (Item No. 6635 1760 5) and 4" aluminum scribe plate, 1 1/2" x 4" 16 gauge (Item No. 6635 1790 8) for joints having a movement rating of 2" or less. Use the 10" steel railing scribe, 3/4" x 10" 24 gauge (Item No. 6635 1780 7) and 6" aluminum scribe plate, 1 1/2" x 6" 16 gauge (Item No. 6635 1770 6) for joints having a movement rating greater than 2". Use 681-80-44 Rapid Set Epoxy (Item No. 8040 0100 4) to attach the scribes and plates to the rail. Scribes, plates and epoxy should be obtained from the District through the Resident Engineer. Order one scribe per expansion joint and epoxy at the rate of 1 unit (1/4 pint can of "A" and 1/4 pint can of "B") per 20 scribe units. Skewed, or extra wide structures may require a scribe unit on the joint on both sides of the structure.
APPROXIMATE PROPERTIES
FOR
PREFORMED ELASTOMERIC JOINT SEALS
TYPE B₁

Manufacturer's Nominal Properties for Design Data Only
(See Note 4)

<table>
<thead>
<tr>
<th>Catalog Number Depth (See Note 1)</th>
<th>Uncompressed W₀ (See Note 3)</th>
<th>Uncompressed D₀ (See Note 3)</th>
<th>Approx. M.R. (See Note 2)</th>
<th>W₁ Max. Groove Width</th>
<th>W₂ Min. Groove Width</th>
<th>Recommended Saw Cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown H-2503</td>
<td>2.5"</td>
<td>2.625"</td>
<td>1"</td>
<td>2.13"</td>
<td>1.13"</td>
<td>4.0"</td>
</tr>
<tr>
<td>Brown H-3000</td>
<td>3.0"</td>
<td>3.25"</td>
<td>1"</td>
<td>2.55"</td>
<td>1.55"</td>
<td>5.0"</td>
</tr>
<tr>
<td>Brown H-3500</td>
<td>3.5"</td>
<td>3.75"</td>
<td>1.5"</td>
<td>2.98"</td>
<td>1.48"</td>
<td>5.85"</td>
</tr>
<tr>
<td>Brown H-4000</td>
<td>4.0"</td>
<td>4.25"</td>
<td>1.5"</td>
<td>3.40"</td>
<td>1.90"</td>
<td>6.0"</td>
</tr>
<tr>
<td>Brown H-5000</td>
<td>5.0"</td>
<td>5.00"</td>
<td>2"</td>
<td>4.25"</td>
<td>2.25"</td>
<td>7.75"</td>
</tr>
<tr>
<td>Brown H-6000</td>
<td>6.0"</td>
<td>5.5"</td>
<td>2.5"</td>
<td>5.10"</td>
<td>2.60"</td>
<td>9.25"</td>
</tr>
<tr>
<td>W.B.* WA-250</td>
<td>2.5"</td>
<td>2.75"</td>
<td>1"</td>
<td>2.13"</td>
<td>1.13"</td>
<td>3.56"</td>
</tr>
<tr>
<td>W.B. WA-300</td>
<td>3.0"</td>
<td>3.38"</td>
<td>1"</td>
<td>2.55"</td>
<td>1.55"</td>
<td>4.31"</td>
</tr>
<tr>
<td>W.B. WA-350</td>
<td>3.5"</td>
<td>3.5"</td>
<td>1"</td>
<td>2.98"</td>
<td>1.98"</td>
<td>4.44"</td>
</tr>
<tr>
<td>W.B. WA-400</td>
<td>4.0"</td>
<td>4.38"</td>
<td>1.5"</td>
<td>3.40"</td>
<td>1.90"</td>
<td>5.00"</td>
</tr>
<tr>
<td>W.B. WA-500</td>
<td>5.0"</td>
<td>5.0"</td>
<td>2"</td>
<td>4.25"</td>
<td>2.25"</td>
<td>5.94"</td>
</tr>
<tr>
<td>W.B. WA-600</td>
<td>6.0"</td>
<td>6.0"</td>
<td>2.5"</td>
<td>5.10"</td>
<td>2.60"</td>
<td>7.75"</td>
</tr>
</tbody>
</table>

*W.B. - Watson Bowman

Notes:

1. Brand Names other than those listed may be available.
2. The actual Movement Rating equals \((W₁ - W₂)\). \(W₁\) shall be the smaller of the values determined as follows:
 a. 0.85 times the manufacturer's designated minimum uncompressed width of the seal \((W₀)\).
 b. The width of seal on the third successive test cycle of the pressure-deflection test, when compressed to an average pressure of 3.0 pounds per square inch.

\(W₂\) shall be the width of seal determined on the third successive test cycle of the pressure-deflection test, when compressed to an average pressure of 4 times the pressure measured at the seal width \(W₁\).

3. Data shown may change significantly due to variations in extrusions. Dimensions must be verified in the field.
4. Do not use these properties in lieu of actual test results. This is for additional information only. Actual values for \(W₁\), \(W₂\), and M.R. are obtained from test results performed by the Transportation Laboratory on the Report of Inspection of Material (Form TL-29).
Bridge Construction Records & Procedures Manual

Attachment No. 2

Page 8 of 13

Expense Authorization

| 03 | 000000 |

County

| Sac |

Route

| 5 |

Mileage

| 0.2/2.4 |

Bridge Name & No.

| Dry Creek O.C. 29-000 |

Type Structure

| Rein. Conc. Box & CIPP/S |

Type Abutment

| AL - 70T Piles / AT - Spd. Flgs. |

Type Expansion

| 12" Electro Pud, etc. |

Date

| 4/16/90 |

Page

| 8 of 13 |

Temperature Extremes

- **Max:** 110°F
- **Min:** 23°F

Type of Structure

- **Range:** 87°F

Thermal Movement

| 0.00 |

Anticipated Shortening

- 0.55
- 0.06
- 0.12
- 0.55
- 0.50
- 1.05

Location

<table>
<thead>
<tr>
<th>Location</th>
<th>Snow Use in Calc.</th>
<th>Control Length (Ft)</th>
<th>Calculated Movement (Inches)</th>
<th>M.R. Round up to 1"</th>
<th>Seal Type A or B (Others)</th>
<th>Seal Width</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abut. 1 (Conv.)</td>
<td>0</td>
<td>64</td>
<td>0.39</td>
<td>½</td>
<td>A</td>
<td>FRC 3105</td>
<td></td>
</tr>
<tr>
<td>Span 3 Hinge (Conv.)</td>
<td>0</td>
<td>166</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Span 3 Hinge (CIPP/S)</td>
<td>0</td>
<td>212</td>
<td>2.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Span 3 Hinge Total</td>
<td>0</td>
<td>388</td>
<td>3.12</td>
<td>3½</td>
<td>Joint Assembly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Span 4 Hinge (CIPP/S)</td>
<td>0</td>
<td>100</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Span 4 Hinge (Conv.)</td>
<td>0</td>
<td>155</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Span 5 Hinge Total</td>
<td>0</td>
<td>255</td>
<td>2.00</td>
<td>2</td>
<td>Type B</td>
<td>Brown II-3000</td>
<td></td>
</tr>
<tr>
<td>Abut. 7 (Conv.)</td>
<td>0</td>
<td>34</td>
<td>0.21</td>
<td>½</td>
<td>A</td>
<td>FRC 3105</td>
<td></td>
</tr>
</tbody>
</table>

Note:

- **SHOW LINE DRAWING OF STRUCTURE ON REVERSE SIDE, SHOW POINTS OF NO MOVEMENT AND CONTRIBUTORY LENGTH. RETAIN COPY FOR DESIGN CALCULATIONS FILE.**

- **INFORMATION FROM TRANSPORTATION LAB REPORTS.**

- **CUT GROOVE WITH ADJUSTMENT BASED ON "A" = MAX TEMP EXTREME MINUS(SUPERSTRUCTURE TEMPERATURE).**

- **MEASURE SUPERSTRUCTURE TEMPERATURE BY PLACING OIL OF CONCRETE THERMOMETER 6" INTO EXPANSION JOINT.**

- **If alternative assembly is used, select correct No. from sketches shown on Attachment No. 2**
CALCULATION OF POINTS OF NO MOVEMENT

<table>
<thead>
<tr>
<th>I (Ft)^4</th>
<th>1.38</th>
<th>61.36</th>
<th>61.36</th>
<th>61.36</th>
<th>61.36</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>L (Ft)</td>
<td>5.50</td>
<td>35.0</td>
<td>40.0</td>
<td>40.0</td>
<td>40.0</td>
<td>42.0</td>
</tr>
<tr>
<td>P (kips) @ 1' side sway</td>
<td>1200</td>
<td>618</td>
<td>415</td>
<td>2,233</td>
<td>415</td>
<td>359</td>
</tr>
<tr>
<td>D (dist. from 1st. member of frame)</td>
<td>0</td>
<td>90</td>
<td>210</td>
<td>0</td>
<td>160</td>
<td>0</td>
</tr>
<tr>
<td>P x D / 100</td>
<td>0</td>
<td>556</td>
<td>870</td>
<td>1,426</td>
<td>0</td>
<td>870</td>
</tr>
<tr>
<td>X / (EP x D / 100)^2</td>
<td>830</td>
<td>664</td>
<td>664</td>
<td>540</td>
<td>540</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Width Str. = 78'
- Dia. Col. = 5'0''
- K / Pile @ 1' defl. = 100
- X = Point of No Movement

Assumptions:
1. Super str. inf. rigid
2. Col's fixed top & bottom
3. Abut. diaph. will slide @ a force equal to D.W.
4. E (plies) = 4 x 10^6
 E (columns) = 3 x 10^6

P (Col) = 12 EI \frac{\Delta}{L^3}
\delta = \frac{432 I}{(L)^3} \text{ (2.5)^3}
I (abut) \approx \frac{12}{102} \text{ (2.5)^3}
D.W. Abut 5 x 600 K (assume linear up to 1° defl.)
NOTES:

1. Install one scribe at each deck joint on the most convenient side of the roadway i.e., widest shoulder. Use 8" scribe and 4" plate for joints having movement rating of 2" or less. Use 10" scribe and 6" plate for joints having movement rating greater than 2".

2. Place scribe on top of the concrete portion of the barrier railing.

3. Sand or wire brush surfaces of scribe and concrete to insure good adhesion.

4. Mix only enough epoxy for one scribe and plate when using the 681-80-44 Rapid Setting Epoxy. (5 min, pot life @ 70°F)

5. Use weight on a piece of paper to hold the scribe down on the concrete surface while the epoxy is setting.

6. Mark the Initial Position of the scribe, date, and concrete temperature on the plate as shown with a scriber. Measure the concrete temperature by placing the bulb of a concrete thermometer 6" + into the deck section, if possible, or at any convenient location to obtain the approximate superstructure temperature.
SAMPLING AND TESTING OF TYPE "B" JOINT SEALS

The following revised instructions for sampling and testing Type "B" joint seals have been issued by the Transportation Laboratory. The procedures are currently in use. If there are any questions call Richard Spring at (916)739-2314.

1. Following the manufacturing of a given quantity of various sizes (Movement Ratings) of joint seal materials for use on Caltrans contracts, such as:
 - MR=1" (1500 LF)
 - MR=1 1/2" (1000 LF)
 - MR=2" (1000 LF)
 The manufacturer will notify our Caltrans Laboratory (Richard Spring (916)739-2314).

2. Mr. Spring will arrange for an independent inspection agency to contact the manufacturer for the purpose of sampling the various lots of materials at the source.

3. The sampling agency will obtain one 3’ long sample of each size and lot of material for every 500 LF and send to our laboratory for testing along with the manufacturer's test report. The manufacturer’s lot number will appear along the length of the seal.

4. Following satisfactory testing, the manufacturer will be notified and the material will be set aside for stock to be used on Caltrans contracts only.

5. As the manufacturer receives orders and makes shipments to the individual contracts, form letters will be sent to our Caltrans Laboratory and with the shipment to the jobsite. This letter will contain the following information:
 - a. Name and address where the seal is being sent.
 - b. State Contract Number.
 - c. Size, quantity and movement rating of the seal.
 - d. The Lot Number identifications.
 - e. The Trans Lab's test number (SM number).

Upon receiving the letter from the supplier as to where the seal is being sent, the TransLab will send to the RE or Structure Rep a copy of the test report for the particular lot of material. Included on the test report will be the \(W_1 \) and \(W_2 \) values for the seal. The RE or Structure Rep should verify the lot number on the seal with the test report lot number.
JOINT SEAL TYPE A MODIFIED (MR 1/2"

No Scale

Notes:

1. If required, sawcut or grind transverse joints to the minimum (W) shown. Clean and abrasive blast joint.

2. Install commercial quality closed cell polyethylene rod stock with glazed surface. Diameter = joint width + 1/4".

3. Install joint seal. Place joint seal 3" up into curb or rail on low side of deck.

For details not shown see (B6-21)
Subject: Release and Reporting of Values for Type B Joint Seal

The last paragraph of Sheet 2 of 7 of Bridge Construction Memo 135-2.0 is modified to read:

Saw cutting shall not be started until the Type B seal material has been verified as having successfully been tested by the Division of Materials Engineering and Materials Testing Services (DMETS). The contractor/subcontractor will need to provide information to the Structure Representative regarding the manufacturer, lot number, date of manufacture and movement rating of the joint seal intended to be used prior to bringing the seal to the job site. The Structure Representative will verify the successful testing by contacting DMETS at 916.227.7263 and to obtain the W_1 and W_2 values for the lot of seal that will be used by the contractor. The movement rating (M.R.) $(W_1 - W_2)$ of the Type B seal must be equal to or greater than that shown on the contract plans.

When contacting DMETS for W_1 and W_2 information, the Structure Representative (caller) should have the following information readily available:

- Manufacturer of the Type B Seal.
- Lot number shown on the side of the Type B Seal.
- Date of manufacture.
- Movement Rating for the seal.

If requested, a copy of the DMETS test report for the Type B seal can be sent to the Structure Representative. It is important to note that the Type B Joint Seal will arrive at the jobsite without any state inspection release tags and no report of inspection document (TL-0029).

Background:
Type B joint seal is normally supplied by one of two sources from producers in the Midwest. As part of the manufacturing process, the various sizes of Type B Joint Seals are identified on the side of the seals with a Lot Number which represents a certain quantity. A sample of each lot of material is sent to DMETS in Sacramento for testing. Following the successful testing, the manufacturer is notified that the lot or lots of Type B Joint Seals are acceptable. At the time testing is performed, the lab does not know on which state contracts the Type B Seals will be used, therefore no information can be sent to the Structure Representative.

c: BCR&P Manual Holders
 Consultant Firms
 PSTolarski, Chief Division of Materials Engineering and Testing Services
 RWWolfe, Acting Chief Office of Structural Materials
 BPieplow, Acting Construction Program Manager

“Providing the technical expertise for quality built structures”
Compressive Deflections of Fiberglass or Steel Reinforced Elastomeric Bearing Pads

Elastomeric Bearing Pads consist of alternate layers of elastomer and steel sheet or fiberglass fabric reinforcement.

The compression deflections for steel and fiberglass reinforced elastomeric bearing pads can be reliably predicted within the normal range of construction tolerances. Transportation Laboratory tests have found that compressive strain is dependent upon two factors - compressive stress and shape factor. In addition, tests showed that compressive stress/strain behavior of fiberglass or steel reinforced pads is not significantly dependent upon overall pad thickness. In most situations the compressive deflection of the pad will be so small as to not effect the profile of the bridge. However, in the case of a hinge the magnitude of the deflection should be investigated, as it may be significant.

Attachment No. 1 of this Bridge Construction Memo shows two tables with families of curves which can be used to predict compressive deflection based on stress, shape factor, and strain. There is a separate table for fiberglass reinforced or steel reinforced pads which apply regardless of overall pad thickness. If long term compressive creep is to be included in the prediction, the strain values obtained from Attachment No. 1 should be increased by 25 percent.

Lab tests have shown that fiberglass and steel reinforced pads recover from dynamic creep caused by live loads. Therefore, dead load stress only will be considered in determining compressive deflection. Current bridge design practice limits the nominal compressive stress on a pad to 800 psi due to dead load and live load, not including impact. For steel reinforced pads with a shape factor ≥ 7.5, the average pressure shall not exceed 1000 psi. For calculating compressive deflection in the field, a dead load stress of 600 psi should be used. If a more accurate value of dead load stress is desired, contact the Structures Design Section responsible for your contract plans.

For special situations where extreme accuracy is desired, sample pads can be tested by the Transportation Lab to determine the stress/strain behavior of each lot of pads.
Sample Calculation

Consider a 12" x 18" x 4" fiberglass reinforced bearing pad
Assume compressive stress of 600 psi

\[
\text{Shape Factor} = \frac{\text{width} \times \text{length}}{\text{width} + \text{length}} = \frac{12(18)}{12 + 18} = 7.20
\]

From Attachment No. 1

Strain = 4.0% = .040

Compressive deflection including long term creep of 25% is equal to:

\[
\text{(Total Pad Thick.)} \quad \text{(Strain)} \quad \text{(125%)}
\]

\[
4.00 \quad .040 \quad .125 = .20" \]

Say 3/16"

The bearing pad thickness shown on the plans will be that for fabric reinforced pads. Note that steel reinforced bearing pads are thicker than the corresponding fabric reinforced pads. If the thickness of a fabric reinforced pad is T (inches), the thickness of the corresponding steel reinforced bearing is 1.15 T. See Attachment No. 2 for a table of thicknesses for Steel Reinforced pads. For pads more than 1/2 inch thick, it is the responsibility of the contractor to notify the Engineer in writing of the type of pad to be used. Bearing seat elevations must be set to correspond to the bearings to be used.
MEMO TO DESIGNERS:

Background

Our policy has been to standardize on 1/2” layers of elastomer. Until recently, we used very thin steel plates and a minimal elastomer cover at the top and bottom for the steel reinforced pads. The minimal thickness of cover and of steel was ignored and the bearing-thickness shown on the plans was the sum of the 1/2-inch thick layers. This resulted in a simple, standard Caltrans procedure for the design and manufacture of both the fabric reinforced and steel reinforced bearing pads.

The steel reinforcement option was removed from the 1981 Standard Specifications because the bearing manufacturers could not properly mold the bearing with the thin steel plates.

Current Policy

The current specifications for elastomeric bearings permit the use of the steel reinforced bearing as an option. However, the proper design of the steel reinforced bearings requires 14 gauge (0.075 inch) steel plates, full 1/2-inch elastomer layers between the plates and a 1/4-inch cover top and bottom. Therefore, the steel reinforced bearing will always be thicker than the corresponding fabric reinforced (fiberglass) bearing pad.

Design

There is no change in the design procedure. The designer will continue to design for the required number of 1/2-inch layers and call out the thickness of the bearing as the sum of the 1/2-inch thick layers. In permitting the use of the steel reinforced bearing as an option, the specifications require that the contractor notify the Resident Engineer of their choice. If the steel reinforced bearing is selected, the bearing seat elevation will be adjusted (lowered) by the Resident Engineer to allow for the increased thickness. The minor increase in compression on the steel plates due to the 1/8" side cover may be ignored.

For most cast-in-place concrete, precast concrete and steel superstructures, there should be no difficulty in adjusting the bearing seat elevation at the time the contractor selects the bearing type. In general, there is no need for the designer to be concerned with the choice.

For some applications, the designer may want to limit the bearings to only one of the two types. If this is done, indicate the type selected on the plans as follows:

"Elastomeric Bearing Pads (fabric reinforced)" or,
"Elastomeric Bearing Pads (steel reinforced)"
Steel reinforced bearings are recommended where anchor bolt holes are required through the bearings. To assist the designer, the total thickness for steel reinforced bearings is tabulated below:

<table>
<thead>
<tr>
<th>Design Thickness</th>
<th>Number of 1/2” Layers</th>
<th>Number of Steel Plates</th>
<th>Actual Minimum</th>
<th>Thickness Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1”</td>
<td>2</td>
<td>2</td>
<td>1.15</td>
<td>1.29</td>
</tr>
<tr>
<td>1.5”</td>
<td>3</td>
<td>3</td>
<td>1.73</td>
<td>1.89</td>
</tr>
<tr>
<td>2”</td>
<td>4</td>
<td>4</td>
<td>2.30</td>
<td>2.48</td>
</tr>
<tr>
<td>2.5”</td>
<td>5</td>
<td>5</td>
<td>2.88</td>
<td>3.08</td>
</tr>
<tr>
<td>3”</td>
<td>6</td>
<td>6</td>
<td>3.45</td>
<td>3.67</td>
</tr>
<tr>
<td>3.5”</td>
<td>7</td>
<td>7</td>
<td>4.03</td>
<td>4.27</td>
</tr>
<tr>
<td>4.0”</td>
<td>8</td>
<td>8</td>
<td>4.60</td>
<td>4.86</td>
</tr>
</tbody>
</table>

STEEl LAMINATED ELASTOMERIC BEARING
MECHANICAL ANCHORAGE DEVICES

Expansion anchorage devices seldom develop the full tensile strength of a stud or a bolt, and are therefore less desirable than cast-in-place bolts and inserts. For this reason, expansion anchorage devices are generally used only for attaching fixtures such as signs, ladders, utilities, and temporary railings to hardened concrete.

Inspections by Structures Maintenance Engineers have disclosed instances of loose anchorage devices for bridge-mounted signs. The lack of proper anchorage had gone undetected because a headed bolt was used instead of a threaded stud. When the bolt was tightened against the fixture mounting plate, it pulled the anchorage loose from the concrete. The anchorage then pressed against the other side of the plate, and further tightening gave the impression that the fixture was securely attached when actually it was loose.

In order to minimize this problem, plans call for a threaded stud instead of a headed bolt. The Standard Specifications require that the expansion anchor be recessed 1/2" to 1" below the concrete surface after it has been expanded. This allows the inspector to observe if the anchorage has been seated initially, and if it is properly holding at the time the fixture is attached. The plans also call out the diameter of the stud. Galvanizing requirements are given in the specifications.

In the event that the aforementioned details are not shown on the project plans, the Structure Representative should insist that studs and nuts be used instead of bolts. Note that the stud diameter should be 5/8" if the plans call for a 5/8" anchorage device. The other aspects of the expansion anchorage shall conform to the project plans and specifications.

Note that when anchorages are expanded by driving the expansion element over an expander plug, a sufficient thickness of concrete must be provided behind the plug to resist the driving force. The drilled hole for the anchorage must also be true to size and shape so to assure the fullest bearing of the expanded anchor against the concrete.

All concrete anchorage devices shall be subject to the approval of the Engineer. Current approval lists can be found at http://www.dot.ca.gov/hq/esc/approved_products_list/. On the page are ‘Cartridge Epoxies’ and ‘Mechanical Expansion Anchors’ that link to the latest approved products. If the proposed MEA does not appear on the working list, approval shall be contingent upon the submittal to the Engineer of sample concrete anchorage devices, manufacturer's instructions, and certified results of tests indicating compliance with specification requirements.
In summary, the Structures Representative should be sure that all expansion anchorage installations conform to the following:

1. Be sure the anchorage device is listed on the approved working list (Website given).

2. Proper size hole is drilled.

3. Use threaded studs and not headed bolts.

4. Use galvanized studs. (Not black steel)

5. Be sure the expansion part of the anchorage is properly recessed below the surface after it has been expanded.

6. Never accept a stud of smaller diameter than the stud or anchorage device size called for on the plans.

Another useful resource can be found in the Bridge Design Aids. Pages 81 through 92 of Chapter 5, Concrete Design, show a properly installed anchorage and indicates where anchors may be used and what will be shown on contract plans. The complete manual is available on Structure Design’s website at the following address:

http://onramp.dot.ca.gov/hq/esc/sdsee/design_technical_services/publications/bridge_design_aids.shtml
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>02-13-2012</td>
<td>Latest issue.</td>
<td>Robert A Stott</td>
</tr>
<tr>
<td>1</td>
<td>11-16-2018</td>
<td>Removed 145-7.0, Adjustable Template for Checking Profiles of Ducts in Post-Tensioned, Prestressed, Concrete Girders</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

Memo No.

<table>
<thead>
<tr>
<th>Memo No.</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>145-1.0</td>
<td>(Blank)</td>
<td>(Blank)</td>
</tr>
<tr>
<td>145-2.0</td>
<td>(Blank)</td>
<td>Support Systems for Portions of Permanent Bridges Which are Temporarily Unstable</td>
</tr>
<tr>
<td>145-3.0</td>
<td>05/04/1981</td>
<td>Support Systems for Portions of Permanent Bridges Which are Temporarily Unstable</td>
</tr>
<tr>
<td>145-4.0</td>
<td>12/01/1996</td>
<td>Contractor Designed Temporary Bridges or Other Temporary Facilities</td>
</tr>
<tr>
<td>145-5.0</td>
<td>10/11/1988</td>
<td>Bonding Dowels in Drilled Holes</td>
</tr>
<tr>
<td>145-6.0</td>
<td>(Deleted 11/16/18)</td>
<td></td>
</tr>
</tbody>
</table>
Support Systems for Portions of Permanent Bridges Which are Temporarily Unstable

Occasionally portions of permanent bridges are unstable during some stages of construction. Examples of such unstable portions of bridges are sloping abutments, and bent columns, where these components are hinged at the footing and not yet stabilized by completion of the superstructure. Numerous other conditions of instability of portions of the permanent structure may occur during individual phases of construction.

It is essential that the Structure Representative determine if, when, and where such conditions of instability may occur. When it is determined that a portion of the permanent structure will be unstable, the Contractor should be required to submit working drawings showing details of his proposed temporary support system. (Section 5-1.02 of Standard Specifications) The Structure Representative shall review these working drawings to ascertain that the proposed support system is adequate to provide the necessary stability. It is especially important that these procedures be followed when there is an unstable portion of a bridge adjacent to a railroad or to an area occupied by public traffic.

Contractors frequently make use of wire rope "guys" to temporarily support unstable portions of bridges. The Structure Representative should be alert to the fact that a poorly designed wire rope "guy" system, or the improper installation of wire rope "guys", may result in a catastrophic failure of that portion of permanent structure that is being stabilized by the "guy" system.

For information concerning the proper use of wire rope, refer to the report prepared by John MacNeill entitled *The Use of Wire Rope Guys and Restrainers for Concrete Forms and Structural Components*, dated May, 1975. This report is available to all registered Civil Engineers of the Office of Structure Construction.
Contractor Designed Temporary Bridges or other Temporary Facilities

If the Contractor proposes to construct a temporary bridge or other temporary facility across a traveled way being used by public traffic, the Contractor shall furnish the Structure Representative with working drawings and calculations detailing the location and design of the structure.

The Structure Representative will forward the aforementioned working drawings to the Sacramento Structure Construction Office for review by the Office of Structure Construction Falsework Section. The drawings should be forwarded with a letter describing loads to be supported, date Contractor wishes to begin construction, the design criteria used, and any other information pertinent to the review.

Temporary bridges or other temporary facilities not shown on the contract plans shall conform to Section 5-1.02, *Plans and Working Drawings* and Section 7-1.09, *Public Safety*, of the Standard Specifications.

Construction of the temporary bridge or other temporary facility should not be started until after the working drawings have been approved by the Engineer.
Bonding Dowels in Drilled Holes

There are three materials currently specified to bond a reinforcing dowel into a drilled hole in existing concrete.

Grout

Where plans or special provisions do not specify a bonding material, a cement paste is to be used as outlined in Section 51-1.13 of the Standard Specifications. Special Provisions will contain a section Drill and Grout Dowels where this is a separate contract item.

Magnesium Phosphate Concrete

Plans may indicate "Drill and Bond Dowel ... etc." Special Provisions will have a section Drill and Bond Dowels which refers to Section 83-2.02D (l) of the 1988 Standard Specifications. This specification is used where concrete barriers are to be constructed on existing bridge decks and can be used in other locations where shown on the plans. (Note - Corresponding 1984 Standard Specifications refer to Section 51-1.13 for bonding requirements.)

Epoxy

Plans in this case will indicate the use of epoxy bonding material. Special Provisions will have a section Drill and Epoxy Bond Dowels and there will be a separate contract item to cover the work.

The Structure Representative should not permit a substitution of the specified materials unless approved by the Structure designer.
(This page left intentionally blank.)
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Memo No</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>150-1.0</td>
<td>05/30/2018</td>
<td>Weight Overload Guidelines for Bridges on Construction Projects</td>
</tr>
</tbody>
</table>
(This page left intentionally blank.)
Weight Overload Guidelines for Bridges on Construction Projects

Introduction

This memo provides Structure Construction (SC) guidelines on the administration of the “weight limitation” provisions of a construction contract. These guidelines are to ensure uniform review and proper allowance for movement of construction equipment over structures that are within the project limits and are not open to traffic.

For structures that are either open to traffic or partially open to traffic, within the project limits, these guidelines can also be used for reinforced concrete slab bridges and culverts, and for reinforced concrete bridges with girders provided that:

1. The bridge has three or more girders. Non-redundant 2-girder systems or bridges with girder spacing greater than 14 feet must be forwarded to SC headquarters (HQ) for further analysis.

2. Clear spacing between overload vehicle and the edge of travelled way open to adjacent traffic must be a minimum of 10 feet or actual girder spacing, whichever is greater.

Overload cases that vary from the guidelines provided herein must be forwarded to SC HQ in Sacramento for further analysis. Structure Construction HQ will refer the request to the Structure Design Engineer for new structures or structures being modified by contract, and to Structure Maintenance & Investigations (SM&I), Permit/Rating Office for existing structures.

Standard Specification Weight Limitations

The Standard Specifications (SS)\(^1\), sets forth weight limitations for earthmovers, trucks, and truck and trailer combinations. It identifies what vehicles will be permitted to cross the existing, new, partially completed, or partially demolished bridge structures that are not open to traffic. This also provides that other construction equipment may be permitted to cross bridge structures subject to the weight limitations and conditions of the California Department of Transportation Permit Policy (see Transportation Permits Manual\(^2\)), whether open to the public or not.

\(^1\) 2015 SS, Section 5-1.37B, Load Limits.
\(^2\) Transportation Permits Manual, Section is dependent on the equipment.
The provisions of SS\(^3\) apply only within the project limits. The *California Vehicle Code*\(^4\) governs operation of vehicles (including construction equipment) on State highways beyond the project limits.

Overloads

Overloads on bridge structures within construction contracts may be either repetitive, occasional, or stationary. When reviewing overloads, consideration should be made for the potentially reduced capacity of a partially completed or demolished structure. Listed below are guidelines for evaluating common overloads:

A. Repetitive Overloads

Repetitive overloads usually occur in connection with an earthmoving operation, and thus usually involve earthmoving equipment; aka Material Hauling Equipment (MHE).

1. **Bridge Structures Designed and Rated for HS20\(^5\) and Permit Live Loading or for HL93 and Permit Live Loading:**
 According to SS\(^6\), load limits are only applicable for bridges that have the capacity to handle HS20 live loading. Any new structure that is designed for either HS20 and permit live loading or HL93 and permit live loading and any existing structure that has an inventory level load rating factor of 1.00 or higher for either HS20 or HL93 loading and permit ratings of “PPPPP,” has adequate capacity for the load limits.

 The following must be submitted to SC HQ for review, when using earthmoving equipment on:
 - A new or partially completed structure that exceeds the limitations specified in the SS\(^6\).
 - An existing structure that:
 - Does not have an HS20 Operating Rating Factor of 1.67 or an HL93 Operating Rating Factor of 1.30 or higher, and
 - Does not have permit ratings of “PPPPP”.

2. **Structures Designed for Overloads**
 Under the provisions of SS\(^7\), the Contractor may request the redesign of a structure to increase its load carrying capacity to accommodate heavy construction vehicles such as earthmoving equipment. The Contractor must be willing to pay for the cost of redesign and increased cost of construction, and the Contractor’s equipment cannot exceed the

\(^3\) 2015 SS, Section 5-1.37B, Load Limits.
\(^4\) California Vehicle Code, Division 15, Size, Weight and Load.
\(^5\) HS20 = HS20-44 = HS20-S16 = HS20-S16-44; Note H20 is not equal to HS20.
\(^6\) 2015 SS, Section 5-1.37B(1), Load Limits-General.
\(^7\) 2015 SS, Section 5-1.37B(2), Increased Load Carrying Capacity.
stresses produced by the following construction (design vehicle). Additional information relative to construction overload design is given in Memo to Designers, \(^8\) 15-15.

At the present time, the design vehicles used to represent the construction equipment loading are:

- A three-axle vehicle having a maximum axle load of 130 kips and a total gross load of 330 kips for spans greater than 54 feet.
- A two-axle vehicle having a maximum axle load of 130 kips and a total gross load of 200 kips for spans of 24 to 54 feet.
- For spans under 24 feet, the design is based on a single 130 kip axle.

The following are the procedures to be followed when the Contractor requests a redesign of a structure, or structures, to increase the load carrying capacity:

a. The Contractor submits a letter to the Resident Engineer requesting that the structure be designed to increase its load carrying capacity. In this letter, the Contractor must name the structure or structures to be redesigned, give specific details of the loads, and the positioning of the loads on the structure. The Contractor must also state that they are willing to pay the cost of redesign and the increased cost of construction.

b. The Structure Representative submits a copy of the Contractor’s letter to the Deputy Division Chief of Structure Construction and if appropriate forwards it to Structure Design along with a memo requesting that the structure be redesigned. The Structure Representative should also request that the Contractor be advised of the estimated cost of redesigning the structure. At this point, the Contractor should be informed of the estimated cost and a formal agreement should be reached prior to proceeding with the redesign.

c. After the redesign has been completed, and upon receiving revised contract documents and the estimated maximum cost of redesigning the structure, the Structure Representative will prepare a Contract Change Order. The Contract Change Order will authorize the structural alterations to accommodate the construction overloads. If the final cost to the Contractor for the redesign is known, then the credit to the State should be included. Otherwise, a supplemental Contract Change Order should be written when the final costs are completed. (See Attachment 1 for a sample of this type of Contract Change Order).

B. Occasional Overloads

Occasional overloads will include the movement of construction equipment (concrete trucks, cranes, paving equipment, etc.) across structures from one work site to another. Also included for consideration are track equipment overloads, such as pavement grinders and excavators.

\(^8\) Memo to Designers 15-15, Materials Hauling Equipment Loading.
1. **Concrete Trucks**
Concrete trucks traveling on the highway with full loads generally need to use booster axles to meet the axle weight requirements in Division 15 of the California Vehicle Code (CVC). When discharging concrete, the booster wheels need to be raised, which increases the loads on the remaining axles, resulting in axle loads that exceed the legal load allowed by the Permit Policy. The SS⁹ allows trucks over legal (exceeding CVC weight limitations) limit on bridges, not open to traffic, with up to 28,000 pounds for single axles and 48,000 pounds for the tandem axles. This limits most trucks to hauling a maximum 7 1/2 to 8 cubic yards. These trucks should be weighed to confirm allowable specification loading.

Any exception to the guidelines should be referred to SC HQ. (See Processing Requests for Construction Equipment Overloads below for further details.)

2. **Cranes and Concrete Pumps**
Fully equipped truck cranes are permitted to cross HS20, Operating Rating Factor of 1.67; HL93, Operating Rating Factor of 1.3 or greater; and full purple rated permit capacity rated (PPPPP) bridge structures on construction projects provided they conform to Permit Policy. Full purple rated permit capacity must be for all the 5, 7, 9, 11, and 13 axle vehicles. The following general guidelines may be used to determine if truck cranes or concrete pumps traveling on the bridge meet Permit Policy, as follows:

- Tandem axle weights less than 54,000 pounds.
- Single axle weight less than 28,000 pounds.
- No group of three axles within an 18 foot distance (see table diagrams below).
- Three axle groups less than 18 feet are treated as a tandem axle group limited to 54,000 pounds.

Cranes are often stripped down (counterweights and other components removed) and sometimes the boom is supported on a trailer in order to achieve allowable permit weights. The Engineer should verify that the crane is configured in its traveling condition when moving on the bridge.

Any exception to the guidelines should be referred to SC HQ (See Processing Requests for Construction Equipment Overloads below for further details.)

⁹ 2015 SS, Section 5-1.37B, Load Limits.
3. Track Equipment

Track Equipment, such as pavement grinders and excavators, occasionally need to cross or work on a bridge. For bridges designed and/or rated for HS20 or HL93HS-20 loading, the Engineer may approve this equipment, provided that it meets the following conditions:

a. Maximum gross weight is less than 66,000 pounds.
b. Maximum load on 12”-wide, or larger, tracks is less than 6,000 lb per foot.
c. Maximum load on 10” tracks is less than 5,000 lb per foot.

Any exception to the guidelines should be referred to SC HQ. (See Processing Requests for Construction Equipment Overloads below for further details.)

In addition, when track equipment crosses or works on a bridge, considerations must be given to the track type and its effect to the deck surface. Protective covers maybe required to protect deck surface.
4. **Material Transfer Vehicles (MTV’s)**

The Construction Manual\(^{10}\) discusses the Resident Engineer’s responsibility to protect Caltrans’ structural assets when the contract requires the use of MTVs or other types of heavy paving equipment. MTVs are being specified more frequently since Standard Specifications Section 39, *Hot Mix Asphalt*, was revised in April 2014 to require the use of MTVs. The most commonly used MTVs have axle loading double the legal limit when empty, and triple the legal limit when loaded.

MTV’s typically exceed the load limits specified in the SS\(^{11}\) and thus must be submitted to SC HQ for review. Field review and approval may be allowed provided that the request from the Contractor meets the following conditions:

- a. MTV is either a Roadtec SB2500 or a Weiler E2850 or lighter.
- b. MTV carrying a maximum of 5 Tons of asphalt in hopper.
- c. MTV is traveling 5 mph or less when crossing the bridge.
- d. MTV is the only construction equipment on the bridge. Adjacent legal traffic is not allowed.
- e. Bridge(s) to be crossed are rated to meet or exceed HS20 Operating Rating Factor of 1.67 or HL93 Operating Rating Factor of 1.30 and a 5-axle permit P5 permit rating of 1.00 or greater. Any new structure that is designed for permit loading will meet this requirement.
- f. The bridge structure is an RC slab, an RC culvert-type structure, or a multi-girder type where girder spacing is between 7 and 9 feet.
- g. If the bridge is a multi-girder type structure meeting the 7 to 9 feet girder spacing, the MTV wheel lines must be aligned with the bridge’s girder lines during the crossing.

Note: The MTV models noted above are assumed to have an 8-foot center-to-center wheel gage. Wheel lines should be equally spaced off girder lines within the allowable 7 to 9 foot range. Girder lines must be determined and marked out on the deck by the Structure Representative (SR) or Assistant Structure Representative (ASR) prior to the MTV crossing(s) and must be monitored by Caltrans (CT) field personnel at all times.

C. **Stationary Cranes and Concrete Pumps**

Cranes are also used in a stationary position to do work from bridges, including pile driving, lowering falsework, and lifting girders. Cranes lifting in a stationary position cause high outrigger loads. Outrigger loads greater than 40,000 pounds should be referred to SC HQ (see *Processing Requests for Construction Equipment Overloads* below for further details). The Engineer may review proposals for outrigger loads less than 40,000 pounds provided that the bridge is designed for permit loads and/or has full permit capacity (PPPPP). The Contractor must be required to provide calculations for outrigger loads. Outrigger loads may be distributed in one of three methods:

\(^{10}\) *Construction Manual, 3-519B, Load Limits.*

\(^{11}\) *2015 SS, Section 5-1.37B(1), Load Limits-General.*
a. Outriggers that produce loads less than 25,000 pounds may be placed on timber mats. The mats should be 12" by 12" minimum and placed parallel to the girders. The minimum length of the mat is 5 feet; the minimum width must be equal to or greater than the outrigger plate width.

b. Outriggers that produce loads greater than 25,000 pounds should be placed on beams that distribute the load fairly equally to two girders.

c. Outriggers placed upon concrete bent caps of box girder bridges do not require mats or beams to distribute loads.

Submittals for stationary loading to be referred to SC HQ should include the following information:

- Location of crane outriggers tied into reference locations (CL bent or abutment, CL bridge, or edge of deck etc.).
- Calculations for outrigger loads.
- Manufacturer’s information for the crane and a description of how the crane will be outfitted and configured (boom length and counterweights).
- Weight of what will be lifted and maximum extension of the boom.
- Proposed method for distribution of outrigger loads.
 - How the configured crane will be moved into position while complying with SS12.

Processing Requests for Construction Equipment Overloads

As previously noted, requests from Contractors to utilize construction equipment not exceeding the limitations presented above may be approved at the job level by the Structure Representative. All other requests are to be forwarded by the Structure Representative to the SC HQ. Structure Construction HQ will forward the necessary information to the Structure Design Engineer for new structures or structures being modified by contract, and to Structure Maintenance & Investigations (SM&I), Permit/Rating Office, for existing structures, to make a decision.

Prior to referring the request to SC HQ, complete the appropriate Bridge Overload Analysis Transmittal form (see Attachments 2 & 3).

Include a letter requesting overload analysis and a complete description of the equipment. The Contractor’s request must be explicit as to the nature of the overload and the conditions under which it will be moved. The information required includes:

- The type, the make, and the model of equipment.
- The axle spacing, axle width out and out of tires.

12 **2015 SS**, Section 5-1.37B, Load Limits.
• The axle loads (obtained by scale weight if possible).
• The width and number of tires.
• Operating conditions, etc.

It is imperative that CT Engineers and the Contractor make all efforts to submit any overload request in a timely manner. Review time of an overload submittal can take from several days to several weeks or more depending on the completeness of the submittal and the complexity of the overload scenario. There is currently no contractual language regarding overload review time.

Permission to cross bridge structures with construction equipment that does not exceed the limitations presented above will also be granted by means of a letter to the Contractor from the Resident Engineer (see Attachment No. 4 for an example letter). However, if special conditions or limitations are to be imposed, they should be incorporated into a letter similar to the example letter authorizing the use of earthmoving equipment.

Since construction overloads will often affect areas of responsibility of both the District and SC, it is important that both be fully informed. Particular care should be taken by the Structure Representative to ensure that copies of all correspondence related to overloads are furnished to interested District personnel.
Example of a Change Order Recommendation to Authorize a Bridge Redesign

Note: The actual change order will come from the District Resident Engineer. The Structure Representative or Bridge Construction Engineer might be asked to recommend verbiage for the Change Order.

As provided in Standard Specifications Section 5-1.37B(2), *Increased Load Carrying Capacity*, modify substructure of the Van Koevering Avenue Undercrossing, Bridge 54-1001, as shown on Sheets 2 and 3 of this change order to accommodate construction overloads.

It is agreed that the Contractor will furnish all labor, equipment and material, and perform all work required to accomplish the structural alterations at no cost to the State.

It is further agreed that the State will be credited by means of a supplemental Contract Cost Change Order the actual cost for redesigning the Van Koevering Avenue Undercrossing to accommodate construction overloads. The design costs shall be a maximum of $10,000.
Bridge Overload Form (Stationary)

STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION • STRUCTURE CONSTRUCTION
BRIDGE OVERLOAD ANALYSIS TRANSMITTAL (STATIONARY)
FORM SC-1201-01 (NEW 05/16/18)

DATE SUBMITTED: ____________________________
DATE RESPONSE REQUIRED: ____________________________ (7 day minimum review time)

SUBMITTED BY: ____________________________
TITLE: ____________________________
PHONE: ____________________________

CONTRACTOR NAME: ____________________________
TYPE OF STATIONARY OVERLOAD: ____________________________
REASON FOR OVERLOAD: ____________________________
MAXIMUM OUTRIGGER LOAD: ____________________________

BRIDGE PERMIT LOAD RATING (COLOR RATING): ____________________________

DESCRIPTION OF WORK AND STAGE OF CONSTRUCTION:
__

CONTRACTOR SUBMITTAL CHECKLIST

LOCATION OF OUTRIGGERS (REFERENCED TO BRIDGE): ____________________________
CALCULATIONS FOR OUTRIGGER LOADS: ____________________________
MANUFACTURER’S INFORMATION FOR EQUIPMENT: ____________________________
LOAD WEIGHT AND MAXIMUM BOOM EXTENSION: ____________________________
PROPOSED METHOD FOR DISTRIBUTION OF OUTRIGGER LOADS: ____________________________
METHOD OF MOVING STATIONARY OVERLOAD INTO POSITION THAT
COMPLIES WITH LOAD LIMITATIONS: ____________________________

IF “NO” IS CHECKED FOR ANY OF THE ABOVE, THEN REQUEST MISSING INFORMATION FROM CONTRACTOR

STRUCTURE REPRESENTATIVE REVIEW CHECKLIST

HAVE LOADS BEEN COMPARED TO MAXIMUM ALLOWABLE IN BCM 150-1.0?
(IF LOADS ARE LESS THAN MAXIMUM ALLOWABLE THEN AUTHORIZE AT PROJECT LEVEL)
ARE AS-BUILTS, CONTRACT PLANS, AND CURRENT BRIDGE CONFIGURATION PROVIDED?
IS LIVE LOAD (CONSTRUCTION, TRAFFIC, ETC) DURING THE BRIDGE OVERLOAD PROVIDED?

IF YES WAS ANSWERED TO ALL QUESTIONS ABOVE THEN FORWARD TO SC-HQ FOR REVIEW
(email to: OSC.Administration@dot.ca.gov with cc to Office Senior Engineer Liaison for project District)

FOR HQ USE ONLY

SUBMITTAL RECEIVED DATE: ____________________________
SC-HQ REVIEWER: ____________________________
SENT TO SM&I/DESIGN DATE: ____________________________
SM&I/DESIGN REVIEWER: ____________________________

AUTHORIZED OR REJECTED?: ____________________________
AUTHORIZED BY: ____________________________
AUTHORIZED DATE: ____________________________
RETURN TO FIELD DATE: ____________________________

https://des.onramp.dot.ca.gov/structure-construction/structure-construction-forms
Bridge Overload Form (Moving)

STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION STRUCTURE CONSTRUCTION

BRIDGE OVERLOAD ANALYSIS TRANSMITTAL (MOVING)

FORM SC-1201-02 (NEW 05/16/18)

DATE SUBMITTED:

DATE RESPONSE REQUIRED: (7 day minimum review time)

SUBMITTED BY:

TITLE:

PHONE:

CONTRACTOR NAME:

TYPE OF MOVING OVERLOAD:

REASON FOR OVERLOAD:

OCCASIONAL OR REPETITIVE

BRIDGE PERMIT LOAD RATING (COLOR RATING):

DESCRIPTION OF WORK AND STAGE OF CONSTRUCTION:

CONTRACTOR SUBMITTAL CHECKLIST

<table>
<thead>
<tr>
<th>LOCATION OF MOVING LOAD (REFERENCED TO BRIDGE):</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXLE/TIRE EQUIPMENT</td>
</tr>
<tr>
<td>AXLE SPACINGS AND AXLE LOADS</td>
</tr>
<tr>
<td>AXLE WIDTH AND NUMBER OF TIRES PER AXLE</td>
</tr>
<tr>
<td>TRACK EQUIPMENT</td>
</tr>
<tr>
<td>TRACK TO GROUND CONTACT LENGTH</td>
</tr>
<tr>
<td>TRACK LOAD</td>
</tr>
<tr>
<td>TRACK WIDTH</td>
</tr>
<tr>
<td>TRACK TO TRACK GAGE/DISTANCE</td>
</tr>
</tbody>
</table>

IF "NO" IS CHECKED FOR ANY OF THE ABOVE, THEN REQUEST MISSING INFORMATION FROM CONTRACTOR

STRUCTURE REPRESENTATIVE REVIEW CHECKLIST

<table>
<thead>
<tr>
<th>HAVE LOADS BEEN COMPARED TO MAXIMUM ALLOWABLE IN BCM 150-1.0?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(IF LOADS ARE LESS THAN MAXIMUM ALLOWABLE THEN AUTHORIZE AT PROJECT LEVEL)</td>
</tr>
<tr>
<td>ARE AS-BUILTS, CONTRACT PLANS, AND CURRENT BRIDGE CONFIGURATION PROVIDED?</td>
</tr>
<tr>
<td>IS LIVE LOAD (CONSTRUCTION, TRAFFIC, ETC) DURING THE BRIDGE OVERLOAD PROVIDED?</td>
</tr>
</tbody>
</table>

IF YES WAS ANSWERED TO ALL QUESTIONS ABOVE THEN FORWARD TO SC-HQ FOR REVIEW

(email to: OSC.Administration@oct.ca.gov with cc to Office Senior Engineer Liaison for project District)

FOR HQ USE ONLY

<table>
<thead>
<tr>
<th>SUBMITTAL RECEIVED DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHORIZED OR REJECTED?</td>
</tr>
<tr>
<td>SC-HQ REVIEWER:</td>
</tr>
<tr>
<td>AUTHORIZED BY:</td>
</tr>
<tr>
<td>SENT TO SM&I/DESIGN DATE:</td>
</tr>
<tr>
<td>AUTHORIZED DATE:</td>
</tr>
<tr>
<td>SM&I/DESIGN REVIEWER:</td>
</tr>
<tr>
<td>RETURN TO FIELD DATE:</td>
</tr>
</tbody>
</table>

https://des.onramp.dot.ca.gov/structure-construction/structure-construction-forms

BRIDGE CONSTRUCTION RECORDS & PROCEDURES MANUAL

BCM 150-1.0

ATTACHMENT 3

05/30/18

PAGE 1 OF 1
Month date, year

<Contractor Information>
Title if not in line above
Organization
Address
City, ST ZIP

Dear:

Your request dated (date) for permission to cross the (name of bridge), Br. No. (xxx), with construction overloads is approved in accordance with the provisions of Section 5-1.37B, Load Limits, of the Standard Specifications, subject to the following conditions:

1. The approaches at each end of the bridge must be completed to the grade required to provide a smooth transition to the bridge roadway, and must be maintained in a smooth and uniform condition at all times while construction equipment is in use, for a length of not less than 150 feet measured from the bridge ends. Local depressions in the approaches in the vicinity of the bridge ends will not be permitted.

2. Construction equipment, either loaded or unloaded, must be operated at all times at a speed and in a manner so that no bouncing of the equipment occurs while the equipment is crossing the bridge.

3. Construction equipment must be confined to the construction equipment lane by means of substantial, temporary physical barriers.

4. Only one construction overload will be permitted on the bridge at any time.

5. On completion of the operation that requires the use of a construction overload, the bridge roadway must be cleaned and physical barriers used in connection with the construction equipment lane must be removed and disposed of away from the job site.

Note: Other conditions or restrictions may be added as necessary to suit particular job circumstances.

"Provide a safe, sustainable, integrated and efficient transportation system to enhance California’s economy and livability."
(This page left intentionally blank.)
Table of Contents

<table>
<thead>
<tr>
<th>Memo No.</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>155-1.0</td>
<td>04/02/1990</td>
<td>Cleaning and Painting of Structural Steel</td>
</tr>
<tr>
<td>155-2.0</td>
<td>11/26/1984</td>
<td>Bridge Painting – Estimating Work Done</td>
</tr>
<tr>
<td>155-3.0</td>
<td>11/26/1984</td>
<td>Sampling and Testing Paint</td>
</tr>
<tr>
<td>155-4.0*</td>
<td>02/20/1997</td>
<td>Application of Zinc-Rich Primer on Column Casings</td>
</tr>
</tbody>
</table>

*Denotes the document is a Bridge Construction Bulletin
Cleaning and Painting of Structural Steel

General Information

The cleaning and painting of structural steel bridges is a vital, specialized, and often controversial phase of bridge construction and maintenance.

Structure Representatives are responsible for the satisfactory completion of cleaning and painting work in accordance with the contract specifications, Attachment No. 3 to this Bridge Construction Memo is a check list which may be used to aid the Structure Representative in obtaining a satisfactory painting project.

The following information on cleaning and painting methods, procedures and precautions, paint material, inspection techniques and record keeping is intended to provide the Structure Representatives and their assistants with a rudimentary knowledge of the cleaning and painting work. Of course, any specific instructions in the contract specifications will supersede or modify these instructions.

Any special problems with regard to cleaning and painting, which cannot be solved by the Structure Representative, should be referred to Office of Structure Construction.

Purpose of Painting

The paint on structural steel may be described as a relatively impervious barrier imposed between the steel surface and its environment. Paint retards the corrosion of the steel. Corrosion may manifest itself in many forms, and it may have many causes, but the effect is always the same: metal is consumed or deteriorated.

Paint, then, may be considered a low-cost renewable or repairable shield or membrane which is sacrificed to the elements to protect the metal. The service life expectancy of paint coats in California as affected by climatic conditions, is illustrated by the chart shown on Attachment No. 1 to this Bridge Construction Memo.

The service life of a paint coat is also a function of the quality of the paint coat. Paint must be properly formulated and prepared from ingredients having certain necessary qualities. It must be properly applied to clean surfaces of steel, and the completed film must have adequate thickness. Shortcomings in any of these requirements result in a decreased service life of the paint coat. In California, atmospheric conditions affecting the service life of paint coats vary between two extremes: the saline humidity of the sea coast and the hot aridity of the desert. Between these two extremes are regions where milder weather conditions prevail. Obviously, the need for protection
is considerably less under mild exposures than it is under severe exposures. The paint system specified is therefore designed to meet the needs of the area, and conform to the latest pollution regulations imposed on solvent content of paint materials.

Current paint systems consist of either phenolic, or water-borne undercoats and water-borne finish coats. The thicknesses required varies according to the corrosion potential at the site.

Due to air pollution regulations, a paint system consisting of water-borne primers and top coats has been developed. This system consists of 4 mils of undercoat applied in 2 or more applications and 4 mils of finish paint applied in 2 or more applications. No vinyl wash primer is used.

Water-borne paints generally require higher temperatures and lower relative humidities than some other paints to dry properly. Care should be taken not to permit painting when the atmospheric or surface temperature is at or below 50 F, or when the relative humidity exceeds 75 percent. Temperature and relative humidity should remain within the above limits for approximately 4 hours after application to permit adequate drying.

From past experience with paint systems; the specification of multiple coat applications and the minimum dry film thicknesses of paint coats have evolved. Most paints used on structural steel contain varying amounts of volatile solvents which, when they evaporate during the drying process, leave minute holes in the paint film. The application of multiple coats of paint, not too thin or too thick, tends to overcome the adverse pin-hole pattern in each coat and assures a truly impervious membrane. On any particular job, the specification of paint coat thickness of either paint system is adapted to the prevailing exposure conditions.

Most paints will not tolerate extra thick applications or puddles. If too much paint is applied, or puddles of the material are left on the surface, the coating will crack and lose bond with the steel or underlying coat. Each application should be held to near the amount specified.

Surface Preparation

The most important factor affecting the protective service life of a paint is the surface preparation prior to painting. The best paint available will not give optimum service when applied over improperly cleaned surfaces. It is essential, therefore, that paint is applied only to clean, sound, dry surfaces.

Although several methods of surface preparation are employed in the painting industry, it has been found that blast-cleaning and steam-cleaning are the most effective and least expensive methods. These two methods are specified almost exclusively. Occasionally, in mild exposure areas or where the type and amount of rust does not warrant the expense of blast-cleaning, hand cleaning methods may be specified.

Blast-cleaning is frequently referred to as sandblasting. However, since the abrasive used need not be limited to sand, the Office of Structure Construction has adopted the less restrictive term, blast-cleaning, in its specifications.
Blast-cleaning is simply the propulsion of an abrasive against an object, and the cleaning is accomplished by abrasive action. Various sources of power may be used to propel the abrasive, but the one most commonly used is compressed air. Another source is centrifugal force as used in large machines designed for the purpose. These machines are used only in shop installations because of their size and immobility. In field work, compressed air seems likely to remain the chief power source for some time. When dictated by adverse environmental impact, wet blast-cleaning may be specified. The power source for this method is either high pressure water or steam.

Sand, because of its abundance and consequent low cost, is the principal abrasive used. The only requirement imposed in the specifications is that the material be clean, dry, of proper grading, and meet requirements of the Air Resources Board for "Dry Unconfined Blasting". The degree of hardness is not specified.

Sand, obtained from commercial sources generally meets our requirements. Use of unwashed beach or river sand is not permitted because contaminants or too many fines are often present. It does not meet ARB requirements.

Other abrasives used on a lesser scale are steel shot, steel grit and slag from copper, nickel, and silver smelting processes. The use of steel shot or steel grit is usually limited to shop blasting where recovery for reuse is possible. High initial cost and lack of a practical recovery method prohibit the use of these abrasives in the field.

In the 1988 Standard Specifications "Blast-Cleaning," has been described in a different manner. This description is not intended to lower the degree of cleanliness of the steel from past years, but conforms more closely to language used in outside Industry.

Steam-cleaning consists of washing the surface to be painted with steam in which a biodegradable detergent soap has been incorporated in the feed water, or applied directly to the surface to be cleaned. The steam is directed against the surface, and the contaminants, loosened by the detergent, are carried away by the flushing action of the condensed steam. Any residue remaining on steam-cleaned surfaces should be flushed with fresh water before painting.

Steam-cleaning is used principally in maintenance work when spot-cleaning and painting are specified, although it may occasionally be used on shop-coated steel in new construction work if the surfaces have become contaminated by dust, oil or other contaminating products. The primary purpose of steam-cleaning is to remove surface contaminants which would impair bonding of new paint to existing coatings. Steam-cleaning will not remove rust, and if rust is present after steam-cleaning, the operation will generally be followed by spot blast-cleaning.

An interval of at least 24 hours should elapse after steam cleaning before paint is applied.

A steam-cleaning supplement which describes the operation, equipment used and the detergent intermingling procedure in more detail is available upon request from the Office of Structure Construction.
Paint Application

The paint coats specified generally consist of one or more undercoats. The various coats or layers are planned and specified:

1. To achieve an impervious membrane which inhibits corrosion.
2. To protect the steel against impact or abrasion.
3. To give the structure a pleasing appearance.

The normal functions of undercoats are to inhibit corrosion, to provide a suitable base for the finishing coats and to present a secondary barrier to any moisture penetrating the finishing coats.

Finishing coats comprise the tough outer layer of the paint film which is directly exposed to the weather. They are the weathering or wearing coats of a paint system and must, therefore, have a harder, more impervious surface than the undercoats. Two applications of finishing coat paint are normally specified.

Paint may be applied to structural steel by brush, roller or spray, but regardless of the method used, care must be exercised in the application in order that the maximum service-life may be realized. It is the responsibility of the Structure Representative to see that the paint is applied properly. The paint should be well mixed and uniformly applied, and any skips or holidays should be picked up before subsequent applications are allowed, since the smallest break or thin spot in the paint film is a potential trouble spot.

All formulations now in use, EXCEPT the inorganic zins can be applied by any of the previously mentioned methods. Spraying is the only satisfactory method for application of inorganic zins to large surfaces. However, small holidays or skips which sometimes occur around rivets or bolts can be picked up with a brush, and areas inaccessible with a spray gun should be swabbed or brushed.

Experience has taught us that "Airless" spray is inferior to conventional spray, on most bridge structures, due to lack of control of the amount of paint material being dispersed from the nozzle.

Paints for use on structural steel, except inorganic zinc primer, are manufactured ready for-application and thinning is not necessary, nor should it be tolerated. Inorganic zinc primer may be thinned as recommended by the manufacturer.

Painting for appearance may be considered of secondary importance to painting for protection, but it is evident that the public is aware of bridge appearance. Both maximum protection and pleasing appearance can be achieved by a paint job properly done. The most common causes of poor appearance are runs or sags in the paint film and paint spray or splatters on the concrete portion of the structure. By using care and precaution, it is far easier to prevent these defects than it is to correct them.
Thickness of Paint Film

Dry film thickness of the paint film is always specified in either the special provisions or, by reference, in the Standard Specifications. In all cases, the specified mil thickness is the minimum on all surfaces and does not mean the overall averages.

Paint dry film thickness is measured by a magnetic flux gauge called "Eicometer" or "Positector." Gauges are supplied by the Office of Structure Construction with instructions for their use. These devices are delicate and expensive instruments and should, therefore, be handled with care. Gauges should not be stored near active electrical circuits, and they should not remain near welding equipment longer than absolutely necessary. Periodic checks to determine the accuracy of the gauge is necessary. These checks may be made by using the shims provided. It is not the intention of the Office of Structure Construction to penalize a Contractor by requiring more thickness than specified, but, on the other hand, we should be sure that we do not get less. All measurements should be taken with the gauge placed firmly at right angles to the area being measured, even a slight slanting of the device gives a high reading, as will lack of solid contact. Recalibrate gauges on different types and sizes of steel. Reading differences have been noted between webs, stiffeners and braces.

It is often necessary on small jobs or near the completion of large ones to measure a film thickness of paint which is not hard enough to prevent indentation by the film-thickness gauge. If a close inspection shows such a condition, the reading is certain to show less thickness than is actually on the steel. Correction can be made by placing a shim between the paint film and the film thickness, gauge and deducting the thickness shown on the shim from the reading taken.

The importance of adequate paint film thickness cannot be overstressed. All other things being equal, it is one of the factors that determine the service life of a paint job. It follows, therefore, that sufficient measurements should be taken to assure specified thicknesses in all places.

Protective Measures

Inherent in a bridge painting operation is the possibility of the creation of a nuisance or of the physical damage to adjacent property or to the traveling public. This is particularly true on contracts involving the repainting of structures under traffic.

Although the responsibility for the prevention of damage rests with the Contractor, the Structure Representative must constantly be aware of the job situation and should not hesitate to call the existence of hazards or potential sources of damage to the Contractor's attention.

In the event passing automobiles are spattered with paint, little damage will occur if the paint is immediately removed with mineral spirits or with water for water-borne paints. However, this should not be a common occurrence. A prudent Contractor will use drop cloths, screens, overhead tarps, and the like to adequately protect passing traffic or adjacent property.
Particular emphasis should be placed on the protection of concrete surfaces which are a part of the structure. The Contractor should not be allowed to mix paint or charge paint pots on bridge decks without adequate drop cloths. It is next to impossible to remove paint from concrete, and particular care should be exercised to prevent spattering such surfaces. Thinners and paint removers should not be used in attempting to remove paint from rough concrete surfaces. After the paint is dry, the area should be rubbed with a stone and wire brushed, or lightly blast-cleaned.

Paint which is being sprayed can drift as much as a quarter mile or more, and Contractors should be reminded of this possibility, particularly if automobiles are being parked nearby.

In general, the best protective measure is the anticipation of possible damage and prevention of its occurrence.

Paint Records and Reports

The Office of Structure Construction has developed a series of special record forms for use in keeping daily job records on each phase of the cleaning and painting operation. These forms will be furnished to the Structure Representative at the beginning of his assignment to a particular project. Samples of these forms (DH-OS M5, DH-OS M8, DH-OS M11, and DH-OS M78) are included in Section 16 of the Bridge Construction Records and Procedures.

Paint record sheets were developed to simplify the reporting of statistical data as well as to ensure uniformity in record keeping. Structure Representatives should be familiar with the use of the sheets and should enter the required information in accordance with procedures recommended by the painting section.

In addition to the paint records, the Resident Engineer's and/or Assistant Resident Engineer's Daily Reports (HC-1O and HC-1OA) are required for the painting operation.

The Blast-cleaning and paint record form (DH-OS M8, Daily clean and Paint Record), is a diary form used by the Structure Representative for the various phases of the cleaning and painting work. These diaries have the same significance as the general diary forms HC-10 and HC-1OA and should, therefore, receive the same degree of care in their preparation and distribution.

Form DH-OS M78, is a record of spot-blast-cleaning performed. The purpose of this form is to have the Structure Representative and the Contractor's representative agree, on a daily basis, on the amount of spot-blast-cleaning performed.

On repainting projects, the Structure Representative will prepare, from the information gathered in the daily diaries, cost data for the various phases of blast-cleaning and painting. This data will be entered on the paint data sheets, Form DH-OS M5, Clean and Paint Cost Summary. Use of this form aids the Structure Representative in making a systematic and uniform record of cost data.

Following completion of the painting operation, statistical information included on the paint record sheets is summarized on a special summary sheet, Form DH-OS M11, Paint Record. The
primary purpose of the information summarized on this form is to provide a sound basis for estimating the cost of future painting projects.

It also provides information regarding the type and quantities of paint used, which information will be valuable when negotiation with pollution agencies in regards to removing paint and repainting the structure on future painting projects. Therefore, the form must be carefully and accurately completed if it is to have any real value.

The original Form DH-OS M11 and supporting paint record forms are retained in the job files until project completion, at which time they are submitted to the Sacramento Office with the Report of Completion. One copy of Form DH-OS M11 should be sent to the Office of Structure Construction as soon as the painting is completed.

Surface Area Computations

The area to be painted is an important part of the paint inspection procedure. The surface area must be known to enable the Structure Representative to determine the true rate of progress and to calculate coverage rates. Surface area calculations are also of great value in the planning of future painting contracts. Surface areas of most structures are available in the Sacramento Office of Structures Maintenance. If they are not available, it will be the responsibility of the Structure Representative assigned to the project to calculate them. All calculations should be clearly shown so they may be easily checked by another person. Include subtotals for each span and separate summary sheet for each structure in the project.

Surface area computations will be submitted with Form DH-OS M11 as an attachment to the Report of Completion.

On request, charts to assist in the calculations of surface areas will be furnished to the project by the Office of Structure Maintenance.

Standard Paints Used by the Office of Structure Construction

The different types of paint currently being used by the Office of Structure Construction are identified on Attachments No. 2 and 3 of this Bridge Construction Memo. Attachment No. 2 is a list of the standard paints used by the Office of Structure Construction and Attachment No. 3 is a working list of approved water-borne inorganic zinc rich primers. No paint brand shall be used unless it is on the Departments current list of approved paints or meets the specifications of the Departments standard paints. In order to give a complete listing of all paints which may possibly be specified in Office of Structure Construction work, we have included the specifications and descriptions of wood and concrete paints in the tabulation, although the painting of wood or concrete is not discussed in this memo.

Environmental Protection

It is the intention of the Office of Structure Construction to comply with regulations imposed by various public environmental protection agencies. These enforcement agencies are now operative.
in most areas of the state. Their primary concern is air and water pollution as well as noise abatement.

In order to comply with present and foreseen regulations, new cleaning and painting procedures have been and are being developed. In general, dust created by blast-cleaning, ground pollution from old lead and zinc paints, and overspray from paints are the chief offenders to the environment.

Curtailment methods for dust and waste products include confinement within the immediate work area and use of abrasives which create less dust. Wet-blast cleaning may be another alternative, subject to approval of the engineer.

Confinement of waste products and dust is accomplished by using water curtains, planking, or by draping tarps, potato sacking, heavy-duty polyethylene bags or sheets, or similar materials around and under the work space. The confined waste materials are then collected and hauled to an approved dump site by an authorized transporter.

Copper, silver and nickel slags are sources of abrasives now in fairly common use. These abrasives are more expensive than sand. All abrasives, for dry, unconfined blasting including sand, must be approved by the Air Resources Board.

Wet-blast cleaning when it is specified may be done by two methods. One method is the so-called "ring" method. It consists of a perforated ring attached to the blasting nozzle. Water mist forced through holes in the ring mixes with the abrasive at the nozzle and effectively inhibits dust. However, rusting starts immediately on -freshly blasted metal, and the method is impractical for that reason. It is an effective method to use when blast-cleaning concrete, stucco or wood. The other method uses high pressure water or steam as the abrasive impellent. A dilute solution of sodium nitrite added to the water or steam inhibits rusting until the prime coat can be applied. The later method can be used, when necessary, provided excess water can be controlled. Both methods are more costly than dry blast-cleaning and will not be specified unless necessary to meet environmental regulations.

Lead pigmented paints are no longer being specified for use on structural steel because of their toxicity.
Legend

1. Coastal area to 1/2 mile inland - 8 to 14 years
2. Inland and bay areas - 14 to 20 years
3. Mountain and coastal valley - 20 to 30 years
4. Central valley and desert - 30 to 50 years

Information shown is approximate only, compiled from records of the Division of Highways for existing bridges on the State Highway system.
STANDARD PAINTS USED BY OFFICE OF STRUCTURE CONSTRUCTION

Phenolic Paints

<table>
<thead>
<tr>
<th>Spec. No.</th>
<th>Name</th>
<th>Function</th>
<th>Used on</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB-201</td>
<td>Red Primer, High Solids Phenolic Type</td>
<td>Primer</td>
<td>Steel</td>
</tr>
<tr>
<td>PB-202</td>
<td>Pink Primer, High Solids Phenolic Type</td>
<td>Primer</td>
<td>Steel</td>
</tr>
<tr>
<td>PB-199</td>
<td>Aluminum Phenolic Tung Oil</td>
<td>Finish Paint</td>
<td>Steel</td>
</tr>
</tbody>
</table>

Water-Borne Paints

<table>
<thead>
<tr>
<th>Spec. No.</th>
<th>Name</th>
<th>Function</th>
<th>Used on</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWB-142</td>
<td>Red Water-borne</td>
<td>Primer</td>
<td>Steel</td>
</tr>
<tr>
<td>PWB-143</td>
<td>Pink Water-borne</td>
<td>Primer</td>
<td>Steel</td>
</tr>
<tr>
<td>PWB-145</td>
<td>Red Water-borne</td>
<td>Primer</td>
<td>Steel</td>
</tr>
<tr>
<td>PWB-146</td>
<td>Pink Water-borne</td>
<td>Primer</td>
<td>Steel</td>
</tr>
<tr>
<td>PWB-87</td>
<td>Flat Gray Water-borne</td>
<td>Finish Paint</td>
<td>Steel</td>
</tr>
<tr>
<td>PWB-88</td>
<td>Light Tan Water-borne</td>
<td>Finish Paint</td>
<td>Steel</td>
</tr>
<tr>
<td>PWB-89</td>
<td>Tan Water-borne</td>
<td>Finish Paint</td>
<td>Steel</td>
</tr>
<tr>
<td>PWB-151</td>
<td>Aluminum, Leafing or Nonleafing Water-borne</td>
<td>Finish Paint</td>
<td>Steel</td>
</tr>
<tr>
<td>PWB-82</td>
<td>Light Green, Water-borne</td>
<td>Weathering Coat</td>
<td>Steel</td>
</tr>
<tr>
<td>PWB-83</td>
<td>Green, Water-borne</td>
<td>Weathering Coat</td>
<td>Steel</td>
</tr>
<tr>
<td>PWB-86</td>
<td>White Tintable, Water-borne</td>
<td>Weathering Coat</td>
<td>Steel</td>
</tr>
<tr>
<td>TT-P-19</td>
<td>Acrylic Emulsion -Tintable</td>
<td>Weathering Coat</td>
<td>Masonry</td>
</tr>
<tr>
<td>Fed. Spec.</td>
<td>Wood Primer</td>
<td>Primer & Undercoat</td>
<td>Wood</td>
</tr>
<tr>
<td>TT-P-001984</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fed. Spec. TT-P-001984
Fed. Spec. TT-P-96D
CALIFORNIA DEPARTMENT OF TRANSPORTATION

QUALIFIED PRODUCTS LIST

WATERBORNE INORGANIC ZINC RICH PRIMER

The following products have been evaluated and determined to provide a material meeting specification requirements for a waterborne inorganic zinc rich primer used in undercoating properly prepared structural steel in transportation maintenance and construction projects.

INORGANIC COATINGS INC.
IC 531 INORGANIC ZINC RICH PRIMER
(800) 345-0531

VALSPAR CORP.
MZ-6 HI-RATIO INORGANIC ZINC RICH PRIMER
(818) 334-8251

DEVOE COATINGS CO.
CATHACOTE 309 WATER BASED INORGANIC ZINC COATING
(504) 272-2470

DU PONT COATINGS CO.
GANICIN 347WB WATER BASED INORGANIC ZINC
(800) 346-4748

The effective period for this list is indeterminate. Other products will be considered for inclusion on this list subject to evaluation and approval by:

California Department of Transportation
Office of Transportation Materials and Research
5900 Folsom Boulevard
Sacramento, CA 95819
CHECK LIST FOR BRIDGE PAINTING PROJECTS

1. Check to see that steam cleaning is doing a satisfactory job of removing all dirt, grease, loose chalky paint, or other foreign materials.

2. Check to see that the specified biodegradable detergent is being used.

3. Check spot-blasting to be assured that all rust has been removed.

4. Check 100% blasted areas to be assured that all rust and old paint has been removed.

5. For "Spot Jobs", check to see that the air pressure and nozzle size meet the specifications.

6. Measure and record spot blast areas daily.

7. Check to see that the first coat of paint is being applied daily. If not, be sure that areas are reblasted before paint is applied.

8. Visually inspect backsides of rivets, tops of diaphragms, tops of bottom flanges, and other hard to reach areas to be assured that they are properly cleaned, and have the required paint coverage.

9. Check to be sure that the access to the work is adequate and that work areas are safe.

10. Observe mixing of paint materials to be assured that the mixing is being properly done.

11. Require the Contractor to provide safe access to the work so that it can be properly inspected.

12. Check the temperature and humidity at intervals as required to be assured of specification compliance.

13. Check structural steel to be assured that it is dry when paint is applied.

14. Check undercoat for proper thickness before permitting the application of finish coats.

15. Record the quantities of abrasives and paint materials used daily. Also record man hours and hours of equipment use daily. This information is required for the Final Report.

16. Enforce the specification requirements concerning the containment of fall-out materials.

17. Enforce the specification requirements concerning the disposal of used sand and old paint.

18. Check to see that the Contractor is properly protecting deck soffit concrete, concrete caps, concrete piers and other concrete from overspray paint. Areas not so protected must be cleaned before the project is accepted.
19. Check to see that the Contractor is taking proper precautions to prevent damage to adjacent trees, rocks, and property improvements.

20. Check to see that the Contractor is complying with the OSHA safety requirements.

21. Check to see that waste materials are collected and disposed of properly.
Bridge Painting – Estimating Work Done

The attached summary sheet (Attachment #1) shows the percentage of the total work included in each phase of a typical bridge painting operation for paint systems used by the Office of Structure Construction.

Although the information shown is approximate only, it is sufficiently accurate for estimating purposes and may be used when computing amounts due on progress pay estimates for work performed under lump sum items.
SUMMARY SHEET
PERCENT OF WORK IN LUMP SUM ITEMS

Shop Blast with Inorganic Zinc Water-Borne Finish

<table>
<thead>
<tr>
<th>Operation</th>
<th>Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast Clean</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Shop undercoats</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>Spot clean and undercoats in field</td>
<td>12</td>
<td>82</td>
</tr>
<tr>
<td>First finish coat</td>
<td>9</td>
<td>91</td>
</tr>
<tr>
<td>Final finish coat</td>
<td>9</td>
<td>100</td>
</tr>
</tbody>
</table>

100% Repaint with Water-borne Paint

<table>
<thead>
<tr>
<th>Operation</th>
<th>Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast clean</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>First undercoat</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>Second undercoat</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>First finish coat</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>Second finish coat</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>
Sampling and Testing Paint

The following sampling procedures are to be followed in order to be assured that all paint, which is to be applied to permanent portions of the work, complies with the Contract Specifications.

After the Contractor places an order for paint with a manufacturer, the manufacturer must notify the Transportation Laboratory of his intent to manufacture and package the paint. Transportation Laboratory personnel will then visit the manufacturing facility and take samples of the batch of paint. Depending on the manufacturer, and the type of paint, it may either be sampled before or after packaging. In either case the paint is identified by the manufacturer’s batch number and the date of manufacture. At the time of sampling, the State Inspector assigns a State lot number to the batch, which then becomes a part of the identification.

When the testing is completed, the Transportation Laboratory notifies the manufacturer of the test results. If it is confirmed that the batch meets specifications, the manufacturer can then package and label the paint, or just label it if the paint had been packaged prior to taking the sample. The labeling should be in accordance with Section 91-1.03 of the Standard Specifications which states that "All containers of paint shall be labeled showing the exact title of the paint specification, State specification number, manufacturer's name, date of manufacture, State lot number, and manufacturer's batch number". In addition to this, the State Inspector will place white inspection tags or stickers on some of the containers when he releases the paint to the jobsite.

These inspection release tags may or may not have the same State lot number as shown on the manufacturer's label. The lot number on the release tag should be checked against the Report of Inspection (R-29) which the Inspector should forward to the jobsite within a day or two of releasing the paint.

When the paint is delivered to the jobsite, the Structure Representative is to randomly select one container of each batch and ship it to the Sacramento Transportation Laboratory in its original unopened condition. Sample identification form DCR-TL-101 is to be filled in and sent in with the sample. No paint is to be applied to the structure until the paint in this random sample has been tested by the Transportation Laboratory, and a test report has been issued confirming that the paint complies with the Contract Specifications. The test report is normally mailed to the jobsite; however, results of the testing may be obtained by phone if necessary. The sample should show his telephone number on the sample identification form if he wishes to be notified of the test results by phone. Results can generally be obtained from the Transportation Laboratory within three to ten days after the Laboratory has received the sample.
One quart of paint is used in the paint testing procedure. The remainder of the paint in the container will be returned to the Contractor for use. The sample identification card should give the address to which the unused paint is to be returned. The unused paint cannot be returned to a P.O. Box Number.

The Standard Specifications permit the use of other than steel containers provided that the containers shall comply with the U.S. Department of Transportation or the Interstate Commerce Commission regulations.
Subject: Application of Zinc-Rich Primer on Column Casings

It has come to our attention that some contractor’s are using rollers to apply zinc-rich primer for repairs and touch up at welds on column casing jobs.

Section 59-2.13, “Application of Zinc-Rich Primer”, of the Standard Specifications requires zinc-rich primer to be applied by the spray method and that an agitating pot be used.

Section 59-2.13, of the Standard Specifications, does allow zinc-rich primer to be applied by brush, dauber or roller if the area to be painted is inaccessible to spray application. Column casings are not to be considered inaccessible for spray applications.

On-going column casing contracts, any zinc-rich primer not yet top coated and applied by any means other than spray methods, should be removed and reapplied using spray methods in accordance with Section 59-2.13. No additional compensation should be allowed for compliance with Section 59-2.13.

cc: Str. Reps
 BCEs
 ACMs
 Consultant Firms
 BGauger, Construction Program Manager
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01/15/2005</td>
<td>New/Updated</td>
<td>Dolores Valls</td>
</tr>
<tr>
<td>1</td>
<td>11/16/2018</td>
<td>Removed 160-2.0, 160-3.0, 160-4.0, 160-5.0, and 160-6.0</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memo No</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>160-1.0</td>
<td>01/15/2005</td>
<td>Broken or Slipped Prestress Strands</td>
</tr>
<tr>
<td>160-2.0</td>
<td></td>
<td>Blank. Moved to BCM 50-1.03B, Attachment 1, Patching Concrete Under Prestress Bearing Plates, 11/16/18</td>
</tr>
<tr>
<td>160-3.0</td>
<td></td>
<td>Deleted 11/16/18</td>
</tr>
<tr>
<td>160-4.0</td>
<td></td>
<td>Deleted 11/16/18</td>
</tr>
<tr>
<td>160-5.0</td>
<td></td>
<td>Blank. Moved to BCM 50-1.03A, Attachment 1, Electric Welding of Prestress Strand, 11/16/18</td>
</tr>
<tr>
<td>160-6.0</td>
<td></td>
<td>Blank. Moved to BCM 50 – 1.01C, Prestressing Concrete – General – Submittals, 11/16/18</td>
</tr>
</tbody>
</table>
(This page left intentionally blank.)
Volume II

BROKEN OR SLIPPED PRESTRESS STRANDS

Structure Construction’s policy when prestressing strands break and it has been determined by the Engineer that it is structurally satisfactory to leave the broken strands out, is to give the contractor the option to replace the broken strands or request a contract change order with a rebate to the State.

The rebate should be arrived at as follows:

\[
\text{Rebate} = \frac{\text{Total Lineal feet broken strand}}{\text{Total lineal feet strand on the job}} \times \text{Contract item price for prestressing}
\]

In the case of slipped strand, when it has been determined that it is not feasible to re-grip and stress to the required force and all the other acceptance criteria are met, the same procedure may be followed.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>MEMO NO.</th>
<th>ISSUE DATE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>161-1.0</td>
<td>04/27/1987</td>
<td>Pumping Plant Electrical and Mechanical Equipment Materials Lists and Working Drawings</td>
</tr>
<tr>
<td>160-2.0</td>
<td>12/04/1981</td>
<td>Electrical Service for Pumping Plants</td>
</tr>
</tbody>
</table>

Denotes the document is a Bridge Construction Bulletin
(This page left intentionally blank.)
Pumping Plant Electrical and Mechanical Equipment Materials Lists and Working Drawings

Materials lists and working drawings for electrical and mechanical equipment, as required by Section 74-1.04 of the Standard Specifications, shall be checked and approved by the Mechanical and Electrical Section.

Normal procedure is for the Contractor (subcontractor or fabricator) to submit all working drawings directly to the Office of Structure Design, Document Unit, P. O. Box 942874, Sacramento 94274-0001. The Structure Representative is not to accept submittals.

Near the beginning of contracts that have pumping plant electrical and/or mechanical work involved, a representative of the Mechanical and Electrical Section will consult with the Structure Representative and give any necessary instructions at that time.
Electrical Service for Pumping Plants

The contract "Special Provisions" specify the requirements for furnishing electrical service to pumping plants and also specify the provisions for handling the electrical service charges. Generally, the service charges become the obligation of the State upon acceptance of the contract, but may become the State's obligation at some other time during the life of the contract if so specified in the "Special Provisions".

The Structure Representative must notify the District Resident Engineer, so that he may notify the District Office sufficiently in advance to allow time for making arrangements with the utility company for continuing, changing, or discontinuing the service.
Table of Contents

<table>
<thead>
<tr>
<th>Memo No.</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>162-1.0</td>
<td></td>
<td>Blank</td>
</tr>
<tr>
<td>162-2.0</td>
<td>07/01/1999</td>
<td>Concrete Barriers on Structures</td>
</tr>
<tr>
<td>162-3*</td>
<td>10/1/1998</td>
<td>Finishing of Concrete Barriers</td>
</tr>
</tbody>
</table>

*Denotes the document is a Bridge Construction Bulletin

RALPH P. SOMMARIVA, Chief
Office of Structure Construction
(This page left intentionally blank.)
Concrete Barriers on Structures

Concrete barriers Type 732 and 736 having constant sloping faces (1:6.25) on the traffic side are approved for use at the edge of deck of structures and retaining walls. Other approved safety shape concrete barriers for use on structures and retaining walls are Types 25, 27 and 28.

The Engineering Service Center has approved the use of the “experimental” Type 60A and Type 60GA for median applications on new structures only.

The type 60A and 60GA are heavier than the Type 50 and existing bridge decks may not carry the additional load. Any proposal to use the type 60A or 60GA on existing bridge decks should be discussed with your designer or design oversight engineer.
Subject: Finishing of Concrete Barriers

The final surface finish of concrete barriers shall conform to the provisions of section 83-2.02(D), Finishing, of the Standard Specifications. The specification allows the contractor to propose an alternative finishing method.

An allowable alternative is to provide a final surface finish utilizing nonabrasive methods such as a wet sponge finish with cementitious materials. The final surface must be smooth, with an even surface of uniform texture and appearance, free of unsightly bulges and other surface imperfections. The method is subject to approval by the Engineer.

c: BCR&P Manual Holders
 Consultant Firms
 BFelker, Construction Program Manager
(This page left intentionally blank.)
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>08-30-2019</td>
<td>Removed 165-11.0</td>
<td>Richard Foley</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memo No</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>165-1.0</td>
<td>02/13/2012</td>
<td>Reinforcing Steel Hook Details</td>
</tr>
<tr>
<td>165-2.0</td>
<td>02/14/2007</td>
<td>Identification of Reinforcing Steel Bars</td>
</tr>
<tr>
<td>165-3.0</td>
<td>02/13/2012</td>
<td>Reinforcing Steel Bar Chart</td>
</tr>
<tr>
<td>165-4.0</td>
<td>02/13/2012</td>
<td>Welded Wire Fabric</td>
</tr>
<tr>
<td>165-5.0</td>
<td>02/13/2012</td>
<td>Blank</td>
</tr>
<tr>
<td>165-6.0</td>
<td>02/13/2012</td>
<td>Blank</td>
</tr>
<tr>
<td>165-7.0</td>
<td>10/31/2012</td>
<td>Reinforcement Splices</td>
</tr>
<tr>
<td>165-10.0</td>
<td>10/31/2012</td>
<td>Blank</td>
</tr>
<tr>
<td>165-11.0*</td>
<td>(Blank – Removed 08-30-19)</td>
<td></td>
</tr>
</tbody>
</table>
Reinforcing Steel Hook Details

The Standard Specifications require that reinforcing steel hooks and bends conform to the provisions of the Building Code Requirements for Structural Concrete published by the American Concrete Institute (ACI).

The attached chart is from the Concrete Reinforcing Steel Institute (CRSI) Manual of Standard Practice, and conforms to the ACI 318 code requirements for standard hook details. The chart is provided to assist field personnel with the inspection of reinforcing steel.
RECOMMENDED INDUSTRY PRACTICE
FOR DETAILING REINFORCING MATERIALS

STANDARD HOOKS

All specific dimensions recommended by CRSI below meet minimum requirements of ACI 318 [318M].

RECOMMENDED END HOOKS

All Grades of Steel

<table>
<thead>
<tr>
<th>Bar Size</th>
<th>D, in. [mm]</th>
<th>180° Hooks, ft-in. [mm]</th>
<th>90° Hooks, ft-in. [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A or G</td>
<td>J</td>
<td>A or G</td>
<td>H (Approx.)</td>
</tr>
<tr>
<td>#3 #10</td>
<td>2½ [60]</td>
<td>0-5 [125]</td>
<td>0-3 [80]</td>
</tr>
<tr>
<td>#4 #13</td>
<td>3 [60]</td>
<td>0-6 [150]</td>
<td>0-4 [105]</td>
</tr>
<tr>
<td>#5 #16</td>
<td>3½ [95]</td>
<td>0-7 [175]</td>
<td>0-5 [130]</td>
</tr>
<tr>
<td>#6 #19</td>
<td>4½ [115]</td>
<td>0-8 [200]</td>
<td>0-6 [155]</td>
</tr>
<tr>
<td>#7 #22</td>
<td>5½ [135]</td>
<td>0-10 [250]</td>
<td>0-7 [180]</td>
</tr>
<tr>
<td>#8 #25</td>
<td>6 [155]</td>
<td>0-11 [305]</td>
<td>0-8 [200]</td>
</tr>
<tr>
<td>#9 #29</td>
<td>9½ [240]</td>
<td>1-0 [300]</td>
<td>1-2 [375]</td>
</tr>
<tr>
<td>#10 #32</td>
<td>10½ [275]</td>
<td>1-1 [335]</td>
<td>1-3 [425]</td>
</tr>
<tr>
<td>#11 #36</td>
<td>12 [305]</td>
<td>1-2 [375]</td>
<td>1-3 [425]</td>
</tr>
<tr>
<td>#14 #43</td>
<td>16½ [405]</td>
<td>1-4 [550]</td>
<td>1-5 [600]</td>
</tr>
<tr>
<td>#18 #57</td>
<td>24 [610]</td>
<td>2-0 [600]</td>
<td>2-2 [750]</td>
</tr>
</tbody>
</table>

90° AND 135° STIRRUP AND TIE HOOKS

STIRRUP (TIES SIMILAR)

STIRRUP AND TIE HOOK DIMENSIONS

ALL GRADES OF STEEL

<table>
<thead>
<tr>
<th>Bar Size</th>
<th>D, in. [mm]</th>
<th>90° Hook, ft-in. [mm]</th>
<th>135° Hook, in. [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A or G</td>
<td>H (Approx.)</td>
<td>Hook A or G</td>
<td>Hook A or G</td>
</tr>
<tr>
<td>#3 #10</td>
<td>1½ [40]</td>
<td>0-4 [105]</td>
<td>1½ [40]</td>
</tr>
<tr>
<td>#4 #13</td>
<td>2½ [60]</td>
<td>0-6 [150]</td>
<td>2½ [60]</td>
</tr>
<tr>
<td>#5 #16</td>
<td>3½ [95]</td>
<td>0-8 [200]</td>
<td>3½ [95]</td>
</tr>
<tr>
<td>#6 #22</td>
<td>5½ [135]</td>
<td>1-0 [305]</td>
<td>5½ [135]</td>
</tr>
<tr>
<td>#7 #25</td>
<td>6 [155]</td>
<td>1-2 [355]</td>
<td>6 [155]</td>
</tr>
</tbody>
</table>

135° SEISMIC STIRRUP/TIE HOOKS

STIRRUP AND TIE HOOK DIMENSIONS

ALL GRADES OF STEEL

<table>
<thead>
<tr>
<th>Bar Size</th>
<th>D, in. [mm]</th>
<th>135° Hook, in. [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A or G</td>
<td>H (Approx.)</td>
<td>Hook A or G</td>
</tr>
<tr>
<td>#3 #10</td>
<td>1½ [40]</td>
<td>2½ [65]</td>
</tr>
<tr>
<td>#4 #13</td>
<td>2½ [60]</td>
<td>3½ [95]</td>
</tr>
<tr>
<td>#5 #16</td>
<td>3½ [95]</td>
<td>5½ [140]</td>
</tr>
<tr>
<td>#6 #22</td>
<td>5½ [135]</td>
<td>8 [200]</td>
</tr>
<tr>
<td>#7 #25</td>
<td>6 [155]</td>
<td>10½ [270]</td>
</tr>
</tbody>
</table>
IDENTIFICATION OF REINFORCING STEEL BARS

ASTM specifications for reinforcing steel require identification marks to be rolled into the surface of the bars.

The attached pages are from Chapter 1 and Appendix A of the latest Manual of Standard Practice of the Concrete Reinforcing Steel Institute (May 2003). These reproduced pages illustrate the mill identification marks and other symbols designating size and grade of the reinforcing steel.
1.7. Identification Marks*—ASTM
Standard Reinforcing Bars

The ASTM specifications for reinforcing bars require identification marks to be rolled into the surface on one side of the bar to denote the Producer's mill designation, bar size, type of steel, and minimum yield designation. Grade 60 [420] bars show these marks in the following order:

1st—Producing Mill (usually a letter)
2nd—Bar Size Number (#3 through #11, #14, #18 [#10 through #57])
3rd—Type of Steel:
 - S for Billet-Steel (A615/A615M)
 - W for Low-Alloy Steel (A706/A706M)
 - R for Rail-Steel (A996/A996M)
 - A for Axle-Steel (A996/A996M)
4th—Minimum Yield Strength Designation

A mark for minimum yield designation or grade is required for Grade 60 [420] and Grade 75 [520] bars only. Grade 60 [420] bars can either have one single longitudinal line (a grade line) or the number 60 [4] (a grade mark). Grade 75 [520] bars can either have two grade lines or the grade mark 75 [5].

A grade line is smaller and is located between the two main longitudinal ribs which are on opposite sides of all bars rolled in the United States. A grade line must be continued through at least 5 deformation spaces, and it may be placed on the same side of the bar as the other markings or on the opposite side.

Grade 40 [300] and 50 [350] bars are required to have only the first three identification marks. No grade mark or grade line for minimum yield strength is required.

VARIATIONS: Bar identification marks may also be oriented to read horizontally (at 90° to those illustrated). Grade mark numbers may be placed within separate consecutive deformation spaces to read vertically or horizontally.

*See Appendix A for complete identification marks of Grade 60 [420] reinforcing bars produced by all U.S. Producers. The marks, listed alphabetically by producing mill, include the identification requirements of ASTM and the deformation pattern used by each mill.
CHAPTER 1
MATERIAL SPECIFICATIONS FOR REINFORCING BARS

Main Ribs
- Type Steel
 - S for Billet-Steel (A615)
 - R for Rail-Steel (A996)
 - T for Rail-Steel (A996M)
 - A for Axle-Steel (A996M)
 - W for Low-Alloy Steel (A706)

Grade Line (One line only)
Bars marked with an S and W meet both A615 and A706

GRADE 60

Bar Size #11

Grade Mark

GRADE 75

Bar Size #14

Grade Mark

GRADES 40 AND 50

Bar Size #6

GRADE 420

Bar Size #36

Grade Mark

GRADES 300 AND 350

Bar Size #19

GRADE 520

Bar Size #43

Grade Mark
APPENDIX A

U.S. MANUFACTURERS OF GRADE 60 [420]
CONCRETE REINFORCING BARS

ASTM and AASHTO Specifications require that all reinforcing bars be identified by permanent, mill imprinted markings.

1. A.B. STEEL MILL, INC. (Cincinnati, OH)
 - Bars #3 and #4 only
 - Grade mark line used for #3 (same side)

2. AMERISTEEL (West Tennessee Steel Mill Division in Jackson, TN)
 - Bars #10 through #36 only (#10 through #16 coiled)

3. AUBURN STEEL COMPANY, INC. CRSI (Auburn Division in Auburn, NY)
 - Bars #13 through #25 only

4. BAYOU STEEL CORP. (Harriman, TN)
 - Bars #10 through #36 only

5. BIRMINGHAM STEEL CORP. (Alabama Steel Division in Birmingham, AL)
 - Bars #10 through #36 only

Note: CRSI mill members are in boldface with the CRSI logo at the top right corner.
APPENDIX A

U.S. MANUFACTURERS OF GRADE 60 [420]
CONCRETE REINFORCING BARS

ASTM and AASHTO Specifications require that all reinforcing bars be identified by permanent, mill imprinted markings.

5 BIRMINGHAM STEEL CORP.
(Alabama Steel Division in Birmingham, AL)

Bars #10 through #36 only

6 BORDER STEEL, INC.
(El Paso, TX)

Bars #10 through #36 only

5 BIRMINGHAM STEEL CORP.
(Illinois Steel Division, Joliet Rolling Mill in Joliet, IL)

Bars #10 through #19 only (#10 through #19 coiled)

6 BORDER STEEL, INC.
(El Paso, TX)

Bars #10 through #36 only

5 BIRMINGHAM STEEL CORP.
(Illinois Steel Division, Joliet Rolling Mill in Joliet, IL)

Bars #10 through #19 only (#10 through #19 coiled)

6 BORDER STEEL, INC.
(El Paso, TX)

Bars #43 and #57 only

5 BIRMINGHAM STEEL CORP.
(Illinois Steel Division, Kankakee Plant in Bourbonnais, IL)

Bars #10 through #36 only

7 CASCADE STEEL ROLLING MILLS, INC.
(McMinnville, OR)

Bars #10 through #36 only

5 BIRMINGHAM STEEL CORP.
(Illinois Steel Division, Kankakee Plant in Bourbonnais, IL)

Bars #10 through #36 only

7 CASCADE STEEL ROLLING MILLS, INC.
(McMinnville, OR)

Bars #16 through #22 only

5 BIRMINGHAM STEEL CORP.
(Mississippi Steel Division in Jackson, MS)

Bars #13 through #36 only

7 CASCADE STEEL ROLLING MILLS, INC.
(McMinnville, OR)

Bars #25 through #57 only

5 BIRMINGHAM STEEL CORP.
(Mississippi Steel Division in Jackson, MS)

Bars #13 through #36 only

7 CASCADE STEEL ROLLING MILLS, INC.
(McMinnville, OR)

Bars #13 through #19 only (#13 through #19 coiled)

5 BIRMINGHAM STEEL CORP.
(Seattle Washington Steel Division in Seattle, WA)

All bar sizes

7 CASCADE STEEL ROLLING MILLS, INC.
(McMinnville, OR)

Bars #16 through #22 only

Note: CRSI mill members are in boldface with the CRSI logo at the top right corner.
U.S. MANUFACTURERS OF GRADE 60 [420]
CONCRETE REINFORCING BARS

ASTM and AASHTO Specifications require that all reinforcing bars be identified by permanent, mill imprinted markings.

<table>
<thead>
<tr>
<th>No.</th>
<th>Company Name</th>
<th>Mill Location</th>
<th>Steel Type</th>
<th>Size Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>CASCADE STEEL ROLLING MILLS, INC.</td>
<td>McMinnville, OR</td>
<td>W</td>
<td>Bars #25 through #57 only</td>
</tr>
<tr>
<td>8</td>
<td>CHICAGO HEIGHTS STEEL</td>
<td>Chicago Heights, IL</td>
<td>I</td>
<td>Bars #4 through #8 only</td>
</tr>
<tr>
<td>9</td>
<td>CONNECTICUT STEEL CORP.</td>
<td>Wallingford, CT</td>
<td>S</td>
<td>Coiled bars #10 and #13 only</td>
</tr>
<tr>
<td>10</td>
<td>CO-STEEL RARITAN</td>
<td>Perth Amboy, NJ</td>
<td>S</td>
<td>Coiled bars #10 through #19 only</td>
</tr>
<tr>
<td>10</td>
<td>CO-STEEL RARITAN</td>
<td>Perth Amboy, NJ</td>
<td>W</td>
<td>Coiled bars #10 through #19 only</td>
</tr>
<tr>
<td>11</td>
<td>CO-STEEL SAYREVILLE</td>
<td>Sayreville, NJ</td>
<td>S</td>
<td>All bar sizes</td>
</tr>
<tr>
<td>11</td>
<td>CO-STEEL SAYREVILLE</td>
<td>Sayreville, NJ</td>
<td>W</td>
<td>All bar sizes</td>
</tr>
<tr>
<td>12</td>
<td>GST STEEL COMPANY</td>
<td>Kansas City, MO</td>
<td>S</td>
<td>Coiled bars #3 and #4 only</td>
</tr>
<tr>
<td>12</td>
<td>GST STEEL COMPANY</td>
<td>Kansas City, MO</td>
<td>W</td>
<td>Coiled bars #3 and #4 only</td>
</tr>
<tr>
<td>13</td>
<td>MARION STEEL COMPANY</td>
<td>Marion, OH</td>
<td>S</td>
<td>Bars #13 through #36 only</td>
</tr>
<tr>
<td>13</td>
<td>MARION STEEL COMPANY</td>
<td>Marion, OH</td>
<td>W</td>
<td>Bars #13 through #36 only</td>
</tr>
<tr>
<td>14</td>
<td>NORTH STAR STEEL COMPANY</td>
<td>Beaumont, TX</td>
<td>S</td>
<td>Coiled bars #10 through #16 only</td>
</tr>
<tr>
<td>14</td>
<td>NORTH STAR STEEL COMPANY</td>
<td>Beaumont, TX</td>
<td>W</td>
<td>Bars #10 through #36 only (#10 through #16 coiled)</td>
</tr>
<tr>
<td>14</td>
<td>NORTH STAR STEEL COMPANY</td>
<td>Beaumont, TX</td>
<td>S</td>
<td>All bar sizes (#10 through #16 coiled)</td>
</tr>
<tr>
<td>14</td>
<td>NORTH STAR STEEL COMPANY</td>
<td>Beaumont, TX</td>
<td>W</td>
<td>Bar #13 only</td>
</tr>
<tr>
<td>14</td>
<td>NORTH STAR STEEL COMPANY</td>
<td>Beaumont, TX</td>
<td>S</td>
<td>Bar #13 only</td>
</tr>
<tr>
<td>14</td>
<td>NORTH STAR STEEL COMPANY</td>
<td>Beaumont, TX</td>
<td>W</td>
<td>Grade mark line on opposite side</td>
</tr>
<tr>
<td>14</td>
<td>NORTH STAR STEEL COMPANY</td>
<td>Beaumont, TX</td>
<td>S</td>
<td>Grade mark line on opposite side</td>
</tr>
<tr>
<td>14</td>
<td>NORTH STAR STEEL COMPANY</td>
<td>Beaumont, TX</td>
<td>W</td>
<td>Grade mark line on opposite side</td>
</tr>
<tr>
<td>14</td>
<td>NORTH STAR STEEL COMPANY</td>
<td>Beaumont, TX</td>
<td>S</td>
<td>Grade mark line on opposite side</td>
</tr>
<tr>
<td>14</td>
<td>NORTH STAR STEEL COMPANY</td>
<td>Beaumont, TX</td>
<td>W</td>
<td>Grade mark line on opposite side</td>
</tr>
<tr>
<td>14</td>
<td>NORTH STAR STEEL COMPANY</td>
<td>Beaumont, TX</td>
<td>S</td>
<td>Grade mark line on opposite side</td>
</tr>
</tbody>
</table>

Note: CRSI mill members are in boldface with the CRSI logo at the top right corner.
APPENDIX A

U.S. MANUFACTURERS OF GRADE 60 [420] CONCRETE REINFORCING BARS

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Grades</th>
<th>Markings</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Star Steel Company</td>
<td>W</td>
<td>Bars #13 through #30 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>Bar #13 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crissi pattern, bar #19 through #30 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>Bar #19 through #30 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crissi pattern, bar #19 through #25 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>Bar #19 through #25 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td>NUCOR Steel</td>
<td></td>
<td>Bars #10 through #16 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crissi pattern, bar #10 through #16 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crissi pattern, bar #10 through #16 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crissi pattern, bar #10 through #16 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crissi pattern, bar #10 through #16 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crissi pattern, bar #10 through #16 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crissi pattern, bar #10 through #16 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crissi pattern, bar #10 through #16 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crissi pattern, bar #10 through #16 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crissi pattern, bar #10 through #16 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crissi pattern, bar #10 through #16 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crissi pattern, bar #10 through #16 only, Grade mark line on opposite side.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crissi pattern, bar #10 through #16 only, Grade mark line on opposite side.</td>
</tr>
</tbody>
</table>

Note: Crissi mill members are in boldface with the Crissi logo at the top right corner.
<table>
<thead>
<tr>
<th>U.S. MANUFACTURERS OF GRADE 60 [420]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCRETE REINFORCING BARS</td>
</tr>
</tbody>
</table>

| 18 ROCKY MOUNTAIN STEEL MILLS |
| (Pueblo, CO) |
| W Coiled bars #3 through #5 only |

| 18 ROCKY MOUNTAIN STEEL MILLS |
| (Pueblo, CO) |
| S Coiled bars #3 through #7 only |

| 19 SHEFFIELD STEEL |
| (Spring, SC) |
| S Bar #3 only |

| 20 SILVER, INC., W. |
| (Lakeview, TX) |
| I Bar #3 only |

| 20 SILVER, INC., W. |
| (Lakeview, TX) |
| I Grade mark line on opposite side |

| 21 STRUCTURAL METALS, INC. |
| (South Carolina Mill in Cayce, SC) |
| S Bars #10 through #19 only |

| 21 STRUCTURAL METALS, INC. |
| (South Carolina Mill in Cayce, SC) |
| S Bars #10 through #36 only |

| 21 STRUCTURAL METALS, INC. |
| (South Carolina Mill in Cayce, SC) |
| S Bars #43 and #57 only |

| 21 STRUCTURAL METALS, INC. |
| (South Carolina Mill in Cayce, SC) |
| S Bars #10 through #36 only |

| 22 TAMCO |
| (Cincinnati, OH) |
| S Bars #13 through #36 only |

| 22 TAMCO |
| (Cincinnati, OH) |
| S Bars #43 and #67 only |

Note: CRSI mill members are in concurrence with the CRSI logo at the top right corner.
APPENDIX A

U.S. MANUFACTURERS OF GRADE 60 [420] CONCRETE REINFORCING BARS

CONTACT INFORMATION FOR CRSI MILL MEMBERS

2. AMERISTEEL
 Charlotte Steel Mill Division
 6601 Lakeview Rd
 Charlotte, NC 28213
 Tel: (704) 596-0361
 Fax: (704) 597-5031
 Web: www.ameristeel.com

 AMERISTEEL
 Jacksonville Steel Mill Division
 Hwy 217 & Yellow Water Rd
 Baldwin, FL 32234
 Tel: (904) 266-4261
 Fax: (904) 266-4244
 Web: www.ameristeel.com

 AMERISTEEL
 Knoxville Steel Mill Division
 1919 Tennessee Ave
 Knoxville, TN 37950
 Tel: (865) 546-5472
 Fax: (865) 637-6293
 Web: www.ameristeel.com

 AMERISTEEL
 West Tennessee Steel Mill Division
 801 AmeriSteel Rd
 Jackson, TN 38305
 Tel: (901) 424-5600
 Fax: (901) 422-4247
 Web: www.ameristeel.com

3. AUBURN STEEL COMPANY, INC.
 Auburn Division
 25 Quarry Rd
 Auburn, NY 13021
 Tel: (315) 253-4561
 Fax: (315) 253-5377
 Web: www.austeei.com

 AUBURN STEEL COMPANY, INC.
 Lemont Division
 New Ave at Ceco Rd
 Lemont, IL 60439
 Tel: (630) 243-0012
 Fax: (630) 243-0031
 Web: www.austeei.com

5. BIRMINGHAM STEEL CORP.
 Alabama Steel Division
 2301 Shuttlesworth Dr
 Birmingham, AL 35234
 Tel: (205) 252-8777
 Fax: (205) 250-7465
 Web: www.birminghamsteel.com

 BIRMINGHAM STEEL CORP.
 Illinois Steel Division, Joliet Rolling Mill
 927 Collins
 Joliet, IL 60432
 Tel: (815) 774-6145
 Fax: (815) 774-6105
 Web: www.birminghamsteel.com

 BIRMINGHAM STEEL CORP.
 Illinois Steel Division, Kankakee Plant
 972 East 4500 North Rd
 Bourbonnais, IL 60914
 Tel: (815) 937-3131
 Fax: (815) 939-5599
 Web: www.birminghamsteel.com

 BIRMINGHAM STEEL CORP.
 Mississippi Steel Division
 3630 Fourth St
 Jackson, MS 39206
 Tel: (601) 939-1623
 Fax: (601) 936-6200
 Web: www.birminghamsteel.com

 BIRMINGHAM STEEL CORP.
 Seattle Washington Steel Division
 2424 SW Andover
 Seattle, WA 98106
 Tel: (206) 980-2222
 Fax: (206) 983-2207
 Web: www.birminghamsteel.com

6. BORDER STEEL, INC.
 P.O. Box 12843
 El Paso, TX 79913
 Tel: (915) 886-2000
 Fax: (915) 886-2218
 Web: www.bordersteel.com

7. CASCADE STEEL ROLLING MILLS, INC.
 3200 NorthEast Highway 99W
 McMinnville, OR 97128
 Tel: (503) 472-1181
 Fax: (503) 434-5739
 Web: www.schn.com

A-7
APPENDIX A

U.S. MANUFACTURERS OF GRADE 60 [420] CONCRETE REINFORCING BARS

CONTACT INFORMATION FOR CRSI MILL MEMBERS

13. MARION STEEL COMPANY
912 Cheney Ave
Marion, OH 43302
Tel: (740) 383-4011
Fax: (740) 383-6429
Web: www.marionsteel.com

14. NORTH STAR STEEL COMPANY
PO Box 2390
Beaumont, TX 77704
Tel: (409) 768-1211
Fax: (409) 769-1978
Web: www.cargillsteel.com/carnss

15. NORTH STAR STEEL COMPANY
PO Box 2390
Beaumont, TX 77704
Tel: (409) 768-1211
Fax: (409) 769-1978
Web: www.cargillsteel.com/carnss

16. NUCOR STEEL
South Carolina Mill
P.O. Box 523
Darlington, SC 29540
Tel: (843) 393-5841
Fax: (843) 395-8701
Web: www.nucor.com

17. NUCOR STEEL
Texas Mill
P.O. Box 125
Jewett, TX 75846
Tel: (903) 626-4461
Fax: (903) 626-6262
Web: www.nucor.com

18. SHEFFIELD STEEL CORP.
2300 South Hwy 97
Sand Springs, OK 74063
Tel: (918) 245-1335
Fax: (918) 246-9343
Web: www.sheffieldsteel.com

19. SHEFFIELD STEEL CORP.
PO Box 100
Plymouth, UT 84330
Tel: (435) 458-2309
Fax: (435) 458-2300
Web: www.nucor.com

20. STRUCTURAL METALS, INC.
Arkansas Mill
PO Box 1147
Magnolia, AR 71753
Tel: (870) 234-8703
Fax: (870) 234-8706
Web: www.steelnet.org/cmc

21. STRUCTURAL METALS, INC.
South Carolina Mill
310 New State Rd
Cayce, SC 29033
Tel: (803) 936-3700
Fax: (803) 936-3711
Web: www.steelnet.org/cmc

22. TAMCO
12459 Arrow Hwy
Rancho Cucamonga, CA 91739
Tel: (909) 899-0660
Fax: (909) 899-1910
(This page left intentionally blank.)
Reinforcing Steel Bar Chart

The attached chart contains bar sizes that reflects both English and Metric (SI) units of the ASTM reinforcing bar standards.

Please note, A615 and A706 specifications are currently in use; the A305 specification existed from 1947 to 1968. For older structures, it is prudent to anticipate varieties of reinforcing bars such as square bars.
REINFORCING STEEL

ASTM STANDARD REINFORCING BARS

<table>
<thead>
<tr>
<th>BAR SIZE</th>
<th>ENGLISH</th>
<th>METRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#3 [#10]</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>#4 [#13]</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>#5 [#16]</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>#6 [#19]</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>#7 [#22]</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>#8 [#25]</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>#9 [#29]</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>#10 [#32]</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>#11 [#36]</td>
<td>1.56</td>
</tr>
<tr>
<td></td>
<td>#14 [#43]</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td>#18 [#57]</td>
<td>4.00</td>
</tr>
</tbody>
</table>

NOMINAL DIMENSIONS - ROUND SECTIONS

<table>
<thead>
<tr>
<th>BAR SIZE</th>
<th>ENGLISH</th>
<th>METRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#3 [#10]</td>
<td>0.376</td>
</tr>
<tr>
<td></td>
<td>#4 [#13]</td>
<td>0.668</td>
</tr>
<tr>
<td></td>
<td>#5 [#16]</td>
<td>1.043</td>
</tr>
<tr>
<td></td>
<td>#6 [#19]</td>
<td>1.502</td>
</tr>
<tr>
<td></td>
<td>#7 [#22]</td>
<td>2.044</td>
</tr>
<tr>
<td></td>
<td>#8 [#25]</td>
<td>2.670</td>
</tr>
<tr>
<td></td>
<td>#9 [#29]</td>
<td>3.400</td>
</tr>
<tr>
<td></td>
<td>#10 [#32]</td>
<td>4.303</td>
</tr>
<tr>
<td></td>
<td>#11 [#36]</td>
<td>5.313</td>
</tr>
<tr>
<td></td>
<td>#14 [#43]</td>
<td>7.650</td>
</tr>
<tr>
<td></td>
<td>#18 [#57]</td>
<td>13.600</td>
</tr>
</tbody>
</table>

CROSS SECTIOANL AREA (in²)

<table>
<thead>
<tr>
<th>BAR SIZE</th>
<th>ENGLISH</th>
<th>METRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#3 [#10]</td>
<td>0.375</td>
</tr>
<tr>
<td></td>
<td>#4 [#13]</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>#5 [#16]</td>
<td>0.625</td>
</tr>
<tr>
<td></td>
<td>#6 [#19]</td>
<td>0.750</td>
</tr>
<tr>
<td></td>
<td>#7 [#22]</td>
<td>0.875</td>
</tr>
<tr>
<td></td>
<td>#8 [#25]</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>#9 [#29]</td>
<td>1.128</td>
</tr>
<tr>
<td></td>
<td>#10 [#32]</td>
<td>1.270</td>
</tr>
<tr>
<td></td>
<td>#11 [#36]</td>
<td>1.410</td>
</tr>
<tr>
<td></td>
<td>#14 [#43]</td>
<td>1.893</td>
</tr>
<tr>
<td></td>
<td>#18 [#57]</td>
<td>2.257</td>
</tr>
</tbody>
</table>

WEIGHT (lbs/ft)

<table>
<thead>
<tr>
<th>BAR SIZE</th>
<th>ENGLISH</th>
<th>METRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#3 [#10]</td>
<td>0.375</td>
</tr>
<tr>
<td></td>
<td>#4 [#13]</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>#5 [#16]</td>
<td>0.625</td>
</tr>
<tr>
<td></td>
<td>#6 [#19]</td>
<td>0.750</td>
</tr>
<tr>
<td></td>
<td>#7 [#22]</td>
<td>0.875</td>
</tr>
<tr>
<td></td>
<td>#8 [#25]</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>#9 [#29]</td>
<td>1.128</td>
</tr>
<tr>
<td></td>
<td>#10 [#32]</td>
<td>1.270</td>
</tr>
<tr>
<td></td>
<td>#11 [#36]</td>
<td>1.410</td>
</tr>
<tr>
<td></td>
<td>#14 [#43]</td>
<td>1.893</td>
</tr>
<tr>
<td></td>
<td>#18 [#57]</td>
<td>2.257</td>
</tr>
</tbody>
</table>

NOMINAL DIAMETER (inches)

<table>
<thead>
<tr>
<th>BAR SIZE</th>
<th>ENGLISH</th>
<th>METRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#3 [#10]</td>
<td>1.178</td>
</tr>
<tr>
<td></td>
<td>#4 [#13]</td>
<td>1.571</td>
</tr>
<tr>
<td></td>
<td>#5 [#16]</td>
<td>1.963</td>
</tr>
<tr>
<td></td>
<td>#6 [#19]</td>
<td>2.356</td>
</tr>
<tr>
<td></td>
<td>#7 [#22]</td>
<td>2.749</td>
</tr>
<tr>
<td></td>
<td>#8 [#25]</td>
<td>3.142</td>
</tr>
<tr>
<td></td>
<td>#9 [#29]</td>
<td>3.544</td>
</tr>
<tr>
<td></td>
<td>#10 [#32]</td>
<td>3.99</td>
</tr>
<tr>
<td></td>
<td>#11 [#36]</td>
<td>4.43</td>
</tr>
<tr>
<td></td>
<td>#14 [#43]</td>
<td>5.306</td>
</tr>
<tr>
<td></td>
<td>#18 [#57]</td>
<td>7.088</td>
</tr>
</tbody>
</table>

PERIMETER (inches)

<table>
<thead>
<tr>
<th>BAR SIZE</th>
<th>ENGLISH</th>
<th>METRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#3 [#10]</td>
<td>0.4375</td>
</tr>
<tr>
<td></td>
<td>#4 [#13]</td>
<td>0.5625</td>
</tr>
<tr>
<td></td>
<td>#5 [#16]</td>
<td>0.6875</td>
</tr>
<tr>
<td></td>
<td>#6 [#19]</td>
<td>0.875</td>
</tr>
<tr>
<td></td>
<td>#7 [#22]</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>#8 [#25]</td>
<td>1.125</td>
</tr>
<tr>
<td></td>
<td>#9 [#29]</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>#10 [#32]</td>
<td>1.4375</td>
</tr>
<tr>
<td></td>
<td>#11 [#36]</td>
<td>1.625</td>
</tr>
<tr>
<td></td>
<td>#14 [#43]</td>
<td>1.875</td>
</tr>
<tr>
<td></td>
<td>#18 [#57]</td>
<td>2.5</td>
</tr>
</tbody>
</table>

APPROX DIA METER OUTSIDE DEFORMATIONS (inches)

<table>
<thead>
<tr>
<th>BAR SIZE</th>
<th>ENGLISH</th>
<th>METRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#3 [#10]</td>
<td>0.4375</td>
</tr>
<tr>
<td></td>
<td>#4 [#13]</td>
<td>0.5625</td>
</tr>
<tr>
<td></td>
<td>#5 [#16]</td>
<td>0.6875</td>
</tr>
<tr>
<td></td>
<td>#6 [#19]</td>
<td>0.875</td>
</tr>
<tr>
<td></td>
<td>#7 [#22]</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>#8 [#25]</td>
<td>1.125</td>
</tr>
<tr>
<td></td>
<td>#9 [#29]</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>#10 [#32]</td>
<td>1.4375</td>
</tr>
<tr>
<td></td>
<td>#11 [#36]</td>
<td>1.625</td>
</tr>
<tr>
<td></td>
<td>#14 [#43]</td>
<td>1.875</td>
</tr>
<tr>
<td></td>
<td>#18 [#57]</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Welded Wire Fabric

Shotcrete applications, slope paving, and other structure related items may require the use of welded wire fabric.

CHAPTER 2

WELDED WIRE FABRIC (WWF)

2.1. Introduction

This chapter presents information for specifying and estimating welded wire fabric (WWF) used in building construction. Discussion of epoxy-coated WWF, and handling, shipping, unloading and placing of WWF are also included.

2.2. ASTM Specifications

Welded wire fabric consists of wires arranged in a square or rectangular configuration. The wires are welded at their intersections. WWF must conform to ASTM A185 if made of plain wire or to ASTM A457 if made of deformed wire or a combination of deformed and plain wire. These specifications require tensile, reduction of area and bend tests on the fabric, and shear tests on the welded intersections. A minimum yield strength of 65,000 psi [450 MPa] is required for plain WWF (A185) and a minimum of 70,000 psi [485 MPa] for deformed WWF (A497). ASTM A82 (plain wire) and A496 (deformed wire) are companion specifications that prescribe the requirements for the wire used for manufacturing welded wire fabric.

Unless otherwise specified by the Architect/Engineer, welded wire fabric conforming to ASTM A185 will be furnished.

Welded wire fabric can be produced with high-strength wires of minimum yield strengths to 80,000 psi [550 MPa]. Higher minimum yield strengths allow the use of less material in certain applications.

Welded wire fabric can be fabricated to make beam stirrups and column ties.

2.3. Style Identification

Plain wire is denoted by the letter "W" ["MW"] and deformed wire by the letter "D" ["MD"]. The letter is followed by a number indicating cross-sectional area in hundredths of a square inch [square millimeters].

Welded wire fabric is usually shown on project drawings with the abbreviation WWF followed by spacings of longitudinal wires and then transverse wires and last by the sizes of longitudinal and transverse wires.

An example style designation (see Figure 2-1) is: WWF 6 x 12—W16 x W8 [152 x 305 — MW103 x MW52]. This designation identifies a style of plain welded wire fabric in which:

- Spacing of longitudinal wires = 6 in. [152 mm]
- Spacing of transverse wires = 12 in. [305 mm]
- Longitudinal wire size = W16 [MW103]
- Transverse wire size = W8 [MW52]

A deformed WWF style would be designated in the same manner with the appropriate D [MD] number wire spacings and sizes.

It is important to note that the terms "longitudinal" and "transverse" are related to the method of WWF manufacture and have no reference to the orientation of the wires with respect to the orientation of the reinforced concrete structure.

2.4. Specifying Welded Wire Fabric

The Architect/Engineer’s selection of welded wire fabric styles should include production considerations as well as steel area requirements. Maximum economies in production and handling can be achieved by utilizing repetition of styles and duplication of sheet and/or roll dimensions to the fullest extent possible.

Welded wire fabric is manufactured in the form of sheets and rolls. Rolls are generally stocked in W1.4 to W4 [2.1 to 4.5 m] widths. Sheet sizes vary between 7 to 10 feet [2.1 to 3.1 m] for building construction and up to 15 feet [4 m] for pavement.

The maximum sheet size (width and/or length) may be limited by shipping restrictions as well as manufacturing limitations.

Development lengths and lap splice lengths for welded wire fabric must be specified by the Architect/Engineer in accordance with the ACI 518 Building Code. Lap splice lengths are usually a minimum of one wire space plus 2 in. [50 mm] for plain wire and 8 in. [200 mm] for deformed wire.

Certain styles of welded wire fabric as shown in Table 2-1 have been recommended by the Wire Reinforcement Institute as common styles. Manufacturers of WWF can meet specific steel area requirements when ordered for designated projects, or in some localities, may be available from inventory.

2.5. Detailing Welded Wire Fabric

The quantity of welded wire fabric detailed and supplied should include the net area shown on the project drawings or required in the project specifications plus sufficient material to include lap splices.

2.5.1 Width

Width is defined as the center-to-center distance between the outside longitudinal wires. Overall width is defined as the width plus side overhangs.
The side overhangs of transverse wires should be no greater than one inch [25 mm] unless otherwise specified by the Architect/Engineer. Transverse wires may be specified to have a specific overhang or no overhang (flush sides).

2.5.2 Length

Welded wire fabric in roll form can be manufactured in various lengths, up to the maximum weight per roll convenient for handling. The lengths of rolls vary with the individual manufacturing practices of producers. Typical lengths are 100, 150 and 200 feet [31, 46 and 61 m]. Sheet or roll length is defined as the length, tip to tip, of longitudinal wires. This length should be a whole multiple of the transverse wire spacing.

The sum of the two end overhangs on either sheets or rolls should be equal to one transverse wire spacing. Unless otherwise specified, each end overhang equals one-half of a transverse spacing.

2.6. ASTM Specification for Epoxy-Coated Wire and Welded Wire Fabric

Epoxy-coated wire and welded wire fabric are used in reinforced concrete construction as a corrosion-protection system.

The ASTM specification A884/A884M covers the epoxy coating of plain and deformed steel wire, and plain and deformed steel welded wire fabric. The specification includes requirements for the epoxy-coating material; surface preparation of the steel prior to application of the coating; the method of application of the coating; limits on coating thickness; and acceptance tests to ensure that the coating was properly applied. All damaged areas of coating on the wires, which occur during manufacture and handling to the point of shipment to the job-site, have to be repaired (touched-up) with patching material.

Industry Method of Designating Style:
Example: WWF 6 x 12 — W16 x W8 [152 x 305 — MW103 x MW52]

<table>
<thead>
<tr>
<th>Longitudinal wire spacing</th>
<th>Transverse wire spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>.6 in. [152 mm]</td>
<td>.12 in. [305 mm]</td>
</tr>
</tbody>
</table>
TABLE 2-1 COMMON STYLES OF WELDED WIRE FABRIC SHEETS

<table>
<thead>
<tr>
<th>Inch-Pound Units</th>
<th>Metric Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Style</td>
<td>Area [in.²/ft²]</td>
</tr>
<tr>
<td>4 x 4 - W1.4 x W1.4**</td>
<td>0.042</td>
</tr>
<tr>
<td>4 x 4 - W2.0 x W2.0**</td>
<td>0.060</td>
</tr>
<tr>
<td>4 x 4 - W2.9 x W2.9**</td>
<td>0.087</td>
</tr>
<tr>
<td>4 x 4 - W3.1 x W3.1</td>
<td>0.093</td>
</tr>
<tr>
<td>4 x 4 - W4.0 x W4.0**</td>
<td>0.120</td>
</tr>
<tr>
<td>6 x 6 - W1.4 x W1.4**</td>
<td>0.028</td>
</tr>
<tr>
<td>6 x 6 - W2.0 x W2.0**</td>
<td>0.040</td>
</tr>
<tr>
<td>6 x 6 - W2.9 x W2.9**</td>
<td>0.058</td>
</tr>
<tr>
<td>6 x 6 - W4.0 x W4.0**</td>
<td>0.080</td>
</tr>
<tr>
<td>6 x 6 - W4.2 x W4.2</td>
<td>0.084</td>
</tr>
<tr>
<td>6 x 6 - W4.4 x W4.4</td>
<td>0.088</td>
</tr>
<tr>
<td>6 x 6 - W4.7 x W4.7</td>
<td>0.094</td>
</tr>
<tr>
<td>6 x 6 - W7.5 x W7.5</td>
<td>0.150</td>
</tr>
<tr>
<td>6 x 6 - W8.1 x W8.1</td>
<td>0.162</td>
</tr>
<tr>
<td>6 x 6 - W8.3 x W8.3</td>
<td>0.166</td>
</tr>
<tr>
<td>12 x 12 - W8.3 x W8.3</td>
<td>0.083</td>
</tr>
<tr>
<td>12 x 12 - W8.8 x W8.8</td>
<td>0.088</td>
</tr>
<tr>
<td>12 x 12 - W9.1 x W9.1</td>
<td>0.091</td>
</tr>
<tr>
<td>12 x 12 - W9.4 x W9.4</td>
<td>0.094</td>
</tr>
<tr>
<td>12 x 12 - W15 x W15</td>
<td>0.150</td>
</tr>
<tr>
<td>12 x 12 - W16 x W16</td>
<td>0.160</td>
</tr>
<tr>
<td>12 x 12 - W16.6 x W16.6</td>
<td>0.166</td>
</tr>
<tr>
<td>12 x 12 - W17.1 x W17.1</td>
<td>0.171</td>
</tr>
</tbody>
</table>

* Weight [mass] based on 60-in. [1524-mm] wide sheets (c.-c.) with 1-in. [25-mm] side overhang and standard end overhang.
** These styles may be obtained in roll form. It is recommended that rolls be straightened and cut to size before placement.

Example Calculations:

\[
\begin{align*}
6 \times 6 - W4.0 \times W4.0 & \quad \text{Long. Wires (Table 2-2(a)) = 29.92} \\
6 \times 6 - W4.0 \times W4.0 & \quad \text{Trans. Wires (Table 2-2(c)) = 28.11} \\
\text{Total} & \quad = 58.03 = 58 \text{ lb/100 ft}^2 \\
152 \times 152 - MW52 \times MW52 & \quad \text{Long. Wires (Table 2-2(b)) = 2.92} \\
152 \times 152 - MW52 \times MW52 & \quad \text{Trans. Wires (Table 2-2(d)) = 2.74} \\
\text{Total} & \quad = 5.66 \text{ kg/m}^2
\end{align*}
\]
TABLE 2-2(a) UNIT WEIGHT OF LONGITUDINAL WIRES FOR WELDED WIRE FABRIC (INCH-POUND)

<table>
<thead>
<tr>
<th>Wire Size, W or D</th>
<th>Nom. Diam. (in.)</th>
<th>Weight (lb/100 ft²) of Longitudinal Wires Per Spacing (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>0.757</td>
<td>948.50</td>
</tr>
<tr>
<td>31</td>
<td>0.628</td>
<td>653.40</td>
</tr>
<tr>
<td>30</td>
<td>0.618</td>
<td>632.40</td>
</tr>
<tr>
<td>28</td>
<td>0.597</td>
<td>590.24</td>
</tr>
<tr>
<td>28</td>
<td>0.575</td>
<td>548.08</td>
</tr>
<tr>
<td>24</td>
<td>0.553</td>
<td>505.92</td>
</tr>
<tr>
<td>22</td>
<td>0.529</td>
<td>485.76</td>
</tr>
<tr>
<td>20</td>
<td>0.506</td>
<td>421.60</td>
</tr>
<tr>
<td>18</td>
<td>0.479</td>
<td>379.44</td>
</tr>
<tr>
<td>16</td>
<td>0.451</td>
<td>337.28</td>
</tr>
<tr>
<td>14</td>
<td>0.422</td>
<td>295.12</td>
</tr>
<tr>
<td>12</td>
<td>0.391</td>
<td>252.96</td>
</tr>
<tr>
<td>11</td>
<td>0.374</td>
<td>231.88</td>
</tr>
<tr>
<td>10.5</td>
<td>0.366</td>
<td>221.34</td>
</tr>
<tr>
<td>10</td>
<td>0.357</td>
<td>210.80</td>
</tr>
<tr>
<td>9.5</td>
<td>0.348</td>
<td>200.26</td>
</tr>
<tr>
<td>9</td>
<td>0.339</td>
<td>189.72</td>
</tr>
<tr>
<td>8.5</td>
<td>0.329</td>
<td>179.18</td>
</tr>
<tr>
<td>8</td>
<td>0.319</td>
<td>168.64</td>
</tr>
<tr>
<td>7.5</td>
<td>0.309</td>
<td>158.10</td>
</tr>
<tr>
<td>7</td>
<td>0.299</td>
<td>147.56</td>
</tr>
<tr>
<td>6.5</td>
<td>0.288</td>
<td>137.02</td>
</tr>
<tr>
<td>6</td>
<td>0.276</td>
<td>126.48</td>
</tr>
<tr>
<td>5.5</td>
<td>0.265</td>
<td>115.94</td>
</tr>
<tr>
<td>5</td>
<td>0.252</td>
<td>105.40</td>
</tr>
<tr>
<td>4.5</td>
<td>0.239</td>
<td>94.86</td>
</tr>
<tr>
<td>4</td>
<td>0.226</td>
<td>84.32</td>
</tr>
<tr>
<td>3.5</td>
<td>0.211</td>
<td>73.78</td>
</tr>
<tr>
<td>3</td>
<td>0.195</td>
<td>63.24</td>
</tr>
<tr>
<td>2.9</td>
<td>0.192</td>
<td>51.63</td>
</tr>
<tr>
<td>2.5</td>
<td>0.178</td>
<td>52.70</td>
</tr>
<tr>
<td>2</td>
<td>0.160</td>
<td>42.16</td>
</tr>
<tr>
<td>1.4</td>
<td>0.134</td>
<td>29.51</td>
</tr>
</tbody>
</table>

*Weight based on standard end overhang.

Note: This table should be used for estimating purposes only. Actual weights of welded wire fabric will vary from those shown above, depending upon the width of rolls or sheets and lengths of overhangs. No allowance is made in this table for the extra weight of fabric required for lap splices.
TABLE 2-2(b) UNIT MASS OF LONGITUDINAL WIRES FOR WELDED WIRE FABRIC (METRIC)

<table>
<thead>
<tr>
<th>Wire Size, MW or MD (mm)</th>
<th>Nom. Diam. (mm)</th>
<th>Mass (kg/m²)* of Longitudinal Wires Per Spacing (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>51</td>
<td>76</td>
</tr>
<tr>
<td>194</td>
<td>13.90</td>
<td>30.84</td>
</tr>
<tr>
<td>181</td>
<td>15.17</td>
<td>28.79</td>
</tr>
<tr>
<td>155</td>
<td>14.04</td>
<td>24.69</td>
</tr>
<tr>
<td>142</td>
<td>13.44</td>
<td>22.60</td>
</tr>
<tr>
<td>129</td>
<td>12.82</td>
<td>20.56</td>
</tr>
<tr>
<td>116</td>
<td>12.16</td>
<td>18.51</td>
</tr>
<tr>
<td>103</td>
<td>11.46</td>
<td>16.45</td>
</tr>
<tr>
<td>90</td>
<td>10.72</td>
<td>14.39</td>
</tr>
<tr>
<td>77</td>
<td>9.93</td>
<td>12.34</td>
</tr>
<tr>
<td>71</td>
<td>9.51</td>
<td>11.31</td>
</tr>
<tr>
<td>68</td>
<td>9.29</td>
<td>10.80</td>
</tr>
<tr>
<td>65</td>
<td>9.06</td>
<td>10.27</td>
</tr>
<tr>
<td>61</td>
<td>8.83</td>
<td>9.77</td>
</tr>
<tr>
<td>58</td>
<td>8.60</td>
<td>9.26</td>
</tr>
<tr>
<td>55</td>
<td>8.36</td>
<td>8.74</td>
</tr>
<tr>
<td>52</td>
<td>8.11</td>
<td>8.23</td>
</tr>
<tr>
<td>48</td>
<td>7.85</td>
<td>7.71</td>
</tr>
<tr>
<td>45</td>
<td>7.58</td>
<td>7.20</td>
</tr>
<tr>
<td>42</td>
<td>7.31</td>
<td>6.88</td>
</tr>
<tr>
<td>39</td>
<td>7.02</td>
<td>6.17</td>
</tr>
<tr>
<td>35</td>
<td>6.72</td>
<td>5.65</td>
</tr>
<tr>
<td>32</td>
<td>6.41</td>
<td>5.14</td>
</tr>
<tr>
<td>29</td>
<td>6.08</td>
<td>4.63</td>
</tr>
<tr>
<td>26</td>
<td>5.73</td>
<td>4.11</td>
</tr>
<tr>
<td>23</td>
<td>5.38</td>
<td>3.60</td>
</tr>
<tr>
<td>18.4</td>
<td>4.96</td>
<td>4.06</td>
</tr>
<tr>
<td>18.7</td>
<td>4.88</td>
<td>4.06</td>
</tr>
<tr>
<td>16</td>
<td>4.53</td>
<td>2.57</td>
</tr>
<tr>
<td>13</td>
<td>4.05</td>
<td>2.06</td>
</tr>
<tr>
<td>9</td>
<td>3.39</td>
<td>1.44</td>
</tr>
</tbody>
</table>

*Mass based on standard end overhang.

Note: This table should be used for estimating purposes only. Actual mass of welded wire fabric will vary from those shown above, depending upon the width of rolls or sheets and lengths of overhangs. No allowance is made in this table for the extra mass of fabric required for lap splices.
TABLE 2-2(c) UNIT WEIGHT OF TRANSVERSE WIRES FOR WELDED WIRE FABRIC (INCH-POUND)

<table>
<thead>
<tr>
<th>Wire Size, W or D</th>
<th>Nom. Diam. (in.)</th>
<th>Weight (lb/100 ft²)* of Transverse Wires Per Spacing (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>0.757</td>
<td>948.57 632.38 474.29 379.43 316.19 237.14 210.79 189.72 158.10</td>
</tr>
<tr>
<td>31</td>
<td>0.628</td>
<td>653.48 435.65 326.74 261.39 217.63 163.37 145.22 130.70 109.91</td>
</tr>
<tr>
<td>30</td>
<td>0.618</td>
<td>632.40 421.40 316.20 252.96 210.80 158.10 140.53 129.48 105.40</td>
</tr>
<tr>
<td>28</td>
<td>0.597</td>
<td>590.24 393.49 295.12 236.10 196.75 147.56 131.17 118.05 98.37</td>
</tr>
<tr>
<td>26</td>
<td>0.575</td>
<td>548.08 365.38 274.04 219.23 182.70 137.02 121.80 109.62 91.34</td>
</tr>
<tr>
<td>24</td>
<td>0.553</td>
<td>505.92 337.28 252.96 202.37 168.64 126.48 116.43 101.18 84.32</td>
</tr>
<tr>
<td>22</td>
<td>0.529</td>
<td>483.76 309.17 231.88 185.50 140.53 105.40 94.86 84.32 72.75</td>
</tr>
<tr>
<td>20</td>
<td>0.505</td>
<td>421.60 281.06 200.28 154.59 115.94 84.32 70.27 63.24 58.21</td>
</tr>
<tr>
<td>18</td>
<td>0.479</td>
<td>379.44 252.96 189.72 147.56 110.67 84.32 73.78 68.51 63.24</td>
</tr>
<tr>
<td>16</td>
<td>0.451</td>
<td>337.28 224.85 168.64 126.48 94.86 68.51 59.02 54.81 50.59</td>
</tr>
<tr>
<td>14</td>
<td>0.422</td>
<td>295.12 196.76 147.56 110.67 84.32 63.24 54.81 49.19 45.55</td>
</tr>
<tr>
<td>12</td>
<td>0.391</td>
<td>252.96 168.64 126.48 94.86 68.51 54.81 49.19 45.55 42.16</td>
</tr>
<tr>
<td>11</td>
<td>0.374</td>
<td>231.88 154.59 115.94 84.32 63.24 49.19 42.16 38.65</td>
</tr>
<tr>
<td>10.5</td>
<td>0.366</td>
<td>221.34 147.56 105.40 73.78 54.81 42.16 38.65</td>
</tr>
<tr>
<td>10</td>
<td>0.357</td>
<td>210.80 140.53 94.86 63.24 42.16 34.26 31.62</td>
</tr>
<tr>
<td>9.5</td>
<td>0.348</td>
<td>200.28 133.51 80.11 54.81 34.26</td>
</tr>
<tr>
<td>9</td>
<td>0.339</td>
<td>189.72 126.48 54.81 34.26 27.41</td>
</tr>
<tr>
<td>8.5</td>
<td>0.329</td>
<td>179.18 119.45 54.81 34.26</td>
</tr>
<tr>
<td>8</td>
<td>0.319</td>
<td>168.64 112.43 54.81 34.26 27.41</td>
</tr>
<tr>
<td>7.5</td>
<td>0.309</td>
<td>158.10 90.40 54.81 34.26</td>
</tr>
<tr>
<td>7</td>
<td>0.299</td>
<td>147.56 73.78 54.81 34.26</td>
</tr>
<tr>
<td>6.5</td>
<td>0.288</td>
<td>137.02 65.58 54.81 34.26</td>
</tr>
<tr>
<td>6</td>
<td>0.276</td>
<td>126.48 54.81 34.26 27.41</td>
</tr>
<tr>
<td>5.5</td>
<td>0.265</td>
<td>115.94 54.81</td>
</tr>
<tr>
<td>5</td>
<td>0.252</td>
<td>105.40 54.81</td>
</tr>
<tr>
<td>4.5</td>
<td>0.239</td>
<td>94.04 54.81</td>
</tr>
<tr>
<td>4</td>
<td>0.226</td>
<td>84.32 42.16 54.81</td>
</tr>
<tr>
<td>3.5</td>
<td>0.211</td>
<td>73.78 42.16 54.81</td>
</tr>
<tr>
<td>3</td>
<td>0.195</td>
<td>63.24 31.62 54.81</td>
</tr>
<tr>
<td>2.9</td>
<td>0.192</td>
<td>54.07 31.62 54.81</td>
</tr>
<tr>
<td>2.5</td>
<td>0.178</td>
<td>52.70 31.62 54.81</td>
</tr>
<tr>
<td>2</td>
<td>0.160</td>
<td>42.16 31.62 54.81</td>
</tr>
<tr>
<td>1.4</td>
<td>0.134</td>
<td>29.51 16.86 54.81</td>
</tr>
</tbody>
</table>

* Weight based on 60-in. wide sheets (c.-c.) with 1-in. side overhang.

Note: This table should be used for estimating purposes only. Actual weights of welded wire fabric will vary from those shown above, depending upon the width of rolls or sheets and lengths of overhangs. No allowance is made in this table for the extra weight of fabric required for lap splices.
TABLE 2-2(d) UNIT MASS OF TRANSVERSE WIRES FOR WELDED WIRE FABRIC (METRIC)

<table>
<thead>
<tr>
<th>Wire Size, MW or MD (mm)</th>
<th>Nom. Diam. (mm)</th>
<th>Mass (kg/m²)* of Transverse Wires Per Spacing (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>51</td>
<td>76</td>
</tr>
<tr>
<td>290 19.23</td>
<td>45.72</td>
<td>30.48</td>
</tr>
<tr>
<td>200 15.98</td>
<td>32.36</td>
<td>21.25</td>
</tr>
<tr>
<td>184 15.70</td>
<td>30.84</td>
<td>20.56</td>
</tr>
<tr>
<td>161 15.17</td>
<td>28.79</td>
<td>19.19</td>
</tr>
<tr>
<td>168 14.61</td>
<td>26.73</td>
<td>17.82</td>
</tr>
<tr>
<td>142 13.44</td>
<td>22.82</td>
<td>15.08</td>
</tr>
<tr>
<td>129 12.82</td>
<td>20.66</td>
<td>13.71</td>
</tr>
<tr>
<td>116 12.16</td>
<td>18.51</td>
<td>12.34</td>
</tr>
<tr>
<td>103 11.46</td>
<td>16.45</td>
<td>10.97</td>
</tr>
<tr>
<td>90 10.72</td>
<td>14.39</td>
<td>9.60</td>
</tr>
<tr>
<td>77 9.93</td>
<td>12.34</td>
<td>8.23</td>
</tr>
<tr>
<td>71 9.51</td>
<td>11.31</td>
<td>7.54</td>
</tr>
<tr>
<td>68 9.29</td>
<td>10.80</td>
<td>7.20</td>
</tr>
<tr>
<td>65 9.06</td>
<td>10.28</td>
<td>6.85</td>
</tr>
<tr>
<td>61 8.83</td>
<td>9.77</td>
<td>6.51</td>
</tr>
<tr>
<td>58 8.60</td>
<td>9.25</td>
<td>6.17</td>
</tr>
<tr>
<td>55 8.36</td>
<td>8.74</td>
<td>5.83</td>
</tr>
<tr>
<td>52 8.11</td>
<td>8.24</td>
<td>5.48</td>
</tr>
<tr>
<td>48 7.85</td>
<td>7.71</td>
<td>5.14</td>
</tr>
<tr>
<td>45 7.58</td>
<td>7.20</td>
<td>4.80</td>
</tr>
<tr>
<td>42 7.31</td>
<td>6.68</td>
<td>4.45</td>
</tr>
<tr>
<td>39 7.02</td>
<td>6.17</td>
<td>4.11</td>
</tr>
<tr>
<td>35 6.72</td>
<td>5.65</td>
<td>3.77</td>
</tr>
<tr>
<td>32 6.41</td>
<td>5.14</td>
<td>3.43</td>
</tr>
<tr>
<td>29 6.08</td>
<td>4.63</td>
<td>3.08</td>
</tr>
<tr>
<td>26 5.73</td>
<td>4.11</td>
<td>2.74</td>
</tr>
<tr>
<td>23 5.38</td>
<td>3.60</td>
<td>2.40</td>
</tr>
<tr>
<td>19.4 4.96</td>
<td>3.08</td>
<td>2.08</td>
</tr>
<tr>
<td>18.7 4.68</td>
<td>2.65</td>
<td>1.96</td>
</tr>
<tr>
<td>16 4.53</td>
<td>2.57</td>
<td>1.76</td>
</tr>
<tr>
<td>13 4.05</td>
<td>2.05</td>
<td>1.37</td>
</tr>
<tr>
<td>9 3.39</td>
<td>1.42</td>
<td>0.95</td>
</tr>
</tbody>
</table>

* Mass based on 1524-mm wide sheets (c.-c.) with 25-mm side overhang.

Note: This table should be used for estimating purposes only. Actual mass of welded wire fabric will vary from those shown above, depending upon the width of rolls or sheets and lengths of overhangs. No allowance is made in this table for the extra mass of fabric required for lap splices.
TABLE 2-3(a) CROSS-SECTIONAL AREA AND WEIGHT OF WELDED WIRE FABRIC

<table>
<thead>
<tr>
<th>Wire Size, Nom. Diam. W or D</th>
<th>Nom. Weight (lb/ft)</th>
<th>Area of Steel (in.²/ft) Per Wire Spacing (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>45</td>
<td>0.757</td>
<td>1.530</td>
</tr>
<tr>
<td>31</td>
<td>0.628</td>
<td>1.054</td>
</tr>
<tr>
<td>30</td>
<td>0.618</td>
<td>1.020</td>
</tr>
<tr>
<td>28</td>
<td>0.597</td>
<td>0.962</td>
</tr>
<tr>
<td>26</td>
<td>0.575</td>
<td>0.884</td>
</tr>
<tr>
<td>24</td>
<td>0.553</td>
<td>0.816</td>
</tr>
<tr>
<td>22</td>
<td>0.529</td>
<td>0.748</td>
</tr>
<tr>
<td>20</td>
<td>0.505</td>
<td>0.680</td>
</tr>
<tr>
<td>18</td>
<td>0.479</td>
<td>0.612</td>
</tr>
<tr>
<td>16</td>
<td>0.461</td>
<td>0.544</td>
</tr>
<tr>
<td>14</td>
<td>0.422</td>
<td>0.476</td>
</tr>
<tr>
<td>12</td>
<td>0.381</td>
<td>0.408</td>
</tr>
<tr>
<td>11</td>
<td>0.374</td>
<td>0.374</td>
</tr>
<tr>
<td>10.5</td>
<td>0.366</td>
<td>0.357</td>
</tr>
<tr>
<td>10</td>
<td>0.357</td>
<td>0.340</td>
</tr>
<tr>
<td>9.5</td>
<td>0.348</td>
<td>0.323</td>
</tr>
<tr>
<td>9</td>
<td>0.339</td>
<td>0.306</td>
</tr>
<tr>
<td>8.5</td>
<td>0.329</td>
<td>0.289</td>
</tr>
<tr>
<td>8</td>
<td>0.319</td>
<td>0.272</td>
</tr>
<tr>
<td>7.5</td>
<td>0.309</td>
<td>0.255</td>
</tr>
<tr>
<td>7</td>
<td>0.299</td>
<td>0.238</td>
</tr>
<tr>
<td>6.5</td>
<td>0.288</td>
<td>0.221</td>
</tr>
<tr>
<td>6</td>
<td>0.276</td>
<td>0.204</td>
</tr>
<tr>
<td>5.5</td>
<td>0.265</td>
<td>0.187</td>
</tr>
<tr>
<td>5</td>
<td>0.252</td>
<td>0.170</td>
</tr>
<tr>
<td>4.5</td>
<td>0.239</td>
<td>0.153</td>
</tr>
<tr>
<td>4</td>
<td>0.226</td>
<td>0.136</td>
</tr>
<tr>
<td>3.5</td>
<td>0.211</td>
<td>0.119</td>
</tr>
<tr>
<td>3</td>
<td>0.195</td>
<td>0.102</td>
</tr>
<tr>
<td>2.9</td>
<td>0.192</td>
<td>0.099</td>
</tr>
<tr>
<td>2.5</td>
<td>0.178</td>
<td>0.085</td>
</tr>
<tr>
<td>2</td>
<td>0.160</td>
<td>0.068</td>
</tr>
<tr>
<td>1.4</td>
<td>0.134</td>
<td>0.048</td>
</tr>
</tbody>
</table>

Notes:

1. The above listing of plain and deformed wire sizes represents wires normally selected to manufacture welded wire fabric to specific areas of reinforcement. Wire sizes other than those listed above, including larger sizes, may be available if the quantity required is sufficient to justify manufacture.

2. The nominal diameter of a deformed wire is equivalent to the diameter of a plain wire having the same weight per foot as the deformed wire.

3. The ACI Building Code requirements for tension development lengths and tension lap splice lengths of welded wire fabric are not included in this chapter. These design requirements are covered in Reinforcement Anchorages and Splices available from CRSI. For additional information, see Manual of Standard Practice—Structural Welded Wire Fabric and Structural Detailing Manual, both published by the Wire Reinforcement Institute.
TABLE 2-3(b) CROSS-SECTIONAL AREA AND MASS OF WELDED WIRE FABRIC (METRIC)

<table>
<thead>
<tr>
<th>Wire Size, MW or MD (mm)</th>
<th>Nom. Diam. (mm)</th>
<th>Nom. Mass (kg/m)</th>
<th>Area of Steel (mm²/m) Per Wire Spacing (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>290</td>
<td>19.23</td>
<td>2.277</td>
<td>5715</td>
</tr>
<tr>
<td>200</td>
<td>15.96</td>
<td>1.569</td>
<td>3937</td>
</tr>
<tr>
<td>194</td>
<td>15.70</td>
<td>1.518</td>
<td>3810</td>
</tr>
<tr>
<td>181</td>
<td>15.17</td>
<td>1.417</td>
<td>3556</td>
</tr>
<tr>
<td>168</td>
<td>14.61</td>
<td>1.316</td>
<td>3302</td>
</tr>
<tr>
<td>155</td>
<td>14.04</td>
<td>1.214</td>
<td>3048</td>
</tr>
<tr>
<td>142</td>
<td>13.44</td>
<td>1.113</td>
<td>2794</td>
</tr>
<tr>
<td>129</td>
<td>12.82</td>
<td>1.012</td>
<td>2540</td>
</tr>
<tr>
<td>116</td>
<td>12.16</td>
<td>0.911</td>
<td>2286</td>
</tr>
<tr>
<td>103</td>
<td>11.46</td>
<td>0.810</td>
<td>2032</td>
</tr>
<tr>
<td>90</td>
<td>10.72</td>
<td>0.706</td>
<td>1778</td>
</tr>
<tr>
<td>77</td>
<td>9.93</td>
<td>0.607</td>
<td>1524</td>
</tr>
<tr>
<td>71</td>
<td>9.51</td>
<td>0.557</td>
<td>1397</td>
</tr>
<tr>
<td>68</td>
<td>9.29</td>
<td>0.531</td>
<td>1333</td>
</tr>
<tr>
<td>65</td>
<td>9.06</td>
<td>0.506</td>
<td>1270</td>
</tr>
<tr>
<td>61</td>
<td>8.83</td>
<td>0.461</td>
<td>1206</td>
</tr>
<tr>
<td>58</td>
<td>8.60</td>
<td>0.455</td>
<td>1143</td>
</tr>
<tr>
<td>55</td>
<td>8.36</td>
<td>0.430</td>
<td>1080</td>
</tr>
<tr>
<td>52</td>
<td>8.11</td>
<td>0.405</td>
<td>1016</td>
</tr>
<tr>
<td>49</td>
<td>7.85</td>
<td>0.379</td>
<td>952</td>
</tr>
<tr>
<td>45</td>
<td>7.58</td>
<td>0.354</td>
<td>889</td>
</tr>
<tr>
<td>42</td>
<td>7.31</td>
<td>0.329</td>
<td>826</td>
</tr>
<tr>
<td>39</td>
<td>7.02</td>
<td>0.304</td>
<td>762</td>
</tr>
<tr>
<td>35</td>
<td>6.72</td>
<td>0.278</td>
<td>698</td>
</tr>
<tr>
<td>32</td>
<td>6.41</td>
<td>0.253</td>
<td>635</td>
</tr>
<tr>
<td>29</td>
<td>6.08</td>
<td>0.228</td>
<td>571</td>
</tr>
<tr>
<td>26</td>
<td>5.73</td>
<td>0.202</td>
<td>508</td>
</tr>
<tr>
<td>23</td>
<td>5.36</td>
<td>0.177</td>
<td>445</td>
</tr>
<tr>
<td>19.4</td>
<td>4.96</td>
<td>0.152</td>
<td>381</td>
</tr>
<tr>
<td>18.7</td>
<td>4.58</td>
<td>0.147</td>
<td>338</td>
</tr>
<tr>
<td>16</td>
<td>4.53</td>
<td>0.126</td>
<td>317</td>
</tr>
<tr>
<td>13</td>
<td>4.05</td>
<td>0.101</td>
<td>254</td>
</tr>
<tr>
<td>9</td>
<td>3.39</td>
<td>0.071</td>
<td>178</td>
</tr>
</tbody>
</table>

Notes:
1. The above listing of plain and deformed wire sizes represents wires normally selected to manufacture welded wire fabric to specific areas of reinforcement. Wire sizes other than those listed above, including larger sizes, may be available if the quantity required is sufficient to justify manufacture.
2. The nominal diameter of a deformed wire is equivalent to the diameter of a plain wire having the same mass per foot as the deformed wire.
3. The ACI Building Code requirements for tension development lengths and tension lap splice lengths of welded wire fabric are not included in this chapter. These design requirements are covered in Reinforcement Anchorages and Splices available from CRSI. For additional information, see Manual of Standard Practice—Structural Welded Wire Fabric and Structural Detailing Manual, both published by the Wire Reinforcement Institute.
Reinforcement Splices

This memo provides general contract administration guidance for service splice and ultimate butt splice of reinforcement in accordance with the 2006 Standard Specifications (Amended Section 52) and the 2010 Standard Specifications. Sections included are:

- Glossary of Terms.
- What To Do Prior To the Start of Any Splice Work.
- What To Do During Splice Production Work.
- Splice Acceptance Requirements.
- Mechanical Splice Acceptance Procedure Flow Chart.
- Review Time.
- What to Do After Completion of Splice Production Work.
- Testing Requirement Clarifications for Welded Butt Splices.
- Items To Be Recorded In the Job Files.

Glossary of Terms

Affected Zone – Portion of the reinforcing bar where any properties of the bar, including the physical, metallurgical, or materials characteristics, have been changed by fabrication or installation of a splice. The weld and one (1) inch adjacent to the weld is part of the affected zone.

Authorized Laboratory – Independent testing laboratory not employed or compensated by any subcontractor or subcontractor's affiliate providing other services for the Contract and authorized by the Department to perform the required testing of the sample splices.

Authorized Material List - A list of products prequalified for use on California Department of Transportation projects. Mechanical couplers for both service and ultimate splice systems on this list are authorized for use.

Lot of Splices – One hundred and fifty (150) or fraction thereof, of the same coupler model for each bar size, deformation pattern and hoop diameter.

Operator and Procedure Prequalification – A requirement of the splice prequalification report. Splice operators and procedures must be certified. Splice test samples must be prepared and tested no more than two (2) years before the submittal.
Production Service Splice Test Samples – Four splices prepared in the same manner (i.e., equipment, procedures, position and operator) as the splices incorporated into the final work. Four samples are selected for every lot of splices and are tested by the authorized laboratory.

Production Ultimate Butt Splice Test Samples – Four splices removed from each lot of completed splices. After being notified, the Engineer randomly selects the four (4) splice test samples to be removed by the contractor from the completed lot and places tamper-proof markings or seals on them. Except for hoops, the Engineer selects splice test samples at the job site. Splice test samples must comply with California Test 670.

Quality Assurance (QA) Splice Samples – Four additional splice test samples prepared or removed for QA testing at the Caltrans Materials Engineering and Testing Services (METS) Laboratory. The samples are prepared or removed concurrently with the first production lot and at one other randomly selected for every five (5) additional production lots (or portion of) thereafter.

Splicing Quality Control Manager (QCM) – Contractor designated person who is responsible for both field and administrative work regarding the quality of all butt splices.

Resistance Butt Weld – A type of butt-welding commonly used to produce column hoop reinforcement. A machine holds both ends of the hoop together and passes a large electrical current through the bar which creates enough heat to fuse the two ends together completing the process.

This type of welding is not covered by the American Welding Society (AWS) code and therefore does not require any of the Non-Destructive Testing (NDT) or Certified Welding Inspector (CWI) requirements. The current specification requires that the fabricator must be on the Authorized Material List.

Service Splice – A mechanical or welded splice that meets the current requirements of the Standard Specifications (SS)¹ (i.e., tensile strength of 80 ksi and slip).

Splice Prequalification Report – A report that documents the Contractor’s proposed splicing system.

Ultimate Butt Splice – A mechanical or welded butt splice that meets current requirements of SS² (i.e., slip test and rupture in the reinforcing bar outside of the affected zone and show visible necking as specified in California Test 670, Necking, Option I or Rupture anywhere and neck as specified in California Test 670, Necking, Option II).

¹ SS 2006, Sections 52-1.08B(1) and 52-1.08C(2), or SS 2010, Sections 52-6.02B and 52-6.02C.
² SS 2006, Sections 52-1.08B(1) and 52-1.08C(3), or SS 2010, Sections 52-6.02B and 52-6.02D.
What To Do Prior To the Start of Any Splice Work

Document Review:
The Structure Representative and/or his staff must conduct proper review of the following documents:

- Contract Special Provisions.
- Contract Plans.
- Standard Specifications, Section 52 (Reinforcement).
- Bridge Construction Records and Procedures Manual, Section 165
- Authorized Materials List for steel reinforcement splicing (found at http://www.dot.ca.gov/hq/esc/approved_products_list/).
- BCM 9-1.0 – Locating Reinforcing Steel Splices on As-Built Plans.
- California Test 670 – Method of Tests for Mechanical and Welded Reinforcing Steel Splices.

Timely Submittal of Required Documents
Ensure the Contractor provides timely submittals of the following documents as applicable:

- Certificate of Compliance.
- Welder and Welding Procedures Qualifications.
- Splice Prequalification Report.
- Weld Flash Removal Process (when welding is involved).

Notify METS
As soon as possible, inform your Structure Materials Representative (SMR) that your contract contains ultimate and or service reinforcing splices. Invite SMR to the pre-job meeting. The SMR contact list can be found at http://www.dot.ca.gov/hq/esc/Translab/OSM/smdocuments/StructuralMaterialsRepresentatives.pdf

Splicing Quality Control Manager (QCM)
The contractor shall notify the Engineer of the name and contact information of the splicing QCM. Verify compliance of the assigned splicing QCM with the specification requirements and respond to the contractor accordingly.

Authorized Laboratory
Verify that the independent testing laboratory contracted by the Contractor to perform prequalification and acceptance testing is listed in the Authorized Laboratory List. The Authorized Laboratory List is available at http://www.dot.ca.gov/hq/esc/Translab/authorized_laboratories_list/
If information is not available on the website, contact METS for assistance.

Pre-Job Meeting
If needed, a pre-job meeting with the contractor should be held to discuss the ultimate and service butt splice specification. The sampling and acceptance criteria are different for these types of splices. It is important that all parties involved understand the specification requirements.
At the meeting, the contractor should have present their splicing QCM, rebar subcontractor, and the representative for the Authorized Laboratory. If possible, a representative from METS should attend the pre-job meeting. A suggested partial list of items to discuss at the pre-job meeting is:

- Splicing QCM’s responsibility to inspect the lots of splices for conformance with the specifications and manufacturer’s recommendations prior to sampling.
- Splice Prequalification Reports, production and quality assurance (QA) sampling and testing requirements.
- How samples of ultimate splices will be selected from a completed lot of splices that have been assembled for the final time.
- Contractor’s method of designating and making the lots available for sampling.
- Engineer’s method of random sample selection.
- Labeling and shipping of the samples.
- Result reporting, time allowed, and Engineer approval.

Splice System Prequalification
The specifications require that both service and ultimate splice systems be prequalified, for every job, prior to use. The contractor must select a splice system from the Authorized Materials List. This list is posted at: http://www.dot.ca.gov/hq/esc/approved_products_list/. If the proposed system is not on the prequalification list, contact METS at (916 227-7253) to verify the latest approved splice systems.

Splice Prequalification Report
For each splice type to be used in the work, the contractor must submit a Splice Prequalification Report for service splices and ultimate butt splices that includes:
- Copy of the coupler manufacturer's product literature giving complete data on the splice material and installation procedures.
- Names of the operators who will be performing the splicing.
- Descriptions of the positions, locations, equipment, and procedures that will be used in the work.
- Certifications from the fabricator for operator and procedure prequalification including the certified test results from the authorized laboratory for the prequalification splice test samples. For each bar size of each splice type to be used, each operator must prepare two (2) prequalification splice test samples and two (2) additional prequalification splice test samples if using splices dependent on bar deformations.
- Splice test samples must have been prepared and tested no more than two (2) years before the submittal of the splice prequalification report. Splice test samples and testing must comply with the production testing requirements.

What To Do During Splice Production Work

Inspection
During the production of both ultimate and service splices, some of the tasks that Caltrans/Structure Construction (SC) personnel should perform are:
• Verify the location of the splices. Note the splice locations on the As-Built plans.
• Check the material certification. Certificate of Compliance shall be provided for all material constituting the splice (i.e., reinforcing steel, coupler).
• Perform visual inspection of the production of ultimate or service splices.
• Randomly select production and quality assurance sample splices. This includes ensuring that the operators are prequalified and the equipment and procedures used conform to the manufacturer’s recommendations.
• Confirm that all test reports meet the contract requirements.

Sampling of Production Splices
The sampling procedures and testing criteria are different for ultimate butt and service splices. Ultimate butt splices are far more critical to the structure’s seismic performance. Hence, the sampling and testing requirements are more stringent compared to service splices.

Ultimate Splice Sampling Procedures
The contractor’s splicing QCM will notify the Engineer when a designated lot of splices is complete and has been inspected. Four samples of production splices from each lot will be selected by the Engineer for testing.

Production sample splices are required to be randomly selected from a completed lot. Selecting from a completed lot means that samples will be removed after final splicing has been made. Splices that are unassembled for transportation or other reasons are not considered completed and would require resampling when assembled for the final time.

The intent of the ultimate butt splice specification is to sample splices as close as possible to the in place completed work, which may or may not entail removing splices from bars after they have been tied in their final location. For example, if the main longitudinal reinforcement of a column was spliced together and assembled on the ground prior to full height erection, the straight bar sample production splices could be selected prior to cage assembly. If splices are made vertically at the job site in or above their final positions for bar reinforcement of columns or CIP (cast-in-place) concrete piles, instead of removing the splice test samples from the completed lot, it is acceptable to prepare the samples as specified for service splice test samples provided testing as specified for ultimate butt splices is performed.

Similarly, in most cases, the selection of production samples for welded hoops can be done prior to cage assembly.

All production sample splices removed from the work must be repaired or replaced. The Department does not require ultimate butt splice testing on repaired splices from a lot unless an additional ultimate butt splice test is required on the same lot of splices. If this additional test is required, the Engineer may select any repaired splice for the additional test.

The sample length shall comply with California Test 670.
Service Splice Sampling Procedures

The specifications require the contractor to prepare four splice test samples from each lot of completed splices. The service splice samples must be prepared in the same conditions as the production service splices. The same operator, equipment, position, and procedures must be used when preparing service splice samples. The sample length shall comply with California Test 670.

Quality Assurance Testing

Quality assurance (QA) testing is a requirement of the ultimate butt and service splice specifications. Quality assurance tests are always performed concurrently with the first production test. Subsequent to the first QA test, at least one out of every five additional production tests (or portion of) thereafter will be accompanied by an additional QA test. A random selection method shall be used to designate both QA lots and QA sample splices. Below is a table that illustrates the number of QA tests required for a given amount of splice lots.

<table>
<thead>
<tr>
<th>Number. of Lots</th>
<th>Number of Accumulative QA Tests Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2-6</td>
<td>2</td>
</tr>
<tr>
<td>7-11</td>
<td>3</td>
</tr>
<tr>
<td>12-16</td>
<td>4</td>
</tr>
<tr>
<td>17-21</td>
<td>5</td>
</tr>
<tr>
<td>22-26</td>
<td>6</td>
</tr>
</tbody>
</table>

To obtain samples for the QA test, four (4) sample splices will be made concurrently with the production test samples. These sample splices do not have to be removed from a completed lot of splices.

The Contractor may encase splices in concrete before receiving notification of the QA test results from the Engineer. However, the Contractor will not be relieved of the responsibility for incorporating material into the work that complies with the Contract.

Tamper Proof Markings and Sample Shipping

To assure that the sample splices are not tampered with, all samples (i.e., pre-job, production, and quality assurance) shall have a tamper proof marking applied to them. Field personnel should apply the marking. Examples of tamper proof markings are:

- Rubberized paint. This will show any re-gripping or disassembly of the splices. See Figure No. 1.
- A digital photo of the splice sent to the lab for comparison.
- Alternative marking systems can be considered with METS concurrence.

All samples shall be indetified pre-job, production, or job QA and be accompanied with form TL-101. See Figure No. 2. Both pre-job and quality assurance ultimate butt splice test samples...
need to be shipped to METS at 5900 Folsom Boulevard, Sacramento 95819, (916) 227-7251. The Structure Representative should discuss the method of shipment with METS.

![Image of metal bars with rubberized paint used as a tamper proof marking system]

Figure No. 1: Production Sample Splices with rubberized paint used as a tamper proof marking system. Associated control bars are no longer required by the specifications.
Figure No. 2: Form TL-101, Sample Identification Card.

When completing Form TL-101, ensure that all items are completed. If incomplete, it could delay METS ability to issue test results. Specific items to consider are:

- Contact information for the person that did the sampling is needed to answer potential questions.
- Email or Fax number is used for METS to send the test results to expedite obtaining results.
- Include with the couplers, a copy of the Material Test Report (MTR) for the heat number of the bar reinforcing steel and the MTR for the lot number of couplers represented by the samples. METS cannot issue test results without this information.
Splice Acceptance Requirements

Slip Test Requirement
Except for mechanical lap, welded, or hoop splices, test one (1) of the four (4) splice test samples for total slip. If the slip test result complies with the total slip value requirement specified in the Standard Specifications\(^3\), proceed to perform the tensile and/or rupture tests. If the splice test sample exceeds the total slip value specified in the Standard Specifications\(^4\), test the three (3) remaining test samples for total slip. If any of the three (3) remaining test samples exceed the specified total slip value, the Department rejects all splices in the lot.

Other Requirements for Service Splice
Service splices must develop a minimum tensile strength of 80,000 psi. Acceptance:
- If only one (1) splice test sample complies with the requirements, the Department rejects all splices in the lot.
- If only two (2) splice test samples comply with the requirements, perform one (1) additional service splice test consisting of four new splice test samples on the same lot of splices. This additional test must consist of tensile testing four (4) splice test samples, randomly selected by the Engineer and removed from the lot of completed splices. If any of the four (4) splice test samples from this additional test do not attain the specified minimum tensile strength, the Department rejects all splices in the lot.
- If three (3) or more splice test samples comply with the requirements, the Department accepts all splices in the lot.

Other Requirements for Ultimate Butt Splice
Ultimate butt splices must do one of the following:
1. Rupture in the reinforcing bar outside of the affected zone and show visible necking as specified in California Test 670, Necking (Option I).
2. Rupture anywhere and neck as specified in California Test 670, Necking (Option II).
Acceptance:
- If only one (1) splice test sample complies with the requirements, the Department rejects all splices in the lot.
- If only two (2) of the four splice test samples comply with the requirements, perform one (1) additional ultimate butt splice test consisting of four new splice test samples on the same lot of splices. If any of these four (4) new splice test samples do not comply with the specified requirements, the Department rejects all splices in the lot.
- If three (3) or more splice test samples comply with the requirements, the Department accepts all splices in the lot.

Figure No. 3 depicts terms used in California Test 670.

\(^3\) SS 2006, Section 52.1-08B(1) or SS 2010, Section 52.6.02B
\(^4\) SS 2006, Section 52.1-08B(1) or SS 2010, Section 52.6.02B
Figure No. 3: Passing Tensile Tested Ultimate Coupler. Note the bar rupture outside the affected zone and the visible signs of necking.

Mechanical Splice Acceptance Procedure Flow Chart

Figure No. 4 is a flow chart summarizing the Mechanical Splice Acceptance Procedure.
Mechanical Splice Acceptance Procedure Flow Chart

Mechanical Splice Acceptance Procedure Flow Chart

- **QCM & Independent Lab**
 Contractor assigns a splicing QC Manager and selects an Authorized Laboratory. SR shall contact METS to verify lab credentials.

- **Splice System Selection**
 Contractor selects the splicing system from the Department’s Authorized Materials List, found at http://www.dot.ca.gov/hplesc/approved_products_list.

- **Accept**
 Contractor submits report for each type of splice to be used in the work.

- **Splice Prequalification Report**
 NO

- **Provide 4 QC samples for each lot and 4 QA samples for the first lot and for one of every five lots after that as selected by the Engineer. (Prepare samples for service and remove for ultimate testing). QC samples shall be tested by Authorized lab and QA samples tested by METS.**

- **Perform slip test on 1 of the 4 splices. If the 1st splice failed, 3 remaining shall pass.**

- **Tensile Testing**

 - **FAIL**
 - **Reject entire lot**

 - **FAIL**
 - **1 pass**
 - **2 pass**
 - **Test 4 more. All must pass**
 - **3 pass**
 - **4 pass**
 - **ACCEPT LOT**

Figure No. 4: Mechanical Splice Acceptance Procedure Flow Chart.
Review Time

The specifications include a review time for production and quality assurance tests. To avoid costly delays, it is important to respond to the contractor in writing within the time specified in the specifications as shown in the table below.

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Review Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Sample Tests</td>
<td>Three business days to review each production test report submitted by the QCM.</td>
</tr>
<tr>
<td>Quality Assurance</td>
<td>Three business days upon receipt of the samples by METS.</td>
</tr>
<tr>
<td></td>
<td>Two extra business days per each simultaneous submittal.</td>
</tr>
</tbody>
</table>

What To Do After Completion of Splice Production Work

Review Reports
The Contractor provides the following documents to the Engineer for review:
- Production Splice Report.
- Splice Rejection Report.
- Radiographic Film Developing Process Records (when welding is involved).

After completion and acceptance of the bar splices, ensure that the locations of the splices are noted in the As-Builts and that all the submittals and test reports are filed in the project records.

Testing Requirement Clarifications for Welded Butt Splices

To follow is information to clarify test requirements for welded butt splices.

1. Welded hoops:
 - Slip test is not required.
 - Destructive testing is required.
 - Radiographic testing is not required.

2. CJP (Complete Joint Penetration) butt-welded splices (except welded hoops):
 - Slip test is not required.
 - Destructive testing is required for both service and ultimate butt splices.
 - Radiographic testing is not required whenever butt-welded splices are removed from a lot of completed splices (i.e., whenever they require replacement).
• Radiographic testing is required whenever samples are prepared as described in the Standard Specifications\(^5\) (i.e., whenever they do not require replacement due to removal from a completed lot).

3. Refer to California Test 670 regarding tensile test (destructive testing) requirements.

Items To Be Recorded In the Job Files

During the progress of the work all splice documentation shall be filed in Category 37 under the appropriate sub-category headings.

A list of items to be recorded in the job files are:

- Contractor’s submitted plan designating the splicing QCM and testing laboratory.
- Laboratory Qualification (record of verification by the Structure Representative).
- Splice Prequalification Report.
- Test reports submitted by the splicing QCM.
- Summary record of production tests (see Figure No. 5 below).
- Test results of sample splices sent to METS.
- Records indicating the resolution of any failed QA test results.
- Certificates of compliance.
- As-Builts: Locate all reinforcing splices on the As-Built plans. See BCM 9-1.0.

\(^5\) 2006 SS, Section 52-1.08C(3)(c) or SS 2010, Section 52-6.01D(4)(d)(ii).
(This page left intentionally blank.)
Table of Contents

Revision and Approval

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Nature of Changes</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>07-19-2012</td>
<td>Latest issue</td>
<td>Robert A Stott</td>
</tr>
<tr>
<td>1</td>
<td>12-20-2018</td>
<td>Deleted 168-1.0 and 168-3.0</td>
<td>Steve Altman</td>
</tr>
</tbody>
</table>

MEMO NO. | ISSUE DATE | TITLE |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>168-1.0</td>
<td>12/20/2018</td>
<td>Deleted. Moved to BCM 56-2.03, Attachment 2, Sign Structure Fastener Installation Guide</td>
</tr>
<tr>
<td>168-2.0</td>
<td>11/15/1977</td>
<td>Expansion Anchors for Bridge Mounted Signs</td>
</tr>
<tr>
<td>168-3.0</td>
<td>12/20/2018</td>
<td>Deleted. Moved to BCM 56-2.01C, Overhead Sign Structures, Standards, and Poles - Submittals</td>
</tr>
<tr>
<td>168-4.0</td>
<td>07/19/2012</td>
<td>Resin Capsule Anchorage for Bridge Mounted Sign Structures</td>
</tr>
</tbody>
</table>
(This page left intentionally blank.)
Expansion Anchors for Bridge Mounted Signs

Threaded stud bolts must be used when using expansion anchors to attach bridge mounted signs on concrete structures. Headed bolts must not be used in place of threaded stud bolts.

The reason for this is that the use of the headed bolt gives questionable results, as there is no way of confirming whether the expansion anchor has been firmly seated in the concrete, or if it has merely cinched up against the mounting bracket.

For additional information relative to expansion anchors, and for a list of expansion anchors that have been approved by the Transportation Laboratory refer to Bridge Construction Memo 135-5.0.
Subject: Resin Capsule Anchorage for Bridge Mounted Sign Structures

Background

The State Bridge Engineer policy memo dated July 21, 2008, *Policy for Attachment of New Bridge Mounted Signs to Soffit Slab, Underside of Bridge Decks or Deck Overhangs*\(^1\) states:

“Effective immediately, all new bridge mounted signs, including Changeable Message Signs, that are suspended from the bridge soffit, underside of bridge decks or deck overhangs by anchorage into concrete shall be anchored using either cast-in-place anchors or through bolts as appropriate. …resin capsules shall not be used to anchor such sign structures.”

The intent of this policy memo was to prohibit the use of resin capsule anchorage (RCA) in direct, sustained tension applications because of their susceptibility to creep. The picture below provides an example of what is considered direct, sustained tension where the use of a RCA is prohibited. The prohibition in the policy memo does not apply to smaller barrier rail mounted sign structures.

This BCM is intended to address recurring questions that have been received by the DES Signs and Overhead Structure Specialist related to RCA for bridge mounted sign structures since the July 2008 policy memo was written.

\(^1\) See Attachment No.1: Policy Memo dated July 21, 2008, Subject: *Policy for Attachment of New Bridge Mounted Signs to Soffit Slab, Underside of Bridge Decks or Deck Overhang.*
Guidelines

Bridge mounted signs on Caltrans’ projects typically conform to the two mounting arrangements that are illustrated in the Figure No. 1 and Figure No. 2. They are:

1) RCAs placed into the barrier rail (location A) and into the edge of deck (location B), and into the exterior girder or the underside of the deck overhang (location C). This type of a support system is typically used for bridge mounted signs which are over 100 inches tall. See Figure No. 1.

2) RCAs placed into the edge of deck (location B), and into the exterior girder or the underside of the deck overhang (location C). See Figure No. 2.

Mounting signs consistent with one of these configurations is consistent with the 2008 policy memo. If properly installed, the RCAs will perform as designed with minimal creep that will not impact their capacity.

Figure No. 1
Structure Representative Responsibilities:

- If details deviate from the mounting configurations described above, contact the DES Signs and Overhead Structure Specialist.
- Verify that the RCA is on the Authorized Materials List at:
- Verify that the proposed system does not interfere with any other embedment or risk damaging the prestressing system.
- Notify the contractor of their authorization for use of the selected RCA.
- Verify that RCAs are installed in accordance with the manufacturer’s recommendations, including using the manufacturer recommended drilling equipment.
- Cored holes are not permitted under any conditions.
- Verify that the holes are clean and dry.
- Do not install RCAs in the rain.
- Verify the size of the hole (diameter and depth).
- Verify that the required embedment depth and minimum edge distances are obtained.
- Ensure that the RCAs are loaded only after the adhesive cure time has elapsed (shown in the Authorized Materials List).

2 Equivalent terms that may have been used in other documents that have the same meaning would include; Approved Materials List, Pre-Qualified Products List, or Approved Product List.
Memorandum

To: DES DEPUTY DIVISION CHIEFS

TERRY L. ABBOTT
Chief
Division of Design

MARK LEJA
Chief
Division of Construction

BARTON NEWTON
Assistant Division Chief
Structures Maintenance and Investigations
Division of Maintenance

From: KEVIN J. THOMPSON
State Bridge Engineer
Division of Engineering Services

Date: July 21, 2008

Subject: Policy for Attachment of New Bridge Mounted Signs to Soffit Slab, Underside of Bridge Decks or Deck Overhangs

Effective immediately, all new bridge mounted signs, including Changeable Message Signs, that are suspended from the bridge soffit, underside of bridge decks or deck overhangs by anchorage into concrete shall be anchored using either cast-in-place anchors or through bolts as appropriate. Cartridge epoxies, chemical adhesives or resin capsules shall not be used to anchor such sign structures.

For the types of bridge mounted signs identified in the preceding paragraph that are in construction, a Contract Change Order shall be issued showing anchorage to the bridge using either cast-in-place anchors or through bolts.

This policy has been developed to increase the structural safety of sign structures that are suspended from bridges.

Contact Madhwech Raghavendrachar, Senior Bridge Engineer, Structure Design, Division of Engineering Services at 916-227-7116 or mraghave@dot.ca.gov if there are any questions.

cc: SD Office Chiefs
Susan Hida

"Caltrans improves mobility across California"
<table>
<thead>
<tr>
<th>Memo No.</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>170-1.0</td>
<td>07/01/2001</td>
<td>Discussion of Basic Construction Terms and Topics for High-Strength</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolted Connections</td>
</tr>
<tr>
<td>170-2.0</td>
<td>07/01/2001</td>
<td>Inspection Procedures for Checking Tension in High-Strength Bolts</td>
</tr>
<tr>
<td>170-3.0</td>
<td>07/01/2001</td>
<td>Approved Methods of Tensioning High-Strength Bolted Connections</td>
</tr>
<tr>
<td>170-4.0</td>
<td>07/01/2001</td>
<td>Structural Steel Working Drawings</td>
</tr>
</tbody>
</table>

*Denotes the document is a Bridge Construction Bulletin

DOLORES M. VALLS, Deputy Division Chief
Offices of Structure Construction
(This page left intentionally blank.)
Discussion of Basic Construction Terms and Topics for High-Strength Bolted Connections

Discussion of Structural Bolts

There are many types of bolts used for structural applications. Quality for all of these is ensured through compliance with specified American Society for Testing and Materials (ASTM) standard specifications. These national specifications clearly denote specific mechanical properties, chemical composition, and dimensions for each type of fastener.

Where lower strength fasteners are required, ASTM A307, mild steel fasteners and anchor bolts are commonly used. These are usually not preloaded, have a minimum yield strength of 36 ksi, are extremely ductile, and can be welded (when S1 supplementary requirements are specified) and zinc coated.

The main type of high-strength structural bolt frequently specified in Caltrans contracts for steel joints in bridges, overhead sign support structures, and buildings, is designated as ASTM A325, and is available only in a heavy hex headed style and in diameters from ½" through 1-1/2". A325 bolts are almost always specified for major structures, and have a minimum tensile strength of either 105 or 120 ksi, depending on the bolt diameter; the minimum proof load is either 81 or 92 ksi. Because Caltrans wants to insure maximum plastic ductility of fasteners in structural joints in the event of a large earthquake, we specify A325 fasteners or F1852 tension control (TC) bolts almost exclusively. These can be zinc coated to insure a long life in corrosive coastal environments. While an A490 structural bolt is available, its lower ductility and inability to be zinc coated make it less desirable for use in coastal regions where long-term corrosion protection is vital and earthquakes are likely to occur.

Where larger sizes of high-strength fasteners or threaded rods having properties identical to those of A325 bolts are required, an A449 series of bolt and rod is readily available. Mechanical properties and chemical composition of this fastener are identical to those of A325 bolts; it is available in a wider variety of sizes, from ¼" to 3" diameters, can be ordered in a number of different head styles, and can be zinc coated.

Another type of high-strength bolt and threaded rod which is quenched and tempered alloy steel, and is called an ASTM A354 is also readily available; it comes in two grades - BC and BD and in diameters from ¼" to 4". Because the tensile strength of Grade BD fasteners may exceed 150 ksi, they cannot be zinc coated. These two grades of fasteners are frequently used for large bolts or rods, where high strengths are required.
Discussion of Various Topics Related to High-Strength Bolting

In the following paragraphs, various topics related to high-strength bolting are discussed:

Types of Connections:
A bolted connection may be designed as either a bearing type or a slip critical connection. Caltrans Standard Specifications require that all connections made with high-strength bolts shall be considered as (slip-critical) friction-type joints, and shall be tensioned as a typical slip-critical joint, unless otherwise designated on the contract plans or specifications. To insure that adequate friction is developed between joint plies, faying (contact) surfaces of all high-strength bolted connections shall be free of rust, mill scale, dirt, grease or any other material foreign to the steel, before assembly. Specifications may require faying surfaces of bolted connections to be coated with either hot-dip zinc coating that has been hand wire brushed prior to assembly, or with an approved inorganic zinc primer prior to assembly.

Bolt Holes:
Bolt holes shall be either punched full size, drilled full size, sub-punched and reamed, or sub-drilled and reamed. Flame cutting of holes is not permitted. Reference Section 55-3.14A, “Bolt Holes” of the Caltrans Standard Specifications, and Table 1 in Section 3(c) of the RCSC Specification. For high-strength bolts, the diameter of standard bolt holes is 1/16" larger than the nominal diameter of the bolt shank.

Thread Stickout:
Determining and purchasing the correct bolt lengths for each different joint is the responsibility of the contractor. The amount of exposed thread beyond the outer face of the nut is called “thread stickout”. After high-strength bolts have been installed and tensioned, the permissible range of thread stickout permitted is from flush to not more than 1/4 inch beyond the outer face of the nut. Note: On TC bolts frequently there are a few partial threads adjacent to the groove where the splined tail breaks off. Therefore for TC bolts, thread stickout shall be measured from the outer face of the nut to the first full thread near the sheared end of the bolt (after the splined end has been sheared off).

Hardened Washers:
According to Section 55-3.14 of the Standard Specifications, one (flat) hardened washer (ASTM F436 or F436M) must be installed under the nut or bolt head, whichever is the element turned in tightening. A maximum of one additional hardened washer may be installed under the non-turning element of the fastener assembly to correct excessive thread stickout. Regardless of the method used to tension the bolt, or the type of connection design, lock washers are not an allowable substitute for hardened washers. Lock washers generally do not have adequate surface contact area, or sufficient corrosion resistance, and due to different steel chemistry and thinner protective coatings, corrode at a higher rate than adjacent steels. If the slope of the exterior face(s) of the connected parts exceeds 1:20 (approximately 3 degrees) relative to the bolt or nut face, a hardened beveled washer(s) meeting requirements in ASTM Specification F436 shall be inserted against each sloped surface.
Snug-Tight Condition:
No matter which of the approved tightening methods is used to tension high-strength bolts, the first step in tightening a joint is the same - bring all plies in the joint in contact by snugging the fasteners. This requires all fasteners in a joint to be brought to a snug-tight condition using a systematic tightening sequence (starting from the center of the joint). “Snug-tight” is defined as the full effort of a person using a spud wrench or a few impacts of a pneumatic wrench applied to the nut. While snugging fasteners, if plies are not initially in contact, care should be taken to avoid bending of the connection parts. Following snuggling, all plies in a joint must be in firm contact with each other.

Systematic Tensioning Pattern:
All bolts in a joint need to be tensioned in a systematic manner to produce a consistent even tension in each bolt. The tensioning pattern may be done in a crisscross or alternating fashion, and needs to be systematic to produce an even tension in all bolts. This tightening pattern should be used to bring bolts to the snug condition, and also to their final minimum required tension. In joints having a rectangular or square bolt pattern, bolts must be tensioned, starting at the center (most rigid part) of the joint and proceeding toward the free edges. For joints having a circular bolt pattern, a crisscross alternating pattern is appropriate. Writing a sequential number on each fastener in a large joint is a good way to insure all bolts are tensioned in their correct order, and none miss their turn. To insure that all fasteners are fully tensioned, this final tightening process may require more than one cycle.

Fastener Storage and Handling:
Storage: Regardless which of the approved methods is chosen to tension high-strength bolts, the condition of the fastener components (especially threads on both the nuts and bolts) is critical; all fastener components must be furnished and maintained in good condition until installed and final inspection has been performed. The original lubricant on all fastener components must be kept intact as supplied from the manufacturer, and all fastener components must be stored so that they do not get rusty or dirty. As soon as fastener containers are received at the job site, they must be stored in the original containers and protected from dirt and moisture. Containers should always be covered and be kept off the ground.

Handling: Fastener components from different lots must never be inter-mixed. Only those fastener components that are to be used in one shift are allowed to be removed from containers. Components not used during that shift must be returned to their original containers. The following information must appear on the outside of the shipping/storage containers:

1. Manufacturer’s name and address.
2. Contents (size and numbers).
3. Component lot number.
4. Rotational capacity lot number.

Note: All components of galvanized fastener systems (including bolts, nuts, washers, and DTIs) must be shipped and kept together as an assembly.
Lubrication:
Plain (black) Fasteners: Most plain or “black” fastener components have been heat-treated and all parts are coated by the manufacturer with a thin film of water-soluble (oily) lubricant that can be easily washed-off if exposed to moist elements. Prior to being installed, threads on bolts and nuts shall be oily to the touch, as received by the manufacturer. Should the bolts, nuts, or washers show signs of improper storage, such as rust and dirt accumulation, or absence of original lubricant on the threaded fastener components, this shall be cause for rejection.

Zinc-coated Fasteners: All zinc-coated nuts used on high-strength zinc-coated bolts must be coated by the manufacturer with a lubricant that is clean and dry to the touch, unlike black bolts that are furnished in an oily condition. To make identification easier, a colored dye, or an ultraviolet dye that can be seen with a black light, is required in the lubricant used for all galvanized nuts. No attempt should be made to tension a high-strength, zinc coated bolt whose nut has not been lubricated with a dry lubricant or properly “tapped” oversize. Without the proper lubrication applied on the nut threads and base, the fastener threads can gall, strip or seize, causing the bolt to shear off before the required bolt tension is reached.

Rotational Capacity (RoCap) Test:
At the job site, a rotational capacity test must be done on each lot of both plain and galvanized fasteners to confirm that the nut lubricant, and thread fit and condition as received from the manufacturer will result in proper tensioning without galling or stripping of threads or shearing of the bolt and that the bolt has good ductility. The quality and amount of lubricant and thread fit and condition can vary considerably between various manufacturers and fastener lots, therefore, the use of torque values obtained from charts or tables, or by testing other lots of fasteners is not allowed.

Reuse of High-Strength Fasteners:
Black A325 nuts and bolts may be reused once if allowed by the Engineer. However, neither A490 fasteners nor galvanized A325 fasteners shall be reused after they have been tensioned. Reuse of black A325 bolts and nuts should only be considered if they are in good condition (clean and with lubricant), the bolt threads are not excessively elongated (checked by spinning the nut by hand over the entire length of bolt threads), and each fastener lot is retested and passes the new pre-installation and rotational capacity tests. Once installed, neither TC bolt assemblies nor direct tension indicators (DTIs) may be reused.

Inspecting a Completed Bolted Joint:
Section 55-3.14, “Bolted Connections” of the Caltrans Standard Specifications states, “Bolt tension shall be verified by applying a job inspecting torque to nuts at locations selected by the Engineer. Inspection of each joint should be done as soon as possible, just after tensioning of all fasteners in a joint has been completed. At least 10% of the fasteners in each joint shall be checked. Verification of bolt tension shall be done by the Contractor in the presence of the Engineer and in such a manner that the Engineer can read the torque wrench gage or see gaps around the DTI during checking.” The job inspecting torque shall first be determined by the Contractor by testing five fasteners.
from each lot of bolts according to the procedure detailed in Section 9 (b)(3) of the RCSC Specification. To verify adequate tension in each of the fasteners selected for inspection in a completed joint, a suitable manual torque wrench (dial or digital read out only) is used to apply the job inspecting torque value to nuts (or bolt head, if turned). During the inspection, if any of the nuts turn, then 100% of the bolts in the connection shall be tested, and all bolts found to be under tensioned shall be tightened, and then re inspected.

Definition of Terms Commonly used in High-Strength Bolting

Term's commonly used in high-strength bolting operations and specialized tools need to be clearly understood. The following is a list of terms and tools that are frequently used when dealing with high-strength bolts. Inspectors and construction personnel need to be familiar with these - what they are and how to use them. They include:

Bolt tension calibrator: A machine to measure bolt tensions (i.e., Skidmore-Wilhelm, or Norbar).

DTI (direct tension indicator): A device installed on high-strength bolts to monitor bolt tension. It must conform to requirements in ASTM F959/F959M.

![Typical direct tension indicator (DTI)](image)

Electric installation tool for tension control (TC) bolts: An electric tool used to install TC bolts.

Faying surfaces: Contact surfaces between structural plates within a high-strength bolted joint.

Grip length: The total thickness of all plies in a joint, including washers (distance between the underside of the bolt head and the inside face of the nut.

Pre-installation testing: A test series performed on each lot of fasteners, and at the beginning of a shift or job in which the installer demonstrates that with the actual
installation equipment and lot of fasteners to be used on the structure, he can properly install them and obtain the proper tension.

Job inspecting torque: A torque value established for each lot of fasteners, and used after a joint has been completed to check that bolts have been tightened to at least the minimum tension.

Match marking: A series of four marks made on the outer surface of a joint, after all fasteners in a joint have been snug tightened to monitor the amount the nut has been turned. Match marking is required if the turn-of-nut tensioning method is used.

Mechanical deposited and hot-dip zinc coating: Two different coating processes where zinc metal is applied to surfaces of fastener components.

Rotational capacity (RoCap) test: A preliminary test performed both by the manufacturer and at the job site on new fasteners to insure that there is proper lubrication on fastener threads and that there is adequate ductility.

Snug tight: The preliminary tightening stage that all fasteners in a joint must be taken to, that produces a tension in each fastener of about 10% of its final tension, and that brings all plies of a joint into firm contact.

Tension Control (TC) fastener: An alternative high-strength fastener system, which includes a nut, washer, and bolt with a splined end. It must conform to requirements in ASTM Specification F1852.

![Typical twist-off type TC fastener system](image)

Thread stickout: Amount of threaded bolt tail projecting beyond the outer face of the nut on an installed bolt.

Torque multiplier: A tool used to amplify tightening effort applied to tension (install) or inspect large high-strength bolts.

Torque wrench: A tool (dial or digital type permitted) used to tighten and inspect high strength bolts.
Inspection Procedure for Checking Tension in High-Strength Bolts

Introduction

Following is a brief summary of information that will aid personnel charged with the responsibility of inspecting high-strength bolted connections.

Phases of Inspection

There are three main phases of inspection necessary when high-strength fasteners are installed. These are: 1) Preliminary inspection and testing, 2) Inspection during high-strength fastener installation, and 3) Inspection after high-strength fasteners have been installed.

Phase 1 - Preliminary Inspection and Testing

1. Sampling components and laboratory quality assurance testing:
 Fasteners arriving at the job site should be sampled and tested by Caltrans to insure compliance to American Society for Testing and Materials (ASTM) requirements prior to use.

2. Pre-installation testing:
 After the satisfactory quality of fasteners is confirmed, the Contractor is required to perform pre installation testing. A calibrated bolt tension-measuring device (Skidmore-Wilhelm or Norbar) is required for this testing. This testing will demonstrate that the Contractor has proper equipment and knowledgeable personnel to correctly install high-strength fastener systems being used and can obtain the proper fastener pre-tension for all lots of fasteners to be used. This includes insuring that "snug-tight" tension is correct, impact wrenches and torque wrenches produce the adequate minimum tension, the correct size of calibrated wrench is used (it should take about 10 seconds to fully tension a fastener with a pneumatic or hydraulic wrench).

3. Rotational capacity (RoCap) testing:
 This test will verify that the quantity and quality of lubricant and numerous other variables affecting nut factors including thread fit and condition and coating type and thickness will allow fasteners to be tensioned without galling or stripping.

 When doing RoCap testing for all lots of fastener systems, a calibrated bolt tension measuring device (calibrated within the last year and traceable to the National Institute of Standards and Technology) shall be used. If fasteners are too short to fit in a bolt tension
meter and obtain a full nut, then the short bolt test procedure, as outlined in the current Caltrans Standard Special Provisions shall be used.

Phase 2 - Inspection during High-Strength Fastener Installation

The Inspector shall verify that:

1. The contractor has chosen an acceptable type of high-strength fastener systems as permitted in the contract. Acceptable types may include:
 a) Black bolt (ASTM A325) [with a suitable nut (ASTM A563) and washer (ASTM F436)].
 b) Zinc-coated bolt (ASTM A325) [with a suitable nut (ASTM A563) and washer (ASTM F436)].
 c) Tension control (TC) fastener assembly (ASTM F1852).
 d) Black or mechanically zinc-coated bolt (ASTM A325) [with a zinc-coated Type 325 DTI (ASTM F959), suitable nut (ASTM A563) and washer (ASTM F436)].

2. The contractor is using an approved method of installing high-strength bolts and maintains proper installation technique throughout the project. Approved installation methods include:
 a) Turn-of-nut.
 b) Calibrated wrench [impact wrench (pneumatic, hydraulic, or electric) with positive shut-off system or manual torque wrench - dial or digital only]
 c) Direct tension indicators (DTI’s) with black or mechanically zinc-coated bolts.
 d) Tension control (TC) fastener assemblies.

3. All high-strength bolts are installed with a flat hardened washer under the nut or bolt head, whichever is the element turned in tightening. A maximum of one additional hardened washer may be installed under the non-turning element of the fastener assembly so as to prevent the nut from “bottoming out” within the thread transition zone on the bolt shank. (Lock washers are not an allowable substitute).

4. A back-up wrench is used on each fastener to prevent the non-turning element (usually the bolt head) from turning while the fastener is being tensioned.

5. Installation tests have already been run for all equipment and workers involved, and for each different lot of fasteners used. If a different lot of fasteners or installation equipment is used, or new or different installation crewmembers begin work, new pre-installation tests must be conducted.

6. All fasteners in a joint are installed and tensioned at one time. (It is not acceptable to partially install some of the bolts in a joint, or to “stuff” bolts in a joint and let them remain loose for long periods untensioned).

7. All fasteners, no matter which type are used, shall first be taken to a “snug-tight” condition in a systematic tightening pattern, and then fully tensioned in stages using a systematic tightening pattern.
8. Faying surfaces of all plies in each joint and are in firm contact with each other after the members have been brought to a “snug-tight” condition (defined as the full effort of a person using a spud wrench or 12” flex-handle and socket).

9. No short cuts are taken in the proper installation procedure.

10. The fasteners are properly stored after each shift is done and are not allowed to be exposed to degrading elements (especially rain, fog, dampness, dirt, wind, or extreme temperatures).

Phase 3 - Inspection after High-Strength Fasteners Have Been Installed

After all fasteners have been installed and fully tensioned, a final inspection check is done to ensure the job was done properly. This includes 1) a visual check to confirm all plies of a joint are in firm contact, especially around bolts, 2) a check of tension in 10% of the fasteners in each connection (but not less than two) using a torque wrench (dial or digital gage) to confirm that minimum required bolt tension has been attained. This torque requires that a “job inspecting torque” be determined by the contractor for each different lot of fasteners used. A bolt tension calibrator should be used to establish the “job inspecting torque”. Bolt tensions in a joint should be inspected immediately after a joint has been completed. If nuts on any of the bolts checked during the inspection move prior to reaching the job inspecting torque, the remainder of the fasteners in the connection should be inspected and retensioned. Directions for establishing a job inspecting torque value and adjusting tensions in loose bolts are found in paragraph 9(c) of the RCSC Specification (Reference 4 of Attachment No. 3) and shall be followed. Methods for inspecting short bolts are contained in the Structural Bolting Handbook [SBH] (Reference 10 of Attachment No. 3) and require the use of DTIs. Joint seams shall be caulked if needed after fastener tensions in the connection have been inspected and the joint has been approved.

Besides checking bolt tension, the thread stickout should be checked to verify that it is between 0 (flush) and 1/4" beyond the outer face of the nut and that it is the same for all fasteners of similar length. An equal amount of thread stickout in each bolt is an indication that bolt tensions are consistent. Variations in bolt stickout are an indication that some fasteners may be undertensioned, or that joint plies are not in firm contact. Additionally, variations in the thread stickout could indicate that fasteners from different lots have been improperly utilized within the same joint.

It is the contractor’s responsibility to provide all required testing equipment and to perform the tests in the presence of the Engineer. If needed, the Division of Structure Construction has bolt tension calibrators and torque wrenches that are available for use by Caltrans personnel for quality assurance inspection.

Attachment No. 1 contains answers to frequently asked questions regarding high-strength fasteners. Attachment No. 2 is a list of specifications and references for high-strength bolting.
COMMON QUESTIONS AND ANSWERS CONCERNING HIGH-STRENGTH FASTENERS

1. Q. What is a Pre-Installation Test (also called an Installation Verification (IV) or Calibration Test)?

A. The pre-installation tests are performed by the Contractor’s personnel using the same installation equipment and witnessed by the Engineer. At least three fasteners from each lot shall be tested in a bolt tension calibration device; if bolts are too short to be installed in such a device, then DTIs and the procedure outlined in the SBH (Reference No. 10 of Attachment No. 3) shall be followed. Rules and required testing frequency are described in Section 8(d) of the RCSC Specification (Reference No. 4 Attachment No. 3). These pre-installation tests will determine the ability of the Contractor’s personnel, equipment and procedures used in the actual construction to properly install the same high-strength fasteners used in the structure, according to the approved installation method specified or chosen.

2. Q. What is a Rotational Capacity (RoCap) Test?

A. This test must be performed by the manufacturer/supplier according to the procedure in the Caltrans Standard Special Provisions. The Contractor is also required to perform the RoCap test at the job site using the same test procedure. This test will verify that the various lots of fastener assemblies when finally ready to be installed at the job site, are capable of withstanding a prescribed nut rotation without failure of the fastener (insures good ductility of fastener), that nuts have been properly lubricated in order to prevent seizing or galling of the threads, and that bolts and nuts are properly tapped and heat treated to prevent thread stripping.

3. Q. Do RoCap tests need to be done on TC bolts, and on fasteners on which DTIs have been installed?

A. Yes.

4. Q. How many bolt assemblies are necessary for each test required?

A. Pre-Installation Test: 3 minimum per lot (perhaps checked daily)
 Rotational Capacity Test: 2 minimum per lot
 Job Inspecting Torque determination: 5 minimum per lot (discard 2 test values)

5. Q. May any fastener components which have been used for any tests (including any Pre Installation, torque/ tension calibration, RoCap, or determination of Job Inspecting Torque) be reused?

A. No.

6. Q. Why are torque values from torque-tension tables or formulas not permitted to be used to established proper torque?
A. Each lot of bolts, nuts, and washers is different (amount and type of lubricant, fit and roughness of threads, and thickness, roughness and type of corrosion-protective coating may vary). A standard table or formula relating torque and tension cannot accurately predict the many variables for a particular lot of fasteners; therefore, values chosen from tables or calculated from a theoretical formula are not acceptable. If an emergency situation arises, contact the fastener specialist at Caltrans Division of Materials Engineering and Testing Services (METS).

7. Q. Who determines the bolt length to be used in a connection?
 A. It is the Contractor’s responsibility to provide the correct bolt length, unless the Designer has specified the length in the contract documents. Caltrans specifications require that the final thread stickout shall be a maximum of 1/4" and at least flush with the nut face. This insures full bolt thread engagement with the nut, and also provides a maximum number of threads (at least 3 to 5) within the grip length to insure good ductile capacity of the bolt if loaded in extreme conditions.

8. Q. If a bolt is too long, can additional washers be added?
 A. One washer is required to be placed under the nut (or turned end) of the fastener. Caltrans allows only one additional washer to be added (under the unturned fastener end) as a minor adjustment for proper thread stickout.

9. Q. What should be done when fastener holes in joint plies are misaligned?
 A. The Designer should be contacted and address this condition. It may be permissible to ream misaligned bolt holes up to 1/32" over the diameter normally required for a standard hole. Further reaming to permit use of the next size larger fastener may be acceptable if ample spacing, edge distance, and remaining net section are available in the joint and if allowed by the Engineer. Bolt holes shall only be modified by implementing the placement of holes as stated in Section 55-3.14 of the Caltrans Standard Specifications (Reference 1 of Attachment No. 3).

10. Q. Are warped plates allowed in a bolted joint?
 A. Generally, firm contact between plies cannot be attained during the snugging operation, as required, when warped plates or improper fit-up are present in a bolted connection. Gaps around bolt holes and between plies of a friction-type connection are not acceptable. Proper fit-up of a joint prior to bolting is required. Heat straightening and shimming may be possible corrective measures, which can be used to correct warped plates prior to bolting. The Engineer, however, should use prudent judgement as to the acceptability of any material, given the design considerations. The Paragraphs 3.5.1.14 and 3.5.1.15 of the American Welding Society (AWS) Code D1.5 address the general issue of warped plates for mechanically connected joints and splices.

11. Q. What measures should be taken if Contractor does not handle or store fasteners properly?
 A. Section 8(a) of the RCSC Specification requires that fasteners be stored properly. The Inspector at the job site should immediately notify the Contractor if any fastener
components are improperly handled or stored, and should document any instances of improper storage or handling in a diary. Proper handling and storage includes: 1) storing fasteners out of the weather in their original containers, off the ground, preferably in a closed building with a roof. 2) removing only as many fasteners from their original containers as can be installed during a work shift. 3) returning unused fasteners to their original containers in protected storage at the end of the shift, and 4) Not altering the original lubricant in any way from the way it was in the as-delivered condition. These requirements are all covered in Section 8(a) of the RCSC Specification.

12.

Q. What should be done to fasteners that have become dirty or rusty, or have lost their original lubricant?

A. Fastener components that have not been properly stored may have been exposed to moisture, dirt, or dust, and as a result, may have had lost their original lubricant, or become dirty or rusty. Any changes in the original lubricant or thread condition on most fastener components, especially ones such as Tension Control (TC) fasteners, will affect their torque-tension relationship and how they function and may prevent adequate minimum tension from being attained. Fasteners which have become dirty, rusty or whose original lubricant has changed or been altered should be rejected by the Engineer. Whether the rejected fasteners can be restored to a satisfactory useable condition will vary depending on the degree of degradation and damage. If they are deemed salvageable, how they are to be restored to a useable condition and who can do the restoration will vary, depending on the type of fastener, the type of restoration work required, and the facilities available to the Contractor to rework the fastener components. Each case may require the Engineer to assess what facilities and capabilities the Contractor has available and whether he can do a satisfactory job.

Black fasteners are generally easier to clean and relubricate than zinc-coated ones, and in some cases, this operation can be done by the contractor. Light dust or dirt on fasteners can often be removed and fasteners may be relubricated. Rust on fasteners generally results from improper storage and exposure to moisture. The degree of rust damage and the effect of pitting is often more difficult assess and correct. The degree of rust and pitting will determine whether fasteners are salvageable. Light rust on the male threads can often be removed successfully, and fasteners may be relubricated and reused. Moderate to heavy rust that causes heavy pitting usually cannot be corrected and fasteners should be rejected. Rust on the internal threads of nuts is much more difficult to assess or remove; rusty nuts that cannot be thoroughly cleaned or restored should be rejected. Any restoration of damaged fasteners to their original condition and retesting is the responsibility of the contractor. If the Engineer deems that fasteners can be saved, the Contractor is responsible for assuring that the fasteners are thoroughly cleaned and uniformly relubricated, and then for performing additional pre-installation and rotational capacity tests at his expense, to prove the modified fasteners are acceptable.

Often the Contractor is not equipped to perform satisfactory cleaning and relubrication at the job site. Reworking fasteners that have been rejected due to excessive dirt, rust,
or lack of proper lubrication requires certain minimum facilities and equipment. These may include a suitable indoor site, equipment and manpower to 1) thoroughly clean the fasteners (i.e., remove all dirt and rust with appropriate cleaning solvent), 2) apply a uniform amount of suitable lubricant similar to what was originally applied to the fasteners, 3) maintain lot integrity of each fastener component requiring cleaning, and repack each component and remark containers. The Contractor may wish to rework lots of rejected fasteners, but the Engineer needs to judge whether the Contractor is capable of doing a satisfactory job. If the Engineer does not feel that the Contractor is capable of satisfactorily cleaning and relubricating rejected fastener lots, the Engineer should advise him why.

Each component of a black fastener system is originally provided with a water-soluble oil to protect it from rust and to reduce friction when nuts are being snugged and tightened. For zinc-coated fasteners, only the nuts are lubricated with a special dyed, dry lubricant that is clean to the touch.

The type and quantity of lubricant applied by the original manufacturer to nuts on TC fastener systems is very critical and important. Therefore, any lot of TC fasteners that have been rejected for dirt, rust, or improper lubrication should only be reworked, retested, and recertified by the original manufacturer. Any alteration of the original lubricant by anyone other than the original manufacturer voids any certification or warranty made by the manufacturer of a TC fastener system, and should never be allowed. The Engineer should reject TC fastener systems failing to meet any of the required job site tests. The Contractor may return any rejected lot of TC fasteners to the manufacturer for reworking, retesting, and recertification.

Additionally, lubricants should not be sprayed or applied to bolts that have already been installed in a connection, as the lubricant could seep into the faying surfaces of the joint and result in a loss of friction on faying surfaces of a slip-critical joint.

13.
Q. Can a Contractor alter (either add or remove) the original lubricant present on fasteners that he received from the manufacturer?

A. No. The original lubricant on the fasteners must not be altered. The manufacturer or responsible party for each fastener system has applied a certain amount and type of lubricant to each fastener in a lot, has tested each lot, and certified that the fasteners comply with all appropriate specifications and ASTM requirements. The original fasteners must be properly stored and maintained to preserve their original condition for all preliminary testing, installation, and tension verification checks on each completed joint. The contractor is not permitted to alter any original lubricant on high-strength fastener systems in any way, either for preliminary testing, or before or during installation. If a particular lot of fasteners should fail any of the preliminary tests required and done at the job site, the Engineer should reject the lot.
14. Q. May one type/grade of high-strength fastener be substituted for another?
A. Generally not. Each grade/type has its own specific material composition, strength and dimensions. Because of smaller head dimensions and shank diameter tolerances, Society of Automotive Engineers (SAE) grades of fasteners (Grades 5 and 8) generally should not be interchanged with ASTM high-strength bolt types. Any request for substitution of a type or grade of bolt different from what was originally specified should be submitted to the Engineer for review prior to acceptance. For further information, contact the high-strength fastener specialist at the Division of METS.

15. Q. If the exterior surface of any steel member is sloped/angled greater than 1:20, can high-strength bolts be used?
A. Yes; however, if the slope of the exterior face of any member exceeds 1:20 (about 2.9 degrees), relative to the washer-faced bearing surface of the bolt or nut face, a hardened beveled washer must be used between the exterior face of the sloped steel part and the bolt head and/or nut to compensate for the excessive slope, and reduce the slope(s) to less than 1:20.

16. Q. May high-strength bolts that were used/tightened once, be reused?
A. Neither ASTM A490 nor galvanized A325 bolts may be reused. Only plain “black” A325 high-strength bolts should be considered for reuse. Reuse of any black A325 bolts and nuts should only be permitted if the Engineer determines the bolts are in good condition, the bolt threads have not been significantly elongated plastically (this can be checked by spinning the nut by hand over the entire length of bolt threads), and each lot of used fasteners is re-tested and passes the pre-installation and rotational capacity tests. All fastener components used for pre-installation or rotational capacity tests, or for determining job inspecting torques shall be discarded.

17. Q. May TC bolts and/or DTI’s be reused?
A. No. Once installed and fully tensioned or used for any type of testing, they must be discarded.

18. Q. Where should a DTI be installed, which way do the bumps face, and how do I determine if the bolt has adequate tension?
A. The correct preferred position of a DTI is under the bolt head, with the DTI bumps bearing against the underside of the hardened bolt head. Alternate positions are possible, but only when reviewed and approved by the Engineer. DTI bumps must never bear against any soft steel or any turned component. For bolts to have adequate tension, the gaps on zinc-coated DTIs need to be compressed to 0.005” or less (and also need to be greater than 0). The manufacturer's installation procedure should be followed. For more information, obtain appropriate installation instructions from either DTI manufacturer (see Sheet 10 of 10 of Attachment No. 2), or contact the fastener specialist at the Division of Materials Engineering and Testing Services.
19. Q. Who establishes the job inspecting torque and how is it determined?

A. The Contractor determines the value for inspection torque by testing 5 fasteners, in the presence of the Engineer, in accordance with Section 9(b)(3) of the RCSC Specification. One high and one low reading are discarded, and the remaining three readings are averaged. The Engineer will record the job torque, determine which bolts in the joint shall be inspected, and witness the Contractor performing the actual checking. The procedure shall be performed in accordance with Section 9(b) (4) of the RCSC Specification.

20. Q. Can a contractor partially install (“stuff”) some or all fasteners loosely in a joint with the intent of coming back in the near future and completing his tightening operation?

A. No, absolutely not! The RCSC Specification [Section 8(A)] clearly prohibits this practice. Only as many fasteners as can be completely installed and tensioned during a work shift can be removed from the storage area. This rule helps prevent fasteners from losing their lubricant and rusting before the tightening operation and tension verification check has been completed. Occasionally an uneducated or unscrupulous contractor will attempt to do this so that he can speed up his operation. Wise inspectors of course prevent this practice and explain why it is a bad thing to do.

21. Q. Why must hot-dip galvanized faying surfaces be hand wire brushed?

A. Hand wire brushing is required in order to assure that the galvanized surfaces will have sufficient friction between the plates in contact. Using power driven wire brushes can result in polishing of the surfaces, which would reduce the friction between the surfaces and the capacity of the connection.

22. Q. Why is the thread stickout limited to ¼ inch beyond the face of the nut?

A. If the thread stickout exceeds ¼ inch, the length of full threads within the grip of the joint is very short, and any elongation that occurs in the bolt during tightening is limited to a very small portion of bolt threads within the grip. Excessive thread stickout reduces the ductile capacity of the fastener during extreme unusual combined tensile and shear loading that might take place during an earthquake. In addition, if thread stickout is extremely large, it is possible that the nut would “bottom out” in the transition zone of the threads during tightening and prior to the full tension of the bolt being achieved. In this case, there may be insufficient tension in the bolt although high torque readings may give a false indication otherwise.

23. Q. What level of inspection is required in order to assure that the bolts have been installed properly?

A. All stages of bolt installation and tensioning must be witnessed in order to assure compliance with the specifications. It is the responsibility of the inspector witnessing high-strength bolting at the job site to thoroughly understand and enforce Sections 2, 3, and 8 of the RCSC Specification. Verifying that the required final torque has been achieved, without witnessing that the snugging and tensioning operations were
performed properly, does not guarantee that, after the joint has been completed, each of the fasteners have the minimum tension required
LIST OF SPECIFICATIONS AND REFERENCES FOR HIGH-STRENGTH BOLTING:

 Note: By reference in the Caltrans Standard Specifications, this RCSC Specification is made a part of all Caltrans construction contracts. The use of high-strength bolts in structural steel connections must conform to requirements in this specification, unless otherwise stated in the contract Standard Specifications or Standard Special Provisions.

5. The following Specifications within the Annual Book of ASTM Standards, Volume 01.08, "Fasteners":
 • ASTM A325 or ASTM A325M, *Structural Bolts*.
 • ASTM A563 or ASTM A563M, *Nuts*.
 • ASTM F436 or F436M, *Hardened Washers*.
 • ASTM F959 or F959M, zinc coated *Direct Tension Indicators*.
 • ASTM F1852, *Twist off type TC Bolt Assemblies*.

6. The following National Standard titled *Fasteners for Use in Structural Applications*, ASME B18.2.6-1996, published by the American Society of Mechanical Engineers.

Approved Methods of Tensioning High-Strength Bolted Connections

Introduction

The Caltrans approved methods for tensioning of common high-strength bolt systems consists of two standard methods and two alternative methods. The two standard methods are known as the Turn-of-Nut method and the Calibrated Wrench method. The two standard methods alternative methods are known as the Twist Off-Type Tension Control (TC) bolts and the Direct Tension Indicator method. The basic steps for field testing, installation and performing final inspection of the standard methods are very similar to those of the alternative methods.

All fastener systems must pass the required pre-installation test, calibration testing and rotational capacity before being installed in a structure. These tests are performed at the job site by the Contractor and are witnessed by the Engineer. The faying (contact) surfaces of all joint plies must be clean and flat. In many instances, a thin coating of qualified paint or hot-dip galvanized zinc coating may be allowed on faying surfaces. The components to be assembled must fit properly such that the faying surfaces between plies in a joint must have full contact when bolts are installed at a snug condition only. All fasteners in a joint must first be tightened to a snug condition before the final tightening process can begin. In both the snugging and final tightening process, a systematic pattern must be used to tighten each joint, using a crisscross sequence to insure that bolts are evenly tensioned. The final tensioning of A325 fasteners in slip-critical bolted connection must have the following minimum tensions:

<table>
<thead>
<tr>
<th>Nominal Bolt Diameter (Inch)</th>
<th>Minimum Tension Values for A325 Fasteners (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual Minimum*</td>
</tr>
<tr>
<td>1/2</td>
<td>12</td>
</tr>
<tr>
<td>5/8</td>
<td>19</td>
</tr>
<tr>
<td>3/4</td>
<td>28</td>
</tr>
<tr>
<td>7/8</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>1 - 1/8</td>
<td>56</td>
</tr>
<tr>
<td>1 - 1/4</td>
<td>71</td>
</tr>
<tr>
<td>1 - 3/8</td>
<td>85</td>
</tr>
<tr>
<td>1 - 1/2</td>
<td>103</td>
</tr>
</tbody>
</table>

* Tension values equal to 70 percent of specified minimum tensile strength, rounded to the nearest kip as specified in Table 4, titled Minimum Fastener Tension for Slip-Critical Connections and Connections Subject to Direct Tension, T_m, of the Research Council on Structural Connections (RCSC) Specification for installing A325 fasteners in slip-critical connections.

** Values are used for calibration and pre-installation testing of all A325 high-strength fastener systems.
Once all fasteners in a joint have been fully tensioned, the joint is inspected. This requires 1) a visual check to insure that plies are in full contact, and thread stickout is in the proper range and is uniform for all fasteners, and 2) the job inspects torque is applied to 10% of all fasteners in each joint. Joints should always be inspected immediately after being completed. These same basic procedures are common for all of the approved fastener systems.

Standard Methods for Installing High-Strength Bolts

The following discussion gives specific information about the two standard methods, Turn-of-Nut and Calibrated Wrench, allowed by Caltrans for installing and checking high-strength bolts:

Turn-of-Nut Method

1. **First snug tighten all bolts:**
 When the turn-of-nut method is used, each bolt in a joint must be first brought to a snug-tight condition. At this point, all joint plies should be in firm contact and match marking is done.

2. **Match mark all bolts:**
 When the turn-of-nut tightening method is used to install high-strength bolts, match marking is an important mandatory part of the tightening operation. After snugging, the turned element of all fasteners and the outer plate in the joint are match marked with a felt marker or marking pencil as shown below so that the installer and inspector can see that the nuts have been turned a sufficient amount to adequately tension the fastener. The pictures below show the four initial marks made, and the final position of the marks after tightening has been completed.

![Match marks](image)

Initial position of match marks

Note: The two lines on the outer steel ply indicate the start (S) and finish (F) point of the turned element.
In a properly match-marked joint, four marks are made at the turned end of each fastener. These are:

a) **A mark on one corner of the nut.** In addition to this mark on one corner of the nut, the outside of the socket used to tighten the nut is usually also marked with a line on its exterior which will be visible during the tightening operation. This mark on the outside of the socket should overlay the hidden mark on the nut corner.

b) **A start line, S, put on the outer steel ply** after all bolts have been snug tightened, and which aligns with the corner mark on the nut.

c) **A radial line through the end of the bolt tail,** in line with the start line on the outer steel ply and the nut mark. This radial mark through the bolt tail is important, as it gives a clear indication whether the bolt head turned during tightening (i.e. was properly backed up and kept from rotating during the tightening operation).

d) **A finish line, F, on the outer steel ply** at the appropriate amount of either 1/3, 1/2 or 2/3 of a turn clockwise past the S mark. The location of this (F) mark will vary and depends on the length of the bolt being tightened.

3. **Final Tensioning of Fasteners:**
The final tightening of the bolt is done as follows:

The socket is positioned so that its exterior mark is aligned with the start (S) mark on the outer steel ply and the mark put on the corner of the nut. The nut is then turned a prescribed amount, depending on the bolt length as shown in Table 5 of the RCSC Specification, until the initial mark made on one corner of the nut lines up with the final mark, F, on the outer ply of the joint. While the nut is being turned, the bolt head (or component of the bolt that will remain stationary) is held with a back-up wrench. The radial mark through the end of the bolt tail should still be aligned with the start mark, S, on the outer ply. If not, this is a clear indication that the bolt head turned during tightening, and the bolt tension may be below the minimum required. This completes the tightening.

The final position of the nut has an allowable tolerance of several degrees with respect to the final mark, F, depending on the size and length of the high-strength bolt. The following are acceptable tolerances:

<table>
<thead>
<tr>
<th>Bolt Length</th>
<th>Specified Turn</th>
<th>Tolerances Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 4D</td>
<td>1/3 turn (120°)</td>
<td>±30 °</td>
</tr>
<tr>
<td>over 4D but ≤ 8D</td>
<td>1/2 turn (180°)</td>
<td>±30 °</td>
</tr>
<tr>
<td>over 8 D but ≤ 12D</td>
<td>2/3 turn (240°)</td>
<td>±45 °</td>
</tr>
</tbody>
</table>

4. **Final Check:**
Each joint should be inspected as soon as all bolts in the joint have been tensioned. The job inspecting torque check should verify that the bolts in a connection, tightened by the turn of-nut method, are not below the required minimum tension. Loose bolts may indicate that the bolt heads were allowed to rotate during tightening or the plies of the joint were not in full contact after snug tightening was completed. Therefore, when installing several bolts in a single joint, it is best to snug bolts in at least two tightening stages, and to use a systematic, alternating
tightening pattern, starting near the middle of the joint. This process will insure even tension in all bolts when complete.

If the members being joined cannot be brought into firm contact by snugging all bolts, verify that the bolt is the correct length, and that the plies are not misaligned, warped, and do not have burrs and/or irregularities. If plies are misaligned and bolt holes do not line up, the cause of the misfit must be determined and corrected. Further tightening of bolts will generally not correct gaps between plies and around the bolts after they have been snugged, and may result in severely elongated bolts and/or distorted plates.

Calibrated Wrench Method

This tensioning method may be used only when the Contractor’s equipment and installation procedures are calibrated daily for each diameter, length, grade, and production lot of bolts.

Torque and/or impact wrenches shall also be recalibrated when significant difference is noted in the surface condition of the bolt or nut threads, or washers.

Calibrated wrenches used for installation shall be set to provide a bolt tension not less than five percent in excess of the minimum tension.

All bolts shall be installed with hardened washers under the turned element, and shall be brought to a snug condition prior to applying the final pretension. Snug tightening shall begin from the middle (or most rigid part) of the connection and progress to the free edges. The tightening operation should be performed such that a systematic (crisscross or alternating) pattern is followed and the same consistent pattern is used for both snugging and final tightening. In some cases, proper tensioning of the bolts may require multiple cycles of systematic partial tightening prior to achieving adequate and even pretension in all the bolts.

When using a torque wrench, the Contractor is required and the Engineer should verify that the torque used on bolts in the structure is consistent with the values determined during the calibration/pre-installation tests done at the beginning of the work shift. In addition, the length of bolt should be checked for compliance to thread stickout limits.

Using a suitable wrench with proper torque capacity for the desired bolt diameter and grade is very important. When the correct size of pneumatic impact wrenches are used, it should take the operator about 10 seconds (after snugging) to achieve the required minimum bolt tension. This condition may result if the time required to tighten a bolt to the minimum required tension is very short (4 seconds or less). It is undesirable to use a wrench which is too powerful for tensioning a particular size or grade of bolt because it can easily result in a fastener whose threaded shank is severely necked down and has been plastically stretched near ultimate capacity; this removes most all of the bolt’s residual capacity to stretch and deform plastically without breaking. Using too small, or a worn or broken impact wrench, on the other hand, will not produce the minimum bolt tension required at the recommended 10-second tightening period. Excessive hammering on nuts which results when attempting to tighten a bolt with an inadequate impact tool, (or too little air pressure or air volume) can distort nuts and damage any protective coating, and will still not provide sufficient bolt tension.
The following steps are typical ones used to properly test structural bolts when using a calibrated wrench:

1. The contractor should do calibration/pre-installation testing on a minimum of three bolts, nuts and washers for each diameter, length, grade, and production lot to be used for that day. Testing shall be performed in an appropriate model bolt tension calibrator, according to requirements in the RCSC Specification, Section 8 (d)(2). The contractor must order and use the proper length bolt for a particular joint thickness. Bolts from the same lot that are used in the structure must also be used for verification testing. Additional spacers with the proper center hole diameter must be used to adjust the grip in the bolt tension calibrator, so that two to three threads of stickout is flush with the face of the nut when the nut is finger-tight. Final stickout permitted is between flush and 1/4" past the face of the nut. Appropriate steps, as outlined in the Structural Bolting Handbook should be followed for testing short bolts.

If short bolts are required in the structure and cannot fit into a bolt tension-measuring device, direct tension indicators (DTIs) shall be used to verify adequate tension in the bolts. To determine the appropriate calibrated gap for a particular lot of DTIs, the contractor must furnish longer bolts of the same diameter and grade to be used in the structure, and use them in a bolt tension-measuring device along with DTIs. Once an appropriate calibrated DTI gap is established, the same lot of DTIs shall be used to determine torque or impact wrench setting for the short bolts installed in steel plate shimmed to the appropriate thickness to simulate the actual joint. The short high-strength bolts shall then be tensioned in a simulated joint to produce the same calibrated gap verified with DTIs from the same lot (Reference Direct Tension Indicator Method) and a torque value read at that gap. The average of the three torque values shall be the installation torque for that lot of short bolts and for that day.

2. First, the bolt must be brought to a snug condition. For the initial snugging, a spud wrench, impact wrench, or bar and socket may be used. The same tools used when installing high-strength bolts in the actual structure shall be used during installation testing.

3. Final tightening should follow one of the two following procedures:
 a. Procedure to be used with impact wrench:
 1) Tighten the bolt by turning the nut until the wrench “cuts out”. Verify that the tension achieved, as read on the bolt tension-measuring device, is at least 1.05 times the required bolt tension.

 2) Check the degree of turns on the nut to make sure it does not exceed the corresponding tolerance for the “turn-of-nut” rotation. If the amount the nut has been turned has exceeded the maximum rotation allowed, discard the assembly. A new assembly should be tested with the impact wrench torque value adjusted to correspond to the required bolt tension.
3) The high-strength bolt assembly shall be tested to ensure that the minimum tension is attainable by the installation crew and the tools being used, without exceeding the prescribed rotation.

b. Procedure to be used for torque wrench:
 1) Tighten the bolt by turning the nut until the tension on the bolt is at least 1.05 times the required bolt tension.
 2) Reading the dial on the torque wrench, measure the moving torque while turning the nut an additional 5 degrees in the tightening (clockwise) direction. This is the torque value that should be recorded.

 3) The average of the three values or the highest acceptable value should be used as the installation torque for this day.

Alternative Methods for Installing High-Strength Bolts

The following discussion gives specific information about the two alternative methods, Twist Off-Type Tension Control (TC) Fastener Assembly and Direct Tension Indicator, allowed by Caltrans for installing and checking high-strength bolts:

Twist Off-Type Tension Control (TC) Fastener Assemblies

All twist-off type tension control (TC) fastener assembly consists of a unique bolt having a splined end, a nut and a hardened washer. The head on the bolt is commonly domed or rounded, but may be manufactured with a hex shape. TC fastener assemblies are produced and shipped by the manufacturers as a precisely engineered and fully tested system. They must comply with requirements in the ASTM F1852 specification. Lubricant types and amounts and machining tolerances may be different from one lot to another, and consequently, the component parts may not be interchanged or altered in any way. Each assembly lot must be used only in the as-delivered, factory-lubricated condition. TC fasteners are installed using an electric wrench having a specially designed planetary chuck. This planetary chuck has dual sockets that engage both the nut and splined tail of the bolt at the same time and turn one relative to the other chuck until the splined tail on the end of the bolt breaks off.

When inspecting a TC fastener installation to ensure a that a quality job is being done, a number of things must be checked: the initial job-site testing of the fasteners must be carefully observed and checked, the installation procedure required by the manufacturer must be reviewed, proper storage of the fastener assemblies out of the elements must be constantly checked, the tensioning operation must be carefully monitored while in progress, and the final tension of at least 10% of the fastener assemblies must be checked using a job inspecting torque. Just verifying at the end of the job that the splined end of each bolt has sheared off is not adequate. This only signifies that at some time during installation, the assembly was subjected to a torque adequate to cause the shearing of the splined tail, not that the final tension in each fastener is adequate.

As with other fastener assemblies, representative samples of TC fastener must be taken from each lot and pre-installation tests run at the beginning of the job. Successful completion of these pre-installation tests will to assure that 1) the installer knows the proper procedure to install the fasteners and follows the manufacturer’s instructions, 2) the actual equipment he is using to
install the fasteners works properly, and 3) the fasteners provide the minimum tension as specified in Section 8 (d)(3) of the RCSC Specification.

When observing pre-installation tests, the following should be verified:

1. A representative sample of not less than three bolts of each diameter, length, grade, and lot shall be installed and tensioned by the Contractor at the job site in a bolt tension calibrator. The Contractor’s installer shall demonstrate that each assembly develops a tension not less than five percent greater than the tension required by Table 4 of the RCSC Specification.

2. When testing a TC bolt having a domed head in a bolt tension meter, a flat bushing specifically made for testing the domed tension control bolts must be used under the domed head. These special bushings are not normally furnished as standard parts with bolt tension calibrators. A different size of bushing is required for each bolt diameter being tested and can be purchased through the manufacturer (such as Skidmore-Wilhelm) of the bolt tension calibrator.

3. The TC fastener assembly shall be tested using one flat hardened washer (furnished by the manufacturer of the TC fastener assembly), under the nut (turned element).

 Each TC fastener assembly shall first be snugged using the same effort and snugging equipment that will be used on the final structure. During the snugging operation, if the spline breaks off, the bolt shall be removed and the bolt tension at snug tight checked. If the tension at snug tight exceeds 50% of the minimum required tension load, the effort used to snug tighten the fastener should be reduced and new pre-installation tests run.

4. If when running the pre-installation tests, the TC bolts are too short to fit into a bolt tension-measuring device, direct tension indicators (DTIs) must be used to verify the proper tension. First a calibrated DTI gap needs to be determined using three bolts long enough to fit into a Skidmore, tightening each until a load of 1.05 times the minimum preload value has been attained, and then, using tapered feeler gages, determining an average gap value for the compressed DTIs. Once an average calibrated gap value has been determined for three DTIs, the same lot of DTIs shall be used in conjunction with short TC bolts in a simulated joint having the same grip as in the actual structure. When short TC bolts have been installed (tail has been snapped), the DTI gap must be equal or less than the calibrated value determined by using long bolts in a Skidmore bolt tension calibrator. This confirms that the fastener tension is equal to or greater than the minimum required.

 Rotational capacity testing is also presently required by Caltrans for this system and for this testing, conventional installation tools should be used (to prevent the splined end from being sheared off).

When tension control fastener assemblies are installed in a structure, the following procedure must be followed:
1. TC fastener systems must always be properly stored out of the weather and maintained in the original condition as supplied by the manufacturer, or else the fastener tension will change and problems will arise.

2. When assembling a TC-bolted connection as with other fastening systems, a TC fastener assembly must be installed in each of the holes of the connection.

3. The bolts shall be systematically snugged (preferably using a conventional tightening tool commonly used for a snugging operation – not an electric TC fastener installation tool) to bring all plies of the joint into firm contact and without yielding or fracturing the splined tails of the fasteners. If the TC fasteners are incorrectly installed and full tensioned in a single continuous operation, they will give a misleading indication to the inspector that all the fasteners are properly tightened. However some of the initially tensioned fasteners may not be. If the plies of the joint are not in firm contact after snugging bolts, then the cause needs to be determined and corrected.

4. Finally during the final tightening (tail snapping operation), each assembly is tightened following a systematic, crisscross pattern starting from the center of each joint.

After installation has been completed and there is any question about whether there is adequate tension in the TC fasteners, the following should be done:

- Uniform and proper thread stickout should be checked. After the spline has broken off, a partially threaded section (approximately 1/8") typically remains; these partial threads at the broken end of the TC bolt are not to be considered as part of the thread stickout. Therefore after installation, the actual length of the projecting bolt stub should extend at least 1/8" beyond the outer face of the nut to a maximum of 3/8".

- The contractor should determine a job inspecting torque value.

- A minimum of 10% of the TC fasteners must be checked using a torque wrench for adequate minimum preload.

Direct Tension Indicators (DTIs)

A direct tension indicator (DTI) is a special device used in conjunction with each high-strength bolt to insure proper tension in the bolt has been attained. DTIs have a number of evenly spaced bumps protruding on one side that are compressed against a hardened surface in a controlled manner. As the bolt is tightened, the bumps are crushed. When they reach a prescribed crushed height (0.005" for bridge and sign structures), the high-strength bolt has been sufficiently tensioned.

Basic steps for field testing of DTIs in a bolt tension calibrator (e.g. Skidmore) are as follows:
1. Test three DTIs of each diameter, grade and production lot, plus three sample bolts, nuts and washers. It is not a requirement that this test be conducted on each separate lot of bolts and nuts. Each DTI, along with sample fasteners, is called a “test assembly”.

2. Testing DTIs in a bolt tension calibrator requires the use a special flat bushing and flat hardened washer. The bushing available from the bolt tension calibrator manufacturer (Skidmore-Wilhelm) must be used under the nut (or turned element). DTIs are normally placed under the bolt head, with the bumps bearing directly against the underside of the bolt head (non-turned element).

3. Add spacers and washers under the nut, as necessary, to adjust thread stickout from zero to two threads beyond the face of nut, when the nut is finger-tight.

4. Testing or installing DTIs in a bolt tension calibrator is a two-person operation. While tightening the nut, the bolt head must be prevented from turning.

5. First snug the bolt with a DTI as will be done in the actual structure. In the snug condition, no gap on a DTI may be less than 0.015". Use a 0.015" feeler gage to check for gaps less than 0.015" at snug.

6. Then tighten the nut until the bolt tension as read on the bolt tension calibrator is equal to 1.05 times the minimum required bolt tension. Check how many gaps around the perimeter of the DTI the tapered feeler gage enters. It should enter 1/2 or more of the total number of gaps around the DTI.

7. Continue tightening the fastener until the number of gaps which a 0.005" feeler gage won’t enter equals or is greater than that shown in Column 4 of the table on Sheet 10 of 11 in Attachment 2 of BCM 170-2.0. The tension in the bolt as measured by the calibrator must be less than the minimum tensile strength of the bolt.

On the actual structure, verify that bolt heads are held stationary with a back-up wrench when nuts are being turned. In addition, check that all of the bolts in the connection are systematically snugged starting from the center of each joint, and the faying surfaces of all joint plies are in firm contact prior to performing the final tensioning of the bolts.

When installing a DTI, the protrusions shall always be positioned so that they bear against a hardened surface (normally the underside of the bolt head) that must be held stationary as the bolt is being tightened. Before bolts are permitted to be installed in the structure, a representative sample of at least three assemblies, of each diameter, grade, and lot shall be tested in a calibrated bolt tension-measuring device. The test assembly shall include a flat, hardened washer under the turned element. By doing the pre-installation test (also called field test in ASTM F959) the installation crew shall demonstrate that, using the same bolts, snugging and installation tools, and techniques to be used on the actual structure, and compressing the DTI protrusions to an average gap of 0.005", it will achieve a tension no less than 1.05 times the specified minimum bolt tension. This requirement is in Section 8 (d)(4) of the RCSC Specification.
When high-strength bolts are installed in the structure in conjunction with DTIs, the fasteners shall be installed in all holes of the connection and tightened starting from the center (most rigid part) of a joint in a systematic pattern, until all plies of the joint are in firm contact.

When an actual joint is being assembled, the fasteners should be checked to ensure they are uniformly snug. A snug tight condition is indicated by partial compression of the DTI bumps. After snugging bolts, any DTI which has been compressed such that any gap less than 0.015" shall be removed and replaced with a new indicator.

Once all fasteners in a joint have been snugged, the fasteners shall then be systematically tensioned, as was done during snugging. In some cases, proper tensioning of the bolts may require multiple cycles of systematic partial tightening prior to achieving even final bolt tension in order to bring bumps in all DTIs to a uniform gap. When inspected after installation, the minimum number of gaps refusing a 0.005" tapered feeler gage shall be as follows: If all gaps have been reduced to 0 after installation has been completed, the DTI shall be removed and a new DTI and fastener installed.

DTIs should not be used when over-sized holes are present, unless approved by the Engineer and manufacturer of the DTI. If approved, special flat hardened washers must be used.

If a DTI cannot be placed under the bolt head (stationary element) due to unusual field conditions, contact the high-strength fastener specialist at the Caltrans Division of Materials Engineering and Testing Services (METS) for assistance. For DTIs approved for installation under the turned element, special hardened washers with a small inside diameter may be necessary, and can be obtained from the DTI manufacturer.

Attachment No. 1 contains answers to frequently asked questions regarding associated tools and equipment used in high-strength bolting.
COMMON QUESTIONS AND ANSWERS CONCERNING TOOLS USED IN HIGH-STRENGTH BOLTING

Bolt Tension Calibrators:
1. Q. What type of equipment should be used to perform torque and tension checks on high-strength fasteners?
 A. Skidmore-Wilhelm (models MS, M, or ML) or Norbar bolt tension calibrators are assigned to some ACM's to do quality assurance testing.

Typical bolt tension calibrator and steel case

The appropriate model Skidmore should be used, depending on the shortest length bolts to be tested (see chart below).

<table>
<thead>
<tr>
<th>Nominal Bolt Size,</th>
<th>Model of Bolt Tension Calibrator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
</tr>
<tr>
<td>1/2 – 13</td>
<td>2.25</td>
</tr>
<tr>
<td>5/8 – 11</td>
<td>2.50</td>
</tr>
<tr>
<td>3/4 – 10</td>
<td>2.75</td>
</tr>
<tr>
<td>7/8 – 9</td>
<td>3.00</td>
</tr>
<tr>
<td>1 – 8</td>
<td></td>
</tr>
<tr>
<td>1 1/8 – 7</td>
<td></td>
</tr>
<tr>
<td>1 1/4 – 7</td>
<td></td>
</tr>
<tr>
<td>1 3/8 – 6</td>
<td></td>
</tr>
<tr>
<td>1 1/2 – 6</td>
<td></td>
</tr>
<tr>
<td>Max. Tension Capacity</td>
<td>80K max.</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
</tr>
</tbody>
</table>
There are also some older Norbar bolt tension calibrators available; check to make sure equipment has been calibrated within the past year, and is within the required accuracy limits.

2. Q. Are all of the necessary parts available with the basic bolt tension calibrators?
 A. Probably not. To test domed head TC bolts and all DTIs, a special set of flat bushings is required which is not normally furnished with the standard calibrator equipment. Flat bushings are readily available from the Skidmore-Wilhelm Mfg. Co. and are shown below.

 Special Flat Bushings Required to Test TC Bolts and DTIs

<table>
<thead>
<tr>
<th>Nominal Bolt Size, inch</th>
<th>Model of Bolt Tension Calibrator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M and ML Bushing #/</td>
</tr>
<tr>
<td></td>
<td>Approximate Cost</td>
</tr>
<tr>
<td>1/2</td>
<td>MT-608 $15.00 ea.</td>
</tr>
<tr>
<td></td>
<td>MS-608 $30.00 ea.</td>
</tr>
<tr>
<td>5/8</td>
<td>MT-610 $15.00 ea.</td>
</tr>
<tr>
<td></td>
<td>MS-610 $30.00 ea.</td>
</tr>
<tr>
<td>3/4</td>
<td>MT-612 $15.00 ea.</td>
</tr>
<tr>
<td></td>
<td>MS-612 $30.00 ea.</td>
</tr>
<tr>
<td>7/8</td>
<td>MT-614 $15.00 ea.</td>
</tr>
<tr>
<td></td>
<td>MS-614 $30.00 ea.</td>
</tr>
<tr>
<td>1</td>
<td>MT-616 $15.00 ea.</td>
</tr>
<tr>
<td></td>
<td>MS-616 $30.00 ea.</td>
</tr>
<tr>
<td>1 1/8</td>
<td>MT-618 $20.00 ea.</td>
</tr>
<tr>
<td></td>
<td>MS-618 $35.00 ea.</td>
</tr>
<tr>
<td>1 1/4</td>
<td>MT-620 $20.00 ea.</td>
</tr>
<tr>
<td></td>
<td>MS-620 $35.00 ea.</td>
</tr>
<tr>
<td>1 3/8</td>
<td></td>
</tr>
<tr>
<td>1 1/2</td>
<td></td>
</tr>
</tbody>
</table>

 Note: The model MS Skidmore bolt calibrator was developed to test bolts which are shorter than can be tested in the Models M or ML calibrators. In Skidmore-Wilhelm’s development/design process, the front plates of the Model MS were made thinner. Skidmore-Wilhelm has pointed out that when testing TC bolts, the thinner MS plates will dish slightly when tensioning the fastener. This dishing may reduce the contact area between the nut face and washer, and may cause a slight increase in the torque required to rotate the nut. This may cause a reduction in tensile load read on the bolt calibrator dial at which the spline shears off. Skidmore recommends ordering and using the thicker plates for the MS model if the tension control fasteners are not meeting minimum tension requirements by 5 to 10%. The Skidmore-Wilhelm Mfg. Co. should be contacted immediately (216-481-4774) if use of their Model MS calibrator results in too low tension values when the spline shears off.

 In addition to bushings, spacers of the proper length and inside diameter may also be required when testing long bolts to adjust thread stickout to between 0” (flush) and 1/4”.

3. Q. Should Caltrans provide the bolt tension calibrator for use on construction projects?
 A. No. The Contractor is to perform all pre-installation testing, rotational capacity testing, and inspection of completed joints at the job site, and shall provide all
necessary tools and appropriate calibrated equipment, including torque wrenches (dial or digital readout only), bolt tension calibrators, impact wrenches, sockets, and torque multipliers to do so. The Engineer is to witness preliminary calibration, testing, select fasteners to be inspected in a completed joint and witness joint inspection. Caltrans has Skidmore-Wilhelm bolt tension calibrators available for use by Caltrans employees doing quality assurance inspection.

4. Q. How often should the bolt tension calibrator be recalibrated and adjusted and who is qualified to do this?
 A. Recalibration and adjustments should be performed at a minimum annually, by a certified testing facility using equipment that is traceable to the National Institute of Standards and Technology at the Contractor’s expense. Required accuracy, after calibration is within ± 2% of the actual load. The following is a list of acceptable laboratories that are qualified to recalibrate and repair bolt tension calibrators:

| Manufacturers* and Laboratory Test Facilities for Bolt Tension Calibrators |
|-----------------------------|-----------------------------|
| 1) Almay Labs | 4) Advanced Witness Series, Inc.** |
| 1415 Newton St. | 910 Bern Ct. #100 |
| Los Angeles, CA 90021 | San Jose, CA 95112-1237 |
| Phone: (213) 746-1555 | Phone: (408) 453-5070 |
| 2) Technical Services Group | 5) Mountz, Inc. |
| P.O. Box 250 | 1080 North 11th Street |
| Alameda, CA 94501 | San Jose, CA 95112 |
| Phone: (510) 522-8326 | Phone: (408) 292-2214 |
| 3) Skidmore-Wilhelm * | 6) Norbar Torque Tools Ltd. * |
| Manufacturing Co. | Beaumont Road, Banbury |
| 442 South Green Rd. | Oxon, OX167XJ |
| Cleveland, OH 44121 | United Kingdom |
| Phone: (216) 481-4774 | Phone: 44(0) 1295 270333 |

** Local representative and calibration/repair center for Norbar equipment

5. Q. Where can a field Engineer get more information about bolt tension calibrators?
 A. Information and literature can be attained directly from the manufacturers or their representatives (see the listing in Question 4 above).

Torque Wrenches:

1. Q. May the Contractor perform testing or installation of high-strength bolts with a “click-type” torque wrench?
 A. No. Either a dial or digital gauge torque wrench is required to accurately determine installation torque, perform RoCap tests, and determine job inspecting torque for inspection of a completed joint. When performing a RoCap test or determining proper job inspecting torque at the jobsite, the contractor cannot read the particular torque value at a given bolt tension when a click-type torque wrench is used. Also, generally
the accuracy of a click-type torque wrench is not adequate to meet Caltrans accuracy requirements.

Acceptable types of torque wrenches

2. Q. What is the “best practice” when using torque wrenches?
 A. A torque wrench is properly used when the following concepts are followed:

 • Proper installation procedures must be verified and torque values reestablished at least once each working day for each bolt diameter, length, and lot. A hardened washer must be used under the nut (turned end).

 • Always use a proper size torque wrench with adequate torque capacity or use a smaller wrench in conjunction with a torque multiplier, when necessary. Never use a torque wrench that is too small for the job. If the torque limit of a wrench is exceeded, the wrench is generally ruined and cannot be repaired.

 • Operating a large torque wrench is generally a two-person operation - one person to pull on the handle and one to read the dial. The person pulling should use a smooth motion. An extender handle of adequate length should be utilized to reduce effort required to turn nuts and to insure a smooth turning motion (A “jerky” motion generally results when the lever arm is too short). Difficulty attaining adequate tensile loads on large high-strength bolts (i.e., 1-1/8" to 1-1/2") generally indicates the need to use a torque multiplier in conjunction with a torque wrench.

 • It is generally not good practice to use a torque wrench to undo a bolt. A torque wrench is a delicate instrument, and the mechanism of some is not designed to be loaded in the reverse (counter-clockwise) direction. It is much better to use an impact wrench or breaker bar for loosening or unloading tensioned fasteners.

 • When performing RoCap tests, never use a torque wrench to perform the final portion of the test that requires that the bolt be rotated a specified large number of turns. This portion of the test may require a torque level that will severely overload a torque wrench normally used for routine fastener tensioning and cause irreparable damage.
A breaker bar or pneumatic wrench in combination with a torque multiplier should be used for this last phase of the RoCap test.

3. Q. Where can I obtain information about or purchase a satisfactory torque wrench?
 A. From one of the companies from the following chart:

<table>
<thead>
<tr>
<th>Torque Wrench Manufacturers* and Calibrator Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Proto*</td>
</tr>
<tr>
<td>14117 Industrial Park Blvd., N.E.</td>
</tr>
<tr>
<td>Covington, GA 30209</td>
</tr>
<tr>
<td>Phone: (770) 787-3800</td>
</tr>
<tr>
<td>2) Snap-On*</td>
</tr>
<tr>
<td>6632 Fig St., Unit B</td>
</tr>
<tr>
<td>Arvada, CO 80004</td>
</tr>
<tr>
<td>Phone: (888) 762-7972</td>
</tr>
<tr>
<td>3) Mitutoyo*</td>
</tr>
<tr>
<td>16925 Gale Ave.</td>
</tr>
<tr>
<td>City of Industry, CA 91745</td>
</tr>
<tr>
<td>Phone: (818) 961-9661</td>
</tr>
<tr>
<td>4) Armstrong Tools*</td>
</tr>
<tr>
<td>5200 W. Armstrong Ave.</td>
</tr>
<tr>
<td>Chicago, Illinois 60646</td>
</tr>
<tr>
<td>Phone: (312) 763-3333</td>
</tr>
<tr>
<td>5) Advanced Witness Series, Inc.</td>
</tr>
<tr>
<td>910 Bern Ct. #100</td>
</tr>
<tr>
<td>San Jose, CA 95112-1237</td>
</tr>
<tr>
<td>Phone: (408) 453-5070</td>
</tr>
<tr>
<td>6) Mountz, Inc.</td>
</tr>
<tr>
<td>1080 North 11th Street</td>
</tr>
<tr>
<td>San Jose, CA 95112</td>
</tr>
<tr>
<td>Phone: (408) 292-2214</td>
</tr>
</tbody>
</table>

4. Q. How often should a torque wrench be recalibrated and adjusted?
 A. At least once a year. It must be recalibrated and adjusted more often if dropped/mishandled.

5. Q. Who is qualified to perform the recalibration and adjustments, and what information/certificates are required?
 A. A certified testing facility must have calibration equipment traceable to National Institute of Standardized Testing (NIST) standards and must perform calibration checks and any adjustments on equipment. If equipment cannot be adjusted so that its accuracy is within specifications, it is not permitted to be used.

6. Q. What accuracy is required for a torque wrench to be considered acceptable?
 A. Accuracy of torque wrenches shall be within 2 percent of the actual torque value, with a minimum of 4 verification readings evenly spaced over a range of 20 to 100% of full scale. If there are any questions about the accuracy of the contractor’s torque wrench, a copy of the latest calibration check after any adjustments were made should be required.

7. Q. What do the terms break torque and moving torque mean?
 A. Break Torque: The torque value required to initially start a nut in motion from a stationary position.
 Moving Torque: Torque measured while the nut is in motion.

8. Q. Does Caltrans provide torque wrenches?
 A. Yes, but only for Caltrans quality assurance testing or checking Contractor’s values, not for work that is required to be done by the Contractor.
9. Q. When using the calibrated wrench installation method, why is it necessary to determine an installation torque value for each lot of fasteners every day?
 A. Thread conditions (roughness, coating type and thickness, and pitch diameter), the type and amount of lubricant, and storage and weather conditions may be different for each lot of bolts. These variables can have a huge effect on the relationship between torque and tension, especially when using the calibrated wrench method to install high-strength fasteners. Therefore the RCSC Specification requires that certain installation procedures must be performed and appropriate installation torque values must be determined on a daily basis, using fastener samples from each lot of bolts to be installed in the structure.

Calibrated Wrenches:

1. Q. How often must a calibrated wrench be adjusted and checked to produce proper bolt tension?
 A. At a minimum, the tension value produced by a calibrated wrench must be checked daily at each job shift for each bolt diameter and length to insure the cutoff setting is correct. If a different lot of fasteners is used, or operators, length of air lines, tool being operated, or thread conditions on the fasteners change, the calibration of the wrench must be checked and perhaps recalibrated.

2. Q. Which types of calibrated wrenches are acceptable?
 A. Besides a dial or digital torque wrench, a pneumatic, hydraulic, or electric wrench with an adjustable control unit which can be set to positively shut off at the desired torque is acceptable. A standard impact wrench without a positive cutoff is not acceptable.

![Acceptable types of calibrated wrenches](image)

3. Q. What are some equipment variables that effect the final product?
 A. Compressor size and condition, the length, number, and size of air lines, air volume demand of other equipment being operated at same time, condition and size of pneumatic impact wrench, and adjustment settings all can affect torque output of an impact wrench.

4. Q. Why does an impact wrench need to be adjusted and checked so frequently?
 A. Experience has indicated that operator “feel”, condition and size of compressors, air lines, air tools, air pressure variations and the number of tools run simultaneously on a single manifold are all variables that account for differences of bolt tension at the
snug tight condition, as well as the final tension in the high-strength bolts. The influence of these numerous factors must be checked to insure consistent and accurate bolt tension.

5. Q. Why should it take approximately 10 seconds to fully tension A325 bolts?
 A. A wide variety of brands of calibrated impact wrenches with varying torque capacities are available and appropriate for various sizes of high-strength bolts. When using the correct size of impact wrench with A325 bolts, it takes about 10 seconds (after snugging) to achieve the minimum required bolt tension. Using too large of a calibrated wrench for a given size of bolt can result in the threaded shank of the bolt being elongated with the applied stress far exceeding the elastic limit (well into the plastic zone), resulting in very little remaining ductility. Using an impact wrench which is too small or worn will result in low fastener tension, wasted time and noise during installation, and excessive hammering on nut, causing damage to any protective coating.

Torque Multipliers:

1. Q. What is this tool and when is it used?
 A. The torque multiplier is a tool that amplifies a small input torque by gear reduction to produce a large output torque. It is commonly used in conjunction with a torque wrench, to reduce the tightening effort needed for testing, installing, and inspecting larger sizes of high-strength bolts. By using a multiplier, less tightening effort can be applied using smaller input wrenches and tools, and smoother and safer tightening operation results. This prevents accidents caused by dangerous but commonly used installation practices of overexertion on a short handled manual torque wrench, or hanging on the end of a long, heavy cheater handle. Also by using a multiplier, permanent damage to smaller torque wrenches which can easily be stressed above their minimum torque rating, can be avoided. An anti wind-up ratchet is a desirable optional feature available on many of the better multipliers.

Acceptable types of torque multipliers

2. Q. Are different sizes available?
 A. Yes. Multipliers are available with various multiplication factors and input and output drive sizes. (E.g., 1:4, 1:5, 1:10, 1:15, 1:25, 1:75, 1:100, etc.)

3. Q. Who manufactures and sells multipliers?
 A. Check the catalogues from following companies: Mountz, Norbar, Proto, Snap-On, and Advanced Witness Series, Inc. Phone numbers for these companies are included in the charts shown in Question 4 on Sheet 3 of 11, Attachment No. 2 of BCM 170-
2.0, and in Question 3 on Sheet 5 of 11, Attachment No. 2 of BCM 170-2.0. For further information contact Dan Thomas in the Division of Structure Construction Headquarters or the fastener specialist at the Division of Materials Engineering and Testing Services.

4. Q. How often does a multiplier need to be recalibrated?
 A. At least once a year. When a torque wrench is used in conjunction with a torque multiplier, the two should always be used together with a bolt tension calibrator to determine an accurate input torque/bolt tension relationship for installing and inspecting fasteners.

Electric Installation Tools with combo Spline/Nut Socket for Installing (TC) Bolts:

1. Q. Do all manufacturers of electric installation tools offer the same size of tool?
 A. No, not all electric tools (called Shear Wrench Tools) for installing TC fasteners have the same capacity. Normal electric installation tools require from 11 to 15 inches of working space. Some tools are designed with a right-angled drive for working in tight quarters and have a working clearance of about 7-1/2 inches. In addition, different manufacturers of electric installation tools and sockets for TC fasteners may produce spline sockets with slightly different internal dimensions. Variations in spline dimensions of TC bolts made by different fastener manufacturers and the actual thickness of zinc coating on the spline section may vary slightly. These conditions can prevent a tool socket from fitting onto the fastener spline. A tight socket clearance or heavy zinc coating on the spline may also prevent easy ejection of the broken spline from the inner socket.

Electric tool for installing TC bolts
2. Q. What variables can affect the satisfactory installation of a TC bolt assembly?
 A. This system is dependent on close manufacturing tolerances (bolt and nut thread dimensions, groove dimensions at tip), steel chemistry, amount and type of nut lubricant, and consistent heat treating all can affect the final bolt tension. Typical steps required with all other high-strength bolt operations, including proper joint fit, snug tightening, tensioning all fasteners evenly in an alternating pattern, are also required when installing TC bolts.

3. Q. Do you need to check the final TC bolt tension with a calibrated torque wrench when fastener installation has been completed?
 A. Yes. Like any normal high-strength bolted connection, joints can be improperly fit and TC bolts can be improperly installed. Plates in joints must flat, should have full bearing after snugging, and all fasteners in a joint must first be evenly snug tightened, and then fully tensioned in stages and in a patterned sequence, or else like any other fastener, some of the TC bolts initially tightened will be loose after the joint has been completed. As required with other tensioning methods, a job inspecting torque must be established and 10% of bolts in each connection (or a minimum of 2 bolts) should be checked for adequate tension immediately after tightening of a joint has been completed.

4. Q. How does one know if TC bolts have been tightened to at least the minimum required tension?
 A. By performing pre-installation tests on each lot, diameter, and length of fasteners, observing that proper installation procedures are followed, and inspecting 10% (or a minimum of 2) bolts in each joint using the appropriate job inspecting torque value.

5. Q. Should all TC bolts in a joint be taken to a snug condition?
 A. Yes. First, all TC fasteners should be first snugged in a connection without snapping off the splined tails before any final tightening is done. Use of a standard impact wrench, torque wrench, or spud wrench is recommended for the snugging operation. If the snugging operation is skipped, and instead, all TC fasteners are fully tensioned without first drawing all plies together, fasteners initially tightened may be loose. If the splined end of a TC bolt has been sheared off, it merely signifies that at some time during the tightening operation, the fastener has been subjected to sufficient torque to cause shearing of the spline. It does not necessarily mean that the final tension is adequate. An uninformed inspector who looks at a completed job may not be aware that just because the tails of all TC fasteners are broken, it does not necessarily mean that all TC fasteners have adequate tension.

Tapered Feeler Gages Required for Measuring Gaps between Bumps on Direct Tension Indicators (DTIs):

1. Q. Why do feeler gages need to be tapered in order to inspect for proper gap in an installed DTI?
 A. Feeler gages used for inspecting DTIs must be tapered and have narrow tips so that they can fit into each gap between closely spaced DTI bumps.
2. Q. Which thicknesses of tapered feeler gages are used for inspecting DTIs installed on bridge or sign structures: 0.015" or 0.005"?
 A. Two thicknesses of these special tapered feeler gages, 0.005" and 0.015", are commonly used for inspection. The Contractor should have them available and use them during pre-installation testing, installation, testing of short bolts, and determination of job inspecting torques. Caltrans inspectors should also have them handy. The 0.015" feeler gage can be used to inspect DTI gaps after snugging. The 0.005" tapered feeler gage is used to verify adequate DTI crushing during final tensioning for bridge and sign structures. After installation of a DTI is complete, the 0.005" feeler gage tip must be refused in at least 1/2 of the gaps, but all the bumps must not be fully compressed to a “0” gap. A whole set of 26 tapered feeler gages is also necessary when determining a “calibrated gap” for performing pre-installation tests and a job inspecting torque for short bolts (see pp 17 & 18 of the Structural Bolting Handbook).

3. Q. Where can I obtain tapered feeler gages?
 A. The 0.005" and 0.015" tapered feeler gages are available from either DTI manufacturer (see Question 5). Sets of tapered feeler gages (26 leaves) are available from Starrett (model 66T) [phone: 617-249-3551]; Mitutoyo (model 950-242); or McMaster-Carr [phone: 310-692-5911]. The widths of the tapered leaves may have to be trimmed down to match the taper and tip width of the DTI manufacturer’s gages, so that they will fit between the DTI bumps.

4. Q. How many gaps must refuse the tapered feeler gage for the DTI to be acceptable?
 A. The following chart shows the number of gap refusals required for each size of A325 bolt to insure that the minimum tensile strength has been attained:

<table>
<thead>
<tr>
<th>Bolt Diameter, inch</th>
<th>Total Number of Gaps on DTI</th>
<th>1.05 x Minimum Bolt Tension, kips</th>
<th>Minimum Gap Refusals For Minimum Bolt Tensile Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>4</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>5/8</td>
<td>4</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>3/4</td>
<td>5</td>
<td>29</td>
<td>3</td>
</tr>
<tr>
<td>7/8</td>
<td>5</td>
<td>41</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>1 1/8</td>
<td>6</td>
<td>59</td>
<td>3</td>
</tr>
<tr>
<td>1 1/4</td>
<td>7</td>
<td>75</td>
<td>4</td>
</tr>
<tr>
<td>1 3/8</td>
<td>7</td>
<td>89</td>
<td>4</td>
</tr>
<tr>
<td>1 1/2</td>
<td>8</td>
<td>108</td>
<td>4</td>
</tr>
</tbody>
</table>

 Minimum Bolt Tensile Strength, kips:

 The column shows the minimum bolt tensile strength required for each size of A325 bolt to ensure the minimum tensile strength has been attained.
5. Q. What companies manufacture DTIs?
 A. In the United States, only the two following companies currently make DTIs:

 1. Applied Bolting Technology Products, Inc.
 P.O. Box 255
 Ludlow, Vermont 05149-0255
 Telephone: 802-228-7390
 Facsimile: 802-228-7204

 2. TurnaSure LLC
 340 E. Maple Avenue, Suite 303
 Langhorne, PA 19047
 Telephone: 215-750-1300
 Facsimile: 215-750-6300

Note: Both DTI manufacturers furnish free installation instructions and tapered feeler gages.
Structural Steel Working Drawings

Introduction
The procedure for review and approval of structural steel working drawings is a coordinated effort between Design and Construction personnel. The designer, with input from construction, has the primary responsibility for approval of the working drawings. In the case of projects designed by a Local Agency or Consultant the designer of record, in conjunction with Structure Design and the Design Oversight Engineer, has the primary responsibility for approval of the working drawings. However, the Shop Plan Clerk, in the Structure Design Documents Unit, will furnish the Local Agency Designer or Consultant with two copies of the working drawings.

Working Drawings
Attached is Memo to Designers 12-1 (Attachment No. 1) Review of Working Drawings - Steel Structures. The Memo to Designers, which is a cooperative effort of Design and Construction, covers the procedures required for review and approval of working drawings including responsibilities of the Structure Representative on a construction project. The procedure for submittal of plans and working drawings is for the Contractor (subcontractor or fabricator) to submit all documents directly to the Office of Structure Design, Documents Unit, Mail Station 9, 1801 30th Street, Sacramento 95816. The original submittals and any resubmittals shall be submitted to the Documents Unit. The Structure Representative should ensure that the contractor submits all documents to the Documents Unit in a timely manner.

The Documents Unit is responsible for administering the working drawing review and approval procedure during all phases of the approval procedure. The Documents Unit maintains a record of all working drawings submitted and distributes copies to the required individuals. This relieves the Structure Representative of the tedious administrative details required in distributing and coordinating the review and approval process.

The responsibility for checking working drawings is shared by the designer of record and the Structure Representative. The Structure Representative shall make all effort to coordinate directly with the designer. The working drawings shall not be returned to the Contractor until the designer of record has discussed and resolved all comments with the Structure Representative. The comments that are returned to the Contractor must be acceptable to both the Designer and the Structure Representative.

The Structure Representative shall ensure that the final working drawings are submitted by the Contractor to the Documents Units, in accordance with Section 55 of the Standard Specifications, prior to the acceptance of the contract. The Structure Representative can verify the submittal of the final working drawings by contacting the Documents Unit at (916) 227-8252.
REVIEW OF WORKING DRAWINGS – STEEL STRUCTURES

Procedure:

The instructions in this Memo apply to working drawings for bridges or other major structures. Working drawings for railings, signs, miscellaneous metal, and other minor items are for the use of field personnel and are not routinely reviewed by the designer. See Article 10 for review of projects designed by Local Agencies and Consultants.

To provide uniform treatment in checking steel working drawings, the following procedures shall be followed:

1. The responsibility for checking working drawings is shared by the designer, the Structure Representative and Transportation Laboratory. Working drawings shall not be returned to the contractor until the designer has discussed and resolved the details with the other reviewers. The comments returned to the contractor must be acceptable to all reviewers.

A brief memo shall be written by the designer to document controversial decisions or when it is necessary to keep other involved parties informed. For example, a memo is required for any changes or clarification of details in the contract plans. A copy of the memo is to be sent to the Structure Representative and two copies are to be sent to the Transportation Laboratory.

2. When the initial drawings, between six and ten sets, are received, the Documents Unit will forward two sets to the Transportation Laboratory, one set with correspondence to the Structure Representative and the reminder with correspondence will be sent to the design section involved. If less than six sets are received, the Documents Unit shall immediately request the missing sets. The Documents Unit will make this distribution.

In the event drawings are received for review involving prestressing systems, one of the sets will be forwarded to the Chairperson of the Prestressing Committee for check enroute to the design section involved.

3. The Transportation Laboratory will make the sheets as required and return one set to design.

4. The set of drawings sent to the design section will be the work and file set, that is, it will be marked as necessary in yellow to indicate the checking performed, and in red to indicate any changes required.

5. One of the two sets of drawings sent to the Transportation Laboratory will ultimately be returned to the Contractor. It should not be stamped until all details are resolved between the Structure Representative, the Transportation Laboratory and the Designer and compatible comments transferred to the sheet.

Supersedes Memo to Designers 12-1 dated January 1982
6. Subsequent submittals of working drawings will not be routed out to the Structure Representative or the Transportation Laboratory. If there are any significant changes, the Designer will contact both groups and discuss them before the distribution of prints is made.

7. The Documents Unit will keep the latest set of drawings on file and make them available to the Designer as necessary. When corrected or revised drawings are received, the initial prints will be marked with blue and returned to the design section. All superseded sheets may be disposed of unless a claim or change order is anticipated and there may be a need to reconstruct the history of the project.

8. Members of the structural steel committee may be consulted at any time to assist with technical questions concerning shop practices and procedures.

9. Special Procedure for Structures Carrying Railroads
 a. Specifications require an initial submittal of ten sets of drawings. If less than ten are received, the Documents Unit shall immediately request the missing sets.
 b. From two to four sets are sent to the railroad for their review, with a request that they be expedited.
 c. At the same time one set is sent to the Structure Representative, two to the Transportation Laboratory, and the remainder to the design section involved.
 d. The design section is not to return an “approved” or “disapproved” set until all comments, including the railroad’s are received.
 e. When the railroad comments are received, the design section will mark the plans accordingly, or resolve differences as necessary.
 f. The set returned to the Contractor will incorporate both State and Railroad comments.

10. Review of projects designed by Local Agencies and Consultants
 a. Review and oversight of projects involving structures, designed and developed by local agencies or private consultants, is the responsibility of Local Assistance or the Externally Financed Projects Branch.
 b. Occasionally, others may be requested to review technical specialty areas such as walls, railings, earth retaining systems or projects having complex seismic concerns.
 c. Coordination and all plan distribution activities during the design phase will be handled by the Local Assistance or Externally Financed Projects Branch.
 d. Coordination of shop plan submittals by consultants will require special handling by the branch.
involved.

11. Stamping of Working Drawings

a. Initial Review

1. If they are correct on initial review, the checker shall stamp and date.

 Checker shall initial one set of prints only (yellowed check set). This set will be retained in
 the job file by the Documents Unit.

2. If any corrections whatsoever are noted, the sheets in error shall be returned for correction. The sheets with corrections shall be stamped and dated:

 Checker shall initial one set of prints only. This set will be retained in the job file by the
 Documents Unit.

b. Second or subsequent review.
1. If stamped “Returned for Correction” on subsequent review, prints will be handled in the same manner as prints for initial review.

If only a few minor corrections are made, all sheets needed for distribution must be marked with the same corrections and all stamped:

Checker shall initial one set of prints only (yellowed check set). This set will be retained in

APPROVED
PURSUANT TO SECTION 5—1.02
OF THE STANDARD SPECIFICATIONS

JUL 7 1989
STATE OF CALIFORNIA
DEPARTMENT OF TRANSPORTATION
DIVISION OF STRUCTURES

MINOR CORRECTIONS SHOWN
IN RED

the job file by the Documents Unit.

12. Return to Contractor

After checking and the discussion with all reviewing agencies is completed, all copies of the Working Drawings shall be returned to the Documents Unit. One of the stamped copies will be sent to the Contractor, and additional copies will be requested as needed for rechecking or for distribution.

13. Distribution of Final Approved Drawings

a. Working drawing File – one print

b. Contractor – one print

c. Structure Representative – two prints (one for his use and one for Contractor’s Field Representative).

d. Transportation Laboratory – two prints (additional prints will be furnished where out-of-State
fabricators are involved).

e. Railroads – two prints for each Railroad company involved.

14. Final Disposition of Working Drawings

After completion of a project, the fabricator will furnish 35 mm film of working drawings to the Division of Structures as required by the specifications. These films are checked by the Documents Unit to verify that all required film has been received prior to sending them to file. The films are then filed in roll form by the Documents Unit.

After the films are received the file copies of Working Drawings will be sent to the responsible design section.

15. Guide for Checking Working Drawings

As a means of establishing uniform practice and avoiding omissions, but not as a substitute for common sense, the following outline is submitted as a general guide for checking Structural Steel Working Drawings:

a. Read the Standard Specifications and Special Provisions for the particular job. They may modify the usual procedure. Read the correspondence file; there may have been changes approved by the Office of Structure Construction since the contract was let. Call the Structure Representative to establish a working relationship, and to become familiar with any pending changes or special problems.

b. Changes from the contract plans or specifications, regardless of magnitude, should not be allowed unless they have been discussed and approved by the Structure Representative and Transportation Laboratory. Revisions may be satisfactory structurally but create administrative problems. Changes requiring Contract Change Orders as determined by the Structure Representative need special attention. These change orders could be grouped into two categories:

1. Those involving changes requested by the State and minor changes requested by the fabricator where there is no question on approval of the change order by both parties. The working drawings can be approved but the note “Contract Change Order to be processed” added to each detail sheet involved.

2. Those involving controversial changes requested by the fabricator. These should be returned to the fabricator with the note “Request must be made by the Contractor to the Resident Engineer for Contract Change Order.” The fabricator may ask that the working drawings be held by design pending such negotiation. Design should not hold any plans without such a request.

c. Review the Contractor’s erection procedure to be sure that it will satisfy the assumption for
continuity made in design. If the design assumptions are not met, the contractor must submit calculations for revised cambers and stresses. He may be required to increase plate thicknesses or change types of steel.

d. Check to see that all material shown in the working drawings conforms to the size, thickness and steel type shown on the contractor plans or with the requirements of an approved erection procedure.

e. The amount and method of camber should conform to the contract plans or with values computed to accommodate an approved erection procedure.

f. Check the size of all welds. If a welding sequence or procedure other than that shown is proposed, it should be reviewed by the Transportation Laboratory.

g. Check the direction of rolling of plates where specific orientation is required, and the location of butt splices and details of connections not dimensioned on the plans.

h. In general, check only those items listed above. For example, do not routinely make a detailed check of dimensions or the bill of materials.

Philip C Warriner

Guy D. Mancarti

RCA:jgf
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Memo No.</th>
<th>Issue Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>180-1.0*</td>
<td>12/02/1996</td>
<td>Field Welding of Structural Steel</td>
</tr>
<tr>
<td>180-2.1</td>
<td>06/01/2000</td>
<td>Checklist for Welding Quality Control</td>
</tr>
<tr>
<td>180-3</td>
<td>12/16/1996</td>
<td>Reinforcing Steel Welding and Testing</td>
</tr>
<tr>
<td>180-4*</td>
<td>10/15/2002</td>
<td>Welding Support from METS</td>
</tr>
<tr>
<td>180-5</td>
<td>12/01/1996</td>
<td>Welding Support from METS for Projects Requiring Radiographs</td>
</tr>
<tr>
<td>180-6*</td>
<td>06/06/1997</td>
<td>Revised Column Casing Weld Backing Plate Thickness</td>
</tr>
<tr>
<td>180-7</td>
<td>07/15/1997</td>
<td>Inspection for Weld Backing Plate for Column Casing</td>
</tr>
<tr>
<td>180-8.0</td>
<td>06/08/2012</td>
<td>Welding of Column Casings</td>
</tr>
<tr>
<td>180-9*</td>
<td>10/15/2002</td>
<td>Review of Contractor’s Quality Control Plan (QCP) for Field Welding</td>
</tr>
</tbody>
</table>

*Denotes the document is a Bridge Construction Bulletin

Robert A. Stott, Deputy Division Chief
Division of Engineering Services
Structure Construction

BRIDGE CONSTRUCTION RECORDS & PROCEDURES MANUAL

VOLUME II
Subject: Field Welding of Structural Steel

There have been recent developments and problems associated with the workmanship on structural steel contracts and welding of structural steel members. This Bulletin provides an overview of the specification requirements, and provides a basic checklist of items to review before, during and after structural steel welding work. A contact list for welding support from the Materials Engineering and Testing Service (METS) is provided under Construction Bulletin, BCM 180-4.0, which is forthcoming within next month.

Work on Structural Steel members shall be governed by the requirements of the Contract Special Provisions, Standard Specifications, Section 55 Structural Steel, Standard Specifications Section 75, Miscellaneous Metal, and the most current publication of ANSI/AASHTO/AWS D1.5 Bridge Welding Code or ANSI/AASHTO/AWS D 1.1, Structural Welding Code. The procedure for the handling of Structural Steel Working Drawings is found in Bridge Construction Memo 170-3.0.

Reference copies of Bridge Welding Code, AWSD1.5-95, and Structural Steel Welding Code, AWS D1.1-94, are available. Please contact your Supervisor.

Five attachments are included with this Bulletin: Attachment No. 1 is Bridge Welding Code, AWS D1.5, OSC Contract Administration Guide; Attachment No. 2 is Structural Welding Code, AWS D1.1, OSC Contract Administration Guide; Attachment No. 3 is Safe Code of Practices for Welding Inspection; Attachment No. 4 is Checklist for Compliance with Bridge Welding Code, AWS D1.5, Attachment No. 5 includes copies of Section III Responsibilities of Caltrans Quality Assurance Person, and Appendix A Field Inspection Procedure born the METS Quality Assurance Manual.
Attachments

cc: All Jobs
 ACM’s
 Senior BCE’s
 RBushey
 PSTolarski
 BGauger
Bridge Welding Code AWS D1.5
OSC Contract Administration Guide

Knowledge

Review the requirements in the Special Provisions, the Contract Plans, and the Standard Specifications Section 55-l .02, Welding.

Review the following sections of the Bridge Welding Code AWS D1.5:

- Chapter 3, Workmanship
- Chapter 4, Technique
- Chapter 5, Qualification
- Chapter 6, Inspection
- All other sections are to be reviewed as needed.

Coordination with METS

Prior to meeting with the Contractor at the start of the project, make arrangements to meet with a METS representative to discuss the contract and the welding requirements. This will help establish the roles and responsibilities regarding Caltrans quality assurance inspection.

Refer to the METS Quality Assurance Manual for clarification on roles and responsibilities of METS Quality Assurance (QA) personnel. (See Attachment No. 5)

Remember, the Structure Representative has the technical control over all structure work including welding. The Structure Representative is responsible to ensure that the welding is done properly. QA inspection is performed adequately, and the work is fully documented in the project files. METS personnel will provide assistance to OSC for QA inspection of welding work. However, due to limited staffing and difficulties in scheduling statewide METS inspection, OSC personnel must assist METS with QA inspection of welding.

Notice to Contractor

At the preconstruction conference, schedule a pre-welding meeting with the Contractor. Suggest that they invite to the meeting, the appropriate Sub-Contractors (Welding, Fit up & Erection, Steel Fabricator, etc.) and the Quality Control Welding Inspector(s). Prior to the meeting, provide a copy of the meeting agenda to the contractor and suggest that they bring along their quality control plan, all welders’ qualification papers, testing information, and any other related welding documents.
Pre-Welding Meeting

Conduct the meeting with the Prime Contractor, Sub-Contractor(s), Contractor’s Quality Control Welding Inspector and Materials Engineering and Testing Services (METS) representative to discuss the following:

Review specific welding requirements noted on the Contract Plans and Special Provisions.

Section 55-1.02 of the Standard Specifications requires the contractor to submit a Quality Control Program listing methods and personnel to satisfy the requirements of Part 6 of AWS D1.5. Review the Contractor’s quality control program (plan) and discuss any deficiency.

The Contractor is responsible for Quality Control (QC) and must appoint a Quality Control Welding Inspector(s). The Contractor’s QC Inspector is responsible to review all of the welds and related work performed in the field and to verify that the work is in conformance with the approved Welding Procedure Specifications (WPS) on a continuous basis. Review the qualifications, and responsibilities for the contractors proposed QC Welding Inspectors. (AWS D1.5, Part 6).

Review the requirements of the Welding Procedure Specifications (WPS), Procedure Qualification Record (PQR), Welder(s), Welding Operator and Tack Welder qualifications. (AWS D1.5, Part 5, Qualification). (METS should cover this portion of discussion).

Suggest the Contractor submits a welding schedule identifying all contract welding work. This will assist field inspection of welds and allow proper lead time for identifying the proper weld test to be performed. Time frames for all test results submittals and-methods of reporting should be addressed.

Discuss AWS D1.5, Section 3.3 Assembly, to review tolerance and proper positioning of members. Incorrect fit-up will normally result in deficient welds.

Review all documents to be submitted before, during and after each portion of welding is performed. (Refer to Attachment No. 2, Checklist for Compliance with Bridge Welding Code, AWS D1.5)

Discuss corrective measures when welds are not in conformance with the contract documents (AWS D1.5, section 3.7).

All conversations regarding welding should be documented in writing by the Structure Representative (SR) or SR Assistant. Include a list of all attendees.
Bridge Welding Code AWS D1.5
OSC Contract Administration Guide

Field Office File

Documents related to welding work are to be filed in the contract’s Project Record Files under the following categories:

Category 5: Copies of all Correspondence
Category 37: Test results for all field tests
Category 41: Certifications for electrodes
Category 42: (New Category) Contractor’s submittals (copies of approved Quality Control Program, approved WPS & PQR, welders qualifications, certified welder reports, nondestructive testing (NDT) qualification, certified test reports, calibration reports for NDT equipment, QC Inspector diaries, etc.)
Category 45: Structure Rep. Diaries (including meeting notes)
Category 46: Assistant Structure Rep. and METS diaries

The use of sub-categories should be utilized to keep the welding documents together.

Inspection

The Contractor’s Quality Control Inspector shall meet the inspection personnel qualifications as discussed in AWS D1.5, section 6.1.3.

The welding inspector from METS should be present on the first day of welding, unless other arrangements are made in the pre-welding meeting.

The Contractor’s QC Inspector is responsible for all welding operations in the field and is required to monitor the fabrication, set up, root opening, groove angle, equipment settings, and welding papers, etc. on a regular basis. All procedures for welding, testing and documentation must be in accordance with the approved WPS. (AWS D1.5, section 6, Inspection).

Check the welders welding conditions and verify that the welding tolerances are meeting the contract requirements established in AWS D1.5, Section 3.

The welders, weld operators, and tack welders shall meet the qualifications and use techniques that conform to the approved WPS (consult METS for assistance).

The surface preparation shall be cleaned as necessary to produce sound welds (AWS D1.5, Section 3).

Production rates should be monitored, as needed, to ensure WPS compliance. Production rate fluctuations, especially increases, may indicate non-conformance with the Specifications.
Bridge Welding Code AWS D1.5
OSC Contract Administration Guide

Testing

Complete joint penetration groove welds in main members shall be QC tested by nondestructive testing. Personnel performing nondestructive testing shall be qualified in accordance with the American Society of Nondestructive Testing’s (ASNT) Recommended Practice No. SNT-TC-1A, or equivalent (AWS D1.5, Section 6.1.3.4). METS personnel will provide assistance for all testing matters.

Radiographic Testing (RT) shall be used for examination of complete joint penetration groove welds in butt joints subject to calculated tension or reversal of stress. See Contract Plans to identify the type of stress in members. If the stresses are not identified on the Contract Plan, contact the Designer.

Ultrasonic Testing shall be used for examination of all complete joint penetration groove welds in T- and comer joints. See Contract Plans to identify the type of stress in members. If the stresses are not identified on the Contract Plan, contact the Designer.

When required, RT and UT may be used to test all complete joint penetration groove welds in butt joints in compression or shear.

Requirements of RT and UT testing are found in AWS D1.5 Section 6.7.1.2.

Weld tabs (extension bars and run off plates) shall be removed prior to testing (AWS D3.12.2).

Magnetic-particle Testing (MT) shall be used for examination of fillet welds and partial penetration groove welds joining primary components of main members (e.g. web to flange, diaphragm connection plates to web or flange, etc.). Magnetic-particle inspection of fillet welds is not required for secondary members. Consult with designer for verifications.

Requirements of magnetic-particle testing is found in AWS D1.5, section 6.7.2.

Per AWS D1.5 Section 6.5, *Inspection of Work and Records*, The Contractors QC Inspector shall keep a record of all WPS qualifications or other tests that are made. The Engineer should get copies of all certified test results and place in the field office files.
Structural Welding Code AWS D1.1
OSC Contract Administration Guide

Similar steps mentioned in Attachment No. 1 for administration of contracts with AWS D1.5 code (Knowledge, Meeting with METS, Notice to Contractor, Pre-Welding Meeting, Filing, and Inspection) should be followed for contracts with AWS D1.1, Structural Welding Code requirements.

The contract requirements for welding, welder qualification, and inspection of welding for projects with AWS D1.1 Code are similar to the projects with AWS D1.5 Code with the following exceptions:

- Currently there is no contract requirement for the Contractor to submit a Written Quality Control Program. Future Specifications will be revised to include requirements for a program.

- The qualifications for a qualified engineer or technician proposed by the Contractor as the QC Welding Inspector, need to be “verified” not “accepted”, by the Engineer.

- There is no mandatory nondestructive testing required by the AWS D1.1 Code. Welds can be accepted if the Quality Control Inspector and the METS welding inspector find the welding quality to be acceptable by visual inspection.

- When nondestructive testing other than visual inspection is specified in the Special Provisions, it shall be the contractor’s responsibility to ensure that all specified welds meet the quality requirements of AWS D1.1.

- If the Engineer or METS representatives has reason to believe that the welding quality does not meet the specifications, the contractor shall perform any requested testing or shall permit any testing to be performed by the State in conformance with AWS Section 6.
Code of Safe Practices Welding Inspection

1) All employees exposed to welding and weld inspection work must be trained in the hazards and precautions necessary to conduct the work safely.

2) Electrical Hazards
 - Stay clear of welding leads, particularly in wet conditions.
 - Inspect leads for frays and missing insulation, all leads must be insulated.
 - Do not touch or remove the ground lead, unless directed to do so by the welder.
 - Welding equipment should be shut off when not in use.

3) Fumes and gases
 - Welding operations create harmful fumes and gases; position yourself upwind and away from the welding to avoid exposure.
 - Do not enter confined spaces where welding is being done, unless properly trained and equipped as required by Caltrans Safety Manual Chapter 14.
 - Be aware that welding on galvanized or paint coated steel (particularly lead paint) produces toxic fumes and smoke, stay away from these operations unless properly trained and equipped with respiratory protection (See Caltrans Safety Manual Chapter 15).

4) Eye Hazards
 - Never look directly or indirectly at welding work, unless you are wearing a welding helmet or goggles with lenses properly shaded for the type of welding being done (generally a #14 shade is required for large electrodes). Be aware that reflected or indirect arc can also cause eye burns.
 - Welding operations should be isolated or shielded to prevent “flash” to adjacent workers or the traveling public.
 - Wear ANSI approved safety glasses on the job site to protect from flying particles.

5) Skin Protection
 - Stay clear of welding operations. Wear long sleeve shirts or coveralls to protect skin from ultraviolet rays generated from welding.
 - Be aware that metal parts may still be hot after welding is done. Wear gloves where appropriate.

6) Radiation
 - Weld inspection involves the use of radioactive sources, typically emitting gamma rays. These rays will penetrate clothing and skin, the best protection is to stay away. **Never touch or handle a radioactive source.** Contact the technician or inspection company immediately if you find a source out of its storage container or unattended.
 - The inspection technician must establish an exclusion zone around the work, with warning signs and tape, based on expected and measured radiation emissions. **Do not enter this area unless properly trained and equipped with a radiation detector badge.** The maximum allowable exposure is 2 millirem/hour, but exposures should be kept as low as possible.
<table>
<thead>
<tr>
<th>Item</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify welded connections as tension, compression, shear or reversal member</td>
<td>Contract Plans</td>
</tr>
<tr>
<td>Identify all welds (full pen or partial pen)</td>
<td>Contract Plans</td>
</tr>
<tr>
<td>Identify all members as main or secondary</td>
<td>Contract Plans</td>
</tr>
<tr>
<td>Review special welding considerations</td>
<td>Special Provisions</td>
</tr>
<tr>
<td>Review working drawings</td>
<td>Std. Spec. 55-1.02</td>
</tr>
<tr>
<td>Review contractors written quality control program</td>
<td>Std. Spec. 55-1.02</td>
</tr>
<tr>
<td>Review requirements of QC Inspection by the Contractor</td>
<td>D1.5 - 8.1.1.1</td>
</tr>
<tr>
<td>Review requirements of QA Inspection by the Engineer</td>
<td>D1.5 - 8.1.12</td>
</tr>
<tr>
<td>Engineer and METS approved Welding Procedure Specification (WPS) in file.</td>
<td>D1.5 - 5. Part A</td>
</tr>
<tr>
<td>WPS Qualification - Gen. Requirements</td>
<td>D1.5 - 5.7</td>
</tr>
<tr>
<td>Procedure Qualification Report per weld configuration</td>
<td>D1.5 - 5.8</td>
</tr>
<tr>
<td>Welding Consumables (Electrodes)</td>
<td>D1.5 - 5.5</td>
</tr>
<tr>
<td>Electrode certification - SMAW</td>
<td>D1.5 - 4.8.5</td>
</tr>
<tr>
<td>Electrode certification - FCAW (e or g)</td>
<td>D1.5 - 4.12.3</td>
</tr>
<tr>
<td>Electrode storage (sticks only)</td>
<td>D1.5 - 4.8</td>
</tr>
<tr>
<td>Welder, Task, Welder, Welding Operator - General requirements and certification</td>
<td>D1.5 - 5.21</td>
</tr>
<tr>
<td>Welding positions</td>
<td>D1.5 - 5.22</td>
</tr>
<tr>
<td>Welder qualification test record</td>
<td>D1.5 - 5.5</td>
</tr>
<tr>
<td>Prequalified Standard Joint</td>
<td>D1.5 - Fig 2.4</td>
</tr>
<tr>
<td>Approved matching filler metals</td>
<td>D1.5 - Table 4.1.4.2</td>
</tr>
<tr>
<td>Preheat and Interpass temperature</td>
<td>D1.5 - 4.2</td>
</tr>
<tr>
<td>Joint Fit-up tolerances</td>
<td>D1.5 - 3.3 Assembly</td>
</tr>
<tr>
<td>Weld profiles</td>
<td>D1.5 - 3.8</td>
</tr>
<tr>
<td>Backing bars or back gouging</td>
<td>D1.5 - 3.13</td>
</tr>
<tr>
<td>WPS for repair work (non-conformance report)</td>
<td>D1.5 - 3.7</td>
</tr>
<tr>
<td>Weld Termination and Cleaning of weld area</td>
<td>D1.5 - 3.11.3.12</td>
</tr>
<tr>
<td>Technique / Procedures for SMAW</td>
<td>D1.5 - 4.8</td>
</tr>
<tr>
<td>Technique / Procedures for FCAW (g or s)</td>
<td>D1.5 - 4.14</td>
</tr>
<tr>
<td>Inspection of work and records</td>
<td>D1.5 - 6.6</td>
</tr>
<tr>
<td>Obligations of the Contractor</td>
<td>D1.5 - 6.6</td>
</tr>
<tr>
<td>Nondestructive Testing (NDT)</td>
<td>D1.5 - 8.7</td>
</tr>
<tr>
<td>All changes to be noted on Contract Plans (As-Built)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Most of this information is found in the handout provided by METS.
SECTION III

Responsibilities of Caltrans Quality Assurance Person

1. Primary Responsibility

The primary responsibility of a QA inspector is to insure that the materials and workmanship provided by the contractor meet the requirements of the applicable specifications. The QA inspector is required to verify that all specifications, codes, and special provisions requirements are met and that the contractor’s QC reports are in order. The QA inspector shall make random field inspections as a means to accomplish satisfactory QA confidence. Towards the achievement of this objective, the following activities shall be performed on a regular basis:

Schedule daily/weekly meeting times with contractor’s QC personnel to monitor job progress and ensure contractors QCP is in effect.

Review all QC reports, weld documentation, and NDT certifications to ensure continued compliance.

Perform random review of radiographs to insure specification compliance. METS assistance at Sacramento is available.

Perform field verification inspections. A minimum of one inspection per location or one inspection per hundred field welds will be desirable.

Document all reported and discovered non-conformance issues and contractor’s proposed solutions.

Generate QA inspection reports to be turned over to the engineer in the time frame agreed upon.

To assist the QA inspectors in the performance of the above functions, a *Field Inspection Procedure* with the relevant forms has been included in Appendix A. The QA inspector is required to fill out these forms, as applicable, during every field inspection, and disseminate the same to the engineer and all other impacted personnel.

2.1 It is not the function of the contractor nor the QA personnel to decide issues of materials or design. These issues have been previously decided by the specification, the design requirements, the referenced codes, or will be addressed by the engineering staff as needed. Should a specification problem be brought to your attention, notify the engineer in writing as agreed.
2.2 The contractor must build the product as specified. The QA inspector insures that the product is built as specified by reviewing procedures, qualifications, technique, and documentation. An amount of field verification as determined by the METS Section Chief and the engineer is necessary. Any deviation from the requirements of the specification must be thoroughly investigated and approved in writing by the engineer, prior to implementation.
APPENDIX A

Field Inspection Procedure

For each inspection there will be a check list to assist the inspector in covering all the areas necessary to achieve a complete Quality Assurance program. The following is a list of forms.

1.) Spec. Review: This form will be used to make the Caltrans Engineer and the METS Inspector aware of all required specifications and Testing
 A review of the contractors Quality Control and welding paper work.

2.) Prejob: This is a record of the meeting with the Prime contractor, Quality control, the Welding contractor, and Testing company.
 A review of the contractors responsibility for Quality Control
 A review of the Quality Control Inspectors duties and responsibilities.
 A review of Nondestructive testing requirements and the necessary documentation.

3.) Daily Report: This a record of the METS Inspectors Quality assurance on the Job.
 A review of the Quality control inspection reports.
 A record of any interaction with Caltrans Personnel
 A record of any interaction with the Contractors personnel
 A record of any verification inspection and nonconformance.

4.) Nonconformance: This is a record of Unacceptable work.
 Type of problem (Welding, Fitting, Procedural, etc.)
 List of locations
 How was the unacceptable work discovered.
 Who was notified and when.
 What is proposed to rectify the problem.
 Each type of nonconformance shall be listed on a separate form.

5.) Notification: This form is documentation and notification to the Caltrans Engineer from the METS inspector that the work does not meet the Specification.
 This form will be used when the contractors Q.C. has accepted or overlooked unacceptable work.
 A request that the work in question be reinspected.
 A request for a written explanation from the Q.C. inspector.
Quality Assurance for field welding

Caltrans Quality Control and specification review

Special Provisions
List all references to welding (Section and Paragraph) and brief description
Highlight all references to other Specifications

1. ___

2. ___

3. ___

4. ___

5. ___

Standard Specifications
List all references to welding (Section and Paragraph) and brief description
Highlight all references to other Specifications

1. ___

2. ___

3. ___

4. ___

AWS (Welding and Nondestructive Testing)
Code: D-1.5 (Bridges) D-1.4 (Reinforcing) D-1.1 (Structural)

1.) Obligations of the Contractor (Section __ Paragraph ___)

2.) Inspection Personnel Qualifications (Section Paragraph ___)
Qualifications of Welding Inspector. (Review documentation)

3.) Nondestructive Testing (Section Paragraph ___)
Type of test required: RT ___ UT ___ MT ___
Extent of Testing (Section Paragraph ___)

4.) Welding Procedure Specifications (Section Paragraph ___)
(PQR) Procedure Qualification Record ______________
(WPS) Welding Procedure Specifications ______________

5.) Welder Qualification (Section Paragraph ___)
Name Tests Required Positions
__
__
__
__
Quality Assurance for Field Welding

Welding and Inspection Q. C. / Q. A. Meeting

This meeting shall take place prior to the start of the job to assure the contractor will be in conformance with the specifications. A representative from the Prime contractor, the approved welding inspector, the Welding contractor, the personnel performing nondestructive testing, the Caltrans Engineer, and the METS inspector should be present.

All parties involved in inspection or testing shall have copies of all required specification. This should be verified by asking each individual attending the meeting if they have (Special Provisions, Standard Specification, and AWS)

Prime Contractors Representative YES _____ NO _____
The Welding Inspector Q. C. YES _____ NO _____
The NDT Inspector YES _____ NO _____

The role of the Prime Contractor in assuring quality work is:
1. The contractor shall be responsible for visual inspection and nondestructive testing.
 The contractor is responsible for necessary correction of all deficiencies in materials and workmanship (Paragraph 1 Section Paragraph)
2. The contractor shall hire qualified and competent personnel to perform inspection and testing
3. The contractor shall schedule nondestructive testing to facilitate attendance by the QA Inspector when requested by the Engineer.

The role of the Quality Control Inspector is:
1. Review welding procedures and welder qualification to assure conformance to the specification.
2. Perform inspection prior to assembly, during assembly, during welding and after welding as specified in AWS and additionally as necessary to assure that materials and workmanship conform to the requirements of the contract.
3. The Inspector shall record the locations of inspected areas and the findings of all nondestructive tests, together with detailed descriptions of all repairs made.

The role of the NDT Technician is:
1. The Inspector shall identify with a distinguishing mark or adequate document control as approved by the Engineer all parts or joints that the technician tested and approved.
2. The technician shall perform nondestructive Testing in accordance with all applicable Specifications.
3. The technician shall approve satisfactory welds, or reject unsatisfactory welds and report the results to the contractor in writing the same day.

All parties attending meeting:
Print Name Signature Date

_________________________________ _______________ __________
_________________________________ _______________ __________
_________________________________ _______________ __________
_________________________________ _______________ __________
_________________________________ _______________ __________
_________________________________ _______________ __________
METS INSPECTOR FIELD REPORT

Contract #_________________________ Date________________________

Job Name_________________________ Report #_______________________

Company Name, Address______________________ CWI name________

Arrival Time__________________ Departure Time________________

CWI there?______________________

Inspected CWI reports________

<table>
<thead>
<tr>
<th>Checked rod ovens</th>
<th>Electrodes to specification</th>
<th>Weld procedures</th>
<th>Welder Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Joint finup</th>
<th>Mill reports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Item Inspected________________________ Location____________________

Summary of discussions with Contractor/Caltrans personnel

Discrepancies noted

Corrections to be made by

Reported to RE

Signature
Quality Assurance for field Welding

Nonconformance Report

Contract Number __________________________ Date ____________

Type of Problem: Welding____ Fitt-up____ Procedural____ Other____

Description __

Location __

Who found the problem? ______________________________________

Who was notified and when? _________________________________

Was the Caltrans Engineer notified? ____________________________

Name of the Quality Control Inspector _________________________

Was the Quality control Inspector aware of the problem? _________

What is the Contractor proposing to correct the problem? _________

What is METS recommendation ________________________________

Print METS Inspectors Name _________________________________

Title ________________________________
The METS Inspector shall notify the Caltrans Engineer of nonconformance as soon as possible. This report is for Caltrans Personnel only and used to help the Engineer assess the problem and the effectiveness of the contractors Quality Control. If it is determined that the Quality Control is not sufficient to assure that the materials and workmanship conform to the requirements of the Specification the Engineer shall request an explanation in writing from the Prime contractor. When unacceptable work is found by the Quality Assurance Inspector (METS) this should be considered evidence that the Quality Control is not sufficient. If it is determined that the Q.C. Inspector is not qualified based on the fact that he does not recognize unacceptable work the Engineer shall have the individual responsible removed and replaced.

METS Inspector ____________________________

BRIDGE CONSTRUCTION RECORDS & PROCEDURES MANUAL
Subject: Checklist for Welding Quality Control

For all projects advertised after April 1997 (and in some cases by addendum) a section entitled Welding Quality Control was added to the Special Provisions as well as a revision to Section 52-1.08 Reinforcing. Additional revisions to both sections have occurred since that time.

The Welding Quality Control Section in the Special Provisions, supplements the following sections of the Standard Specifications: Section 49 Piling, Section 52, Reinforcement, Section 55, Steel Structures, Section 56-1, Overhead Sign Structures, Section 75-1.035, Bridge Joint Restraint Units, and Section 86-2.04, Standards, Steel Pedestals and Post. Other Sections of the Standard Specifications will be supplemented by the welding quality control plan when required. The welding quality control section also addresses field and shop welding requirements.

Attached are checklists to assist you with understanding the requirements of the welding quality control section contained in the contract Special Provisions. These checklists include a list of applicable contract documents to review and an outline of the responsibilities of the Structure Representative, and personnel from the Division of Materials Engineering Testing Service, Office of Structure Materials (OSM) during each stage of welding. In addition to the checklist, there is a list of commonly used terms and definitions.

The Structure Representative is responsible for all welding. OSM personnel are available to provide advice, guidance, review the welding quality control plan, and perform field and shop welding QA inspection (refer to BCM 180-4 and BCM 180-9 for a list of OSM contacts and phone numbers).

Even though the checklists are extensive, you need to review your Contract Documents for the latest specification requirements.

Copies of the Structural Welding Code-Steel (AWS D1.1) have been assigned to every Area Construction Manager and copies of the Structural Welding Code, Reinforcing Steel (AWS D1.4), and Bridge Welding Code (AWS D1.5) have been assigned to every Senior Bridge
Engineer. Additionally, the Special Provisions now require the contractor to provide the State, as part of their welding quality control plan, the applicable AWS welding codes for the applicable year noted in the Special Provisions.

Attachments

C: BCR&P Manual Holders
 Consultant Firms
 PStolarski, OSM
 BPieplow, Construction Program Manager
WELDING QUALITY CONTROL CHECKLIST

Definitions

The following is a list of definitions commonly used within the section Welding Quality Control of the Special Provisions and elsewhere in the contract documents. Additional definitions can be found in ANSI/AWS A3.0-94 Standard Welding Terms and Definitions.

Certified Welding Inspector (CWI) for State Projects – Inspector certified in accordance with AWS QC1. For State projects the Quality Control Inspector will be a CWI.

FCAW – Flux Cored Arc Welding – An arc welding process utilizing a tubular electrode with the flux contained within the core. The electrode is supplied on a reel and is fed continuously to the welder's gun automatically.

FLUX – A material used to hinder or prevent the formation of oxides and other undesirable substances in molten metal and on solid metal surfaces, and to dissolve or otherwise facilitate the removal of such substances.

GMAW – Gas metal arc welding utilizes a bare or a flux-cored electrode. Gas from an external source is used for shielding. Normally a shop welding process. Often referred to as MIG welding.

Non-Conformance Report (NCR) – A written report originated by OSM which addresses a deficiency being performed and the contract documents not being fulfilled. The report will describe the problem, the location, the Quality Control Inspector response, the proposed solution, and OSM recommendation.

Non-Destructive Testing (NDT) – Testing or an inspection method which does not damage the element being tested (e.g. Radiographic (RT), Ultrasonic (UT), Visual (VT), Magnetic Particle (MT), Liquid Penetrant (PT).

Procedure Qualification Record (PQR) – Documentation indicating testing was performed to qualify a WPS.

Quality Assurance (QA) – This oversight is the prerogative of the Engineer and will be performed by a State representative.

Quality Assurance Inspector (QA Inspector) – The duly designated person who acts for and on behalf of the Engineer. This person is from OSM and will inspect the welding operation and write a welding report for the State.

Quality Control (QC) – Responsibility of the contractor. As a minimum, the Contractor shall perform inspection and testing prior to welding, during welding and after welding as specified in the contract documents and additionally as necessary to ensure that materials and workmanship conform to the requirements of the contract documents.
WELDING QUALITY CONTROL CHECKLIST

Quality Control Inspector (QC Inspector) – The person duly designated by the contractor, to perform inspection, testing, and address welding issues on the project. This person shall be responsible to the contractor for the quality control acceptance or rejection of materials, workmanship, and shall be currently certified as AWS Certified Welding Inspector (CWI) in conformance with the requirements in AWS QC1, Standard and Guide for Qualification of Welding Inspectors.

Quality Control Manager (QCM) – A representative, employed by the prime contractor, who is responsible directly to the contractor for the quality of all field welding performed. This includes the materials and workmanship. The QCM reviews, approves, and submits all QC documents to the Engineer.

Quality Control Plan (QCP) or Welding Quality Control Plan (WQCP) – A plan submitted by the contractor to the State for each item of welding work to be performed. This plan contains all welding documents required by the contract (refer to the Special Provisions and QCP 1). No welding can begin until this plan is reviewed by OSM and approved by the Structure Representative.

QCP-1, QCP-5 and QCP-7 – These forms are used by OSM and the Structure Representative, as checklists to ensure the contractor’s Quality Control Plan or Fracture Control Plan are complete.

SAW – An arc welding process utilizing a solid wire electrode that is fed automatically to the welding head from a reel. A granular flux is automatically deposited from a dispenser onto the molten weld deposit (normally a shop welding process).

Resistance Butt Welding (Flash Butt Welding) – A welding process in which the necessary heat is derived from an arc or a series of arcs established between the bars being welded prior to pressure being applied to join the ends together.

SMAW - Shielded Metal Arc Weld – An arc welding process utilizing a solid electrode with an outer flux coating.

Welding Procedure Specifications (WPS) – A document providing the required welding variables for a specific application to assure repeatability by properly trained welders and welding operators.

Welder’s Qualification – Welders must be certified for type and position of weld and weld process. If not certified, tests can be performed to qualify the welders. Welders must be certified and approved by OSM before welding on State projects.

Welding Quality Control Plan (WQCP) – See QCP above.
WELDING QUALITY CONTROL CHECKLIST

Prior to Beginning Any Welding Work

The following contract documents should be reviewed before starting any welding work:

Specific References:

Standard Specifications Sections:
 - Section 6-3.02, Testing by Contractor
 - Sections 49, 52, 56, 75 and 86 (as applicable to the work)
American Welding Society (AWS) - AWS D-1.1, D-1.4, D-1.5 (appropriate year)
 - AWS D-1.1: Prequalification of WPS, Qualification, an Inspection
 - AWS D-1.4: Direct Butt Joint Figure 3.2, Workmanship, Technique, Qualifications and Inspection
 - AWS D-1.5: Figure 2.4, Workmanship, Technique, Qualification, Inspection, Welded Steel Bridge, and Fracture Control Plan

Contract Plans
Contract Special Provisions
Bridge Construction Records and Procedures Manual
 - BCM 9-1.1
 - Section 180 – Welding
 - BCM 145-16
OSM forms QCP 1 & 5 – (attachment 4)

Before starting any welding, three items need to be completed. A pre-weld meeting with OSM personnel only, a pre-weld meeting with the contractor, and the review and approval of the Contractor’s Welding Quality Control Plan (WQCP). These and other items are explained further below.

1. Inform OSM immediately after contract approval that welding, including shop welding, will be performed for your project (see BCM 180-4 & BCM 180-9 for a list of OSM contact phone numbers). At this time, set up an initial meeting with OSM Personnel Only to discuss the welding requirements for the project, and to plan the pre-welding meeting with the contractor.

2. Conduct a pre-welding meeting with the prime contractor for each type of welding to be performed in the shop or in the field for the contract (i.e. piles, column casings, structural steel, reinforcing steel, miscellaneous metal, etc.). OSM will conduct this meeting if you so request. The Resident Engineer, Structure Representative, Prime contractor, QCM, QC Inspector, any welding subcontractor, suppliers or fabricators and the NDT firm should attend this meeting. The State should have their QA Inspector from OSM present to assist with the following discussion topics:
WELDING QUALITY CONTROL CHECKLIST

Prior to Beginning Any Welding Work (Cont.)

a. The submittal and approval process for the WQCP. Supply and explain OSM form QCP-1 (attachment 4) to the contractor. Form QCP-1 is a checklist of the minimum requirements for the WQCP. The contract documents may require additional information to be submitted with the contractor’s WQCP beyond those listed on form QCP-1.

b. Discuss the appropriate sections of the AWS code and contract documents as they pertain to the acceptance and approval process of the contractor’s WQCP (a OSM welding inspector should cover this portion). The WQCP will be reviewed by OSM and must be approved by the Structure Representative prior to any welding in either the shop or the field. In order for the Structure Representative to accept the WQCP, personnel from OSM will have to review the contractor’s WQCP. This acceptance of the WQCP may require OSM personnel to witness the welder(s) welding test plates and the testing of those plates before accepting the WQCP. The same is true of the PQR.

c. Remind the contractor to provide adequate notice prior to starting any welding work (request one week minimum advance notice). This will allow time to schedule an OSM QA Inspector.

d. Inform the prime contractor they are responsible for QC, and they must hire the QC Inspector (a CWI) and the NDT firm, unless stated otherwise in the Special Provisions (i.e. AISC Quality Certification Program, Category Cbr, Major Steel Bridges).

e. Discuss the frequency of inspection, visual and NDT, as well as the frequency of the QCM’s submittal of the QC Inspector and NDT reports.

f. Establish a method to identify the welds and lot sizes. This needs to be established for traceability purposes.

g. Discuss the process to randomly select welds to be NDT (see BCM 145-16 for random selection method).

h. Discuss corrective measures when welding does not conform with AWS or the contract documents.

i. Discuss OSM agenda items and any additional requirements addressed in the contract documents.
WELDING QUALITY CONTROL CHECKLIST

Prior to Beginning Any Welding Work (Cont.)

j. Confirm all discussions of each pre-weld meeting in writing and send a copy to the contractor.

3. Obtain three copies of the contractor’s WQCP. Using form QCP-1 and the contract documents, review the contractor’s WQCP and ensure the submittal is complete before forwarding to OSM - this will save review time. Once the contractor’s WQCP is complete, send two copies to OSM for their review. OSM will assist the Structure Representative with the acceptance and approval of the WQCP. Keep the other copy in your project files.

4. If resistance butt welding, or any other shop welding is to be performed, ensure OSM has approved the welding procedure, performed a shop audit if required, and performed any testing that may be required to accept the welding process (see BCM 165-10 Ultimate Butt Splice).

5. After OSM has completed their review, they will notify you by phone, followed by an acceptance memo (QCP–5 for WQCP and or QCP-7 for the Fracture Control Plan, attachment 4) for your project files.

6. After reviewing OSM acceptance memo, and if it is acceptable, place the standard stamp 5-1.02, on both the WQCP and the approved WPS to be used on the project. Do not place your PE number on the WQCP, the WPS, or the approval letter to the contractor.

7. Send the contractor a letter approving their WQCP and request 7 copies of these approved documents.

PROJECT RECORDS FILES

Welding Documents are to be Filed in Category 9

NOTE: To limit duplication and confusion, the Structure Representative may want to use a cross-reference system with the other project record categories (ensuring records can be easily audited). For example, correspondences are filed in Category 5. If the issue is welding, the Structure Representative shall file the document in Category 9 as described in the Construction Manual Section 3-01-2, Category 5, General Correspondence.

The following is a suggested list for filing welding documents.
WELDING QUALITY CONTROL CHECKLIST

Project Record Files (Cont.)

1. The WQCP will be submitted for each item of work for which welding will be performed in the shop and field (i.e. piles, structural steel, rebar, etc.). The WQCP shall conform to the requirements of the Special Provisions and shall include, as a minimum, the items listed on form QCP-1. **Remember, welding is not allowed until the WQCP is accepted by OSM and approved by the Structure Representative.** Each approved copy of the contractor’s WQCP is to be filed in Category 9, *Welding*, along with forms QCP-1, QCP-5 and QCP-7 if required.

2. Structure Representatives and their Assistants shall file their reports/diaries in Category 45 and 46 respectively. If welding item work is included within the report, one of two things shall happen: write a separate report, or place a copy of the report in category 9. The welding report shall include: location and type of welding work, amount of production, welder, QC Inspector, QA Inspector, equipment, comments or observations made by either the QC or QA Inspectors and any other pertinent information.

3. OSM welding inspection reports are to be filed in Category 9. All others inspection reports from OSM should be filed in their appropriate Category as outlined in the Construction Manual.

4. If you receive an OSM Non-Conformance Report (NCR) it is to be filed in Category 9, along with the documentation showing what corrective action was taken (repairs and re-inspections of the non-conformance work). **It is the Structure Representative’s responsibility to ensure the non-conformance work is corrected and additional testing and inspection is performed per the contract documents (OSM will only assist in the re-inspection when requested and instructed as to the acceptance criteria).**

5. Contractor’s QCM is to submit their welding report to the Engineer within 7 days following the performance of any welding. The Engineer shall review the report for completeness and ensure the welding was found to be satisfactory. The completed report is to be filed in Category 9.

6. Copies of all welding correspondences are to be filed in Category 9 (reference Construction Manual 3-01-2).

7. Test results of all field and shop welding are to be filed in Category 9.

8. The contractor shall furnish to the Engineer a Certificate of Compliance for all welding and electrodes used, as required by the contract documents and in accordance with Section 6-1.07, *Certificates of Compliance*, of the Standard Specification and Section 8.
WELDING QUALITY CONTROL CHECKLIST

Project Record Files (Cont.)

of the Special Provisions. These certificates shall be filed within Category 9 with reference to the appropriate section within the project files.

During Weld Production

1. Make arrangements so an OSM welding inspector is present at the job site or the shop on the first day of welding (if the first day is not possible, then the next available day - the key is to provide OSM adequate notice). If welding is being performed in the shop, OSM should be informed by a Notice of Materials To Be Used, (Form CEM 3101). This will ensure the welding for your project gets off to a good beginning and the QC Inspector has a clear understanding of the QA Inspector’s role and expectations.

2. OSM is responsible for assisting the Structure Representative with QA inspection on the project. OSM is responsible for welding QA at the fabrication shop. Every effort shall be made to ensure a representative from OSM is present during production welding; however, if OSM is not available, the Structure Representative and/or the Assistant Structure Representative shall provide QA inspection and document their findings in their daily reports. The following items should be discussed with an OSM inspector before the pre-weld meeting with the contractor. This discussion should be done in the event a QA Inspector is not available during production welding.

a) Verify the contractor is providing QC inspection and using the appropriate AWS code, Contract Special Provision, and Standard Specification to evaluate the weld and weld procedure. The contractor is to provide a sufficient number of QC Inspectors to perform the inspection prior to, during, and after welding. The inspection interval of each welder’s work shall not lapse more than 30 minutes, as stipulated in the contract documents.

b) Verify the welder is listed within the approved WQCP and is qualified and was accepted by OSM to perform the specified weld. For example, if the WPS calls for SMAW in the vertical position, make sure the welder is qualified to perform SMAW in the vertical position. Note: the AWS code specifically disallows a vertical downward progression of welding.

c) Ensure the welders are following the approved WPS. Items easily verified, include: correct base metals, fit up, joint details (such as bevel angle and root opening), weld process, weld position, electrode type and size, travel speed, voltage and amp settings, preheat and interpass temperature, cleaning/slagging between each weld pass, number of weld passes, and ensuring the welder is placing a string bead and not a weave weld. The QC Inspector should also verify and record these items daily.
d) Review the appropriate AWS code to ensure welding **is not done** when the ambient temperature is too low, when surfaces are wet or exposed to wind, or when welders are exposed to inclement conditions (see the appropriate AWS Code under workmanship or technique).

e) Ensure backing plates, if shown in the WPS, are tight against the base metal or rebar (it might be necessary to grind down only the bar deformations that interferes with the tight fit, not the core area of the reinforcing steel). The Special Provisions, for bar reinforcement, requires the backing plate to be a flat plate. Backing plates are not to be removed for radiographing. If the backing plate is for welding a column casing refer to BCM 180-6 and BCM 180-7.

f) Ensure the electrodes are properly stored. For SMAW electrodes, once the hermetically sealed container is opened, or after electrodes are removed from drying or storage ovens, the electrode exposure to the atmosphere shall not exceed the times stated in the AWS code (typically 4 hours maximum). For FCAW electrodes, they shall be stored in clean and dry conditions at all times.

g) Ensure the welder does not make any errant arc strike (contact between the electrode and the base metal outside the weld area). If an errant strike does occur, the material is subject to rejection, but confer with OSM first.

h) Verify NDT and destructive testing, when required, is being performed properly and in accordance with the Special Provisions and other contract documents (OSM may be of assistance in this regard).

i) Keep an eye on the production and failure rate. A dramatic increase in production and a drop in the failure rate generally result in non-conformance with the WPS.

3. Obtain the QCM welding reports within 7 days or as specified by the contract documents, following performance of any welding. Review this report with the assistance of OSM to determine if the contractor is in conformance with their WQCP. Except for steel piling, this report must be reviewed and a written response approving or rejecting the report must be returned to the contractor within 7 days (your time frame may vary, read your Special Provisions). For piling, this review time will be specified in the Contract Special Provisions.

4. Review all reports regarding NDT, destructive testing, and radiographing. As described in the contract documents, all reports shall have the appropriate signature of the reviewer. For radiographs - the NDT technician, the person performing the review and the QCM
WELDING QUALITY CONTROL CHECKLIST

During Weld Production (Cont.)

shall sign these reports. The reviewers name shall be clearly printed or type written next to their signature. If they are not, return them to the QCM.

5. All radiographic envelopes shall have clearly written on the outside the names of the: QCM, NDT firm, radiographer, date, contract number, complete part description, and include the weld numbers or a report number as detailed in the WQCP. In addition, all innerleaves shall have clearly written on them the part description and include weld numbers, as detailed in the WQCP.

Weld Acceptance

1. There are different forms of NDT (VT, UT, RT, MT, and PT) that may be performed on weld elements, but the contractors QC Inspector will always perform a visual inspection (VT) and write up a daily report. The contractor is responsible to ensure all necessary and required NDT is performed. The contractor is also responsible to ensure all welding fulfills the requirement of the contract documents and the appropriate AWS codes. It is the Engineers prerogative to perform QA inspection. If the QC Inspector identifies a defect it is to be noted in the welding report along with the corrective action taken. If the QA Inspector identifies a defect, a Non-Conformance Report will be written and given to the Structure Representative that day. These reports are not to be given to the contractor. It is the Structure’s Representatives responsibility to notify the contractor in writing and ensure the defect is repaired and any additional testing is performed and evaluated. Inform OSM of the repair and request an inspection of the repaired weld.

2. Welds can be accepted if both the Contractor’s QC and OSM QA Inspectors find the welding quality to be acceptable by visual inspection and/or NDT, in accordance with the appropriate AWS code.

3. In addition to the inspection, the contractor shall furnish to the engineer, in accordance with Section 6-1.07, Certificate of Compliance, of the Standard Specifications and Section 8 of the Special Provisions, a Certificate of Compliance for each item of work for which welding was performed. This certificate shall state that all of the materials and workmanship incorporated in the work, and all required tests and inspections of this work, have been performed in accordance with the details shown on the plans, and the requirements of the Standard Specifications and the Special Provisions.

Project Close Out

1. The location of all splices need to be shown on the as-build drawings per BCM 9-1.1.
WELDING QUALITY CONTROL CHECKLIST

Project Close Out, (Cont.)

2. Met with the OSM representative to confirm all NCR and any other details are resolved before accepting the project.
REINFORCING STEEL CHECKLIST

Prior to Beginning Any Welding Work

The following items are in addition to those listing in Attachment 2 and are intended to assist you with the inspection of reinforcing steel welding on your project. Therefore, before starting any welding, review the section entitled Prior to Beginning any Welding Work within the Welding Quality Control Checklist (attachment 2).

Specific References:

Standard Specifications Sections:
- 52-1.08B, Butt Welded Splices
- 52-1.08D, Qualifications of Welding and Mechanical Splices

Structural Welding Code - Reinforcing Steel, AWS D1.4 (appropriate year)
- Welding Procedure Qualification
- Welder Qualification
- Direct Butt Joints - Figure 3.2
- Inspection

An approved WQCP is required before any welding is allowed. Review the requirements outlined in form QCP-1, contract documents and AWS D-1.4. AWS D 1.4 does not provide for prequalified welds; therefore, all WPS’s and welders must be qualified by testing. You will need a copy of the PQR for each WPS that will be used on the project and the qualification test for the welder(s). The PQR and the welder qualification test must be witnessed by either a lab approved by OSM or by OSM personnel. This should be discussed at the meeting with the OSM representative and also related to the contractor at the pre-welding meeting.

Project Record Files

In addition to those items listed in Attachment 2, the following items also need to be filed in Category 9 for reinforcing steel welding:

1. The contractor's QCM and OSM QA reports. These reports shall also include the following information when rebar welding and NDT is being performed:
 a) Evidence showing at least 25% of all butt welds were radiographed by the Contractor.
 b) Evidence the Contractor evaluated the results, corrected deficiencies, radiographed repaired welds and radiographed additional welds as required (review your Special Provisions for specific details on additional testing requirements when welds are rejected).
 c) If more than two repairs of any weld are required, the Contractor must submit a repair plan detailing the problem and their proposed solution. This will prevent excessive heat damage to the reinforcing steel in the vicinity of the weld (heat affected zone).
REINFORCING STEEL CHECKLIST

Project Record Files, (Cont.)

2. A summary sheet recording when radiographs were submitted to and reviewed by OSM personnel and the response to the contractor.

3. Test reports of destructive testing performed for resistance butt welds. OSM will review the testing and perform QA.

During Weld Production

In addition to Attachment 2, the following items shall also be reviewed by the Structure Representative and/or their Assistant:

1. Preheat and interpass temperatures. Ensure the proper temperatures are being used for the grade of steel or Carbon Equivalent (CE) being used. Refer to the Special Provisions and AWS D-1.4-92 table 5.2 or contact OSM personnel.

2. Bar alignment is within allowable tolerances. For example, AWS D-1.4-92 Section 4.2.3 states, for bars No. 10 or smaller the allowable offset is 1/8 inch. Additionally, Section 52-1.08 of the Standard Specifications states, the deviation in alignment of reinforcing bars at a welded splice shall not be more than 1/4 inch over a 3-1/2 foot length of bar.

3. When specified, a minimum of 6 inches on either side of the welded splice is covered with an insulated wrapping to control the rate of cooling after welding is complete. The method of protecting the weld area from heat loss shall be addressed in the approved WQCP.

4. Randomly select welds to be radiographed (for the random selection process, see BCM 145-16). Verify radiographs are being taken on at least 25% of the randomly selected production lot. If welds or radiographs are rejected, verify additional welds are being radiographed and re-shots of the repaired welds are taken in accordance with the Special Provisions.

5. Verify tests are being performed properly in accordance with the Special Provisions and other contract documents (assistance from OSM is required). Radiographs are to be taken at zero degrees from the top of the weld and perpendicular to the root of the weld as shown below.
REINFORCING STEEL CHECKLIST

Weld Acceptance

The Contractor should be encouraged to submit radiographs in a timely manner. This will allow the Contractor the opportunity to make corrections if necessary before the work progresses too far. Since the quality of the welding and the radiographing is the responsibility of the Contractor, the Contractor may choose to continue the work without waiting for OSM review and comment. If so, the contractor proceeds at his own risk and should be informed in writing.

The following items and those in Attachment 2 need to be obtained before accepting any reinforcing steel welding.

1. The contractor shall evaluate the radiographic film and the weld for acceptability and make any necessary repair to the weld and perform additional testing per the contract documents if required.

2. All radiographs, approved, reshot and/or rejected by the QC Inspector, must be reviewed by OSM. When the film is delivered to the Structure Representative, the Structure Representative should prepare a cover memo (attach to the radiograph film) requesting a review by OSM personnel. Before sending your memo and the film, check with your local OSM office for direction and proper sending instructions. On the memo, please include the Structure Representative’s name, telephone number and fax number. Each piece of film shall include the contractor’s name, date of radiograph, name of NDT firm, initials of the radiographer, contract number, part number, and weld number. The letter “R” and repair number shall be placed directly after the weld number to designate a radiograph of a repaired weld.
REINFORCING STEEL CHECKLIST

Weld Acceptance (Cont.)

3. OSM personnel will review radiographs submitted by the contractor and phone the results to the Structure Representative within seven (7) calendar days after the review or as stated in the contract documents. A written report will follow within 10 working days. To ensure a complete review of the contractor’s QC inspection, the radiographs of welds rejected by the contractor’s QC Inspector will be reviewed by OSM. OSM will report their findings or the rejections to the Structure Representative as information only. These findings will be reported as either:

a) “Reviewed film and interpretations submitted by the Contractor are consistent with the Office of Structural Materials findings.

Or

b) "Reviewed film and interpretations submitted by the Contractor are inconsistent with the Office of Structural Materials findings and we recommend the Contractor review the QC procedures currently in use."

4. The Structure Representative can accept welds if both the QC Inspector and the QA Inspector agree the welding quality is acceptable by visual inspection and NDT in accordance with AWS D1.4.

5. In addition to the inspection, the contractor shall furnish to the Engineer, in accordance with Section 6-1.07, Certificate of Compliance, of the Standard Specifications and Section 8 of the Special Provisions, a Certificate of Compliance for each item of work for which welding was performed. This certificate shall state that all of the materials and workmanship incorporated in the work, and all required tests and inspections of this work, have been performed in accordance with the details shown on the plans, and the requirements of the Standard Specifications and the Special Provisions.

Project Close Out

1. The location of all splices need to be shown on the as build drawings per BCM 9-1.1.

2. Met with the OSM representative to confirm all NCR and any other details are resolved before accepting the project.
CONTRACTOR'S QCP SUBMITTAL FOR WELDING

To: ______________________, Resident Engineer
Tel. No.: ___________________
Fax No.: ___________________

Date of this Submittal: ____________
From: _______________________
Contract No.: _________________
Welding Firm: _________________
NDT Firm: _________________

Materials to be Welded:
- Struct. Steel
- Misc.
- Rebar
- Col. Casings
- H-Piles
- Pipe Piles

NDT Required:
- RT
- UT
- MT
- Visual Only

Specifications:
- D1.1 (yr)
- D1.4 (yr)
- D1.5 (yr)
- D1.6 (yr)

Our Quality Control Plan for welding to be performed on the subject contract is submitted for your review and approval.

The items checked below are submitted herewith.

<table>
<thead>
<tr>
<th>QCP ITEMS TO BE SUBMITTED AS A MINIMUM</th>
<th>SUBMITTED</th>
<th>N/A</th>
<th>For R.E. Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Organization Chart showing all QC Personnel & their duties.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Name & Qualifications of Quality Control Manager (QCM).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. QC Inspectors - Provide copy of current AWS CWI Certification and eye exam for each Inspector to be used in the work</td>
<td># of submittals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Names & Qualifications of Asst. QC Inspectors – Provide current AWS Assoc. CWI Certification or resume.</td>
<td># of submittals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Procedure Manual of NDT firm: certified personnel, NDT equipment, test procedures, calibration methods, methods and frequencies of tests, safety procedures and report forms to be used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Certifications for Level II NDT Technicians.</td>
<td># of submittals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Methods and frequencies of NDT Inspections.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. List of Visual Insp. Tools (weld gages, tempsticks, lights, etc.).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Method of tracking and identifying weld joints & welders.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Prequalified WPS (PQR not required).</td>
<td># of submittals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. WPS' requiring PQR testing. (PQR tests Must be State Witnessed)</td>
<td># of submittals & tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Electrode & Shielding Gas Certs. for each weld process.</td>
<td># of submittals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Welder Qualifications for each process & position that each welder will perform. (Must be State Witnessed)</td>
<td># of submittals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Sample Certificate of Compliance form to be used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. One copy each of applicable AWS Welding Codes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Other</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QCM Signature: ________________________ ________________________________ (Printed Name)
METS LETTER OF TRANSMITTAL
REVIEW OF CONTRACTOR’S WELDING QUALITY CONTROL PLAN

To: ______________________, Resident Engineer
Tel. No.: ____
From: ______, Branch Chief
Date of Receipt (R.E.): ____
Fax No.:
Contract No.:
Date of Receipt (METS): ____

The Contractor’s Quality Control Plan Submittal #:_____Rev. # _____ has been reviewed.

☐ QCP substantially complies with specification requirements and approval is recommended.
☐ QCP needs to be resubmitted and unacceptable (reject) items corrected as per comments.

(See attached QCP5-NC for Non-Conforming Item Comments)

General Contractor: _____
Welding Firm: _____
Contractor’s QCM: _____
NDT Firm: _____

Materials to be Welded:
☐ Struct. Steel ☐ Misc. ☐ Rebar ☐ Col. Casings ☐ H-Piles ☐ Pipe Piles
NDT Required:
☐ RT ☐ UT ☐ MT ☐ Visual Only
Specifications:
☐ D1.1 (yr) ☐ D1.4 (yr) ☐ D1.5 (yr) ☐ D1.6 (yr)

<table>
<thead>
<tr>
<th>QCP ITEMS REVIEWED</th>
<th>COMPLIES</th>
<th>DOESN’T COMPLY</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Organization Chart showing all QC Personnel & their duties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Name & Qualifications of Quality Control Manager (QCM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. QC Inspector-AWS CWI Certification and eye exam for each. # of submittals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. ASST QC Inspector - AWS CAWI Certification for each. # of submittals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Procedure Manual of NDT firm: certified personnel, NDT equipment, test procedures, calibration methods, methods and frequencies of tests, safety procedures and report forms to be used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Certifications for Level II NDT Technicians # of submittals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Methods and frequencies and extent of NDT Inspections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. List of Visual Insp. Tools (weld gages, tempstiks, lights, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Procedures frequencies and extent of Visual Inspections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Describe method of tracking and identifying weld joints and welders production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Daily Production & Inspection Log for Welds for use by QC Inspector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Action Plan for reporting non-conforming welds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Prequalified WPS (PQR not required) # of submittals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. WPS requiring PQR tests. # of submittals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Standard Weld Repair Procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Electrode & Shielding Gas Certifications for each process # of submittals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Welder Qualifications # of submittals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Sample Certificate of Compliance form to be used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Other :</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

METS REVIEWER: _____
Date Review Completed:
Form METS QCP-5 rev. 4

file: Loc: XX20. A or B
Bridge Construction Bulletin
180-2.1 Attachment 4 Sheet 2 of 3
Page 18 of 19
CONTRACTOR'S FRACTURE CONTROL PLAN (FCP) SUBMITAL FOR WELDING

To: ____________________________ , Resident Engineer
Tel. No.: _______ Fax No.: _______
From: _______, Branch Chief
Contract No.: _______
Date of Receipt (R.E.): _______ Date of Receipt (METS): _______

The Contractor's Fracture Control Plan Submittal #: _______ Rev. # _______ has been reviewed.

☐ FCP substantially complies with specification requirements and approval is recommended.
☐ FCP needs to be resubmitted and unacceptable (reject) items corrected as per comments.

(See attached QCP7-NC for Non-Conforming Item Comments)

General Contractor: _______
Welding Firm: _______
Contractor's QCM: _______
NDT Firm: _______

Specification: D1.5 (yr)

<table>
<thead>
<tr>
<th>FRACTURE CONTROL PLAN (FCP) ITEMS TO BE SUBMITTED AS A MINIMUM</th>
<th>COMPLIES</th>
<th>DOESN'T COMPLY</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Base Metal used meet the project and code requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consumable meet the requirements of heat or lot testing by the manufacturer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Weld metal strength and ductility conform to tables 4.1 or 4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Weld metal toughness meets table 12.1 requirements or the undermatching yield strength of a minimum toughness of 25ft-lb @ -20°F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. WPS’ requiring PQR test (according to section 12.7). # of submittals:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Prequalified WPS (PQR not required) (According to section 12.7.1) # of submittals:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Base metal repair procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Tack weld procedures (According to section 12.13). # of submittals:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Lead QC name, qualifications, and resume. Work history needs to show a minimum of 3 years experience in steel bridge fabrication inspection.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. NDT methods, personnel qualifications, eye exams, frequency of testing, reports to be used, and written practice of NDT firm. (see Sec. 12.16.1.2-5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Electrode & Shielding Gas Certs. for each weld process and base metal combination. # of submittals:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Welder Qualifications for each process & position that each welder will perform. Welder Qualification tests shall be within 6 months of FCM work and shall be qualified by both mechanical (bend) and radiograph tests according to section 12.8.2 and 5 Part B. # of submittals:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Daily Production & Inspection Log of Welds by Lead QC Inspector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Noncritical Repair Welding Procedures such as surface discontinuities. Nocritical repair WPS shall meet the requirements of Section 12.17.2 and 12.17.2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Critical Repair Welding Procedures (According to Section 12.17.3).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Other:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

METS REVIEWER: _______
Date Review Completed: _______
File Location: XX.20.A or B

Bridge Construction Bulletin
180-2.1 Attachment 4 Sheet 3 of 3
Page 19 of 19
Pursuant to Section 6-3.02, Testing by Contractor, of the Standard Specifications, it is the Contractor’s duty to conduct tests in accordance with procedures which are carefully planned, managed, and documented by qualified personnel who are specifically designated to perform these functions. In accordance with Section 52-1.11, Payment, of the Standard Specifications full compensation for furnishing and testing sample splices, for radiographic examinations performed by the Contractor, and for furnishing access facilities for inspection and nondestructive testing by the Engineer shall be considered as included in the contract price paid per pound for the bar reinforcing steel involved and no additional compensation will be allowed therefore.

For going projects that have welding and have not received information from the contractor regarding the welding of reinforcing steel, the following procedures should be followed:

- The Resident Engineer is to send a letter to the contractor ordering a submittal of information detailing the contractor's plan to control quality of field welding of bar reinforcement. Use the draft letter in Attachment 1 to this bulletin so that all contractors are treated consistently.

- The Resident Engineer is to review the contractor’s submittal for completeness and compliance with the Specifications.

- If the required information is not received within five working days of receipt of a request, the Resident Engineer is directed to temporarily suspend all field welding of bar reinforcement due to the contractor’s failure to carry out an order to submit information and failure to demonstrate control of the workmanship, pursuant to Section 8-1.05, Temporary Suspension of Work, of the Standard Specifications.
For projects where the contractor has not started work, the information within Attachment 1 should be received from and discussed with the contractor during the pre-job meeting.

Attachment

cc: StrReps
 BCEs
 ACMs
 OSC HQ Staff
 Consultant Firms
 PStolarski, METS
 BGauger, Construction Program Manager
June 28, 1996

Contractor, President
Construction Company Name
Company address
Company City, State, Zip Code

Dear Contractor:

Pursuant to Sections 6-3.02 of the Standard Specifications, submit the following, in writing, within five working days of receipt of this order.

1) Contractor's quality control plan for field welding of bar reinforcement as required by Section 52-1.08, "Splicing," and Section B-1.01, "Subcontracting," of the Standard Specifications, American Welding Society (AWS) D1.4, and the special provisions. The minimum requirements are as follows:

 a) List of names and qualifications of the Contractor's Quality control manager and all of the nondestructive testers, welding inspectors, and welders who perform and control the field welding of bar reinforcement work.

 b) Welder qualifications shall include all tests performed to qualify the welders, and verification that the tests were witnessed by the Engineer.

 c) The Contractor's field welding procedure specification for bar reinforcement, including documentation of the tests performed to qualify the specification, and verification that the tests were witnessed by the Engineer.

 d) Description of how the Contractor's quality control plan is updated when any personnel or procedures change.

 e) Description of methods for identifying, tracking, and reporting on; all field welding; quality of the material and workmanship including list of electrode classification, position, type of welding current and polarity; visual inspections; destructive and non-destructive testing; repairing of any deficient welds and reinspection of all repaired welds.

 f) Description of the methods used to ensure the quality control methods are being followed including the frequency of sampling and testing and frequency of reports or submittals to the Contractor.

2) Name of the Contractor's designated person who the Engineer can henceforth consider as the Contractor's quality control manager (QCM). The QCM shall be directly responsible to the Contractor. The QCM shall not be a currently employed subcontractor or currently employed by a subcontractor.

 a) The QCM shall be responsible for administration of the Contractor's quality control plan for field welding of bar reinforcement including but not limited to, the following:

BRIDGE CONSTRUCTION RECORDS & PROCEDURES MANUAL
Review of welding and test records and,
Assuring compliance with the Contractor’s quality control plan for field welding of bar reinforcement and,
Advising the Contractor and the Engineer of all deficiencies in the welds, tests, inspections and quality control plan for field welding of bar reinforcement compliance.

b) The QCM shall be the individual responsible for submitting and receiving all quality control correspondence and required submittals regarding the field welding of bar reinforcement to and from the Engineer. All such submittals shall be reviewed and signed by the QCM prior to submittal to the Engineer.

If the plan is not received within the five working day period or if the plan is determined by the Engineer to not satisfy the minimum requirements stated above, field welding of bar reinforcement shall be temporarily suspended, pursuant to Section 8-1.05 of the Standard Specification by reason of the Contractor’s failure to carry out an order to submit information and for failure to demonstrate control of the workmanship.

In addition, the QCM shall submit daily log summaries of welding, testing, and inspection for field welding of bar reinforcement to the Engineer at the end of every five working days of field welding of bar reinforcement performed.

Sincerely,

Resident Engineer

ax Prime Contractor, Home Office
Construction Program Manager, Sacramento
District Division Chief - Construction
R.E. File
Subject: Welding Support from METS

The following link provides contacts within the Office of Materials Engineering and Testing Services (METS) for various welding questions, testing, and/or inspection. Utilize the Structure Material Representative appropriate to your EA or District. In addition to this link, it is recommended that other Structure Representatives who have worked with similar conditions or materials be contacted to ease the burden on lab personnel.

https://mets.dot.ca.gov/metsrepresentatives.php

cc: BCR&P Manual Holders
 Consultant Firms
 R. Pieplow, HQ Const.
 P. Stolarski, METS
Subject: Welding Support from METS for Projects Requiring Radiographs

If you currently have radiographs for a project, send the radiographs to the Sacramento office of Materials Engineering and Testing Services (METS) with a cover letter showing the Contract number, the structure name/number, what part of the structure are the welds located, and a person to contact once the radiographs have been reanalyzed by the Sacramento METS Lab. Send a copy of this memo to the OSC office in Sacramento.

For new radiographs, Sacramento METS (Materials Engineering and Testing Services) has issued guidelines to their employees in the Los Angeles and Emeryville labs. Below is an excerpt from their memo:

1. “Try to attend the pre-construction meeting between the contractor and Caltrans.” This will provide the opportunity to go over what is expected during the welding phase of the work.

2. Upon notification by the Structure Representative that welding is ready to begin, visit the jobsite to review the welding procedures, fit-up etc., as well as provide assistance to the jobsite inspector as to what to watch for during the welding operation.

3. If radiographs are to be taken, spot check the bars by the Structure Representative to be shot to make sure they are visually acceptable. This can be done during the day, even if the actual shots will be taken at night.

4. If unable to witness a portion of the actual radiographs being taken, instruct the Structure Representative to have the film delivered to his or her office by the radiographer’s company at the start of the next day.

5. Visit the Structure Representative’s office the next day and review the film for the following:
A. **Film identification**
 - Contract Number
 - Location (bent, column footing, etc.)
 - Weld Number verified by Q.C.
 - Technicians I.D.
 - Make sure information on envelope matches what is in the package

B. **Film Quality**
 - Density (2.5 to 3.5)
 - Check density in weld area
 - Check density in penetrameter
 - Check to see if film is free of artifacts

C. **Penetrameters**
 - Size denoted by number
 - Placement/Location
 - Thickness of shim when required
 - Clearly identify hole as required (2T-4T)

After review of the film for items above, send (or have Structure Representative send) the film to Sacramento for review of welds for acceptance or rejection per Office of Structure Construction memo of May 8, 1996 (AJ96.10), (Structural Materials Branch, 5900 Folsom Blvd., Sacramento, CA 95819 ATTN: Paul Hartbower or Frank Reed.)

At the time of the initial review of the film by our field inspectors, the inspector **should not** accept or reject the weld. However the inspector **should** accept or reject the quality of the film.

Many of the problems we have experienced in the past with regard to welding inspection hopefully will be resolved once we get the additional training and staff in place. I feel we need to remember that we are providing a service and our client, in this case, is Structure Construction."

c c : Str Reps
 BCEs
 ACMs
 OSC HQ Staff
 Consultant Staff
 RBushey, METS
 BGauger, Construction Program Manager
BRIDGE CONSTRUCTION BULLETIN 180-6.0
SECTION 180-WELDING
March 6, 1997
Page 1 of 2

Subject: Revise Column Casing Weld Backing Plate Thickness

The attached memorandum (Attachment 1) recommends that the thickness of the weld backing plate for column casings not exceed 3/8". Currently, most design details require backing plates to be the same thickness as the casing up to 1/2" thick. If the contractor requests to use a backing plate with a thickness less than the thickness of the column casing, then it is permitted that an appropriate no cost/no credit Contract Change Order be issued to allow:

- Backing plates for column casing to have a thickness equal to 3/8".

Attachments

c: BCR&P Manual Holders
 PSTolarski, METS
 RBushey, METS
 ERDavisson, Chief Structure Design
 BGauger, HQ Construction Program Manager
 Consultant Firms
Memorandum

To
MR. RICHARD SPRING
MS. DARCY HASSLER
MR. STEVE ELLIS
DMEs - Dist. 1,2,3,6,10,11

Date
April 4, 1997

File
Policy, Materials, Inspection Guidelines

From
DEPARTMENT OF TRANSPORTATION
ENGINEERING SERVICE CENTER
Office of Materials Engineering and Testing Services, MS #5

Subject: Column Casing Inspection/Weld Backing

Currently, a general note in most of the design drawings require “backing plates to be the same thickness as casings up to 1/2″ thick” and in some cases a statement that “backing must match casing thickness” with no limit on that thickness.

AWS D1.5-1995 Section 3.13.3 suggests the following backing thickness based on the welding process used: SMAW-3/16”, GMAW-1/4”, FCAW self shielded-1/4”, FCAW gas shielded-3/8” and SAW-3/8”.

There is no structural advantage to require backing in excess of 3/8” and fabricators have struggled to break the 1/2”+ backing material sufficiently to allow for proper field fit-up of casing components.

In the interest of a more consistent and better quality product, I recommend that weld backing not exceed 3/8”. This should be effective immediately and enforced on all current and future casing projects.

PHILIP J. STOLARSKI, Chief
Structural Materials Branch

PJS/mdb
Subject: Inspection of Weld Backing Plate for Column Casing

Attached is a memorandum from Roy Bushey to Ralph Sommariva, referring to the memorandum, dated January 25, 1995 from Richard Spring to METS field inspectors addressing the continuous/non-continuous welding of backing bars used in conjunction with column casings.

After further discussion with METS, the following clarifications were obtained:

When welding column casing sections together in the manufacturer’s shop, the backing bars are to have a continuous full length weld.

The backing bars used to weld the column casing sections together in the field will only be welded to the column casing on one side by non-continuous welds. These welds will be 2" long and at 8" centers. This backing bar does not need a continuous full length weld.

Attachment

c: BCR&P Manual Holders
 RBushey, METS
 BGauger, HQ Construction Program Manager
 Consultant Firms
Memorandum

To: MR. RALPH SOMMARIVA, Chief
Office of Structure Construction

Date: June 6, 1997
File: Policy, Materials, Inspection Guidelines

From: DEPARTMENT OF TRANSPORTATION
ENGINEERING SERVICE CENTER
Office of Materials Engineering and Testing Services - MS #5

Subject: Column Casing Inspection

It has come to our attention that some of the Structure Construction personnel have questioned the noncontinuous weld on the backing bars used in conjunction with column casings. Back in 1995, the fabricators were having problems with distortion of the edge of the column casings due to the heat generated by the continuous weld. In as much as there was no real need to have the backing bar welded continuously in order to produce a satisfactory field weld, we allowed the fabricator to make the weld as stated in the attached memo dated January 25, 1995.

This memo also addressed some other concerns which were present at that time. The main purpose was to maintain consistency in our overall inspection process.

If you could make this information available to your construction personnel, it may help to relieve some of the questions.

Attachment

cc: PSTolarski
RSpring
DHassler
FReed
SEllis
DJones
SMFiles

RJW/llb

ROY BUSHEY, Chief
Office of Materials Engineering and Testing Services
To: MR. HERNANDO MORALES
 MR. LARRY WEBSTER
 DMEs - Dist. 1,2,3,4,5,6,9,10,11

Date: January 25, 1995

File: Policy, Materials, Inspection Guidelines

From: DEPARTMENT OF TRANSPORTATION
 ENGINEERING SERVICE CENTER
 Office of Materials Engineering and Testing Services

Subject: Column Casing Inspection

Due to some confusion and inconsistency, in the interpretation of column casing fabrication requirements, the following shall become standard inspection policy:

1) Fillet welds on backing bars for field welded joints shall be 2” long on 8” centers. Fillet welds on backing bars for groove welds made in a fabrication shop, where the backing is to remain in place, shall be full length.

2) Intersecting field welds shall be drilled out with a 1” or 2” hole depending on the size of weld at the intersection. No drilling will be required on intersecting shop welds, nor will drilling be required when a field weld intersects an existing shop weld.

3) Exterior casing welds need not be ground flush. However, weld profile must still meet the requirements of AASHTO/AWS D1.5 (Bridge Welding Code), Section 3.6.

This standard inspection policy is to be effective immediately and enforced on all current and future casing projects.

RICHARD J. SPRING
Senior Materials & Research Engineer

RJS/mdb
Welding of Column Casings

Column casing welds shall comply with the Steel Structures\(^1\) and the Welding\(^2\) sections of the Standard Specifications (SS). The requirements of the American Welding Society (AWS) D1.5 Bridge Welding, do apply to the welding of column casings. A column casing is not considered a main member unless it is designated as such in the contract. Therefore, any column casing not designated as a main member on the contract plans is not subject to Nondestructive Testing (NDT) other than visual inspection, per AWS D1.5 Section 6.7.1. The base metal testing and preparation, weld quality, welder, welding operator, Welding Procedure Specification qualifications and material requirements established in AWS D1.5 do apply for shop and field welding.

\(^1\) SS 2010, Section 55 or SS 2006, Section 55

\(^2\) SS 2010, Section 11 or Special Provisions 2006, Section 8-3
Subject: Review of Contractor’s Quality Control Plan (QCP) for Field Welding

The following link should be used for assistance in reviewing a QCP. Contact the Structure Materials Representative appropriate to your EA or District and they will specify who should receive the plan.

- **Form METS QCP-1: Contractor’s QCP Submittal for Field Welding**

This checklist details necessary requirements of the contractor’s QCP submittal and should be made available to the contractor at the pre-construction meeting. The form is intended to facilitate the contractor preparation of their QCP and to ensure a complete submittal plan per the contract requirements. The Structure Representative shall review the Contractor’s QCP for completeness prior to sending to METS.

- **Form METS QCP-5: METS Letter of Transmittal**

This form will accompany the Contractor’s QCP package when returned to the Engineer. The METS Reviewer will evaluate the Contractor’s QCP by checking the elements listed on this form.

Attachment

c: BCR&P Manual Holders
 Consultant Firms
 P. Stolarski, METS
 R. Pieplow, HQ Const.
METS QCP-1 - CONTRACTOR'S QCP SUBMITTAL FOR FIELD WELDING

To: _____________________________________, Resident Engineer
Date of Submittal:

From: ____________________________________, Contractor
____________________________________, Name of QCM

Contract No.: ___________________________ Welding Firm:

Material to be Welded: ____ Piles, ____ Reinf. Steel, ____ Col. Casings, ____ Structural Steel (New & Existing)

NDT Required: ____ RT, ____ UT, ____ MT, ____ None Name of NDT Firm:

Specifications: ____ AWS D1.1 (), ____ D1.4 (), ____ D1.5 () (Indicate Yr. Edition)

Our Quality Control Plan for field welding to be performed on the subject contract is submitted for your review and approval. The items checked below are submitted herewith.

<table>
<thead>
<tr>
<th>QCP ITEMS TO BE SUBMITTED AS A MINIMUM</th>
<th>SUBMITTED</th>
<th>N/A</th>
<th>For R.E.Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Organization Chart showing all QC Personnel & their duties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Name & Qualifications of QCM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Names of QC Inspectors - Provide copy of CWI Certification for each. No. of submittals ____</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Names & Qualifications of Asst. QC Inspectors – Provide Assoc. CWI Cert. or resume. No. of submittals ____</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Procedures Manual of NDT Firm to be used. List names of certified personnel, NDT equipment, test procedures, calibration methods, typical reports, and safety procedures.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Certifications for Level II NDT Technicians No. of submittals ____</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Methods and frequencies of NDT Inspections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Method of tracking and identifying weld joints & welders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Prequalified WPS (PQR not required) No. of submittals____</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. WPS' requiring PQR tests. No. of submittals & tests____</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Electrode & Shielding Gas Certs. For each weld process and base metal combination No. of submittals ____</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Welder Certifications for each process & position that each will perform. No. of submittals ____</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Visual Inspection Procedures (frequencies, gages & tools)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Daily Production & Inspection Log of Welds by QC Inspector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Action Plan for reporting non-conforming welds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Standard Weld Repair Procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Certificate of Compliance Form to be used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. One copy each of applicable AWS Welding Codes No. furnished ____</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Other:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QCM Signature: ______________________________________ (Printed Name)

Bridge Construction Memo No. 180-9.0
Attachment No. 1
Sheet 2 of 3
METS QCP-5 - METS LETTER OF TRANSMITTAL
REVIEW OF CONTRACTOR'S QUALITY CONTROL PLAN FOR FIELD WELDING

To: __________________________, Res. Engineer Date of this Transmittal:__________
From: __________________________, Section Chief Contract No.:__________________

The Contractor's Quality Control Plan submittal has been reviewed.

_____ QCP substantially complies with specification requirements and approval is recommended.

_____ QCP needs to be resubmitted and unacceptable (reject) items corrected as per comments.

General Contractor: __________________________ Contractor's QCM:__________________
Welding Firm: __________________________ NDT Firm: __________________________

Materials to be Welded:
- ____ Struct. Steel
- ____ Misc. Steel
- ____ Rebar
- ____ Col. Casings
- ____ H-Pile
- ____ Pipe Pile

Date of Receipt (R.E.): __________ Date of Receipt (METS): __________

<table>
<thead>
<tr>
<th>QCP DOCUMENTS REVIEWED</th>
<th># OF SUBMITTALS</th>
<th>ACCEP T</th>
<th>REJEC T</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Organizational Chart - QC Personnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. QC Manager (QCM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. QC Inspectors (Certs. and eye exam)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Asst. QC Inspectors (Certs.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. NDT Firm - Procedure Manual</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Weld and Welder ID and Tracking System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. WPS/PQR Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Electrode Certs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Welder Qualifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Visual Inspection Procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Daily Inspection & Production Log (Format)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Standard Weld Repair Procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Welding Cert. of Compliance (Format)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Copies of applicable AWS Codes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NAME OF METS REVIEWER: __________________________ DATE COMPLETED __________

Bridge Construction Memo No. 180-9.0
Attachment No. 1
Sheet 3 of 3