1.	REPORT NO.	2. GOVERNMENT ACCESSION NO).	3.	RECIPIENT'S CATALOG NO.	
	FHWA/CA25-3170					
4.	TITLE AND SUBTITLE			5.	REPORT DATE	
DEVELOPMENT AND CRASH TESTING OF A CONCRETE POST-ANI CALIFORNIA TYPE 86H, MASH TL-4		RETE POST-AND-BEAM B	RIDGE RAILING,		October	2024
				6.	PERFORMING ORGANIZATI	ON CODE
7.	AUTHOR(S)			8.	PERFORMING ORGANIZATI	ON REPORT NO.
Victor O. Lopez, Robert Meline, David Whitesel, Christopher Caldwell FHWA/CA			FHWA/CA2	5-3170		
9.	PERFORMING ORGANIZATION NAME AND ADDRESS			10.	WORK UNIT NO.	
	Roadside Safety Research Group California Department of Transportation					
	5900 Folsom Blvd.,			11	CONTRACT OF GRANT NO	
	Sacramento, CA. 95819			11.	CONTRACT OR GRANT NO.	
					FHWA/CA	25-3170
12.	SPONSORING AGENCY NAME AND ADDRESS			13.	TYPE OF REPORT & PERIOD	COVERED
	California Department of Transportation				FINA	L
	Sacramento, CA. 95819			14.	SPONSORING AGENCY COD	E
15.	SUPPLEMENTARY NOTES					
This project was performed in cooperation with the US Department of Transportation, Federal Highway Administration, under the research project titled "DEVLEOPMENT AND CRASH TESTING OF A TYPE 86H CONCRETE POST-AND-BEAM BRIDGE RAILING IN COMPLIANCE WITH MASH 2016, TEST LEVEL 4, FOR USE IN CALIFORNIA". This work was performed at the request of Structure Policy and Innovation, Caltrans Division of Engineering Services						
16. ABSTRACT Three full-scale crash tests of the California Concrete Barrier Type 86H were conducted to meet the Implementation Agreement for the Manual for Assessing Safety Hardware (MASH) 2016. The California Department of Transportation (Caltrans) needed a MASH 2016 compliant concrete post and beam bridge rail to replace existing NCHRP Report 350 (Report 350) rails. The Type 86H is intended to replace existing concrete baluster bridge railings on rehab and bridge-replacement projects for bridges on the California State and National Historic Registers. The Type 86H is also intended to be constructed on new bridge projects requiring a historic-looking and aesthetically pleasing "see through" concrete barrier rail.				ement for the Manual 6 compliant concrete isting concrete Registers. The Type hrough" concrete		
The elen exte shee Dyn con	The Type 86H is a 1067 mm (42 in.) tall vehicular barrier and a 1219 mm (48 in.) tall combination vehicular and bicycle bridge rail. The rail element is a 254 mm (10 in.) high by 381 mm (15 in.) deep, reinforced concrete beam. The steel reinforced concrete post spacing is 3 m (10 ft) extending up from a sloping 18-inch-high concrete curb. The sloped top of the curb is intended to improve visibility through the rail and help shed water and other debris from the barrier. The tested Type 86H rail was 30.5 m (100 ft) long and constructed and tested at the Caltrans Dynamic Test Facility in West Sacramento, CA. The first 23.2 m (76 ft) of the rail was mounted to a simulated bridge deck overhang which connected to a concrete anchor block with last 7.3 m (24 ft) of the downstream rail mounted to a reaction slab.					
The 110 (TL-	The full suite of MASH 2016 Test Level 4 (TL-4) crash tests was conducted; Test 4-10 (1100C), 4-11 (2270P) and 4-12 (10000S) (test designations 110MASH4C21-01, 110MASH4P21-02, 110MASH4S21-03 respectively). All three tests met the MASH 2016 evaluation criteria for Test Level 4 (TL-4) longitudinal barriers. The results of all three tests were within the limits of the MASH 2016 guidelines.			0S) (test designations eria for Test Level 4		
17. KEY WORDS 18. DISTRIBUTION STATEMENT						
Barr Post	iers, Crash Test, Bridge rail, Vehicle Impact T -and-beam, historic, see-through, aesthetic,	est, Steel, Concrete MASH, Crashworthy	No Restrictions. This do Technical Information S	ervic	ent is available thro e, Springfield, VA 22	ugh the National 2161
19. SECURITY CLASSIF. (OF THIS REPORT) 20. SECURITY CLASSIF. (OF THIS PAGE) 21. NO. OF PAGES 22. PRICE			22. PRICE			
Unc	Unclassified Unclassified			235		

DEVELOPMENT AND CRASH TESTING OF A CONCRETE POST-AND-BEAM BRIDGE RAILING, CALIFORNIA TYPE 86H, MASH TL-4

STATE OF CALIFORNIA

DEPARTMENT OF TRANSPORTATION

DIVISION OF RESEARCH, INNOVATION AND SYSTEM INFORMATION OFFICE OF SAFETY INNOVATION AND COOPERATIVE RESEARCH ROADSIDE SAFETY RESEARCH GROUP

Supervised by	Robert Meline, P.E.
Principal Investigator	John Jewell, P.E.
Report Prepared by	Victor O. Lopez, P.E.
Research Performed by	Roadside Safety Research Group

STATE OF CALIFORNIA

DEPARTMENT OF TRANSPORTATION DIVISION OF RESEARCH, INNOVATION AND SYSTEM INFORMATION OFFICE OF SAFETY INNOVATION AND COOPERATIVE RESEARCH ROADSIDE SAFETY RESEARCH BRANCH

DEVELOPMENT AND CRASH TESTING OF A CONCRETE POST-AND-BEAM BRIDGE RAILING, CALIFORNIA TYPE 86H, MASH TL-4

Supervised by	Robert Meline, P.E.
Principal Investigator	John Jewell, P.E.
Report Prepared by	Victor O. Lopez, P.E.
Research Performed by	Roadside Safety Research Group

Joseph W. Horton, P.E. Office Chief Office of Safety Innovation and Cooperative Research

Marin Jewell, P.E. Senior Engineer Specialist Roadside Safety Research Group

M

Robert Meline, P.E. Branch Chief Roadside Safety Research Branch Roadside Safety Research Group

Victor O. Lopez, P.E. Transportation Engineer Roadside Safety Research Group

DISCLAIMER STATEMENT

This document is disseminated in the interest of information exchange. The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the Federal Highway Administration. This publication does not constitute a standard, specification or regulation. This report does not constitute an endorsement by the Department of any product described herein.

The opinions/interpretations identified/expressed in this report are outside the scope of this organization's A2LA Accreditation. The results contained in this report are only for the tested article(s) and not any other article(s) based on the same design. Where a sample of the test article(s) is provided by the customer or other source, the results will apply to the sample as received.

For individuals with sensory disabilities, this document is available in alternate formats. For information, call (916) 654-8899, TTY 711, or write to California Department of Transportation, Division of Research, Innovation and System Information, MS-83, P.O. Box 942873, Sacramento, CA 94273-0001

UNCERTAINTY OF MEASUREMENT STATEMENT

The Caltrans Roadside Safety Research Group (RSRG) has determined the uncertainty of measurements in the testing of roadside safety hardware as well as in standard full-scale crash testing of roadside safety features. The results contained in this report are only for the tested article(s) and not any other articles based on the same design. Information regarding the uncertainty of measurements for critical parameters is available upon request by the California Department of Transportation Roadside Safety Research Group.

ACKNOWLEDGEMENTS

This work was accomplished in cooperation with the United States Department of Transportation, Federal Highway Administration.

Special appreciation is due to the following staff members of the Materials Engineering and Testing Services, Structures Construction, and the Division of Research, Innovation, and System Information for their enthusiastic and competent help on this project:

Thanks to the Road Safety Research Group (RSRG) staff, Eemom Amini, Ed Ung, Phil Fong, Justin Elis, Eric Jacobson, Karim Mirza, Arvern Lofton, and Larry Baumeister for test preparation, data reduction, vehicle preparation, video processing, and assistance during tests. Thanks to Dave Bengal, Independent Camera Operator. Thanks to Martin Zanotti, Charles Gill, James Olivo, and Michael Pieruccini for their support in the machine shop. Thanks to Larry McCrum for his support in the concrete lab. Thanks to Scott Lorenzo in the Photography Unit for his support with still photos. Also, thanks to John Lammers, Hogni Setberg, Delia Munoz, Mayra Velasquez, Luis Guzman for test article constructability and construction support.

The bridge rail design and load evaluation were performed by Greg Kaderabek, Tillat Satter, Kimberly Mori, Tony Yoon, Don Lee, Ashraf Ahmed, and Jim Gutierrez, Caltrans Division of Engineering Services, Structures and Engineering Services. Special thanks to DES Supervising Bridge Engineer Joel Magana.

Thanks to:

ROADSIDE SAFETY RESEARCH GROUP (RSRG)

Bob Meline, P.E., *Branch Chief* John Jewell, P.E., *Principal Investigator* Victor O. Lopez, P.E., Transportation Engineer, Project Manager Vue Her, M.S., P.E., Senior Transportation Engineer Christopher Caldwell, P.E., Transportation Engineer David Whitesel, P.E., Transportation Jean Vedenoff, P.E., Transportation Engineer Dave Sawko, *Lab Manager* Steve Wake, *Lab Manager* Rachael Kwong, *Audio Visual Manager*

Table of Contents

1.	Ir	ntrodu	uction	1
1	.1.	Prob	plem	1
1	.2.	Obje	ective	1
1	.3.	Back	sground	1
1	.4.	Liter	rature Search	4
1	.5.	Scop	pe	5
2.	Т	est A	rticle Details	5
2	.1.	Barr	ier Design	5
2	.2.	Con	struction	7
3.	Т	est Re	equirements and Evaluation Criteria	35
3	.1.	Cras	h Test Matrix	35
3	.2.	Eval	uation Criteria	35
4.	Т	est Co	onditions	35
4	.1.	Test	Facilities	35
4	.2.	Test	Vehicles	35
	4.2.	1.	Test 4-10	35
	4.2.	2.	Test 4-11	39
	4.2.	3.	Test 4-12	43
4	.3.	Test	Documentation	49
5.	Т	est 11	10MASH4C21-01 (4-10)	50
5	.1.	Impa	act Description and Results	50
5	.2.	Test	Description	51
5	.3.	Barr	ier Damage	55
5	.4.	Vehi	icle Damage	56
5	.5.	Disc	ussion of Test Results	65
	5.5.	1.	General Evaluation Methods	65
	5.5.	2.	Structural Adequacy	65
	5.5.	3.	Occupant Risk	65
	5.5.4	4.	Vehicle Trajectory	65
6.	Т	est 11	10MASH4P21-02 (4-11)	67
6	.1. Im	npact	Description and Results	67
6	.2. Te	est De	scription	68

6.	3. Bar	rrier Damage	72
6.	4. Veł	hicle Damage	74
6.	5. I	Discussion of Test Results	
	6.5.1	L. General Evaluation Methods	
	6.5.2	2. Structural Adequacy	
	6.5.3	3. Occupant Risk	
	6.5.4	Vehicle Trajectory	
7.	Tes	est 110MASH4S21-03 (4-12)	
7.	1. I	Impact Description and Results	
7.	2	Test Description	
7.	3. I	Barrier Damage	
7.	4. V	Vehicle Damage	
7.	5. I	Discussion of Test Results	
	7.5.1	L. General Evaluation Methods	
	7.5.2	2. Structural Adequacy	
	7.5.3	3. Occupant Risk	
	7.5.4	I. Vehicle Trajectory	
8.	Со	onclusions and Recommendations	
9.	Re	eferences	
10.	Ap	opendix A: Vehicle Equipment and Test Data	
10	D.1.	Test Vehicle Equipment	
	10.1.	.1. 4-10 Test 110MASH4C21-01	
	10.1.2	.2. 4-11 Test 110MASH4P21-02	
	10.1.3	.3. 4-12 Test 110MASH4S21-03	
1().2.	Test Vehicle Guidance System	
1().3.	Friction Brake	
1().4.	Photo - Instrumentation	
10	D.5.	Electronic Instrumentation and Data	
10	D.6.	Vehicle Measurements	
	10.6.	.1. Test 110MASH4C21-01	
	10.6.2	.2. Test 110MASH4P21-02	
	10.6.3	.3. Test 110MASH4S21-03	
1().7.	Data Plots	

	10.7.1. Data Plots - Test 110MASH4C21-01 (Test 4-10)	. 158
	10.7.2 Data Plots - Test 110MASH4P21-02 (Test 4-11)	. 166
	10.7.3 Data Plots - Test 110MASH4S21-03 (Test 4-12)	. 174
11.	Appendix B: Detail Drawings	. 186
12.	Appendix C: Material Properties and Certifications	. 195
13.	Appendix D: Undercarriage Photos	. 214
14.	Document Revision History	. 216

List of Figures

Figure 1-1 Bixby Creek Spandrel Arch Bridge1
Figure 1-2 Concrete Barrier Type 86H (Non-Traffic Face)2
Figure 1-3 Type 86H Side View2
Figure 1-4 Type 86H Concrete Post and Beam Barrier Rail (MASH TL-4)3
Figure 1-5 Type 85 Concrete Post and Beam Barrier Rail (MASH TL-4)3
Figure 1-6 Texas C411 Concrete Baluster Bridge Rail (MASH TL-2)4
Figure 1-7 Texas C412 Concrete Baluster Bridge Rail (MASH TL-5)5
Figure 2-1 Type 86H Cross-Section6
Figure 2-2 Cross Section of Existing Concrete Block and Overhang Removal7
Figure 2-3 Partial Cross Section of New Overhang with the Type 86H Barrier Rail
Figure 2-4 Plan View of Type 86H Test Article8
Figure 2-5 Partial Cross Section of Drilled and Bonded Type 86H (MOD) on Existing Reaction Slab8
Figure 2-6 Unbolting of the ST-75 Steel Bridge Rail and Painting of Overhang Saw-Cut Line
Figure 2-7 Initial saw-cut line for overhang removal10
Figure 2-8 Removal of ST-75 Test Article Overhang with Excavator Hammer Attachment
Figure 2-9 Removal of ST-75 Test Article Overhang at Saw Cut Line with Jackhammers
Figure 2-10 Installation of the Supports for the Formwork for the Overhang Construction
Figure 2-11 Installation of the Formwork for the Type 86H Overhang and Concrete Curb
Figure 2-12 Installation of the Formwork Supports for the Type 86H Overhang and Concrete Curb12
Figure 2-13 Drilling Operation (305 mm (12 in.) depth) for Epoxied Reinforcement Installation13
Figure 2-14 Installation of Epoxy and Additional Transverse Reinforcement13
Figure 2-15 Installation of Epoxy and Vertical Reinforcement on Existing Curb and Reaction Slab14
Figure 2-16 Installation of Longitudinal Overhang, Curb and Post Reinforcement
Figure 2-17 Installation of Reinforcement at Posts 4 and 5 with 25 mm (1 in.) Gap
Figure 2-18 Installation of Top #6 Curb "Hair Pin" Reinforcement15
Figure 2-19 Marking the Strain Gauge Locations on Reinforcement at Structural Post 4
Figure 2-20 Grinding Surface of Reinforcement in Preparation for Strain Gauges
Figure 2-21 Installation of Uniaxial Strain Gauges and Cable Prior to Deck Pour
Figure 2-22 Installation of Uniaxial Strain Gauges and Cable at Post 4 Prior to Deck Pour17
Figure 2-23 Installation of Uniaxial Strain Gauges and Cable at Post 3 Prior to Deck Pour
Figure 2-24 Bridge Rail Overhang Concrete Pour18

Figure 2-25 Concrete Samples Taken During the Curb Pour by Caltrans Staff
Figure 2-26 Concrete Finish and Placement of Curing Compound19
Figure 2-27 Section B-B with Concrete Reinforcement20
Figure 2-28 Plywood Template Used for Verifying the Placement of Baluster Rail Reinforcement21
Figure 2-29 Placement of Front Form and Baluster Rail Reinforcement near Posts 4 and 521
Figure 2-30 Formwork and Rebar in Place for Bridge Rail Curb Concrete Pour
Figure 2-31 Formwork and Rebar for the Drilled and Bonded Section over the Reaction Slab
Figure 2-32 Bridge Rail Curb Concrete Pour23
Figure 2-33 Verification of the Placement of the Baluster Rail Reinforcement Using Plywood Template 23
Figure 2-34 Concrete Samples Taken During the Curb Pour by Caltrans Staff
Figure 2-35 Completion of Pour of the Concrete Curb24
Figure 2-36 Removal of Concrete Curb Forms25
Figure 2-37 Forming of the Back Side and Side of the Structural Post (Post Form increased to 17 in.)26
Figure 2-38 Positioning of the Arched Styrofoam Baluster Windows Prior to Installation of Front Form. 26
Figure 2-39 Forming of the Baluster Post (placement of the front form)
Figure 2-40 Forming of the Underside of the Beam27
Figure 2-41 Preparation for Splicing of No. 7 Longitudinal Reinforcement
Figure 2-42 Installation Conflict at Space between Post 4 and 528
Figure 2-43 Resolved Conflict and Completion of Installation of Beam Reinforcement at Post 4
Figure 2-44 Installation of Uniaxial Strain Gauges and Cable Prior to Post and Beam Pour
Figure 2-45 Formwork and Rebar in Place for Bridge Rail Post and Beam Concrete Pour
Figure 2-46 Bridge Rail Post and Beam Concrete Pour31
Figure 2-47 Concrete Sampling and Slump Test During the Post and Beam Pour by Caltrans Staff31
Figure 2-48 Removal of Forms View from the Back32
Figure 2-49 Drilling and Bonding of the Threaded Rods for Tubular Bicycle Railing
Figure 2-50 Installation of Tubular Bicycle Railing and Mortar Pad at Supports
Figure 2-51 Completed Bridge Rail Type 86H33
Figure 4-1 MASH 4-10 Test Vehicle Front Right36
Figure 4-2 MASH 4-10 Test Vehicle Passenger Side
Figure 4-3 MASH 4-10 Test Vehicle Front37
Figure 4-4 MASH 4-10 Test Vehicle Driver Side37
Figure 4-5 MASH 4-10 Test Vehicle Rear

Figure 4-6 MASH 4-10 Test Vehicle at Impact Point	38
Figure 4-7 MASH 4-11 Test Vehicle Front Right	39
Figure 4-8 MASH 4-11 Test Vehicle Passenger Side	40
Figure 4-9 MASH 4-11 Test Vehicle Front	40
Figure 4-10 MASH 4-11 Test Vehicle Driver Side	41
Figure 4-11 MASH 4-11 Test Vehicle Rear	41
Figure 4-12 MASH 4-11 Test Vehicle Ballast	42
Figure 4-13 MASH 4-11 Test Vehicle at Impact Point	42
Figure 4-14 MASH 4-12 Test Vehicle Front Right	44
Figure 4-15 MASH 4-12 Test Vehicle Passenger Side	44
Figure 4-16 MASH 4-12 Test Vehicle Front	45
Figure 4-17 MASH 4-12 Test Vehicle Driver Side	45
Figure 4-18 MASH 4-12 Test Vehicle Rear	46
Figure 4-19 MASH 4-12 Test Vehicle at Impact Point	46
Figure 4-20 MASH 4-12 Test Vehicle Ballast in Cargo Box	47
Figure 4-21 MASH 4-12 Side View Diagram of Test Vehicle Ballast in Cargo Box	47
Figure 4-22 MASH 4-12 Test Vehicle Instrumentation Equipment in Cargo Box	48
Figure 4-23 MASH 4-12 Test Vehicle Front Shear Plate and Ballast Mounting Plate	48
Figure 4-24 MASH 4-12 Test Vehicle Rear Shear Plate and Ballast Mounting Plate	49
Figure 5-1 Test Article Impact Area Pre-Test 4-10	50
Figure 5-2 Test Article Downstream of Impact Area Pre-Test 4-10	50
Figure 5-3 Test 4-10 Downstream Camera Impact View	53
Figure 5-4 Test 4-10 Overhead Camera Impact View	53
Figure 5-5 Test 4-10 Pan Camera Impact View	54
Figure 5-6 Test 4-10 Upstream Camera Impact View	54
Figure 5-7 Test 4-10 Vehicle Marks and Minor Scrapes on Type 86H at Critical Impact Point	55
Figure 5-8 Test 4-10 Overview of Barrier Post-Test	55
Figure 5-9 Test 4-10 Tire Marks Post-Test (view from downstream)	56
Figure 5-10 Test 4-10 Test Vehicle Damage (front/hood and windshield)	57
Figure 5-11 Test Vehicle Damage (front right)	57
Figure 5-12 Test 4-10 Test Vehicle Damage (right)	58
Figure 5-13 Test 4-10 Test Vehicle Damage (front right)	58

Figure 5-14 Test 4-10 Test Vehicle Damage (front left)	59
Figure 5-15 Test 4-10 Test Vehicle Damage (right rear)	59
Figure 5-16 Test 4-10 Test Vehicle Damage (right rear)	60
Figure 5-17 Test 4-10 Test Vehicle Damage Windshield / Exterior	60
Figure 5-18 Test 4-10 Test Vehicle Damage Windshield / Exterior Deformation Away from Occupant	61
Figure 5-19 Test 4-10 Test Vehicle Damage Windshield / Interior View	61
Figure 5-20 Test 4-10 Floorboard Deformation	62
Figure 5-21 Test 4-10 Floorboard Deformation	62
Figure 5-22 Test 4-10 Floorboard Deformation	63
Figure 5-23 Test 4-10 Floorboard Deformation	63
Figure 5-24 Exit Box for Longitudinal Barriers (AASHTO, 2016)	65
Figure 6-1 Test Article Impact Area Pre-Test 4-11	67
Figure 6-2 Test Article Downstream of Impact Area Pre-Test 4-11	67
Figure 6-3 Test 4-11 Downstream Camera Impact View	70
Figure 6-4 Test 4-11 Overhead Camera Impact View	70
Figure 6-5 Test 4-11 Pan Camera Impact View	71
Figure 6-6 Test 4-11 Upstream Camera Impact View	71
Figure 6-7 Test 4-11 Vehicle Marks with Minor Concrete Spalling on Type 86H at Critical Impact Point	72
Figure 6-8 Test 4-11 Vehicle Marks with Minor Concrete Spalling on Type 86H near Post 6	73
Figure 6-9 Test 4-11 Type 86H Overview of Barrier Post-Test with Tire Marks (view looking downstrea	am)
	73
Figure 6-10 Test 4-11 Test Vehicle Damage (front, hood and windshield)	75
Figure 6-11 Test 4-11 Test Vehicle Damage (front right)	75
Figure 6-12 Test 4-11 Test Vehicle Damage (right)	76
Figure 6-13 Test 4-11 Test Vehicle Damage (front right)	76
Figure 6-14 Test 4-11 Test Vehicle Hood Minor Tearing Damage (front right)	77
Figure 6-15 Test 4-11 Test Vehicle Damage (right rear)	77
Figure 6-16 Test 4-11 Test Vehicle Damage (left front)	78
Figure 6-17 Test 4-11 Test Vehicle Damage Windshield/Exterior	78
Figure 6-18 Test 4-11 Test Vehicle Damage front right with hood opened	79
Figure 6-19 Test 4-11 Test Vehicle Damage Windshield / Interior View	79
Figure 6-20 Test 4-11 Test Vehicle Floorboard Deformation	80

Figure 6-21 Exit Box for Longitudinal Barriers (AASHTO, 2016)	82
Figure 7-1 Test Article Impact Area Pre-Test 4-12	
Figure 7-2 Test Article Downstream of Impact Area Pre-Test 4-12	
Figure 7-3 Test 4-12 Downstream Camera Impact View	
Figure 7-4 Test 4-12 Overhead Camera Impact View	
Figure 7-5 Test 4-12 Pan Camera Impact View	
Figure 7-6 Test 4-12 Upstream Camera Impact View	
Figure 7-7 Test 4-12 Vehicle Marks and Concrete Spalling on Type 86H at Critical Impact Point	
Figure 7-8 Test 4-12 Vehicle Marks and Concrete Spalling on Type 86H at expansion joint	
Figure 7-9 Test 4-12 Vehicle Marks and Concrete Spalling on Type 86H Looking Downstream	
Figure 7-10 Test 4-12 Moderate Concrete Curb Spalling on Type 86H	
Figure 7-11 Test 4-12 Beam and Bicycle Rail Mortar Pad Spalling at the expansion joint on Type	36H92
Figure 7-12 Test 4-12 Minor Bicycle Rail Mortar Pad Spalling at Post 6 Type 86H	92
Figure 7-13 Test 4-12 Vehicle Damage (front, hood and windshield)	94
Figure 7-14 Test 4-11 Test Vehicle Damage (front right)	95
Figure 7-15 MASH 4-12 Test Vehicle Front Undercarriage and Damaged Suspension After Impac	t95
Figure 7-16 MASH 4-12 Test Vehicle Undamaged Undercarriage After Impact (rear)	96
Figure 7-17 Test 4-12 Test Vehicle After Impact (Rear)	
Figure 7-18 Test 4-12 Test Vehicle Ballast After Impact	97
Figure 7-19 Test 4-12 Test Vehicle After Impact (Overall View)	97
Figure 7-20 Test 4-12 Test Vehicle After Impact (front right)	
Figure 7-21 Test 4-12 Front Left Shear Plate After Impact	
Figure 7-22 Test 4-12 Front Right Shear Plate After Impact	
Figure 7-23 Test 4-12 Rear Left Shear Plate After Impact	
Figure 7-24 Test 4-12 Rear Right Shear Plate After Impact	
Figure 7-25 Test 4-12 Detached Front Axle (final position)	
Figure 7-26 Test 4-12 Test Vehicle Passenger-Side Floorboard Deformation	
Figure 7-27 Exit Box for Longitudinal Barriers (AASHTO, 2016)	
Figure 10-1 Main Instrumentation Test 4-10	
Figure 10-2 DTS SLICE Micro Mount Position in the Vehicle Test 4-10	
Figure 10-3 Test 4-11 Vehicle Instrumentation	
Figure 10-4 Test 4-11 DTS SLICE Micro Mount Position in the Vehicle	

Figure 10-5 Test 4-12 DTS SLICE Micro Mount Position in the Cab
Figure 10-6 Test 4-12 DTS SLICE Micro Mount Position in Cargo Box
Figure 10-7 Test 4-12 Vehicle Instrumentation Mounted in Cargo Box
Figure 10-8 Typical Guidance System Layout112
Figure 10-9 Guide Arm Releasing from Test Vehicle112
Figure 10-10 Guide Arm Released from Vehicle113
Figure 10-11 Guide Arm Brake System with Friction Brake114
Figure 10-12 Friction Brake Close Up View114
Figure 10-13 Guide Arm Brake System with Friction Brake (Prior To Pick up Test)
Figure 10-14 Released Guide Arm with Engaged Friction Brake (Pickup Test Prior to Impact)115
Figure 10-15 High-Speed Video Camera Locations (Not to Scale)116
Figure 10-16 Speed Trap Tape Layout121
Figure 10-17 Schematic of Measured Interior Points for Floorboard, Dashboard, Windshield,
Figure 10-18 Schematic of Measured Points for the A Pillar, B Pillar, Side Front Door Panel,
Figure 10-19 Schematic of Measured Interior Points for Floorboard, Dashboard, Windshield,
Figure 10-20 Schematic of Measured Points for the A Pillar, B Pillar, Side Front Door Panel,
Figure 10-21 Schematic of Measured Interior Points for Floorboard, Dashboard, Windshield,
Figure 10-22 Schematic of Measured Points for the A Pillar, B Pillar, Side Front Door Panel,
Figure 10-23 Test 4-10 TRAP Summary Sheet (DTS SLICE Micro TRAP BA00659)
Figure 10-24 Test 4-10 Longitudinal Acceleration (DTS SLICE Micro TRAP BA00659)
Figure 10-25 Test 4-10 Lateral Acceleration (DTS SLICE Micro TRAP BA00659)159
Figure 10-26 Test 4-10 Vertical Acceleration (DTS SLICE Micro TRAP BA00659)160
Figure 10-27 Test 4-10 Roll, Pitch, and Yaw Rates (DTS SLICE Micro TRAP BA00659)160
Figure 10-28 Test 4-10 Roll, Pitch, and Yaw Angles (DTS SLICE Micro TRAP BA00659)161
Figure 10-29 Test 4-10 Acceleration Severity Index (DTS SLICE Micro TRAP BA00659)161
Figure 10-30 Test 4-10 TRAP Summary Sheet (DTS SLICE Micro TRAP BA00656)
Figure 10-31 Test 4-10 Longitudinal Acceleration (DTS SLICE Micro TRAP BA00656)163
Figure 10-32 Test 4-10 Lateral Acceleration (DTS SLICE Micro TRAP BA00656)163
Figure 10-33 Test 4-10 Vertical Acceleration (DTS SLICE Micro TRAP BA00656)
Figure 10-34 Test 4-10 Roll, Pitch, and Yaw Rates (DTS SLICE Micro TRAP BA00656)164
Figure 10-35 Test 4-10 Roll, Pitch, and Yaw Angles (DTS SLICE Micro TRAP BA00656)165
Figure 10-36 Test 4-10 Acceleration Severity Index (DTS SLICE Micro TRAP BA00656)165

Figure 10-37 Test 4-11 TRAP Summary Sheet (DTS SLICE Micro TRAP BA00659)	
Figure 10-38 Test 4-11 Longitudinal Acceleration (DTS SLICE Micro TRAP BA00659)	
Figure 10-39 Test 4-11 Lateral Acceleration (DTS SLICE Micro TRAP BA00659)	
Figure 10-40 Test 4-11 Vertical Acceleration (DTS SLICE Micro TRAP BA00659)	
Figure 10-41 Test 4-11 Roll, Pitch, and Yaw Rates (DTS SLICE Micro TRAP BA00659)	
Figure 10-42 Test 4-11 Roll, Pitch, and Yaw Angles (DTS SLICE Micro TRAP BA00659)	
Figure 10-43 Test 4-11 Acceleration Severity Index (DTS SLICE Micro TRAP BA00659)	
Figure 10-44 Test 4-11 TRAP Summary Sheet (DTS SLICE Micro TRAP BA00656)	
Figure 10-45 Test 4-11 Longitudinal Acceleration (DTS SLICE Micro TRAP BA00656)	
Figure 10-46 Test 4-11 Lateral Acceleration (DTS SLICE Micro TRAP BA00656)	
Figure 10-47 Test 4-11 Vertical Acceleration (DTS SLICE Micro TRAP BA00656)	
Figure 10-48 Test 4-11 Roll, Pitch, and Yaw Rates (DTS SLICE Micro TRAP BA00656)	
Figure 10-49 Test 4-11 Roll, Pitch, and Yaw Angles (DTS SLICE Micro TRAP BA00656)	
Figure 10-50 Test 4-11 Acceleration Severity Index (DTS SLICE Micro TRAP BA00656)	
Figure 10-51 Test 4-12 TRAP Summary Sheet (DTS SLICE Micro TRAP BA00656)	
Figure 10-52 4-12 Longitudinal Acceleration (DTS SLICE Micro TRAP BA00656)	
Figure 10-53 Test 4-12 Lateral Acceleration (DTS SLICE Micro TRAP BA00656)	
Figure 10-54 Test 4-12 Vertical Acceleration (DTS SLICE Micro TRAP BA00656)	
Figure 10-55 Test 4-12 Roll, Pitch, and Yaw Rates (DTS SLICE Micro TRAP BA00656)	
Figure 10-56 Test 4-12 Roll, Pitch, and Yaw Angles (DTS SLICE Micro TRAP BA00656)	
Figure 10-57 Test 4-12 Acceleration Severity Index (DTS SLICE Micro TRAP BA00656)	
Figure 10-58 Test 4-12 TRAP Summary Sheet (DTS SLICE Micro TRAP BA00659)	
Figure 10-59 Test 4-12 Longitudinal Acceleration (DTS SLICE Micro TRAP BA00659)	
Figure 10-60 Test 4-12 Lateral Acceleration (DTS SLICE Micro TRAP BA00659)	
Figure 10-61 Test 4-12 Vertical Acceleration (DTS SLICE Micro TRAP BA00659)	
Figure 10-62 Test 4-12 Roll, Pitch, and Yaw Rates (DTS SLICE Micro TRAP BA00659)	
Figure 10-63 Test 4-12 Roll, Pitch, and Yaw Angles (DTS SLICE Micro TRAP BA00659)	
Figure 10-64 Test 4-12 Acceleration Severity Index (DTS SLICE Micro TRAP BA00659)	
Figure 10-65 Test 4-12 TRAP Summary Sheet (DTS SLICE Micro TRAP BA00758)	
Figure 10-66 Test 4-12 Longitudinal Acceleration (DTS SLICE Micro TRAP BA00758)	
Figure 10-67 Test 4-12 Lateral Acceleration (DTS SLICE Micro TRAP BA00758)	
Figure 10-68 Test 4-12 Vertical Acceleration (DTS SLICE Micro TRAP BA00758)	

Figure 10-69 Test 4-12 Roll, Pitch, and Yaw Rates (DTS SLICE Micro TRAP BA00758)	184
Figure 10-70 Test 4-12 Roll, Pitch, and Yaw Angles (DTS SLICE Micro TRAP BA00758)	185
Figure 10-71 Test 4-12 Acceleration Severity Index (DTS SLICE Micro TRAP BA00758)	185
Figure 11-1 Type 86H Test Article Project Plan for Concrete Barrier Type 86H	187
Figure 11-2 Type 86H Test Article General Plan	188
Figure 11-3 Type 86H Test Article Overhang and Rail Removal Details	189
Figure 11-4 Type 86H Test Article Structural Details No.1	190
Figure 11-5 Type 86H Test Article Structural Details No.2	191
Figure 11-6 Type 86H Test Article Structural Details No.3	192
Figure 11-7 Type 86H Test Article Structural Details No.4	193
Figure 11-8 Type 86H Test Article Structural Details No.5	194
Figure 13-1 Undamaged Gasoline Tank for the 1100C vehicle	214
Figure 13-2 Undamaged Oil Pan for the 1100C vehicle	214
Figure 13-3 Undamaged Gasoline Tank for the 2270P Pick Up Truck	215
Figure 13-4 Undamaged Oil Pan for the 2270P Pick Up Truck	215

List of Tables

Table 5-1 Test 110MASH4C21-01 Test Sequence of Events 52
Table 5-2 Test 110MASH4C21-01 Test Data Summary Sheet64
Table 5-3 110MASH4C21-01 Assessment Summary for Test 4-10 66
Table 6-1 Test 110MASH4P21-02 Test Sequence of Events 69
Table 6-2 Test 110MASH4P21-02 Test Data Summary Sheet81
Table 6-3 110MASH4P21-02 Assessment Summary for Test 4-11 83
Table 7-1 Test 110MASH4S21-03 Test Sequence of Events 86
Table 7-2 Test 110MASH4S21-03 Test Data Summary Sheet102
Table 7-3 110MASH4S19-02 Assessment Summary for Test 4-12
Table 10-1 110MASH4C21-01 Camera Types and Location Coordinates 116
Table 10-2 110MASH4P21-02 Camera Types and Location Coordinates 117
Table 10-3 110MASH4S21-03 Camera Types and Location Coordinates 118
Table 10-4 4-10 Test 110MASH4C21-01 Accelerometer and Angular Rate Sensor Specifications119
Table 10-5 4-11 Test 110MASH4P21-02 Accelerometer and Angular Rate Sensor Specifications119
Table 10-6 4-12 Test 110MASH4S21-03 Accelerometer and Angular Rate Sensor Specifications 120
Table 10-7 Test 4-10 Exterior Vehicle Measurements 122
Table 10-8 Test 4-10 CG Calculation: Curb Weight
Table 10-9 Test 4-10 CG Calculation: Test Inertial Weight
Table 10-10 Test 4-10 CG Calculation: Gross Static Weight
Table 10-11 Test 4-10 Pre, Post Interior and Deformation Measurement Page 1 126
Table 10-12 Test 4-10 Pre, Post Interior and Deformation Measurement Page 2 127
Table 10-13 Test 4-10 Pre, Post Interior and Deformation Measurement Page 2 128
Table 10-14 Test 4-11 Exterior Vehicle Measurements
Table 10-15 Test 4-11 CG Calculation: Curb Weight
Table 10-16 Test 4-11 CG Calculation: Test Inertial Weight 133
Table 10-17 Test 4-11 CG Calculation: Gross Static Weight 134
Table 10-18 Test 4-11 CG Calculation: Vertical CG Weight
Table 10-19 Test 4-11 Vertical CG Calculation: Worksheet 136
Table 10-20 Test 4-11 Vertical CG Calculation: Worksheet (continued) 137
Table 10-21 Test 4-11 Vertical CG Calculation: Measurement and Report
Table 10-22 Test 4-11 Pre, Post Interior and Deformation Measurement Page 1 139

Table 10-23 Test 4-11 Pre, Post Interior and Deformation Measurement Page 2	140
Table 10-24 Test 4-11 Pre, Post Interior and Deformation Measurement Page 3	141
Table 10-25 Test 4-11 Pre, Post Interior and Deformation Measurement Page 4	142
Table 10-26 Test 4-11 Pre, Post Interior and Deformation Measurement Page 5	143
Table 10-27 Test 4-12 Exterior Vehicle Measurements	146
Table 10-28 Test 4-12 CG Calculation: Curb Weight	147
Table 10-29 Test 4-12 CG Calculation: Test Inertial Weight	148
Table 10-30 Test 4-12 CG Calculation: Gross Static Weight	149
Table 10-31 Test 4-12 Pre, Post Interior and Deformation Measurement Page 1	150
Table 10-32 Test 4-12 Post Interior and Deformation Measurement Page 2	151
Table 10-33 Test 4-12 Post Interior and Deformation Measurement Page 3	152
Table 10-34 Test 4-12 Post Interior and Deformation Measurement Page 4	153
Table 10-35 Test 4-12 Post Interior and Deformation Measurement Page 5	154

THIS PAGE WAS INTENTIONALLY LEFT BLANK

1. Introduction

1.1. Problem

In 2016, the California Department of Transportation (Caltrans) established a timeline for the implementation of the Manual for Assessing Safety Hardware (MASH) (AASHTO, 2016). MASH is a testing standard for evaluating the safety of roadside hardware, and replaces the previous testing guidelines, the National Cooperative Highway Research Program, Report 350. The Caltrans timeline was consistent with the 2015 American Association of State Highway Transportation Officials (AASHTO) and Federal Highway Administration (FHWA) Joint Implementation Agreement. The agreement specifies that new installations of roadside safety hardware comply with MASH 2016 for Federal Aid Eligibility. Caltrans adopted a plan that all bridge rail projects advertised on or after October 31, 2019, that include permanent and full bridge rail replacements, meet MASH criteria.

1.2. Objective

The objective of this research project is to construct a test section of a historic-looking and aesthetically pleasing concrete post and beam bridge rail, the California Concrete Barrier Type 86H (Type 86H), and then conduct the required crash tests under the MASH 2016 Test Level 4 (TL-4) criteria for longitudinal barriers.

1.3. Background

There are many bridges in California built with the aesthetically pleasing concrete baluster rail that are on the National Historic Register. One well known example is the Bixby Creek Bridge. Built in 1932, the Bixby Creek Bridge is located along the California Coast near Big Sur in Monterey County. The Bixby Creek Bridge is an open-spandrel arch bridge along the California coast that locals call "the gateway to Big Sur". A picture of the Bixby Creek Bridge is shown in Figure 1-1.

Figure 1-1 Bixby Creek Spandrel Arch Bridge

Unfortunately, existing historic baluster rails do not meet the current crashworthiness requirements of the MASH 2016 standards. With the intent to build new bridges with aesthetically pleasing historic-looking barrier rails and, when necessary, to replace existing non-MASH compliant baluster rails in the California Highway system, the Division of Engineering Services has completed the design of the Concrete Barrier Type 86H shown in Figure 1-2 and Figure 1-3. The Type 86H rail is a historic-looking and aesthetically pleasing "see through" concrete barrier rail.

Figure 1-2 Concrete Barrier Type 86H (Non-Traffic Face)

Figure 1-3 Type 86H Side View

The Concrete Barrier Type 86H, shown in Figure 1-4, is the first barrier intended to meet MASH standards designed by the State of California that resembles the old, historic baluster rail. It is very similar in shape to the California Concrete Barrier Type 85 shown in Figure 1-5. The Type 85 Barrier is a post and beam concrete barrier that has recently been tested and approved for MASH compliance. Both the Type 85 and the Type 86H have a sloping curb to facilitate removal of snow in colder climate environments and slightly increased view through the baluster opening. The Type 86H is 152 mm (6 in.) taller than the Type 85 and it has a 254 mm (10 in.) deep beam versus the 305 mm (12 in.) deep beam on the Type 85. The curb on the Type 86H is 152 mm (6 in.) taller than the curb on the Type 85. For the Type 86H, the space in between the main structural posts and below the top rail has been designed to have arched windows which provides a similar appearance to the traditional historical baluster rail. The cross sections shown in Figure 1-4 and Figure 1-5 are taken at the structural posts of both rails.

Figure 1-4 Type 86H Concrete Post and Beam Barrier Rail (MASH TL-4)

Figure 1-5 Type 85 Concrete Post and Beam Barrier Rail (MASH TL-4)

1.4. Literature Search

Prior to project initiation, a literature and product search were conducted related to MASH TL-4 concrete post and beam bridge rails. The results of the search concluded that MASH testing had not been conducted on a bridge rail similar in design to the Type 86H that would eliminate the need for crash testing. Over the course of this research project, additional concrete post and beam bridge rails have been tested for MASH compliance. It should be noted that for tests conducted and sponsored by others, complete test documentation including test reports and videos, can be difficult to obtain. Complete documentation is required as part of the Caltrans, Highway Safety Features New Products Committee hardware review and approval process. The following concrete baluster bridge rails are of interest and Caltrans has requested full testing documentation:

Texas C411

The Texas C411 Concrete Baluster Bridge Rail, shown in Figure 1-6, was tested by Texas A&M Transportation Institute (TTI) for the Texas Department of Transportation (TXDOT). The small car and pickup (1100C and 2270P) TL-2 tests were conducted in May of 2018. The test documentation report, Test Report 0-6946-R2 published in March 2019, indicated the bridge rail met the MASH 2016 TL-2 criteria.

Figure 1-6 Texas C411 Concrete Baluster Bridge Rail (MASH TL-2)

Texas C412

The Texas C412 Concrete Baluster Bridge Rail shown in Figure 1-7 was tested by TTI for TXDOT. The tractor trailer (36000V), which is a Test Level 5 test, was conducted in June of 2018. The test documentation report, Test Report 0-6946-R2 dated March 2019, indicated the bridge rail met MASH 2016 TL-5 criteria. The report notes that test designations 5-10 and 5-11 were unnecessary due to testing conducted on a similar bridge rail, the New Jersey Department of Transportation (NJDOT) Balustrade Pulaski Skyway Bridge Parapet.

According to the Federal Highway Administration (FHWA) Federal Aid Eligibility Letter B-285 (B-285) tests on the Pulaski Skyway Bridge Parapet were performed by TTI, through the Rutgers Infrastructure Monitoring and Evaluation (RIME) Group Laboratory, for the New Jersey Department of Transportation. B-285 includes basic information and test summary sheets. The summary sheets in B-285 are excerpts from TTI Report No. 607451-1-3, which does not appear to have been published to this day. However, test excerpts are included in a RIME report "Route 139 Rehabilitation: Pulaski Skyway Contract 2" dated June 2017. The final report and crash test videos for tests 4-10 and 4-11 from NJDOT and RIME were

received in January of 2021. FHWA Letter B-285 mentions that the bridge rail design itself is nonproprietary and that it was developed as part of funding in 2013 from NJDOT Research Bureau to RIME. B-285 includes the required MASH Test Level 4 (TL-4) tests, all conducted in December of 2016, the small car, pickup, and van body (1100C, 2270P and 10000S respectively). All the tests met the respective MASH TL-4 requirements.

Figure 1-7 Texas C412 Concrete Baluster Bridge Rail (MASH TL-5)

1.5. Scope

The MASH 2016 TL-4 test matrix for longitudinal barriers requires three full-scale dynamic crash tests: a small car (1100C) impacting the barrier at 100 kph (62 mph) and at a 25° angle, a pickup truck (2270P) impacting at 100 kph (62 mph) and 25°, and a single-unit truck (SUT or 10000S) impacting at 90 kph (56 mph) and a 15° angle. Prior to testing, a Minor B contract was executed for construction of the Concrete Barrier Type 86H at the Caltrans Dynamic Test Facility. The Type 86H bridge rail was constructed by an experienced bridge contractor following the Caltrans construction standards. The construction activities were overseen by Caltrans personnel.

2. Test Article Details

2.1. Barrier Design

The Type 86H bridge rail was designed to be a MASH compliant, historic-looking and aesthetically pleasing concrete baluster rail. The 1067 mm (42 in.) tall vehicular barrier height was selected to exceed the minimum height of 914 mm (36 in.) recommended for the MASH TL-4 tests. When compared to the Type 85 (see Figure 1-5) the overall shape of the Type 86H (see Figure 2-1) provides improved visibility by increasing the vertical gap below the beam by 51 mm (2 in.) and, similar to the Type 85, by sloping the top of the curb downward toward the backside of the barrier. The sloped curb reduces the visual obstruction of the back of the curb and helps water and other debris to flow off, away from the roadway. The curb face height was raised to 457 mm (18 in.) to improve the redirection of the test vehicles and to reduce the opportunity for the front wheel to enter the gap below the beam. In addition, the concrete rail post was offset from the beam 178 mm (7 in.) to reduce the opportunity for wheel snagging. To enhance the versatility of where the barrier can be used, a bicycle rail was added to the top of the beam.

The bicycle rail was offset from the face of the barrier to reduce the possibility of vehicle snag. It is worth noting that LS-Dyna finite element models were created in-house to check the interaction (wheel snag) between the small car and pickup with the Type 86H concrete barrier during impact. Although a comparison of the actual crash tests and the simulations was not performed for this project, they were critical in determining the optimum cross section required to insure the crashworthiness of this rail and they reinforced the importance of setting back the structural post away from the face of rail beam.

The design and load evaluation were completed by Structure Policy and Innovation in the Caltrans Division of Engineering Services. For this evaluation the design of the Type 86H focused on the structural integrity of the barriers subject to MASH TL-4 loading in compliance with 2012, Sixth Edition, AASHTO LRFD Bridge Design Specification with California Amendments. The three barrier components (Rail, Post, & Curb) and the deck overhang were separately evaluated against flexural, shear, and torsional demands under different limit states. In addition to structural calculations, a finite element analysis study was conducted by Caltrans Division of Engineering Services using the software CSibridge to determine the demands on each component. Strengths and demands of the rail, post, and curb were then assessed under Extreme II Limit State, and the overhang under Extreme II and Strength I Limit State.

The Type 86H bridge rail barrier design consists of a steel reinforced concrete railing/beam and posts mounted on a concrete curb that is 1067 mm (42 in.) tall to the top of the traffic railing and 1219 mm (48 in.) tall to the top of the bicycle rail. The Type 86H posts are spaced 3.1 m (10 ft) apart. See the cross-section below for the general configuration. The detail sheets, which were used to construct the test article, are shown in Appendix B (Figure 11-1 through Figure 11-8). The material design strengths are as follows: Concrete (C) of 24.8 MPa (3.6 ksi) and reinforcing steel (T) of 413.7 MPa (60 ksi), where C = Compressive Strength and T = Tensile Strength.

Figure 2-1 Type 86H Cross-Section

2.2. Construction

A construction contract was executed and awarded on August 13, 2020 to build the Concrete Barrier Type 86H at the Caltrans Dynamic Test Facility (test site) in the same location where the California Steel ST-75 bridge rail was constructed in 2018. A cross section of the existing ST-75 depicting the overhang removal for construction of the new Type 86H is shown in Figure 2-2. The total length of the new test article was 30.5 m (100 ft). The first 23.2 m (76 ft) was constructed to simulate a concrete bridge deck and overhang supporting the barrier rail. A 25 mm (1 in.) gap was included between Posts 4 and 5 to simulate an expansion joint, both on the deck and the bridge rail. The remaining 7.3 m (24 ft) of the barrier rail consisted of an existing concrete reaction slab supporting a drilled and bonded segment of Type 86H rail. This latter portion of rail provided a sufficient length of barrier to successfully conduct the test. Refer to the plan in Figure 2-4 and the cross section of the rail construction for this region in Figure 2-5 for more information. For simplicity of construction and to reduce construction costs, the existing 23.1 m (76 ft) long concrete anchor block used for the previous crash testing of both the ST-70 Side Mounted bridge rail and the ST-75 bridge rail was utilized. The existing anchor block consisting of steel reinforced Portland Cement Concrete (PCC) measuring 1.4 m (4.5 ft) deep by 3.0 m (10 ft) in width was originally built in late 2014. As mentioned above, the existing rigidly connected overhang portion of the Type 75 bridge test article was removed without damaging the transverse #5 overhang bars. The existing preserved #5 bars were re-used in the construction of the overhang. The hatched region shown in Figure 2-2 shows the limits of removal. Figure 2-3 shows a part of the cross section with the new overhang. It is worth noting that a very small percentage of additional reinforcement was added in the region near the centerline of three structural posts to meet the required placement of bundled bars as shown in the plans. For more detail on these bundled bars, refer to Figure 11-3 and Figure 11-4 in Appendix B.

Figure 2-2 Cross Section of Existing Concrete Block and Overhang Removal

Figure 2-3 Partial Cross Section of New Overhang with the Type 86H Barrier Rail

Figure 2-4 Plan View of Type 86H Test Article

Figure 2-5 Partial Cross Section of Drilled and Bonded Type 86H (MOD) on Existing Reaction Slab

During construction of the Type 86H overhang, strain gages were installed on reinforcement at locations of interest in the deck, post and beam so that loading during impact could be measured. For a report on this supplemental strain gauge work performed at the request of the Division of Engineering Services, please refer to the report titled "Dynamic Stress and Deflection Measurements of The Concrete Post-and-Beam Bridge Railing, CALIFORNIA TYPE 86H FHWA/CA25-3170 Supplement A".

Construction of the Type 86H was completed in four stages. The first stage consisted of removal of the steel components of the ST-75 bridge rail and the demolition of the existing curb, end block and overhang. After removal of the steel rail and posts, the contractor saw-cut 25 mm (1 in.) into to the concrete deck where the overhang attached to the anchor block (see dashed orange line in Figure 2-6). The concrete was removed using an excavator with a hammer attachment and by using hand-held jackhammers. Extreme care was exercised to ensure minimal damage to the existing transverse reinforcement during the removal of the concrete. These sequential steps are depicted by Figure 2-6 thru Figure 2-9.

Figure 2-6 Unbolting of the ST-75 Steel Bridge Rail and Painting of Overhang Saw-Cut Line

Figure 2-7 Initial saw-cut line for overhang removal

Figure 2-8 Removal of ST-75 Test Article Overhang with Excavator Hammer Attachment

Figure 2-9 Removal of ST-75 Test Article Overhang at Saw Cut Line with Jackhammers

The second stage involved construction of the new overhang. Prior to placing the concrete, this stage required the installation of wood forms for the overhang, installation of new longitudinal overhang steel reinforcement, and curb and structural post steel reinforcement. As mentioned at the beginning of this section of the report, additional transverse reinforcement was epoxied into the existing concrete anchor block in-line with the structural posts, as required by the plans. This stage also involved the correct positioning and installation of the reinforcement for the concrete curb and posts and the installation of the first set of strain gauges (at the overhang and post reinforcement). See Figure 2-10 thru Figure 2-26.

Figure 2-10 Installation of the Supports for the Formwork for the Overhang Construction

Figure 2-11 Installation of the Formwork for the Type 86H Overhang and Concrete Curb

Figure 2-12 Installation of the Formwork Supports for the Type 86H Overhang and Concrete Curb

Figure 2-13 Drilling Operation (305 mm (12 in.) depth) for Epoxied Reinforcement Installation

Figure 2-14 Installation of Epoxy and Additional Transverse Reinforcement

Figure 2-15 Installation of Epoxy and Vertical Reinforcement on Existing Curb and Reaction Slab

Figure 2-16 Installation of Longitudinal Overhang, Curb and Post Reinforcement

Figure 2-17 Installation of Reinforcement at Posts 4 and 5 with 25 mm (1 in.) Gap

Figure 2-18 Installation of Top #6 Curb "Hair Pin" Reinforcement

Figure 2-19 Marking the Strain Gauge Locations on Reinforcement at Structural Post 4

Figure 2-20 Grinding Surface of Reinforcement in Preparation for Strain Gauges

Figure 2-21 Installation of Uniaxial Strain Gauges and Cable Prior to Deck Pour

Figure 2-22 Installation of Uniaxial Strain Gauges and Cable at Post 4 Prior to Deck Pour

Figure 2-23 Installation of Uniaxial Strain Gauges and Cable at Post 3 Prior to Deck Pour

Figure 2-24 Bridge Rail Overhang Concrete Pour

Figure 2-25 Concrete Samples Taken During the Curb Pour by Caltrans Staff

Figure 2-26 Concrete Finish and Placement of Curing Compound

The third stage involved the forming of the concrete curb and the positioning and partial embedment of the baluster post reinforcement within the curb. This stage also required the placement of the remaining longitudinal curb reinforcement along with the second set of "hair pin" rebar in the upper portion of the curb. The contractor requested that the upper set of "hair pins" at each post location be omitted because the area was too congested with reinforcement (Figure 2-27). After consulting with the designer, the request was granted to improve the constructability of the Type 86H. It is worth noting that that it was quite challenging for the concrete curb. A plywood template made it possible and more practical to inspect the placement of the baluster reinforcement (see Figure 2-28 and Figure 2-33). Once all the required reinforcement was installed, the curb forms were installed and secured, then the curb concrete was poured. See Figure 2-27 thru Figure 2-36 for additional pictures of the third stage of construction.

Figure 2-27 Section B-B with Concrete Reinforcement

Figure 2-28 Plywood Template Used for Verifying the Placement of Baluster Rail Reinforcement

Figure 2-29 Placement of Front Form and Baluster Rail Reinforcement near Posts 4 and 5

Figure 2-30 Formwork and Rebar in Place for Bridge Rail Curb Concrete Pour

Figure 2-31 Formwork and Rebar for the Drilled and Bonded Section over the Reaction Slab

Figure 2-32 Bridge Rail Curb Concrete Pour

Figure 2-33 Verification of the Placement of the Baluster Rail Reinforcement Using Plywood Template

Figure 2-34 Concrete Samples Taken During the Curb Pour by Caltrans Staff

Figure 2-35 Completion of Pour of the Concrete Curb

Figure 2-36 Removal of Concrete Curb Forms

The fourth and final stage involved the forming and pouring of the structural posts, baluster posts and structural beam. This required the placement of the remaining reinforcement for the structural posts and structural beam and placement of the second and final set of strain gages. The forms for the space between the beam and the curb were also placed (see Figure 2-40). To form the baluster windows the contractor secured arch-shaped Styrofoam blocks (see Figure 2-38 and Figure 2-39) vertically between the front and the back forms below the rail beam. During the process of forming the structural posts, an extra 32 mm (1.25 in.) was added to the non-traffic side increasing its dimension to 432 mm (17 in.) instead of 400 mm (15.75 in.). The purpose of the increased dimension was to accommodate the installation of the main vertical #7 bars, (see Figure 2-37). This change was approved by the structural designer. Also with the approval of the structural designer, the end of four of the six #7 rail bars at Structural Posts 4 and 5, had to be trimmed to allow installation (see Figure 2-42 and Figure 2-43). The top #7 bars were placed with a 180-degree hook without a problem. The lower bars had to be installed as 90-degree bends (see Figure 2-43 and Construction Details in Figure 11-5 of Appendix B). The last concrete pour involving the posts and beams, along with the removal of the forms and installation of the bicycle rails, was completed as shown in Figure 2-44 thru Figure 2-51. The final step performed to complete the construction of the Type 86H rail was to install and secure the bicycle rail. This was accomplished by drilling and bonding the plan-specified 19 mm (.75 in.) diameter threaded rods using Simpson SET-3G epoxy. To avoid conflict of installation of the threaded rods in the heavily reinforced post regions and after approval from DES and Earthquake Engineering, the embedment of the threaded rods was reduced from 203 mm (8 in.) to 152 mm (6 in.). A picture of the completed Type 86H concrete barrier rail can be found in Figure 2-51.

Figure 2-37 Forming of the Back Side and Side of the Structural Post (Post Form increased to 17 in.)

Figure 2-38 Positioning of the Arched Styrofoam Baluster Windows Prior to Installation of Front Form

Figure 2-39 Forming of the Baluster Post (placement of the front form)

Figure 2-40 Forming of the Underside of the Beam

Figure 2-41 Preparation for Splicing of No. 7 Longitudinal Reinforcement

Figure 2-42 Installation Conflict at Space between Post 4 and 5

Figure 2-43 Resolved Conflict and Completion of Installation of Beam Reinforcement at Post 4

Figure 2-44 Installation of Uniaxial Strain Gauges and Cable Prior to Post and Beam Pour

Figure 2-45 Formwork and Rebar in Place for Bridge Rail Post and Beam Concrete Pour

Figure 2-46 Bridge Rail Post and Beam Concrete Pour

Figure 2-47 Concrete Sampling and Slump Test During the Post and Beam Pour by Caltrans Staff

Figure 2-48 Removal of Forms View from the Back

Figure 2-49 Drilling and Bonding of the Threaded Rods for Tubular Bicycle Railing

Figure 2-50 Installation of Tubular Bicycle Railing and Mortar Pad at Supports

Figure 2-51 Completed Bridge Rail Type 86H

In summary, the Type 86H bridge rail was constructed in four stages. The first stage involved the demolition. The remaining stages involved three concrete pours: the deck overhang, the curb, and the posts and beam (poured at the same time). At each stage, rebar extending from one section to the next needed to be installed and aligned properly. Concrete curing compound was used to limit moisture loss. During this work, time was allocated in the contract for Caltrans staff to install the strain gages and wiring. Care was taken to protect strain gages and their wiring during construction, including running wiring through conduit in the curb. It is worth noting that the rebar subcontractor had difficulty bending the curb rebar into a shape that would fit as specified in the plans, requiring a few attempts. This was possibly due to the congestion of rebar in the deck and curb and the angled shape of the rebar used for the sloping curb. The post and beam were formed and poured successfully after some adjustments were made at the expansion joint region. Finally, the bicycle rail was installed and aligned. The bicycle rail was placed 229 mm (9 in.) from the face of the beam as specified in the contract plans.

Each concrete pour was sampled and cast into standard 152 mm x 305 mm (6 in. x 12 in.) cylinders for testing. The 28-day concrete strengths were above 35.8 MPa (5200 psi), 38.6 MPa (5600 psi) and 45.5 MPa (6600 psi) for the overhang, curb and post and beam, respectively. The reinforcement was A615 Grade 60 / A706-60 (dual grade) rebar with a minimum yield strength of 448 MPa (65 ksi). The concrete and steel strength measurements were provided by other labs and are outside of our Scope of Accreditation. The bicycle rail was A500-13 Grade B (C) steel. Construction details can be found in the Appendix B, Figure 11-1 through Figure 11-8. Concrete strength test results and material certifications can be found in the Appendix C: Material Properties and Certifications, Section 12.

- 3. Test Requirements and Evaluation Criteria
 - 3.1. Crash Test Matrix

MASH Test Level 4 for longitudinal barriers consists of three crash tests as follows:

- 1. A 1,100 kg (2,420 lb) small car at 100 kph (62 mph) and a 25° impact angle (MASH 2016 Test No. 4-10).
- A 2,270 kg (5,000 lb) pickup truck at 100 kph (62 mph) and a 25° impact angle (MASH 2016 Test No. 4-11).
- 3. A 10,000 kg (22,000 lb) single-unit truck at 90 kph (56 mph) and a 15° impact angle (MASH 2016 Test No. 4-12).

The objective of this project is to verify that the Type 86H Bridge Rail meets the evaluation criteria of MASH Test 4-10, 4-11, and 4-12.

3.2. Evaluation Criteria

The evaluation criteria for longitudinal barriers are those set forth in MASH 2016 Table 2-2. For Test 4-10 and 4-11 they are A, D, F, H, and I. For Test 4-12 they are: A, D, and G. Evaluation Criteria are explained later in the Assessment Summary for each test.

- 4. Test Conditions
 - 4.1. Test Facilities

Crash testing was conducted at the Caltrans Dynamic Test Facility in West Sacramento, California. The test area is a large, flat, asphalt concrete surface. At the time of testing, there were no obstructions nearby.

- 4.2. Test Vehicles
- 4.2.1.Test 4-10

The vehicle for Test 4-10 was a 2015 Nissan Versa Sedan in good condition. The MASH 2016 1100C test vehicle for the Type 86H Bridge Rail was assigned test identification number 110MASH4C21-01. The vehicle was free of major body damage and not missing any structural parts. The vehicle was not modified in any way and had all the standard equipment. The test inertial mass of 1107 kg (2441 lb) was within the recommended mass limits of MASH 2016. Test vehicle measurement sheets are shown in Table 10-7 through Table 10-10. To achieve the desired impact speed, the vehicle was towed with a 2:1 mechanical advantage. A speed control device was installed in the tow vehicle, which limited the acceleration of the vehicle once the target impact speed was reached. The steering was accomplished by means of a guidance rail anchored to the ground and a guide arm attached to the vehicle wheel hub (see Figure 10-8). Remote braking was possible at any time during the test via radio control. The vehicle was released from the guidance rail approximately 7.6 m (25 ft) before contacting the test article and was completely unconstrained before impact. Photos of the test vehicle prior to the impact are shown in Figure 4-1 through Figure 4-6. See Appendix A, Figure 10-1 and Figure 10-2 for more information on vehicle equipment and instrumentation.

Figure 4-1 MASH 4-10 Test Vehicle Front Right

Figure 4-2 MASH 4-10 Test Vehicle Passenger Side

Figure 4-3 MASH 4-10 Test Vehicle Front

Figure 4-4 MASH 4-10 Test Vehicle Driver Side

Figure 4-5 MASH 4-10 Test Vehicle Rear

Figure 4-6 MASH 4-10 Test Vehicle at Impact Point

4.2.2. Test 4-11

The test vehicle for Test 4-11 was a 2018 Dodge RAM 1500 Quad Cab pickup. The MASH 2016 2270P test for the Type 86H Bridge Rail was assigned test identification number 110MASH4P21-02. The vehicle was free of major body damage and not missing any structural parts. The vehicle was not modified in any way and had all the standard equipment. The test inertial mass of 2235 kg (4928 lb) was within the recommended mass limits of MASH 2016. The height of the vehicle Center of Gravity was 738 mm (29 in.) and was above the minimum recommended in MASH of 710 mm (28 in.). Test vehicle measurement sheets are shown in Table 10-14 through Table 10-21. To achieve the desired impact speed, the vehicle was self-powered. A speed control device was installed in the vehicle to limit the acceleration of the vehicle once the target impact speed was reached. The steering was accomplished by means of a guidance rail anchored to the ground and a guide arm attached to the vehicle wheel hub. The electric power steering system was de-energized prior to testing to reduce steering harmonics and improve lateral impact point accuracy. Remote braking was possible at any time during the test via radio control. The vehicle was released from the guidance rail and power to the engine was cut approximately 6.1 m (20 ft) before contacting the test article and was completely unconstrained before impact. Photos of the test vehicle are shown in Figure 4-7 through Figure 4-11. See Figure 10-3 and Figure 10-4 for more information on vehicle equipment and instrumentation.

Figure 4-7 MASH 4-11 Test Vehicle Front Right

Figure 4-8 MASH 4-11 Test Vehicle Passenger Side

Figure 4-9 MASH 4-11 Test Vehicle Front

Figure 4-10 MASH 4-11 Test Vehicle Driver Side

Figure 4-11 MASH 4-11 Test Vehicle Rear

Figure 4-12 MASH 4-11 Test Vehicle Ballast

Figure 4-13 MASH 4-11 Test Vehicle at Impact Point

4.2.3. Test 4-12

The test vehicle for Test 4-12 was a 2009 Freightliner M2 106 18-foot Box Truck. The test vehicle complied with all MASH 2016 requirements for 10000S vehicles. The MASH 2016 10000S test for the Type 86H bridge rail was assigned test identification number 110MASH4S21-03. The vehicle was in good condition and not missing any standard equipment. The cargo box was strengthened according to Ford's 2005 Body Builder Layout Book to reduce the chance of it separating from the frame thus reducing loading on the barrier during the test, see Figure 4-23 and Figure 4-24. The curb weight of the vehicle was 5831 kg (12855 lb). With instrumentation, other equipment, and ballast installed, the test inertial mass was 10144 kg (22364 lb), which was within the recommended mass limits of MASH 2016. See Figure 4-20 and Figure 4-21 for ballast in the cargo box. The ballast consisted of three 1.5 m by 1.5 m by 51 mm (5 ft by 5 ft by 2 in.) steel plates, 5 smaller steel plates measuring approximately 1.5 m by 300 mm x 51 mm (5 ft x 12 in. x 2 in.) and one thinner steel plate measuring 1.5 m x 600 mm x 25 mm (5 ft x 24 in. x 1 in.) bolted on top of wood beams fastened to the cargo bed. Each of the large plates weighed approximately 907 kg (2000 lb). The smaller plates weighed approximately 177.8 kg (392 lb) each. They were mounted and secured uniformly across the length and width of the cargo bed using 8 threaded rods 25 mm (1 in.) in diameter through the bed to c-channel brackets under the bed. The wood posts were connected to each other with steel plates using wood screws and secured to the cargo bed with wood screws and angle brackets. The center of mass of the ballast was 1625 mm (63.9 in.) from the ground, which was within MASH recommended limits of 1600 mm +/- 50 mm (63 in. +/- 2 in.). Test vehicle measurement sheets are shown in Appendix A, Table 10-27 through Table 10-30. To achieve the desired impact speed, it was necessary to push the test vehicle with a Ford F-350 Dually in addition to its own self-power to get up to the target impact speed. The Ford F-350 Dually backed off the test vehicle about 213 m (700 ft) prior to impact. A speed control device was installed in the push vehicle, which limited the acceleration of the push vehicle once the target impact speed was reached. The speed governor of the test vehicle was reprogrammed to limit speed the maximum speed to 90.1 kph (56 mph). The steering was accomplished by means of a guidance rail anchored to the ground and a guide arm attached to the vehicle wheel hub. Remote braking was possible at any time during the test via radio control. The vehicle was released from the guidance rail and power to the engine was cut approximately 7.62 m (25 ft) before contacting the test article and was completely unconstrained before impact. Photos of the test vehicle are shown in Figure 4-14 through Figure 4-24. See Figure 4-22 and Appendix A for more information on vehicle equipment and instrumentation.

Figure 4-14 MASH 4-12 Test Vehicle Front Right

Figure 4-15 MASH 4-12 Test Vehicle Passenger Side

Figure 4-16 MASH 4-12 Test Vehicle Front

Figure 4-17 MASH 4-12 Test Vehicle Driver Side

Figure 4-18 MASH 4-12 Test Vehicle Rear

Figure 4-19 MASH 4-12 Test Vehicle at Impact Point

Figure 4-20 MASH 4-12 Test Vehicle Ballast in Cargo Box

Figure 4-21 MASH 4-12 Side View Diagram of Test Vehicle Ballast in Cargo Box

Figure 4-22 MASH 4-12 Test Vehicle Instrumentation Equipment in Cargo Box

Figure 4-23 MASH 4-12 Test Vehicle Front Shear Plate and Ballast Mounting Plate

Figure 4-24 MASH 4-12 Test Vehicle Rear Shear Plate and Ballast Mounting Plate

4.3. Test Documentation

The tests were documented using still cameras, video cameras, high-definition high-speed digital video cameras, and DTS SLICE data acquisition systems to record accelerations and rotational rate changes. The impact phase of each crash test was recorded with five high-definition, high-speed digital video cameras, a normal-speed DVC format video camera, digital SLR cameras and action cameras mounted inside and outside the test vehicle set to record video. The test vehicle and barrier were photographed before and after impact with the DVC format camera and a digital SLR camera.

In accordance with the MASH 2016 guidelines for Tests 4-10 and 4-11, two sets of orthogonal accelerometers and angular rate sensors were mounted in test vehicles to measure lateral, longitudinal, and vertical accelerations, along with the roll, pitch, and yaw rates. The data was analyzed in Test Risk Assessment Program version 2.3.11 (TRAP) to determine the occupant impact velocities, ridedown accelerations, maximum vehicle rotation, and other occupant risk quantities. For test 4-12, two sets of accelerometers and angular rate sensors were in the cab and another two sets were located at the vehicle's center of gravity in the cargo box area. Unfortunately, one of the sets in the cargo box malfunctioned due to a wire splice disconnecting during impact and did not record data. TRAP was also used to analyze Test 4-12 to determine the occupant impact velocities, ridedown accelerations, and maximum vehicle rotation at the locations where the instruments were mounted. Even though MASH does not set a limit for OIV, ORA, or angular data, they were reported in this report for comparison purposes. See Appendix A, Figure 10-5 through Figure 10-7 for more information on vehicle instrumentation and test documentation.

- 5. Test 110MASH4C21-01 (4-10)
 - 5.1. Impact Description and Results

The Critical Impact Point selected was 1.1 m (3.6 ft) upstream from the upstream edge of post 4, as recommended in Table 2-7 of MASH 2016 (AASHTO, 2016). The front edge of the post was selected instead of the middle of the post (as shown in MASH 2016 Figure 2-1) to increase the chance of wheel snag on the post. The impact angle of 25° was set with a Total Station when laying out the guide rail. The intended impact speed was 100 kph (62 mph). As seen in Figure 5-1, checkered tape was added upstream and downstream of the target CIP to aid in determining that the impact point was within MASH 2016 (Figure 2-1 Note 2) tolerance of ± 30 cm (~12 in.).

Figure 5-1 Test Article Impact Area Pre-Test 4-10

Figure 5-2 Test Article Downstream of Impact Area Pre-Test 4-10

5.2. Test Description

The crash was performed in the afternoon of May 26, 2021. According to the Sacramento Executive Airport Weather Station, weather conditions were reported as clear skies and an ambient temperature of 82 deg F, with wind speeds of approximately 9 mph from the northwest (NW). The vehicle was traveling approximately north-northeast (NNE).

The 1100C vehicle impacted the barrier at 99.6 kph (61.9 mph) and 25.2°. The vehicle impact point on the Type 86H bridge rail was approximately 1.1 m (3.6 ft) upstream of the upstream face of post 4, which was about 15 mm (0.6 in.) upstream of the Critical Impact Point (CIP). The vehicle was contained and smoothly redirected at an exit speed and angle of 77.5 kph (48.1 mph) and 8.2°, respectively. After exiting the bridge rail, the remote brakes were applied, and the car came to a stop about 63.6 m (208.7 ft) downstream of and 33 m (108.2 ft) on the traffic side of the barrier. Still photos of the vehicle during the test are shown in Figure 5-3 through Figure 5-6. A detailed description of the sequential events is shown in the table below.

Time (s)	EVENT
0.000	Initial contact of the vehicle front bumper with the barrier curb
0.006	Initial flash of impact bulb
0.008	Initial contact of front tire with barrier curb
0.016	Vehicle hood begins to contact the bottom corner of the barrier beam
0.026	Vehicle passenger side headlight impacts barrier at the front face of the baluster post upstream of post 4.
0.036	Top of front passenger window begins to deform outward.
~0.046	Bottom right corner of windshield begins to crack. Bumper and grill begin to separate from vehicle. Vehicle begins to redirect (yaw left)
~0.058	Passenger side window begins to shatter prior to surrogate occupant's head crossing the side window's vertical plane.
0.078	Left rear tire lift off the ground (approximate) and surrogate head protrudes through vertical window plane.
0.126	Surrogate occupant's head is at greatest protrusion and does not impact the top beam.
0.166	Vehicle is roughly parallel to rail face
0.186	Rear right tire contacts barrier curb at expansion joint and rear taillight begins to be impacted before shattering.
0.322	Approximate time vehicle loses contact with barrier (obscured by dust and debris)
0.380	Left rear tire returns to ground (approximate)
1.074	Brakes are applied (obtained from SLICE Unit Event Channel Data)

Table 5-1 Test 110MASH4C21-01 Test Sequence of Events

Figure 5-3 Test 4-10 Downstream Camera Impact View

Figure 5-4 Test 4-10 Overhead Camera Impact View

Figure 5-5 Test 4-10 Pan Camera Impact View

Figure 5-6 Test 4-10 Upstream Camera Impact View

5.3. Barrier Damage

There was no significant damage to the barrier. There were minor surface scrapes on the top edge of the curb face approximately 2.0 m (6.6 ft) in length. The traffic side face of the concrete curb had marks from the painted tires and superficial marks from the bumper and side of the test vehicle. The vertical face of the concrete beam had horizontal marks from the side-view mirror rubbing up against it. Barrier damage is shown in Figure 5-7 through Figure 5-9. The orange contact marks are from the front right tire. The green contact marks are from the rear right tire. Dynamic deflection of the bridge rail was very small and unmeasurable from the overhead video. There was no permanent deflection of the Type 86H. Strain gage and string potentiometer data were collected during the test and are available upon request but are not within the Lab's Scope of Accreditation.

Figure 5-7 Test 4-10 Vehicle Marks and Minor Scrapes on Type 86H at Critical Impact Point

Figure 5-8 Test 4-10 Overview of Barrier Post-Test

Figure 5-9 Test 4-10 Tire Marks Post-Test (view from downstream)

5.4. Vehicle Damage

The 1100C front right corner and the passenger's side of the vehicle sustained damage during the impact. For the passenger side of the vehicle, mainly the right front and rear quarter panels were damaged, with a large indentation caused by the beam of the bridge rail. The front passenger wheel was pushed back and tilted away from the vehicle, remaining attached to the strut and steering arm. The front bumper cover, grill, and both headlights were completely detached from the vehicle. The windshield was spider-cracked across its surface, and it buckled more than 76 mm (3 in.) outward on the passenger side, lower section. This occurrence, in itself, is not considered a failure considering that the deformation was outward and away from the occupant compartment. The passenger side window shattered due to the deformation and buckling of the A-Pillar and passenger door which occurred when the vehicle struck the barrier. All the other windows remained undamaged. The front passenger wheel was damaged and tire was deflated, all remaining tires remained inflated. The airbags did not deploy because the vehicle was towed and there was no power to the airbag system. The maximum amount of passenger compartment deformation measured by known points was 168 mm (6.6 in.), which occurred on the passenger-side in the toe pan/wheel well area of the floorboard. All interior deformation measurements were below the maximum MASH 2016 limits and are shown in Appendix A: Table 10-11 through Table 10-13. As previously mentioned, the windshield deformation exceeded the MASH limit of 76 mm (3 in.) however it is not considered a failure since it bowed away from the occupant compartment. See Figure 5-10 to Figure 5-23 for pictures of the vehicle damage described above. See Appendix D for undercarriage photos showing no damage.

Figure 5-10 Test 4-10 Test Vehicle Damage (front/hood and windshield)

Figure 5-11 Test Vehicle Damage (front right)

Figure 5-12 Test 4-10 Test Vehicle Damage (right)

Figure 5-13 Test 4-10 Test Vehicle Damage (front right)

Figure 5-14 Test 4-10 Test Vehicle Damage (front left)

Figure 5-15 Test 4-10 Test Vehicle Damage (right rear)

Figure 5-16 Test 4-10 Test Vehicle Damage (right rear)

Figure 5-17 Test 4-10 Test Vehicle Damage Windshield / Exterior

Figure 5-18 Test 4-10 Test Vehicle Damage Windshield / Exterior Deformation Away from Occupant

Figure 5-19 Test 4-10 Test Vehicle Damage Windshield / Interior View

Figure 5-20 Test 4-10 Floorboard Deformation

Figure 5-21 Test 4-10 Floorboard Deformation

Figure 5-22 Test 4-10 Floorboard Deformation

Figure 5-23 Test 4-10 Floorboard Deformation

Table 5-2 Test 110MASH4C21-01 Test Data Summary Sheet

Test Agency	California, Department of Transportation
Test Number	110MASH4C21-01
Test Designation	MASH 2016 Test 4-10
Date	5/26/2021
Test Article	CA Type 86H Bridge Rail
Total Length	100 ft (30.5 m)
Key Elements – Barr	ier

- Description CA Type 86H Bridge Rail
- Base Width _____ 24 in. (610 mm)
- Height _____42 in. (1067 mm)

Test Vehicle

- Type/Designation 1100C
 - Make and Model 2015 Nissan Versa
 - Curb_____2445 lb (1109 kg)
 - Test Inertial 2441 lb (1107 kg)
- Gross Static 2617 lb (1187 kg)

Impact Conditions

- Speed _____61.9 mph (99.6 kph)
- Angle_____25.2°
- Location/Orientation_____3.6 ft (1.1 m) upstream
 of upstream face of post
- Impact Severity_____56.6 kip-ft (76.8 kJ)
 Exit Conditions
 - Speed _____48.1 mph (77.5 kph)
 Angle _____8.2 °

Exit Box Criterion_____Pass Post-impact Trajectory

- Vehicle Stability _____Satisfactory
- Stopping Distance (from point of impact) Approx. 209 ft downstream and 108 ft laterally in front

*Measured from String Potentiometers and is not within the Lab's scope of accreditation.

Test Article Damage_____Minor scrapes Test Article Deflections

- Permanent Set _____0.0 in. (0 mm) *
- Dynamic 0.1 in. (2 mm) *
- Working Width 24.0 in. (610 mm)

Vehicle Damage

- VDS^{ref}_____1-RFQ-5, 1-RD-3
- 2-RP-3, 4-RBQ-3
- CDC^{ref}_____01FZHW8, <u>03</u>FDHS5
- Maximum Deformation _____ Approx. 6.6 in.(168 mm) at Wheel/foot well and toe pan areas.

Moderate to Heavy

- Vehicle Snagging None
- Vehicle Pocketing None

Transducer Data

Evaluation Critoria	Transducer	Transducer	MASH	
Evaluation Criteria	SLICE-656	SLICE-659	Limit	
OIV Longitudinal	22.3	22.6	±40	
Ft/s (m/s)	(6.8)	(6.9)	(12.2)	
OIV Lateral	30.8	32.8	±40	
Ft/s (m/s)	(9.4)	(10.0)	(12.2)	
ORA Longitudinal. g's	-6.0	-6.0	±20.49	
ORA Lateral. g's	-12.1	-11.8	±20.49	
Max. Roll Angle	0 5	0.5	+75	
Deg.	0.5	9.5	115	
Max. Pitch Angle	6 1	ΕĴ	+75	
Deg.	-0.1	-5.2	1/5	
Max. Yaw Angle	47.4	19.6	NI/A	
Deg.	-47.4	-40.0	N/A	
THIV = ft/c (m/c)	38.1 39.4			
11110 – 10/5 (111/5)	(11.6)	(12.0)	N/A	
PHD – g's	13.4	13.1	N/A	
ASI	2.71	2.83	N/A	

5.5. Discussion of Test Results

5.5.1. General Evaluation Methods

MASH 2016 recommends that crash test performance be assessed according to three evaluation factors: (1) structural adequacy, (2) occupant risk, and (3) post-impact vehicular response.

The structural adequacy and occupant risk associated with the Type 86H Bridge Rail were evaluated using evaluation criteria found in Tables 2.2A (Recommended Test Matrices for Longitudinal Barriers), 5.1A (Safety Evaluation Guidelines for Structural Adequacy), and 5.1B (Safety Evaluation Guidelines for Occupant Risk) of MASH 2016. The post-impact vehicular response was evaluated using Section 5.2.3 of MASH 2016.

5.5.2. Structural Adequacy

The structural adequacy of the Type 86H Bridge Rail was acceptable during Test 4-10.

Refer to Table 5-3 for the assessment summary of the safety evaluation criteria for the Type 86H Bridge Rail.

5.5.3. Occupant Risk

The occupant risk was acceptable. As mentioned previously, all interior deformation measurements were below the maximum MASH 2016 limits. All interior deformation measurements are shown in Appendix A: Table 10-11 through Table 10-13.

There was no penetration of the occupant compartment by the Type 86H or potential for it. The occupant compartment was not compromised. The dummy's head protruded slightly beyond the plane of the passenger side window, but it did not show potential for striking any portion of the barrier. Occupant impact velocities and ridedown accelerations were below MASH 2016 limits. The roll, and pitch of the vehicle were within acceptable limits, the yaw value does not have a MASH 2016 criterion limit.

Refer to Table 5-3 for the 1100C test assessment summary of the safety evaluation criteria for the Type 86H Bridge Rail.

5.5.4. Vehicle Trajectory

The vehicle trajectory was acceptable. The exit trajectory was within the exit box.

Figure 5-24 Exit Box for Longitudinal Barriers (AASHTO, 2016)

Refer to Table 5-2 and Table 5-3 for the 1100C vehicle trajectory diagram and assessment summary of the safety evaluation criteria for the Type 86H Bridge Rail.

Eval	uation Criteria			Test Results	Assessment
Stru	ctural Adequacy				
A. Test article should contain and redirect the vehicle; the			The vehicle was contained and	B.4.66	
vehi	cle should not pene	etrate, underride, c	or override the	redirected smoothly.	PASS
insta	allation, although c	ontrolled lateral de	flection of the test		
artic	cle is acceptable.				
Occ	upant Risk				
D. [Detached elements,	fragments, or othe	er debris from the	The barrier did not detach any	
test	article should not p	penetrate or show	potential for	elements, fragments, and/or	
pen	etrating the occupa	nt compartment, c	or personnel in a	other debris.	PASS
wor	k zone.			Deformations of, or intrusions	
Defo	ormations of, or int	rusions into, the oc	cupant	into, the occupant compartment	
com	partment should n	ot exceed limits set	t forth in Section	were within MASH 2016 limits.	
5.2.2	2 and Appendix E.				
Occ	upant Risk			The uphiele remained upright	
F. T	he vehicle should r	emain upright durii	ng and after	during and after the collision	PASS
colli	sion. The maximun	n roll and pitch ang	les are not to		
exce	ed 75 degrees.				
Occi	upant Risk				
H. C	ion AF 2 2 for colou	elocities (UIV) (see a	Appendix A,	DAS Long. ft/sec (m/s)	
follo	wing limits:	nation procedure)	should satisfy the	SLICE 656: 22.3 (6.8)	
TONC	wing minus.			SLICE 659: 22.6 (6.9)	PASS
	Occupant Impact	Velocity Limits, ft/s	s (m/s)	DAS Lat. ft/sec (m/s)	
	Component	Preferred	Maximum	SLICE 656: 30.8 (9.4)	
	Longitudinal	30 ft/s	40 ft/s	SLICE 659: 32.8 (10.0)	
	and Lateral	(9.1 m/s)	(12.2 m/s)		
Occ	upant Risk				
I. Tł	ne occupant ridedo	wn acceleration (se	ee Appendix A,		
Sect	ion A5.3 for calcula	tion procedure) sh	ould satisfy the	DAS Long. G Lat. G	
following limits:			SUCE 656: 6.0 12.1	PASS	
	Occupant Ridedov	wn Acceleration Lir	nits (G)	SLICE 650: -6.0 -12.1	
	Component	Preferred	Maximum		
	Longitudinal	15.0.6	20.49.6		
	and Lateral	15.0 0	20.49 0		
Veh	icle Trajectory				
It is preferable that the vehicle be smoothly redirected, and					
this is typically indicated when the vehicle leaves the barrier					
within the "exit box". The concept of the exit box is defined by the initial traffic face of the barrier and a line parallel to			A = 1E 1 ft (A E7 m)		
by the initial traffic face of the barrier at a distance A plus the			A – 13.1 It (4.37 III)	PASS	
width of the vehicle plus 16 percent of the length of the			B = 32.8 ft (10 m)		
vehicle, starting at the final intersection (break) of the wheel					
track with the initial traffic face of the barrier for a distance					
of B. All wheel tracks of the vehicle should not cross the					
parallel line within the distance B.					
parallel line within the distance B.					

Table 5-3 110MASH4C21-01 Assessment Summary	for Test 4-10

6. Test 110MASH4P21-02 (4-11)

6.1. Impact Description and Results

The Critical Impact Point selected was 1.3 meters (4.3 ft) from the centerline of post 6, as recommended in Table 2-7 of MASH 2016 (AASHTO, 2016). The impact angle of 25° was set with a Total Station when laying out the guide rail. The intended impact speed was 100 kph (62 mph).

Figure 6-1 Test Article Impact Area Pre-Test 4-11

Figure 6-2 Test Article Downstream of Impact Area Pre-Test 4-11

6.2. Test Description

The crash was performed the afternoon of August 25, 2021. According to the Sacramento Executive Airport Weather Station, weather conditions were as follows: clear, temperature approximately 81 deg F, and wind of approximately 7 mph from the south (S). The vehicle was traveling approximately north-northeast (NNE).

The 2270P vehicle impacted the barrier at 99.7 kph (62 mph) and angle of 25.3°. The vehicle impact point on the Type 86H bridge rail was approximately 1.3 meters (4.3 ft) upstream from the centerline of post 6, which was 0.01 m (0.5 in.) upstream of the Critical Impact Point. The vehicle was contained and smoothly redirected with an exit speed and angle of 80.4 kph (50 mph) and 6.7°, respectively. After the vehicle exited the bridge rail, the remote brakes were applied, and the vehicle came to a stop about 79.6 m (261 ft) downstream and 2.38 m (7.82 ft) on the field side of the barrier. Still photos of the vehicle during the test are shown in Figure 6-3 through Figure 6-6. A detailed description of the sequential events is shown in the table below.

Time (s)	EVENT
0.000	Initial contact of the vehicle front bumper with the curb section of the barrier
0.002	Initial flash of impact bulb
0.004	Right front tire contacts barrier curb and right headlight begins to contact the barrier rail beam
0.020	Right front tire loses contact with ground and begins to climb up on the curb
0.036	Front edge of passenger door comes into contact with barrier beam
0.042	Top of front passenger door window begins to deform outward
0.046	Right front corner of hood begins to deform after contacting bicycle rail at Post 6 and vehicle begins to redirect (yaw left) and passenger airbags begins to deploy
0.058	Windshield begins form a diagonal crack on the passenger side.
0.082	Left front tire lift off the ground (approximate)
0.132	Left rear tire lift off the ground (approximate)
0.182	Vehicle is roughly parallel to rail face
0.188	Rear tail light first comes into contact with the concrete barrier beam
0.212	Rear right tire contacts barrier curb (approximate)
0.382	Vehicle loses contact with the test article (approximate)
0.548	Left front tire returns to the ground (approximate)
0.662	Left rear tire returns to the ground (approximate)
1.157	Brakes are applied (obtained from SLICE Unit Event Channel Data)

Table 6-1 Test 110MASH4P21-02 Test Sequence of Events

Figure 6-3 Test 4-11 Downstream Camera Impact View

Figure 6-4 Test 4-11 Overhead Camera Impact View

Figure 6-5 Test 4-11 Pan Camera Impact View

Figure 6-6 Test 4-11 Upstream Camera Impact View

6.3. Barrier Damage

There was no significant damage to the barrier. There were moderate surface concrete spalls on the top edge of the curb face approximately 1.52 m (5 ft) in length. These spalls were likely caused by the passenger front wheel rim. There was no spalling on the beam. The face of the beam and curb had marks from the painted tires and superficial marks from the bumper and side of the test vehicle. Barrier damage is shown in Figure 6-7 through Figure 6-9. The red and blue contact marks on the beam are from the region around the passenger side headlight. The orange mark is from the front passenger side tire and the green contact marks are from the rear right tire. Dynamic deflection of the bridge rail was estimated at 7 mm (0.26 in.) using string potentiometers. The simulated bridge deck rocked downward slightly during the initial impact of the vehicle and with the tail slap. There was no permanent deflection. The bicycle rail was slightly contacted by the front corner of the hood at Post 6, but there was little snagging and the rail appeared undamaged. Strain gage and string potentiometer data were collected during the test and are available upon request but are not within the Lab's Scope of Accreditation.

Figure 6-7 Test 4-11 Vehicle Marks with Minor Concrete Spalling on Type 86H at Critical Impact Point

Figure 6-8 Test 4-11 Vehicle Marks with Minor Concrete Spalling on Type 86H near Post 6

Figure 6-9 Test 4-11 Type 86H Overview of Barrier Post-Test with Tire Marks (view looking downstream)

6.4. Vehicle Damage

The 2270P front right corner and right side of the test vehicle sustained most of the damage from the impact. The mid-height portion of the front passenger tire and wheel impacted the top corner of the concrete curb, causing two of the lug nuts to be sheared off and a tilting of the tire into the space between the top beam and the curb. The front bumper was partially damaged, mainly the front right portion during initial impact with the barrier. The right headlight was completely shattered and detached from the vehicle as a result of the impact with the 254 mm (10 in.)-tall vertical face of the barrier beam. Most of the length of the passenger side of the vehicle including the right front fender, right doors, and the right side of the bed contacted the barrier beam. The front right corner of the hood had a small tear caused by contact with the bicycle rail at Post 6. The tearing was minor and did not affect the deformation results or the overall trajectory of the vehicle. The doors on the test vehicle all remained closed and latched during impact except for the window frame of the front passenger door which deformed outward, creating a gap between the window portion of the door and the body of the vehicle. The windshield was spider-cracked across its surface on the passenger side without any inward or outward deformation. The other window glass areas of the vehicle remained undamaged. The front grill and left headlight were also detached during the impact. The maximum amount of passenger compartment deformation measured by known points was 125 mm (4.9 in.), which occurred at the floorboard and wheel well of the passenger side. All interior deformations were below the maximum MASH 2016 limits and are shown in Appendix A: Table 10-22 through Table 10-26. See Figure 6-10 to Figure 6-20 for pictures of the vehicle damage described above. See Appendix D for undercarriage photos showing no damage.

Figure 6-10 Test 4-11 Test Vehicle Damage (front, hood and windshield)

Figure 6-11 Test 4-11 Test Vehicle Damage (front right)

Figure 6-12 Test 4-11 Test Vehicle Damage (right)

Figure 6-13 Test 4-11 Test Vehicle Damage (front right)

Figure 6-14 Test 4-11 Test Vehicle Hood Minor Tearing Damage (front right)

Figure 6-15 Test 4-11 Test Vehicle Damage (right rear)

Figure 6-16 Test 4-11 Test Vehicle Damage (left front)

Figure 6-17 Test 4-11 Test Vehicle Damage Windshield/Exterior

Figure 6-18 Test 4-11 Test Vehicle Damage front right with hood opened

Figure 6-19 Test 4-11 Test Vehicle Damage Windshield / Interior View

Figure 6-20 Test 4-11 Test Vehicle Floorboard Deformation

Table 6-2 Test 110MASH4P21-02 Test Data Summary Sheet

6.5. Discussion of Test Results

6.5.1.General Evaluation Methods

MASH 2016 recommends that crash test performance be assessed according to three evaluation factors: (1) structural adequacy, (2) occupant risk, and (3) post-impact vehicular response.

The structural adequacy and occupant risk associated with the Type 86H Bridge Rail were evaluated using evaluation criteria found in Tables 2.2A (Recommended Test Matrices for Longitudinal Barriers), 5.1A (Safety Evaluation Guidelines for Structural Adequacy), and 5.1B (Safety Evaluation Guidelines for Occupant Risk) of MASH 2016. The post-impact vehicular response was evaluated using Section 5.2.3 of MASH 2016.

6.5.2.Structural Adequacy

The structural adequacy of the Type 86H Bridge Rail was acceptable during Test 4-11.

Refer to Table 6-3 for the assessment summary of the safety evaluation criteria for the Type 86H Bridge Rail.

6.5.3.Occupant Risk

The occupant risk was acceptable. As mentioned previously, all interior deformation measurements were below the maximum MASH 2016 limits. Interior deformation measurements are shown in Appendix A: Table 10-11 through Table 10-13.

There was no penetration of the occupant compartment by the Type 86H or potential for it. The occupant compartment was not compromised. Occupant impact velocities and ridedown accelerations were below MASH 2016 limits. The roll and pitch of the vehicle were within acceptable limits, the yaw value does not have a MASH 2016 criterion limit.

Refer to Table 6-3 for the 2270P assessment summary of the safety evaluation criteria for the Type 86H Bridge Rail.

6.5.4.Vehicle Trajectory

The vehicle trajectory was acceptable. The exit trajectory was within the exit box. The roll, pitch, and yaw of the vehicle were below the maximum limits.

Figure 6-21 Exit Box for Longitudinal Barriers (AASHTO, 2016)

Refer to Table 6-2 and Table 6-3Table 6-3 for the 2270P vehicle trajectory diagram and assessment summary of the safety evaluation criteria for the Type 86H bridge rail.

Evaluation Criteria			Test Results	Assessment
 Structural Adequacy A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable. 			The vehicle was contained and redirected smoothly.	PASS
Occupant Risk D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E.			The barrier did not detach any elements, fragments, and/or other debris	PASS
Occupant Risk F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			The vehicle remained upright during and after the collision.	PASS
Occupant RiskH. Occupant Impact Velocities (OIV) (see Appendix A, Section A5.3 for calculation procedure) should satisfy the following limits:Occupant Impact Velocity Limits, ft/s (m/s)Occupant Impact Velocity Limits, ft/s (m/s)ComponentPreferredMaximumLongitudinaland Lateral(9.1 m/s)(12.2 m/s)		DAS Long. ft/sec (m/s) SLICE 656: 23.3 (7.1) SLICE 659: 23.3 (7.1) DAS Lat. ft/sec (m/s) SLICE 656: 29.5 (9.0) SLICE 659: 29.5 (9.0)	PASS	
Occupant Risk I. The occupant ridedown acceleration (see Appendix A, Section A5.3 for calculation procedure) should satisfy the following limits: Occupant Ridedown Acceleration Limits (G) Occupant Ridedown Acceleration Limits (G) Component Preferred Longitudinal 15.0 G 20.49 G			DAS Long. G Lat. G SLICE 656: -4.6 -8.3 SLICE 659: -4.6 -8.6	PASS
Vehicle Trajectory It is preferable that the vehicle be smoothly redirected, and this is typically indicated when the vehicle leaves the barrier within the "exit box". The concept of the exit box is defined by the initial traffic face of the barrier and a line parallel to the initial traffic face of the barrier, at a distance A plus the width of the vehicle plus 16 percent of the length of the vehicle, starting at the final intersection (break) of the wheel track with the initial traffic face of the vehicle should not cross the parallel line within the distance B.			A = 16.7 ft (5.1 m) B = 32.8 ft (10 m)	PASS

Table 6-3 110MASH4P21-02 Assessment Summary for Test 4-11

- 7. Test 110MASH4S21-03 (4-12)
 - 7.1. Impact Description and Results

The Critical Impact Point selected was 1.5 meters (4.9 ft) from the centerline of post 4, as recommended in Table 2-7 of MASH 2016 (AASHTO, 2016). The impact angle of 15° was set with a Total Station when laying out the guide rail. The intended impact speed was 90 kph (56 mph).

Figure 7-1 Test Article Impact Area Pre-Test 4-12

Figure 7-2 Test Article Downstream of Impact Area Pre-Test 4-12

7.2. Test Description

The crash was performed in the afternoon of December 8, 2021. According to the Sacramento Executive Airport Weather Station, weather conditions were as follows: misty, temperature approximately 52 deg F, and wind of approximately 5 mph from the south-south-east (SSE). The vehicle was traveling approximately north-northeast (NNE).

The 10000S vehicle impacted the barrier at a speed of 88.1 kph (54.7 mph) and angle of 15.0°. The vehicle impacted the Type 86H at approximately 1.36 meters (4.46 ft) upstream from the centerline of post 4, which was approximately 140 mm (5.5 in.) downstream of the Critical Impact Point. The vehicle was contained and smoothly redirected at an exit speed and angle of 76 kph (47 mph) and 6.6°, respectively. During the impact, the cargo box leaned over the bridge rail for a Working Width of about 1200 mm (48 in.) at a height of approximately 3.4 m (11 ft). The working width measurement is not within the Scope of Accreditation. After the vehicle exited the bridge rail, the remote brakes were applied, and the vehicle rolled onto the driver's side and came to a stop. The final resting position of the vehicle was approximately 80.0 m (263 ft) downstream of the impact point and 11.1 m (36.4 ft) toward the non-traffic side of the barrier. Still photos of the vehicle during the test are shown in Figure 7-3 through Figure 7-6. A detailed description of the sequential events is shown in the table below.

Time (s)	EVENT
0.000	Initial contact of the front right panel with the barrier beam and tire with the curb
0.002	initial flash of impact bulb
0.016	Right front tire begins to lift just after it contacts the curb
0.024	Front axle begins to shift to the left as it rotates while climbing the curb
0.052	Front right wheel well slightly rubs up against bicycle rail
0.106	Left front tire begins to lift with reference to the ground surface
0.112	Cargo Box appears to begin to redirect (yaw left) and front right corner of cargo box overrides and contacts the top of the barrier beam
0.230	Left rear tires begin to lift with reference to the ground surface
0.270	Rear right tire contacts barrier curb
0.398	Front right tire returns to the ground surface (approximate)
0.428	Vehicle is roughly parallel to rail face
0.700	Front left tire returns to the ground surface
0.790	Maximum leaning of the cargo box over the barrier rail occurs before it rotates back
0.828	Vehicle loses contact with the test article (approximate)
1.046	Rear left tire returns to the ground surface (approximate covered by debris)
2.237	Brakes are applied (obtained from SLICE Unit Event Channel Data)

Table 7-1 Test 110MASH4S21-03 Test Sequence of Events

Figure 7-3 Test 4-12 Downstream Camera Impact View

Figure 7-4 Test 4-12 Overhead Camera Impact View

Figure 7-5 Test 4-12 Pan Camera Impact View

Figure 7-6 Test 4-12 Upstream Camera Impact View

7.3. Barrier Damage

There was minor to moderate damage to the barrier face. The concrete curb was scuffed with moderate concrete spalling from the impact point to just downstream of post 6. The traffic side of the beam was scuffed with minor concrete spalling from a point just upstream of the critical impact to the expansion joint between posts 4 and 5. The spalling primarily occurred on the top corner of the curb and top corner of the beam with some minor spalling on the bottom corner of the beam. The deeper spalling of the curb was caused by the front right wheel lugs and rim during the initial impact, measured approximately 38 mm by 0.4 m (1.5 in. by 1.3 ft) maximum depth by length of spall. Additional marks and gouges may have been caused by the steel passenger steps, rear wheel and rear bumper frame. The spalling that occurred on top of the beam appears to have been caused by the bottom of the cargo box as it scraped across the surface of the beam. There were no spalls on the vertical edges of post 5 indicating that there was no snag at the post downstream of the expansion joint. No rebar was exposed and there was no evidence of concrete structural cracking. The beam-mounted bicycle railing was undamaged except for the grout pad mentioned below. Overall, the bicycle rail performed well. The bicycle rail was slightly contacted by the top of the wheel well of the test vehicle near post 6 leaving minor white and black paint marks. A small portion of the grout underneath the bicycle rail post base plates at post 6 was spalled. The minor spalling was most likely due to the impact of the lower side and rear corner of the cargo box. See Figure 7-7 through Figure 7-12 for photos of barrier damage. The orange contact marks are from the front right tire. The green contact marks are from the rear right tire. String potentiometer and strain gage data were collected at 10,000 sample/sec during the test. Strain gage data do not fall under the Scope of Accreditation but are available upon request. The dynamic and permanent deflection data were collected from string potentiometers and measured a maximum of 18 mm (0.7 in.) and less than 3 mm (0.1 in.), respectively. The edge of deck vertical motion was also measured with string potentiometers and they were very similar to the lateral bridge rail deflections. Measurements made with String Potentiometers are not within the Lab's Scope of Accreditation.

Figure 7-7 Test 4-12 Vehicle Marks and Concrete Spalling on Type 86H at Critical Impact Point

Figure 7-8 Test 4-12 Vehicle Marks and Concrete Spalling on Type 86H at expansion joint

Figure 7-9 Test 4-12 Vehicle Marks and Concrete Spalling on Type 86H Looking Downstream

Figure 7-10 Test 4-12 Moderate Concrete Curb Spalling on Type 86H

Figure 7-11 Test 4-12 Beam and Bicycle Rail Mortar Pad Spalling at the expansion joint on Type 86H

Figure 7-12 Test 4-12 Minor Bicycle Rail Mortar Pad Spalling at Post 6 Type 86H

7.4. Vehicle Damage

The 10000S front right corner and passenger side of the vehicle sustained most of the damage from the initial impact with the concrete post and beam system. During the impact the vehicle remained upright as it traveled downstream within the length of the bridge rail, exiting the bridge rail within the exit box criteria. Upon impact with the concrete curb and beam, the right front tire was pushed up and into the engine area, causing the U-bolt connections of the axle to fail, ultimately resulting in a complete detachment of the front axle from the truck. The front right corner of the cab initially rolled towards the barrier along with the box. However, while exiting the rail, the cab and box rolled away from the rail with enough momentum to cause the 10000S to roll onto the driver's side and slide to a stop. The detached axle continued to roll coming to a stop approximately 12 m (39 ft) downstream from the front of the van body. The van body truck came to a stop on its side, downstream from the end of the barrier rail, approximately 80.0 m (262.6 ft) downstream of the critical impact point and 11.1 m (36.4 ft) behind the traffic-face of the rail. The fact that the vehicle rolled onto its side is not a failure in the MASH 2016 criteria for this test. The passenger side of the front bumper was deformed, the passenger side headlight was damaged, and the right front fender was detached. The rear suspension remained attached as did the rear wheels and tires. All tires remained inflated. The steps on the passenger side were partially deformed and the top step was partially detached and rotated due to contact with the concrete rail. The driver's side door, A-pillar, fender, and cab roof were deformed from the impact with the ground after the vehicle left the Type 86H. All the window glass was undamaged during interaction with the test article. The cracking of the windshield occurred after the cab impacted the ground. Nearly all the damage to the cargo box also occurred when the vehicle rolled onto its side. The shear plates and bolts that were installed on the frame remained intact (see Figure 7-21 thru Figure 7-24). The bed shifted a minor amount. The threaded rods used to secure the ballast were undamaged and kept the motion of the ballast to a minimum. The maximum amount of passenger compartment deformation measured by known points was 100 mm (4 in.), which occurred at the roof. This deformation was most likely due to the impact of the driver side of test vehicle with the ground after rolling on its side after the vehicle separated from the rail. The roof deformation over the passenger side was away from the occupant compartment and therefore is acceptable. The largest deformation resulting from the interaction between the test vehicle and the barrier rail occurred at the A and B Pillars. The maximum deformation in this area was 73 mm (2.9 in.). This value is below the MASH 2016 limit of 127 mm (5 in.). The overall exterior vehicle damage is described as Moderate to Heavy. All interior deformation measurements are shown in Appendix A: Table 10-31 through Table 10-35. See Figure 7-13 to Figure 7-26 for pictures of the vehicle damage described above.

Figure 7-13 Test 4-12 Vehicle Damage (front, hood and windshield)

Figure 7-14 Test 4-11 Test Vehicle Damage (front right)

Figure 7-15 MASH 4-12 Test Vehicle Front Undercarriage and Damaged Suspension After Impact

Figure 7-16 MASH 4-12 Test Vehicle Undamaged Undercarriage After Impact (rear)

Figure 7-17 Test 4-12 Test Vehicle After Impact (Rear)

Figure 7-18 Test 4-12 Test Vehicle Ballast After Impact

Figure 7-19 Test 4-12 Test Vehicle After Impact (Overall View)

Figure 7-20 Test 4-12 Test Vehicle After Impact (front right)

Figure 7-21 Test 4-12 Front Left Shear Plate After Impact

Figure 7-22 Test 4-12 Front Right Shear Plate After Impact

Figure 7-23 Test 4-12 Rear Left Shear Plate After Impact

Figure 7-24 Test 4-12 Rear Right Shear Plate After Impact

Figure 7-25 Test 4-12 Detached Front Axle (final position)

Figure 7-26 Test 4-12 Test Vehicle Passenger-Side Floorboard Deformation

Table 7-2 Test 110MASH4S21-03 Test Data Summary Sheet

downstream and 36 ft laterally behind

*Measured from String Potentiometers and is not within the Lab's scope of accreditation.

7.5. Discussion of Test Results

7.5.1.General Evaluation Methods

MASH 2016 recommends that crash test performance be assessed according to three evaluation factors: (1) structural adequacy, (2) occupant risk, and (3) post-impact vehicular response.

The structural adequacy and occupant risk associated with the Type 86H concrete bridge rail were evaluated using evaluation criteria found in Tables 2.2A (Recommended Test Matrices for longitudinal barriers), 5.1A (Safety Evaluation Guidelines for Structural Adequacy), and 5.1B (Safety Evaluation Guidelines for Occupant Risk) of MASH 2016. The post-impact vehicular response was evaluated using Section 5.2.3 of MASH 2016.

7.5.2.Structural Adequacy

The structural adequacy of the Type 86H concrete bridge rail was acceptable in Test 4-12.

Refer to Table 7-3 for the assessment summary of the safety evaluation criteria for Test 4-12 of the Type 86H concrete bridge rail.

7.5.3.Occupant Risk

The occupant risk was acceptable. As previously mentioned, the maximum amount of passenger compartment deformation measured by known points was 100 mm (4 in.), which occurred at the roof. This deformation was due to the impact of the test vehicle with the ground after the vehicle separated from the rail. The roof deformation over the passenger side was away from the occupant compartment and therefore is acceptable. The largest deformation resulting from the interaction between the test vehicle and the barrier rail occurred at the A and B Pillars. The maximum deformation in this area was 73 mm (2.9 in.). All interior deformations were below the maximum MASH 2016 limits, except as noted in Section 7.4 above. All interior deformation measurements are shown in Appendix A: Table 10-31 through Figure 10-35. There was no penetration of the occupant compartment by the Type 86H or potential for it. The occupant compartment was not compromised. The vehicle rolled onto its side after it lost contact with the bridge rail, and although this outcome is not the preferred result for this test, the vehicle remaining upright is not a requirement of MASH 2016 Test 4-12.

Refer to Table 7-3 for the assessment summary of the safety evaluation criteria for Test 4-12 of the Type 86H Concrete Bridge Rail.

7.5.4.Vehicle Trajectory

The vehicle trajectory was acceptable. The exit trajectory was within the exit box.

Figure 7-27 Exit Box for Longitudinal Barriers (AASHTO, 2016)

Refer to Table 7-2 and Table 7-3 for the 10000S vehicle trajectory diagram and assessment summary of the safety evaluation criteria for Test 4-12 of the 86H Concrete Bridge Rail.

Evaluation Criteria	Test Results	Assessment
Structural Adequacy A. Test article should contain and redirect the vehicle; the vehicle should not penetrate, underride, or override the installation, although controlled lateral deflection of the test article is acceptable.	The vehicle was contained and redirected smoothly.	PASS
Occupant Risk D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E.	The barrier did not detach any elements, fragments, and/or other debris	PASS
Occupant Risk G. It is preferable, although not essential, that the vehicle remain upright during and after the collision.	The vehicle rolled onto the driver's side and skidded until it came to rest.	PASS
Vehicle Trajectory It is preferable that the vehicle be smoothly redirected, and this is typically indicated when the vehicle leaves the barrier within the "exit box". The concept of the exit box is defined by the initial traffic face of the barrier and a line parallel to the initial traffic face of the barrier, at a distance A plus the width of the vehicle plus 16 percent of the length of the vehicle, starting at the final intersection (break) of the wheel track with the initial traffic face of the vehicle should not cross the parallel line within the distance B.	A = 27.4 ft (8.4 m) B = 65.6 ft (20 m)	PASS

Table 7-3 110MASH4S19-02 Assessment Summary for Test 4-12

8. Conclusions and Recommendations

Based on the physical crash testing involved in this project, the following conclusions can be drawn:

- 1. The Type 86H concrete Bridge Rail can successfully contain and redirect an 1100-kg (2420 lb) small car impacting at 100 kph (62 mph) and 25°.
- 2. The Type 86H concrete Bridge Rail can successfully contain and redirect a 2270-kg (5000 lb) pickup car impacting at 100 kph (62 mph) and 25°.
- 3. The Type 86H concrete Bridge Rail can successfully contain and redirect a 10000-kg (22000 lb) single-unit truck impacting at 90 kph (56 mph) and 15°.

As tested, The Type 86H bridge rail meets the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware 2016* (MASH 2016) criteria for Test 4-10, Test 4-11, and Test 4-12 for longitudinal barriers. Based on the successful completion of these tests the Type 86H concrete bridge rail meets the MASH 2016 safety criteria for a Test Level 4 (TL-4) longitudinal barrier.

The Type 86H concrete bridge rail demonstrated it has significant remaining capacity to contain and redirect the 10000S test vehicle, which was the last of the three tests to be conducted on the Type 86H.

Implementation will be carried out by Caltrans' Division of Structure Policy and Innovation. They will be responsible for the preparation of Standard Plans (if required) and specifications for the California Concrete Bridge Rail Type 86H, with technical support from the Division of Research, Innovation and System Information.

- 9. References
 - 1. Manual for Assessing Safety Hardware, Second Edition 2016 (MASH 2016). American Association of State Highway and Transportation Officials. Washington, DC. 2016.
 - 2. Robert Meline. Vehicle Crash Tests of the Type 80 Bridge Rail. California Department of Transportation. Sacramento. March 1999.
 - 3. Bridge Rails and Barriers: A Reference Guide for Transportation Projects in the Coastal Zone. California Department of Transportation. Sacramento. circa 2012 (ADA update 2019)
 - 4. Test Report 0-6946-R2: Mash Evaluation of TXDOT Roadside Safety Features-PHASE II. Texas A&M Transportation Institute. March 2019.
 - 5. MASH Implementation for California Bridge Railings, July 2019. Office of Design and Technical Services, Caltrans. July 2019.
 - 6. Federal Aid Eligibility Letter HSST-1/B-285 to RIME Laboratory, Rutgers, The State University of New Jersey. Federal Highway Administration. July 7, 2017.
 - Vehicle Damage Scale for Traffic Crash Investigators. Texas Department of Public Safety. Austin. 2006.
 - 8. Collision Deformation Classification SAE Recommended Practice J224 MAR80. Society of Automotive Engineers. New York, NY. 1980

10.1. Test Vehicle Equipment

10.1.1. 4-10 Test 110MASH4C21-01

The vehicle used for this test was a 2015 Nissan Versa Sedan. Since the vehicle was towed and not selfpowered, the fuel in the gas tank was pumped out and gaseous CO₂ added to purge the gas vapors and eliminate oxygen. A pair of Lithium-Ion Battery Packs were mounted in the vehicle to power two DTS SLICE MICRO systems. The DTS SLICE MICRO systems were each installed with a set of triaxial accelerometers, angular rate sensors and a bridge layer. A 12-volt deep-cycle gel cell battery powered the Electronic Control Box.

Figure 10-1 Main Instrumentation Test 4-10

Figure 10-2 DTS SLICE Micro Mount Position in the Vehicle Test 4-10

A 4800 kPa (700 psi) CO_2 system, actuated by a solenoid valve, controlled remote braking after the impact and emergency braking, if necessary. Part of this system was a pneumatic ram which was attached to the brake pedal. The operating pressure for the ram was adjusted through a pressure regulator during a series of trial runs prior to the actual test. Adjustments were made to ensure the shortest stopping distance without locking up the wheels. When activated, the brakes could be applied in less than 100 milliseconds.

A speed control device was connected in-line with the engine ignition coil power circuits on the tow vehicle. It was used to regulate the speed based on the signal from the tow vehicle transmission speed sensor. This device was calibrated prior to the test by conducting a series of trial runs through a speed trap comprised of two tape switches (set at a specific distance apart) and a digital timer.

10.1.2. 4-11 Test 110MASH4P21-02

The vehicle used for this test was a 2018 Dodge RAM 1500 Quad Cab. A pair of Lithium-Ion Battery Packs were mounted in the vehicle to power two DTS SLICE MICRO systems. The DTS SLICE MICRO systems were each installed with a set of triaxial accelerometers, angular rate sensors and a bridge layer. A 12-volt deep-cycle gel cell battery powered the Electronic Control Box.

Figure 10-3 Test 4-11 Vehicle Instrumentation

Figure 10-4 Test 4-11 DTS SLICE Micro Mount Position in the Vehicle

A 4800 kPa (700 psi) CO₂ system, actuated by a solenoid valve, controlled remote braking after the impact and emergency braking if necessary. Part of this system was a pneumatic ram which was attached to the brake pedal. The operating pressure for the ram was adjusted through a pressure regulator during a series of trial runs prior to the actual test. Adjustments were made to ensure the shortest stopping distance without locking up the wheels. When activated, the brakes could be applied in less than 100 milliseconds.

A speed control device was connected in-line with the with the engine ignition coil power circuits on the self-powered test vehicle. It was used to regulate the speed based on drive shaft rotation detected by an optical sensor. This device was calibrated prior to the test by conducting a series of trial runs through a speed trap comprised of two tape switches (set at a specific distance apart) and a digital timer.

10.1.3. 4-12 Test 110MASH4S21-03

The vehicle used for this test was a 2009 Freightliner M2 106 18-foot Box Truck. Two DTS SLICE MICRO systems were installed in the cargo box area. Also, two DTS SLICE MICRO systems were installed in the cab of the vehicle. Each DTS SLICE MICRO system had a set of triaxial accelerometers, angular rate sensors and bridge layer and were powered by a lithium-ion battery pack. A 12-volt deep-cycle gel cell battery powered the Electronic Control Box.

Figure 10-5 Test 4-12 DTS SLICE Micro Mount Position in the Cab

Figure 10-6 Test 4-12 DTS SLICE Micro Mount Position in Cargo Box

Figure 10-7 Test 4-12 Vehicle Instrumentation Mounted in Cargo Box

A 4800 kPa (700 psi) CO_2 system, actuated by a solenoid valve, controlled remote braking after the impact and emergency braking if necessary. Part of this system was a pneumatic ram which was attached to the brake pedal. The operating pressure for the ram was adjusted through a pressure regulator during a series of trial runs prior to the actual test. Adjustments were made to ensure the shortest stopping distance without locking up the wheels. When activated, the brakes could be applied in less than 100 milliseconds.

The test vehicle speed was controlled by an onboard speed limiter that is standard for this self-powered test vehicle. The vehicle's limiter was programed by a local service provider prior to the test. To ensure that the limiter was set properly, a series of test runs were conducted using a GHM Engineering HFW80 Fifth Wheel Sensor.

The test vehicle was also pushed by another vehicle so that the impact speed could be reached in the limited distance of roughly 640 m (2100 ft) available at the testing facility. A set push distance was established. Once the push vehicle had traveled this distance, it slowed down and allowed the test vehicle to continue accelerating until it reached the target speed.

10.2. Test Vehicle Guidance System

A rail guidance system directed the test vehicles into the barrier. The guidance rail, anchored at approximately 3.8 m (12.5 ft) intervals along its length, was used to guide a mechanical arm, which was attached to the hub of the front left wheel of the test vehicle. A plate and lever were used to trigger the release pin on the guidance arm, thereby releasing the vehicle from the guidance system before impact.

Figure 10-8 Typical Guidance System Layout

Figure 10-9 Guide Arm Releasing from Test Vehicle

Figure 10-10 Guide Arm Released from Vehicle

10.3. Friction Brake

For all three tests conducted on the Type 86H an in-house designed and modified Guide Arm Brake was utilized. Before Test 110MASH4C21-01 was performed, continuous testing was done of a modified version of the friction brake system consisting of a metal assembly (Figure 10-11 and Figure 10-12) that allows for the rope attached to the guide arm brake to dissipate the kinetic energy of the moving guide arm by means of friction between the assembly's friction assembly and the surface of the rope sliding through it.

Figure 10-11 Guide Arm Brake System with Friction Brake

Figure 10-12 Friction Brake Close Up View

Figure 10-13 Guide Arm Brake System with Friction Brake (Prior To Pick up Test)

Figure 10-14 Released Guide Arm with Engaged Friction Brake (Pickup Test Prior to Impact)

10.4. Photo - Instrumentation

Several high-speed video cameras recorded the impact during the test. The high-speed video frame rates were set to 500 frames per second. The types of cameras and their locations are shown in Table 10-1 thru Table 10-3. The origin of the coordinates is at the intended point of impact.

V1

Figure 10-15 High-Speed Video Camera Locations (Not to Scale)

Camora	Camora	Comoro		Lens	Coor	dinates, ft (n	n) *
Location	Make/Model	Serial No.	Lens	Serial No.	х	у	z
V1 Upstream	Vision Research Miro LC111	22361	35 mm	173792	84.7 (25.8)	0.2 (0.1)	3.7 (1.1)
V2 Downstream	Vision Research Miro R321S	25386	100-200 mm	402495	-309.1 (-94.2)	-2.4 (-0.7)	4.6 (1.4)
V3 Across	Vision Research Miro M110	13235	20 mm	182398	-7.1 (-2.2)	-56.4 (-17.2)	4.8 (1.5)
V4 Upstream Tower	Vision Research VEO440	24663	20 mm	447169	1.4 (0.4)	-6.8 (-2.1)	37.1 (11.3)
V5 Downstream Tower	Vision Research Miro R321S	25385	14 mm	217706	-29.2 (-8.9)	-10.4 (-3.2)	47.5 (14.5)

Table 10-1 110MASH4C21-01 Camera Types and Location Coordinates

Camera	Camera	Camera	Camera		Coordinates, ft (m) *		
Location	Make/Model	Serial No.	Lens	No.	х	У	z
V1 Upstream	Vision Research Miro LC111	22361	35 mm	173792	91.7 (28.0)	-0.9 (-0.3)	4.3 (1.3)
V2 Downstream	Vision Research Miro R321S	25386	100-200 mm	402495	-296.0 (-90.2)	-2.3 (-0.7)	5.0 (1.5)
V3 Across	Vision Research Miro M110	13235	20 mm	182398	2.1 (0.6)	-59.0 (-18.0)	5.0 (1.5)
V4 Upstream Tower	Vision Research VEO440	24663	20 mm	447169	-0.2 (-0.1)	-4.8 (-1.5)	32.4 (9.9)
V5 Downstream Tower	Vision Research Miro R321S	25385	14 mm	217706	-20.6 (-6.3)	-8.9 (-2.7)	39.2 (12.0)

Table 10-2 110MASH4P21-02 Camera Types and Location Coordinates

Camera	Camera	Camera	mera Lens Serial		Coor	dinates, ft (n	ו) *
Location	Make/Model	Serial No.	Lens	No.	х	У	Z
V1 Upstream	Vision Research Miro LC111	22361	35 mm	173792	92.2 (28.0)	-0.3 (-0.1)	4.8 (1.5)
V2 Downstream	Vision Research Miro R321S	25386	100-200 mm	402495	-308.1 (-93.9)	-1.7 (-0.5)	4.8 (1.5)
V3 Across	Vision Research Miro M110	13235	20 mm	182398	1.2 (0.4)	-64.8 (-19.8)	6.1 (1.9)
V4 Upstream Tower	Vision Research Miro 110	24663	20 mm	447169	-1.67 (-0.5)	-5.7 (-1.7)	39.9 (12.2)
V5 Downstream Tower	Vision Research Miro 110	25385	14 mm	217706	-24.5 (-7.5)	-9.6 (-2.9)	49.7 (15.2)

Table 10-3 110MASH4S21-03 Camera Types and Location Coordinates

*Camera coordinates were determined using the total station surveying equipment.

The following are the pretest procedures that were required to enable video data reduction to be performed using the Research's video analysis software (Phantom Camera Control):

- 1. Butterfly targets were attached to the top and sides of the test vehicle. The targets were located on the vehicle at intervals of 500 mm (19.7 in.) and 1000 mm (39.4 in.). The targets established scale factors.
- 2. A flashbulb was mounted on the test vehicle and was electronically triggered by a tape switch on the front bumper to establish initial vehicle-to-barrier contact. A separate flashbulb is normally installed to capture the time of the application of the vehicle brakes. Due to irregularities in the function of the brake flashbulb system, the brake flashbulb was not used in any of the tests. The time of the braking was determined using the event channel signal recorded by the DTS SLICE Micro data acquisition units.
- 3. High-speed digital video cameras were all time-coded using a portable computer and were triggered as the test vehicle passed over a tape switch located in the vehicle path upstream of the impact point.

10.5. Electronic Instrumentation and Data

Transducer data were recorded at 10,000 samples/second on two separate Diversified Technical Systems, Inc. (DTS) SLICE Micro data acquisition systems that were mounted in the test vehicle. The DTS SLICE units each contain a set of accelerometers, angular rate sensors and a bridge layer and were mounted at the center of gravity. TRAP was used to process the data. Accelerometer and angular rate sensor specifications are shown in Table 10-4 thru Table 10-6.

Туре	Manufacturer	Model	Serial #	Location	Range
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00200	CG	±500 g
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00165	CG	±1500 deg/s
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00223	CG	±500 g
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00166	CG	±1500 deg/s

Table 10-4 4-10 Test 110MASH4C21-01 Accelerometer and Angular Rate Sensor Specifications

Table 10-5 4-11 Test 110MASH4P21-02 Accelerometer and Angular Rate Sensor Specifications

Туре	Manufacturer	Model	Serial #	Location	Range
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00165	CG	±1500 deg/s
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00200	CG	±500 g
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00165	CG	±1500 deg/s
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00223	CG	±500 g

Туре	Manufacturer	Model	Serial #	Location	Range
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00181	CG in Cargo Box	±1500 deg/s
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00180	CG in Cargo Box	±1500 deg/s
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00235	CG in Cargo Box	±500 g
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00234	CG in Cargo Box	±500 g
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00200	Along CL of Vehicle in the cab	±500 g
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00165	Along CL of Vehicle in the cab	±1500 deg/s
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00223	Along CL of Vehicle in the cab	±500 g
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00166	Along CL of Vehicle in the cab	±1500 deg/s

Table 10-6 4-12 Test 110MASH4S21-03 Accelerometer and Angular Rate Sensor Specifications

A rigid stand with three retro-reflective 90° polarizing tape strips spaced 1000 mm (39.4 in.) apart was placed on the ground near the test article and alongside the path of the test vehicle. The strips were measured immediately before the test to account for any thermal expansion. The test vehicle had an onboard optical sensor that produced sequential impulses or "event blips" as the vehicle passed the reflective tape strips. The event blips were recorded concurrently with the DTS SLICE sensor signals on the SLICE's bridge layer, serving as "event markers". The impact velocity of the vehicle could be determined from these sensor impulses, the data record time, and the known distance between the tape strips. A pressure sensitive tape switch on the front bumper of the vehicle closed at the instant of impact and triggered two events: 1) "event marker" was added to the recorded data, and 2) a flashbulb mounted on the top of the vehicle was activated. One set of pressure activated tape switches, connected to a speed trap, were placed 4 m apart just upstream of the test article to check the impact speed of the test vehicle. It is worth noting that the speed trap measurement is not a reported measurement value, however it is used to validate the reported impact speed. The layout for all the pressure sensitive tape switches and reflective tape is shown in Figure 10-16.

Figure 10-16 Speed Trap Tape Layout

10.6. Vehicle Measurements

10.6.1. Test 110MASH4C21-01

			-					
Date:	4/29/202	1	Test N	lumber:	110MASH	4C21-01	Model:	Nissan
Make:	Versa Sed	an	VIN:		3N1CN7	7AP9FL82043	4	
Tire Size:	P185/65R15	86H	Year:	2015			Odometer:	97176
Tire Inflati	on Pressure:	33 psi		Tape Mea	sure Used:	5m-CP01	CLE:***	DRISI 1902
Measure b	y: Chris C, Dave	S Staff:			Scale Se	t Used:		2500

Table 10-7 Test 4-10 Exterior Vehicle Measurements

(All Measurements Refer to Impacting Side)

Vehicle Geometry - mm (inches)									
а	1691	(66.57)	b	1490	(58.66)				
С	4466	(175.83)	d	1024	(40.31)				
e	2599	(102.32)	f	840	(33.07)				
g	N/A	N/A	h	1049	(41.3)				
i*	184	(7.24)	j*	423	(16.65)				
k	300	(11.81)	1	647	(25.47)				
m	1480	(58.27)	n	1477	(58.15)				
0**	777	(30.59)	р	202	(7.95)				
q	623	(24.53)	r	413	(16.26)				
s	285	(11.22)	t	1691	(66.57)				
	Wheel	Center Heigh	it	291	(11.46)				
		Engine Type	:	gas, 4-cycl	e, 4-cylinder				
		Engine Size	2	97.	5 in ³				
	Transn	nission Type:							
	Auto	omatic or Ma	nual:	Au	tomatic				
	FWD	or RWD or 4	WD:	FWD					

* i & j taken from the functional bumper (may be inside bumper cover) <-- Remove this line. Measurements have ** o taken from top of radiator support bracket, centerline of vehicle

*** CLE is the inventory number and should be located on the door jamb of the vehicle.

changed per ILC 2018. CC 4/29/2021

Mass Dist	ribution			
Left Front	: 351.2 (774.25)	Scale: red	Right Front:	289.85 (639) Scale: green
Left Rear:	223.95 (493.72)	Scale: yellow	Right Rear:	242.4 (534.39) Scale: blue
Weights				
kg (lbs)	Curb	Test Inertial	Gross Static	
W _{front}	661.40 (1458.11)	641.05 (1413.25)	683.1 (1505.9	95)
W _{rear}	447.55 (986.66)	466.35 (1028.11)	503.8 (1110.6	67)
W_{total}	1108.95 (2444.78)	1107.4 (2441.36)	1186.9 (2616.6	52)
GVWR Rat	tings		Dummy Data	
Front:	793.8	(1750)	Type:	Hybrid III 50th Percentile Male
Back:	774.7	(1708)	Mass:	79.5 kg (175 lbs)
Total:	1554.0	(3426)	Seat Positio	on: passenger
Note any damage prior to test: See Attachment 5.4.2 Curb Weight for test			eight for test 110MASH4C21-01	
Data Trans	ferred to Electronic Copy B	y: Christo	opher Caldwell	Date: 5/13/2021
Transfer Ch	ecked by:	Da	ave Sawko	Date: 5/27/2021

Table 10-8 Test 4-10 CG Calculation: Curb Weight

Policies and Procedures Manual Roadside Safety Research Group A2LA Certificate No. 3046.01 Revised:8/17/2017 Page 1 of 1 Last Revised by Chris Caldwell

Attachment 5.4.2 --- CG Data Calculation Worksheet

		CG Cal	culation Worksh	heet #1: Curb Weigh	t		
Make:	Nissan			Test Number:	110MASH4C21-01		
Model:	Versa Sedan			Date:	4/28/2021		
Year:	2015			Temperature:	72°F		
VIN:	3N1CN7AP9FL	.820434		Scale Set Used:	2500		
Fuel in Tank:	3/16						
Fuel Removed:	none				м		
Measured By:	Chris C			◄		→	
	Dave S						
Support Staff	Steve W					()	
				W1		+ w ₂ $ -$	
							↑ ↑
W1 = Left Front (L	F) =	348.85	kg	\bigcirc		\bigcirc	
Scale Used:		red					н
				1	L CC	,	¥
W2 = Right Front (RF) =	312.55	kg		Ψ		-
Scale Used:	g	reen	_				
							E
W3 = Left Rear (LR	t) =	218.45	kg		1		
Scale Used:	ye	ellow		Tank			
					,		
W4 = Right Rear (F	RR) =	229.1	kg				
Scale Used:	t	olue				\frown	
						$\left(\right)$	
Total Weight:				W ₃		- w4 -	<u> </u>
Wtotal (mea	sured) =	1109.1	kg	D D	<u> </u>	1.1	
				Ŷ,		Ļ	
Wtotal (calcu	ulated) =	1108.95	kg			->	
					N	-1	
Distance between	front wheels:						
M =	1480	mm		W =	W + W + W	+W	
				" Total	1 1 1 2 1 1 3	4	
Distance between	rear wheels:			(W + W)E	
N =	1477	mm		$H = \Delta$	3 4		
					W Total		
Distance from from	nt to rear wheel	s:		(227
E =	2599	mm	R –	$(W_2 - W_1)$	$M + (W_4)$	$-W_{3}$)N
			<i>n</i> =		2 W Total		
Distance from from	nt wheels back t	o CG:			_ // //		
H = 1049		mm	Data Transferr	red to Electronic Cop	by By:		
				Chris Caldwel		Date:	4/29/2021
Distance from veh	icle centerline t	o CG:	Transfer Check	ked by:			
R = <u>-17</u>		mm		Dave Sawko		Date:	5/27/2021

If R is negative the CG is left of center, if R is positive the CG is right of center

Curb Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Minor scratch on driver door. Mino Scratch on upper rear driver side rear passenger door and pillar area. Curb rash front bottom bumper passenger side. Damage to top corner of passenger door. Tire sensor will not go off.

Test 110MASH4C21-01 CG Data Calculation Worksheet.xlsx

Curb WorkSheet

Table 10-9 Test 4-10 CG Calculation: Test Inertial Weight

Policies and Procedures Manual Roadside Safety Research Group A2LA Certificate No. 3046.01 Revised: 8/17/2017 Page 1 of 1 Last Revised by Chris Caldwell

Attachment 5.4.2 --- CG Data Calculation Worksheet

		CG Calculat	tion Worksheet	#2: Test Inertial We	eight		
Make:	Nissan			Test Number:	110MASH4C21-01		
Model:	Versa Sedan			Date:	5/12/2021		
Year:	2015			Temperature:	74°F		
VIN:	3N1CN7AP9FL	820434		Scale Set Used:	2500		
Fuel in Tank:	1/2 tank						
Fuel Removed:	none				м		
Measured By:	Chris C			₭		→	
	Dave S						
Support Staff	Vue Her			\square		\bigcap	
				W ₁		^w 2	
W1 = Left Front (L	F) =	351.2	kg	\cup		\bigcirc	
Scale Used:	1	ed					н
				I	CG		
W2 = Right Front (RF) =	289.85	kg				<u> </u>
Scale Used:	gr	een		1			
W3 = Left Rear (LR	() =	223.95	kg				E
Scale Used:	ye	llow		L Fuel			
				Tank			
W4 = Right Rear (F	RR) =	242.4	kg	← →			
Scale Used:	b	lue					
				-		\frown	
Total Weight:							1
Wtotal (mea	sured) =	1107.4	kg	w ₃		w ₄ -	
					→ ←	IJ	
Wtotal (calcu	lated) = <u>1107.4</u>	ł	kg		11		
				←		→	
Distance between	front wheels:				N	•	
M =	1480	mm		W _	W + W + W	W	
Distance has				VV Total -	$w_1 + w_2 + w_3$	$+w_4$	
Distance between	rear wheels:			0	$W \to + W$)E	
N =	14//	_mm		H = -	W)	
Distance from from	the second second				VV Total		
Distance from from	area wheels			(W - W)	M + (W)	- W	N
E =	2599	_mm	R =	<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>		" 3	<u>)</u>
Distance from from	t whoole back to				2 W Total		
	it wheels back to		Data Transform	ed to Electronic Con	w By:		
n = 1094				Christophor Cold	voll	Date:	5/13/2021
Distance from yeh	icle centerline t		Transfer Check	ed by:	wen	Date:	5/15/2021
R = _20	icie centernine ti	mm	Tansier cheu	Dave Sawko		Date:	5/27/2021
N = -25				Dave Jawko		Date.	5/2//2021

If R is negative the CG is left of center, if R is positive the CG is right of center

Test Inertial Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) See curb weight worksheet for damages. Interior removed to make room for instrumentation. Instrumentation installed. Car battery removed and databrick batteries added to move CG for Slice units.

Test 110MASH4C21-01 CG Data Calculation Worksheet.xlsx

Test Inertial WorkSheet

Table 10-10 Test 4-10 CG Calculation: Gross Static Weight

Policies and Procedures Manual Roadside Safety Research Group A2LA Certificate No. 3046.01 Revised: 8/17/2017 Page 1 of 1 Last Revised by Chris Caldwell

Attachment 5.4.2 --- CG Data Calculation Worksheet

If R is negative the CG is left of center, if R is positive the CG is right of center

Gross Static Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Dummy Added

Test 110MASH4C21-01 CG Data Calculation Worksheet.xlsx

Gross Static WorkSheet
Table 10-11 Test 4-10 Pre, Post Interior and Deformation Measurement Page 1

Policies and Procedures Manual Roadside Safety Research Group Revised: 9/16/2019 1 of 4

Attachment 5.5 --- Interior Vehicle Measurement Report

Vehicle Type	1100C	Test Number	110MASH4C21-01
Make	Versa Sedan	Model	Nissan
Year	2015	Color	White
VIN #	3N1CN7AP9FL820434		

Transmission Tunnel and Floor Pan Area Measurements - Dimensions in mm (inches)

Doint	Pre-Impact			Post-Impact				Magnituda		
FOIL	х	Y	Z	X	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
F1	1708 (67.2)	101 (4)	49 (1.9)	1730 (68.1)	81 (3.2)	63 (2.5)	22 (0.9)	-20 (-0.8)	13 (0.5)	33 (1.3)
F2	1610 (63.4)	103 (4.1)	68 (2.7)	1631 (64.2)	88 (3.5)	74 (2.9)	21 (0.8)	-15 (-0.6)	7 (0.3)	27 (1.1)
F3	1485 (58.5)	101 (4)	75 (3)	1505 (59.2)	87 (3.4)	85 (3.3)	19 (0.8)	-14 (-0.5)	10(0.4)	26 (1)
F4	1392 (54.8)	98 (3.9)	79 (3.1)	1413 (55.6)	87 (3.4)	87 (3.4)	20 (0.8)	-12 (-0.5)	8 (0.3)	25 (1)

Foot/Wheel Well and Toe Pan Area Measurements - Dimensions in mm (inches)

Detet		Pre-Impact			Post-Impact	t		Difference		h da anibu da
Point	Х	Y	Z	Х	Y	Z	ΔX	ΔY	ΔZ	Magnitude
T1	2020 (79.5)	217 (8.5)	68 (2.7)	2008 (79)	197 (7.8)	12 (0.5)	-12 (-0.5)	-20 (-0.8)	-57(-2.2)	61 (2.4)
T2	2024 (79.7)	328 (12.9)	71 (2.8)	1967 (77.4)	268 (10.5)	14 (0.6)	-57 (-2.3)	-60 (-2.4)	-57(-2.2)	100(4)
T3	2023 (79.7)	426 (16.8)	73 (2.9)	1985 (78.2)	360 (14.2)	28 (1.1)	-38 (-1.5)	-66 (-2.6)	-45(-1.8)	88 (3.5)
T4	2026 (79.8)	533 (21)	72 (2.8)	1981 (78)	460 (18.1)	18 (0.7)	-44 (-1.7)	-73 (-2.9)	-54(-2.1)	101 (4)
T5	1965 (77.4)	630 (24.8)	54 (2.1)	1877 (73.9)	503 (19.8)	-13 (-0.5)	-88 (-3.5)	-127 (-5)	-67 (-2.6)	168 (6.6)
T6	1960 (77.2)	211 (8.3)	139 (5.5)	1949 (76.7)	221 (8.7)	82 (3.2)	-11 (-0.4)	10 (0.4)	-57 (-2.2)	59 (2.3)
T7	1967 (77.4)	328 (12.9)	139 (5.5)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
T8	1956 (77)	431 (17)	127 (5)	1927 (75.9)	369 (14.5)	87 (3.4)	-29 (-1.2)	-62 (-2.4)	-40(-1.6)	79 (3.1)
T9	1968 (77.5)	530 (20.9)	141 (5.5)	1937 (76.3)	466(18.4)	92 (3.6)	-31 (-1.2)	-63 (-2.5)	-49(-1.9)	85 (3.4)
T10	1959 (77.1)	619 (24.4)	147 (5.8)	1883 (74.1)	520 (20.5)	83 (3.3)	-75 (-3)	-100 (-3.9)	-65 (-2.5)	141 (5.5)
T11	1855 (73)	211 (8.3)	188 (7.4)	1855 (73.1)	248 (9.8)	137 (5.4)	0 (0)	37 (1.4)	-51(-2)	63 (2.5)
T12	1859 (73.2)	323 (12.7)	202 (8)	1824 (71.8)	299 (11.8)	125 (4.9)	-35 (-1.4)	-24 (-0.9)	-78(-3.1)	89 (3.5)
T13	1865 (73.4)	428 (16.8)	171 (6.7)	1840 (72.4)	373 (14.7)	134 (5.3)	-25 (-1)	-55 (-2.2)	-37 (-1.5)	71 (2.8)
T14	1862 (73.3)	537 (21.1)	193 (7.6)	1845 (72.6)	483 (19)	158 (6.2)	-17 (-0.7)	-54 (-2.1)	-36(-1.4)	67 (2.6)
T15	1867 (73.5)	630 (24.8)	203 (8)	1833 (72.2)	550 (21.6)	135 (5.3)	-34 (-1.3)	-80 (-3.2)	-68(-2.7)	111 (4.4)
T16	1764 (69.4)	218 (8.6)	204 (8)	1770 (69.7)	254 (10)	169 (6.6)	6 (0.3)	36 (1.4)	-35(-1.4)	51 (2)
T17	1765 (69.5)	324 (12.7)	217 (8.5)	1737 (68.4)	295 (11.6)	155 (6.1)	-29 (-1.1)	-29 (-1.1)	-62 (-2.4)	74 (2.9)
T18	1754 (69.1)	426 (16.8)	180 (7.1)	1730 (68.1)	379 (14.9)	147 (5.8)	-24 (-0.9)	-47 (-1.9)	-33(-1.3)	62 (2.5)
T19	1766 (69.5)	538 (21.2)	220 (8.7)	1750 (68.9)	491 (19.3)	186 (7.3)	-16 (-0.6)	-48 (-1.9)	-34(-1.3)	61 (2.4)
T20	1754 (69)	630 (24.8)	223 (8.8)	1741 (68.5)	578 (22.8)	180 (7.1)	-13 (-0.5)	-52 (-2.1)	-43(-1.7)	69 (2.7)
T21	1679 (66.1)	213 (8.4)	205 (8.1)	1685 (66.3)	245 (9.6)	179(7)	6 (0.2)	32 (1.3)	-26(-1)	42 (1.6)
T22	1681 (66.2)	326 (12.8)	220 (8.7)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
T23	1689 (66.5)	425 (16.7)	188 (7.4)	1666 (65.6)	381 (15)	157 (6.2)	-23 (-0.9)	-44 (-1.7)	-31(-1.2)	59 (2.3)
T24	1694 (66.7)	541 (21.3)	222 (8.7)	1682 (66.2)	495 (19.5)	201 (7.9)	-12 (-0.5)	-46 (-1.8)	-21(-0.8)	52 (2)
T25	1702 (67)	631 (24.8)	230 (9)	1689 (66.5)	582 (22.9)	188 (7.4)	-13 (-0.5)	-49 (-1.9)	-42(-1.7)	66 (2.6)
T26	1586 (62.4)	212 (8.3)	209 (8.2)	1591 (62.7)	237 (9.3)	191 (7.5)	5 (0.2)	25 (1)	-18(-0.7)	32 (1.2)
T27	1586 (62.4)	323 (12.7)	220 (8.7)	1577 (62.1)	324 (12.8)	234 (9.2)	-9 (-0.4)	1(0)	14 (0.6)	17 (0.7)
T28	1594 (62.7)	423 (16.6)	193 (7.6)	1569 (61.8)	388 (15.3)	173 (6.8)	-24 (-1)	-35 (-1.4)	-20(-0.8)	47 (1.9)
T29	1603 (63.1)	543 (21.4)	225 (8.9)	1588 (62.5)	505 (19.9)	208 (8.2)	-14 (-0.6)	-38 (-1.5)	-17 (-0.7)	44 (1.7)
T30	1609 (63.4)	635 (25)	239 (9.4)	1596 (62.9)	593 (23.4)	219 (8.6)	-13 (-0.5)	-41 (-1.6)	-20(-0.8)	47 (1.9)
T31	1477 (58.1)	216 (8.5)	227 (8.9)	1482 (58.3)	230 (9)	211 (8.3)	5 (0.2)	14 (0.5)	-16(-0.6)	21 (0.8)
T32	1480 (58.3)	328 (12.9)	228 (9)	1474 (58)	334 (13.2)	224 (8.8)	-6 (-0.2)	6 (0.3)	-4 (-0.1)	10 (0.4)
T33	1485 (58.5)	419 (16.5)	205 (8.1)	1463 (57.6)	392 (15.4)	190 (7.5)	-22 (-0.9)	-27 (-1.1)	-16(-0.6)	38 (1.5)
T34	1506 (59.3)	541 (21.3)	229 (9)	1492 (58.8)	512 (20.2)	213 (8.4)	-14 (-0.6)	-29 (-1.2)	-16(-0.6)	36 (1.4)
T35	1511 (59.5)	633 (24.9)	238 (9.4)	1503 (59.2)	600(23.6)	236 (9.3)	-7 (-0.3)	-34 (-1.3)	-2 (-0.1)	34 (1.4)

Side Front Panel Measurements - Dimensions in mm (inches)

Detet	Pre-Impact				Post-Impact	t	Difference			Magnituda
POINT	х	Y	Z	Х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
S1	1919 (75.6)	689 (27.1)	-32 (-1.3)	1828 (72)	587 (23.1)	-92 (-3.6)	-92 (-3.6)	-102 (-4)	-60(-2.4)	150 (5.9)
S2	1891 (74.5)	689 (27.1)	28 (1.1)	1828 (72)	606 (23.9)	-32 (-1.2)	-63 (-2.5)	-82 (-3.2)	-60(-2.3)	120 (4.7)
S3	1844 (72.6)	686 (27)	86 (3.4)	1800 (70.9)	583 (23)	30 (1.2)	-44 (-1.7)	-103 (-4)	-56(-2.2)	125 (4.9)
S4	1803 (71)	684 (26.9)	166 (6.5)	1774 (69.8)	594 (23.4)	116 (4.6)	-29 (-1.1)	-90 (-3.5)	-50(-2)	107 (4.2)

Table 10-12 Test 4-10 Pre, Post Interior and Deformation Measurement Page 2

Policies and Procedures Manual Roadside Safety Research Group Revised: 9/16/2019 2 of 4

Attachment 5.5 --- Interior Vehicle Measurement Report

Vehicle Type	1100C	Test Number	110M AS H4C21-01	
Make	Versa Sedan	Model	Nissan	
Year	2015	Color	White	
VIN #	3N1CN7AP9FL820434			

Roof Measurements - Dimensions in mm (inches)

Dejet		Pre-Impact			Post-Impact	t		Difference		Magnitudo
Point	х	Y	Z	х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
R1	1371 (54)	109 (4.3)	-936 (-36.9)	1363 (53.7)	112 (4.4)	-960 (-37.8)	-8 (-0.3)	3 (0.1)	-24 (-1)	26 (1)
R2	1365 (53.7)	207 (8.2)	-932 (-36.7)	1360 (53.5)	211 (8.3)	-960 (-37.8)	-5 (-0.2)	4 (0.1)	-27 (-1.1)	28 (1.1)
R3	1356 (53.4)	347 (13.7)	-926 (-36.4)	1351 (53.2)	350(13.8)	-959 (-37.8)	-6 (-0.2)	3 (0.1)	-33(-1.3)	34 (1.3)
R4	1343 (52.9)	495 (19.5)	-914 (-36)	1340 (52.8)	499 (19.6)	-953 (-37.5)	-3 (-0.1)	3 (0.1)	-39(-1.5)	39 (1.5)
R5	1240 (48.8)	106 (4.2)	-987 (-38.9)	1232 (48.5)	106 (4.2)	-1008 (-39.7)	-9 (-0.3)	0(0)	-21(-0.8)	23 (0.9)
R6	1238 (48.7)	203 (8)	-996 (-39.2)	1230 (48.4)	203 (8)	-1019 (-40.1)	-8 (-0.3)	0(0)	-24(-0.9)	25 (1)
R7	1229 (48.4)	335 (13.2)	-991 (-39)	1222 (48.1)	335 (13.2)	-1010 (-39.8)	-7 (-0.3)	0(0)	-19(-0.7)	20 (0.8)
R8	1219 (48)	467 (18.4)	-982 (-38.6)	1211 (47.7)	468(18.4)	-1012 (-39.8)	-8 (-0.3)	0(0)	-30(-1.2)	31 (1.2)
R9	1134 (44.6)	103 (4.1)	-1000 (-39.4)	1124 (44.3)	103 (4.1)	-1020 (-40.1)	-10 (-0.4)	0(0)	-19(-0.8)	22 (0.8)
R10	1133 (44.6)	194 (7.7)	-1008 (-39.7)	1124 (44.2)	194 (7.6)	-1029 (-40.5)	-9 (-0.3)	0(0)	-21(-0.8)	22 (0.9)
R11	1125 (44.3)	328 (12.9)	-1005 (-39.6)	1115 (43.9)	328(12.9)	-1022 (-40.2)	-10 (-0.4)	0(0)	-17 (-0.7)	20 (0.8)
R12	1113 (43.8)	454 (17.9)	-997 (-39.3)	1107 (43.6)	455 (17.9)	-1014 (-39.9)	- 6 (-0.2)	1(0)	-17 (-0.7)	18 (0.7)
R13	1037 (40.8)	107 (4.2)	-1017 (-40)	1028 (40.5)	106 (4.2)	-1035 (-40.7)	-10 (-0.4)	-1 (0)	-17 (-0.7)	20 (0.8)
R14	1032 (40.6)	183 (7.2)	-1016 (-40)	1022 (40.3)	184 (7.2)	-1034 (-40.7)	-9 (-0.4)	1(0)	-19(-0.7)	21 (0.8)
R15	1033 (40.7)	324 (12.8)	-1013 (-39.9)	1023 (40.3)	325 (12.8)	-1033 (-40.7)	-10 (-0.4)	1(0)	-20(-0.8)	23 (0.9)
R16	1025 (40.3)	448 (17.6)	-1004 (-39.5)	1015 (39.9)	448(17.6)	-1025 (-40.4)	-10 (-0.4)	0(0)	-21(-0.8)	24 (0.9)

Windshield Measurements - Dimensions in mm (inches)

Dejet		Pre-Impact			Post-Impact	t		Difference		Magnituda
Point	х	Y	Z	х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
W1	1525 (60)	123 (4.8)	-899 (-35.4)	1520 (59.8)	126 (4.9)	-919 (-36.2)	-5 (-0.2)	3 (0.1)	-20(-0.8)	21 (0.8)
W2	1519 (59.8)	296 (11.6)	-894 (-35.2)	1518 (59.8)	300(11.8)	-927 (-36.5)	-1 (0)	4 (0.2)	-32(-1.3)	33 (1.3)
W3	1496 (58.9)	470 (18.5)	-891 (-35.1)	1494 (58.8)	475 (18.7)	-935 (-36.8)	-2 (-0.1)	6 (0.2)	-45(-1.8)	45 (1.8)
W4	1621 (63.8)	119 (4.7)	-854 (-33.6)	1624 (64)	119 (4.7)	-864 (-34)	3 (0.1)	0(0)	-10(-0.4)	10 (0.4)
W5	1617 (63.6)	309 (12.2)	-849 (-33.4)	1614 (63.5)	314 (12.4)	-877 (-34.5)	-2 (-0.1)	5 (0.2)	-28(-1.1)	29 (1.1)
W6	1596 (62.8)	500 (19.7)	-845 (-33.3)	1599 (63)	506 (19.9)	-890 (-35)	3 (0.1)	6 (0.2)	-45(-1.8)	45 (1.8)
W7	1760 (69.3)	114 (4.5)	-787 (-31)	1759 (69.3)	113 (4.4)	-801 (-31.5)	-1 (0)	-1 (0)	-14(-0.6)	14 (0.6)
W8	1764 (69.5)	310 (12.2)	-776 (-30.5)	1762 (69.4)	312 (12.3)	-795 (-31.3)	-2 (-0.1)	2 (0.1)	-20(-0.8)	20 (0.8)
W9	1736 (68.3)	519 (20.5)	-773 (-30.4)	1735 (68.3)	526 (20.7)	-810 (-31.9)	-1 (0)	7 (0.3)	-37(-1.4)	37 (1.5)
W10	1921 (75.6)	116 (4.6)	-705 (-27.8)	1925 (75.8)	114 (4.5)	-719 (-28.3)	4 (0.2)	-2(-0.1)	-14(-0.6)	15 (0.6)
W11	1909 (75.2)	299 (11.8)	-701 (-27.6)	1919 (75.5)	298(11.7)	-717 (-28.2)	9 (0.4)	-1(-0.1)	-16(-0.6)	18 (0.7)
W12	1885 (74.2)	533 (21)	-687 (-27.1)	1900 (74.8)	536(21.1)	-737 (-29)	15 (0.6)	2(0.1)	-50(-1.9)	52 (2)

Dashboard Measurements - Dimensions in mm (inches)

Point	Pre-Impact				Post-Impact	t		Magnituda		
FUIII	х	Y	Z	Х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
D1	1614 (63.5)	215 (8.5)	-505 (-19.9)	1605 (63.2)	166 (6.5)	-554 (-21.8)	-9 (-0.4)	-49 (-1.9)	-49(-1.9)	70 (2.8)
D2	1611 (63.4)	325 (12.8)	-510 (-20.1)	1598 (62.9)	274 (10.8)	-565 (-22.2)	-13 (-0.5)	-51 (-2)	-55(-2.1)	76 (3)
D3	1618 (63.7)	440 (17.3)	-509 (-20)	1600 (63)	390 (15.3)	-568 (-22.3)	-18 (-0.7)	-51 (-2)	-59(-2.3)	80 (3.1)
D4	1633 (64.3)	547 (21.6)	-505 (-19.9)	1611 (63.4)	498 (19.6)	-566 (-22.3)	-21 (-0.8)	-49 (-1.9)	-61(-2.4)	82 (3.2)

A and B Pillar Measurements - Dimensions in mm (inches)

Point		Pre-Impact			Post-Impact	t		Difference		
FOIL	х	Y	Z	X	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
P1	708(27.9)	587 (23.1)	-844 (-33.2)	696 (27.4)	581(22.9)	-852 (-33.5)	-12 (-0.5)	-6(-0.2)	-8 (-0.3)	16 (0.6)
P2	750 (29.5)	632 (24.9)	-737 (-29)	745 (29.3)	627 (24.7)	-748 (-29.5)	-5 (-0.2)	-5(-0.2)	-11(-0.4)	13 (0.5)
P3	779 (30.7)	680 (26.8)	-583 (-23)	772 (30.4)	677 (26.7)	-592 (-23.3)	-7 (-0.3)	-2(-0.1)	-9 (-0.4)	12 (0.5)
P4	809 (31.8)	693 (27.3)	-417 (-16.4)	805 (31.7)	691 (27.2)	-426 (-16.8)	-4 (-0.2)	-2(-0.1)	-9 (-0.3)	10 (0.4)
P5	860 (33.9)	694 (27.3)	-272 (-10.7)	857 (33.7)	692 (27.3)	-281 (-11)	-3 (-0.1)	-2(-0.1)	-9 (-0.4)	10 (0.4)
P6	943 (37.1)	711 (28)	-36 (-1.4)	940 (37)	709 (27.9)	-45 (-1.8)	-3 (-0.1)	-2(-0.1)	-10(-0.4)	11 (0.4)
P7	1785 (70.3)	671 (26.4)	-668 (-26.3)	1776 (69.9)	635 (25)	-726 (-28.6)	-8 (-0.3)	-36 (-1.4)	-58(-2.3)	69 (2.7)
P8	1587 (62.5)	643 (25.3)	-767 (-30.2)	1593 (62.7)	654 (25.7)	-827 (-32.5)	7 (0.3)	11 (0.5)	-59(-2.3)	61 (2.4)
P9	1464 (57.6)	614 (24.2)	-833 (-32.8)	1466 (57.7)	619 (24.4)	-885 (-34.8)	2 (0.1)	6(0.2)	-51(-2)	52 (2)

Table 10-13 Test 4-10 Pre, Post Interior and Deformation Measurement Page 2

Policies and Procedures Manual Roadside Safety Research Group Revised: 9/16/2019 3 of 4

Attachment 5.5 --- Interior Vehicle Measurement Report

Vehicle Type	1100C	Test Number	110MASH4C21-01	
Make	Versa Sedan	Model	Nissan	
Year	2015	Color	White	
VIN #	3N1CN7AP9FL820434			

Above Seat Front Side Door Area Measurements - Dimensions in mm (inches)

Detet	Pre-Impact				Post-Impact			Difference			
Point	х	Y	Z	х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude	
A1	1592 (62.7)	703 (27.7)	-488 (-19.2)	1547 (60.9)	659 (26)	-519 (-20.4)	-45 (-1.8)	-44 (-1.7)	-31(-1.2)	70 (2.8)	
AZ	1469 (57.8)	709 (27.9)	-494 (-19.5)	1422 (56)	685 (27)	-531 (-20.9)	-47 (-1.8)	-24 (-1)	-37 (-1.5)	64 (2.5)	
A3	1274 (50.2)	709 (27.9)	-496 (-19.5)	1230 (48.4)	716 (28.2)	-537 (-21.1)	-44 (-1.7)	7 (0.3)	-41(-1.6)	61 (2.4)	
A4	1095 (43.1)	702 (27.6)	-494 (-19.5)	1055 (41.5)	735 (28.9)	-533 (-21)	-41 (-1.6)	33 (1.3)	-39(-1.5)	65 (2.6)	
A5	930 (36.6)	693 (27.3)	-497 (-19.6)	888 (35)	743 (29.2)	-538 (-21.2)	-42 (-1.7)	50 (2)	-41(-1.6)	77 (3)	

Below Seat Front Side Door Area Measurements - Dimensions in mm (inches)

Point		Pre-Impact			Post-Impact			Difference	Magnituda	
FUIIL	х	Y	Z	Х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
B1	1625 (66.3)	681 (27.8)	2 (0.1)	1567 (63.9)	640 (26.1)	-33 (-1.4)	-58 (-2.4)	-41 (-1.7)	-36(-1.5)	80 (3.2)
B2	1486 (60.6)	681 (27.8)	7 (0.3)	1439 (58.7)	691 (28.2)	-28 (-1.1)	-46 (-1.9)	10 (0.4)	-35(-1.4)	59 (2.4)
B3	1326 (54.1)	681 (27.8)	18 (0.7)	1282 (52.3)	710 (29)	-24 (-1)	-44 (-1.8)	29 (1.2)	-42 (-1.7)	68 (2.8)
B4	1153 (47.1)	682 (27.8)	28 (1.1)	1115 (45.5)	744 (30.4)	-12 (-0.5)	-38 (-1.6)	62 (2.5)	-40(-1.6)	83 (3.4)

Figure 10-17 Schematic of Measured Interior Points for Floorboard, Dashboard, Windshield, Toe Pan, Wheel Well and Transmission Tunnel

Figure 10-18 Schematic of Measured Points for the A Pillar, B Pillar, Side Front Door Panel, Side Door Panel, Front Side Door and Roof

10.6.2. Test 110MASH4P21-02

Date:	7/8/2021	Test N	lumber:	110MAS	6H4P21-	-02	Model:		Do	dge
Make:	Ram 1500	VIN:		1C6RR6FG3JS290753						
Tire Size:	P265/70R17	Year:	2018				Odome	eter: 2	81.8	
Tire Inflati	on Pressure:	40	Tape Mea	sure Used:	5m-CP	01 & 5r	n-CP03	CLE:**	DRI	SI 1803
Measured	by: Chris C & David	S_Staff:	David W	/ Scale	Set Use	ed:		25	00	
*(All Meas	surements Refer to Impa	cting Side)		Vehicle Geometry - mm (inches)				ches)		
1		/	7	та	1968	(77.4	8)	b19	26	(75.83)
T T		T			5823	(229.)	25)	d 12	27	(48.31)
 t n -	Ģ.	.	m		3572	(140.0	63)	f 10	22	(40.24)
ÌΪ	vehicle		∥ ï	Ϊ g _	737	(29)	h 16	23	(63.9)
11				i –	330	(12.9	9)	j 6	87	(27.05)
_				k	525	(20.6	7)	7	80	(30.71)
		- q -	-1	m	1730	(68.1	1)	n 17	10	(67.32)
-	(Contra		-	0	1184	(46.6	1)	p 10	00	(3.94)
				q	795	(31.3	3)	r 4	67	(18.39)
b .			R	• S	355	(13.9	8)	t <u>19</u>	69	(77.52)
	PLALL	TIA		T o Whee	l Center	Height F	ront:	384		(15.12)
k		I Y		Whee	l Center	Height F	Rear:	384		(15.12)
t	s_	h	Li	Whee	Well Cl	earance	(F) _	117		(4.61)
			1	Whee	Well Cl	earance	(R)	180		(7.09)
		-1	·		Fr	ame Hei	ight (F):	249		(9.8)
			-		Fra	ame Hei	ght (R):	521		(20.51)
						Engin	e Type:		gasoli	ne
Mass Distr	ibution - kg (lbs)					Engi	ne Size:		3.6l	
** CLE is th	e inventory number and sh	ould be locate	ed on the do	or	Transn	nission T	ype:			
jamb of the	vehicle.	1 1011 3/01	(5033)		Automatic or Manual:			ial:	Auto	matic
* Note: m	easured with 100ft-QDU.	1 19 1-2/8	(5823mm)		FW	D or RV	/D or 4W	D: RWD		
Left Front:	603.55 (1330.58)	Scale:	red	Right Fro	nt: 6	16.25	(1358.5	58) Scale	:	green
Left Rear:	526.4 (1160.49)	Scale: y	ellow	Right Rea	ar: 4	89.25	(1078.5	59) Scale	:	blue
Weights										
kg (lbs)	Curb	Test Iner	tial	Gross St	atic					
W _{front}	1219.65 (2688.82)	1219.8 (20	689.15)	1219.8 (2	689.15)	_				
W _{rear}	954 (2103.17)	1015.65 (22	239.09)	1015.65 (2	239.09)					
W _{total}	2173.65 (4792)	2235.45 (49	928.24)	2235.45 (4	928.24)					
-						-				
GAWR and	GVWR Ratings - kg (Ibs)			Dummy	Data					
Front:	Type:			1	N/A					
Back:	1770	(3902	.12)	Mass	: <u> </u>		1	N/A		
Total:	3085	(6801	.15)	Seat	Position	: 		N//	1	
Note any o	damage prior to test:			Ne	w, no d	lamage				
Data Transf	erred to Electronic Copy By	/:	Christo	opher Caldwell			Date:	8/3/2021		
Transfer Ch	ecked by:	Vict	ictor O. Lopez Date:			3/9	3/9/2022			

Table 10-14 Test 4-11 Exterior Vehicle Measurements

Table 10-15 Test 4-11 CG Calculation: Curb Weight

Attachment 5.4.2 --- CG Data Calculation Worksheet

If R is negative the CG is left of center, if R is positive the CG is right of center

Curb Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) New Vehicle

Table 10-16 Test 4-11 CG Calculation: Test Inertial Weight

	CG Calcu	lation W	/orksheet #2: Test Inertial Weight
Make:	Dodge		Test Number: 110MASH4P21-02
Model:	Ram 1500		Date: 8/3/2021
Year:	2018		Temperature: 76°F
VIN:	1C6RR6FG3JS290	753	Scale Set Used: 2500
Fuel in Tank:	none		
Fuel Removed:	8 gal.		M
Measured By:	Chris C		─
	Steve W		
Support Staff			- $$
W1 = Left Front (LF) =	603.55	kg	
Scale Used:	red		
			CG
W2 = Right Front (RF) =	616.25	kg	⊕¥
Scale Used:	green		, IŤ I
W3 = Left Rear (LR) =	526.4	kg	E
Scale Used:	yellow		Fuel
			Tank
W4 = Right Rear (RR) =	489.25	kg	* 7
Scale Used:	blue		
Total Weight:			
Wtotal (measured) =	2235.75	kg	W ₃ W ₄
			R -> -
Wtotal (calculated) =	2235.45	kg	
			<u> </u>
Distance between front whe	els:		
M = 1730	mm		
			$W_{Total} = W_1 + W_2 + W_3 + W_4$
Distance between rear whee	els:		
N = 1710	mm		$H = \frac{(W_3 + W_4)E}{E}$
			W Total
Distance from front to rear	wheels:		
E = 3572	mm		$R = \frac{(W_2 - W_1)M + (W_4 - W_3)N}{N}$
			2 W Total
Distance from front wheels	back to CG:		
H = 1623	mm	Data	Transferred to Electronic Copy By:
			Christopher Caldwell Date: 8/3/2021
Distance from vehicle cente	rline to CG:	Trans	sfer Checked by:
R = -9	mm		Victor Lopez Date: 6/16/2022

If R is negative the CG is left of center, if R is positive the CG is right of center

Test Inertial Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Equipment installed. Spare tire was not removed. 8 gal. fuel removed from tank and 2.5 gal added to fuel cell. Ballest: 2 steel plates each weighing 16.5 kg (36.5 lbs)

Table 10-17 Test 4-11 CG Calculation: Gross Static Weight

If R is negative the CG is left of center, if R is positive the CG is right of center

Gross Static Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.)

Make: Dodge Test Number: 110MASH4P21-02 Model: Ram 1500 Date: 7/28/2021 Year: 2018 Temperature: 76°F VIN: 1C6RR6FG3JS290753 2500 Scale Set Used: Fuel in Tank: none М Fuel Removed: none Measured By: Chris C David W Support Staff Steve W w₂ w₁ W1 = Left Front (LF) = 614 kg н Scale Used: red CG A W2 = Right Front (RF) = 619 kg Scale Used: green E W3 = Left Rear (LR) = 528.55 kg Scale Used: yellow Fuel Tank W4 = Right Rear (RR) = 500.8 kg blue Scale Used: Total Weight: Wtotal (measured) = 2262.45 kg W3 W_4 R Wtotal (calculated) = 2262.35 kg Distance between front wheels: Ν M = 1730 mm $W_{\rm Total} = W_1 + W_2 + W_3 + W_4$ Distance between rear wheels: $= \frac{(W_3 + W_4)E}{W_{Total}}$ N = 1710 mm H Distance from front to rear wheels: $\frac{(W_2 - W_1)M + (W_4 - W_3)N}{2W_{Total}}$ E = 3572 mm *R* = Distance from front wheels back to CG: Data Transferred to Electronic Copy By: H = 1625 mm Christopher Caldwell Date: 7/28/2021 Distance from vehicle centerline to CG: Transfer Checked by: mm R = -9 Victor Lopez Date: 6/16/2022

Table 10-18 Test 4-11 CG Calculation: Vertical CG Weight

CG Calculation Worksheet #4: Vertical CG Weight

If R is negative the CG is left of center, if R is positive the CG is right of center

Gross Static Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Modified for vertical CG measurement.

Table 10-19 Test 4-11 Vertical CG Calculation: Worksheet

		Ve	ehicle Informat	tion				
Year:	2018		Model:	Ram 1500				
Make:	Dodge		VIN:	1C6RRFG3JS290753				
Curb or Inertial Measuren	ient: In	ertial	Test #:	110	MASH4P21-02			
Tape Measure Used:		Scale Se	t Used:	2500				
	Ve	hicle and	Equipment M	easurements				
Vehicle Mass and Measu	rements (From CG	i Workshe	eet):					
Hub to Hub Wheel Base:	3572	mm	Vehicle Wid	th (Ave of Center of Tir	res) 1720	mm		
Cgy Offset (-Driver side, +I	Pass. Side):	-9	mm	Total Vehicle Mass:	2262.35	kg		
Dvr. Front Tire Mass:	614	kg	Dvr. Rear Tir	e Mass:	528.55	kg		
Scale Color:	red		Scale Color:		yellow			
Pass. Front Tire Mass: 619 kg			Pass. Rear T	ire Mass:	500.8	kg		
Scale Color:	green		Scale Color:		blue			
Vahiela Haight From the 1	on of the Rim Inc	ar lin to	the Pottom of	the Wheel Wells				
Driver Front:	300	mm	Driver Rear:	the wheel well:	349	mm		
Passenger Front	307		Passenger R	ear:	360			
	207		i ussenger n		500			
Height From Ground to C	enter of Support:							
Driver Front:	450	mm	Driver Rear:		455	mm		
Passenger Front:	485	mm	Passenger R	ear:	455	mm		
Shock Mass								
Driver Front:	2.15	kg	Passenger F	ront:	2.2	kg		
Scale Color:	blue		Scale Color:		blue			
Height From Ground to C	anter of Wheel H							
Driver Front	384	mm	Driver Rear		384	mm		
	504		onvernear.		201			
Passenger Front:	384	mm	Passenger R	ear:	384	mm		

Table 10-20 Test 4-11 Vertical CG Calculation: Worksheet (continued)

RSRG Vertical Center of Gravity Worksheet (Cont.)

Vertical Center of Gravity Measurement

Number of Used Chain Links:

Vehicle Level:					
Front:	51	links	Rear:	59	links
Vehicle Front Up:			Angle:	16	degrees
Front:	45	links	Rear:	70	links
Vehicle Rear Up:			Angle:	19	degrees
Front:	60	links	Rear:	49	links
Driver Side CGz:			Passenger Side CG:	z:	
Maximum:	748	mm	Maximum:	746	mm
Middle:	743	mm	Middle:	742	mm
Minimum:	738	mm	Minimum:	739	mm
Width:	2	mm	Width:	1	mm
Conducted by:		Christopher	Caldwell	Date:	7/28/2021
Transferred to elec	ctronic copy				
by:		Chris	stopher Caldwell	Date:	7/28/2021
Checked by:		Victor Lo	opez	Date:	6/16/2022

Table 10-21 Test 4-11 Vertical CG Calculation: Measurement and Report

Vehicle Center of Gravity Measurements

016 Complia eral historic p	nce of prese	f Roadside Safety Fea rvation requirements	tures (Devel [Type 86H E	op MASH Bridge Rail	bridge railing tl])	hat satisfies Sta	ite		
110MASH	4P202	21-02	Model:	Ram 150	00				
Dodge			Year:	2018					
1C6RR6FG	33529	90753							
Inertail):									
603.6	kg	Right Front Tire:	616.3	kg	Front Axle:	1219.8	_kg		
526.4	kg	Right Rear tire:	489.3	kg	Rear Axle:	1015.7	_kg		
Ballast and Location: A kg steel plates in the truck bed against the passenger Total: <u>2235.5</u> kg									
easurement	s:								
nter of front	tires	to center of back tire	s:	3	572.0	_mm			
ter of left fro	ont tir	e to center of right f	ront tire:	1	730.0	_mm			
ter of left re	ar tire	e to center of right re	ar tire:	1	710.0	_mm			
mn	n C	enter of front tire to	CG.						
m	n T	he CG will be left if n	egative and	right if po:	sitive of vehicle	's center line.			
	Dif Complian and historic p 110MASH Dodge 1C6RR6FG Inertail): 603.6 526.4 33 kg stee cab along easurement hter of left front ter of left front ter of left re mm	Dif Compliance of an historic present 110MASH4P202 Dodge 1C6RR6FG3J529 Inertail): 603.6 kg 526.4 kg 33 kg steel plate cab along the ca easurements: her of front tires the ter of left front tires the ter of left rear tires mm C mm C	2016 Compliance of Roadside Safety Fea eral historic preservation requirements 110MASH4P2021-02 Dodge 1C6RR6FG3JS290753 Inertail): 603.6 kg S26.4 kg Right Rear tire: 33 kg steel plates in the truck bed ag cab along the center line. easurements: hter of front tires to center of back tire ter of left front tire to center of right from ter of left rear tire to center of right from mm Center of front tire to mm The CG will be left if n	D16 Compliance of Roadside Safety Features (Develeral historic preservation requirements [Type 86H 6 110MASH4P2021-02 Model: Dodge Year: 1C6RR6FG3JS290753 Year: 603.6 kg Right Front Tire: 616.3 526.4 kg Right Rear tire: 489.3 33 kg steel plates in the truck bed against the paceab along the center line. easurements: easurements:	D16 Compliance of Roadside Safety Features (Develop MASH eral historic preservation requirements [Type 86H Bridge Rail 110MASH4P2021-02 Model: Ram 150 Dodge Year: 2018 1C6RR6FG3JS290753 Inertail): 603.6 kg 603.6 kg Right Front Tire: 616.3 kg 526.4 kg Right Rear tire: 489.3 kg 33 kg steel plates in the truck bed against the passenger cab along the center line. against the passenger easurements: at the truck bed against the passenger a ter of front tires to center of back tires: 3 ter of left front tire to center of right front tire: 1 1 ter of left rear tire to center of right rear tire: 1 mm Center of front tire to CG. mm mm The CG will be left if negative and right if postive and ri	216 Compliance of Roadside Safety Features (Develop MASH bridge railing the series in the requirements [Type 86H Bridge Rail]) 110MASH4P2021-02 Model: Ram 1500 Dodge Year: 2018 1C6RR6FG3JS290753 Inertail): 603.6 kg Right Front Tire: 616.3 kg Front Axle: 526.4 kg Right Rear tire: 489.3 kg Rear Axle: 33 kg steel plates in the truck bed against the passenger cab along the center line. Total: 2572.0 easurements: mter of front tires to center of back tires: 3572.0 ter of left front tire to center of right front tire: 1730.0 ter of left rear tire to center of right rear tire: 1710.0 mm Center of front tire to CG. mm The CG will be left if negative and right if positive of vehicle	116 Compliance of Roadside Safety Features (Develop MASH bridge railing that satisfies Stared historic preservation requirements [Type 86H Bridge Rail]) 110MASH4P2021-02 Model: Ram 1500 Dodge Year: 2018 1C6RR6FG3JS290753 Inertail): 603.6 kg Right Front Tire: 616.3 kg Front Axle: 1219.8 526.4 kg Right Rear tire: 489.3 kg Rear Axle: 1015.7 33 kg steel plates in the truck bed against the passenger cab along the center line. Total: 2235.5 2235.5 cab along the center of back tires: 3572.0 mm mm ter of left front tire to center of right front tire: 1730.0 mm ter of left rear tire to center of right rear tire: 1710.0 mm mm Center of front tire to CG. mm The CG will be left if negative and right if positive of vehicle's center line.		

Z: 738.0 mm CG location above ground level

Table 10-22 Test 4-11 Pre, Post Interior and Deformation Measurement Page 1

Vehicle Type	2200P	Test Number	110M AS H4P21-02
Make	Dodge	Model	Ram 1500
Year	2018	Color	White
VIN #	1C6RR6FG3JS290753		

Transmission Tunnel and Floor Pan Area Measurements - Dimensions in mm (inches)

Point		Pre-Impact			Post-Impact	t		Difference		Magnituda
Form	Х	Y	Z	Х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
T1	1652 (65)	104 (4.1)	- 16 (-0.6)	1647 (64.9)	105 (4.1)	-18 (-0.7)	-4 (-0.2)	1(0)	-2 (-0.1)	5 (0.2)
T2	1657 (65.2)	187 (7.4)	-14 (-0.5)	1652 (65)	187 (7.4)	-20 (-0.8)	-5 (-0.2)	0 (0)	-7 (-0.3)	8 (0.3)
T3	1688 (66.4)	268 (10.5)	12 (0.5)	1681 (66.2)	249 (9.8)	12 (0.5)	-6 (-0.3)	-19 (-0.7)	1 (0)	20 (0.8)
T4	1602 (63.1)	105 (4.1)	-8 (-0.3)	1596 (62.8)	102 (4)	-12 (-0.5)	-6 (-0.2)	-2(-0.1)	-4 (-0.1)	7 (0.3)
T5	1615 (63.6)	188 (7.4)	-8 (-0.3)	1610 (63.4)	189 (7.5)	-17 (-0.7)	-5 (-0.2)	1(0)	-9 (-0.4)	11 (0.4)
T6	1621 (63.8)	261 (10.3)	36 (1.4)	1616 (63.6)	251 (9.9)	30 (1.2)	-5 (-0.2)	-11 (-0.4)	-6 (-0.2)	13 (0.5)
T7	1528 (60.2)	111 (4.4)	6 (0.2)	1524 (60)	113 (4.4)	3 (0.1)	-5 (-0.2)	2 (0.1)	-3 (-0.1)	6 (0.2)
T8	1538 (60.5)	188 (7.4)	4 (0.2)	1532 (60.3)	190 (7.5)	-3 (-0.1)	-5 (-0.2)	2 (0.1)	-8 (-0.3)	9 (0.4)
Т9	1538 (60.5)	263 (10.3)	46 (1.8)	1532 (60.3)	261 (10.3)	36 (1.4)	-5 (-0.2)	-2(-0.1)	-11(-0.4)	12 (0.5)
T10	1422 (56)	103 (4.1)	13 (0.5)	1418 (55.8)	102 (4)	6 (0.3)	-4 (-0.2)	-2(-0.1)	-6 (-0.3)	8 (0.3)
T11	1427 (56.2)	189 (7.4)	20 (0.8)	1421 (56)	192 (7.6)	12 (0.5)	-6 (-0.2)	3 (0.1)	-9 (-0.4)	11 (0.4)
T12	1428 (56.2)	265 (10.4)	57 (2.2)	1420 (55.9)	267 (10.5)	40 (1.6)	-8 (-0.3)	2 (0.1)	-16(-0.6)	18 (0.7)

Foot/Wheel Well and Toe Pan Area Measurements - Dimensions in mm (inches)

Detet		Pre-Impact			Post-Impact	t		Difference		Magnituda
Point	х	Y	Z	х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
F1	2052 (80.8)	498 (19.6)	-52 (-2.1)	2048 (80.6)	489 (19.3)	-39 (-1.5)	-5 (-0.2)	-8(-0.3)	13 (0.5)	17 (0.7)
F2	2084 (82.1)	560 (22)	-44 (-1.7)	2084 (82)	542 (21.4)	-20 (-0.8)	-1 (0)	-18 (-0.7)	24 (0.9)	30 (1.2)
F3	2085 (82.1)	617 (24.3)	-43 (-1.7)	2079 (81.9)	600 (23.6)	-21 (-0.8)	-6 (-0.2)	-17 (-0.7)	23 (0.9)	29 (1.2)
F4	2077 (81.8)	699 (27.5)	-68 (-2.7)	2058 (81)	677 (26.7)	-46 (-1.8)	-18 (-0.7)	-21 (-0.8)	22 (0.8)	35 (1.4)
F5	2065 (81.3)	735 (28.9)	-84 (-3.3)	2032 (80)	688 (27.1)	-74 (-2.9)	-33 (-1.3)	-46 (-1.8)	10(0.4)	58 (2.3)
F6	2043 (80.4)	782 (30.8)	-95 (-3.7)	1989 (78.3)	696 (27.4)	-100 (-3.9)	-54 (-2.1)	-87 (-3.4)	-4 (-0.2)	102 (4)
F7	2042 (80.4)	820 (32.3)	-117 (-4.6)	1971 (77.6)	719 (28.3)	-134 (-5.3)	-71 (-2.8)	-101 (-4)	-17 (-0.7)	125 (4.9)
F8	2043 (80.4)	498 (19.6)	-11 (-0.4)	2036 (80.1)	483 (19)	4 (0.2)	-7 (-0.3)	-15 (-0.6)	16 (0.6)	23 (0.9)
F9	2066 (81.3)	532 (20.9)	-4 (-0.2)	2062 (81.2)	513 (20.2)	17 (0.7)	-4 (-0.2)	-19 (-0.8)	21 (0.8)	29 (1.1)
F10	2074 (81.6)	566 (22.3)	-4 (-0.2)	2069 (81.4)	546 (21.5)	19 (0.7)	-5 (-0.2)	-20 (-0.8)	23 (0.9)	31 (1.2)
F11	2076 (81.7)	625 (24.6)	-4 (-0.2)	2067 (81.4)	606 (23.9)	19 (0.8)	-9 (-0.4)	-19 (-0.8)	23 (0.9)	31 (1.2)
F12	2069 (81.5)	653 (25.7)	-16 (-0.6)	2057 (81)	632 (24.9)	7 (0.3)	-12 (-0.5)	-21 (-0.8)	23 (0.9)	33 (1.3)
F13	2041 (80.3)	708 (27.9)	-26 (-1)	2019 (79.5)	680 (26.8)	-7 (-0.3)	-22 (-0.9)	-28 (-1.1)	19 (0.8)	40 (1.6)
F14	2029 (79.9)	743 (29.2)	-47 (-1.9)	1995 (78.5)	680 (26.8)	-39 (-1.6)	-34 (-1.3)	-63 (-2.5)	8 (0.3)	72 (2.8)
F15	2022 (79.6)	783 (30.8)	-61 (-2.4)	1966 (77.4)	696 (27.4)	-67 (-2.6)	-56 (-2.2)	-87 (-3.4)	-6 (-0.2)	104 (4.1)
F16	2017 (79.4)	827 (32.6)	-72 (-2.8)	1953 (76.9)	725 (28.5)	-86 (-3.4)	-64 (-2.5)	-102 (-4)	-14(-0.5)	121 (4.8)
F17	2019 (79.5)	496 (19.5)	14 (0.6)	2011 (79.2)	476(18.7)	30 (1.2)	-8 (-0.3)	-19 (-0.8)	15 (0.6)	26 (1)
F18	2033 (80.1)	538 (21.2)	27 (1.1)	2028 (79.8)	515 (20.3)	49 (1.9)	-6 (-0.2)	-23 (-0.9)	22 (0.9)	32 (1.3)
F19	2034 (80.1)	567 (22.3)	27 (1.1)	2028 (79.8)	544 (21.4)	50 (2)	-7 (-0.3)	-23 (-0.9)	22 (0.9)	33 (1.3)
F20	2037 (80.2)	621 (24.4)	26 (1)	2028 (79.8)	598 (23.6)	50 (2)	-9 (-0.4)	-22 (-0.9)	24 (0.9)	34 (1.3)
F21	2035 (80.1)	668 (26.3)	20 (0.8)	2022 (79.6)	644 (25.4)	43 (1.7)	-13 (-0.5)	-24 (-0.9)	23 (0.9)	36 (1.4)
F22	2012 (79.2)	715 (28.2)	12 (0.5)	1988 (78.3)	678 (26.7)	26 (1)	-24 (-0.9)	-38 (-1.5)	14 (0.6)	47 (1.8)
F23	1997 (78.6)	753 (29.6)	8 (0.3)	1951 (76.8)	680 (26.8)	9 (0.3)	-46 (-1.8)	-72 (-2.9)	1 (0.1)	86 (3.4)
F24	1990 (78.3)	786 (31)	-2 (-0.1)	1929 (76)	700 (27.5)	-12 (-0.5)	-61 (-2.4)	-87 (-3.4)	-10(-0.4)	106 (4.2)
F25	1984 (78.1)	829 (32.7)	-2 (-0.1)	1921 (75.6)	734 (28.9)	-18 (-0.7)	-63 (-2.5)	-95 (-3.7)	-17(-0.7)	116 (4.6)
F26	2015 (79.3)	748 (29.5)	-24 (-0.9)	1974 (77.7)	681 (26.8)	-21 (-0.8)	-40 (-1.6)	-67 (-2.6)	3 (0.1)	78 (3.1)
F27	2002 (78.8)	789 (31.1)	-29 (-1.2)	1941 (76.4)	700 (27.6)	-41 (-1.6)	-61 (-2.4)	-89 (-3.5)	-11(-0.4)	108 (4.3)
F28	1999 (78.7)	827 (32.6)	-36 (-1.4)	1937 (76.3)	728 (28.7)	-51 (-2)	-62 (-2.4)	-100 (-3.9)	-15(-0.6)	118(4.7)
F29	1987 (78.2)	497 (19.6)	37 (1.5)	1979 (77.9)	475 (18.7)	53 (2.1)	-7 (-0.3)	-22 (-0.9)	16 (0.6)	29 (1.1)
F30	1993 (78.5)	540 (21.2)	52 (2)	1987 (78.2)	516 (20.3)	72 (2.9)	-6 (-0.2)	-24 (-0.9)	21 (0.8)	32 (1.3)
F31	1997 (78.6)	568 (22.3)	49 (1.9)	1990 (78.3)	543 (21.4)	70 (2.7)	-8 (-0.3)	-24 (-1)	20 (0.8)	33 (1.3)
F32	2003 (78.9)	619 (24.4)	47 (1.8)	1991 (78.4)	596 (23.5)	62 (2.4)	-12 (-0.5)	-24 (-0.9)	15 (0.6)	30 (1.2)
F33	2005 (79)	675 (26.6)	47 (1.8)	1994 (78.5)	650 (25.6)	68 (2.7)	-12 (-0.5)	-25 (-1)	21 (0.8)	35 (1.4)
F34	1996 (78.6)	720 (28.4)	39 (1.5)	1966 (77.4)	675 (26.6)	51 (2)	-29 (-1.2)	-45 (-1.8)	12 (0.5)	55 (2.2)
F35	1978 (77.9)	764 (30.1)	39 (1.5)	1924 (75.7)	685 (27)	32 (1.3)	-54 (-2.1)	-80 (-3.1)	-7 (-0.3)	97 (3.8)
F36	1969 (77.5)	831 (32.7)	36 (1.4)	1902 (74.9)	745 (29.3)	17 (0.7)	-67 (-2.6)	-86 (-3.4)	-19(-0.7)	111 (4.4)
F37	1872 (73.7)	390 (15.4)	-14 (-0.5)	1862 (73.3)	382 (15.1)	-6 (-0.3)	-10 (-0.4)	-8(-0.3)	8 (0.3)	15 (0.6)

Table 10-23 Test 4-11 Pre, Post Interior and Deformation Measurement Page 2

Vehicle Type	2200P	Test Number	110M AS H4P21-02
Make	Dodge	Model	Ram 1500
Year	2018	Color	White
VIN #	1C6RR6FG3JS290753		

Foot/Wheel Well and Toe Pan Area Measurements (Cont.) - Dimensions in mm (inches

		Pre-Impact			Post-Impact		Difference			Manage Streets
Point	х	Y	Z	х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
F38	1894 (74.6)	458 (18)	31 (1.2)	1883 (74.1)	445 (17.5)	45 (1.8)	-10 (-0.4)	-13 (-0.5)	14 (0.6)	22 (0.9)
F39	1931 (76)	499 (19.6)	74 (2.9)	1924 (75.8)	474 (18.7)	94 (3.7)	-6 (-0.3)	-25 (-1)	20 (0.8)	33 (1.3)
F40	1935 (76.2)	554 (21.8)	87 (3.4)	1927 (75.9)	528 (20.8)	106 (4.2)	-8 (-0.3)	-25 (-1)	19 (0.8)	33 (1.3)
F41	1940 (76.4)	622 (24.5)	85 (3.3)	1923 (75.7)	593 (23.4)	91 (3.6)	-17 (-0.7)	-28 (-1.1)	6 (0.2)	34 (1.3)
F42	1964 (77.3)	723 (28.5)	66 (2.6)	1938 (76.3)	668 (26.3)	80 (3.1)	-26 (-1)	-55 (-2.2)	13 (0.5)	62 (2.5)
F43	1938 (76.3)	731 (28.8)	88 (3.5)	1912 (75.3)	673 (26.5)	108 (4.3)	-26 (-1)	-58 (-2.3)	20 (0.8)	67 (2.6)
F44	1958 (77.1)	756 (29.8)	70 (2.8)	1912 (75.3)	685 (27)	72 (2.9)	-46 (-1.8)	-71 (-2.8)	2 (0.1)	85 (3.4)
F45	1942 (76.4)	766 (30.2)	87 (3.4)	1903 (74.9)	703 (27.7)	90 (3.6)	-39 (-1.5)	-63 (-2.5)	3 (0.1)	74 (2.9)
F46	1948 (76.7)	835 (32.9)	82 (3.2)	1908 (75.1)	762 (30)	65 (2.5)	-40 (-1.6)	-73 (-2.9)	-17 (-0.7)	85 (3.3)
F47	1824 (71.8)	383 (15.1)	17 (0.7)	1817 (71.5)	372 (14.6)	24 (0.9)	-7 (-0.3)	-11 (-0.4)	7 (0.3)	14 (0.6)
F48	1835 (72.2)	441 (17.4)	60 (2.4)	1829 (72)	425 (16.7)	75 (2.9)	-6 (-0.2)	-16 (-0.6)	14 (0.6)	23 (0.9)
F49	1870 (73.6)	486 (19.1)	93 (3.6)	1866 (73.5)	463 (18.2)	112 (4.4)	-4 (-0.2)	-23 (-0.9)	20 (0.8)	30 (1.2)
F50	1883 (74.1)	558 (22)	111 (4.4)	1874 (73.8)	532 (20.9)	133 (5.2)	-8 (-0.3)	-26 (-1)	21 (0.8)	35 (1.4)
F51	1883 (74.1)	629 (24.8)	112 (4.4)	1872 (73.7)	603 (23.7)	129 (5.1)	-12 (-0.5)	-26 (-1)	17 (0.7)	33 (1.3)
F52	1909 (75.2)	732 (28.8)	106 (4.2)	1887 (74.3)	685 (27)	124 (4.9)	-22 (-0.9)	-47 (-1.8)	18 (0.7)	55 (2.2)
F53	1909 (75.1)	775 (30.5)	107 (4.2)	1881 (74)	720 (28.3)	119 (4.7)	-28 (-1.1)	-55 (-2.2)	11 (0.4)	63 (2.5)
F54	1907 (75.1)	837 (33)	107 (4.2)	1875 (73.8)	773 (30.4)	96 (3.8)	-32 (-1.3)	-64 (-2.5)	-11(-0.4)	72 (2.9)
F55	1782 (70.2)	376 (14.8)	48 (1.9)	1776 (69.9)	360 (14.2)	56 (2.2)	-6 (-0.3)	-16 (-0.6)	8 (0.3)	19 (0.7)
F56	1798 (70.8)	428 (16.8)	83 (3.3)	1792 (70.6)	407 (16)	96 (3.8)	-6 (-0.2)	-20 (-0.8)	13 (0.5)	25 (1)
F57	1815 (71.5)	469 (18.5)	133 (5.2)	1809 (71.2)	445 (17.5)	149 (5.9)	-6 (-0.3)	-25 (-1)	16 (0.6)	30 (1.2)
F58	1847 (72.7)	560 (22)	140 (5.5)	1839 (72.4)	533 (21)	160 (6.3)	-9 (-0.3)	-27 (-1.1)	21 (0.8)	35 (1.4)
F59	1842 (72.5)	635 (25)	143 (5.6)	1833 (72.2)	609 (24)	164 (6.4)	-9 (-0.4)	-26 (-1)	20 (0.8)	34 (1.3)
F60	1818 (71.6)	732 (28.8)	153 (6)	1800 (70.9)	702 (27.6)	163 (6.4)	-18 (-0.7)	-30 (-1.2)	10(0.4)	36 (1.4)
F61	1829 (72)	780 (30.7)	153 (6)	1813 (71.4)	744(29.3)	175 (6.9)	-16 (-0.6)	-36 (-1.4)	22 (0.9)	45 (1.8)
F62	1825 (71.8)	833 (32.8)	158 (6.2)	1813 (71.4)	793 (31.2)	166 (6.5)	-12 (-0.5)	-40 (-1.6)	8 (0.3)	42 (1.7)
F63	1862 (73.3)	739 (29.1)	127 (5)	1838 (72.4)	705 (27.7)	136 (5.4)	-24 (-0.9)	-34 (-1.3)	10(0.4)	43 (1.7)
F64	1867 (73.5)	778 (30.6)	132 (5.2)	1845 (72.6)	730 (28.7)	152 (6)	-22 (-0.9)	-48 (-1.9)	20 (0.8)	56 (2.2)
F65	1863 (73.4)	834 (32.8)	137 (5.4)	1843 (72.6)	785 (30.9)	135 (5.3)	-21 (-0.8)	-49 (-1.9)	-2 (-0.1)	53 (2.1)
166	1/50 (68.9)	3/2 (14.6)	/9 (3.1)	1/42 (68.6)	350(13.8)	87 (3.4)	-8 (-0.3)	-22 (-0.9)	7 (0.3)	24 (0.9)
F67	1724 (67.9)	367 (14.5)	115 (4.5)	1716 (67.6)	344(13.5)	120(4.7)	-8 (-0.3)	-24 (-0.9)	6 (0.2)	26 (1)
168	1/4/ (68.8)	412 (16.2)	140 (5.5)	1/38 (68.4)	387(15.2)	151 (5.9)	-10 (-0.4)	-25 (-1)	10(0.4)	29 (1.1)
F69	1/43 (68.6)	468 (18.4)	165 (6.5)	1/32 (68.2)	442(1/.4)	1//(/)	-12 (-0.5)	-25 (-1)	12(0.5)	30 (1.2)
F/0	1800 (70.8)	561 (22.1)	157 (6.2)	1791 (70.5)	536(21.1)	1//(/)	-8 (-0.3)	-26 (-1)	20(0.8)	34 (1.3)
F/1	1801 (70.9)	635 (25)	157 (6.2)	1/93 (/0.6)	609(24)	182(7.2)	-8 (-0.3)	-26 (-1)	25(1)	37 (1.4)
F/2	1759 (69.2)	559 (22)	167 (6.6)	1749 (68.9)	533(21)	187(7.3)	-10(-0.4)	-26 (-1)	19(0.8)	34 (1.3)
F/3	1/68 (65.6)	859 (25.1) 750 (20.5)	10/(0.0)	1760 (69.3)	BIS(24.1)	195(7.8)	-8 (-0.5)	-25 (-1)	26(1)	37 (1.5)
F74 E75	1778 (70)	750 (29.5)	171 (6.7)	1770 (69.7)	724(28.5)	196(7.7)	-7 (-0.3)	-20 (-1)	25(1)	37 (1.4)
F75	1792 (70)	224 (22 9)	179 (7)	1779 (70)	902 (21.6)	191(7.5)	-5 (-0.4)	-27 (-1.1)	18(0.7)	35 (1.4)
577	1740 (69 5)	750 (29 5)	172 (6 9)	1727 (69 4)	772 (29 5)	210(9.2)	-4 (-0.2)	-31 (-1.2)	28(0.7)	16 (1.4)
E79	1740 (68.5)	799 (21)	172 (6.0)	1739 (68.4)	725(28.5)	210(8.5)	-5 (-0.1)	-27 (-1.1)	34(13)	46 (1.0)
F70	1740 (00.7)	/00 (31)	197 (7.4)	17.35 (08.3)	907(21.9)	200(8.1)	-3 (-0.2)	-27 (-1.1)	18(0.7)	22 (1 2)
E90	1748 (68.8)	549 (21.6)	167 (7.4)	1745 (68.7)	526(20.7)	179(7)	-10 (-0.1)	-27 (-1.1)	16(0.7)	30 (1.3)
F81	1709 (67.3)	647 (25.5)	163 (6.4)	1701 (67)	623(24.5)	195(77)	-10(-0.4)	-25 (-0.5)	37(13)	41 (1.5)
F87	1672 (65.8)	348 (13.7)	155 (6.1)	1659 (65.3)	323(12.7)	158(6.7)	-13 (-0.5)	-24 (-0.9)	3 (0.1)	27 (1 1)
F83	1662 (65.4)	405 (15.9)	171 (6.8)	1652 (65.1)	382(15.1)	173 (6.8)	-10 (-0.4)	-22 (-0.9)	2 (0.1)	25 (1)
F84	1664 (65.5)	463 (18.2)	172 (6.8)	1656 (65.2)	440(17.3)	173 (6.9)	-9 (-0.3)	-22 (-0.9)	2 (0.1)	24 (0.9)
F85	1669 (65.7)	548 (21.6)	172 (6.8)	1662 (65.4)	525(20.7)	184(7.7)	-7 (-0.3)	-23 (-0.9)	11(0.4)	27 (1 1)
F86	1671 (65.8)	642 (25 3)	173 (6.8)	1666 (65.6)	617(243)	200(7.9)	-5 (-0.2)	-25 (-1)	27(11)	37 (1.5)
F87	1670 (65.7)	748 (29.5)	175 (6.9)	1667 (65.6)	722(28.4)	218(8.6)	-3 (-0.1)	-26 (-1)	43(1.7)	51 (2)
F88	1675 (65.9)	789 (31.1)	172 (6.8)	1668 (65.7)	761(30)	212 (8.3)	-6 (-0.3)	-28 (-1.1)	39(1.6)	49 (1.9)
F89	1685 (66.4)	832 (32.7)	190 (7.5)	1681 (66.2)	805(31.7)	213(8.4)	-4 (-0.2)	-27 (-1.1)	23(0.9)	35 (1.4)
F90	1604 (63.1)	343 (13.5)	171 (6.7)	1593 (62.7)	320(12.6)	167 (6.6)	-10 (-0.4)	-23 (-0.9)	-4 (-0.1)	25 (1)
F91	1610 (63.4)	403 (15.9)	173 (6.8)	1602 (63.1)	381 (15)	173 (6.8)	-9 (-0.3)	-22 (-0.9)	0 (0)	23 (0.9)

Table 10-24 Test 4-11 Pre, Post Interior and Deformation Measurement Page 3

Vehicle Type	2200P	Test Number	110M AS H4P21-02
Make	Dodge	Model	Ram 1500
Year	2018	Color	White
VIN #	1C6RR6EG3IS290753		

Foot/Wheel Well and Toe Pan Area Measurements (Cont.) - Dimensions in mm (inches

Pre-Impact					Post-Impact	t		Difference		Magnituda
Point	х	Y	Z	х	Y	Z	ΔX	ΔY	ΔZ	Magnitude
F92	1613 (63.5)	547 (21.5)	174 (6.9)	1606 (63.2)	525 (20.7)	182 (7.2)	-6 (-0.3)	-22 (-0.9)	8 (0.3)	24 (1)
F93	1637 (64.4)	647 (25.5)	174 (6.9)	1631 (64.2)	622 (24.5)	202 (8)	-6 (-0.2)	-25 (-1)	28(1.1)	38 (1.5)
F94	1629 (64.1)	749 (29.5)	176 (6.9)	1625 (64)	723 (28.5)	220 (8.6)	-4 (-0.1)	-26 (-1)	44(1.7)	51 (2)
F95	1631 (64.2)	791 (31.1)	176 (6.9)	1626 (64)	762 (30)	211 (8.3)	-4 (-0.2)	-28 (-1.1)	35 (1.4)	45 (1.8)
F96	1582 (62.3)	459 (18.1)	174 (6.8)	1572 (61.9)	438(17.2)	175 (6.9)	-9 (-0.4)	-21 (-0.8)	1 (0.1)	23 (0.9)
F97	1578 (62.1)	544 (21.4)	175 (6.9)	1571 (61.8)	523 (20.6)	183 (7.2)	-7 (-0.3)	-21 (-0.8)	9 (0.3)	24 (0.9)
F98	1578 (62.1)	652 (25.7)	176 (6.9)	1572 (61.9)	628 (24.7)	204 (8)	-6 (-0.2)	-24 (-1)	28(1.1)	37 (1.5)
F99	1585 (62.4)	749 (29.5)	177 (7)	1580 (62.2)	723 (28.5)	221 (8.7)	-5 (-0.2)	-26 (-1)	45 (1.8)	52 (2)
F100	1587 (62.5)	796 (31.3)	177 (7)	1584 (62.4)	769 (30.3)	216 (8.5)	-3 (-0.1)	-26 (-1)	39 (1.5)	47 (1.9)
F101	1536 (60.5)	340 (13.4)	173 (6.8)	1525 (60)	320 (12.6)	166 (6.6)	-11 (-0.4)	-20 (-0.8)	-6 (-0.3)	24 (0.9)
F102	1527 (60.1)	396 (15.6)	175 (6.9)	1516 (59.7)	376 (14.8)	168 (6.6)	-10 (-0.4)	-20 (-0.8)	-7 (-0.3)	24 (0.9)
F103	1520 (59.8)	454 (17.9)	176 (6.9)	1511 (59.5)	435 (17.1)	170 (6.7)	-9 (-0.3)	-19 (-0.7)	-6 (-0.2)	22 (0.9)
F104	1520 (59.8)	542 (21.3)	176 (6.9)	1513 (59.6)	522 (20.5)	184 (7.2)	-7 (-0.3)	-20 (-0.8)	8 (0.3)	23 (0.9)
F105	1519 (59.8)	651 (25.6)	177 (7)	1514 (59.6)	628 (24.7)	203 (8)	-5 (-0.2)	-22 (-0.9)	26(1)	35 (1.4)
F106	1534 (60.4)	749 (29.5)	178 (7)	1530 (60.2)	726 (28.6)	216 (8.5)	-4 (-0.1)	-22 (-0.9)	38 (1.5)	44 (1.7)
F107	1528 (60.2)	797 (31.4)	178 (7)	1525 (60.1)	774 (30.5)	212 (8.4)	-3 (-0.1)	-23 (-0.9)	34 (1.4)	42 (1.6)
F108	1477 (58.1)	747 (29.4)	179 (7)	1474 (58)	726 (28.6)	209 (8.2)	-3 (-0.1)	-22 (-0.8)	30 (1.2)	37 (1.5)
F109	1474 (58)	798 (31.4)	179 (7)	1471 (57.9)	775 (30.5)	213 (8.4)	-4 (-0.1)	-22 (-0.9)	34 (1.4)	41 (1.6)
F110	1449 (57)	341 (13.4)	176 (6.9)	1437 (56.6)	323 (12.7)	166 (6.5)	-11 (-0.4)	-19 (-0.7)	-9 (-0.4)	24 (0.9)
F111	1451 (57.1)	392 (15.4)	177 (7)	1440 (56.7)	373 (14.7)	171 (6.7)	-10 (-0.4)	-19 (-0.8)	-6 (-0.3)	23 (0.9)
F112	1445 (56.9)	451 (17.7)	177 (7)	1436 (56.5)	433 (17)	171 (6.7)	-9 (-0.4)	-18 (-0.7)	-6 (-0.2)	21 (0.8)
F113	1449 (57)	539 (21.2)	178 (7)	1442 (56.8)	521 (20.5)	180 (7.1)	-7 (-0.3)	-18 (-0.7)	2 (0.1)	19 (0.8)
F114	1444 (56.8)	646 (25.4)	178 (7)	1440 (56.7)	627 (24.7)	188 (7.4)	-3 (-0.1)	-19 (-0.8)	10(0.4)	22 (0.9)
F115	1428 (56.2)	742 (29.2)	174 (6.9)	1428 (56.2)	724 (28.5)	188 (7.4)	0 (0)	-18 (-0.7)	13 (0.5)	23 (0.9)
F116	1427 (56.2)	797 (31.4)	175 (6.9)	1425 (56.1)	777 (30.6)	203 (8)	-2 (-0.1)	-20 (-0.8)	29 (1.1)	35 (1.4)
F117	1391 (54.8)	738 (29)	161 (6.3)	1390 (54.7)	721(28.4)	176 (6.9)	-1 (0)	-16 (-0.6)	15 (0.6)	22 (0.9)
F118	1388 (54.7)	792 (31.2)	155 (6.1)	1388 (54.7)	777 (30.6)	180 (7.1)	0 (0)	-15 (-0.6)	25(1)	29 (1.1)

Side Front Panel Measurements - Dimensions in mm (inches)

Deint	Pre-Impact			Post-Impact				Magnituda		
FOIL	х	Y	Z	Х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
S1	1911 (75.2)	863 (34)	-25 (-1)	1878 (74)	780 (30.7)	-25 (-1)	-33 (-1.3)	-83 (-3.3)	0 (0)	89 (3.5)
S2	1811 (71.3)	865 (34.1)	20 (0.8)	1786 (70.3)	792 (31.2)	26 (1)	-24 (-1)	-73 (-2.9)	6 (0.2)	78 (3.1)
S3	1812 (71.3)	866 (34.1)	-82 (-3.2)	1781 (70.1)	781(30.7)	-80 (-3.2)	-30 (-1.2)	-85 (-3.4)	1 (0.1)	90 (3.6)

Roof Measurements - Dimensions in mm (inches)

Deliet		Pre-Impact			Post-Impaci	t		Difference		Magnituda
POINT	х	Y	Z	х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
R1	1443 (56.8)	233 (9.2)	-1048 (-41.3)	1445 (56.9)	250 (9.9)	-1049 (-41.3)	3 (0.1)	17 (0.7)	0 (0)	17 (0.7)
R2	1428 (56.2)	364 (14.3)	-1043 (-41.1)	1429 (56.3)	383 (15.1)	-1043 (-41.1)	2 (0.1)	18 (0.7)	-1(0)	18 (0.7)
R3	1402 (55.2)	492 (19.4)	-1037 (-40.8)	1400 (55.1)	507 (20)	-1040 (-41)	-3 (-0.1)	16 (0.6)	-3 (-0.1)	16 (0.6)
R4	1347 (53)	663 (26.1)	-1025 (-40.4)	1345 (52.9)	676 (26.6)	-1030 (-40.5)	-3 (-0.1)	13 (0.5)	-4 (-0.2)	14 (0.5)
R5	1286 (50.6)	215 (8.5)	-1113 (-43.8)	1280 (50.4)	229 (9)	-1115 (-43.9)	-6 (-0.3)	14 (0.6)	-2 (-0.1)	16 (0.6)
R6	1269 (50)	330 (13)	-1111 (-43.7)	1263 (49.7)	344 (13.5)	-1112 (-43.8)	-6 (-0.3)	13 (0.5)	-2 (-0.1)	15 (0.6)
R7	1250 (49.2)	437 (17.2)	-1107 (-43.6)	1245 (49)	449 (17.7)	-1108 (-43.6)	-5 (-0.2)	13 (0.5)	-1 (-0.1)	14 (0.5)
R8	1206 (47.5)	609 (24)	-1097 (-43.2)	1199 (47.2)	620 (24.4)	-1099 (-43.3)	-7 (-0.3)	11 (0.4)	-2 (-0.1)	13 (0.5)
R9	1167 (45.9)	201 (7.9)	-1131 (-44.5)	1166 (45.9)	217 (8.5)	-1131 (-44.5)	-1 (0)	16 (0.6)	0 (0)	16 (0.6)
R10	1145 (45.1)	300 (11.8)	-1130 (-44.5)	1140 (44.9)	315 (12.4)	-1129 (-44.5)	-5 (-0.2)	16 (0.6)	0 (0)	17 (0.7)
R11	1118 (44)	406 (16)	-1125 (-44.3)	1113 (43.8)	420 (16.5)	-1124 (-44.3)	-5 (-0.2)	14 (0.5)	1 (0)	15 (0.6)
R12	1087 (42.8)	574 (22.6)	-1114 (-43.9)	1080 (42.5)	585 (23)	-1114 (-43.8)	-7 (-0.3)	11 (0.5)	0 (0)	13 (0.5)
R13	999 (39.3)	179(7)	-1142 (-45)	995 (39.2)	195 (7.7)	-1141 (-44.9)	-4 (-0.2)	16 (0.6)	1 (0)	17 (0.7)
R14	973 (38.3)	296 (11.7)	-1139 (-44.9)	967 (38.1)	309 (12.2)	-1137 (-44.8)	-6 (-0.2)	13 (0.5)	2 (0.1)	15 (0.6)
R15	954 (37.6)	397 (15.6)	-1135 (-44.7)	948 (37.3)	410 (16.1)	-1133 (-44.6)	-6 (-0.2)	13 (0.5)	2 (0.1)	14 (0.6)
R16	933 (36.7)	541 (21.3)	-1126 (-44.3)	927 (36.5)	552 (21.7)	-1125 (-44.3)	-6 (-0.2)	11 (0.4)	2 (0.1)	13 (0.5)

Table 10-25 Test 4-11 Pre, Post Interior and Deformation Measurement Page 4

Vehicle Type	2200P	Test Number	110M AS H4P21-02
Make	Dodge	Model	Ram 1500
Year	2018	Color	White
VIN #	1C6RR6FG3JS290753		

Roof Measurements (Cont.) - Dimensions in mm (inches)

Detet	Pre-Impact			Post-Impact				Magnituda		
Point	х	Y	Z	х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
R17	841 (33.1)	168 (6.6)	-1146 (-45.1)	836 (32.9)	182 (7.2)	-1140 (-44.9)	-5 (-0.2)	15 (0.6)	6 (0.2)	16 (0.6)
R18	826 (32.5)	304 (12)	-1141 (-44.9)	822 (32.3)	317 (12.5)	-1138 (-44.8)	-4 (-0.2)	13 (0.5)	3 (0.1)	14 (0.6)
R19	813 (32)	400 (15.7)	-1138 (-44.8)	808 (31.8)	411 (16.2)	-1135 (-44.7)	-5 (-0.2)	12 (0.5)	2 (0.1)	13 (0.5)
R20	829 (32.6)	551 (21.7)	-1128 (-44.4)	823 (32.4)	560 (22)	-1125 (-44.3)	-6 (-0.2)	9 (0.4)	3 (0.1)	11 (0.4)

Windshield Measurements - Dimensions in mm (inches)

Dejet		Pre-Impact			Post-Impact	t		Difference		Magnitude
POINC	х	Y	Z	Х	Y	Z	ΔX	ΔΥ	ΔZ	Magnicude
W1	1517 (59.7)	306 (12.1)	-1018 (-40.1)	1518 (59.8)	321 (12.7)	-1020 (-40.2)	1 (0.1)	15 (0.6)	-2 (-0.1)	15 (0.6)
W2	1502 (59.1)	419 (16.5)	-1012 (-39.9)	1504 (59.2)	434 (17.1)	-1018 (-40.1)	2 (0.1)	15 (0.6)	-6 (-0.2)	16 (0.6)
W3	1476 (58.1)	550 (21.6)	-1005 (-39.5)	1476 (58.1)	565 (22.2)	-1012 (-39.8)	0 (0)	15 (0.6)	-8 (-0.3)	17 (0.7)
W4	1422 (56)	659 (26)	-1008 (-39.7)	1421 (55.9)	673 (26.5)	-1015 (-40)	-1 (0)	14 (0.6)	-7 (-0.3)	16 (0.6)
W5	1648 (64.9)	328 (12.9)	-944 (-37.2)	1651 (65)	342 (13.5)	-949 (-37.3)	3 (0.1)	14 (0.5)	-4 (-0.2)	14 (0.6)
W6	1632 (64.3)	441 (17.4)	-941 (-37)	1641 (64.6)	454 (17.9)	-943 (-37.1)	8 (0.3)	13 (0.5)	-2 (-0.1)	15 (0.6)
W7	1593 (62.7)	575 (22.7)	-940 (-37)	1597 (62.9)	591 (23.3)	-953 (-37.5)	4 (0.1)	15 (0.6)	-13(-0.5)	20 (0.8)
W8	1550 (61)	698 (27.5)	-935 (-36.8)	1550 (61)	712 (28)	-944 (-37.2)	0 (0)	14 (0.6)	-9 (-0.4)	17 (0.7)
W9	1750 (68.9)	337 (13.3)	-886 (-34.9)	1757 (69.2)	348(13.7)	-887 (-34.9)	7 (0.3)	11 (0.4)	0 (0)	13 (0.5)
W10	1733 (68.2)	464 (18.3)	-879 (-34.6)	1742 (68.6)	472 (18.6)	-878 (-34.6)	9 (0.3)	8 (0.3)	2 (0.1)	12 (0.5)
W11	1686 (66.4)	593 (23.4)	-884 (-34.8)	1692 (66.6)	605 (23.8)	-893 (-35.1)	6 (0.2)	12 (0.5)	-8 (-0.3)	16 (0.6)
W12	1646 (64.8)	726 (28.6)	-873 (-34.4)	1647 (64.8)	736 (29)	-882 (-34.7)	1 (0)	11 (0.4)	-8 (-0.3)	13 (0.5)
W13	1850 (72.8)	354 (13.9)	-823 (-32.4)	1859 (73.2)	364 (14.3)	-822 (-32.4)	8 (0.3)	10 (0.4)	1 (0.1)	13 (0.5)
W14	1828 (72)	484 (19)	-818 (-32.2)	1839 (72.4)	493 (19.4)	-817 (-32.2)	11 (0.4)	9 (0.4)	1 (0)	14 (0.6)
W15	1795 (70.7)	616 (24.3)	-814 (-32)	1808 (71.2)	627 (24.7)	-813 (-32)	13 (0.5)	11 (0.4)	1 (0)	17 (0.7)
W16	1744 (68.7)	746 (29.4)	-807 (-31.8)	1746 (68.8)	755 (29.7)	-811 (-31.9)	3 (0.1)	9 (0.3)	-5 (-0.2)	10 (0.4)
W17	1954 (76.9)	357 (14.1)	-759 (-29.9)	1960 (77.2)	366 (14.4)	-757 (-29.8)	7 (0.3)	9 (0.3)	2 (0.1)	11 (0.4)
W18	1916 (75.4)	498 (19.6)	-761 (-29.9)	1925 (75.8)	506 (19.9)	-759 (-29.9)	9 (0.3)	9 (0.3)	1 (0.1)	12 (0.5)
W19	1885 (74.2)	640 (25.2)	-750 (-29.5)	1895 (74.6)	650 (25.6)	-750 (-29.5)	11 (0.4)	10 (0.4)	0 (0)	15 (0.6)
W20	1838 (72.4)	764 (30.1)	-738 (-29.1)	1841 (72.5)	773 (30.4)	-740 (-29.1)	3 (0.1)	9 (0.3)	-2 (-0.1)	9 (0.4)

Dashboard Measurements - Dimensions in mm (inches)

Dejet		Pre-Impact			Post-Impact	t		Difference		Magnituda
Point	Х	Y	Z	х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
D1	1635 (64.4)	300 (11.8)	-636 (-25)	1639 (64.5)	303 (11.9)	-640 (-25.2)	4 (0.2)	3 (0.1)	-4 (-0.2)	6 (0.2)
D2	1641 (64.6)	412 (16.2)	-632 (-24.9)	1644 (64.7)	415 (16.3)	-634 (-25)	3 (0.1)	2 (0.1)	-1 (-0.1)	4 (0.2)
D3	1647 (64.9)	519 (20.4)	-628 (-24.7)	1650 (64.9)	522 (20.5)	-628 (-24.7)	2 (0.1)	3 (0.1)	0 (0)	3 (0.1)
D4	1658 (65.3)	661 (26)	-620 (-24.4)	1659 (65.3)	663 (26.1)	-618 (-24.3)	1 (0)	2 (0.1)	2 (0.1)	3 (0.1)
D5	1547 (60.9)	319 (12.6)	-360 (-14.2)	1546 (60.9)	312 (12.3)	-367 (-14.5)	-1 (0)	-7(-0.3)	-7 (-0.3)	10 (0.4)
D6	1552 (61.1)	455 (17.9)	-363 (-14.3)	1549 (61)	447 (17.6)	-370 (-14.6)	-3 (-0.1)	-8(-0.3)	-7 (-0.3)	11 (0.4)
D7	1557 (61.3)	560 (22.1)	-370 (-14.6)	1549 (61)	552 (21.7)	-377 (-14.8)	-8 (-0.3)	-8(-0.3)	-7 (-0.3)	13 (0.5)
D8	1565 (61.6)	670 (26.4)	-371 (-14.6)	1548 (61)	663 (26.1)	-379 (-14.9)	-17 (-0.7)	-7(-0.3)	-7 (-0.3)	20 (0.8)
D9	1572 (61.9)	749 (29.5)	-373 (-14.7)	1548 (61)	742 (29.2)	-379 (-14.9)	-23 (-0.9)	-7(-0.3)	-6 (-0.2)	25 (1)
D10	1582 (62.3)	861 (33.9)	-378 (-14.9)	1571 (61.8)	852 (33.5)	-384 (-15.1)	-11 (-0.4)	-10 (-0.4)	-6 (-0.2)	16 (0.6)
D11	1650 (65)	859 (33.8)	-608 (-23.9)	1646 (64.8)	855 (33.6)	-611 (-24.1)	-4 (-0.1)	-4(-0.2)	-3 (-0.1)	6 (0.3)

Table 10-26 Test 4-11 Pre, Post Interior and Deformation Measurement Page 5

Vehicle Type	2200P	Test Number	110M AS H4P21-02	
Make	Dodge	Model	Ram 1500	
Year	2018	Color	White	
VIN #	1C6RR6FG3JS290753			

A and B Pillar Measurements - Dimensions in mm (inches)

Dejet		Pre-Impact			Post-Impact	t	Difference			Magnitude
Point	х	Y	Z	Х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
P1	734 (28.9)	734 (28.9)	-1001 (-39.4)	729 (28.7)	743 (29.3)	-993 (-39.1)	-5 (-0.2)	9 (0.4)	9 (0.3)	13 (0.5)
P2	742 (29.2)	797 (31.4)	-823 (-32.4)	742 (29.2)	803 (31.6)	-818 (-32.2)	0 (0)	6 (0.2)	5 (0.2)	8 (0.3)
P3	764 (30.1)	837 (33)	-684 (-26.9)	765 (30.1)	843 (33.2)	-679 (-26.7)	1 (0)	6 (0.2)	6 (0.2)	8 (0.3)
P4	798 (31.4)	859 (33.8)	-499 (-19.6)	795 (31.3)	861 (33.9)	-492 (-19.4)	-3 (-0.1)	2 (0.1)	7 (0.3)	8 (0.3)
P5	815 (32.1)	863 (34)	-352 (-13.9)	814 (32)	864 (34)	-346 (-13.6)	-2 (-0.1)	1(0)	6 (0.2)	6 (0.3)
P6	827 (32.6)	864 (34)	-197 (-7.8)	827 (32.6)	863 (34)	-191 (-7.5)	0 (0)	-1 (0)	6 (0.2)	6 (0.2)
P7	857 (33.7)	864 (34)	-27 (-1.1)	855 (33.7)	861 (33.9)	-20 (-0.8)	-1 (-0.1)	-3(-0.1)	7 (0.3)	8 (0.3)
P8	867 (34.1)	864 (34)	76 (3)	866 (34.1)	860 (33.9)	84 (3.3)	-1 (-0.1)	-4(-0.1)	7 (0.3)	8 (0.3)
P9	1718 (67.6)	825 (32.5)	-718 (-28.3)	1717 (67.6)	817 (32.2)	-718 (-28.3)	-1 (-0.1)	-8(-0.3)	0 (0)	8 (0.3)
P10	1597 (62.9)	780 (30.7)	-778 (-30.6)	1599 (62.9)	777 (30.6)	-784 (-30.9)	1 (0)	-3(-0.1)	-6 (-0.2)	7 (0.3)
P11	1417 (55.8)	738 (29)	-894 (-35.2)	1420 (55.9)	743 (29.2)	-902 (-35.5)	3 (0.1)	5 (0.2)	-7 (-0.3)	9 (0.4)

Above Seat Front Side Door Area Measurements - Dimensions in mm (inches)

Dejet		Pre-Impact			Post-Impact	t			Magnitudo	
POINT	х	Y	Z	Х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
A1	1558 (61.4)	877 (34.5)	-557 (-21.9)	1534 (60.4)	863 (34)	-551 (-21.7)	-24 (-0.9)	-15 (-0.6)	6 (0.2)	29 (1.1)
AZ	1414 (55.7)	878 (34.6)	-557 (-21.9)	1389 (54.7)	870 (34.2)	-553 (-21.8)	-25 (-1)	-9(-0.3)	4 (0.2)	27 (1)
A3	1269 (49.9)	880 (34.6)	-555 (-21.9)	1243 (48.9)	880 (34.6)	-553 (-21.8)	-25 (-1)	1(0)	3 (0.1)	25 (1)
A4	1131 (44.5)	881 (34.7)	-557 (-21.9)	1108 (43.6)	889 (35)	-552 (-21.7)	-24 (-0.9)	8 (0.3)	5 (0.2)	25 (1)
A5	1003 (39.5)	883 (34.8)	-556 (-21.9)	978 (38.5)	898 (35.4)	-551 (-21.7)	-25 (-1)	15 (0.6)	6 (0.2)	29 (1.2)
A6	885 (34.8)	884 (34.8)	-554 (-21.8)	860 (33.9)	904 (35.6)	-548 (-21.6)	-25 (-1)	20 (0.8)	6 (0.2)	32 (1.3)
A7	1560 (61.4)	853 (33.6)	-359 (-14.1)	1531 (60.3)	819 (32.2)	-354 (-13.9)	-29 (-1.1)	-34 (-1.3)	5 (0.2)	45 (1.8)
A8	1417 (55.8)	823 (32.4)	-353 (-13.9)	1387 (54.6)	796 (31.4)	-349 (-13.7)	-30 (-1.2)	-27 (-1.1)	5 (0.2)	41 (1.6)
A9	1266 (49.9)	821 (32.3)	-348 (-13.7)	1237 (48.7)	803 (31.6)	-344 (-13.5)	-30 (-1.2)	-18 (-0.7)	4 (0.2)	35 (1.4)
A10	1121 (44.1)	821 (32.3)	-347 (-13.7)	1091 (43)	814 (32)	-347 (-13.7)	-30 (-1.2)	-8(-0.3)	-1(0)	31 (1.2)
A11	1002 (39.4)	825 (32.5)	-345 (-13.6)	973 (38.3)	826 (32.5)	-344 (-13.6)	-28 (-1.1)	1(0)	0 (0)	28 (1.1)
A12	912 (35.9)	842 (33.1)	-343 (-13.5)	886 (34.9)	852 (33.5)	-340 (-13.4)	-26 (-1)	10 (0.4)	3 (0.1)	28 (1.1)

Below Seat Front Side Door Area Measurements - Dimensions in mm (inches)

Point		Pre-Impact			Post-Impact			Difference			
FUIIL	Х	Y	Z	Х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude	
B1	1682 (68.6)	847 (34.6)	-41 (-1.7)	1647 (67.2)	788 (32.2)	-35 (-1.4)	-35 (-1.4)	-60 (-2.4)	6 (0.2)	69 (2.8)	
B2	1526 (62.3)	849 (34.7)	-38 (-1.6)	1495 (61)	820 (33.5)	-31 (-1.3)	-32 (-1.3)	-29 (-1.2)	8 (0.3)	43 (1.8)	
B3	1404 (57.3)	910 (37.2)	-28 (-1.1)	1376 (56.2)	888 (36.2)	-26 (-1)	-28 (-1.1)	-22 (-0.9)	2 (0.1)	36 (1.5)	
B4	1287 (52.5)	911 (37.2)	-30 (-1.2)	1259 (51.4)	893 (36.5)	-26 (-1.1)	-27 (-1.1)	-17 (-0.7)	4 (0.2)	33 (1.3)	
B5	1133 (46.2)	912 (37.2)	-24 (-1)	1106 (45.1)	900 (36.7)	-21 (-0.9)	-27 (-1.1)	-11 (-0.5)	3 (0.1)	30 (1.2)	
B6	997 (40.7)	915 (37.4)	-23 (-0.9)	971 (39.6)	911 (37.2)	-23 (-0.9)	-26 (-1.1)	-4(-0.2)	0 (0)	26 (1.1)	
B7	927 (37.8)	872 (35.6)	-43 (-1.8)	908 (37.1)	868 (35.4)	-36 (-1.5)	-19 (-0.8)	-4(-0.2)	7 (0.3)	20 (0.8)	

Floorboard Area Internal Measurements

Windshield

Dash and Windshield Area Internal Measurements

Figure 10-19 Schematic of Measured Interior Points for Floorboard, Dashboard, Windshield, Toe Pan, Wheel Well and Transmission Tunnel

Front Door Area Internal Measurements

Roof Area Internal Measurements Figure 10-20 Schematic of Measured Points for the A Pillar, B Pillar, Side Front Door Panel, Side Door Panel, Front Side Door and Roof

10.6.3. Test 110MASH4S21-03

		Та	ble 10-27	Test 4-12 Ex	cterior Veh	icle Measu	rements			
Policies an	d Procedu	res Manual							Revised	1:1/23/2019
Roadside S	Safety Rese	earch Group								Page 1
		Att	achment !	5.4.7 10000)S Single Un	it Truck Para	ameters			
Date:		10/12/2021	Tes	st Number:	110MA9	5H4S21-03	Mode	l:	Business	Class M2
Tire Size Fr	ont:	295/75R22.5	G Od	ometer:	33473	8.8 miles	Make	_	Freigh	tliner
Tire Size Re	ear:	295/75R22.5	G VIN	N: 1	FVACWDT09	HAH4233	Year:		20	09
Tire Inflatio	on Pressure:	1	00 psi	Tape Meas	sure Used:	5m-0	P03	CLE:*	DRI	512101
Measured	by:	Chris C	Staff:	- Victor l	L Scal	e Set Used:			10000	
×			b o j			c)		<u> </u>
Vehicle Ge a) b) d) e) f) g) h)	ometry - mr 2328 3630 8680 2030 5534 1116 n/a 3544 420	r (inches) (91.6 (142.1 (341.1 (79.9 (217.1 (43.9) n/z (139.1 (15.5	Tape Meas 5) j) 73) l) 2) m) 87) n) 4) o) 53) q) 53) q) 54) r)	sure Used:	5m-CP03 & 1	00ft-+QD01 (30.71) (25.83) (50.63) (82.68) (84.25) (53.74) (3.54) (39.37) (23.62)	s) t) v) w) x) y) z) aa)	867 2435 2774 5829 65 2515 855 1040 2180	((34.13) (95.87) 109.21) 229.49) (2.56) (99.02) (33.66) (40.94) (45.83)
·/	- (11-2)	(10.5	<u>., </u> .,			(23.02)				(05.05)
weights - K	(B (102)	rh	Tect	nertial	Gross	Static	Height Fra	ont	492	(19.37)
W	2935	(6470 5)	3647	(8040 1)	3647	(8040 1)	Wheel Ce	nter		
W	7896	(6384.5)	6/07	(14323.2)	6497	(14373 7)	Height Re	ar	500	(19.69)
Wrozw	5831	(12854.9)	10144	(22363 3)	10144	(22363 3)	Wheel We			
** IOTAL		(22034.3)	10177	(22303.3)	10144	(22003.5)	Clearance	(FR):	205	(8.07)
							Wheel W	ell		1
							Clearance	(RR):	228	(8.98)
Ballast:	433	5.4	(9557.8) Scale:	10000 lbs 9	Scales	Engine Ty	pe:	Diesel I	SB 240
							Engine Siz	e:	408/	6.7L
Ballast - ve	rtical CG fro	m ground mm	(inches):	1625	(64)	Tr	ansmission Auton	Type: natic		
Mass Distr	ibution						RWD			
Left Front	1862	(4104.9) Scale:	red	Right Front	1785	(39	35.2)	Scale:	green
Left Rear	3232	(7125.2) Scale:	yellow	Right Rear	3265	(7	198)	Scale:	blue
Note any d	lamage prio	r to test: <u>No</u>	ne		-					
Data Trans	ferred to Ele	ectronic Copy E	By:	Christ	opher Caldw	ell	Date		12/13/2021	
Transfer Cl	necked by:			Vic	tor O. Lopez		Date	:	1/13/2022	

* CLE is the inventory number and should be located on the door jamb of the vehicle.

Table 10-28 Test 4-12 CG Calculation: Curb Weight

	CG Ca	lculation Works	heet #1: Curb Weight	
Make:	Freightliner		Test Number:	110M A5 H4521-03
Model:	Business Class M2	2	Date:	10/12/2021
Year:	2009		Temperature:	60°F
VIN:	1FVACWDT09HAH42	233	Scale Set Used:	10000
Fuel in Tank:	~3/8		_	
Fuel Removed:	none			M
Measured By:	Chris C Victor	L	₹	≻
	David S		_	
Support Staff	Steve W			
	Vue H		W ₁	
W1 = Left Front (LF) =	1503	kg		
Scale Used:	red			н
			I	l Če ↑
W2 = Right Front (RF) =	1432	kg		⊕ -
Scale Used:	green			
				Е
W3 = Left Rear (LR) =	1383	kg	+	
Scale Used:	yellow		Tank	
			⊯ ⇒	
W4 = Right Rear (RR) =	1513	kg		
Scale Used:	blue			
Total Weight:			W ₃	
Wtotal (measured) =	5830	_ kg	R	≽∣<- ↓ ↓
Wtotal (calculated) = _	5831	_ kg	<	
Distance had see for the he				N
Distance between front whe	els:			
IVI = 2100			$W_{Total} = N$	$W_1 + W_2 + W_3 + W_4$
Distance between rear whee	ale		6	>
N = 2180	mm		(W	$_{3} + W_{4} E$
			<i>II</i> – —	W Total
Distance from front to rear	wheels:			,, <u>10</u>
E = 5534	mm		$(W_2 - W_1)$	$M + (W_4 - W_3)N$
		K =		2 W Total
Distance from front wheels	back to CG:			2 m 10ia
H = 2748	mm	Data Transfer	red to Electronic Copy I	By:
			Christopher Caldwe	II Date: 10/12/2021
Distance from vehicle cente	rline to CG:	Transfer Chec	ked by:	
R = 12	mm		Victor O. Lopez	Date: 1/14/2022

If R is negative the CG is left of center, if R is positive the CG is right of center

Curb Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) No damage, Nothing removed.

110MASH4S21-03 --- CG Data Calculation Worksheet.xlsx

Curb WorkSheet

Table 10-29 Test 4-12 CG Calculation: Test Inertial Weight

CG Calculation Worksheet #2: Test Inertial Weight

If R is negative the CG is left of center, if R is positive the CG is right of center

Test Inertial Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Ballast and equipment installed. Passenger side fuel tank emptied.

110MASH4S21-03 --- CG Data Calculation Worksheet.xlsx

Test Inertial WorkSheet

Table 10-30 Test 4-12 CG Calculation: Gross Static Weight

Table 10-31 Test 4-12 Pre, Post Interior and Deformation Measurement Page 1

Policies and Procedures Manual

Roadside Safety Research Group

Revised: 9/16/2019 1 of 7

Attachment 5.5 --- Interior Vehicle Measurement Report

Vehicle Type	100005	Test Number	110MASH4521-03
Make	Freightliner	Model	Business Class M2
Year	2009	Color	White
VIN #	1FVACWDT09HAH4233		

Transmission Tunnel and Floor Pan Area Measurements - Dimensions in mm (inches)

Deint	Pre-Impact			Post-Impact Difference Magnitude			Difference			
FOIL	Х	Y	Z	Х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
T1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Foot/Wheel Well and Toe Pan Area Measurements - Dimensions in mm (inches)

Detect		Pre-Impact			Post-Impact	t		Difference		Manager Street a
Point	х	Y	Z	х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
F1	973 (38.3)	668 (26.3)	84 (3.3)	971 (38.2)	663 (26.1)	72 (2.8)	-2 (-0.1)	-5(-0.2)	-12(-0.5)	13 (0.5)
F2	973 (38.3)	742 (29.2)	117 (4.6)	972 (38.3)	739(29.1)	105 (4.1)	-1 (0)	-3(-0.1)	-12(-0.5)	12 (0.5)
F3	977 (38.5)	813 (32)	123 (4.8)	976 (38.4)	809 (31.9)	112 (4.4)	-1 (0)	-4(-0.2)	-11(-0.4)	12 (0.5)
F4	979 (38.6)	883 (34.8)	119 (4.7)	980 (38.6)	879 (34.6)	108 (4.3)	1 (0)	-4(-0.2)	-11(-0.4)	11 (0.4)
F5	978 (38.5)	957 (37.7)	121 (4.7)	968 (38.1)	942 (37.1)	83 (3.3)	-10 (-0.4)	-15 (-0.6)	-37(-1.5)	41 (1.6)
F6	979 (38.5)	1044(41.1)	107 (4.2)	966 (38)	1030 (40.5)	58 (2.3)	-13 (-0.5)	-15 (-0.6)	-49(-1.9)	53 (2.1)
F7	985 (38.8)	1119 (44)	70 (2.7)	977 (38.5)	1105 (43.5)	31 (1.2)	-8 (-0.3)	-13 (-0.5)	-39(-1.5)	41 (1.6)
F8	984 (38.7)	1166 (45.9)	61 (2.4)	982 (38.7)	1152 (45.3)	36 (1.4)	-2 (-0.1)	-14 (-0.5)	-24(-1)	28 (1.1)
F9	888 (35)	666 (26.2)	93 (3.6)	886 (34.9)	662 (26.1)	82 (3.2)	-1 (-0.1)	-3(-0.1)	-11(-0.4)	11 (0.4)
F10	886 (34.9)	746 (29.4)	126 (5)	886 (34.9)	741(29.2)	116 (4.5)	0 (0)	-5(-0.2)	-10(-0.4)	11 (0.5)
F11	883 (34.8)	816 (32.1)	132 (5.2)	884 (34.8)	811(31.9)	122 (4.8)	0 (0)	-5(-0.2)	-10(-0.4)	11 (0.4)
F12	882 (34.7)	885 (34.8)	129 (5.1)	882 (34.7)	880(34.7)	120(4.7)	1 (0)	-5(-0.2)	-9 (-0.3)	10 (0.4)
F13	886 (34.9)	955 (37.6)	129 (5.1)	885 (34.8)	947 (37.3)	121 (4.8)	-1 (-0.1)	-8(-0.3)	-8 (-0.3)	11 (0.4)
F14	885 (34.9)	1049(41.3)	135 (5.3)	869 (34.2)	1025 (40.4)	73 (2.9)	-16 (-0.6)	-24 (-0.9)	-61(-2.4)	68 (2.7)
F15	890 (35)	1116(43.9)	147 (5.8)	873 (34.4)	1087 (42.8)	91 (3.6)	-17 (-0.7)	-29 (-1.1)	-56(-2.2)	65 (2.6)
F16	887 (34.9)	1161(45.7)	132 (5.2)	879 (34.6)	1134 (44.7)	98 (3.9)	-8 (-0.3)	-27 (-1.1)	-34(-1.3)	44 (1.7)
F17	941 (37.1)	1113(43.8)	108 (4.2)	929 (36.6)	1092 (43)	55 (2.2)	-13 (-0.5)	-21 (-0.8)	-53(-2.1)	58 (2.3)
F18	937 (36.9)	1161 (45.7)	93 (3.7)	931 (36.7)	1142 (45)	67 (2.6)	-5 (-0.2)	-19 (-0.8)	-26(-1)	33 (1.3)
F19	804 (31.7)	602 (23.7)	81 (3.2)	804 (31.6)	598 (23.5)	72 (2.8)	0 (0)	-4(-0.2)	-8 (-0.3)	9 (0.4)
F20	806 (31.7)	670 (26.4)	104 (4.1)	805 (31.7)	667 (26.2)	95 (3.7)	-1 (0)	-3(-0.1)	-9 (-0.4)	10 (0.4)
F21	806 (31.7)	745 (29.3)	133 (5.2)	807 (31.8)	741(29.2)	123 (4.8)	1 (0)	-4(-0.2)	-10(-0.4)	11 (0.4)
F22	812 (32)	812 (32)	139 (5.5)	813 (32)	807 (31.8)	129 (5.1)	1 (0)	-5(-0.2)	-10(-0.4)	11 (0.4)
F23	816 (32.1)	889 (35)	135 (5.3)	817 (32.2)	884 (34.8)	126 (5)	0 (0)	-4(-0.2)	-8 (-0.3)	9 (0.4)
F24	814 (32)	956 (37.7)	136 (5.4)	816 (32.1)	951 (37.4)	139 (5.5)	2 (0.1)	-6(-0.2)	2 (0.1)	7 (0.3)
F25	811(31.9)	1047 (41.2)	144 (5.7)	796 (31.3)	1022 (40.2)	93 (3.7)	-15 (-0.6)	-25 (-1)	-51(-2)	58 (2.3)
F26	812 (32)	1081 (42.6)	149 (5.9)	794 (31.2)	1058 (41.6)	89 (3.5)	-18 (-0.7)	-23 (-0.9)	-60(-2.4)	67 (2.6)
F27	827 (32.6)	1120(44.1)	171 (6.7)	815 (32.1)	1090 (42.9)	120 (4.7)	-12 (-0.5)	-30 (-1.2)	-52 (-2)	61 (2.4)
F28	816 (32.1)	1155 (45.5)	165 (6.5)	810 (31.9)	1127 (44.4)	125 (4.9)	-6 (-0.2)	-28 (-1.1)	-40(-1.6)	49 (1.9)
F29	823 (32.4)	1205 (47.4)	60 (2.4)	834 (32.8)	1199 (47.2)	45 (1.8)	11 (0.4)	-6(-0.2)	-16(-0.6)	20 (0.8)
F30	783 (30.8)	1202 (47.3)	101 (4)	789 (31.1)	1190 (46.9)	83 (3.3)	6 (0.2)	-12 (-0.5)	-19(-0.7)	23 (0.9)
F31	748 (29.4)	602 (23.7)	90 (3.6)	749 (29.5)	596 (23.5)	81 (3.2)	2 (0.1)	-6(-0.2)	-9 (-0.4)	11 (0.4)
F32	747 (29.4)	663 (26.1)	110 (4.3)	749 (29.5)	662 (26.1)	102 (4)	2 (0.1)	-1(-0.1)	-8 (-0.3)	9 (0.3)
F33	749 (29.5)	747 (29.4)	141 (5.6)	752 (29.6)	742 (29.2)	129 (5.1)	2 (0.1)	-4 (-0.2)	-12 (-0.5)	13 (0.5)
F34	747 (29.4)	815 (32.1)	147 (5.8)	749 (29.5)	811 (31.9)	136 (5.4)	2 (0.1)	-4(-0.1)	-11(-0.4)	12 (0.5)
F35	745 (29.3)	892 (35.1)	143 (5.6)	748 (29.4)	888 (35)	133 (5.2)	3 (0.1)	-3(-0.1)	-10(-0.4)	11 (0.4)
F36	743 (29.2)	959 (37.7)	146 (5.7)	744 (29.3)	957 (37.7)	148 (5.8)	1 (0)	-2(-0.1)	2 (0.1)	3 (0.1)
F37	743 (29.2)	1042 (41)	153 (6)	734 (28.9)	1019 (40.1)	120 (4.7)	-8 (-0.3)	-23 (-0.9)	-33 (-1.3)	41 (1.6)
F38	741 (29.2)	1082 (42.6)	159 (6.3)	729 (28.7)	1058 (41.7)	104 (4.1)	-12 (-0.5)	-24 (-0.9)	-56(-2.2)	62 (2.4)
F39	753 (29.6)	1124 (44.2)	190 (7.5)	741 (29.2)	1094 (43.1)	143 (5.6)	-12 (-0.5)	-29 (-1.2)	-47 (-1.9)	57 (2.2)
F40	752 (29.6)	1160 (45.7)	176 (6.9)	743 (29.3)	1131 (44.5)	137 (5.4)	-8 (-0.3)	-29 (-1.1)	-39(-1.5)	49 (1.9)
F41	739 (29.1)	1210 (47.6)	144 (5.7)	742 (29.2)	1188 (46.8)	124 (4.9)	3 (0.1)	-22 (-0.9)	-20(-0.8)	30 (1.2)
F42	688 (27.1)	600 (23.6)	95 (3.8)	691 (27.2)	595 (23.4)	88 (3.5)	2 (0.1)	-5 (-0.2)	-7 (-0.3)	9 (0.4)
F43	697 (27.4)	662 (26.1)	116 (4.6)	701 (27.6)	662 (26.1)	110 (4.3)	4 (0.2)	0 (0)	-6 (-0.2)	7 (0.3)
F44	693 (27.3)	747 (29.4)	146 (5.8)	694 (27.3)	745 (29.3)	137 (5.4)	1 (0)	-3(-0.1)	-9 (-0.4)	10 (0.4)
F45	688 (27.1)	817 (32.2)	152 (6)	688 (27.1)	814 (32)	144 (5.7)	0 (0)	-3(-0.1)	-8 (-0.3)	9 (0.3)
F46	682 (26.9)	892 (35.1)	148 (5.8)	685 (27)	887 (34.9)	141 (5.5)	2 (0.1)	-4(-0.2)	-8 (-0.3)	9 (0.4)
F47	680 (26.8)	959 (37.8)	153 (6)	682 (26.9)	955 (37.6)	150 (5.9)	2 (0.1)	-4(-0.2)	-2 (-0.1)	5 (0.2)
F48	676 (26.6)	1039(40.9)	160 (6.3)	674 (26.5)	1027 (40.4)	151(6)	-2 (-0.1)	-12 (-0.5)	-9 (-0.4)	15 (0.6)

Table 10-32 Test 4-12 Post Interior and Deformation Measurement Page 2

Policies and Procedures Manual Roadside Safety Research Group Revised: 9/16/2019 2 of 7

Attachment 5.5 --- Interior Vehicle Measurement Report

Vehicle Type	100005	Test Number	110MASH4S21-03
Make	Freightliner	Model	Business Class M2
Year	2009	Color	White
VIN #	1FVACWDT09HAH4233		

Foot/Wheel Well and Toe Pan Area Measurements - Dimensions in mm (inches)

Detet		Pre-Impact			Post-Impact	t		Difference		h da an bu da
Point	х	Y	Z	х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
F49	675 (26.6)	1090 (42.9)	171 (6.7)	659 (26)	1065 (41.9)	122 (4.8)	-15 (-0.6)	-25 (-1)	-49(-1.9)	57 (2.2)
F50	695 (27.4)	1126 (44.3)	203 (8)	686 (27)	1097 (43.2)	159 (6.2)	-10 (-0.4)	-29 (-1.2)	-44(-1.7)	54 (2.1)
F51	693 (27.3)	1165 (45.9)	199 (7.9)	685 (27)	1136 (44.7)	158 (6.2)	-8 (-0.3)	-29 (-1.2)	-41(-1.6)	51 (2)
F52	688 (27.1)	1217 (47.9)	195 (7.7)	688 (27.1)	1186 (46.7)	173 (6.8)	0 (0)	-31 (-1.2)	-22(-0.9)	38 (1.5)
F53	616 (24.3)	601 (23.7)	102 (4)	617 (24.3)	595 (23.4)	99 (3.9)	0 (0)	-6(-0.2)	-2 (-0.1)	7 (0.3)
F54	621(24.5)	663 (26.1)	123 (4.8)	621 (24.4)	663 (26.1)	121 (4.8)	-1 (0)	0(0)	-1 (-0.1)	2 (0.1)
F55	618(24.3)	749 (29.5)	153 (6)	619 (24.4)	747 (29.4)	145 (5.7)	1 (0)	-3(-0.1)	-8 (-0.3)	8 (0.3)
F56	610 (24)	817 (32.2)	159 (6.3)	611 (24.1)	814 (32)	152 (6)	1 (0)	-3(-0.1)	-8 (-0.3)	8 (0.3)
F57	610 (24)	891 (35.1)	155 (6.1)	614 (24.2)	889 (35)	147 (5.8)	4 (0.1)	-2(-0.1)	-8 (-0.3)	9 (0.4)
F58	606 (23.9)	958 (37.7)	160 (6.3)	611 (24)	956 (37.6)	153 (6)	5 (0.2)	-2(-0.1)	-8 (-0.3)	9 (0.4)
F59	608 (23.9)	1041 (41)	169 (6.6)	610 (24)	1036 (40.8)	172 (6.8)	1 (0.1)	-5(-0.2)	3 (0.1)	6 (0.2)
F60	614 (24.2)	1119 (44)	184 (7.3)	602 (23.7)	1102 (43.4)	143 (5.6)	-13 (-0.5)	-16 (-0.6)	-42(-1.6)	46 (1.8)
F61	618(24.3)	1166 (45.9)	215 (8.5)	610 (24)	1139 (44.8)	185 (7.3)	-8 (-0.3)	-27 (-1.1)	-31(-1.2)	41 (1.6)
F62	616 (24.2)	1213 (47.8)	218 (8.6)	616 (24.2)	1184 (46.6)	196 (7.7)	0 (0)	-29 (-1.2)	-22(-0.9)	37 (1.5)
F63	507 (20)	603 (23.7)	111 (4.4)	508 (20)	597 (23.5)	113 (4.5)	1 (0)	-7(-0.3)	2 (0.1)	7 (0.3)
F64	510 (20.1)	667 (26.3)	135 (5.3)	511 (20.1)	663 (26.1)	133 (5.2)	0 (0)	-4(-0.1)	-2 (-0.1)	4 (0.2)
F65	512 (20.2)	753 (29.6)	163 (6.4)	514 (20.2)	750 (29.5)	156 (6.1)	2 (0.1)	-3(-0.1)	-7 (-0.3)	7 (0.3)
F66	506 (19.9)	815 (32.1)	169 (6.6)	506 (19.9)	811 (31.9)	162 (6.4)	0 (0)	-4(-0.1)	-6 (-0.3)	7 (0.3)
F67	504 (19.8)	895 (35.2)	165 (6.5)	507 (19.9)	891 (35.1)	155 (6.1)	3 (0.1)	-3(-0.1)	-10(-0.4)	11 (0.4)
F68	503 (19.8)	965 (38)	173 (6.8)	505 (19.9)	963 (37.9)	158 (6.2)	2 (0.1)	-2(-0.1)	-15(-0.6)	15 (0.6)
F69	506 (19.9)	1043 (41.1)	182 (7.1)	506 (19.9)	1042 (41)	169 (6.7)	1 (0)	-1 (0)	-13(-0.5)	13 (0.5)
F70	506 (19.9)	1122 (44.2)	191 (7.5)	506 (19.9)	1116 (43.9)	179 (7.1)	1 (0)	-5(-0.2)	-11(-0.4)	12 (0.5)
F71	409 (16.1)	594 (23.4)	128 (5)	410 (16.1)	590 (23.2)	127 (5)	0 (0)	-4(-0.2)	-1(0)	4 (0.2)
F72	410(16.1)	673 (26.5)	149 (5.9)	411 (16.2)	667 (26.3)	148 (5.8)	1 (0)	-6(-0.2)	-1(0)	6 (0.2)
F73	416 (16.4)	754 (29.7)	171 (6.7)	416 (16.4)	752 (29.6)	166 (6.5)	0 (0)	-2(-0.1)	-5 (-0.2)	6 (0.2)
F74	414 (16.3)	811 (31.9)	173 (6.8)	416 (16.4)	809 (31.9)	168 (6.6)	2 (0.1)	-2(-0.1)	-5 (-0.2)	6 (0.2)
F75	417 (16.4)	898 (35.4)	174 (6.8)	419 (16.5)	896 (35.3)	164 (6.5)	2 (0.1)	-3(-0.1)	-10(-0.4)	10 (0.4)
F76	420 (16.5)	968 (38.1)	182 (7.1)	420 (16.5)	966 (38)	166 (6.5)	1 (0)	-2(-0.1)	-15(-0.6)	16 (0.6)
F77	416(16.4)	1042 (41)	190 (7.5)	418 (16.4)	1040 (40.9)	170 (6.7)	2 (0.1)	-2(-0.1)	-20(-0.8)	20 (0.8)
F78	410(16.2)	1125 (44.3)	199 (7.8)	412 (16.2)	1121 (44.1)	193 (7.6)	2 (0.1)	-4(-0.2)	-6 (-0.2)	7 (0.3)
F79	334 (13.2)	749 (29.5)	176 (6.9)	336 (13.2)	748 (29.4)	171 (6.7)	1 (0.1)	-1 (0)	-5 (-0.2)	6 (0.2)
F80	306 (12.1)	820 (32.3)	171 (6.7)	307 (12.1)	818 (32.2)	165 (6.5)	1 (0)	-2(-0.1)	-6 (-0.2)	6 (0.2)
F81	311 (12.2)	906 (35.7)	174 (6.8)	313 (12.3)	903 (35.6)	168 (6.6)	2 (0.1)	-3(-0.1)	-6 (-0.2)	7 (0.3)
F82	334(13.1)	967 (38.1)	182 (7.2)	336 (13.2)	966 (38)	175 (6.9)	2 (0.1)	-1(-0.1)	-7 (-0.3)	7 (0.3)
F83	308 (12.1)	1043 (41)	176 (6.9)	311 (12.2)	1042 (41)	169 (6.7)	3 (0.1)	0(0)	-6 (-0.3)	7 (0.3)
F84	307 (12.1)	1120(44.1)	184 (7.3)	310 (12.2)	1119 (44)	177 (6.9)	3 (0.1)	-1 (0)	-8 (-0.3)	8 (0.3)
F85	309(12.2)	1210(47.6)	208 (8.2)	312 (12.3)	1207 (47.5)	200 (7.9)	3 (0.1)	-3(-0.1)	-8 (-0.3)	9 (0.4)

Side Front Panel Measurements - Dimensions in mm (inches)

Detet		Pre-Impact			Post-Impact			Difference			
POINT	х	Y	Z	х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude	
S1	893 (35.2)	1194 (47)	-114 (-4.5)	895 (35.2)	1196 (47.1)	-125 (-4.9)	2 (0.1)	1 (0.1)	-12(-0.5)	12 (0.5)	
S2	958 (37.7)	1190 (46.9)	-15 (-0.6)	959 (37.7)	1196 (47.1)	-30 (-1.2)	1 (0)	5 (0.2)	-14(-0.6)	15 (0.6)	
S3	898 (35.4)	1196 (47.1)	-32 (-1.3)	901 (35.5)	1205 (47.4)	-48 (-1.9)	3 (0.1)	8 (0.3)	-15(-0.6)	18 (0.7)	
S4	889 (35)	1186 (46.7)	5 (0.2)	888 (35)	1190 (46.9)	-15 (-0.6)	0 (0)	4 (0.2)	-20(-0.8)	20 (0.8)	

Table 10-33 Test 4-12 Post Interior and Deformation Measurement Page 3

Policies and Procedures Manual Roadside Safety Research Group Revised: 9/16/2019 3 of 7

Attachment 5.5 --- Interior Vehicle Measurement Report

Vehicle Type	100005	Test Number	110M AS H4S21-03
Make	Freightliner	Model	Business Class M2
Year	2009	Color	White
VIN #	1FVACWDT09HAH4233		

Roof Measurements - Dimensions in mm (inches)

Deliet		Pre-Impact			Post-Impact	t		Ditterence		Magnituda
POINT	х	Y	Z	х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
R1	738(29.1)	539 (21.2)	-1186 (-46.7)	664 (26.1)	554 (21.8)	-1177 (-46.3)	-74 (-2.9)	15 (0.6)	9 (0.4)	76 (3)
R2	736 (29)	666 (26.2)	-1186 (-46.7)	671 (26.4)	684 (26.9)	-1182 (-46.6)	-65 (-2.6)	18 (0.7)	4 (0.1)	68 (2.7)
R3	726 (28.6)	762 (30)	-1186 (-46.7)	672 (26.4)	776 (30.5)	-1186 (-46.7)	-54 (-2.1)	14 (0.6)	0 (0)	56 (2.2)
R4	704 (27.7)	851 (33.5)	-1185 (-46.6)	656 (25.8)	868 (34.2)	-1187 (-46.7)	-48 (-1.9)	17 (0.7)	-2 (-0.1)	51 (2)
R5	696 (27.4)	929 (36.6)	-1184 (-46.6)	655 (25.8)	946 (37.3)	-1189 (-46.8)	-41 (-1.6)	17 (0.7)	-5 (-0.2)	45 (1.8)
R6	711(28)	1015 (39.9)	-1183 (-46.6)	683 (26.9)	1029 (40.5)	-1193 (-47)	-28 (-1.1)	15 (0.6)	-10(-0.4)	33 (1.3)
R7	596 (23.5)	540 (21.2)	-1186 (-46.7)	526 (20.7)	566 (22.3)	-1171 (-46.1)	-70 (-2.8)	26 (1)	15 (0.6)	77 (3)
R8	642 (25.3)	667 (26.3)	-1182 (-46.5)	582 (22.9)	690 (27.2)	-1175 (-46.2)	-60 (-2.4)	23 (0.9)	7 (0.3)	65 (2.5)
R9	645 (25.4)	750 (29.5)	-1183 (-46.6)	592 (23.3)	773 (30.4)	-1179 (-46.4)	-53 (-2.1)	23 (0.9)	4 (0.1)	58 (2.3)
R10	632 (24.9)	837 (33)	-1181 (-46.5)	588 (23.2)	862 (33.9)	-1181 (-46.5)	-44 (-1.7)	25 (1)	0 (0)	51 (2)
R11	623 (24.5)	912 (35.9)	-1180 (-46.4)	584 (23)	936 (36.8)	-1182 (-46.5)	-40 (-1.6)	23 (0.9)	-2 (-0.1)	46 (1.8)
R12	616 (24.3)	1021(40.2)	-1205 (-47.5)	586 (23.1)	1044 (41.1)	-1213 (-47.8)	-30 (-1.2)	22 (0.9)	-8 (-0.3)	38 (1.5)
R13	510 (20.1)	667 (26.3)	-1321 (-52)	448 (17.6)	697 (27.4)	-1329 (-52.3)	-62 (-2.5)	30 (1.2)	-8 (-0.3)	69 (2.7)
R14	475 (18.7)	761 (30)	-1279 (-50.4)	422 (16.6)	796 (31.4)	-1273 (-50.1)	-53 (-2.1)	35 (1.4)	7 (0.3)	64 (2.5)
R15	490(19.3)	868 (34.2)	-1308 (-51.5)	445 (17.5)	899 (35.4)	-1314 (-51.7)	-45 (-1.8)	31 (1.2)	-6 (-0.2)	55 (2.2)
R16	492 (19.4)	937 (36.9)	-1310 (-51.6)	455 (17.9)	969 (38.1)	-1315 (-51.8)	-37 (-1.4)	32 (1.2)	-5 (-0.2)	49 (1.9)
R17	474 (18.6)	1049 (41.3)	-1298 (-51.1)	446 (17.6)	1081 (42.6)	-1303 (-51.3)	-27 (-1.1)	32 (1.3)	-5 (-0.2)	43 (1.7)
R18	399 (15.7)	530 (20.9)	-1316 (-51.8)	329 (13)	570(22.4)	-1331 (-52.4)	-70 (-2.8)	40 (1.6)	-15(-0.6)	82 (3.2)
R19	400(15.8)	664 (26.1)	-1315 (-51.8)	338 (13.3)	704 (27.7)	-1325 (-52.2)	-62 (-2.5)	40 (1.6)	-10(-0.4)	75 (3)
R20	380(14.9)	751 (29.6)	-1283 (-50.5)	326 (12.8)	793 (31.2)	-1275 (-50.2)	-54 (-2.1)	42 (1.6)	8 (0.3)	69 (2.7)
R21	386 (15.2)	852 (33.5)	-1311 (-51.6)	340 (13.4)	894 (35.2)	-1316 (-51.8)	-46 (-1.8)	42 (1.7)	-5 (-0.2)	62 (2.5)
R22	387 (15.3)	924 (36.4)	-1313 (-51.7)	349 (13.7)	964 (38)	-1318 (-51.9)	-39 (-1.5)	40 (1.6)	-5 (-0.2)	56 (2.2)
R23	378(14.9)	1026 (40.4)	-1302 (-51.3)	348 (13.7)	1069 (42.1)	-1307 (-51.4)	-31 (-1.2)	43 (1.7)	-4 (-0.2)	53 (2.1)
R24	317 (12.5)	759 (29.9)	-1285 (-50.6)	262 (10.3)	808 (31.8)	-1276 (-50.2)	-55 (-2.2)	50 (2)	9 (0.4)	74 (2.9)
R25	307 (12.1)	856 (33.7)	-1312 (-51.6)	262 (10.3)	903 (35.5)	-1315 (-51.8)	-45 (-1.8)	47 (1.9)	-3 (-0.1)	65 (2.6)
R26	299 (11.8)	908 (35.7)	-1316 (-51.8)	258 (10.2)	955 (37.6)	-1319 (-51.9)	-41 (-1.6)	47 (1.9)	-3 (-0.1)	63 (2.5)
R27	277 (10.9)	1029 (40.5)	-1305 (-51.4)	245 (9.6)	1080 (42.5)	-1308 (-51.5)	-32 (-1.3)	52 (2)	-4 (-0.1)	61 (2.4)
R28	164 (6.5)	772 (30.4)	-1288 (-50.7)	106 (4.2)	834 (32.8)	-1275 (-50.2)	-58 (-2.3)	62 (2.4)	13 (0.5)	86 (3.4)
R29	158 (6.2)	857 (33.7)	-1313 (-51.7)	109 (4.3)	916 (36.1)	-1310 (-51.6)	-48 (-1.9)	60 (2.4)	4 (0.2)	77 (3)
R30	156 (6.1)	917 (36.1)	-1317 (-51.9)	111 (4.4)	977 (38.5)	-1315 (-51.8)	-45 (-1.8)	61 (2.4)	2 (0.1)	76 (3)
R31	132 (5.2)	1031(40.6)	-1307 (-51.4)	101 (4)	1095 (43.1)	-1306 (-51.4)	-31 (-1.2)	64 (2.5)	0 (0)	71 (2.8)
R32	63 (2.5)	764 (30.1)	-1290 (-50.8)	4 (0.2)	834 (32.8)	-1276 (-50.2)	-59 (-2.3)	70 (2.8)	14 (0.6)	92 (3.6)
R33	55 (2.1)	858 (33.8)	-1315 (-51.8)	5 (0.2)	928 (36.5)	-1307 (-51.5)	-49 (-1.9)	70 (2.8)	7 (0.3)	86 (3.4)
R34	50(2)	929 (36.6)	-1318 (-51.9)	8 (0.3)	1000 (39.4)	-1313 (-51.7)	-41 (-1.6)	71 (2.8)	5 (0.2)	82 (3.2)
R35	49 (1.9)	1032 (40.6)	-1308 (-51.5)	16 (0.6)	1102 (43.4)	-1306 (-51.4)	-34 (-1.3)	70 (2.8)	2 (0.1)	78 (3.1)
R36	-47 (-1.8)	761 (30)	-1291 (-50.8)	-105 (-4.1)	841 (33.1)	-1275 (-50.2)	-58 (-2.3)	80 (3.2)	16 (0.6)	100(4)
R37	-48 (-1.9)	848 (33.4)	-1317 (-51.8)	-94 (-3.7)	929 (36.6)	-1308 (-51.5)	-46 (-1.8)	81 (3.2)	9 (0.4)	94 (3.7)
R38	-44 (-1.7)	925 (36.4)	-1320 (-52)	-84 (-3.3)	1004 (39.5)	-1314 (-51.7)	-39 (-1.6)	78 (3.1)	6 (0.2)	88 (3.5)
R39	-44 (-1.7)	1031(40.6)	-1309 (-51.5)	-75 (-3)	1109 (43.7)	-1307 (-51.5)	-31 (-1.2)	78 (3.1)	2 (0.1)	84 (3.3)

Windshield Measurements - Dimensions in mm (inches)

Point		Pre-Impact			Post-Impac	t		Difference		Magnituda
FUIII	х	Y	Z	х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
W1	932 (36.7)	709 (27.9)	-1061 (-41.8)	884 (34.8)	710 (28)	-1067 (-42)	-49 (-1.9)	1(0)	-6 (-0.2)	49 (1.9)
W2	920 (36.2)	816 (32.1)	-1056 (-41.6)	881 (34.7)	817 (32.2)	-1064 (-41.9)	-39 (-1.5)	2 (0.1)	-8 (-0.3)	40 (1.6)
W3	905 (35.6)	915 (36)	-1049 (-41.3)	875 (34.4)	918 (36.1)	-1058 (-41.7)	-30 (-1.2)	3 (0.1)	-9 (-0.4)	32 (1.3)
W4	889 (35)	994 (39.1)	-1045 (-41.2)	862 (33.9)	997 (39.3)	-1056 (-41.6)	-27 (-1)	3 (0.1)	-10(-0.4)	29 (1.1)
W5	867 (34.1)	1078(42.4)	-1040 (-41)	845 (33.3)	1083 (42.6)	-1050 (-41.3)	-22 (-0.9)	5 (0.2)	-10(-0.4)	25 (1)
W6	987 (38.9)	714 (28.1)	-948 (-37.3)	949 (37.4)	715 (28.2)	-959 (-37.8)	-39 (-1.5)	1(0)	-11(-0.4)	40 (1.6)
W7	972 (38.3)	836 (32.9)	-944 (-37.1)	942 (37.1)	835 (32.9)	-955 (-37.6)	-31 (-1.2)	0(0)	-11(-0.4)	33 (1.3)
W8	955 (37.6)	933 (36.8)	-940 (-37)	929 (36.6)	934 (36.8)	-952 (-37.5)	-26 (-1)	1(0)	-12(-0.5)	29 (1.2)
W9	936 (36.8)	1016 (40)	-939 (-37)	914 (36)	1017 (40.1)	-950 (-37.4)	-22 (-0.9)	2 (0.1)	-12(-0.5)	25 (1)
W10	913 (35.9)	1097 (43.2)	-935 (-36.8)	895 (35.2)	1101 (43.3)	-946 (-37.2)	-18 (-0.7)	4 (0.2)	-11(-0.4)	22 (0.8)

Table 10-34 Test 4-12 Post Interior and Deformation Measurement Page 4

Policies and Procedures Manual

Roadside Safety Research Group

Attachment 5.5 --- Interior Vehicle Measurement Report

Vehicle Type	100005	Test Number	110MASH4521-03
Make	Freightliner	Model	Business Class M2
Year	2009	Color	White
VIN #	1FVACWDT09HAH4233		

Windshield Measurements - Dimensions in mm (inches)

Detet		Pre-Impact			Post-Impact	t		Difference		Magnituda
POINT	х	Y	Z	Х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
W11	888 (34.9)	1191 (46.9)	-911 (-35.9)	872 (34.3)	1197 (47.1)	-926 (-36.5)	-16 (-0.6)	5 (0.2)	-15(-0.6)	22 (0.9)
W12	1034 (40.7)	716 (28.2)	-854 (-33.6)	1000 (39.4)	714 (28.1)	-870 (-34.3)	-34 (-1.3)	-2(-0.1)	-16(-0.6)	38 (1.5)
W13	1018 (40.1)	840 (33.1)	-849 (-33.4)	989 (38.9)	838 (33)	-866 (-34.1)	-29 (-1.2)	-2(-0.1)	-17(-0.7)	34 (1.3)
W14	999 (39.3)	946 (37.2)	-847 (-33.3)	974 (38.3)	945 (37.2)	-863 (-34)	-25 (-1)	-1 (0)	-16(-0.6)	29 (1.2)
W15	987 (38.8)	1028 (40.5)	-829 (-32.6)	965 (38)	1029 (40.5)	-846 (-33.3)	-21 (-0.8)	1(0)	-17(-0.7)	27 (1.1)
W16	955 (37.6)	1155 (45.5)	-806 (-31.7)	939 (37)	1157 (45.6)	-823 (-32.4)	-16 (-0.6)	2 (0.1)	-17(-0.7)	23 (0.9)
W17	1086 (42.8)	721 (28.4)	-747 (-29.4)	1060 (41.7)	717 (28.2)	-760 (-29.9)	-26 (-1)	-4(-0.1)	-14(-0.5)	30 (1.2)
W18	1068 (42.1)	845 (33.3)	-744 (-29.3)	1045 (41.1)	844 (33.2)	-760 (-29.9)	-23 (-0.9)	-1 (0)	-16(-0.6)	28 (1.1)
W19	1052 (41.4)	959 (37.7)	-730 (-28.7)	1033 (40.7)	958 (37.7)	-744 (-29.3)	-19 (-0.7)	-1 (0)	-15(-0.6)	24 (0.9)
W20	1034 (40.7)	1052 (41.4)	-716 (-28.2)	1019 (40.1)	1050 (41.3)	-731 (-28.8)	-16 (-0.6)	-2(-0.1)	-15(-0.6)	22 (0.9)
W21	988 (38.9)	1213 (47.8)	-674 (-26.5)	977 (38.5)	1215 (47.8)	-687 (-27.1)	-11 (-0.4)	2 (0.1)	-13(-0.5)	17 (0.7)
W22	1133 (44.6)	732 (28.8)	-649 (-25.6)	1110 (43.7)	727 (28.6)	-666 (-26.2)	-23 (-0.9)	-4(-0.2)	-17(-0.7)	29 (1.1)
W23	1113 (43.8)	857 (33.8)	-648 (-25.5)	1094 (43.1)	854 (33.6)	-663 (-26.1)	-19 (-0.7)	-3(-0.1)	-15(-0.6)	24 (1)
W24	1089 (42.9)	980 (38.6)	-642 (-25.3)	1074 (42.3)	977 (38.5)	-656 (-25.8)	-15 (-0.6)	-4(-0.1)	-14(-0.6)	21 (0.8)
W25	1071 (42.2)	1076(42.4)	-622 (-24.5)	1058 (41.7)	1073 (42.3)	-637 (-25.1)	-13 (-0.5)	-2(-0.1)	-15(-0.6)	20 (0.8)
W26	1017 (40)	1220 (48)	-601 (-23.7)	1006 (39.6)	1223 (48.1)	-615 (-24.2)	-11 (-0.4)	2 (0.1)	-13(-0.5)	17 (0.7)
W27	1173 (46.2)	736 (29)	-564 (-22.2)	1153 (45.4)	730 (28.8)	-582 (-22.9)	-19 (-0.8)	-5(-0.2)	-18(-0.7)	27 (1.1)
W28	1151 (45.3)	870 (34.3)	-562 (-22.1)	1135 (44.7)	865 (34.1)	-580 (-22.8)	-17 (-0.7)	-5(-0.2)	-18(-0.7)	25 (1)
W29	1124 (44.2)	1001 (39.4)	-557 (-21.9)	1110 (43.7)	996 (39.2)	-575 (-22.6)	-14 (-0.6)	-4(-0.2)	-19(-0.7)	24 (0.9)
W30	1085 (42.7)	1121 (44.1)	-555 (-21.8)	1076 (42.4)	1117 (44)	-569 (-22.4)	-9 (-0.4)	-4(-0.2)	-14(-0.5)	17 (0.7)
W31	1035 (40.7)	1239 (48.8)	-532 (-21)	1028 (40.5)	1237 (48.7)	-546 (-21.5)	-7 (-0.3)	-1(-0.1)	-14(-0.5)	16 (0.6)

Dashboard Measurements - Dimensions in mm (inches)

Dejet		Pre-Impact			Post-Impact	:		Difference		Magnituda
POINT	х	Y	Z	Х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
D1										
D2										
D3										
D4										
D5							<u>ح</u> ر .			
D6							300	1		
D7						'YM'				
D8					5.00		_			
D9					, <i>, , (' ²</i>	2				
D10				-* (<u>,</u> ,,,					
D11				$\sqrt{5}$						
D12			* 5	10						
D13		50	Sinc	,						
D14		Y _	0.	_						
D15		\ •								
D16			_							
D17										
D18		l î								
D19										

Revised: 9/16/2019 4 of 7

Table 10-35 Test 4-12 Post Interior and Deformation Measurement Page 5

Policies and Procedures Manual Roadside Safety Research Group Revised: 9/16/2019 5 of 7

Attachment 5.5 --- Interior Vehicle Measurement Report

Vehicle Type	100005	Test Number	110MASH4521-03
Make	Freightliner	Model	Business Class M2
Year	2009	Color	White
VIN #	1FVACWDT09HAH4233		

A and B Pillar Measurements - Dimensions in mm (inches)

Point	Pre-Impact				Post-Impact			Difference		
FUIIL	Х	Y	Z	х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
P1	651(25.6)	1140(44.9)	-1136 (-44.7)	631 (24.8)	1159 (45.6)	-1147 (-45.2)	-21 (-0.8)	19 (0.7)	-11(-0.4)	30 (1.2)
P2	673 (26.5)	1151 (45.3)	-1088 (-42.8)	656 (25.8)	1165 (45.8)	-1099 (-43.3)	-17 (-0.7)	14 (0.6)	-10(-0.4)	24 (0.9)
P3	707 (27.8)	1174 (46.2)	-1023 (-40.3)	692 (27.2)	1188 (46.8)	-1034 (-40.7)	-15 (-0.6)	14 (0.6)	-11(-0.5)	24 (0.9)
P4	736 (29)	1180 (46.5)	-955 (-37.6)	724 (28.5)	1191 (46.9)	-967 (-38.1)	-11 (-0.4)	11 (0.4)	-12 (-0.5)	19 (0.8)
P5	759 (29.9)	1186 (46.7)	-901 (-35.5)	746 (29.4)	1196 (47.1)	-912 (-35.9)	-13 (-0.5)	10 (0.4)	-12(-0.5)	20 (0.8)
P6	785 (30.9)	1199 (47.2)	-829 (-32.6)	773 (30.5)	1207 (47.5)	-840 (-33.1)	-12 (-0.5)	8 (0.3)	-11(-0.4)	18 (0.7)
P7	814 (32.1)	1204 (47.4)	-744 (-29.3)	806 (31.7)	1206 (47.5)	-759 (-29.9)	-8 (-0.3)	2 (0.1)	-16(-0.6)	18 (0.7)
P8	840 (33.1)	1202 (47.3)	-679 (-26.7)	834 (32.8)	1202 (47.3)	-695 (-27.4)	-6 (-0.3)	0(0)	-16(-0.6)	17 (0.7)
P9	861 (33.9)	1204 (47.4)	-570 (-22.5)	852 (33.6)	1205 (47.4)	-584 (-23)	-8 (-0.3)	1 (0.1)	-14(-0.5)	16 (0.6)
P10	-114 (-4.5)	1185 (46.7)	-1084 (-42.7)	-129 (-5.1)	1257 (49.5)	-1082 (-42.6)	-15 (-0.6)	71 (2.8)	2 (0.1)	73 (2.9)
P11	-112 (-4.4)	1196 (47.1)	-1010 (-39.8)	-132 (-5.2)	1265 (49.8)	-1003 (-39.5)	-19 (-0.8)	68 (2.7)	7 (0.3)	71 (2.8)
P12	-114 (-4.5)	1208 (47.6)	-937 (-36.9)	-131 (-5.2)	1268 (49.9)	-935 (-36.8)	-18 (-0.7)	60 (2.4)	2 (0.1)	62 (2.5)
P13	-114 (-4.5)	1216 (47.9)	-858 (-33.8)	-129 (-5.1)	1270 (50)	-855 (-33.7)	-15 (-0.6)	54 (2.1)	3 (0.1)	56 (2.2)
P14	-118 (-4.6)	1222 (48.1)	-796 (-31.3)	-132 (-5.2)	1272 (50.1)	-790 (-31.1)	-14 (-0.6)	50 (2)	6 (0.2)	52 (2.1)
P15	-120 (-4.7)	1228 (48.3)	-725 (-28.6)	-134 (-5.3)	1273 (50.1)	-722 (-28.4)	-14 (-0.5)	45 (1.8)	3 (0.1)	47 (1.9)
P16	-131 (-5.2)	1234 (48.6)	-642 (-25.3)	-143 (-5.6)	1273 (50.1)	-637 (-25.1)	-13 (-0.5)	39 (1.5)	4 (0.2)	41 (1.6)
P17	-140 (-5.5)	1239 (48.8)	-553 (-21.8)	-153 (-6)	1271 (50.1)	-545 (-21.5)	-14 (-0.5)	33 (1.3)	8 (0.3)	36 (1.4)
P18	-141 (-5.6)	1241(48.9)	-480 (-18.9)	-155 (-6.1)	1269 (50)	-475 (-18.7)	-14 (-0.5)	28 (1.1)	6 (0.2)	32 (1.3)
P19	-142 (-5.6)	1242 (48.9)	-386 (-15.2)	-151 (-5.9)	1265 (49.8)	-379 (-14.9)	-9 (-0.4)	22 (0.9)	7 (0.3)	25 (1)
P20	-141 (-5.5)	1243 (48.9)	-277 (-10.9)	-147 (-5.8)	1258 (49.5)	-274 (-10.8)	-6 (-0.2)	15 (0.6)	3 (0.1)	17 (0.7)
P21	-144 (-5.7)	1236 (48.6)	-137 (-5.4)	-147 (-5.8)	1245 (49)	-136 (-5.3)	-2 (-0.1)	9 (0.4)	2 (0.1)	10 (0.4)

Above Seat Front Side Door Area Measurements - Dimensions in mm (inches)

Point	Pre-Impact			Post-Impact			Difference			Magnituda
	х	Y	Z	Х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
A1	751 (29.5)	1206 (47.5)	-445 (-17.5)	743 (29.3)	1214 (47.8)	-459 (-18.1)	-7 (-0.3)	8(0.3)	-15(-0.6)	18 (0.7)
AZ	683 (26.9)	1201 (47.3)	-446 (-17.6)	675 (26.6)	1211 (47.7)	-458 (-18)	-8 (-0.3)	10 (0.4)	-12(-0.5)	17 (0.7)
A3	603 (23.7)	1203 (47.4)	-454 (-17.9)	595 (23.4)	1215 (47.9)	-463 (-18.2)	-8 (-0.3)	13 (0.5)	-9 (-0.4)	18 (0.7)
A4	491 (19.3)	1195 (47.1)	-466 (-18.4)	483 (19)	1212 (47.7)	-477 (-18.8)	-8 (-0.3)	17 (0.7)	-10(-0.4)	21 (0.8)
A5	366(14.4)	1183 (46.6)	-481 (-19)	359 (14.1)	1205 (47.5)	-490 (-19.3)	-7 (-0.3)	22 (0.9)	-8 (-0.3)	25 (1)
A6	241 (9.5)	1193 (47)	-499 (-19.7)	233 (9.2)	1220 (48)	-504 (-19.9)	-8 (-0.3)	27 (1.1)	-5 (-0.2)	29 (1.1)
A7	132 (5.2)	1207 (47.5)	-518 (-20.4)	124 (4.9)	1239 (48.8)	-520 (-20.5)	-8 (-0.3)	32 (1.3)	-2 (-0.1)	33 (1.3)
A8	40 (1.6)	1213 (47.8)	-537 (-21.1)	32 (1.3)	1249 (49.2)	-538 (-21.2)	-8 (-0.3)	36 (1.4)	-1 (-0.1)	37 (1.4)

Below Seat Front Side Door Area Measurements - Dimensions in mm (inches)

Point	Pre-Impact			Post-Impact			Difference			Magnituda
	х	Y	Z	х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
B1	736(30.1)	1235 (50.4)	-13 (-0.5)	737 (30.1)	1226 (50)	-25 (-1)	1 (0)	-10 (-0.4)	-12(-0.5)	15 (0.6)
B2	653 (26.6)	1239 (50.6)	-10 (-0.4)	652 (26.6)	1232 (50.3)	-22 (-0.9)	0 (0)	-7(-0.3)	-13(-0.5)	15 (0.6)
B3	572 (23.3)	1263 (51.5)	10 (0.4)	574 (23.4)	1256 (51.3)	0 (0)	2 (0.1)	-6(-0.3)	-10(-0.4)	12 (0.5)
B4	473 (19.3)	1270 (51.9)	26 (1.1)	475 (19.4)	1266 (51.7)	19 (0.8)	3 (0.1)	-4(-0.2)	-8 (-0.3)	9 (0.4)
B5	351 (14.3)	1239 (50.6)	21 (0.8)	350 (14.3)	1238 (50.5)	14 (0.6)	-1 (-0.1)	0(0)	-7 (-0.3)	7 (0.3)
B6	236 (9.6)	1236 (50.5)	35 (1.4)	237 (9.7)	1240 (50.6)	25 (1)	1 (0)	4(0.1)	-10(-0.4)	11 (0.4)
B7	635 (25.9)	1235 (50.4)	122 (5)	635 (25.9)	1221 (49.8)	112 (4.6)	0 (0)	-15 (-0.6)	-10(-0.4)	18 (0.7)
B8	544 (22.2)	1237 (50.5)	134 (5.5)	546 (22.3)	1225 (50)	123 (5)	2 (0.1)	-12 (-0.5)	-10(-0.4)	16 (0.6)
B9	416(17)	1237 (50.5)	152 (6.2)	418 (17.1)	1229 (50.2)	142 (5.8)	2 (0.1)	-8(-0.3)	-10(-0.4)	12 (0.5)

Figure 10-21 Schematic of Measured Interior Points for Floorboard, Dashboard, Windshield, Toe Pan, Wheel Well and Transmission Tunnel

Figure 10-22 Schematic of Measured Points for the A Pillar, B Pillar, Side Front Door Panel, Side Door Panel, Front Side Door and Roof

10.7. Data Plots

The TRAP data plots, and summary sheets are shown in Figure 10-23 through Figure 10-71. The plots included are the accelerations, angular rate sensor rates, angular rate sensor degrees, Acceleration Severity Index (ASI), and TRAP test summary sheets. All data were analyzed using TRAP.

10.7.1. Data Plots - Test 110MASH4C21-01 (Test 4-10)

The data from both SLICE systems were analyzed using TRAP. The TRAP results sheets and data plots are shown below.

DTS SLICE BASE 659 Plots

Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

General Information Test Agency: California Department of Transportation Test Number: 110MASH4C21-01 Test Date: 05/26/2021 Test Article: DTS BA00659 Type 86H MASH Test 4-10 Test Vehicle Description: 2015 Nissan Versa Sedan Test Inertial Mass: 1107 kg Gross Static Mass: 1107 kg Impact Conditions Speed: 99.6 km/h Angle: 25.2 degrees **Occupant Risk Factors** Impact Velocity (m/s) at 0.0870 seconds on right side of interior x-direction 6.9 y-direction 10.0 43.4 at 0.0855 seconds on right side of interior THIV (km/hr): THIV (m/s): 12.0 Ridedown Accelerations (q's) x-direction -6.0 (0.1931 - 0.2031 seconds) -11.8 (0.1922 - 0.2022 seconds) y-direction PHD (g's): 13.1 (0.1924 - 0.2024 seconds) ASI: 2.83 (0.0606 - 0.1106 seconds) Max. 50msec Moving Avg. Accelerations (g's) x-direction -13.1 (0.0301 - 0.0801 seconds) y-direction -20.3 (0.0297 - 0.0797 seconds) z-direction 4.8 (0.0132 - 0.0632 seconds) Max Roll, Pitch, and Yaw Angles (degrees) (0.2631 seconds) Roll 9.5 Pitch -5.2 (0.9134 seconds) Yaw -48.6 (1.0097 seconds)

Figure 10-23 Test 4-10 TRAP Summary Sheet (DTS SLICE Micro TRAP BA00659)

Y Acceleration at CG

Figure 10-25 Test 4-10 Lateral Acceleration (DTS SLICE Micro TRAP BA00659)

Roll, Pitch and Yaw Angles

Figure 10-29 Test 4-10 Acceleration Severity Index (DTS SLICE Micro TRAP BA00659)
DTS SLICE BASE 656 Plots

Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

General Information Test Agency: California Department of Transportation Test Number: 110MASH4C21-01 Test Date: 05/26/2021 Test Article: DTS BA00656 Type 86H MASH Test 4-10 Test Vehicle Description: 2015 Nissan Versa Sedan Test Inertial Mass: 1107 ka Gross Static Mass: 1107 kg Impact Conditions Speed: 99.6 km/h Angle: 25.2 degrees Occupant Risk Factors Impact Velocity (m/s) at 0.0889 seconds on right side of interior x-direction 6.8 y-direction 9.4 41.7 at 0.0872 seconds on right side of interior THIV (km/hr): THIV (m/s): 11.6 Ridedown Accelerations (g's) x-direction -6.0 (0.1932 - 0.2032 seconds) y-direction -12.1 (0.1921 - 0.2021 seconds) PHD (g's): 13.4 (0.1924 - 0.2024 seconds) ASI: 2.71 (0.0609 - 0.1109 seconds) Max. 50msec Moving Avg. Accelerations (g's) x-direction -13.1 (0.0300 - 0.0800 seconds) -19.2 (0.0298 - 0.0798 seconds) y-direction z-direction 3.5 (0.0135 - 0.0635 seconds) Max Roll, Pitch, and Yaw Angles (degrees) Roll 8.5 (0.2630 seconds) Pitch -6.1 (0.9462 seconds) Yaw -47.4 (1.0104 seconds)

Figure 10-30 Test 4-10 TRAP Summary Sheet (DTS SLICE Micro TRAP BA00656)

Y Acceleration at CG

Figure 10-32 Test 4-10 Lateral Acceleration (DTS SLICE Micro TRAP BA00656)

Figure 10-34 Test 4-10 Roll, Pitch, and Yaw Rates (DTS SLICE Micro TRAP BA00656)

Roll, Pitch and Yaw Angles

ASI

10.7.2 Data Plots - Test 110MASH4P21-02 (Test 4-11)

The data from both SLICE systems were analyzed using TRAP. The TRAP results sheets and data plots are shown below.

DTS SLICE BASE 659 Plots

Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

General Information Test Agency: California Department of Transportation Test Number: 110MASH4P21-02 Test Date: 08/25/2021 Test Article: DTS BA00659 Type 86H MASH Test 4-11 Test Vehicle Description: 2018 Dodge Ram 1500 Test Inertial Mass: 2235 kg Gross Static Mass: 2235 kg Impact Conditions Speed: 99.7 km/h Angle: 25.3 degrees Occupant Risk Factors Impact Velocity (m/s) at 0.0982 seconds on right side of interior x-direction 7.1 y-direction 9.0 THIV (km/hr): 40.9 at 0.0959 seconds on right side of interior THIV (m/s): 11.3 Ridedown Accelerations (g's) x-direction -4.6 (0.2324 - 0.2424 seconds) y-direction -8.6 (0.2360 - 0.2460 seconds) PHD (g's): 9.2 (0.2328 - 0.2428 seconds) ASI: 2.20 (0.0666 - 0.1166 seconds) Max. 50msec Moving Avg. Accelerations (g's) x-direction -12.0 (0.0469 - 0.0969 seconds) -16.1 (0.0441 - 0.0941 seconds) y-direction (0.0493 - 0.0993 seconds) z-direction -2.7 Max Roll, Pitch, and Yaw Angles (degrees) Roll 15.6 (0.3977 seconds) Pitch -4.4 (0.6353 seconds) Yaw -40.7 (0.8211 seconds)

Figure 10-37 Test 4-11 TRAP Summary Sheet (DTS SLICE Micro TRAP BA00659)

Figure 10-38 Test 4-11 Longitudinal Acceleration (DTS SLICE Micro TRAP BA00659)

Y Acceleration at CG

Figure 10-39 Test 4-11 Lateral Acceleration (DTS SLICE Micro TRAP BA00659)

Roll, Pitch and Yaw Rates

Figure 10-41 Test 4-11 Roll, Pitch, and Yaw Rates (DTS SLICE Micro TRAP BA00659)

Roll, Pitch and Yaw Angles

Figure 10-43 Test 4-11 Acceleration Severity Index (DTS SLICE Micro TRAP BA00659)

DTS SLICE BASE 656 Plots

Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

General Information Test Agency: California Department of Transportation Test Number: 110MASH4P21-02 Test Date: 08/25/2021 Test Article: DTS BA00656 Type 86H MASH Test 4-11 Test Vehicle Description: 2018 Dodge Ram 1500 Test Inertial Mass: 2235 kg 2235 kg Gross Static Mass: Impact Conditions Speed: 99.7 km/h Angle: 25.3 degrees **Occupant Risk Factors** Impact Velocity (m/s) at 0.0981 seconds on right side of interior x-direction 7.1 v-direction 9.0 41.0 at 0.0959 seconds on right side of interior THIV (km/hr): THIV (m/s): 11.4 Ridedown Accelerations (q's) x-direction -4.6 (0.2324 - 0.2424 seconds) (0.2361 - 0.2461 seconds) y-direction -8.3 PHD (g's): 8.7 (0.2327 - 0.2427 seconds) ASI: 2.22 (0.0667 - 0.1167 seconds) Max. 50msec Moving Avg. Accelerations (g's) x-direction -12.0 (0.0469 - 0.0969 seconds) y-direction -16.2 (0.0442 - 0.0942 seconds) z-direction -3.4 (0.0493 - 0.0993 seconds) Max Roll, Pitch, and Yaw Angles (degrees) Roll 15.1 (0.3969 seconds) Pitch -5.1 (0.6442 seconds) Yaw -40.3 (0.8236 seconds)

Figure 10-44 Test 4-11 TRAP Summary Sheet (DTS SLICE Micro TRAP BA00656)

Figure 10-45 Test 4-11 Longitudinal Acceleration (DTS SLICE Micro TRAP BA00656)

Y Acceleration at CG

Figure 10-46 Test 4-11 Lateral Acceleration (DTS SLICE Micro TRAP BA00656)

Figure 10-47 Test 4-11 Vertical Acceleration (DTS SLICE Micro TRAP BA00656)

Roll, Pitch and Yaw Rates

Roll, Pitch and Yaw Angles

10.7.3 Data Plots - Test 110MASH4S21-03 (Test 4-12)

Two sets of accelerometers and angular rate sensors were installed in the cab and one in the cargo box area. The data plots for these sets of instrumentation are shown below.

DTS SLICE BASE 656 Plots (Inside Cab)

Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

General Information Test Agency: California Department of Transportation Test Number: 110MASH4S21-03 Test Date: 12/8/2021 Test Article: DTS BA00656 Type 86H MASH Test 4-12 Cab Test Vehicle 2009 Freightliner Busniess Class M2 Description: Test Inertial Mass: 10144 kg Gross Static Mass: 10144 kg Impact Conditions Speed: 88.1 km/h Angle: 15.0 degrees Occupant Risk Factors Impact Velocity (m/s) at 0.1292 seconds on right side of interior x-direction 1.5 y-direction 4.1 THIV (km/hr): 15.6 at 0.1282 seconds on right side of interior THIV (m/s): 4.3 Ridedown Accelerations (g's) x-direction -5.9 (0.7520 - 0.7620 seconds) y-direction -7.4 (0.3064 - 0.3164 seconds) PHD (g's): 7.5 (0.3127 - 0.3227 seconds) ASI: 0.82 (0.0580 - 0.1080 seconds) Max. 50msec Moving Avg. Accelerations (g's) -4.2 (0.0306 - 0.0806 seconds) x-direction -6.5 v-direction (0.0322 - 0.0822 seconds) z-direction -4.0 (0.0586 - 0.1086 seconds) Max Roll, Pitch, and Yaw Angles (degrees) Roll 20.1 (0.5857 seconds) Pitch -3.7 (0.7631 seconds) Yaw -19.0 (0.9668 seconds)

Figure 10-51 Test 4-12 TRAP Summary Sheet (DTS SLICE Micro TRAP BA00656)

Figure 10-53 Test 4-12 Lateral Acceleration (DTS SLICE Micro TRAP BA00656)

Roll, Pitch and Yaw Rates

Figure 10-55 Test 4-12 Roll, Pitch, and Yaw Rates (DTS SLICE Micro TRAP BA00656)

Roll, Pitch and Yaw Angles

ASI

DTS SLICE BASE 659 Plots (Inside Cab)

Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

General Information Test Agency: California Department of Transportation Test Number: 110MASH4S21-03 Test Date: 12/8/2021 Test Article: DTS BA00659 Type 86H MASH Test 4-12 Cab Test Vehicle 2009 Freightliner Busniess Class M2 Description: Test Inertial Mass: 10144 kg Gross Static Mass: 10144 kg Impact Conditions Speed: 88.1 km/h Angle: 15.0 degrees Occupant Risk Factors Impact Velocity (m/s) at 0.1292 seconds on right side of interior x-direction 1.5 y-direction 4.2 THIV (km/hr): 16.0 at 0.1283 seconds on right side of interior THIV (m/s): 4.4 Ridedown Accelerations (g's) x-direction -5.8 (0.7520 - 0.7620 seconds) y-direction -7.2 (0.3062 - 0.3162 seconds) PHD (g's): 7.2 (0.3062 - 0.3162 seconds) ASI: 0.81 (0.0581 - 0.1081 seconds) Max. 50msec Moving Avg. Accelerations (g's) x-direction -4.3 (0.0307 - 0.0807 seconds) y-direction -6.3 (0.0375 - 0.0875 seconds) z-direction -4.5 (0.0603 - 0.1103 seconds) Max Roll, Pitch, and Yaw Angles (degrees) Roll 19.3 (0.5731 seconds) Pitch -4.3 (0.7567 seconds) -18.1 (0.9499 seconds) Yaw

Figure 10-58 Test 4-12 TRAP Summary Sheet (DTS SLICE Micro TRAP BA00659)

Figure 10-59 Test 4-12 Longitudinal Acceleration (DTS SLICE Micro TRAP BA00659)

Figure 10-60 Test 4-12 Lateral Acceleration (DTS SLICE Micro TRAP BA00659)

Roll, Pitch and Yaw Angles

Figure 10-63 Test 4-12 Roll, Pitch, and Yaw Angles (DTS SLICE Micro TRAP BA00659)

DTS SLICE BASE 758 Plots (Inside Cargo Box)

Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

General Information Test Agency: California Department of Transportation Test Number: 110MASH4S21-03 Test Date: 12/8/2021 Test Article: DTS BA00758 Type 86H MASH Test 4-12 Cargo Test Vehicle 2009 Freightliner Busniess Class M2 Description: Test Inertial Mass: 10144 kg Gross Static Mass: 10144 kg Impact Conditions Speed: 88.1 km/h Angle: 15.0 degrees Occupant Risk Factors Impact Velocity (m/s) at 0.2101 seconds on right side of interior x-direction 2.2 y-direction 3.6 THIV (km/hr): 15.4 at 0.2036 seconds on right side of interior THIV (m/s): 4.3 Ridedown Accelerations (g's) x-direction -4.6 (0.2642 - 0.2742 seconds) y-direction -7.2 (0.2908 - 0.3008 seconds) PHD (g's): 7.3 (0.2908 - 0.3008 seconds) ASI: 0.61 (0.3021 - 0.3521 seconds) Max. 50msec Moving Avg. Accelerations (g's) -2.0 (0.0670 - 0.1170 seconds) x-direction -5.1 y-direction (0.2771 - 0.3271 seconds) z-direction 2.1 (0.3515 - 0.4015 seconds) Max Roll, Pitch, and Yaw Angles (degrees) Roll 24.3 (0.7501 seconds) Pitch -4.8 (0.8079 seconds) Yaw -18.2 (0.8327 seconds)

Figure 10-65 Test 4-12 TRAP Summary Sheet (DTS SLICE Micro TRAP BA00758)

Figure 10-66 Test 4-12 Longitudinal Acceleration (DTS SLICE Micro TRAP BA00758)

Y Acceleration at CG

Figure 10-67 Test 4-12 Lateral Acceleration (DTS SLICE Micro TRAP BA00758)

Roll, Pitch and Yaw Rates

Figure 10-69 Test 4-12 Roll, Pitch, and Yaw Rates (DTS SLICE Micro TRAP BA00758)

Roll, Pitch and Yaw Angles

Figure 10-71 Test 4-12 Acceleration Severity Index (DTS SLICE Micro TRAP BA00758)

11. Appendix B: Detail Drawings

The following details in Figure 11-1 through Figure 11-8 were used for the construction of the Type 86H bridge rail test article. The redlined portion are as-built changes made in the field.

Figure 11-1 Type 86H Test Article Project Plan for Concrete Barrier Type 86H 187

Figure 11-2 Type 86H Test Article General Plan

California Department of Transportation Report No. FHWA/CA25-3170 October 2024

Figure 11-3 Type 86H Test Article Overhang and Rail Removal Details

Figure 11-4 Type 86H Test Article Structural Details No.1

California Department of Transportation Report No. FHWA/CA25-3170 October 2024

Figure 11-5 Type 86H Test Article Structural Details No.2

Figure 11-6 Type 86H Test Article Structural Details No.3

Report No. FHWA/CA25-3170 October 2024

California Department of Transportation

Figure 11-7 Type 86H Test Article Structural Details No.4

Figure 11-8 Type 86H Test Article Structural Details No.5

12. Appendix C: Material Properties and Certifications

The concrete cylinder breaks and material certifications in Appendix C are not within the Lab's Scope of Accreditation.

Concrete Barrier Type 86H Concrete Cylinder Break Results

(Average of Two Cylinders)

	Mix Z5685210 (Deck Pour) Date of Pour 11/24/2020	Mix Z1754120 (Curb Pour) Date of Pour 12/03/2020	Mix Z1754120 (Post and Beam Pour) Date of Pour 12/21/2020
Age			
(Days)	Compressive Strength (psi)	Compressive Strength (psi)	Compressive Strength (psi)
7	4020	4500	4800
14	4810	5030	5980
21	N/A	N/A	N/A
28	5250	5700	6590 (Age was 29 days)
56	5760	5820	6720 (Age was 57 days)

				<u>Certi</u>	fied	<u>I Mill '</u>	Tes	t Re	port	t for	<u>Grae</u>	<u>de 6</u>	<u>0 #3</u> ।	Re	ba	r (1	<u>of</u> 	<u>5)</u>	11	11	1		I	2
	64810	1												and the second second	×.								nager	F016-1.03
9-26-19	LADING 102	GE 1 OF	Melt Lbs Roll Lbs	230,753 217,416		235,463 227,498															Ĉ	Heam	ff Kramer ssura Ma)
DATE	BILL OF	PA	Shipped Lbs/Tons	22,666 11.3		22,640 11.3															0.41	Mart	Je Quality A	
EPORT	128 H5739	JRE	Melted Rolled	08/08/19 08/10/19		08/08/19 08/10/19															on listed.	D BY: 6		
LL TEST RE CMTR) H HIGHWAY 90	E, OREGON 97 FAX (503) 434	NIT OF MEASU	DEF.	OK		OK									CE %	. 52					ecificatio	CERTIFIE	TATES.	
RTIFIED MI	McMINNVILLE 503) 472-4181	EST NAME / U	BEND	180 OK		180 OK									% Sn %	02 .016 02 .016					of each sp		E UNITED S	
ö änd	i lac	any	NOM. WT	66		66					-			AL ANALYSIS	V % Mo	. 033					revision		ED IN TH	
STE	Rolling Milk	zer HSH) comp	ELONG. 8 INCHES	14	2	15								CHEMIC/	s Cr &	.12					indicated		VIALS OCC	
Ċ		A Schnit	FSI %	105,000		103,000									u % Ni	.28 .00					its of the		THE MATE!	
đ			YIELD	65, 500		60,500									Si %	.25					requiremer		CESSES FOR	
DMER CAMBLIN STEEL SERVICE, INC 4175, CINCINNART AVE	ROCKLIN, CA 95765	DESCRIPTION	HEAT NO. / PRODUCT / GRADE	LIED REBAR 60D GRADE LIED A615-18/A706-16 Gr60 ASHTO A1-17		LED REBAR 60D GRADE SSTM 3615-18/A706-16 Gr60 ASHTO M31-17						- 			0. C & Mn & P & S &	19 .30 1.23 .015 .019 19 .30 1.24 .016 .018					uterial fully complies with the UMBER(S): ROCK-16		L ME NG AND MANUFACTURING PRO	
CUST				*30121 #3_CO		*30111 #3 CO									HEAT N	301					This ma PO 1		* A]	

196

STEEL		80684756	10.2020].	ON FILE	SS	
VINTO		AM NUMBER: 00	SUING DATE: 15 TE NUMBER: 72 PAGE: 1/1												a a Ceny	C SIGNATURE	STREET ADDRE	
		PROGR	IS							ម	dia	0.4810	0.4381	0.4953		<i>V</i> PARTMEN		
			0							მ	dр	0.0022	0.0036	0.0025	VIII VIII	TITY DEI		
	LIC.									Δ	dP	0.0304	0.0337	0.0345	THE COMP.	THE QUA		
	FICATE			5 ¹ E1	Т				7	cn	*	0.2561	0.2130	0.2759	ORDS OF T	FIED BY		
	CERTI		06M)	ACTUAL &	Ib/ft	0.641	0.644	0.645		Mo	49	0.0293	0.0386	0.0238	4 THE REC 635,410	CERTI		
	L TEST	ISLIC	I A706/A70	G.		CABLE	ABLE	ABLE	1	5	сю	0.2210	0.2298	0.2077	TAINED IN of 23 CFR			
	MIL	DN META .CK #9970	6) (ASTM	BE		ACCEPT	ACCEPT	ACCEPT		IN	*	0.1841	0.0826	0.0934	T AS CON			
	MAN	3A SAMS(ON - TRA	STM A70	RCENT NGATION		11	16	16		ŝi.		0.2371	0.1968	0.2132	E CORREC	lanual		
		G INC/ DE	ADE 60 (A	ELOI	+					52	op	0.0316	0.0248	0.0233	HURES ARE A. the Buy Am	n Ouality A	843	
		NFORCIN DO STE A A 92673 PORT OF	US X 60' GRU 0867	TENSILE	Ted	11669	93973	96630		д	40	0.0124	0.0151	0.0161	ABOVE FIG V THE U.S.	ance aufacturing of the Plai	0. BOX 12	
		LE RECOI MENTE C MENTE C MENTE C MENTE C	ALCA 72/2 FI 3PA #4 ABER: ABER: VI	HL9 CI		1 8			NOLTI	W	*	1.1617 1.1629	1.1787	1.2075	HAT THE A	ality Assur 014 to Mar est version	INTON P.	
		MILLENN 1044 CAL SAN CLEI CAMBLIN GILMORE	ERV13706	VIE STREN	EAO.	6922	5338	6976	COMPOS	υ.	0	0.2564	0.2648	0.2691	ERTIFY T MANUFA(steel meets	CSGVS Qu 20 10/09/2	DRESS EL LLC VI	
		SOLD TO:	MATERIAL DELIVERY P.O. CUSTO	HEAT	5011100	2011516	2021578	2021579	CHEMICAL	HEAT	VICINI	2011143 2011516 2021198	2021578	2021579	WE HEREBY C MELTED AND This reinforcing	Approved by K Manual REV-2 in accordance v	MAILING AD	

Certified Mill Test Report for Grade 60 #4 Rebar (2 of 5)
2

						TIIM	TEST	CERTIF.	ICATE	C				a of Challenge
OLD TO: M	ULLENNIC 144 CALLE	JM REIN	FORCING O STE A	INC/DB/	A SAMSO	N METAL	S LLC	NOTHT						
S. TI TO: TI	AN CLEM RISTAR FI	ENTE CA LC INC	v 92673									PROGRAM	NUMBER: 008068045	12
9(F(MATERIAL · 1	500 KAISE DNTANA	SR WAY CA 92335	ν ευ' GD Δ	DE 60 (AS	ATM ATMA	A STM A	JUL ALAUL	Ŵ						
DELIVERY L	IST NUM	BER: 9100 BER: 9100 BER: V10)56215)548			a miter) (YU/W/00/7	(1410			G	ISSI RTIFICATI	ING DATE: 13.04.202(: NUMBER: 68953 PAGE: 1/1	-
TECHANICA	I PROPI	ERTIES												
HEAT	YIELI		TENSILE	PE	RCENT	BEND	4	ACTUAL W.						
NUMBER	STRENG	HL	STRENGTH	ELON	NGATION			PER FOOT						
	psi	-	psi		de.			lb/ft						
2010823	67842	01	89798		17	ACCEPTA	ABLE	I.007						
2020862	6963(0	90155		17	ACCEPTA	ABLE	1.014						
2020877	65313	~	89992		19	ACCEPTA	ABLE	0.991						
2020878	6875	0	96488		14	ACCEPTA	ABLE	I.009						
20R0403	63778		87344		19	ACCEPTA	ABLE	1.006						
TRATOAT	L'SOUNOU	TTON]					
	COULE CO.	NOTIT	,	,										ſ
NUMBER	U 40	ЧЦ Ж	£i ak≉	ഗം	ν-1 -40 Γ	Ψ.	ч %	0 %	n 0	> %	д «	ы О %		
2010823	0.2544	1.1882	0.0098	0.0297	0.2447	0.0927	0.1507	0.0208	0.2814	0.0309	0.0027	0.4726		
2020862	0.2765	1.1962	0.0143	0.0394	0.1914	0.1065	0.1681	0.0284	0.1997	0.0326	0.0027	0.4959		
2020877	0.2624	1.1842	0.0125	0.0262	0.2224	0.0760	0.2097	0.0192	0.1987	0.0346	0.0022	0.4822		
2020878	0.2836	1.1804	0.0122	0.0323	0.2271	0.0661	0.2424	0.0171	0.2218	0.0301	0.0020	0.5071		
20R0403	0.2700	1.1900	0.0160	0.0300	0.2000	0.0900	0.2100	0.0200	0.2400	0.0330	0.0000	0.4900		
VE HEREBY C	ERTIFY TH	HAT THE	ABOVE FIG	GURES AR	E CORREC	T AS CONT	TAINED IN	THE RECO	DRDS OF T	HE COMP	ANY		-]
AELTED AND Inis reinforcing	MANUFA(steel meets	CTURED I	N THE U.S irrements of	.A. the Buy An	terica Act re	quirements	of 23 CFR	635.410			7	1 1 -	Du Course.	
											1.	11.1/77	- ton N	
Approved by F	CSGVS Qu	ality Assu	trance											

Certified Mill Test Report for Grade 60 #5 Rebar (3 of 5)

CERTIFIED BY THE QUALITY DEPARTMENT - SIGNATURE ON FILE

Manual REV-20 10/09/2014 to Manufacturing in accordance with the latest version of the Plan Quality Manual MAILING ADDRESS

VINTON S' LLLC VINTON P.O. BOX 12843

I-10 & VINTON ROA STREET ADDRESS

198

CMC STEEL CALIFORNIA 12459 Arrow Route Rancho Cucamonga CA 91739-9807

CERTIFIED MILL TEST REPORT For additional copies call 909 646 7827

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

AT NO.:3097836 CTION: REBAR 19MM (#6) 60'0" S Camblin Steel Serv 15/A706-60 L 4176 Cincinnati Av ADE: ASTM A615 GR A706-60 Dual Gr D Rocklin CA LL DATE: 08/26/2020 US 95765-1402 LI DATE: 06/19/2020 T 9166441300 rt. No.: 83200920 / 097836N399 0 9169251502 Characteristic Value		Alamillo Rahar - Stockton Va:	
Characteristic Value	H 0	411 Gilmore Ave Stockton CA S95203-0000 2099380264	d Delivery#: 83200920 BOL#: 73760051 CUST PO#: STO-11 CUST POM: CUST PN: DLVRY LES / HEAT: 68 EA DLVRY PCS / HEAT: 68 EA
	Characteristic	Value	Characterisfic Value
C 0.28%	Elemention Arrit 4		
Min 1.18%	ration Gage Lath toot 4	10% 91M	
P 0.013%	nsile to Yield ratio feetf	1 24	
S 0.031%	Bend Test 1	Passed	
Si 0.23% Rebar I	Deformation Avg. Spaci	0.481IN	
Cu 0.36% Rebar D	Deformation Avg. Heigh	0.056IN	
Cr 0.12% Rebar	r Deformation Max. Gap	0.132IN	
Ni 0.12% Stra	iin at Peak Stress test 1	12.5%	
Mo 0.033%		The F	ollowing is true of the material represented by this MTR:
V 0.030%		"Mate	rial is fully killed
Cb 0.002%		001	6 method and rolled in the USA
Sn 0.011%		*EN10	204.2004 3.1 compliant
AI 0.001%		Con	ains no weld repair
N 0.0127%		*Cont	ains no Marcury contamination
Carbon Eq A706 0.50%		*Manu	factured in accordance with the latest version
		oft	le plant quality manual
Lieid Strength test 1 /2.9ksi		"Mee	s the "Buy America" requirements of 23 CFR635.410, 49 CFR 661
Tread Strength test 1 (metri 503MPa		*Wen	ing: This product can expose you to chemicals which are
		kno	wn to the State of California to cause cancer, birth defects
I ensite Strength 1 (metric) 676MP2		0. 01	her reproductive harm. For more information go
		to ww	w.P65Warnings.ca.gov
RKS :			

Certified Mill Test Report for Grade 60 #6 Rebar (4 of 5)

Page 1 OF 1 09/04/2020 05___50

)

)

, · , [·]

												5	NTON STE	R. Kuy
					MAN	MILL	TEST IRER: 1	JINTON	ICATE STEEL	LLC				
SOLD TO: SHIP TO:	MILLENN 1044 CALI SAN CLEN CAMBLIN GILMORE	IUM REIN LE RECOD MENTE CA G STEEL I AVENUE	FORCINC OO STE A V 92673 PORT OF	5 INC/ DB	a SAMSO. NN - TRAC	N METAL K #9970	S LLC					PROGRAM N	UMBER: 0080683993	
MATERIAL A706/A615) DELIVERY P.O. CUSTO	STOCKTO : RV22706 LIST NUM	N CA 952(060PA #7] IBER: ABER: V10)3 X 60' GR6 867	0 Dual Star	ndard A61:	5/A706 (A	STM				G	ISSUIN RTIFICATE N	3 DATE: 15.09.2020 UMBER: 71855 PAGE: 171	
MECHANIC	AL PROF	PERTIES												
HEAT NUMBER	YIE1 STREN psi	GTH GTH	TENSILE STRENGTH psi	ELON	RCENT IGATION %	BEN		ACTUAL W. PER FOOT lb/ft						
2011845	681(80	96157		17	ACCEPT	ABLE	1.937						
2011846 2011847	691 6805	50	102092		16 14	ACCEPT. ACCEPT.	ABLE ABLE	1.970 1.956						
2011848	686	54	001001		15	ACCEPT	ABLE	1.960						
CHEMICAL	COMPOS	NOLTIS		_										
HEAT NUMBER	0 %	Mn %	сц. ₆ %	60 of	90 N	Ni %	년 w	Mo %	Cu %	⊳ d₽	9 % C	Ц ф		
2011845 2011846	0.2495	1.3294	0.0220	0.0344	0.2263	0.1271 0.1412	0.2305	0.0369	0.3397	0.0314	0.0036	0.5014		1
2011847	0.2639	1.3857	0.0212	0.0272	0.2240	0.1389	0.2212	0.0456	0.3223	0.0310	0.0030	0.5248		
	2	2			YE 22 . A	0077.0	TT 22 . A		1 707.0	0100.0	7000.0	0010.0		
WE HEREBY MELTED AN This reinforcin	CERTIFY : D MANUFA	THAT THE ACTURED I	ABOVE FI N THE U.S virements of	GURES AR .A. the Buy An	E CORREC rerica Act ru	T AS CON quirements	TAINED IN of 23 CFR	V THE RECO 635.410	ORDS OF T	HE COMP.	ANY.	1 how	(Gauno.	7
Approved by Manual to N	RSGVS Q	uality Assu ng	Irance					CERTI	FIED BY 7	THE QUA	/ LITY DEF	ARTMENT - 5	/ IGNATURE ON FILE	
MAILING A VINTON S ⁷	DDRESS	VINTON P.	O. BOX 1	an Quanty 2843	Manual							STR I-10	SET ADDRESS & VINTON ROA!	

Certified Mill Test Report for Grade 60 #7 Rebar (5 of 5)

					MAN	MILL	TEST JRER:	CERTIF VINTON	ICATE STEEL	ггс			
NLD TO: M If S, GG GG	IILLENNI 044 CALLI AN CLEMI AMBLING ILMORE A	JM REIN E RECOD ENTE CA STEEL I VVENUE	FORCING O STE A V 92673 PORT OF	INC/ DB.	A SAMSO DN - TRAC	N METAL JK #9970	S LLC					PROGRA	M NUMBER: 00806839
ATERIAL:) 06/A615) 3LIVERY L 0. CUSTON	RV2270600 LST NUME AER NUMI	50PA #7 : 50PA #7 : 5ER: VIC BER: VIC	x 60' GR6 867	0 Dual Sta	ndard A61	5/A706 (A	STM				CE	ISS RTIFICA1	JING DATE: 15.09.2020 E NUMBER: 71855 PAGE: 1/1
HEAT	YIELC STRENG	HI	TENSILE STRENGTH psi	PE ELOI	RCENT NGATION 8	BEN		ACTUAL W PER FOOT lb/ft					
2011845 2011846 2011847 2011848 2011848	6810E 69175 68654 68654		96157 102092 103741 100100		17 16 15 15	ACCEPT ACCEPT ACCEPT ACCEPT	ABLE ABLE ABLE ABLE ABLE	1.937 1.937 1.956 1.956					
EMICAL	COMPOSI	NOIL											
HEAT NUMBER	O de	um %	D4 dP	, N 96	ŝ, se	Ţ №	ы с С	% W	5 %	∑ de	d %	% CE	
2011845 2011846 2011847 2011848	0.2495 0.2480 0.2639 0.2576	1.3294 1.3515 1.3857 1.3857 1.3510	0.0220 0.0202 0.0212 0.0134	0.0344 0.0310 0.0272 0.0376	0.2263 0.1870 0.2240 0.2241	0.1271 0.1412 0.1389 0.1280	0.2305 0.2476 0.2212 0.2211	0.0369 0.0368 0.0456 0.0384	0.3174 0.3397 0.3223 0.2617	0.0314 0.0342 0.0310 0.0310	0.0031 0.0036 0.0030 0.0032	0.5014 0.5060 0.5248 0.5108	
E HEREBY C ELTED AND is reinforcing	DERTIFY TF MANUFAC steel meets a	AT THE . TURED II	ABOVE FI N THE U.S irrements of	GURES AR .A. the Buy Ar	E CORREC nerica Act n	T AS CON	TAINED II of 23 CFR	N THE REC 635.410	ORDS OF T	HE COMP.	ANY.	1 / actor	Da Ciquino.
proved by k anual to Ma accordance v ALLING AD NTON ST	CSGVS Qui mufacturing with the lati DRESS LLC VI	ality Assu st version NTON P.	rance n of the Pl. O. BOX 1	an Quality 2843	Manual			CERTI	FIED BY	THE QUA	/ LITY DEP	ARTMEN	/ 5 - SIGNATURE ON FII 5 TREET ADDRESS 10 & VINTON ROAD

Certified Mill Test Report for Grade 60 #7 Rebar For Tension Coupler Samples (1 of 1)

Certified Mill Test Report for Grade #7 ZAP Screwlock Type 2 Coupler Samples (1 of 3)

	PRODUCTS INC	FOR B	PI [®] MECHAN	IICAL SPLICES &
10 million (10 mil	A SUBSIDIARY OF FC INDUSTRIES INC	ASH	M A970 HEA	
DATE	CUSTOMER	PURCHASE ORD	ER ITEM	PROJECT NAME
10/28/2020	CAMBLIN STEEL	DB-200126		MINOR B AT CHP ACADEMY CONT
QUANTITY	PRODUCT	IDENTIFICATION	HEAT LOT NO	ASTM Spec or Rebar Mill
24 EA	#7 ZAP SCREWLOK TYPE 2	7ZBA JW	A201871	ASTM A519-17
TOTAL				
24 EA				
his certifies th	ne following:			
number(s) f and CMTR's	or each product(s) listed. The s and uniquely identify the pro	e identification code(s duct and the heat lot r) shown are m number.	arked upon the finished parts
 Illinois De Michigan New York Raw materi qualified sou domestically Buy Americ specification upon Certific is noted on f All requirem 	eferenced iron and steel produ- partment of Transportation Sp Department of Transportation Department of Transportation als and parts used in the m- urces in accordance with ISC manufactured, produced and a Act. Chemical analyses, to have been performed by th ed Material Test Reports (CM the CMTR. Any operation not ents of BPI's material specific	uct is provided in acco pecification Section 10 Specification Section anufacture of these p 0 9001:2015. Iron and d fabricated in the Uni ests, examinations ar e supplier(s) and this ITR) included herewith performed per specific cation have been met	ordance with the 6.01 105.10 orducts were d steel product ted States of A he heat treatme information ha h. Any such tes cation (if application)	e following: obtained and processed from s provided by BPI have been merica in accordance with the ents required by the material as been verified as appearing it not performed (if applicable) able) is reported. al testing has been performed
 Illinois De Michigan New York Raw materi qualified sou domestically Buy Americ specification upon Certific is noted on 1 All requirem to verify that applicable s and capable These tests which have headed dev ASTM A970 NOTICE The products 	eferenced iron and steel produ- partment of Transportation Sp Department of Transportation Department of Transportation als and parts used in the m- urces in accordance with ISC manufactured, produced and a Act. Chemical analyses, to have been performed by th ed Material Test Reports (CM the CMTR. Any operation not ents of BPI's material specific at the above provided mecha trength requirements. Type 1 of developing, in tension or of pertain to the use of said pr been manufactured to the vices, in-air testing has verifi- described herein must be installed	uct is provided in acco pecification Section 10 Specification Section anufacture of these p 0 9001:2015. Iron and d fabricated in the Uni ests, examinations ar e supplier(s) and this ITR) included herewith performed per specific cation have been met inical splices and/or mechanical splices ar compression, 125% x roducts attached to G latest requirements of ed conformance with	ordance with the 6.01 105.10 roop-10 oroducts were d steel product ted States of A nd heat treatm information ha h. Any such tes cation (if applic and mechanic headed device e conforming to specified yield trade 60 (metri of ASTM A615 n Class A/HA s	e following: obtained and processed from s provided by BPI have been merica in accordance with the ents required by the material as been verified as appearing t not performed (if applicable) able) is reported. al testing has been performed s are capable of meeting the o Section 25.5.7 of ACI 318-19 strength of the reinforcing bars. /A615M or ASTM A706. For strength requirement listed in ISTALLATION INSTRUCTIONS
 Illinois De Michigan New York Raw materi qualified so domestically Buy Americ specification upon Certific is noted on f All requirem to verify that applicable s and capable These tests which have headed dev ASTM A970 NOTICE The products supplied to the specifications operator profile acknowledgm 	eferenced iron and steel produ- partment of Transportation Sp Department of Transportation Department of Transportation als and parts used in the m urces in accordance with ISC manufactured, produced and a Act. Chemical analyses, the have been performed by the ed Material Test Reports (CM the CMTR. Any operation not ents of BPI's material specific at the above provided mecha trength requirements. Type 1 of developing, in tension or of pertain to the use of said pr been manufactured to the vices, in-air testing has verifi- t. described herein must be installed he project, which must be read a , tensile tests may be required befor- ciency. Other terms and conditions a ents, either directly or to the dealer,	uct is provided in acco pecification Section 10 Specification Section anufacture of these p 0 9001:2015. Iron and d fabricated in the Uni ests, examinations ar e supplier(s) and this ITR) included herewith performed per specific cation have been met inical splices and/or mechanical splices ar compression, 125% x roducts attached to G latest requirements of ed conformance with the in accordance with the and understood by the o ore and during production are applicable as may have distributor or representation	and ance with the 6.01 105.10 products were d steel product ted States of A and heat treatme information has h. Any such tes cation (if applic and mechanic headed devices e conforming to specified yield rade 60 (metri of ASTM A615 n Class A/HA se splicing to verify e been previously ve.	e following: obtained and processed from s provided by BPI have been merica in accordance with the ents required by the material as been verified as appearing t not performed (if applicable) able) is reported. al testing has been performed s are capable of meeting the o Section 25.5.7 of ACI 318-19 strength of the reinforcing bars (A615M or ASTM A706. For strength requirement listed in ISTALLATION INSTRUCTIONS e. In accordance with project correct usage, rebar grade, and supplied on quotations and order
 Illinois De Michigan New York Raw materi qualified so domestically Buy Americ specificatior upon Certific is noted on f All requirem to verify that applicable s and capable These tests which have headed dev ASTM A970 NOTICE The products supplied to tt specifications, operator profi- acknowledgm 	eferenced iron and steel produ- partment of Transportation Sp Department of Transportation Department of Transportation als and parts used in the m urces in accordance with ISC manufactured, produced and a Act. Chemical analyses, to have been performed by th ed Material Test Reports (CM the CMTR. Any operation not ents of BPI's material specific at the above provided mecha trength requirements. Type 1 of developing, in tension or of pertain to the use of said pr been manufactured to the rices, in-air testing has verifi- d. described herein must be installed he project, which must be read a , tensile tests may be required beficiency. Other terms and conditions a ents, either directly or to the dealer, d	uct is provided in accordencification Section 10 Specification Section 10 Specification Section anufacture of these p 0 9001:2015. Iron and d fabricated in the Uni ests, examinations ar e supplier(s) and this ITR) included herewith performed per specific cation have been met unical splices and/or mechanical splices ar compression, 125% x roducts attached to G latest requirements of ed conformance with the and understood by the o ore and during production are applicable as may hav distributor or representation	ordance with the 6.01 105.10 roducts were d steel product ted States of A nd heat treatm information ha h. Any such tes cation (if application and mechanication headed devices the conforming to specified yield trade 60 (metric of ASTM A615 of Class A/HA states splicing to verify e been previously ve.	e following: obtained and processed from s provided by BPI have been merica in accordance with the ents required by the material as been verified as appearing it not performed (if applicable) able) is reported. al testing has been performed is are capable of meeting the o Section 25.5.7 of ACI 318-19 strength of the reinforcing bars /A615M or ASTM A706. For strength requirement listed in ISTALLATION INSTRUCTIONS e. In accordance with project correct usage, rebar grade, and supplied on quotations and order 10/28/2020

BP1 4 12-08 REV B 09/12/2016 Eff 03/10/2020

California Department of Transportation Report No. FHWA/CA25-3170 October 2024 Certified Mill Test Report for Grade #7 ZAP Screwlock Type 2 Coupler Samples (2 of 3) ٩. PRODUCT CERTIFICATION outh tube co -1 A% SALES ORDER - LINE / RLS 183232 - 1/ 1 Phone: (574) 946-3125 WORK ORDER 005139 PCS/HEAT 320 HEAT NUMBER A201871 MELT SOURCE Steel Dynamics - USA Melt/Mfg SHIP TO Barsplice Products, Inc. 4900 Webster 07ZEA JW* Dayton, OH 45414 07SZBA JW 07SZSC JW 07ZBA JW ISO 9001:2015 07/06ZEA JW* 07/06ZBA JW USA 07ZGA JW* 07ZFXA JW Registered 07/06ZFXA JW 07/05ZBA JW 07/05ZEA JW* 07/05ZFXA JW CERT DATE LADING NO CERTID / REV QUANTITY CUSTOMER PART CUSTOMER P.O. 05/29/2020 00170533 / 02 27,314.69 Lb 00115195 N09TRZ N0003923 EG20860354CR1320R40H PART DESCRIPTION Bar Splice Reviewed By Spec: ASTM A-519 Seamless Mech. ENG. & APPROVED FOR MANUFACTURE Carbon Smls Mechanical, HF [B/C] Smls Long/Straight DATE 5/29/2020 HT# A201871 Grads: 1026 OD: 2.0860" Tol+.0200" Tol-.0200" Walt 0.3540" Tol+.0354" Tol-.0354" AW Jul Mains CODE LISTED . SIG Lgth Type: Random Lgth: 13.00' / 20.00' End Finish: Debur ID & OD Finish Type: Normalized Oil: No Oil / Ship Dry CERTIFICATION REQUIREMENTS ASTM A-519-17 / NCA 3800 AS IM A-519-17 / NGA 3800 This material is normalized anneated. The final (Cold Finish)anneasing temperature was 1650 degrees fahrenheit. This material was Eddy Current tested and conforms to the requirements of ASTM A-450 & E-309. Material smelted, produced, and processed in the USA. Conforms with 10CFR PART 21 provisions. Material produced in accordance with to ASME Section III Div. 1 & 2. Subsection NCA3600(2019 ed.) Plymouth Tube Quality Manual 2018 Edition Rev.0 date 02/07/2018, as euclited and approved by Norm BPI. Color Code: Orange **Chemical Analysis** NL Cu .17 .17 TÍ Ċr Mo Ph Si c Mr .02 .06 .000 .002 000 .76 010 619 .24 024 .15 .15 .26 Ladie .02 06 .001 .001 .021 .015 Check .26 .008 Ħ Sn ch Ca N A.a Sk .0009 0066 .003 . 802 .001 Ladlø .007 000 0008 0056 007 Check **Physical Properties** Grain Size Methods of Manufacturing Method of Mfg 3 Mathod of Mfg 1 Method of Mfg 2 Vacuum Degassed Electric Arc Furnace Melted Continuous Cast I certify that the described material has been manufactured, inspected, and tested in accordance Lall with the above specification(s) and satisfies the requirements. Bri

Quality Assurance

Page 1 of 2

Date Printed: 05/29/2020

	(674) 846-3125					3232 -
			WORK ORDE HEAT NUMBE	R 005139 R A201871	PCS/HEAT	320
SHIP TO			MELT SOURC	E Steel Dyna:	mics - USA Melt/Mifo	I
Barsplice 4900 Web Dayton, O USA	Products, Inc. oster H 45414		ENG. & APPROV DATE 5/29/20 SIG 4	PLICE REVIEW VED FOR MANUFAC 20 HT# A201 Log CODE LIS	ED BY CTURE ISO 90 871 Regis	01:201 tered
CUSTOMER P.O.	CUSTOMER P	ART	QUANTITY 27,314.69 Lb	LADING NO 00115195	CERT ID / REV 00170533 / 02	CERT 05/29/
PART DESCRIPTI	ON EG208603	54CR1320R40H	ana amin'ny fisikana kaodim-kaodim-kaodim-kaodim-kaodim-kaodim-kaodim-kaodim-kaodim-kaodim-kaodim-kaodim-kaodim		Novando qua mante a da canta d	
		. M	echanical Properti	BS		
Rb-B	igh Rb-Low Tensil	le Yield .5% 21	Longe			
1 2 This te	81 81 7660 6910 st report data is fo	o 56440 r the heat Chemi	43 istry Stated above.	ana an	,	
1 2 This te 1) Mar 2) Fred (PB 3) No I 3) No I 4) Con	el el 7066 6910 st report data is for nufactured in this tes from Polybromina DE), and Mercury c Repairs by welding mpliant with EN-102	r the heat Chemi it report is: SA. ated Biphenyls (i ontamination.	3 istry Stated above. PBB), Polybromina	ited Diphenyl Et	thers	
1 2 This te 1) Man 2) Free (PBI 3) No I 4) Con	en e	t the heat Chemi t report is: SA. ated Biphenyls (i contamination.	istry Stated above. PBB), Polybromina End of Certification	ited Diphenyl Et	thers	
1 2 This te 1) Mar 2) Fre (PB 3) No 1 4) Con	el el 7066 6910 st report data is for naterial in this tes bufactured in the Ui a from Polybromina DE), and Mercury c Repairs by welding npliant with EN-102	t report is: SA. ated Biphenyls (i contamination.	istry Stated above. PBB), Polybromina End of Certification	ited Diphenyl Et	thers	
1 2 This te 1) Mar 2) Fred (PB 3) No I 4) Con	81 81 7066 6910 st report data is for naterial in this tes nufactured in the U a from Polybromina DE), and Mercury c Repairs by welding npliant with EN-102	r the heat Chemi it report is: SA. ated Biphenyls (i ontamination.	istry Stated above. PBB), Polybromina End of Certification	ited Diphenyl Et	thers	
1 2 This te 1) Mar 2) Free (PB 3) No I 4) Con	81 81 7066 6910 st report data is for nufactured in this tes from Polybromina DE), and Mercury c Repairs by welding npliant with EN-102	t the heat Chemi t report is: SA. ated Biphenyls (i contamination.	istry Stated above. PBB), Polybromina End of Certification	ted Diphenyl Et	thera	·
1 2 This te 1) Mar 2) Fred (PB 3) No 1 4) Con	81 81 7066 6910 st report data is for naterial in this tes nufactured in the U a from Polybromina DE), and Mercury c Repairs by welding npliant with EN-102	r the heat Chemi it report is: SA. ated Biphenyls (i ontamination.	istry Stated above. PBB), Polybromina End of Certification	ted Diphenyl Et	thers	

Page 2 of 2

Date Printed: 05/29/2020

Mill Certificate for Bicycle Rail (1 of 3)

•	<u>Customer Name</u> BEKO'S WELDING, INC.			<u>c</u> 0	or	mer F	<u>°0#</u>					<u>Shi</u> 19	oper 8929	<u>No</u>	<u>He</u> 81:	<u>at Number</u> 31.72080	*
	102/20 12/20		(Heat No.)		930317 07/27/20		041356		821JJ0990 12/16/19		937295 04/03/20		813L72080 67/24/20		8221.32060 06/19/20	02222 02/20/20	STRIPES, INC.
	c: atte: 09		S acking		59		25		5		24	• 1	DE		28	27 (
			Tensis E		0007		2000		0005		0005		0007		0054	0005	
		Terret					2000		1. 0000		1 000	-	0000	-	2000	000	
	310 C	-	5		ē.	(<i>ດ</i> 	5	ő	i		4	ĥ	2	0	5	
	122		78.9						ר נ		1		•		4	7	· ·
			ZET		,					-	•		*		1	н.	
	11 G 31	(Section)	#25×		,						•			6		ч	
		Ladie	100%						•				,	_	r 	CI.	
	Y.	position														en 	
		Rai Oo				ci m		۲ ۵		~						32	
i.		Clea	~B	-				~				*		123		m	(
	α l		4.80 ×	۳ 0				н н		T		E .		-		6 	-
	LU ž			80 80		8 0		8		8		8		6		2	
			The set	800 1		800 21		800 23		860 2(860 21		590 21		590 20	
	protocol protocol software software	anti		¢0		œ				τ¢.		9		ຜູ້		μ ή .	
,	2	g	kumber if Pieces	50		50		50		100		30		72		48	
			20														described hen actification. Treet the melt ADE IN AME Muptionaringue
	Order Nor166318 Ner SERNORT STREE : 210013 : 210013 Cattion 2500B/C-19 :31328		SIZE	-250 X HR 20"	AND MPG IN THE USA	-250 X HR 20'	AND MFG IN THE UGA	.250 X HR 24'	AND MFG IN THE USA	.188 X HR 20'	AND MFG IN THE USA	.188 X HR 40'	AND MEG IN THE USA	.188 X HR 20'	VSD SHEL, NI DAW CINY	.188 X HR 40'	by certify that the material informs turity to the said spe roted this turbing does not i factured specification for M anos and Reproductive Harm we
	Sales Dustor Specifi fide			30 X	RIVISI	SQ X	CLUED.	X OS	SLITED	X QS	SUTED	X QS	CULT RO	7 2 X	TLTRD	1 2 X	At here a co faless manu
					£	87	£		Z		÷.		ų.	м 	N.	M	
														3			

*	2972 8 N.U.S.A. RPORATION	NIA 903-8601		Remarks	2	SA0000112762	SA0000112809	M SA000112800	M , GR-C SA0000112809	M. GR-C SA0000113819	M, GR-C SA0000114593 M CD C	- 202-1 Iau			, (
	C000007 MADE 11 AN COI	X: (562)		ing Flatteru											
	D. <u>M</u> TUBE MERIC MERIC	600 FA	atic	Te Benc	=						· · ·	POPAT	Contro		
	M/C N/ Date PE AND CHI AN REENS	2) 903-6	Hydrosi	Pressu Pressu	Resu	g						- NOON			
-	THIS PII MARUI 1529 G	EL: (56	Test	ansile Elo		2200		2	200	- <u>-</u> 8	33	MERICA	2 k		
	,⊢ ≤ ↔ 03	н	Tensile	Yield Te	(FSI)	1300 67		5900 62	0060	2700 66	800 715	ICHI AN	5		
	•		-		×	n 		й 	<u> </u>	22	<u>1</u> 2	MARU	40 ² 5		
			Analysis)	138) 28)	1000 100							_			
			on(Ladie	28×	1000							_		,	
(XINE		Compositi	vê× 4ê×	1000 1000			- 12	÷.						(
	ORIC ORIC		hemical	WW (%)	45		3	6		1 75	4	_			
	III	-		≥ĝ×	5 5 5		~~~~	2	<u></u>	17	<u>م</u>	_	U		
		-		Heat	4 C693	60	2 A7337	C6824	C6825	C6882	F0530		GRADE		
-			PCS	Calcutate Wr(MT)		0.49	0.952	1.411	12 0.706	12	6 2.808	d herein	0M-10 (
	MAC STEEL CORPORA	SPEC	SIZE	MER PO NO	A GRADE B ERW TUBING		UBING K20FT	a GRADE B ERW TUBING IIN x 24FT	a GRADE B ERW TUBING IN x 24FT	a GRADE B ERW TUBING FT	ORADE B ERW TUBING	that the material described to the said specification	- Domestic Coil - Domestic Coil C - Meet ASTM A500/A50		
	SHC EAF			CUSTC	A500M-10		2 ERW 7 x 0.12IN	(500M-10 2N × 0.25	500M-10. 11N x 0.25	500M-10; 21N x 40	500M-10; 56N x 40;	by certify trms fully	GR-		a - anna i fan Afrika
(BI No. Destination Supplier				1 ASTM A500/	101-19268	12 1/21N A513-1 12 1/21N × 11N 101 19272	2 1/2IN × 1 1/2	4 ASTM A500/A 2 1/2IN × 1 1/2 101 19272	ASTM A500/A 41N × 61N × 0.1 101-19280	ASTM A500/A 71N × 91N × 0.2 101-19285	We here! confo	Remarks:	•	(
		i		I					- }	ل م	Q		14 1 4 1		

Mill Certificate for Bicycle Rail (2 of 3)

California Department of Transportation Report No. FHWA/CA25-3170 October 2024

206

Page 1 of 1

Mill Certificate for Bicycle Rail (3 of 3)

3/4 in. Diameter Threaded Rods for Installation of Bicycle Rail (1 of 2)

04-29-20;11:52 ;Viking Bolt

;5036207062 # 1/ 4

NUCOR Nucor Steel Nebraska

Mill Certification 07/27/2018

MTR#: 75895 Lot #:10089196423 2911 E NUCOR ROAD PO BOX 309 NORFOLK, NE 68701 US 402-644-0200 Fax: 402-644-0329

Sold To: KING STEEL CORP 5225 E COOK RD GRAND BLANC, MI 48439 US Ship To: KING STEEL - CUSTOMER PICK UP REFER TO DISPATCH NORFOLK, NE 68701 US

Customer P.O	026082-JK	K-T/26					Sale	es Order #	10012027	' - 1.2
Product Group	Hot Roll - I	Engineered Ba	ar					Product #	1000934	
Grade	4140DHA5	5 Vacuum De	gassed H	Band Alur	ninum Treat	ed		Lot #	10089196	423
Size	0.68"							Heat #	10089195	4
BOL #	BOL-1712	05						Load #	75895	
Description	Hot Roll - E H-Band Al	Engineered Ba luminum Trea	er Round 0 ted 24' 6" [.68" 4140 294"] 7001	Vacuum De -9000 lbs	gassed	Custon	ner Part#	1000934	
Production Date	07/07/2018	3					Qty Shi	oped LBS	33308	
Product Country Of Origin	United Stat	les					Qty Sh	lpped EA	1100	
Original Item Description							Orig	Inal Item Number		
I hereby cartily that the materi	al deacribed herein	hes been manufactu	red in accordan	ce with the spec	ilications and slav	dards listad s	shove and that I	i aatlafiaa those r	ainemeniupe	
Melt Country of Orig	in : United St	tates					N	Alting Date	: 05/14/201	8
C (%) Mn (% 0.41 0.86 Nb (%) Zr (% 0.004 0.00	5) P (%) 0.008) N (PPM) 1 90	S (%) 0.015 Sn (%) 0.008	Si (%) 0.28 Al (%) 0.03	Ni (%) 0.07 Pb (%) 0.000	Cr (%) 0.92 Ca (%) 0.001	Mo (%) 0.18 As (%) 0.004	Cu (%) 0.14	TI (%) 0.002	∨(%) 0.005	B (%) 0.000
Austenitic fine grain by Reduction Ratio 120.6	chemical anal; 14 ; 1	ysis per the late	st revision o	FASTM A29)					
Jominy Calculated										
J1 J2 J3	J4 J5 .	J6 J7 J8	J9 J10	J11 J12	J13 J14	J15 J1	5 J18 J2	0 J22 J2	4 J26 J2	J30 J32
57 57 57	57 57	57 55 53	52 50	49 48	47 46	45 4	4 43 4	2 41 4	0 39 30	37 38
ASTM E45 Mathod A (Sulfides:T: 1.3 H ASTM E45 Method A (Sulfides:T: 1.5 H	Average) : 0.5 Al Worst) : 0.5 Al	iumina : T: 0.8 iumina : T: 1.5	H: 0. H: 0.	0 SI	icates T: 0.1 icates T: 0.5	H: H:	0.0	Globular T: Globular T:	1.0	H: 0.5 H: 0.5
Other Test Results Tensile (PSI): 145 Macrostch E381 Mil DI Calculated (IN):	400 I Radius : 1 5.02		Elongation Macroatch	in 8" (%) : E381 Cente	8.0 ar: 2		Macroeli Rockwel	ch E381 Sur I C (HRC) :	face : 1 32	

Comments:

All manufacturing processes of the steel materials in this product, including melting, have been performed in the United States. All products produced are weld free.

Microry, In any form, has not been used in the production or testing of this material. Mercury, In any form, has not been used in the production or testing of this material. Test conform to ASTM A29-15, ASTM E415 and ASTM E1019-resulphurized grades or applicable customer requirements. All material method at Nucor Steel Nebrasks is produced in an Electric Arc Furnace.

Strand Cast

Amilia

NBMG-10 January 1, 2012

Jim Hill, Division Metallurgist

Page 1 of 2

3/4 in. Diameter Threaded Rods for Installation of Bicycle Rail (2 of 2)

04-29-20;11:52 ;Viking Bolt

2/ 4 ;5036207062

Nucor Steel Nebraska	Mill Certification 07/27/2018	MTR#: 75895 Lot #:10069196423 2911 E NUCOR ROAD
	VIKING BOLT PO-84742 SO-117111 35ea 3/4-10 X 12 FT DOM ASTM A193 B7 ATR MFG HT 100891964	PO BOX 309 NORFOLK, NE 68701 US 402-644-0200 Fax: 402-644-0329

ISO-17025 LAB accreditellon cert evailable upon request. Exporting Country-USA Sales@nucorna.com California Proposition 55: This product contains chemicals known to the State of California to cause cancer, birth defeets and other reproductive harm. The list of chemicals are available upon request. For more information, please call 402-844-0200.

Amilia

NBMG-10 January 1, 2012

Jim Hill, Division Metallurgist

Page 2 of 2

State of California - Department of Transportation
VENDOR'S CERTIFICATE OF COMPLIANCE
MR-0543 (REV. 5/93) CT-7541-6020-2
PRECAST CONCRETE PRODUCTS OR X Ready M. Y
10 Remetz Coust Const
STATE HIGHWAY ENGINEER
We certify that the portland cement, chemical and mineral admixtures contained in the material described below are brands stated and comply with specifications for:
CONTRACT NUMBER
CEMENT BRAND ZChija MILL LOCATION ZChija Zchija
The second secon
A. BRAND & AST- MANUFACTURER
JZZ KI DAI
2. BRAND
TYPE
CRECK BOX IF A CHEMICAL ADMIXTURE WAS NOT USED
MINERAL ADMIXTURE
MANUFACTURER If Cade was the CLASS + 1-
CHECK BOX IF A MINEPAL ADMIXTURE WAS NOT USED
DELIVERY DATE (READY-MIX)
子のことをより UST PRODUCTS TO WHICH CERTIFICATE APPLIES (SHOW SIZE AND UN. FT OF PIPE, ETC.) ¹
3.26 275
MANUFACTURER OF CONCRETE PRODUCTS N-N CORCYCL C-NC
BY: AUTHORIZED PREPRESENTATIVE SIGNATURE
FM 93 1839 ORIGINAL TO RES, ENGR. REFAIN DUPLICATE OSP 08 107926

.

Certificate of Compliance for Concrete Mix (Overhang) (1of 3)

210

Ctate of Colifornia Dougotmont of Transmostation	
VENDOR'S CERTIFICATE OF COMPLIANCE	
MR-0543 (REV. 5/93) CT-7541-6020-2	
PRECAST CONCRETE PRODUCTS OR	& heads my
10 Ry - Nemetz Coust	
STATE HIGHWAY ENGINEER	
We certify that the portland cement, chemical and minera	admixtures contained in the material
described below are pratos stated and comp	
CONTRACT NUMBER	
CEMENT BRAND Ze A. J	AILL LOCATION
TYPE OF D	Curentia.
CHEMICAL ADMIXI	URE
T. BRAND Z. C. B. Z. D. J. Z.	AANUFACTURER
TYPE 322 4,1	ICAN
2. BRAND 8 101	AANUFACTURER
TYPE PEC/24 42 5	10.45
CHECK BOX IF A CHEMICAL ADMIXTURE WAS NOT USED	
MINERAL ADMIXT	JRE
MANUFACTURER It cut that	IASS - Jun .
CHECK BOX IF A MINERAL ADMIXTURE WAS NOT USED	
DELIVERY DATE (READY-MIX) 7.2 - 3 - 2 -	DATES OF FABRICATION (PRECAST)
70 2 70 75 LIST PRODUCTS TO WHICH CERTIFICATE APPLIES (SHC	W SIZE AND LIN. FT OF PIPE, ETC.)
さてっとてっと	-
MANUFACTURER OF CONCRETE PRODUCTS	- Jupy
BY: AUTHORIZED PREPRESENTATIVE SIGNATURE	
FM 93 1339 ORIGINAL TO RES. ENGR. RETAIN DUPLIC	ATE 055 05 05 05 00 107926

Certificate of Compliance for Concrete Mix (Barrier Curb) (2 of 3)

State of California - Department of Transportation	
VENDOR'S CERTIFICATE OF COMPLIANCE	
MR-0543 (REV. 5/93) CT-7541-6020-2	
PRECAST CONCRETE PRODUCTS OR K Reit	1 mix
"RA Nemetz Const Co	
STATE HIGHWAY ENGINEER	
We certify that the portiand cament, chemical and mineral admixtures contral described below are brands stated and comply with specificatio	ined in the material us for:
CONTRACT NUMBER	
CEMENT BRAND Two Rivers MILLOCATION	Sacran eato
CHEMICAL ADMIXTURE	
1. BRAND Bask MANUFACTURER	١
17PE 322N	5 J
2. BRAND 2.45 F MANUFACTURER	
TYPE Poly 1025 Baly 1025	1
CHECK BOX IF A CHEMICAL ADMIXTURE WAS NOT USED	
MINERAL ADMIXTURE	
MANUFACTURER CLASS Fly A	1sh "F"
CHECK BDX IF A MINERAL ADMIXTURE WAS NOT USED	
DELIVERY DATE (READY-MIX) 2 - 21 - 2.0	TION (PRECAST)
マルトローム A G UIST PRODUCTS TO WHICH CERTIFICATE APPLIES (SHOW SIZE AND LIN. FI	T OF PIPE, ETC.)
MANUFACTURER OF CONCRETE PRODUCTS	
BN: AUTHORIZED PREPRESENTATIVE SIGNATURE/	
FM 53 1839 ORIGINAL TO RES. ENGR. RETAIN DUPLICATE OC	5P 08 107926

Certificate of Compliance for Concrete Mix (Barrier Post and Beam) (3 of 3)

California Department of Transportation Report No. FHWA/CA25-3170 October 2024

<u>Certificate of Compliance for Concrete Cure Compound (1 of 1)</u>

Certificate of Compliance

'Batch Number:	0PF018	0	Certificate Number: 3216	
Batch Volume:	1980 Gallons		Date Certificate Issued: 06/15/2020	
Date of Manufacture:	06/09/2020			
Issued To:		cc:	California Department of Transportation	

Chemical Testing Branch 5900 Folsom Boulevard Sacramento, CA 95819

W. R MEADOWS, INC. certifies that the following batch of curing compound, 2250-White Poly-Alphamethyl Styrene, Batch# 0PF018, Type 2, Class B, meets or exceeds the requirements as specified in Section 90-1.01C(5) of the 2018 Standard Specifications, ASTM C309, and all rules and regulations concerning air pollution control in the State of California.

Daten 1 est results					
Tests	Test Method	Date Tested	Test Result	Tested By	Requirements
Moisture loss in 24 hours, 5.0m ² /L, average of 2 pans	CT 534	06/10/2020	.14	KN	0.15-kg/m ² , max
Viscosity, 2 Spindle, 50 RPM	ASTM D2196	06/10/2020	193	KN	
Nonvolatile Content	ASTM D2369	06/10/2020	42.3	KN	
Pigment Content	ASTM D3723	06/10/2020	5.0	KN	
Reflectance (ASTM C309 Type 2)	ASTM E1347	06/10/2020	71.8	KN	60%, min.

Shipping Container 'Fingerprint' Test Results²

Shipping Container Number: TOTE# 4624 Shipping Container Volume: 275 GALLON TOTE

Tests	Test Method	Date Tested	Test Result	Tested By	Requirements ¹
Viscosity, 2 Spindle, 50 RPM	ASTM D2196	06/10/2020	199	KN	+/- 21.6%, relative
Nonvolatile Content	ASTM D2369	06/10/2020	42.8	KN	+/- 2.5%, absolute
Pigment Content	ASTM D3723	06/10/2020	5.1	KN	+/- 1.5%,

¹Relative to test result of 'fingerprint' testing of batch samples.

²At minimum two of the three 'fingerprint' tests must meet the requirements.

Shipping Container 'Fingerprint' Test Results²

Shipping Container Number: TOTE# 4626 Shipping Container Volume: 275 GALLON TOTE

Tests .	Test Method	Date Tested	Test Result	Tested By	Requirements ¹
Viscosity, 2 Spindle, 50 RPM	ASTM D2196	06/10/2020	1 96	KN	+/- 21.6%, relative
Nonvolatile Content	ASTM D2369	06/10/2020	42.9	KN	+/- 2.5%, absolute
Pigment Content	ASTM D3723	06/10/2020	5,1	KN	+/- 1.5%, absolute

Relative to test result of 'fingerprint' testing of batch samples.

²At minimum two of the three 'fingerprint' tests must meet the requirements.

Executed By: Certified By: Matthew Price, President Daniel Nelson, Technical Director

Modified 10/18/2019

13. Appendix D: Undercarriage Photos

Photos shown below are for the 1100C and the 2270P Pickup Truck. Undercarriage photos for the Van Body can be seen in Figures 7-14 and 7-16.

Figure 13-1 Undamaged Gasoline Tank for the 1100C vehicle

Figure 13-2 Undamaged Oil Pan for the 1100C vehicle

Figure 13-3 Undamaged Gasoline Tank for the 2270P Pick Up Truck

Figure 13-4 Undamaged Oil Pan for the 2270P Pick Up Truck

14. Document Revision History

Date	Description