Ramp Metering and HOV Lane Degradation Mitigation

Select several sites in California with different types of HOV lane, ramp, and traffic, where data are available and conduct analysis of the relationship between ramp metering and HOV lane operation.

WHAT IS THE NEED?

The average speeds of vehicles in the High-Occupancy Vehicle (HOV) lane must be at or above 45 miles per hour during the morning or afternoon peak period at least 90 percent of the time over a 180-day period. An HOV lane that does not meet federal performance standards is considered “degraded”. HOV lane performance must be reported annually to the Federal Highway Administration (FHWA) and states must develop a plan to bring degraded HOV lanes into compliance. Failure to comply with the performance standard may result in federal sanctions and jeopardize states from receiving federal funds or project approvals.

Ramp metering is often proposed by the California Department of Transportation (Caltrans) districts as a strategy for addressing degradation. FHWA requested to quantify the impact of ramp metering on the HOV lane performance.

WHAT ARE WE DOING?

We start by studying Caltrans 2017, 2018 and 2019 HOV degradation reports to identify freeways with HOV facilities, where HOV performance was degraded. These will be candidate sites for our study. Then, we will narrow down this list by selecting 4 sites with diverse characteristics.

We then conduct empirical and theoretical analyses of the relationship between ramp metering and HOV lane operation. The goal is to explore different freeway configurations (e.g., full access HOV lane vs. controlled access) and to quantify the nexus between ramp metering and HOV lane performance.
Theoretical analysis will be conducted using simulation in Operations Planning Toolbox (OPT) recently developed by PATH for Caltrans. OPT is an open-source, multi-modal traffic modeling software for quantitative assessment of operational scenarios.

WHAT IS OUR GOAL?

The project goal is: find out which types of ramp metering (e.g., local, coordinated, on HOV preferential lanes, etc.) can improve the performance of the HOV lanes with various features (full vs limited access, density of on-ramps, bottleneck cause, severity of degradation) and to what extent, which will be quantified. If for certain HOV facilities the mitigating effect of ramp metering is negligible or nonexistent, we will investigate why, and what other mitigation techniques can be in order.

WHAT IS THE BENEFIT?

The main result of the proposed project will be a quantitative assessment of the ramp metering impact on the HOV lane performance at the selected sites in terms of the metrics listed above. It will help Caltrans to develop legally defensible HOV lane degradation reports.

A byproduct of this project will be the calibrated OPT simulation models for the selected sites. These can be later re-used by Caltrans in other studies. This will demonstrate an efficient way of evaluating operational scenarios.

WHAT IS THE PROGRESS TO DATE?

The researcher finished the empirical analysis on the 4 selected sites. The analysis will be based on 180-day periods corresponding to those in the Degradation Reports in the year 2019 or earlier, and 2021 upon discussion with Caltrans. The researcher looked at these performance measures across days and time of day – to capture varying conditions of actual traffic.

The final task of this research of theoretical analysis through simulation modeling has just started. This task is expected to be finished by next quarter in 2023.

IMAGES

Image 1: Bottleneck congestion analysis on I-580, the researcher took data from detectors on the freeway to reconstruct the flow of vehicle to identify congestion