Research and Development of the Caltrans’ Geospatial Technology Proving Ground

Integrating mobile mapping and LiDAR-based geospatial data collection systems into Caltrans’ business practices for safe, efficient delivery of transportation projects.

WHAT IS THE NEED?

The California Department of Transportation (Caltrans) continually seeks ways to deliver transportation projects more safely and efficiently. To produce high-quality projects and optimize limited transportation dollars, Caltrans needs to continually innovate and improve existing processes and procedures. In addition, the Department needs to evaluate methods to lower project support costs, accelerate project schedules, minimize rework, and be transparent and accountable to taxpayers.

Minimizing the risk to workers and traveling motorists during Caltrans’ operations is an on-going priority. Identifying which tools are best to use for specific purposes and how to integrate data collected from various platforms determines the safest and most cost-efficient way of doing business. Caltrans, via research Task 3179 under Contract 65A0749, established a Geospatial Technology Proving Ground (GTPG) facility to support the integration of mobile mapping and LiDAR-based data collection systems into Caltrans’ business practices. The Caltrans Survey Program and other Caltrans Divisions have a need for research to capitalize on the efficiencies gained through a “collect once, use it many times” best practice.

WHAT ARE WE DOING?

A significant component of the research is deployment support for the new Caltrans-owned Trimble MX9 Mobile Terrestrial Laser Scanning (MTLS) system. MX9 deployment support includes the following activities:
Next, the research includes the investigation of time-based vs. distance-based MTLS target spacing with the new MX9 system using the GTPG. The project involves collaborating with Caltrans Construction to conduct As-Built survey pilot projects utilizing the MX9 and the newly released MX50 MTLS system, documenting lessons learned and best practices for capturing As-Builts during and/or after construction, and recommending best platforms for digital As-Builts.

In addition, exploring the means to improve cross-functional programmatic data collection and to achieve the “collect once, use it many times” best practice remains a cornerstone of the research. The research comprises of experimenting and evaluating MX9 use for Americans with Disabilities Act ramp survey. Subsequently, the research involves updating the Caltrans MTLS Guidelines document by adding data collection methods, software, and processing workflow for the MX9 as well as reflecting any changes to the Riegl software and workflow for the VMX-1 MTLS system. The final step of this task encompasses the research findings into a final report.