MMITSS Phase III Extension for Additional Enhancements

A research project by UC Berkeley PATH program to add traffic adaptive and multimodal aspect enhancements to Multi-Modal Intelligent Traffic Signal System (MMITSS) for improved mobility and safety.

WHAT IS THE NEED?

The Multi-Modal Intelligent Traffic Signal System (MMITSS) is the next generation of traffic signal systems that seeks to provide a comprehensive traffic information framework to service all modes of transportation, including general vehicles, transit, emergency vehicles, freight fleets, pedestrians and bicyclists in a connected vehicle environment.

Under the sponsorship of the Connected Vehicle Pooled Fund Study (CV PFS) and Federal Highway Administration (FHWA), MMITSS has been deployed in the California CV Test Bed. Caltrans Statewide Traffic Signal Control Program (TSCP) has been enhanced to support MMITSS operations, including:

- Signal Phase and Timing (SPaT) broadcasts
- CV-based vehicular service calls and actuations
- Pedestrian service calls
- CV-based signal priority
- Dynamic force-off (to adapt signal timing to the prevailing traffic conditions)

However, due to the low market penetration of connected vehicles and the lack of multimodal road user detection and classification data, the effectiveness of traffic adaptive features cannot be tested and evaluated in real-world condition.

The current coordinated traffic control systems utilize a few time-of-day timing plans (cycle length, green split, and offset) for time-based coordination and utilize loop detectors for phase service calls and vehicle actuations. The time-of-day timing plans are preset based on traffic data collected through site surveys.
Inductive loops are usually installed near the intersection stop-line and cannot detect and measure the fluctuation of traffic demand in real-time. Therefore, the traffic control systems are not well informed about the state of the traffic and are unable to select the appropriate timing plan that adapts to the prevailing traffic conditions. Furthermore, in the current systems, pedestrian service requests are detected by pedestrian pushbuttons, but the systems are not necessarily aware of how many pedestrians use the buttons and their location on the crosswalk.

In a CV environment where equipped vehicles and pedestrians communicate their state (type, location, speed, heading, etc.) to the roadside infrastructure via Basic Safety Messages (BSM – vehicle) and Personal Safety Messages (PSM – pedestrian), this rich data set allows the traffic control systems to measure the fluctuation of traffic demand in real-time, adapt timing plan to the prevailing traffic conditions, and provide cooperative services to each mode.

Although the anticipated benefits of CV technologies on improving safety and mobility are promising, due to the low market penetration rate of connected vehicles, the benefits of CV technologies are difficult to assess in a real-world condition.

WHAT ARE WE DOING?

The objectives of this project are:

1. **Enhance Traffic Control Features**: Utilize multimodal road user detection and classification data (e.g., vehicles, pedestrians, and bicyclists) of NoTraffic Smart Sensors and adaptive signal timing features of the existing TSCP to add additional enhancements to MMITSS for improved mobility and safety;

2. **Enhance the Deployability of MMITSS Vehicle-Resident Applications**: Modularize the existing vehicle-resident CV application software and develop an application programming interface (API) to support a hardware-agnostic solution. The vehicle-resident CV applications run on a separate computer and interface with an OBU (either a DSRC or a Cellular-V2X device) via the API for transmitting and receiving over-the-air messages. The API will support the use of on-board units (OBUs) from multiple vendors.

3. **Conduct Field Testing with Augmented Market Penetration**: Field testing will comprise both equipped – Valley Transportation Authority (VTA) buses and Partners for Advanced Transportation Technology (PATH) testing vehicles. PATH testing vehicles will collect the ground-truth travel time and delay data, which provide inputs to the before-and-after analysis on impacts of market penetration.

WHAT IS OUR GOAL?

The goal of this project is to add traffic adaptive and multimodal aspect enhancements to MMITSS for improved mobility and safety.

WHAT IS THE BENEFIT?

The State would be able to better assess the effectiveness of traffic adaptive features that support multimodal transport and impacts of market penetration of CVs and provide better safety and mobility for all modes of travel.

WHAT IS THE PROGRESS TO DATE?

During the last quarter, PATH has worked with Caltrans District 4 staff to assign the system detectors in the field traffic signal controller at 4 test bed intersections (i.e., Medical Foundation Dr, Embarcadero Rd, Churchill Ave, and Serra Park/Blvd at El Camino Real) where NoTraffic sensors have been installed. At the Embarcadero Rd intersection, PATH has worked with NoTraffic staff to obtain NoTraffic sensor data. A software has been developed to process NoTraffic sensor data and project the vehicle/pedestrian location onto the intersection MAP.
NoTraffic sensor is sending data to the PATH roadside processor computer in real-time, in the form of virtual Basic Safety Message (BSMs) for vehicles and virtual Personal Safety Message (PSMs) for pedestrians. In the images shown below, the solid lines are the traffic lanes and pedestrian crosswalks defined by the intersection MAP and the circle points are the projected BSM/PSM location on the MAP. In the 15-minutes data sample, there are 2,547 vehicle trajectories (Figure 1) and 115 pedestrian trajectories (Figure 2). PATH has also worked on implementing the enhanced signal performance measure system as illustrated in Figure 3 that utilize system detector data, signal status data, and NoTraffic sensor data to monitor detector health and provide signal timing recommendation (e.g., minimum/maximum green interval, signal offset, etc.) for improving the signal performance.

IMAGES

- Figure 1: NoTraffic Virtual BSM Data Projected on the Intersection MAP
- Figure 2: NoTraffic Virtual PSM Data Projected on the Intersection MAP
- Figure 3: Enhanced Signal Performance Measure System

The contents of this document reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the California Department of Transportation, the State of California, or the Federal Highway Administration. This document does not constitute a standard, specification, or regulation. No part of this publication should be construed as an endorsement for a commercial product, manufacturer, contractor, or consultant. Any trade names or photos of commercial products appearing in this document are for clarity only.

© Copyright 2021 California Department of Transportation
ALL RIGHTS RESERVED