System Impact Of Connected And Automated Vehicles: An Application To The I-210 Connected Corridors Pilot

A research project by UC Berkeley PATH program to model Connected Automated Vehicles (CAV) in to the current ICM systems.

WHAT IS THE NEED?

In current Integrated Corridor Management (ICM), the control targets are ordinary objects of vehicles, buses, pedestrians, etc. However, in recent years, a great amount of effort has been devoted to the field of connected and automated vehicles (CAVs), which may be implemented in the future and become one of the dominant travel modes.

Given that this important piece is missing from current ICM systems, it will become a serious problem for public agencies like Caltrans and local Traffic Management Centers (TMCs) to manage traffic properly and efficiently once CAVs are deployed in the field.

Unfortunately, at the current moment it is impossible to evaluate the system impact of CAVs on transportation networks in the field, and insights from existing CAV studies are very limited since they were applied to small networks. Instead, a more appropriate way is to build a well-calibrated large-scale traffic network in microsimulation and add the CAV components for testing purposes.

WHAT ARE WE DOING?

This research aims to fill this gap by developing an integrated platform in microsimulation that allows the modeling of CAVs in current ICM systems. For demonstration purposes, the I-210 Connected Corridor Pilot model developed in the microsimulation software, Aimsun, will be used as a test site.
The proposed platform will incorporate the most appropriate CAV models/applications into Aimsun using the available Software Development Kits (SDKs) and allow public agencies to play with different scenarios in microsimulation and understand potential impacts of CAVs on their proposed ICM strategies.

WHAT IS OUR GOAL?

The primary goal of this project is to develop an integrated platform to incorporate CAVs into microsimulation and evaluate their system-impacts on large-scale transportation networks.

WHAT IS THE BENEFIT?

The outcome from this project will provide public agencies useful tools to better understand the system impact of CAVs and help them perform long-term planning.

WHAT IS THE PROGRESS TO DATE?

This project aims to build a mixed traffic platform in microsimulation to help evaluate the network-level impacts of CAV applications. The platform is built based on the newly developed Adaptive Cruise Control/ Cooperative Adaptive Cruise Control (ACC/CACC) and vehicle-to-everything (V2X) features in Aimsun and is the first microsimulation platform that can replicate mixed traffic in the real world. For the demonstration purposes three applications have been selected which are mentioned below:

1. Freeway Speed Harmonization
2. Route Guidance (For Traffic Incident Management)
3. Traffic Signal Optimal Speed Advisory

With only ACC/CACC enabled, the simulation has been done on 4 different networks (Freeway-Only subnetwork, Arterial-Only subnetwork, Freeway & Arterial subnetwork, and the I-210 Pilot network) in three different time periods. Significant improvements are achieved when the penetration rate of CAVs reaches about 50%. After that threshold, the improvement is minor even when the penetration rate increases.

Due to the presence of signal control, improvements on arterials are generally lower than on freeways for the same penetration rates of CAVs.
- For the freeway subnetwork, we can achieve about 40% delay reduction with 100% CAVs.
- For the arterial subnetwork, we can achieve about 15% delay reduction with 100% CAVs.
- For the freeway & arterial subnetwork, we can achieve about 26% delay reduction with 100% CAVs.
- For the I-210 Pilot, we can achieve about 15% delay reduction with 100% CAVs.

Higher improvements can be achieved if we have more aggressive settings in the ACC/CACC module.

IMAGES

Image 1: Message/Data flows
The contents of this document reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the California Department of Transportation, the State of California, or the Federal Highway Administration. This document does not constitute a standard, specification, or regulation. No part of this publication should be construed as an endorsement for a commercial product, manufacturer, contractor, or consultant. Any trade names or photos of commercial products appearing in this document are for clarity only.

© Copyright 2021 California Department of Transportation
ALL RIGHTS RESERVED