Combined Variable Speed Limit and Coordinated Ramp Metering Along SR 99 Corridor

Field test of combined CRM and VSA, and to evaluate the performance of those two control approaches on freeway corridor traffic.

WHAT IS THE NEED?

Coordinated Ramp Metering (CRM) and Variable Speed Advisory (VSA) are Active Traffic Management measures for freeways. The CRM concept is to balance the ramp metering rate (flow) from onramps into the freeway mainline considering the differences of demands and lengths (storage capacity) of all onramps along the corridor to maximize the throughput. However, CRM cannot completely control the traffic since, after the vehicles enter the freeway, they are beyond control in the sense that the freeway mainline traffic will still be dominated by the driver behavior.

Therefore, CRM can only improve traffic from the demand aspect. On the other hand, the VSA concept is to affect the driver behavior on freeway mainline. It would function at a macroscopic level for traffic harmonization — and it may reduce the shockwaves and maximize the bottleneck flow, if the algorithm is designed appropriately and if the driver compliance rate is reasonably high.

These two freeway traffic control methods are complementary to each other in function, with the goal of modulating traffic from different aspects. The CRM field test along State Route (SR) 99 was a success; it showed freeway traffic improvement without any infrastructure addition. Consequently, District 3 requested using the system developed by Partners for Advanced Transportation Technology (PATH) after the field test was completed. The field test of VSA on SR78 East Bound (EB) in District 11 was also a success. The combined effect of the two control approaches will need to be investigated quantitatively.
The following tasks need to be addressed in this project:

• Combine/integrate the previous field-tested CRM and VSA algorithms into one algorithm
• Combine/integrate the previous independently field-tested CRM and VSA systems (hardware and software) into one system
• Improve the systems based on the lessons learned in previous projects when CRM and VSA were tested independently
• Investigate the dynamic interactions of the functionalities of CRM and VSA for real-world freeway corridor traffic
• Quantitatively evaluate the performance improvement for joint function of CRM and VSA
• Investigate the driver compliance to VSA and its influence on traffic

WHAT ARE WE DOING?

The purpose of the project is a field test of combined CRM and VSA on SR99 North Bound (NB), and to evaluate the performance of the joint effect of those two control approaches on freeway corridor traffic. The research team will conduct the following tasks:

Task 1: Form a project panel
Task 2: Refine the concept of operations for combined CRM and VSA including overall control system design
Task 3: Select hardware and obtain VSA signs
Task 4: Select trailer; design, obtain, develop, and integrate trailer with VSA sign
Task 5: Develop software for interfacing with VSA sign
Task 6: Implement and refine real-time traffic state parameter estimation for a combined CRM and VSA
Task 7: Develop website for a combined system of VSA and CRM
Task 8: Combine CRM and VSA Algorithm into one algorithm and implement on PATH Real-Time computer
Task 9: Conduct project outreach

Task 10: Collect extensive data for current traffic
Task 11: Integrate system for the combined CRM and VSA
Task 12: Perform field preliminary test of combined VSA and CRM
Task 13: Conduct extensive test of combined VSA and CRM with data collection
Task 14: Conduct data analysis for performance evaluation of combined CRM and VSA
Task 15: Perform project management

WHAT IS OUR GOAL?

The goal is to use combined CRM and VSA to control both the demands from the onramps and affect the driver behavior in mainline for traffic throughput and safety improvement.

WHAT IS THE BENEFIT?

CRM and VSA are two complementary control approaches for freeway corridor traffic management: the former controls the demand into the freeway while the latter affects the driver behavior and reduces mainline shockwaves.

A previous field-test of the VSA strategy on SR78 EB indicated that the traffic throughput could be improved about 8.7% in morning peak traffic. Another previous CRM field test in SR99 NB corridor showed that the performance was improved about 7.25% for congested morning traffic. The combined effect of the two control approaches could be cumulative. If successful, those control approaches can be widely implemented on California freeway corridors for mobility and safety improvement.

WHAT IS THE PROGRESS TO DATE?

The researchers are developing the combined CRM and VSA for Traffic Control on SR99 in District 3. Currently, data acquisition software for CRM system is being carefully merged with the VSA software that was originally designed for District 11.
Furthermore, the research team has collected data from the SR99 corridor. They are converting the VSA software written for District 11, to a more general software, which could work anywhere within Caltrans that has data streams, either directly from ramp metering controllers (as in District 3) or from an Extensible Markup Language feed (as in District 11).

The researchers have identified a new company ADDCO, which has a product model DH1000 that seems to meet the Manual on Uniform Traffic Control Devices requirement. It is a remote-control communication that links the VSA sign on the roadside with modem and remote-control capabilities.