Development of a Replacement for Breakaway Supports for Large Roadside Signs and Crash Testing to MASH 2016 Test Level 3

Current federal guidelines require that all roadside hardware be evaluated by the latest crash testing criteria. This project is to identify and test sign support systems that need to meet the current criteria.

WHAT IS THE NEED?

Per Federal Highway Administration (FHWA) guidelines all roadside hardware including sign supports must be evaluated using the 2016 edition of the American Association of State Highway and Transportation Officials (AASHTO) Manual for Assessing Safety Hardware (MASH) criteria. Many of the California Department of Transportation’s (Caltrans) one and two post sign supports have not been tested under the MASH criteria. The purpose of this project is to research what testing has been or will be conducted by other state Departments of Transportation (DOT) or testing agencies. Once completed, sign support systems that require testing will be identified and ranked. Those that are deemed the most critical or represent a large group of sign support systems will be tested under the criteria in MASH.

WHAT ARE WE DOING?

Specific sign and post combinations for testing are being reviewed to include in the testing plan. Crash testing by others, such as Midwest Roadside Safety Facility (MwRSF) and Texas Transportation Institute (TTI) are being monitored to avoid testing overlap and to better define sign and post combinations that are likely to pass MASH testing. Many combinations are failing due to windshield penetration or excessive deformations of the windshield or roof.
Sign posts are considered Support Structures in MASH. There are three tests for each sign post configuration. Caltrans sign supports are considered MASH Test Level 3 systems and the testing criteria details are as follows, additional tests may be required for impact angles that are determined to be critical:

<table>
<thead>
<tr>
<th>MASH Test Number</th>
<th>Vehicle</th>
<th>Impact Speed Mph (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-60</td>
<td>1100C Passenger Car</td>
<td>35 (56)</td>
</tr>
<tr>
<td>2-61</td>
<td>1100C Passenger Car</td>
<td>62 (100)</td>
</tr>
<tr>
<td>3-32</td>
<td>2270F Pickup Truck</td>
<td>62 (100)</td>
</tr>
</tbody>
</table>

WHAT IS OUR GOAL?

The goal is to confirm that one and two post sign support systems on California’s highways meet the current safety evaluation criteria. Any systems that do not meet the criteria will be redesigned and tested.

WHAT IS THE BENEFIT?

This research will insure that the sign support systems on California’s highways meet safety standards and federal guidelines. By meeting these standards, Caltrans will improve safety for road users by lowering the potential for injuries and fatalities, reduce tort liability, and will continue to have Federal-aid reimbursement eligibility. Also, other DOTs throughout the country will benefit from this research since many use similar sign support systems.

WHAT IS THE PROGRESS TO DATE?

This project is still in the early stages. This quarter we continued to develop the work plan and test matrix. The Caltrans Contract Cost Database (CCCD) was used to create a list of the number of sign panels that have been installed over the past ten years. This information was used to find the top five most common sign sizes for the one post, two post, and laminated wood box sign supports. Other testing organizations are being monitored to prevent testing sign support configurations that are currently being or planned to be tested.

Currently, non-standard preliminary testing is being considered before conducting full scale MASH testing. Non-standard testing would use vehicles that may not run (will need to be towed) or not meet MASH criteria and may not be fully instrumented. These tests would be quick and in-expensive and give the unit a better understanding of the sign support interactions with the vehicle. This is being considered because preliminary testing of sign supports by other agencies has shown that many have not been able to meet MASH criteria. Computer simulations have also been having a difficult time predicting sign support and vehicle interactions due to the variations in wood being hard to simulate.