High-Tension Cable Barrier as Guardrail: Survey of Practice

Requested by
Troy Bucko, Division of Traffic Operations

July 27, 2020

The Caltrans Division of Research, Innovation and System Information (DRISI) receives and evaluates numerous research problem statements for funding every year. DRISI conducts Preliminary Investigations on these problem statements to better scope and prioritize the proposed research in light of existing credible work on the topics nationally and internationally. Online and print sources for Preliminary Investigations include the National Cooperative Highway Research Program (NCHRP) and other Transportation Research Board (TRB) programs, the American Association of State Highway and Transportation Officials (AASHTO), the research and practices of other transportation agencies, and related academic and industry research. The views and conclusions in cited works, while generally peer reviewed or published by authoritative sources, may not be accepted without qualification by all experts in the field. The contents of this document reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the California Department of Transportation, the State of California, or the Federal Highway Administration. This document does not constitute a standard, specification, or regulation. No part of this publication should be construed as an endorsement for a commercial product, manufacturer, contractor, or consultant. Any trade names or photos of commercial products appearing in this publication are for clarity only.

Table of Contents

Executive Summary .. 2
Background.. 2
Summary of Findings ... 2
Gaps in Findings .. 8
Next Steps .. 8
Detailed Findings ... 9
Background.. 9
Survey of State Practice ...10
Survey of Barrier Vendors ..21
Related Research and Resources ..25
Contacts...33
Appendix A: Survey Questions ..35
Executive Summary

Background

Cable barrier systems are traditionally used as median barriers, but their widespread use as guardrail is largely unknown. Some departments of transportation (DOTs) have used high-tension cable barrier in this application, including California Department of Transportation (Caltrans) District 11, which has reported a successful installation on a section of Interstate 15. These safety systems are easy to repair, can be installed in more conditions than traditional thrie-beam barriers and are also cost-effective, oftentimes costing up to 50% less than traditional thrie-beam barrier systems.

Caltrans is considering expanding its use of high-tension cable barrier as guardrail in some applications. To inform its evaluation of the safety barrier in this application, the agency is seeking information from other state transportation agencies about their use of high-tension cable barrier as guardrail on the right shoulder of the road. Specifically, Caltrans is interested in best practices, standards and specifications to use in updating its policies and standards for using high-tension cable barrier as guardrail. Product and safety information from cable barrier manufacturers and crash testing facilities is also of interest to Caltrans.

To assist Caltrans in this information-gathering effort, CTC & Associates surveyed state DOTs, cable barrier vendors and crash testing facilities for their knowledge and experience using or testing high-tension cable barrier as guardrail. Supplementing the survey findings is a sampling of publicly available international and domestic resources and guidance.

Summary of Findings

This Preliminary Investigation presents information in three areas:

- Survey of state practice.
- Survey of barrier vendors.
- Related research and resources.

Survey of State Practice

An online survey was distributed to members of the American Association of State Highway and Transportation Officials (AASHTO) Committee on Traffic Engineering. Fourteen state DOTs responded to the survey. Only two agencies (Iowa and Missouri DOTs) have used high-tension cable barrier as guardrail on the right shoulder of the road. One agency (New York State DOT) has approved the use of cable barrier in this application but has not yet installed the system. Two agencies (Connecticut and Wisconsin DOTs) have not used the system in this application but are considering it. Nine agencies (Arizona, Arkansas, Indiana, Michigan, Nevada, New Mexico and Pennsylvania DOTs; Kentucky Transportation Cabinet; and Louisiana Department of Transportation and Development) have not used high-tension cable barrier in this application and are not considering its use.

Findings from these state transportation agencies are presented in the following topic areas:

- Users of high-tension cable as guardrail.
- Nonusers of high-tension cable as guardrail.
Users of High-Tension Cable as Guardrail

Three agencies—Iowa, Missouri and New York State DOTs—described their use or intended use of high-tension cable barrier as guardrail on the right shoulder of the road. New York State DOT allows the use of high-tension cable barrier on roadsides but has only recently approved a version of the Brifen USA cable fence as the standard for roadside use. Because the agency does not anticipate an installation of high-tension cable on a roadside until the end of this construction season, the details provided in this Preliminary Investigation are estimates or anticipated outcomes.

System Description

Iowa and New York State DOTs use or have approved the use of Brifen USA cable barrier systems for a roadside application. Iowa DOT also uses cable barrier systems produced by Gibraltar and Trinity Highway Products (the CASS cable barrier system). The Missouri DOT respondent did not provide the name of the barrier or vendor used in the state.

The respondents from Iowa and Missouri DOTs noted that the systems used were complete systems, that is, they include tie-downs, end protection and other elements necessary for installation. The New York State DOT respondent, however, reported that the system approved for use in the state was not complete as the general contractor is required to supply the end anchor blocks and install the system. None of the respondents provided information about a project plan set that was used for a specific barrier installation. Standard plans, specifications and other guidance are provided for selecting, installing and maintaining the high-tension cable barrier systems used by these agencies as guardrail on the right shoulder of the road.

System Implementation and Maintenance

Implementation Considerations

Missouri DOT has used high-tension cable barrier in this application for approximately 10 years; Iowa DOT has used its system for approximately 15 years. (New York State DOT has approved the use of cable barrier in this application and anticipates its first installation will be completed by the end of this construction season.)

To determine if high-tension cable barrier is suitable as guardrail for a specific location, these agencies consider allowable deflection (Iowa), reduced visual impact (New York) and the duration of the installation (Iowa). In Iowa, W-beam is less expensive for short-term installations compared to the cost of anchors needed for cable. Cost is also a consideration in New York; the respondent noted that historically, its generic cable system has been much less expensive than traditional barriers.

Agencies consider a range of conditions to determine whether a high-tension cable barrier system is more appropriate than the traditional Midwest Guardrail System or concrete barrier for a specific application. Among the selection criteria considered are deflection distance (New York), ease and cost of repair (Iowa), frequency of impacts (New York), limited use (Missouri), sight distance on shared four-lane roads (Missouri), slope steepness (New York) and snow drifting (Iowa).

Installation Specifications

Installation specifications for high-tension cable barrier systems on the right shoulder of the road vary among agencies, which often rely on the manufacturer’s recommendations. Table ES-1 summarizes agency specifications (when provided).
Table ES-1. Cable Barrier System Installation Specifications

<table>
<thead>
<tr>
<th>Topic</th>
<th>Iowa</th>
<th>Missouri</th>
<th>New York*</th>
</tr>
</thead>
</table>
| System/Vendor | High-tension cable barrier
Brifen USA, Gibraltar, CASS | Unknown | Cable fence
Brifen USA |
| Minimum Length of Right Side Barrier | 60 to 100 feet (minimum for installations consisting only of anchor sections) | No minimum | 500 feet |
| Minimum Radius | Manufacturer’s recommendation | Manufacturer’s recommendation | Approx. 500 feet |
| Minimum Deflection Area | 10 feet minimum (preferred) | 8 feet to 12 feet | • 11 feet for 16-foot post spacing. |
| | | | • 8 feet for 8-foot post spacing. |
| Post Spacing | Typically 10 feet:
• May change to 5 feet to reduce deflection.
• May decrease post spacing in areas with tight curve radius.
Manufacturer’s recommendation | Manufacturer’s recommendation | N/R |
| Required Installation Space | Determined by contractor’s operations. | Manufacturer’s recommendation | N/R |
| Section Cross Slope | • Preferred: 6:1
• Acceptable: 4:1 | • Preferred: 6:1
• Acceptable: 4:1 | N/R |
| Slope Hinge Point/Slope Breakpoint | • Preferred: 2 feet behind the post
• Minimum: 1 foot | Varies by location | N/R |
| Attaching to a Structure | Transition using an approach guardrail transition and end terminal | Varies by structure | No |
| Speed of Facility | 55 mph to 70 mph | 45 mph to 65 mph | Any operating speed. |

N/R No response.
* Estimates only. Installation specifications in New York have not yet been finalized.

Maintenance Practices
Two respondents noted issues with the posts used with cable barrier systems. Iowa DOT uses sockets instead of driven posts, and in winter, the posts tend to freeze in the sockets. Maintenance crews typically must heat the posts to melt the ice before removing the posts. Although New York State DOT does not have experience maintaining these cable barrier systems in this application, the agency has used the Brifen USA system with posts in concrete sockets. The agency banned the use of socketed posts after severe corrosion occurred when briny water accumulated in the sockets.
Another issue in Iowa is ensuring cables are properly tensioned. The respondent noted that time is limited for maintenance crews to check cable tensions.

System Assessment

Safety Implications
In Iowa, a decreased risk of severe injuries has been noted with this barrier system because cable barrier provides a “softer hit” than W-beam or concrete barriers. Also, repairs are quicker than with W-beam barriers, which reduces maintenance crews’ exposure to traffic. In Missouri, these systems increase safety in areas where sight distance is a challenge, but there are concerns about vehicles traveling under the right shoulder cables due to deflections and slopes.

System Performance
Iowa DOT uses crash data and cost of maintenance data to evaluate barrier system performance. Missouri DOT also uses crash data in these evaluations, and New York State DOT anticipates developing a “picture of safety performance” that will include information from field crews about maintenance efforts and costs.

System Benefits
Improved safety conditions were reported by respondents that use high-tension cable barrier as guardrail. Iowa DOT finds that repairing these systems is easier, which reduces the time maintenance crews are exposed to traffic. Missouri DOT noted improved sight distances, and New York State DOT reported that if a high-tension cable barrier system is impacted, the cables maintain a height that enables the system to engage an errant vehicle. Both Iowa and New York State DOTs also reported reduced repair costs.

System Challenges
Iowa and Missouri DOTs also identified challenges with using high-tension cable barrier as guardrail, including the cost of concrete anchors, adequate deflection area and installations along slopes. The New York State DOT respondent noted that the agency anticipates similar challenges with this application once installed.

Recommendations for Implementation
Because these agencies either have limited experience or lack direct experience with this application, the respondents from Missouri and New York State DOTs noted that it would be difficult to provide implementation recommendations. The respondent from Iowa DOT noted that “[a]s with all systems, there is a right time and right place for cable installations on the right side of the road.” He recommended documenting these aspects of an installation for designers to use in future installations.

Nonusers of High-Tension Cable as Guardrail

Agencies Considering High-Tension Cable Use as Guardrail
Two agencies—Connecticut and Wisconsin DOTs—currently do not use high-tension cable barrier as guardrail on the right shoulder of the road, but both agencies are considering this application. While Connecticut DOT does not have plans to use high-tension cable as guiderail, the agency is not averse to using it in future interstate applications. Wisconsin DOT has implemented a trial application of this barrier system on a local road where snow drifting is a problem. The respondent noted three issues with installing cable barrier on the right side of the road:
Inadequate space for the working width of cable barriers.

Grading.

Impacts to cable barrier terminals. (Impacts to these terminals appear to be more severe than impacts to beam guard end terminals.)

In general, if the working width for cable barrier and the grading are adequate, the agency would prefer to use cable barrier.

High-Tension Cable Use in Median Applications Only

Transportation agency respondents from nine states—Arizona, Arkansas, Indiana, Kentucky, Louisiana, Michigan, Nevada, New Mexico, and Pennsylvania—reported that their agencies have never used high-tension cable barrier as guardrail on the right shoulder of the road and are not considering using the barrier in this application.

Transportation agency respondents from Arkansas, Louisiana, Michigan, Nevada, and Pennsylvania noted that their agencies only use high-tension cable barrier systems in the median to reduce the frequency and severity of cross-median crashes. Respondents provided a range of reasons for limiting the use of cable barriers to this application, including cost (Nevada and New Mexico); deflection issues (Arkansas, Louisiana, Nevada, New Mexico, and Pennsylvania); loss of tension (Michigan); and terrain (Indiana, Louisiana, and Pennsylvania).

Survey of Barrier Vendors

An email survey was distributed to cable barrier vendors and crash testing facilities to inquire about the high-tension cable barrier products that these organizations manufactured or tested. Two vendors responded to the survey: Brifen USA, Inc. and Trinity Highway Products, LLC. None of the crash testing facilities responded to the survey.

Project Descriptions

Brifen USA briefly described the Interstate 15 project in Caltrans District 11 where Wire Rope Safety Fence was installed. According to the vendor, this system complies with NCHRP 350 Test Level 4 crash testing requirements and uses steel posts, anchors, and four ropes with a Natina finish field. The fencing is installed at a 10-foot post spacing.

Trinity Highway Products provided general information about CASS, the company’s high-tension cable barrier system, which has been used on both the right and left side of the road globally. While most states and Canadian provinces have used the system primarily on the left side of the road and in median applications, the following states have used the system on both the right and left side of the road: Arizona, Louisiana, North Carolina, North Dakota, South Dakota, South Dakota, and Texas. The company does not provide specific details about CASS projects and installations, and the respondent recommended contacting a state’s design/standards engineer for specific project information.

Crash Testing

The Brifen USA respondent noted that Manual for Assessing Safety Hardware (MASH) 2016 testing criteria for wire rope systems are much more rigorous than NCHRP Report 350 testing requirements. He added that while most systems are installed in medians, the tests replicate many roadside applications. The Trinity Highway Products respondent reported that CASS has been tested to NCHRP Report 350 and MASH, 1st edition, specifications in both Test Level 3.
and Test Level 4 configurations. These systems are eligible for Federal Highway Administration funding as a flexible longitudinal barrier for right- or left-side roadway installations.

Multimodal Facility Applications

Brifen Wire Rope Safety Fence O-Post with Flared-End Wire Rope Gating Terminals has been used in Oklahoma City, Oklahoma, to separate bicycle facilities. The project was completed under Oklahoma City’s MAPS 3 program, a capital improvements program, and placed cable barrier on the right shoulder of a four-lane undivided surface road to shield a newly installed bike path. The City of Oklahoma City designed the project and specified a MASH system.

Design Considerations

Trinity Highway Products’ instructions for installing cable barrier as guardrail include offset from hinge break points, allowable steepness of slope behind cable barrier and preferred offsets. The company’s assembly manuals provide guidance about where to install the barrier system with respect to slopes that are suitable for CASS.

The Brifen USA respondent reported that state transportation agencies design projects, and the projects typically follow guardrail design policies for offsets from hinge point and slope placement. No testing has been conducted to separately evaluate specific placement or slope conditions beyond NCHRP 350 MASH 2016 tests. The company has employed finite element analysis to simulate and evaluate curbs in front of the system.

Restrictions on Use

Brifen USA cable barrier systems have no restrictions that would prevent them from use as guardrail if the field conditions (such as approach slope or dike placement) were the same as crash testing criteria.

Trinity Highway Products’ CASS system does have restrictions. CASS was tested according to NCHRP Report 350 and/or MASH, 1st edition, specifications as a Test Level 3 or Test Level 4 flexible longitudinal barrier in a condition where no obstructions were encountered during testing. In general, the topography was smooth and free of materials that could have affected the stability of the vehicle. The respondent added that all CASS manuals include the following requirement within the details:

The CASS System shall be placed on shoulders or medians without obstructions, depressions, etc., that may significantly affect the stability of an errant vehicle.

In addition, the General Notes of all CASS system drawings include the following requirement:

CASS shall be installed on shoulders or medians with slopes of 6:1 (or 4:1, if a 4:1 system) or flatter without obstructions, depressions, etc., that may significantly affect the stability of an errant vehicle. Grading of site and/or appropriate fill materials may be required. The designer/installer shall “flatten” or “round” various topographical inconsistencies that could interfere with the ability of the installer to consistently maintain the design height (in relation to the terrain) of the cables.

Related Research and Resources

Supplementing the survey results are documents sourced through a limited literature search of domestic and international research. These resources include an anticipated NCHRP project that will focus on developing guidance for nonstandard roadside hardware installations. This project has been tentatively selected and a project statement (request for proposals) is
expected in August 2020. Also included is NCHRP Report 711, which provides guidance for the selection, use and maintenance of cable barrier systems, and AASHTO’s 2011 Roadside Design Guide, which includes a discussion of the structural and safety characteristics of high-tension cable barriers, selection guidelines, placement recommendations and system upgrades.

Publications highlighting state research and practices include guidelines, specifications and policies for using high-tension cable barrier systems in roadside applications. Resources provide requirements for using vendor products, including those described in this Preliminary Investigation. Citations from the Roadside Safety Pooled Fund’s MASH implementation database describe three high-tension cable barrier systems: Brifen Wire Rope Safety Fence O-Post, CASS S3 MASH and CASS S3 on 4H:1V.

A sampling of international resources include reports that address using wire rope barriers on the roadside and on pedestrian and cyclist paths in Australia, safety evaluations of cable barrier installations on rural highways in British Columbia, and a comparison of roadside and median barrier systems in Alberta. Cable barrier system information from additional vendors and manufacturers is also presented.

Gaps in Findings

The survey of state DOTs received a limited response, with only two respondents providing information about the use of high-tension cable barriers as guardrail in their states. Information from vendors about specific projects that used their products was also limited, and none of the crash testing facilities responded to the survey. Gathering information from additional state transportation agencies, including agencies in states that reportedly use Trinity Highway Products, could provide additional material to inform Caltrans’ evaluation of high-tension cable barrier as guardrail.

Next Steps

Moving forward, Caltrans could consider:

- Following up with the respondents from Iowa and Missouri DOTs to learn more about their use of high-tension cable barrier as guardrail.
- Engaging with New York State DOT, which anticipates installing cable barrier as guardrail by the end of this construction season, to monitor the performance of this system and the agency’s experience using it.
- Reviewing the plans, specifications and other guidance provided by survey respondents and sourced through the limited literature search for relevance to Caltrans’ needs.
- Reaching out to state design/standards engineers in Arizona, Louisiana, North Carolina, North Dakota, South Dakota and Texas for information about their experience using Trinity Highway Products’ CASS cable barrier system. These states reportedly have used cable barrier on both the right and left side of the road.
- Reviewing the literature about Brifen USA and Trinity Highway Products cable barrier systems and other cable barrier vendors discussed in this Preliminary Investigation for applications that would be useful to Caltrans.
- Seeking information about this application from other state transportation agencies, cable barrier system vendors and crash testing facilities.
Background

Cable barrier systems are traditionally used as median barriers, but their widespread use as guardrail is largely unknown. California Department of Transportation (Caltrans) District 11 has installed high-tension cable barrier on a section of Interstate 15; the barrier has performed well and has been easy to repair. When this barrier is impacted, repair time is about 15 to 20 minutes compared to an hour or more to repair the same length of guardrail. These safety systems are also cost-effective, oftentimes costing up to 50% less than traditional thrie-beam barrier systems. Given the potential to significantly reduce the time that repair crews are exposed to traffic, and that high-tension cable barrier can be installed in more conditions than traditional thrie-beam barriers (for example, locations with steep slopes), Caltrans is considering the use of high-tension cable barrier in some guardrail applications.

Caltrans is seeking information from other state departments of transportation (DOTs) about their use of high-tension cable barrier as guardrail on the right shoulder of the road. Specifically, Caltrans is interested in best practices, standards and specifications to use in updating its policies, standards and specifications for using high-tension cable barrier in this application. In addition to querying state DOTs, Caltrans is interested in learning about high-tension cable barrier practices and standards from manufacturers and crash testing facilities.

To assist Caltrans in this information-gathering effort, CTC & Associates surveyed three groups:

- **State DOTs.** Agencies were contacted about their knowledge of and experience with using high-tension cable barrier as guardrail. Fourteen state DOTs responded to the survey.

- **Barrier vendors.** Three vendors were contacted about the cable barrier products they manufacture:
 - Brifen USA, Inc.
 - Gregory Highway Products.
 - Trinity Highway Products, LLC.

 Brifen USA and Trinity Highway Products responded to the survey.

- **Crash testing facilities.** Three organizations were contacted about their experience testing high-tension cable barrier in this application:
 - KARCO–San Bernardino.
 - Midwest Roadside Safety Facility.
 - Texas Transportation Institute.

 None of the crash testing facilities responded to the survey.

A literature search supplemented the results of these surveys. The search examined publicly available national and international information sources that describe the use of high-tension cable barrier as guardrail. Findings from these efforts are presented in this Preliminary Investigation in three areas:

- Survey of state practice.
- Survey of barrier vendors.
- Related research and resources.
Survey of State Practice

An online survey was distributed to members of the American Association of State Highway and Transportation Officials (AASHTO) Committee on Traffic Engineering. Survey questions are provided in Appendix A. The full text of survey responses is presented in a supplement to this report.

Summary of Survey Results

Fourteen state DOTs responded to the survey:

- Arizona.
- Arkansas.
- Connecticut.
- Indiana.
- Iowa.
- Kentucky.
- Louisiana.
- Michigan.
- Missouri.
- Nevada.
- New Mexico.
- New York.
- Pennsylvania.
- Wisconsin.

Only two agencies (Iowa and Missouri DOTs) have used high-tension cable barrier as guardrail on the right shoulder of the road. One agency (New York State DOT) has approved the use of cable barrier in this application but has not yet installed the system. Two agencies (Connecticut and Wisconsin DOTs) have not used the system in this application but are considering it. The remaining nine agencies have not used high-tension cable barrier in this application and are not considering its use.

Survey results are summarized below in the following topic areas:

- Users of high-tension cable as guardrail.
- Nonusers of high-tension cable as guardrail.

Users of High-Tension Cable as Guardrail

Three agencies—Iowa, Missouri and New York State DOTs—described their use or intended use of high-tension cable barrier as guardrail on the right shoulder of the road.

Note: Information below from the New York State DOT respondent is aspirational. The agency allows the use of high-tension cable barrier on roadsides but has only recently approved a version of the Brien USA cable fence as the standard for roadside use. New York State DOT anticipates an installation of high-tension cable on a roadside by the end of this construction season.

The agency’s medium-tension generic cable system, which it had been using for median and roadside applications, has not received Manual for Assessing Safety Hardware (MASH) approval, but testing is underway. Other proprietary alternatives are expected to be fully approved within a year, and the agency expects its medium-tension generic cable to pass MASH testing.

The New York State DOT respondent reported that the agency has not used high-tension cable barrier as guardrail on the right shoulder of the road in a pilot or trial application. Iowa and Missouri DOTs did not provide information about a trial application.
Survey results from these agencies are summarized below in the following topic areas:

- System description.
- System implementation and maintenance.
- System assessment.

System Description

Iowa and New York State DOTs use or have approved the use of Brifen USA cable barrier systems for a roadside application. Iowa DOT also uses cable barrier systems produced by Gibraltar and Trinity Highway Products (the CASS cable barrier system). (See Related Resources, page 23, and Related Research and Resources, page 25, for more information about these products and manufacturers.)

The respondent from Iowa DOT noted that the systems used were complete systems, that is, they include tie-downs, end protection and other elements necessary for installation. The New York State DOT respondent, however, reported that the system approved for use in the state was not complete as the general contractor is required to supply the end anchor blocks and install the system. The Missouri DOT respondent did not provide the name of the barrier or vendor used in the state, but reported that the barrier was a complete system.

None of the respondents provided information about a project plan set that was used for a specific barrier installation.

Table 1 summarizes survey responses.

<table>
<thead>
<tr>
<th>State</th>
<th>System</th>
<th>Vendor</th>
<th>Complete System</th>
</tr>
</thead>
</table>
| Iowa | High-tension cable | • Brifen USA
 | guardrail | Gibraltar
 | • Trinity Highway Products (CASS) | Yes | | |
| Missouri | Unknown | Unknown | Yes |
| New York* | Brifen USA cable | Brifen USA | No |
| | fence | | |

* New York State DOT only recently approved the use of a Brifen USA cable system for this application. The first installation of high-tension cable on a roadside is expected by the end of this construction season.

Plans, Specifications and Other Guidance

The publications cited below include standard plans, specifications and other guidance for selecting, installing and maintaining high-tension cable barrier systems as guardrail on the right shoulder of the road. These resources were provided by survey respondents or sourced through a limited search.
Section 2505, Guardrail Construction and Removal, Standard Specifications for Highway and Bridge Construction, Iowa Department of Transportation, April 2020.
https://www.iowadot.gov/erl/current/GS/content/2505.htm
Section 2505.03B describes the permissible products and installation practices associated with high-tension cable guardrail.

Section 4155, Guardrail, Standard Specifications for Highway and Bridge Construction, Iowa Department of Transportation, April 2020.
https://www.iowadot.gov/erl/current/GS/content/4155.htm
This specification identifies the guardrail materials the agency requires for the type of guardrail specified, including cable rail.

Section 8B-5, Choosing a Barrier, Chapter 8, Roadside Safety, Design Manual, Iowa Department of Transportation, Revised February 2020.
https://iowadot.gov/design/dmanual/08b-05.pdf
From the publication: Once the decision has been made to shield an obstacle, the next step is to select an appropriate barrier system. This section discusses factors that influence barrier choice. The systems discussed in this section include permanent concrete barrier rail, steel beam guardrail and high tension cable guardrail.

High tension cable guardrail is the Department’s preferred traffic barrier. It has passed crash tests with a wide range of vehicles, is more aesthetically pleasing than concrete barrier or steel beam guardrail, and drifts snow less than other barriers. When faced with an obstacle that must be shielded, consider using high tension cable guardrail first. A permanent concrete barrier rail is usually chosen when deflection of the barrier is unacceptable, in areas with high truck traffic, or when penetration of the barrier by some vehicles must be avoided.

In restricted areas where a long barrier installation is not feasible, a crash cushion may be an acceptable option. Refer to Section 8C-5 for details.

Section 8C-3, High Tension Cable Guardrail, Chapter 8, Roadside Safety, Design Manual, Iowa Department of Transportation, Revised February 2020.
https://iowadot.gov/design/dmanual/08c-03.pdf
From the publication:

High tension cable guardrail is most often used to reduce cross-median crashes and is also the preferred method of shielding median bridge piers. It can also be used to protect other types of obstacles, as long as adequate distance is provided from the face of the obstacle to the installation line to account for deflection of the cable system.

The publication describes the design process for protecting roadside obstacles for one- and two-way traffic, end anchors, application on curves, and the connection between high-tension cable and steel beam guardrail.

High Tension Cable Guardrail, Standard Road Plan BA-351, Iowa Department of Transportation, October 2019.
https://iowadot.gov/design/SRP/IndividualStandards/eba351.pdf
This is the standard plan for installation of high-tension cable barrier for one- and two-way traffic and median obstacle protection.
High Tension Cable Guardrail, Materials Instructional Memorandum 455.01, Iowa Department of Transportation, October 2014. https://www.iowadot.gov/erl/urrent/IM/content/455.01.htm
This memorandum provides links to other sources that identify the products and materials accepted for use in connection with high-tension cable barrier installations.

Steel Beam Guardrail Barrier Transition Section (MASH TL-3), Standard Road Plan BA-201, Iowa Department of Transportation, April 2017. https://iowadot.gov/design/SRP/IndividualStandards/eba201.pdf
This plan shows a guardrail transition section.

This plan shows how to connect steel beam and cable guardrail.

Missouri

Plans for State Highway 5, Laclede County, Missouri Highways and Transportation Commission, July 2011. See Attachment A.
These plans show details of a project where guard cable was used as guardrail.

New York

The survey respondent indicated that a revision to this design guidance had begun after reaching agreement on the use of a direct-driven post option that should make cable installations economically competitive with the agency’s noncable options.

System Implementation and Maintenance

In addition to providing general information about their cable barrier systems, respondents provided details related to system implementation and maintenance, which is summarized in the following sections.

Implementation Considerations

The states participating in this survey that have experience using high-tension cable barrier as guardrail have used the barrier for approximately 10 years (Missouri) to approximately 15 years (Iowa).

The primary factors that determine when agencies use high-tension cable barrier as guardrail are allowable deflection (Iowa) and reduced visual impact (New York). The duration of the installation is the next factor considered by Iowa DOT; the respondent reported that for short-term installations, W-beam is less expensive because of the anchors needed for cable. Cost is also a consideration in New York; the respondent noted that historically, its generic cable system has been much less expensive. However, in future installations, the importance of lower costs is unclear.
Respondents also described criteria used to determine whether a high-tension cable barrier system is more appropriate than the traditional Midwest Guardrail System or concrete barrier for a specific application. Iowa DOT considers snow drifting and ease and cost of repair in these decisions while Missouri DOT examines sight distance issues on shared four-lane roads and considers limited use. The primary criteria in New York are related to deflection distance. Depending on the post spacing used, a clear area with a width of 11 feet must be present behind the rail (for 16-foot post spacing). The agency also does not allow slopes steeper than 1:3 as a drop-off within 8 feet of the rail, and considers the frequency of impacts. If a high frequency of impacts is anticipated, the agency urges the use of concrete as a more durable system. Table 2 summarizes survey responses.

Table 2. Cable Barrier System Implementation Considerations

<table>
<thead>
<tr>
<th>Topic</th>
<th>Iowa</th>
<th>Missouri</th>
<th>New York*</th>
</tr>
</thead>
<tbody>
<tr>
<td>System/</td>
<td>High-tension cable barrier Brifen USA,</td>
<td>Unknown</td>
<td>Cable fence Brifen USA</td>
</tr>
<tr>
<td>Vendor</td>
<td>Gibraltar, Trinity Highway Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of Use</td>
<td>15+ years</td>
<td>Approx. 10 years (approx. 2011)</td>
<td>N/A*</td>
</tr>
<tr>
<td>Criteria for Use</td>
<td>• Allowable deflection (primary factor).</td>
<td>• Reduced sight distance.</td>
<td>• Aesthetics: Reduced visual impact (primary factor).</td>
</tr>
<tr>
<td></td>
<td>• Length of installation.</td>
<td>• Narrow shoulders.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Snow drifting.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selection</td>
<td>• Snow drifting.</td>
<td>• Sight distance issues on shared four-lane roads.</td>
<td>• Deflection distance.</td>
</tr>
<tr>
<td>Criteria</td>
<td>• Ease of repair.</td>
<td>• Limited use.</td>
<td>• Clear area with a width of 11 feet behind the rail (for 16-foot post spacing).</td>
</tr>
<tr>
<td>(see Supporting Documents below)</td>
<td>• Cost of repair.</td>
<td></td>
<td>• Slopes not steeper than 1:3 as a drop-off within 8 feet of the rail.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Frequency of impacts.</td>
</tr>
</tbody>
</table>

* N/A = not available. New York State DOT only recently approved the use of a Brifen USA cable system for this application. The first installation of high-tension cable on a roadside is expected by the end of this construction season. Note: The agency began trial applications of this system in medians more than 10 years ago.

Installation Specifications

Agency respondents also provided installation specifications for high-tension cable barrier systems, including the minimum length of the barrier on the right side, minimum deflection area, post spacing and the space needed to install the barrier. Note: Installation specifications in New York have not yet been finalized. The respondent provided estimates, adding that designers determine the specifications. Table 3 summarizes survey responses.
Table 3. Cable Barrier System Implementation Specifications

<table>
<thead>
<tr>
<th>Topic</th>
<th>Iowa</th>
<th>Missouri</th>
<th>New York*</th>
</tr>
</thead>
<tbody>
<tr>
<td>System/ Vendor</td>
<td>High-tension cable barrier Brifen USA, Gibraltar, CASS</td>
<td>Unknown</td>
<td>Cable fence Brifen USA</td>
</tr>
<tr>
<td>Minimum Length of Right Side Barrier</td>
<td>60 to 100 feet (minimum length for installations consisting only of anchor sections)</td>
<td>No minimum</td>
<td>500 feet (to spread the high cost of large anchor blocks over a long distance run)</td>
</tr>
<tr>
<td>Minimum Radius</td>
<td>Manufacturer’s recommendation</td>
<td>Manufacturer’s recommendation</td>
<td>Approx. 500 feet (since posts cease to be vertical on tight radii)</td>
</tr>
<tr>
<td>Minimum Deflection Area</td>
<td>10 feet minimum (but 10 feet is preferred)</td>
<td>8 feet to 12 feet</td>
<td>• 11 feet for 16-foot post spacing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 feet for 8-foot post spacing.</td>
</tr>
<tr>
<td>Post Spacing</td>
<td>Typically 10 feet:</td>
<td>Manufacturer’s recommendation</td>
<td>N/R</td>
</tr>
<tr>
<td></td>
<td>• May change to 5 feet to reduce deflection.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• May decrease post spacing in areas with tight curve radius.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required Installation Space</td>
<td>Determined by contractor’s operations.</td>
<td>Manufacturer’s recommendation</td>
<td>N/R</td>
</tr>
<tr>
<td>Section Cross Slope</td>
<td>Preferred: 6:1, but 4:1 is acceptable.</td>
<td>Preferred: 6:1, but 4:1 is acceptable.</td>
<td>N/R</td>
</tr>
<tr>
<td>Slope Hinge Point/ Slope Breakpoint</td>
<td>Preferred: 2 feet behind the post; 1-foot minimum (manufacturer’s recommendations from several years ago).</td>
<td>Varies by location for right shoulder installations.</td>
<td>N/R</td>
</tr>
<tr>
<td>Attaching to a Structure</td>
<td>Transition using an approach guardrail transition (AGT) and end terminal (see Supporting Documents below).</td>
<td>Varies by structure.</td>
<td>No</td>
</tr>
<tr>
<td>Speed of Facility</td>
<td>Typically 55 mph to 70 mph</td>
<td>45 mph to 65 mph</td>
<td>Any operating speed.</td>
</tr>
</tbody>
</table>

N/R = No response.

* Estimates only. Installation specifications in New York have not yet been finalized.

Maintenance Practices

The Iowa and New York State DOT respondents described their agencies’ experience with maintaining these cable barrier systems. In Iowa, the primary maintenance issue is removing...
posts in winter. According to the respondent, Iowa uses sockets instead of driven posts, and in winter, the posts tend to freeze in the sockets. Crews typically must heat the posts to melt the ice before removing the posts. Another issue in Iowa is ensuring cables are properly tensioned. The respondent noted that time is limited for maintenance crews to check cable tensions.

Although New York State DOT does not have experience maintaining these cable barrier systems, it previously used the Brifen USA system with posts placed in concrete sockets. After maintenance crews noted a few instances of severe corrosion due to briny water accumulating in the sockets, the agency banned the use of socketed posts.

Supporting Documents

Iowa

Section 8B-5, Choosing a Barrier, Chapter 8, Roadside Safety, Design Manual, Iowa Department of Transportation, Revised February 2020. https://iowadot.gov/design/dmanual/08b-05.pdf

Factors that influence barrier choice are discussed in this section, including deflection of the system when impacted, system cost and the types of vehicles the system is expected to contain and redirect.

Steel Beam Guardrail Flared End Terminal for Cable Connection, Standard Road Plan BA-206, Iowa Department of Transportation, October 2019. https://iowadot.gov/design/SRP/IndividualStandards/eba206.pdf

This plan shows how to connect steel beam and cable guardrail.

Steel Beam Guardrail Barrier Transition Section (MASH TL-3), Standard Road Plan BA-201, Iowa Department of Transportation, April 2017. https://iowadot.gov/design/SRP/IndividualStandards/eba201.pdf

This plan shows a guardrail transition section.

System Assessment

Safety Implications

Respondents described the safety implications for using high-tension cable barrier as guardrail. The Iowa DOT respondent noted the decreased risk of severe injuries because cable barrier provides a "softer hit" than W-beam or concrete barriers. Also, repairs are quicker than with W-beam barriers, which reduces maintenance crews' exposure to traffic. In Missouri, these systems “work well” in areas where sight distance is a challenge, however, the respondent noted that there are concerns about vehicles traveling under the right shoulder cables due to deflections and slopes. Although New York State DOT does not have experience with using high-tension cable barrier as guardrail, the respondent noted that no negative safety impacts were experienced in trial installations of high-tension cable in medians.

System Performance

Both Iowa and Missouri DOTs use crash data to evaluate the performance of the barrier system. Iowa DOT also uses the cost of maintenance data in these evaluations. New York State DOT does not have a rigorous program for assessing in-service performance. Instead, it collects periodic reports of performance issues from maintenance crews and "usually attempt[s] to investigate adverse outcomes" to determine the circumstances. In the future, the agency will develop a “picture of safety performance” that will include information from field crews about maintenance efforts and costs.
System Benefits

Improved safety conditions and reduced costs were among the benefits that respondents noted when using high-tension cable barrier as guardrail. The Iowa DOT respondent noted that repairs are easier with cable barrier systems, which reduces the time maintenance crews are exposed to traffic. Sight distances are also improved, according to the Missouri DOT respondent. The New York DOT respondent added that when compared to medium-tension generic cable systems, the cables in high-tension cable barrier systems maintain a height that enables the system to still engage an errant vehicle after an impact. When the agency’s generic medium-tension system is impacted, the cables often become slack and sag, creating a system that cannot reliably capture a second errant vehicle until the cable is repaired. Table 4 summarizes survey responses.

Table 4. Benefits of Using High-Tension Cable Barrier as Guardrail

<table>
<thead>
<tr>
<th>Benefit</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of Repair</td>
<td>Iowa</td>
<td>N/R</td>
</tr>
<tr>
<td>Improved Safety Conditions</td>
<td>Iowa, Missouri, New York*</td>
<td>Iowa. Crews are exposed to traffic for shorter periods. Missouri. Improved sight distance. New York. After an impact, cables remain at a height that enables the barrier system to still engage an errant vehicle after a second impact.</td>
</tr>
<tr>
<td>Reduced Repair Costs</td>
<td>Iowa, New York*</td>
<td>Iowa. Cost of repair tends to be less than with other systems since repairs typically consist of replacing posts only.</td>
</tr>
</tbody>
</table>

N/R No response.

* Anticipated benefits. New York State DOT has not yet installed its first application of high-tension cable barrier as guardrail.

System Challenges

The respondents from Iowa and Missouri DOTs also identified challenges with using high-tension cable barrier as guardrail. These challenges include component cost, deflection area and installations along slopes. The New York State DOT respondent noted that the agency anticipates similar challenges with this application once installed. Table 5 summarizes survey responses.

Table 5. Challenges With Using High-Tension Cable Barrier as Guardrail

<table>
<thead>
<tr>
<th>Challenge</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs</td>
<td>Iowa, New York*</td>
<td>Iowa. Underground concrete anchors are expensive.</td>
</tr>
<tr>
<td>Deflection Area</td>
<td>Iowa, New York*</td>
<td>Iowa. Locations with 10 feet or more of allowable deflection (required by systems). New York. Locations with adequate clear deflection area.</td>
</tr>
<tr>
<td>Challenge</td>
<td>State</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Installation Location | Missouri, New York* | *Missouri.* Steep side slopes in the state limit installation. \
 New York:
 • Locations of a sufficient length can be installed to offset the high installed cost of the large concrete anchor blocks. \
 • Locations that do not have steep drop-offs close behind the rail. |
| Rates of Curvatures | New York* | *New York.* Locations with rates of curvature that are low enough, which may limit use on secondary highways. |
| Other | Iowa, New York* | *Iowa.* Underground concrete anchors are large. \
 New York. More contractor experience with these systems to eliminate an “uncertainty premium” in bids. |

* Anticipated challenges. New York State DOT has not yet installed its first application of high-tension cable barrier as guardrail.

Recommendations for Implementation

Because these agencies either have limited experience or lack direct experience with this application, the respondents from Missouri and New York State DOTs noted that it would be difficult to provide implementation recommendations. The respondent from Iowa DOT noted that “[a]s with all systems, there is a right time and right place for cable installations on the right side of the road.” He recommended documenting these aspects of an installation for designers to use in future installations.

Nonusers of High-Tension Cable as Guardrail

Agencies Considering High-Tension Cable Use as Guardrail

Respondents from two agencies—Connecticut and Wisconsin DOTs—reported that their agencies currently do not use high-tension cable barrier as guardrail on the right shoulder of the road as a general practice, but both agencies are considering this application.

The Connecticut DOT respondent noted that the agency does not have plans to use high-tension cable as guiderail, but the agency “is not averse” to use in future interstate applications.

Wisconsin DOT has implemented a trial application where high-tension cable barrier was used as guardrail on the right shoulder of a local road where snow drifting was a problem. The respondent noted three issues with installing cable barrier on the right side of the road:

• Inadequate space for the working width of cable barriers.
• Grading.
• Impacts to cable barrier terminals. (Impacts to these terminals appear to be more severe than impacts to beam guard end terminals.)

In general, the respondent added, if the working width for cable barrier and the grading are available, the agency would prefer to use cable barrier.
High-Tension Cable Use in Median Applications Only

Transportation agency respondents from nine states—Arizona, Arkansas, Indiana, Kentucky, Louisiana, Michigan, Nevada, New Mexico and Pennsylvania—reported that their agencies have never used high-tension cable barrier as guardrail on the right shoulder of the road and are not considering using the barrier in this application.

Transportation agency respondents from Arkansas, Michigan, Nevada and Pennsylvania DOTs and from Louisiana Department of Transportation and Development noted that their agencies only use high-tension cable barrier systems in the median to reduce the frequency and severity of cross-median crashes. Respondents provided a range of reasons for limiting the use of cable barriers to this application. The Michigan DOT respondent noted that an entire run of high-tension cable barrier may lose tension and become inoperative in certain cases (for example, when cables are cut or an impacted terminal results in the release of the cables from the end terminal foundation). Therefore, it is not typically used for shielding fixed objects or other fixed hazards such as steep slopes, which is typically found on the right side of the road.

Nevada DOT, which also uses cable rail exclusively in the median, does not have a standard construction plan; instead it relies on the manufacturer’s installation instructions. (Note: Nevada DOT uses Brifen USA and Trinity Highway Products cable barrier systems.) In Pennsylvania, there are very few applications for high-tension cable barrier on the right side of the road because of large deflections and required slopes (according to National Cooperative Highway Research Program (NCHRP) Report 711; see Related Research and Resources, page 26). However, the respondent added that if cable systems are crash-tested with a hinge point 2 feet behind the cable, there would be many applications in the state. Table 6 summarizes survey responses.

Table 6. Factors Limiting the Use of High-Tension Cable Barriers as Guardrail

<table>
<thead>
<tr>
<th>Topic</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
</table>
| Cost | Nevada, New Mexico | Nevada:
 • Cost of tightened post spacing is similar to guardrail.
 • Flattening road shoulders for cable rail is expensive. If slope is extended, rail and maintenance costs increase.
New Mexico. More posts are needed to lower the deflection, which increases the cost. |
| Deflection/Post Spacing Issues | Arkansas, Louisiana, Nevada, New Mexico, Pennsylvania | Arkansas. Because the deflection of high-tension cable far exceeds that of guardrail, high-tension cable is not a preferred barrier treatment within the roadway clear zone.
Louisiana. Typically, obstacles on the right side of the road are closer, and the deflection associated with cable barrier is a concern.
Nevada. Deflection is too great.
New Mexico:
 • Deflection in post and cable is about 8 feet to 12 feet based on post spacing.
 • The "nuisance hit“ from post and cable can cause more severe damage.
Pennsylvania. Large deflections. |
<table>
<thead>
<tr>
<th>Topic</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of Tension</td>
<td>Michigan</td>
<td>An entire length of high-tension cable barrier may lose tension and become inoperative (for example, when cables are cut or impact to the cable barrier terminal results in the release of the cables from the end terminal foundation). Therefore, cable barrier is not typically used for shielding fixed objects or other fixed hazards (such as steep slopes), which is typically found on the right side of the road.</td>
</tr>
</tbody>
</table>
| Median Crash Protection Only | Arizona, Arkansas, Louisiana, Michigan, Nevada, Pennsylvania | **Arizona.** Cable barrier is used for cross-median crash protection at many locations.
Arkansas, Louisiana, Michigan, Nevada and Pennsylvania. Only use cable barrier in the median to prevent crossover accidents. |
| Special Applications Only | Arizona | According to Arizona DOT guidance, cable barrier is used on the outside of the roadway only for special applications. |
| Terrain | Indiana, Louisiana, Pennsylvania | **Indiana.** Since the topography in Indiana is mostly flat, the clear zone can generally be met.
Louisiana. A large number of roadways are on fill sections with steep outside cross slopes (3:1 or steeper), and cable barriers are not tested for these conditions. The agency would have to regrade the slopes in these areas, which would affect drainage, right of way and other factors.
Pennsylvania. The state’s terrain does not allow for using cable barrier on the right side of the road. |
| Other | Indiana | W-beam guardrail has been used successfully on the right side of the road, both from a performance and maintenance perspective. |
Survey of Barrier Vendors

An email survey was distributed to the following vendors to inquire about the high-tension cable barrier products they manufactured:

- Brifen USA.
- Gregory Highway Products.
- Trinity Highway Products.

The survey questions are provided in Appendix A. The full text of survey responses is presented in a supplement to this report.

Summary of Survey Results

Two vendors responded to the survey: Brifen USA and Trinity Highway Products. Information provided by these vendors is summarized below in the following topic areas:

- Project descriptions.
- Crash testing.
- Multimodal facility applications.
- Design considerations.
- Restrictions on use.

Supplementary resources are provided following these topics and include guidance and product information provided by respondents or sourced through a limited literature search.

Project Descriptions

Both respondents reported that their companies manufacture cable barrier that has been used in place of guardrail on the right or left side of the road (primarily applications with longer runs). Details about these applications are summarized below.

Brifen USA

<table>
<thead>
<tr>
<th>Product</th>
<th>Wire Rope Safety Fence.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Description</td>
<td>Used in roadside and median applications, the Wire Rope Safety Fence complies with NCHRP 350 Test Level 4 crash testing requirements. The system uses steel posts, anchors and four ropes with a Natina finish field; fencing is installed at 10-foot post spacing.</td>
</tr>
<tr>
<td>Location</td>
<td>Interstate 15 in San Diego County</td>
</tr>
<tr>
<td>Project Owner</td>
<td>Caltrans District 11</td>
</tr>
<tr>
<td>Contact Information</td>
<td>Troy Bucko, Division of Traffic Operations, Caltrans, 916-654-5975</td>
</tr>
</tbody>
</table>
Trinity Highway Products

Instead of describing specific projects, the respondent from Trinity Highway Products provided general information about CASS, the company’s high-tension cable barrier system. He noted that as a publicly traded company, “we do not comment on or provide specific details as to where CASS is installed, nor provide project information.” The respondent recommended contacting a state’s design/standards engineer for specific project information (see Locations below).

Project Description

CASS has been installed globally on the right or left side of the roadway. However, most U.S. states and Canadian provinces have used it primarily in left-sided roadside and median applications.

Locations

States that have used it on both the right and left side of the road: Arizona, Louisiana, North Carolina, North Dakota, South Dakota and Texas.

Crash Testing

Both vendor representatives also commented on testing related to their barrier systems. The Brifen USA respondent noted that MASH 2016 testing criteria for wire rope systems are much more rigorous than NCHRP Report 350 testing requirements. He added that while most systems are installed in medians, the tests replicate many roadside applications. The Trinity Highway Products respondent reported that CASS has been tested to NCHRP Report 350 and MASH, 1st edition, specifications in both Test Level 3 and Test Level 4 configurations. These systems are eligible for Federal Highway Administration (FHWA) funding as a flexible longitudinal barrier for right- or left-side roadway installations.

Multimodal Facility Applications

Brifen Wire Rope Safety Fence O-Post (MASH Test Level 3) with Flared-End Wire Rope Gating Terminals (WRGT-FL) (NCHRP 350 Test Level 3) has been used in Oklahoma City, Oklahoma, to separate bicycle facilities. The project was completed under Oklahoma City MAPS 3 (M-3-T002A), “a capital improvements program in Oklahoma City that uses a one-cent, limited-term sales tax to pay for debt-free projects that improve [Oklahoma residents’] quality of life.” The project placed cable barrier on the right shoulder (grassed area with mountable curb) of a four-lane undivided surface road to shield a newly installed bike path. The City of Oklahoma City designed the project and specified a MASH system. (Brifen USA was not consulted on the design.)

Design Considerations

The respondent from Trinity Highway Products reported that the company has instructions for installing cable barrier as guardrail that include offset from hinge break points, allowable steepness of slope behind cable barrier and preferred offsets. The company’s assembly manuals provide guidance about where to install the barrier system with respect to slopes that are suitable for CASS (see Related Resources, page 23).

The Brifen USA respondent reported that state transportation agencies design projects, and the projects typically follow guardrail design policies for offsets from hinge point and slope placement. No testing has been conducted to separately evaluate specific placement or slope conditions beyond NCHRP 350 MASH 2016 tests. The company has employed finite element analysis to simulate and evaluate curbs in front of the system.
Restrictions on Use

There are no restrictions with Brifen USA products that would prevent its cable barrier system from being used as guardrail if the field conditions (such as approach slope or dike placement) were the same as crash testing criteria.

Trinity Highway Products’ CASS system does have restrictions. The respondent noted that CASS was tested according to NCHRP Report 350 and/or MASH, 1st edition, specifications as a Test Level 3 or Test Level 4 flexible longitudinal barrier in a condition where no obstructions were encountered during testing. In general, the topography was smooth and free of materials that could have affected the stability of the vehicle. The respondent added that all CASS manuals include the following requirement within the details:

The CASS System shall be placed on shoulders or medians without obstructions, depressions, etc., that may significantly affect the stability of an errant vehicle.

In addition, the General Notes (Note #3) of all CASS system drawings include the following requirement:

CASS shall be installed on shoulders or medians with slopes of 6:1 (or 4:1, if a 4:1 system) or flatter without obstructions, depressions, etc., that may significantly affect the stability of an errant vehicle. Grading of site and/or appropriate fill materials may be required. The designer/installer shall “flatten” or “round” various topographical inconsistencies that could interfere with the ability of the installer to consistently maintain the design height (in relation to the terrain) of the cables.

Related Resources

Brifen USA

Brifen Wire Rope Safety Fence, Brifen USA, Inc., 2015.
http://www.brifenusa.com/ (click on Brifen WRSF on the left navigation bar)

From the web site: Brifen Wire Rope Safety Fence (WRSF) is a high-tension median or roadside cable (wire rope) barrier system widely used around the world and in many U.S. states.

Brifen is available in several designs, all approved by the Federal Highway Administration (FHWA) as fully complying with NCHRP 350 TL-3 [and] TL-4 crash testing requirements. There are several types of end treatments also available, all of which meet FHWA compliance. These choices allow you to choose the system that best meets your specific needs.

Brifen’s unique patented interweaving of the wire ropes are used to contain [and] redirect errant vehicles by preventing the vehicles from crossing the barrier or deflecting back into the traffic flow. Brifen WRSF is designed to absorb the energy of an impact, minimizing injury to passengers and damage to vehicles.

Trinity Highway Products

Cable Barriers, Trinity Highway Products, LLC, 2020.

This web site provides information about four cable barrier products that are described for use in roadway medians:

 CASS C-Channel Cable
 https://trinityhighway.com/product/cass-c-channel-cable/
The NU-CABLE barrier system is also listed among the products Trinity Highway Products offers (see https://trinityhighway.com/product/nu-cable-cable-barrier/).

This vendor web page also includes information about HARP (High-Tension Anchor Release Post), which is a “single foundation anchor post terminal for use with Trinity Highway Products’ CASS, the Nucor Nu-Cable or other eligible high tension three[-] or four[-]wire rope cable barriers. It is comprised of a single reinforced concrete foundation, anchor post, knee brace, trigger braces and an innovative release post that works in conjunction with terminal line posts to provide an effective length of only 25’ 6”." The site indicates that the HARP terminal is not yet available for purchase in the United States.

Related Resources:

Trinity Highway Products’ assembly manuals provide guidance that includes where to install a barrier system with respect to slopes that are suitable for CASS, offset from hinge break points, allowable steepness of slope behind cable barrier and preferred offsets:

CASS C-Channel Cable

CASS S3 M10

CASS S3 4:1 Product Description Assembly Manual, August 2012.

CASS TL-3

CASS TL-4

CASS TL-3 & TL-4 Systems Assembly Manual, September 2012,
Related Research and Resources

A literature search of recent publicly available resources identified publications and other resources that are organized into the following topic areas:

- Domestic research and resources:
 - National guidance.
 - State guidance and practices.
 - MASH-compliant cable systems for roadside applications.
- International resources.
- Manufacturers and vendors.

Domestic Research and Resources

National Guidance

From the project description:

This project has been tentatively selected and a project statement (request for proposals) is expected in August 2020. The project statement will be available on this site. The problem statement below will be the starting point for a panel of experts to develop the project statement.

Roadside safety hardware is critical for reducing severe crashes on U.S. highways. Roadside safety hardware such as guardrail is crash tested to assess its crashworthiness. The current crash test criteria [are] contained in the AASHTO Manual for Assessing Safety Hardware (MASH), and all highway agencies are in the process of implementing MASH hardware on their systems.

While MASH tested hardware is available for and reduces the risk of severe crashes for the majority of applications, situations may be encountered where the approved roadside safety hardware does not fit the specific location. There is an urgent need to develop guidance for special site-specific designs to guide highway agencies on appropriate hardware use and implementation for these non-standard situations where standard practices of crash tested barrier cannot be used. In absence of this research, the frequency of severe injury and fatal crashes will likely escalate as more miles of roadway with non-standard roadside hardware installations continue to increase.

The objectives of this research are to:

1. Identify common nonstandard situations that are encountered by highway agencies.
2. Investigate potential crash tested solutions for these situations, if practical.
3. Identify best practices for situations where a crash tested solution may not be practical.
4. Develop guidelines that agencies can use for these situations.

From the foreword:

The research involved (1) efforts to determine agency experiences with cable barrier systems and their practices for design, selection and maintenance and (2) the identification of cable barrier system features available. Research focused on issues related to lateral placement, system length, anchorage requirements, transitions, and cost and maintenance. Computer simulation was used extensively to investigate key factors on performance with varied design parameters, installation configurations, road median geometrics, and impact conditions to isolate the effects of these parameters on barrier response. The research results coupled with the findings of previous studies provided the basis for developing the recommended guidelines.

Appendices A through D, not included in the PDF, are available at http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_711AppendicesA-D.pdf. They include:

- Appendix A: State DOT Survey Questionnaire.
- Appendix B: Available Cable Barrier Systems.
- Appendix C: Cable Barrier Lateral Placement Plots.
- Appendix D: Summary of Cable Barrier Full-Scale Crash Tests (FHWA Database).

Publication description at https://store.transportation.org/Item/CollectionDetail?ID=105
Chapter 5 addresses roadside barriers, including the structural and safety characteristics of high-tension cable barriers generally and specific vendor products highlighted in this Preliminary Investigation. The chapter also addresses selection guidelines, placement recommendations and system upgrades.

State Guidance and Practices

Arizona

From page 10 of the guide, page 18 of the PDF:

Flexible Systems
High Tension Cable Barriers (HTC) are installed with the cables placed under significant tension (>5000 lbs., depending on manufacturer and temperature) and are typically used in median applications in Arizona, though roadside applications are appropriate. A major advantage of these HTC systems is that the cables remain near the proper height after most normal impacts (with damage limited to a few posts) so that the barrier is still effective. The HTC systems do experience rather large deflections (around 8 ft.) when compared to rigid and semi-rigid barriers; so this should be considered. Post spacing and type, and cable heights and attachment vary with the manufacturer.
The following systems are on ADOT Approved Product List (APL). These systems should be installed in accordance with the manufacturer’s recommendations and the ADOT plan requirements. Cable barrier may be placed on 4:1 slopes with a maximum offset of 4 ft. from the shoulder.

The guide describes the following approved products:

- Brifen Wire Rope Safety Fence three- and four-wire systems (Brifen USA).
- CASS three-wire wire system (Trinity Highway Products).
- Gibraltar (Gibraltar Global).
- SAFENCE (Gregory Highway Products).

Colorado

In addition to describing median placement, this guide addresses outside shoulder placement of cable barrier. *From page 5 of the guide:*

Cable barrier may be placed on the outside shoulder similar to other types of barrier. However due to deflection upon impact there should be a minimum 10 foot offset from fixed hazards. If the roadside slope is steep, the deflection of the cable barrier could allow a vehicle to penetrate the barrier, therefore it is desirable that the roadside slope be 4:1 or flatter for at least 10 feet behind the cable barrier.

Florida

Section 540, High Tension Cable Barrier System, Developmental Specification, Florida Department of Transportation, June 2018. https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/content/programmanagement/otherfdotlinks/developmental/files/dev540.pdf?sfvrsn=7b335210_0

This is the agency’s specification for high-tension cable barrier systems.

Related Resources:

Index D540-00 High Tension Cable Barrier, Developmental Standard Plans, Florida Department of Transportation, August 2017. https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/design/standardplans/dev/d540-001.pdf?sfvrsn=e0c0a81c_8

This resource provides the standard drawings for the agency’s high-tension cable barrier system designs listed on the agency’s Innovative Products List (IPL). The IPL, available at https://fdotwp1.dot.state.fl.us/ApprovedProductList/ProductTypes/Index/679, includes the following products:

- Brifen Wire Rope Safety Fence (Brifen USA).
- CASS TL-4 (Trinity Highway Products).
- Gibraltar (Gibraltar Global).
- NU-CABLE (Nucor Corporation).
Index D540-001 High Tension Cable Barrier, Developmental Standard Plans Instructions, Florida Department of Transportation, December 2017.
https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/design/standardplans/dev/dspi/dspi-d540-001.pdf?sfvrsn=9851c975_2
This specification provides details of the design assumptions and limitations, selection and placement guidelines, plan content requirements and payment associated with high-tension cable barrier. Also included are examples of data tables and a table for use in estimating quantities.

Minnesota

Design Guidelines for High-Tension Cable Barriers (HTCB), Technical Memorandum No. 15-08-TS-04, Engineering Services Division, Minnesota Department of Transportation, August 2015.
http://dotapp7.dot.state.mn.us/edms/download?docId=1607915
From the introduction: High-Tension Cable Barrier (HTCB) is a flexible barrier system used on a roadside or as a median barrier to reduce the severity of run-off-the-road crashes. These systems typically consist of three or four cables under high tension supported by breakaway steel line posts. The most common use of these systems has been in wide depressed medians.

HTCBs have greater deflection than W-beam, box-beam and concrete barriers, but where adequate deflection space is available, HTCB systems offer key advantages over these other systems. A primary advantage of HTCB is that it can be placed on slopes as steep as 1:4, meaning it can be placed further down an inslope, farther away from the traveling public, allowing errant vehicles more room to regain control and avoid impact. Another prime advantage of HTCB is that, upon impact, it exerts less G-force on the occupants of the errant vehicle than semi-rigid and rigid barriers, typically lessening injury potential. Additionally, these systems are able to effectively contain and redirect the vehicle. In some cases, after a less severe and isolated hit, the cables will maintain their approximate heights and may be able to contain and redirect subsequent errant vehicles that impact the same location prior to the system's repair.

Texas

Supplemental Specifications and Attachments: TxDOT—Purchasing, Texas Department of Transportation, 2020.
http://www.dot.state.tx.us/gsd/purchasing/supps.htm (scroll down to Detailed Drawings)
Links to standard plans and other drawings for proprietary cable barrier systems are provided on this web page.

Virginia

Chapter 5, Special Guardrail Treatments, which begins on page 50 of the PDF, includes a brief discussion of cable barriers:

D. High-Tension Cable Systems
Virginia DOT has installed approximately 50 miles of high-tension cable barrier on roadways in the Commonwealth. All high-tension cable guardrail systems are proprietary. All high-tension cable guardrail systems must meet the MASH TL-3 or TL-4 crash test
standards. The installed system must meet the VDOT’s specifications for the project’s application.

Washington

High-tension cable barrier systems are discussed in Section 1610.05, beginning on page 25 of the PDF. The requirements for nonmedian roadside applications are described on page 28 of the PDF:

1610.05(1)(b) Roadside Applications
For typical non-median roadside applications, the following apply:

- Install the cable barrier as far from the edge of traveled way as site constraints allow.
- Consider a minimum placement distance of 8 feet from the edge of traveled way to allow vehicles to use this area for refuge.
- Install cable barrier on slopes 6H:1V or flatter
- There are approved high-tension cable barrier systems that can be placed on slopes as steep as 4H:1V. The use of these systems requires special placement considerations, contact the HQ Design Office for guidance.
- Along horizontal curves, consider installing along the inside of the curve. Reduce post spacing per manufacturer’s recommendations.
- Provide an obstruction free zone within the cable barrier system’s lateral deflection distance (see 1610.05(2)).

https://www.wsdot.wa.gov/Design/Policy/TrafficBarriers.htm
Links to standard plans for cable barrier systems are provided on this web page.

MASH-Compliant Cable Systems for Roadside Applications
The Roadside Safety Pooled Fund maintains a MASH implementation database (available at https://www.roadsidepooledfund.org/mash-implementation/search/) of testing information for a wide range of roadside hardware, including high-tension cable barriers. A query of this database identified the following high-tension cable barrier systems:

- Brifen Wire Rope Safety Fence O-Post, MASH

- CASS S3 MASH
https://www.roadsidepooledfund.org/longitudinal-barrier/cass-s3-m10-2/
 From the description:
 High-Tension Cable System. Proprietary wave-shaped slot in S3 x 5.7# post working in tandem with strategically positioned cables to lower deflections in roadside or
median barrier applications. Driven socket, driven post or concreted socket options available and utilizing prestretched or standard 3/4" cables; MASH TL4 on 10:1 or flatter slopes.

- **CASS S3 on 4H:1V**

 https://www.roadsidepooledfund.org/longitudinal-barrier/cass-s3-m10/

 From the description:

 High-Tension Cable System. Proprietary wave-shaped slot in S3 x 5.7# post working in tandem with strategically positioned cables to lower deflections in roadside or median barrier applications. Driven socket, driven post or concreted socket options available and utilizing prestretched or standard 3/4" cables; MASH TL3 on 4:1 or flatter slopes.

International Resources

Citation at https://trid.trb.org/view/1709443

From the abstract:

This user guide provides guidance to road managers, planners and designers on achieving improved safety outcomes by applying consistent standards along a road corridor. Thirteen road stereotype tables were identified covering the road network from rural freeways to urban local access roads. For each road stereotype, a range of cross-sections was developed with appropriate attributes. Each cross-section was assessed for crash risk using the International Road Assessment Program (iRAP) and the Australian National Risk Assessment Model (ANRAM).

Section 5.7 (page 26 of the report, 32 page of the PDF) provides considerations for using roadside safety barriers.

Citation at https://doi.org/10.1080/15389588.2018.1555819

From the abstract:

Objective: The objective of this study was to evaluate the safety effectiveness of cable barrier systems installation on rural highway sections in British Columbia, Canada.

Methods: Data on police-attended serious collisions (injury + fatality) on a number of rural highway sections in British Columbia, Canada, were used in the analysis. An empirical Bayes (EB) approach was employed to ensure that the evaluation results were reliable and to account for the regression to the mean artifact. Safety performance functions (SPFs) were
developed using data collected at similar sites. For both median cable barrier (MCB) and roadside cable barrier (RCB) sections, the evaluation was undertaken using all serious collisions, truck serious collisions, and off-road serious collisions.

Results: For MCB sections, the evaluation results showed statistically significant reductions of 21.7\%, 53.8\% and 34.8\% in all serious collisions, truck serious collisions, and off-road left (ORL) combined with head-on (HO) serious collisions. For RCB sections, statistically significant reductions of 74.7\%, 100\% and 100\% were found in all serious collisions, truck serious collisions and off-road right (ORR) serious collisions, respectively. The impact of the after period on the evaluation results was explored. It was found that the changes in safety become more stable using an after period of 2 to 5 years.

Conclusions: Cable barriers were successful in reducing the frequency of serious collisions on provincial highways in British Columbia.

From the abstract: The Guide to Road Design — Part 6: Roadside Design, Safety and Barriers provides an introduction to roadside design and in particular guidance on roadside safety and the selection and use of road safety barrier systems. Roadsides have to accommodate many features that support the road and the safe and efficient operation of traffic, and have to be designed with regard to environmental requirements. Part 6 should therefore be read in conjunction with the following parts of the Guide to Road Design that are briefly described in Section 2 of this guide, namely: 1. Part 6A: Pedestrian and Cyclist Paths; 2. Part 6B: Roadside Environment. Part 6 provides information to enable designers to understand principles that lead to the design of safe roads, identify hazards, undertake a risk assessment process of roadside hazards, establish the need for treatment of hazards and determine the most appropriate treatment to mitigate hazards. Methods of evaluating roadside hazards and the effectiveness of treatment options are summarized and references are provided for detailed information on project evaluation. A comprehensive design process, guidance and design considerations are provided for the selection of a suitable road safety barrier and for the lateral and longitudinal placement of road safety barrier systems.

http://www.transportation.alberta.ca/Content/docType233/Production/H5RoadsideMedianBarrierSystems.pdf

A comparison of roadside and median barrier systems is presented in this chapter. Section H.5.5.2 provides design and placement considerations for high-tension cable barrier systems (page 21 of the PDF). W-beam barriers are discussed in Section H.5.5.4 (page 37 of the PDF), and thrie-beam barriers are discussed in Section H.5.5.5 (page 40 of the PDF).

Manufacturers and Vendors

https://gibraltarglobal.com/

Gibraltar products include:

- **TL-3**: This system consists of a three-strand, high-tension cable barrier designed to contain vehicle types from smaller cars up to three-quarter-ton pickup trucks.
• **TL-4 Three Cable**: This system consists of a three-strand, high-tension cable barrier designed to contain vehicle types from smaller cars up to 18,000-pound cargo trucks.

• **TL-4 Four Cable**: This four-cable system is designed to contain vehicle types from smaller cars up to 18,000-pound cargo trucks.

https://www.gregorycorp.com/gregory-highway/safence

From the web site:

SAFENCE is the tensioned wire-rope cable barrier system from Gregory Industries. As a “soft” barrier, SAFENCE is designed to safely absorb energy while redirecting the impacting vehicle along the barrier. SAFENCE also saves money because it is the only barrier system that meets TL-3 and TL-4 standards with either three or four cables.

SAFENCE is a longitudinal cable barrier system that is [NCHRP] 350 TL-3 and TL-4 approved.

It is available in 3-cable or 4-cable configurations with non-releasable anchors. This is a preferred system because cables remain under tension after vehicle impact.

SAFENCE meets Test Level-4 requirements with just three cables. A fourth cable can be added without the need for added testing for installations that specify four cables. Eliminating the fourth cable from project specifications can result in significant savings while still meeting test standards.

https://www.nucorhighway.com/cable-barrier-products/nu-cable-high-tension/

From the web site: The NU-CABLE High Tension Cable Barrier System offers a unique combination of TL-3 and TL-4 crash-test proven protection and visual appeal in both median and right-side guiderail applications. Plus the added bonus of a 50[%] to 75% cost saving versus traditional W-beam and concrete barriers, and up to 20% savings over other high-tension cable systems.
Contacts

CTC contacted the individuals below to gather information for this investigation.

State Agencies

Arizona
Chris Cooper
Roadway Standards, Intermodal Transportation Division
Arizona Department of Transportation
602-712-8365, ccooper@azdot.gov

Arkansas
David Baker
Staff Design Engineer, Roadway Design
Arkansas Department of Transportation
501-569-2054, david.baker@ardot.gov

Connecticut
David J. Kilpatrick
Transportation Supervising Engineer
Connecticut Department of Transportation
860-594-3288, david.kilpatrick@ct.gov

Indiana
David Boruff
Traffic Engineering/Manager
Indiana Department of Transportation
317-234-7975, dboruff@indot.in.gov

Iowa
Daniel Harness
Roadside Safety Engineer, Design
Iowa Department of Transportation
515-239-1727, daniel.harness@iowadot.us

Kentucky
R. Jeffrey Wolfe
Director, Traffic Operations
Kentucky Transportation Cabinet
502-782-5546, jeff.wolfe@ky.gov

Louisiana
Kurt Brauner
Bridge Engineer Manager, Bridge Design
Louisiana Department of Transportation and Development
225-379-1933, kurt.brauner@la.gov

Michigan
Carlos Torres
Crash Barrier Engineer, Design
Michigan Department of Transportation
517-335-2852, torresc@michigan.gov

Missouri
Nickolas Voltenburg
Roadside Design Specialist, Design
Missouri Department of Transportation
573-526-2918, nickolas.voltenburg@modot.mo.gov

Nevada
Scott Hein
Chief Road Design Engineer, Design
Nevada Department of Transportation
775-888-7797, shein@dot.nv.gov

New Mexico
Afshin Jian
State Traffic Engineer, Infrastructure
New Mexico Department of Transportation
505-795-5993, afshin.jian@state.nm.us

New York
Terry Hale
Professional Engineer 1, Design Quality Assurance Bureau, Office of Design
New York State Department of Transportation
518-485-7009, terry.hale@dot.ny.gov
Pennsylvania
Nina Ertel
Project Development Engineer, Highway Design and Technology Section
Pennsylvania Department of Transportation
717-425-7679, nertel@pa.gov

Wisconsin
Erik Emerson
Standards Development Engineer
Wisconsin Department of Transportation
605-266-2842, eri.emerson@dot.wi.gov

Vendors

Brifen USA, Inc.
John Guevara
Regional Sales Manager
Brifen USA, Inc.
405-657-8582, john.g@brifenusa.com

Trinity Highway Products, LLC
Don Gripne
Consultant
Trinity Highway Products, LLC
360-561-3966, don.gripne@trin.net
Appendix A: Survey Questions

The following surveys were distributed to state departments of transportation (DOTs), vendors and crash testing facilities expected to have experience with high-tension cable barrier used as guardrail on the right shoulder of the road.

State Department of Transportation Survey
The following survey was distributed to state DOT members of the American Association of State Highway and Transportation Officials (AASHTO) Committee on Traffic Engineering.

Caltrans Survey on High-Tension Cable Barrier as Guardrail

Note: The response to the question below determines how a respondent is directed through the survey.

(Required) Does your agency use or has it considered using high-tension cable barrier as guardrail on the right shoulder of the road?
Response Options:
- Yes. Our agency uses high-tension cable barrier as guardrail on the right shoulder of the road. (Directs the respondent to the General Information section of the survey and the sections that follow it.)
- No. While our agency does not use high-tension cable barrier as guardrail on the right shoulder of the road, it is considering this application. (Directs the respondent to the Agencies Considering High-Tension Cable Barrier as Guardrail section of the survey.)
- No. Our agency has never used and is not considering using high-tension cable barrier as guardrail on the right shoulder of the road. (Directs the respondent to the Agencies Not Using High-Tension Cable Barrier as Guardrail section of the survey.)

Agencies Not Using High-Tension Cable Barrier as Guardrail
Please briefly describe why your agency is not using or considering for use high-tension cable barrier as guardrail.

Note: After responding to the question above, the respondent is directed to the Wrap-Up section of the survey.

Agencies Considering High-Tension Cable Barrier as Guardrail
1. Please briefly describe your agency’s discussions or plans to use high-tension cable barrier as guardrail.
2. Has your agency used high-tension cable barrier as guardrail on the right shoulder of the road as a pilot or trial application (one-time use)?
 - No
• Yes (Please briefly describe the pilot or trial application; provide a link to any documents related to the pilot application or send any files not available online to carol.rolland@ctcandassociates.com.)

Note: After responding to the questions above, the respondent is directed to the Wrap-Up section of the survey.

Agencies Using High-Tension Cable Barrier as Guardrail

General Information

Has your agency used high-tension cable barrier as guardrail on the right shoulder of the road as a pilot or trial application (one-time use)?

• No
• Yes (Please briefly describe the pilot or trial application; provide a link to any documents related to the pilot application or send any files not available online to carol.rolland@ctcandassociates.com.)

System Description

1. What is the name of your agency’s high-tension cable barrier system?
2. What is the name of the vendor providing the system (for example, Brifen or Gibraltar)?
3. Does the vendor provide a complete barrier system? That is, does the system include tie-downs, end protection and other elements needed for installation?
 • Yes
 • No (Please describe the system elements that must be purchased separately.)
4. If available, please provide links to documentation that describes your agency’s policies and practices for selecting, installing and maintaining high-tension cable barrier systems. Send any files not available online to carol.rolland@ctcandassociates.com.
5. Does your agency have standard plans or drawings for using high-tension cable barrier as guardrail?
 • No
 • Yes (Please provide a link to these documents or send any files not available online to carol.rolland@ctcandassociates.com.)
6. If available, please provide links to a project plan set that was used for a specific barrier installation. Send any files not available online to carol.rolland@ctcandassociates.com.

System Implementation and Maintenance

1. How long has your agency used high-tension cable barrier as guardrail?
2. What are the primary factors that determine when your agency will use high-tension cable barrier as guardrail (for example, narrow shoulder between highway and pedestrian/bicycle facility, or reduced visual impacts)?
3. Please describe the criteria your agency uses when choosing a high-tension cable barrier system instead of the more traditional Midwest Guardrail System or concrete barrier for a specific application.
4. Please describe your agency’s installation specifications:
 • Minimum length of barrier on right side.
 • Minimum radius (e.g., 250-foot minimum).
 • Minimum deflection area.
 • Post spacing.
 • Space needed to install.
 • Section cross slope.
 • Slope hinge point/slope breakpoint.
 • Attaching to a structure.
 • Speed of facility.
 • Other. (Please describe.)

5. Please describe your agency’s experience with maintaining these cable barrier systems.

System Assessment
1. In your agency’s experience, what are the safety implications for using high-tension cable barrier as guardrail?
2. Please identify how your agency evaluates the performance of the barrier system. Select all that apply.
 • Our agency does not have any in-service performance data.
 • Crash data.
 • Cost of maintenance data.
 • Other. (Please specify.)
3. What are the benefits of using high-tension cable barrier in this application?
4. What are the challenges of using high-tension cable barrier in this application?
5. What recommendations does your agency have for using high-tension cable barrier as guardrail?

Wrap-Up
Please use this space to provide any comments or additional information about your previous responses.

Barrier Vendor and Crash Testing Facility Survey
The survey below was distributed to the following high-tension cable barrier manufacturers and crash testing facilities recommended by the Caltrans project panel:

Barrier Vendors
• Brifen USA.
• Gregory Highway Products.
• Trinity Highway Products.

Crash Testing Facilities
• KARCO–San Bernardino.
• Midwest Roadside Safety Facility.
• Texas Transportation Institute.
Caltrans Survey on High-Tension Cable Barrier as Guardrail

1. Has your company manufactured or has your organization tested cable barrier that has been used in place of guardrail on the right or left side of the roadway (primarily longer runs)?
 • Yes (Please respond to question 1A below.)
 • No

1A. Please provide the following information about these applications:
 • Project description.
 • Location(s).
 • Project owner (such as state DOT, other transportation-related agency, toll authority).
 • Contact information.

2. If your company has not manufactured or your organization has not tested cable barrier that has been used in place of guardrail on the right or left side of the roadway, do you have any plans to develop and test cable barrier to be used as guardrail?

3. Has your company manufactured or has your organization tested cable barrier that has been used to separate multimodal facilities such as pedestrian and bicycle facilities?
 • Yes (Please respond to question 3A below.)
 • No

3A. Please provide the following information about these applications:
 • Project description.
 • Location(s).
 • Project owner (such as state DOT, other transportation-related agency, toll authority).
 • Contact information.

4. Does your company or organization have installation instructions or installation plan sheets for installing cable barrier as guardrail (primarily offset from hinge break points, allowable steepness of slope behind cable barrier and preferred offsets)?
 • No
 • Yes (Please provide a link to these documents or send any files not available online to carol.rolland@ctcandassociates.com.)

5. Are there any restrictions that would not allow cable barrier you manufacture or test to be used as guardrail if the field conditions (such as approach slope or dike placement) were the same as crash testing criteria?
 • No
 • Yes (Please describe these restrictions.)

6. Crash testing facilities only: Are you aware of any ongoing or planned testing of cable barrier used as guardrail?
 • No
 • Yes (Please describe the research facility and provide the researchers’ contact information and research report, if available.)