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Advancing Active Transportation Project Evaluation 

Executive Summary 
California is investing substantially in active transportation (AT), including the statewide 
Active Transportation Program (ATP). Evaluation is critical for understanding the return on 
these investments. Studies show mounting evidence for how AT projects achieve benefits, 
yet limited tools exist to evaluate benefits.  

In this report, we examine the change in walking and bicycling due to the installation of 
several infrastructure changes in the cities of Santa Barbara and Santa Cruz. These cities 
were chosen because of the available data on infrastructure projects and local traffic 
counts were more readily available than in any other place in California per the guidance 
from the California Transportation Commission.  

This examination of changes to walking and bicycling is directly connected to the 
development of the California Active Transportation Benefit-Cost Tool 
(https://activetravelbenefits.ucdavis.edu/). The California Active Transportation Benefit-
Cost Tool is a unified calculator designed to estimate the benefits of active transportation 
projects from across the State of California. Unlike other benefit-cost tools, it does not rely 
on user estimates of change in walking and bicycling behavior and instead estimates 
baseline walking and bicycling through a statewide direct demand model (developed using 
a Random Forest approach). The errors of the existing models supporting the California 
Active Transportation Benefit-Cost Tool are known to be large (see Kamalapuram, 2022 
and Fitch et al., 2022), yet besides the recent work by Miah et al. (2024), there have been 
no other alternatives to estimating walking and bicycling volumes statewide. This project 
updates those models based on the work by Miah et al. (2024) and incorporates local data 
specific to this project. 

Besides the errors associated with the few statewide direct demand models, the errors 
associated with other facets of the California Active Transportation Benefit-Cost Tool have 
not been measured. Most important are the potential errors from estimating the expected 
change in walking and bicycling from elasticities gathered from the scientific literature 
specific to each active transportation intervention. It is well documented that nearly all 
active transportation interventions can have widely varying effects on active transportation 
(Fitch-Polse and Agarwal, 2025). This project was designed to compare the estimates of 
the California Active Transportation Benefit-Cost Tool and before-after estimates from 
direct demand models of annual travel at the project level. 

Results indicate that on the median, the California Active Transportation Benefit-Cost Tool 
estimates are closely aligned with those of the before-after analysis. This result is most 
likely because both approaches estimate only small changes in active transportation for 
most projects. However, the results also indicate that for some projects, particularly those 

https://activetravelbenefits.ucdavis.edu/
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with greater change in walking and bicycling, the California Active Transportation Benefit-
Cost Tool can diverge from the before-after estimate substantially at the project level by 
overestimating or underestimating the benefits. 

The relatively harmonious estimate on the median suggests that the California Active 
Transportation Benefit-Cost Tool may already be suitable for program-level benefit 
calculations. However, the bias between the mean and median estimates summarized in 
this report should be used to adjust future versions of the tool when calculating program-
level benefits. 

The large outlying differences between the California Active Transportation Benefit-Cost 
Tool estimated demand and the before-after estimated demand suggests caution should 
be used when estimating the benefits of specific projects from the tool alone. More 
research is needed to determine the source of the bias in these projects. When feasible, 
the methods of this study also help guide how to integrate local count data within the 
framework of the California Active Transportation Benefit-Cost Tool to estimate actual 
accrued benefits at a project level. 

Besides the guidance to improve project-level estimates with local count data and bias-
correct program-level sums of benefits, two additional improvements to the California 
Active Transportation Benefit-Cost Tool are proposed. The first is to improve the treatment 
of off-street interventions in the tool which is a known limitation of the tool and may be one 
source of the existing bias. Second, because the direct demand models did not improve 
accuracy over past work, and because it is unlikely that any additional available data or 
model form will substantially improve predictions, there is great need for more walking and 
bicycling count data and in more diverse locations to improve our understanding of the 
benefits of active transportation projects. 
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Introduction 
California is making substantial investments in active transportation (AT), including the 
statewide Active Transportation Program (ATP). Evaluation is critical for understanding the 
return on these investments. A recent literature review shows mounting evidence for the 
ways AT projects achieve benefits (Fitch-Polse and Agarwal, 2025), yet there are limited 
tools to evaluate benefits. For example, the Cal-B/C tool for AT projects from the Caltrans 
Economics Branch1, while used for active transportation projects from some state 
programs, is not used for the California ATP project evaluation. This is because the tool 
requires users to input expected change in travel behavior, which limits the ability to 
standardize project-level effects across the State. Through collaboration with Caltrans, UC 
Davis developed the California AT Benefit-Cost Tool. From hereafter, this tool will be 
referred to as "the BC tool"—which differs from a conventional benefit-cost tool in that the 
costs are given by the user, and the benefits are calculated from uniformly projected 
changes in travel behavior to improve AT benefit estimation. California Transportation 
Commission (CTC) has used the BC tool for ATP program-level estimates of changes in 
safety, physical activity, local pollutants, and emissions. The BC tool is also an available 
framework and model for uniform project-level ATP assessments across the State. 
However, the tool currently does not consider local data on walking and bicycling counts, 
limiting its usefulness for estimating the realized benefits of completed projects. In this 
project, we conducted data collection and analysis of local data to supplement the BC 
tool. 

This project explores the incorporation of local data on walking and bicycling levels into the 
BC framework and underlying model to make it more useful as a planning tool and improve 
local-scale AT project evaluation. This project uses local data to validate the estimates of 
bicycle and/or pedestrian activity which are critical for accurate predictions of project 
benefits in the BC tool framework.  

The BC tool relies on the effect sizes (or elasticities) from previous studies found in 
different academic literature and described by Fitch-Polse and Agarwal (2025). The tool 
consists of direct demand models of bicyclists and pedestrians using data from statewide 
bike and pedestrian counts on different sites, built environment data, accessibility data 
developed by PeopleforBikes, census data, safety data, Strava Metro, and weather data. 
The details of the models can be found in Fitch et al. (2022). The tool has several 
limitations. As the tool relies on the statewide network and intersections data, it is limited 
in estimating and evaluating the actual benefits of local active-transportation-related 
completed projects in the local area. The tool also does not incorporate the variability of 

 

1 https://dot.ca.gov/programs/transportation-planning/division-of-transportation-planning/state-
planning/transportation-economics 
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data collected from permanent and non-permanent counters while producing the 
statewide combined dataset for model building.  

Since the development of the models for the BC tool, Miah et al. (2024) developed a 
method to infuse permanent and short-term bike counter data using expansion factors. 
Different expansion factors were developed based on the data from the permanent 
counter sites and applied to transform the short-duration count sites. Their method 
transforms hourly count data of short-term counters to daily traffic data for a site based on 
an hour of day (HOD). Then, the daily traffic of the short-term site is converted to weekly 
traffic based on the day of the week (DOF) expansion factor. The weekly traffic is averaged 
to get the daily average traffic and then converted to monthly total traffic by multiplying the 
days of the month. Finally, using the month of the year (MOY) factor, the daily average 
traffic is converted into yearly total traffic and then into average annual daily bike traffic 
(AADBT) by dividing the total traffic by the number of days. The expansion method allows 
for a much broader range of data to be considered in modeling bicycling and pedestrian 
demand, since so many short-term counts are conducted across California. The expansion 
factors for the bike model are based on fine grained Strava Metro activity for bicycling. The 
expansion factors for the pedestrian model are developed based on permanent pedestrian 
counter (i.e., Eco-Counter) data in the region. 

In this study, we leverage the work by Miah et al. (2024) and Fitch et al. (2022) to improve 
active travel volume estimates within the study area and estimate changes in volumes due 
to active transportation infrastructure investments. This study specifically focuses on (1) 
advancing and validating the most critical component of the existing BC tool, the estimates 
of walking and bicycling activity, and (2) estimating project-specific benefits using local 
data and the BC tool. In this project, we achieve these goals by using bicyclist and 
pedestrian count data in Santa Cruz and Santa Barbara. These cities have a historical 
record of collecting accurate bicycling and pedestrian count data before and after 
implementing active transportation infrastructure and programs.  
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Methods 

Study Area (Local Data) 

This study focuses on data collected from the cities of Santa Cruz and Santa Barbara in 
California. These cities make good study sites because they both have made 
commitments and taken action to support the accessibility, safety, and participation of 
active transportation through infrastructure changes, among other programs. Both cities 
have also adopted comprehensive plans to bolster and improve active transportation (City 
of Santa Cruz, 2017; City of Santa Barbara, 2006; City of Santa Barbara, 2016). In 
conjunction with these plans, both cities have adopted a Vision Zero policy to eliminate all 
traffic fatalities and serious injuries by 2030. 

Santa Cruz and Santa Barbara have also deployed bicycle and pedestrian count programs. 
These count programs inform planning and decision-making for active transportation 
projects. In addition, both cities have recently installed numerous roadway upgrades and 
new infrastructure designed for pedestrians and bicyclists, such as bike paths, sidewalks, 
and crosswalks. Figure 1 and Figure 2 display the location of infrastructure changes and 
pedestrian and bicycle count sites between 2018-2024 in Santa Barbara and Santa Cruz, 
respectively. 
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Figure 1. Study area map for Santa Barbara 
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Figure 2. Study area map for Santa Cruz 

Data Collection 

In this study, we included both pedestrian and bicycle counts between 2018 and 2024 from 
the area of Santa Barbara and Santa Cruz. Although we had count data in 2018 and 2024, 
we removed projects installed in those years because we could not estimate “before” 
volumes before 2018 or “after” volumes after 2024. Along with the counts from the local 
area, we also included other count data from permanent and short-term bike count 
locations in California from Miah et al. (2024) to produce a count dataset for the bike 
model. We included pedestrian count data from permanent and short-term pedestrian 
count locations in California from Kamalapuram (2022) to produce a count dataset for the 
pedestrian model. The locations of the combined bike and pedestrian counts used to build 
the models are shown in Figure 3. 
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Figure 3. Study area and statewide data collection sites for building the bike and 
pedestrian models.  
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The following section describes the bike and pedestrian data collection process from 
Santa Barabara and Santa Cruz. These data were then combined with the data acquired 
from Mintu et al. (2024) and Kamalapuram (2022) to build the dataset for modeling.  

Counts from Santa Barbara and Santa Cruz 
This study incorporates bicycle and pedestrian count data from Santa Barbara and Santa 
Cruz. Both cities deploy counters from Eco-Counter along roads and paths, which use 
sensors and tubes to capture screenline counts of passing bicyclists and pedestrians. The 
City of Santa Cruz has four permanent Eco-Counters installed throughout the city, the 
oldest of which has been active since 2016. In Santa Barbara, two mobile Eco-Counters 
have been operated by the University of California, Santa Barbara since 2023. These 
mobile Eco-Counters were installed at nine different sites for durations of at least two 
weeks in 2023 and 2024. The Santa Barbara mobile Eco-Counters and two of the Santa 
Cruz permanent Eco-Counters report counts on 15-minute intervals. The other two 
permanent Eco-Counters in Santa Cruz report counts on hourly intervals. This study also 
incorporates short-term manual count data into the models. The team received manual 
pedestrian and bicycle intersection and screenline count data from the Santa Cruz County 
Regional Transportation Commission collected during 2016, 2018, and 2021. The research 
team organized data from over 20 sites located within the city of Santa Cruz. The 2016 
counts took place in October on weekdays between 4PM to 6PM. The 2018 and 2021 
counts took place in May and occurred on both weekdays and weekends, with the majority 
of counts occurring between 4PM to 6PM and 11AM to 1PM. Other counts occurred at 1-
hour intervals throughout the day. Manual count data from two count programs in Santa 
Barbara were also incorporated into this study. The first program was organized by the City 
of Santa Barbara, which counted bicyclists' and pedestrians' turning movements at over 30 
sites from 2016 to 2023. The turning movement counts were deployed on weekdays and 
weekends for durations between 1-5 days and recorded counts at 15-minute intervals 
during daylight hours. The second program is a bike count program run by the University of 
California, Santa Barbara, covering eight screenline sites in Santa Barbara in 2023. These 
bike counts were recorded at two-hour intervals on weekdays. 

Counts were compiled and organized following the Federal Highway Administration’s 
Traffic Monitoring Guide for Non-Motorized Traffic. Count site locations were associated 
with the Strava Metro simplified Open Street Map network so they could be associated with 
all the other data sources used to model active transportation (see below). 

Table 1 and Table 2 include a summary of pedestrian and bicycle counts in Santa Barbara 
and Santa Cruz. 
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Table 1. Santa Cruz Active Transportation Counts, 2016 to 2023 

Neighborhood Pedestrian 
Traffic 

Pedestrian 
Hours of Data 
Collection 

Bike Counts Bike Hours of 
Data Collection 

Boardwalk 1,770,996 48,748 1,366,931 48,748 
Circles 1,348 10 704 10 
Downtown 2,273 18 781 18 
King St 96 2 156 2 
Lower 
Seabright 

996 14 1014 14 

Mission Hill 358,812 28,704 440,636 28,704 
Mission St 539 6 258 6 
Soquel Ave 233 8 248 8 
UC Santa Cruz 712 8 642 8 
Upper 
Seabright 

5,083,542 64,420 1,139,152 64,420 

Water St 212 4 167 4 
Westside 305,408 31,012 421,936 31,012 

Table 2. Santa Barbara Active Transportation Counts, 2016 to 2023 

Neighborhood Pedestrian 
Traffic 

Pedestrian 
Hours of Data 
Collection 

Bike Counts Bike Hours of 
Data Collection 

Bel Air 988 91 1,331 273 

Downtown 132,508 347 48,281 1,432 

East Beach 1,479 54 0 0 

East Mesa 1,406 78 0 0 

Eastside 15,963 442 3,401 962 

Hidden Valley 810 172 2,858 536 

Laguna 7,913 78 247 65 

Lower East 12,689 221 1,075 130 

Lower State 110,269 416 52,505 1,924 

Lower West 925 39 179 65 

Oak Park 20,030 482 2,550 853 

Samarkand 151 78 291 312 
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Neighborhood Pedestrian 
Traffic 

Pedestrian 
Hours of Data 
Collection 

Bike Counts Bike Hours of 
Data Collection 

San Roque 63 13 188 65 

Upper East 9,909 156 659 65 

Upper State 5,356 196 8,285 786 

Waterfront 18,233 52 11,006 262 

West Beach 2,626 44 420 39 

West Mesa 1,523 84 0 0 

Westside 17,096 598 1,974 494 

Infrastructure Data / Active Transportation Project-Specific Data 
The research team compiled an infrastructure dataset from projects completed in or after 
2018 in Santa Barbara and Santa Cruz. The infrastructure dataset tracks attributes found 
to increase pedestrian and bicycle volumes and improve safety. These attributes include 
roadway features such as bike lanes, off-road paths, road diets, and intersection features 
like crosswalks, curb extensions, and ADA ramps. These attributes were selected based on 
the listed attributes required for benefit estimation using the BC tool developed by Fitch et 
al. (2022).  

The team received a list of grant-funded projects and infrastructure improvements from 
city planners in Santa Cruz and Santa Barbara. Examples of project funding include the 
Caltrans Active Transportation Program, Highway Safety Improvement Program, and 
Community Development Block Program. Documentation for infrastructure projects was 
found in each city’s public web archives. These documents were used to determine project 
locations, infrastructure improvements, and completion dates. 

Some infrastructure projects spanned locations throughout the cities. To track each 
project’s infrastructure improvements and where they occurred, the team used Google 
Maps Street View to toggle between imagery taken before and after a project’s completion  
date. If an infrastructure change occurred following the project’s completion date, the 
length or amount of upgraded infrastructure was recorded along with the Strava network 
links associated with the infrastructure location. Table 3 outlines the new infrastructure 
tracked in Santa Cruz and Santa Barbara for this study. 
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Table 3. Number of infrastructure elements analyzed for the study 

Infrastructure Element Santa Cruz* Santa Barbara* 

ADA Ramp 343 230 

Bike Boulevard 0 ft 22,402 ft 

Bike Box 12 0 

Buffered Bike Lane 14,893 ft 11,261 ft 

Conventional Bike Lane 8,575 ft 4,716 ft 

Crossing island 0 16 

Crosswalk 225 77 

Curb Extension 56 111 

Flashing Beacon 73 51 

Lighting 60 235 

Off-Street Path 7,557 ft 13,750 ft 

Protected Bike Lane 436 ft 3069 ft 

Road Diet 0 ft 14,628 ft 

Sidewalk 4,360 ft 4,333 ft 

Traffic Signal 1 19 
 * Units in counts unless specified. 

Ancillary Data  
In addition to the permanent and short-term count site data, and existing variables from 
Kamalapuram (2022), we collected bike and pedestrian crash data for California from 2019 
to 2023 from the Transportation Injury Mapping System (TIMS). We also collected the 
Strava bike volume data for California from 2019 to 2023 from Strava Metro. We collected 
block-level census data for California for each year from 2019 to 2023 from the American 
Community Survey's 5-year estimates. These data were used as variables within the direct 
demand models. 

Updated Method of Project Benefit Estimations  

We estimated two direct demand models: the bike model and the pedestrian model. The 
dependent variable for the bike model was the annual average daily bike traffic (AADBT), 
and for the pedestrian model it was the annual average daily pedestrian traffic (AADPT). 
The use of direct demand models for active transportation prediction has been a common 
approach to large-scale volume estimation due to the lack of treatment for these modes in 
traditional travel demand models (Broach et al, 2024; Kaiser et al., 2025, Nelson et al, 
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2021, Nordback et al., 2017, Schneider et al., 2021). Yet, applications of direct demand 
models continue to show large errors whether applied at the city or statewide level. 
Nonetheless, it is the current state of the practice, so this project employs a similar 
approach. 

The models in this report were developed based on the AADPT and AADBT data for each 
count site for each year from 2019 to 2023. However, many of the sites did not have multi-
year data. We considered data for each site for each year as one observation.  

We estimate the existing active travel volumes in the form of AADBT and AADPT using the 
Random Forest Machine Learning algorithm. The Random Forest is an ensemble learning 
method that uses many decision tree models with feature subsetting to increase predictive 
accuracy. Based on bicycle and pedestrian count data availability, these models estimate 
bicycle travel on the links (bi-directional travel) and pedestrian travel at the intersections 
(sum of all crossing movements). Both models are built based on the previously developed 
model of Kamalapuram (2022) and Miah et al. (2024). Based on the available bike data 
from Miah et al. (2024), pedestrian data from Kamalapuram (2022), and the locally 
collected permanent and short-term new bike and pedestrian count data from the study 
area, we developed an initial database for the model. The following section describes the 
different categories of predictor variables used in bike and pedestrian models.  

Population Data 
Block-level census data, such as population, race, gender, income, and commute to work 
(i.e., percentage of bike share for commute to work, percentage of share of walk, and 
percentage share of transit to commute work), were included as explanatory variables in 
the model.  

Strava Metro Data 
In processing the count data we found many of the bike and pedestrian count sites were 
not aligned with the Strava network. We decided to select the closest Strava link to the 
latitude and longitude of the counter locations to join Strava trip counts from the Strava 
Metro website. This approach might have some limitations, which can be addressed in 
future studies by taking the averages of the multiple Strava links nearest to bicycle and 
pedestrian data collection sites. Strava data for a specific bike or pedestrian count site 
were selected by extracting the Strava yearly count value of the nearest Strava link to the 
bike count site.  

Crash data 
We used the bike and pedestrian crash incidence locations from TIMS spanning 2019 to 
2023 in California for the crash data. In the bike model, we produced a 10-meter buffer 
around the road link and counted the number of bike and pedestrian crashes within that 
buffer for each year to construct the safety/crash variable.  In the pedestrian model, we 
used a 100-meter buffer around the intersection location and counted the number of bike 
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and pedestrian crashes for each year to produce the safety/crash variable. We included 
both pedestrian and bicyclist crashes due to the limited amount of count data for each 
mode. While the crashes for each mode likely follow different profiles, we assumed that 
some of the crash risk for bikes would translate to crash risk for pedestrians. 

Using crash data to predict volume is subject to one important limitation. Because crashes 
are usually considered an outcome of traffic volume, by including them in the model we 
likely bias the model parameters (we are essentially conditioning on a post-outcome 
variable) and so we cannot infer causal meaning to the parameters. In this case, we are 
using the model solely for predictive purposes, and including crashes increased out-of-
sample predictive performance, so we proceeded with the causally dubious, yet better 
predictive model. However, future research should consider the implications for this 
decision in the use of the predicted volumes for benefit calculations, specifically 
calculations of safety benefits. 

Accessibility Data 
The network accessibility metrics used in this study are the low and high-stress 
connections of census blocks from the PeopleForBikes' Bicycle Network Analysis (BNA) 
tool. The BNA tool uses a computationally intensive routing algorithm that calculates 
census block-level accessibility metrics for several activity types. The details of this 
method can be found on the PeopleForBikes website.2 The accessibility percentages for 
the count location were aggregated by Kamalapuram (2022), and those accessibility 
metrics are used as explanatory variables of this study. 

Other features 
We included the study area-specific dummies in the model so that our model can capture 
some of the variability of the study area. Before using the Strava bike counts as a predictor 
in the pedestrian count estimation model, we tested how the Strava bike counts are 
related to pedestrian counts using Santa Barbara as a study area. We found a moderate 
correlation (R = 0.3 to 0.58 depending on the location) between Strava bike count and 
pedestrian count data from Eco-Counters in Santa Barbara. Strava running data showed 
no clear correlation with pedestrian counts and so were not considered in the models. 
Table 4 lists the variables used for the bike and pedestrian Random Forest models. 

The bicycle and pedestrian models also include annual average precipitation and 
minimum and maximum temperature, all obtained from the National Oceanic and 
Atmospheric Administration (NOAA), and built environment and road characteristics data 
from the Smart Location Dataset provided by the Environmental Protection Agency (EPA). 

 

2 https://cityratings.peopleforbikes.org/about/methodology 
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Table 4. List of predictors used in the bike model and in the pedestrian model 

Bike Model Pedestrian Model 
Variable Source Variable  Source 
Strava Bike volume 
of the nearest 
Strava link to the 
site 

Strava Metro Strava Bike volume 
of the nearest 
Strava link to the 
site 

Strava Metro 

Network 
Accessibility Metric 
from the Bicycle 
Network Analysis 
(BNA) 

PeopleforBike and 
Kamalapuram 
(2022) 

Network 
Accessibility Matric 
the Bicycle Network 
Analysis (BNA) 

PeopleforBike and 
Kamalapuram 
(2022) 

Roadway 
characteristics  

PeopleforBike and 
Kamalapuram 
(2022) 

Roadway 
characteristics  

PeopleforBike and 
Kamalapuram 
(2022) 

Census block 
group-level 
variables 

American 
Community Survey 
5-year estimate 

Census block 
group-level 
variables 

American 
Community Survey 
5-year estimate 

Weather data National Oceanic 
and Atmospheric 
Administration 
(NOAA) 

Weather data National Oceanic 
and Atmospheric 
Administration 
(NOAA) 

Safety Data/ Crash 
Data 

Statewide 
Transportation 
Injury Mapping 
Systems (TIMS) 

Safety data Statewide 
Transportation 
Injury Mapping 
Systems (TIMS) 

Built environment 
data 

Smart Location 
Data by 
Environmental 
Protection Agency 
(2021) 

Built environment 
data 

Smart Location 
Data by 
Environmental 
Protection Agency 
(2021) 

Study Area Dummy 
(Santa Barbara and 
Santa Cruz) 

 - Study Area Dummy 
(Santa Barbara and 
Santa Cruz) 

 - 

Interaction between 
study area dummy 
and year of data 

 - Interaction between 
study area dummy 
and year of data 

 - 

Internation between 
the study area 
dummy and Strava 
bike volume 

 - Internation between 
the study area 
dummy and Strava 
bike volume 

 - 
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We developed the bike and pedestrian model using the groups of predictors listed in Table 
4. Permanent and short-term bike counts were used to calculate the AADBT variable, 
which is the dependent variable of the model. One challenge in using both short-term and 
permanent counters is combining those data, as those data are likely to follow different 
distributional patterns. It has been shown that brief duration counts result in biased 
estimates of annual averages (Laustsen et al., 2016). Because of this potential bias, we 
transformed the short-duration bike count data using the expansion factors developed by 
Miah et al. (2024) to make them consistent with the permanent counter data for the model. 
The steps to reduce bias, scale short-term counts to AADBT, and predict volumes are 
illustrated in Figure 4.  

The first step of the process is to combine the count data, including the transformed data 
from Miah et al. (2024). The second step was to estimate and cross validate the Random 
Forest model. The third step was to predict volumes for each of the years with data 
available (2018-2023). Finally, the last step was to compare the demand model-based 
estimates with the estimates assumed from the new infrastructure data (see Validation 
Procedure below). 

 
Figure 4. Modeling process of the bike and pedestrian volume 

We also transformed the short-term pedestrian count data using newly developed 
expansion factors for this study. We plotted the short-term and permanent counter 
locations on a map and assigned the nearest permanent counter site to each short-term 
counter site (see Figure 5). Then, we developed the hour of the day, day of the week, and 
month of the year expansion factors for each permanent count site and used those factors 
to transform the short-term count data of the sites nearest the permanent counter site 
(see Figure 5). The steps in Figure 4 for the pedestrian data workflow worked similarly to 
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the steps for the bicyclist data workflow. The only difference is that the expansion factoring 
in step one was newly developed by us based on the nearest permanent counter, not 
Strava volumes. 

 
Figure 5. Method of assigning the expansion factors based on the location of the 
permanent and short-term counters in the pedestrian model.  

Validation Procedure 

After estimating the models and ensuring errors were comparable to Miah et al. (2024) and 
Kamalapuram (2022), we applied the bike model to predict bicycling volumes on all the 
links of the study area. The links were produced using the Strava network data collected 
from the Strava Metro of Santa Barbara and Santa Cruz. We predicted the average daily 
bike traffic (AADBT) for 2019, 2020, 2021, 2022, and 2023 for every link in the study area. 
We also produced intersections/nodes using the Strava link data of the study area. We 
applied the pedestrian model to those intersections/nodes to estimate the average daily 
pedestrian traffic (AADPT) for 2019, 2020, 2021, 2022, and 2023 for every intersection of 
the study area. Each link or intersection where the model was applied has the associated 
predictor data for each year from the 2019 to 2023 period.  

The AADBT and AADPT were then converted to project-level active travel by summing the 
volume estimates for the links and nodes in each project. To ensure that the estimates for 
each project did not include the time during construction, we chose to summarize the 
“before” project activity as the minimum estimate in a year prior to project completion, 
and the “after” project activity as the maximum estimate in a year following project 
completion. The calculated “after” minus “before” formed the before/after estimate of 
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project-level walking and bicycling. To validate the BC tool estimates (based on baseline 
direct demand model estimates plus an expected change from elasticities), we compared 
the BC tool estimated project-level walking and bicycling to the before/after estimate. The 
BC tool estimates are based on the direct demand model prediction during construction 
years. Using the outputs from the direct demand model, the equations in the BC tool were 
used to forecast the expected change in active transportation following project 
completion. The BC tool equations use the academic literature elasticities for specific 
infrastructure interventions and consider the project element elasticities as a function of 
their length or count in the context of the entire project reach (See Fitch et al., 2022). For 
example, in a Santa Cruz Project (MB Sanctuary Scenic Trail Segment 7, Phase 1), the 
model-predicted before and after volumes for the nearly 4,000 ft project were ~12,000 and 
~19,900 AADBT, respectively (an increase in ~7,900 AADBT). In comparison, the BC Tool 
estimated an increase of nearly double that amount (~13,800).  



 

 
17

 

Results 

Bike and Walk Model Results 

We conducted tenfold cross-validation for both the bike and the pedestrian models. This 
cross-validation technique allows for the estimate of multiple validation metrics and an 
estimate of their error (Table 5). The bike model had a mean absolute error of 67 while the 
pedestrian model’s mean absolute error was 929. The errors are like those found by Miah 
et al. (2024) and Kamalapuram (2022). The lack of improvement in model metrics from the 
earlier models is difficult to explain. It may be that by adding the local data, which was 
predominantly short-term counts, that needed to be factored to annual averages, we 
increased the source of error in the response variables compared to past work. Although 
this model did not improve on the predictive ability of past models, it has several added 
benefits for this and future research. Unlike the past direct demand models in California, 
this model was designed to predict specifically in Santa Barbara and Santa Cruz (through 
the inclusion of indicator variables and interactions specific to those geographies) for this 
project. However, the removal of those terms would facilitate a more general predictive 
model. Further, these models were the first to be developed across multiple years to 
evaluate actual change in walking and bicycling which can be used to estimate the actual 
effects of projects on walking and bicycling demand. 

Table 5. Summary of Random Forest Model Performance with error margins in 
parentheses (Bike and Pedestrian Models) 

Model Metrics Bike Model Pedestrian Model 
RMSE 123.24 (+/- 13.13) 2331.22 (+/- 476.92) 
MAE  67.09 (+/- 3.25) 929.09 (+/- 152.87) 
R2 0.72 (+/- 0.07) 0.62 (+/- 0.16) 

Estimates of Local Project Activity 

Bike Validation 
The comparison between the direct demand modeled (max after – min before years) and 
the BC tool projected estimate of project level bicycling volume were heavily skewed 
(Figure 6 and Figure 7). The BC tool had a median error of only -2.7 AADBT, but an average 
error of 2,909 AADBT at the project footprint level. The large difference between the mean 
and median error are primarily driven by the BC tool predicting many zeros which are much 
closer to the small increases estimated through the direct demand modeling (max after - 
min before) approach. When either method produced a large value away from zero, the 
errors are very large. This suggests that the method may be very inaccurate for any given 
project, but the median estimate is likely to be accurate. To visualize this effect, Figure 6 
plots the direct demand modeled max after – min before estimate against the mean and 
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range of estimates from the BC tool approach. Four projects have exceptionally large 
errors, which is the cause for the large mean/median discrepancy. It is not clear from the 
data why those projects have such large errors. Follow-up with local agencies may be 
needed to help determine the source of error.  

Not only are there several outlier projects, but the BC tool method also seems to 
overpredict bicyclist volumes by a much larger margin when projects have caused a 
greater change in bike volume (Figure 6). In Figure 7, the differences between the two 
approaches are plotted and sorted as percentages. The errors are much larger on the 
positive side of the scale than on the negative. It is not clear why the BC tool approach 
would be more biased for larger volume projects, but it suggests that when there are a lot 
of bicyclists in a project, the variation in the effect of a project may be greater.  
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Figure 6. Estimated change in bicycling volume annually due to project. Gold 
diamonds indicate estimate from direct demand modeled maximum after – minimum 
before years. Point and error bars represent BC tool projection based on elasticities 
from academic literature.  
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Figure 7. Estimated percent error in change in bicycling volume annually from using 
the BC tool projection based on elasticities from the academic literature in 
comparison to the model-based before/after estimate.  

Pedestrian Validation 
Like the bicyclist model, the comparison between the direct demand modeled (max after – 
min before years) and the BC tool projected estimate of project level pedestrian volume 
were heavily skewed (Figure 8 and Figure 9). The BC tool had a median error of only -8.5 
AADPT, and an average error of -40.4 AADPT at the project level. The difference between 
the mean and median error for pedestrians is much smaller than that for bicyclists. This is 
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likely because the outliers in the pedestrian projects are in both the positive and negative 
direction (Figure 8 and Figure 9). Additionally, since most pedestrian projects are focused 
on the safety of existing pedestrians, changes in pedestrian demand are rare, and both the 
direct demand modeling (max after - min before) approach and BC tool approach estimate 
change little for most projects. 

 
Figure 8. Estimated change in pedestrian volume annually due to project. Gold 
diamonds indicate estimate from direct demand modeling maximum after – minimum 
before years. Point and error bars represent BC tool projection based on elasticities 
from academic literature.  
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Figure 9. Estimated percent error in change in pedestrian volume annually from using 
the BC tool projection based on elasticities from the academic literature in 
comparison to the model-based before/after estimate.   
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Discussion and Conclusions 
The results from this research showed that by using a direct demand model and 
incorporating local data, project level estimates of walking and bicycling demand are 
possible with sparse count data. Currently there are no reliable gold standards to compare 
these estimates to. Because the count data were not generally collected to specifically 
evaluate the projects, it did not align in space and time to be useful for direct before/after 
estimates at the project level. Because of this limitation, we treated the model-based 
estimates as the “ground truth”, but additional research with much more fine-scale count 
data designed to evaluate specific projects over time is needed to validate the project-level 
estimates. The cross validation of the demand models suggests there still remain large 
sources of uncertainty in predicting count data, which indicates that project-level 
estimates are likely to have errors of similar magnitude. Other potential errors include the 
aggregation of count data at the project level, where proximity to other projects, or the 
general context of the project within the broader network is likely to bias results. Active 
transportation infrastructure interventions do not occur in a vacuum, and the summing of 
link level volume from direct demand models is unlikely to account for the complexity of 
how people travel on transportation networks. In this way, direct demand models are not 
only limited in their data inputs, but also in their ability to represent travel patterns. 

When comparing the elasticity approach of the BC tool to the before/after model-based 
estimates, the medians are reasonably similar for both bike and pedestrian models. This 
suggests that the elasticity approach is appropriate in the aggregate (when comparing a 
group of many projects). However, the errors at the project level were found to be 
substantial in several project cases, suggesting care must be taken when using the BC tool 
in its current form for project-level estimates of walking and bicycling. 

Several new research questions have emerged from these results. First, what is the cause 
for the large outlying prediction errors of the BC tool? We suggest that qualitative research 
with practitioners familiar with the projects could help generate hypotheses for future 
evaluation. Second, why are the bike model errors more biased than the pedestrian model 
errors? And why is the bias on the positive side of the scale? While interviews with local 
practitioners might help form new hypotheses, we also suggest that more model 
improvements are needed. Future research on more variables or alternative techniques 
that account for the context of projects (e.g., connectivity and accessibility) is likely to 
help. Third, what should be done in the BC tool to improve estimation of benefits at the 
project level? Below we offer some suggestions for this question. 
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Suggestions for BC Tool Improvements 

Improve the communication of the tool to inform users that reliability is an issue at the 
project level, but not program level. This communication should be aimed as a warning but 
should not attempt to dissuade project-level comparisons. Because there are no other 
tools available to estimate project-level benefits in a systematic manner, and because the 
BC tool will be undergoing improvements, it is still a valuable approach to project 
comparison and prioritization. Encouraging users to examine not only the mean effect but 
the range in effects estimated by the tool will help users become more aware of the 
uncertainty and can help inform planning decisions. 

Improve the treatment of off-street interventions in the tool. Currently, the BC tool only 
estimates the base demand of off-street interventions based on the average demand of the 
other project roads and intersections. This is likely to be a poor estimate of a well-used 
infrastructure type. Without a full travel demand model, making estimates of new facilities 
is a challenge. However, finding an approach that incorporates the added connectivity and 
accessibility gained from new facilities is likely to improve the accuracy of project activity 
estimation when off-street facilities are included.   

Improve the models of active transportation through more count data collection. The 
lack of count data for walking and bicycling is a known problem for estimating exposure for 
safety, and it is a clear problem for quantifying the other benefits of active transportation 
projects. There is great need to collect more data in more diverse locations to make 
project-level evaluation of benefits possible.   

Improve the models of active transportation through more direct inclusion of local 
context. These improvements could be the addition of new variables in the direct-demand 
models, or alternative model structures that can account for local context. However, the 
efficacy of this work is not likely to compare to that of simply collecting more walking and 
bicycling data (as suggested above) given the general dearth of data available in California. 

Link local and generalized models to improve estimates. To balance local and 
generalized models it will be helpful to define regions in California where we expect effects 
of interventions to be similar. By identifying which places are similar, in characteristics that 
matter for walking and bicycling, we will be able to combine local data from multiple areas 
to reduce error. We will also be able to make better predictions in places with limited data, 
relying on patterns observed in other similar places. 

Consider allowing for submission of local count data to improve estimates. Because 
many users may have local count data that are not included in the development of the 
current models, an ability to update the models or adjust their estimates based on local 
count data could be one way to improve estimates of active transportation. This approach 
should not replace the current approach of the tool, but instead form an alternative use 
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where users estimate the “achieved” benefits (through before and after data) of a project, 
rather than the forecasted benefits. 

Consider monetizing the benefit calculations for easy cost-effectiveness 
comparisons. The current Cal-B/C tool is an example of the potential outcomes that could 
be included as a part of the BC tool. By using assumptions which monetize benefits, 
project and program level comparison could be more easily achieved. 

Create a program-level interface for the BC tool. Because the tool is more accurate in 
the aggregate, consider a secondary interface to sum the benefits of groups of projects. 
This could be used by grant agencies for reporting or local implementors looking to 
prioritize groups of projects. When creating this summary, ensure that the reported bias is 
corrected. One way to correct the estimates is to take the program-level sum of benefits 
and subtract the difference between the program mean and program median.  
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Data Summary 
Products of Research  
Two sets of data were collected for this study. The first is a list of infrastructure projects 
and their attributes. This data was collected through document review, discussions with 
practitioners, and review of historical imagery on Google Street View. The second data set 
includes the walking and bicycling counts for the two study cities. This data was added to 
existing data to update direct demand models and estimate expected project walking and 
bicycling. 

Other data sets that were used for this study include all the data from the California Active 
Transportation Benefit/Cost tool (URL), data from Miah et al., (2024), data from Strava 
Metro, American Community Survey, and data from the Smart Location Database. This 
data was used to update new direct demand models.  

Data Format and Content  
The infrastructure data is stored in two comma delimited (csv) files (import-sc-
infrasutrcture.csv holds the data from Santa Cruz, and import-sb-infrastructure.csv hold 
data from Santa Barbara). Data and metadata can be found on the UC Davis Dryad Data 
Repository (https://doi.org/10.5061/dryad.j9kd51cpm).  

Data Access and Sharing  
All supplemental data can be accessed at its original source location. People interested in 
the intermediate data processed as a part of this project can contact the authors. Because 
of use restrictions, the data from Strava Metro cannot be made available without 
permission from Strava.  

Reuse and Redistribution  
Please find the license information for restrictions on the use and distribution of this data 
on the Dryad dataset page. 

https://doi.org/10.5061/dryad.j9kd51cpm
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