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Improving Public Safety Through Spatial Synthesis, 
Mapping, Modeling, and Performance Analysis of 
Emergency Evacuation Routes in California Localities 

EXECUTIVE SUMMARY  

This project uses spatial synthesis, mapping, modeling, and performance analysis techniques to 
analyze multi-hazard risks and network topology potential impacts for emergency evacuation 
routes in various California localities. 

This project aims to enhance the understanding of road network performance under natural 
hazards and to help support evacuation planning. The report begins with a comprehensive 
literature review on road network performance measurements and evacuation performance 
analysis. The methodology consists of applying various methods to address four key tasks. 
These methods include risk performance measurement and evacuation performance analysis. 
The evacuation performance analysis involves mathematical programming models and 
Omniscape as an alternative congestion and bottleneck analysis method. Risk assessment and 
mathematical programming models are used to create disaster scenarios and sensitivities to 
identify the most important corridors within the road network in various case studies. The key 
findings and implications are organized into four key tasks: 

Task 1: Evacuation routes data collection and database construction 

Evacuation route data was collected from 190 cities in California, revealing that only 23 had 
online GIS maps, while the rest relied on less accessible PDF plans. This highlights a critical gap 
in evacuation planning and the need for improved methodologies to support localities lacking 
detailed plans.  

Task 2: Assessing the performance of the road network  

A novel methodology evaluated road network risks across three levels: local (node-specific 
risks), regional (directional risks), and system-wide (risk concentration). Analysis of 450 cities 
categorized them into four priority groups, offering tailored insights for decision-makers. Key 
findings include identifying high-risk areas and factors driving road network performance risk, 
enabling targeted mitigation efforts.  

Task 3: Assessing the map of evacuation routes using the other data collected to 
determine the equity of access to evacuations  

Case studies of the 2018 Camp Fire in Paradise and Magalia and the Thomas Fire in Ojai, 
Ventura, and other localities were analyzed using mathematical programming models and 
Omniscape models to evaluate evacuation performance. 



 ix 

• The mathematical programming models obtained comparable clearance times (~1 hour, 
50 minutes) between the two case studies despite area and vehicle demand differences. 
This was attributed to variations in exit routes and road network capacity. The Thomas 
Fire area has more exit routes than the Camp Fire area. Additionally, the road network 
capacity in the Thomas Fire area is greater than that of the Camp Fire area, providing 
insights into the reasons for this difference in performance. 

• Omniscape analysis identified congestion "choke points" at local and regional levels, 
aligning with mathematical modeling results and providing insights into traffic 
bottlenecks during evacuations. 

Task 4: Assessing the performance of the evacuation routes to serve different 
segments of the population. 

Evacuation routes were evaluated under various scenarios, revealing critical corridors for 
reducing clearance times and highlighting common strategies between model predictions and 
current local plans. Public transit networks were identified as a valuable but underutilized 
resource for enhancing wildfire evacuation strategies. 
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Introduction  

Evacuation is a disaster management strategy where people at risk need to relocate to safer 
places at minimal risk [1]. This process usually relies on the road network, and one of its main 
characteristics is that heavy congestion on roads can quickly saturate the limited exit routes 
due to the high influx of vehicles [2]. Evacuation planning is crucial in areas prone to 
geophysical events and extreme weather, which pose risks to human safety, critical 
infrastructure, property, and homeland security [3]. 

This is one of many reasons why public safety is a major concern for policymakers, as it impacts 
individuals' quality of life and assets. In this project, we analyzed public safety, specifically 
during evacuation events, through mapping, modeling, and analyzing the performance of the 
road network that supports emergency evacuation processes in California localities and the 
expected evacuation performance.  

The characteristics of the evacuation process vary depending on the type of natural hazard. For 
example, evacuations during hurricanes are larger than during wildfires, regarding land 
affected, population affected, and distance between the affected area to safe destinations. 
Early evacuation is the preferred disaster management strategy during wildfires in the US [4]. 
However, the complexity of evacuations during wildfires becomes critical when anticipated 
evacuations are impossible because information about the wildfire is only available at short or 
no notice. 

2018 was California’s year with the highest cost on property damage, business interruptions, 
and agricultural losses due to wildfires, with $30bn, followed by 2017 and 2020, with $23bn 
and $20bn, respectively [5]. Between 2017 and 2019, eleven large-scale wildfires caused the 
evacuation of at least ten thousand individuals each [6] in California. The 2018 Camp Fire was 
the deadliest and most destructive wildfire in the last 90 years of wildfire records in California, 
with 85 fatalities and 18,804 structures destroyed [7]. One of the reasons for such devastating 
consequences is that it was a fast-moving wildfire, where many vehicles attempted to escape 
on a restricted road network with short notice.  

Wildland-urban interface areas (WUI) are those areas where people live surrounded by wildfire-
driven fuels [8], and those are the places with a major concern for wildfires—considering that a 
significant share of people live in WUI areas. The impact and negative consequences of climate-
driven wildfires are expected to increase. Different agencies have invested in developing 
preparedness, mitigation, and adaptation plans, but evacuation is critical for short- or no-notice 
fast-moving wildfire events. 

Moreover, it is important to note that the transportation infrastructure is one of the most 
affected assets by natural disasters and carries many costs [9]. Therefore, it is extremely 
important to identify adequate evacuation routes and assess the road network performance on 
which those evacuation routes rely. Additionally, it is important to consider the various 
assumptions about transportation accessibility (e.g., vehicle availability, mobility constraints) 
for different population segments to use such routes.  
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California has recognized the need to strengthen disaster response through AB747 
(https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201920200AB747), which 
requires cities and counties to adopt a comprehensive long-term general plan that includes 
safety elements for the community from unreasonable risks associated with various hazards. 
AB 747 requires local jurisdictions to identify evacuation routes and their capacity, safety, and 
viability under various emergency scenarios. Many agencies are important in these safety 
elements, maintaining and strengthening evacuation routes and ensuring public access. These 
routes must be identified in advance and maintained to provide transportation during 
evacuations. 

This project had four main objectives or named tasks: 

• First, to collect evacuation route plans from different jurisdictions within the state and 
create a centralized database.  

• The second objective is to perform a road network analysis based on the team’s 
experience with road network performance, access restoration, and critical 
infrastructure modeling for case studies [10, 11, 12]. Such quantitative analyses of the 
networks use several performance measures as described in [10].  

• The third objective was to assess how well these evacuation routes align with the State 
Highway, bus, and rail System and how well they compare with actual evacuation events 
in case studies using data or findings from previous evacuations in California.  

• Finally, the fourth objective involved analyzing different metrics about the evacuation 
routes' performance for different population segments. 

Overall, this project helps consolidate and assess evacuation routes and their impact on the 
population’s evacuation ability. It will also inform infrastructure investment priority decisions 
by identifying the road segments with the largest impact on the evacuation route/network 
performance and which cities have the highest priority among the California cities.  

https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201920200AB747
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Literature Review 

The review focused on four main topics: road network performance, road network 
performance risk, spatial analysis, evacuation performance, and an evaluation of bottlenecks 
using Omniscape. 

The first part of our literature review focused on road network performance (RNP). The RNP 
literature has focused on defining, analyzing, and formulating different measurements to assess 
the strengths and weaknesses of road networks. RNP measurements can be classified as global, 
regional, or local RNP measurements. Global RNPs are a single value that represents the entire 
road network, regional RNPs are a set of values that group the characteristic of a set of nodes 
or arcs into subgroups and regions in the road network, and local RNP measurements are a set 
of local values that represent the RNP characteristics of each node or arc of the road network.  

Local RNP measurements provide spatial data of the nodes and arcs within the road network. 
However, nodes have an advantage over arcs because it is possible to identify a single and 
precise coordinate in the network. Each road network has different shapes, sizes, geometries, 
areas, and population densities, so using the local RNP measurements directly to compare two 
or more road networks is a challenge. One option to compare road networks is to use sums or 
averages and estimate the variance of such local RNP measurements. This approach does not 
allow us to maintain their spatial information. Additionally, using clusters or regions to group 
the local RNP measurements described by Derrible and Kennedy [13] or Jenelius [14] might not 
be sufficient because such subgroups are not standard and do not allow fair comparison 
between road networks. There is also a lack of methods focusing on risk, spatial analysis, and 
practical application through case studies or implementation scalability. 

The papers that assess RNP risk use centrality measurements as part of the risk and involve 
simulation data for natural hazard events, mostly for hydro-meteorological natural hazards. 
Still, natural risk measurements that consider the historical data, the population's 
socioeconomic characteristics, and the road network's topological characteristics are lacking. In 
the literature, most authors analyzed hypothetical or real-life road networks using a single or 
small sample of road networks. This hampers generalizations and benchmarking assessments of 
the applicability of different measurements across real road networks, considering each 
location's inherent natural hazard risks.  

Based on the analysis of the available literature, current RNP measurements do not offer an 
effective way of comparing road network performance while considering a variety of specific 
natural hazard risks inherent to each location. Despite the analysis of natural hazard risks on 
road networks by various authors, there remains a lack of understanding of the trends and 
patterns of these risks. This gap includes understanding how the risk of each natural hazard is 
distributed or spread within the road network of a particular location and whether there are 
specific directions within the road network where such risks are most concentrated and require 
priority. Moreover, measuring network patterns such as orientation (North-South-West-East) 
and geometry can help researchers and planners evaluate a transportation system [15]. 
Understanding these trends can help prioritize operational management strategies effectively. 
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Consequently, this project provides a method to identify the areas with the highest 
concentration of risk and their effect within road networks. This approach prioritizes mitigation, 
preparedness, and disaster response planning by evaluating the risk posed by natural hazards 
on road networks, their spatial patterns, and their implications for community risk and 
resilience. Concerning the RNP, this project makes three primary contributions to literature. 

1. First, it introduces a method that addresses an underexplored aspect of RNP risk 
measurement by combining historical data on past natural hazards and the 
socioeconomic characteristics of the population, such as community vulnerability and 
resilience, with the topological characteristics of the road network, like centrality and 
accessibility measurements, to provide a Road Network Performance Risk 
measurement. 

2. Second, it adapts Boeing’s orientation methodology [15] to standardize the natural 
hazard risk in road networks spatially and compare a wide variety of locations and 
natural hazards in a standardized way, which would help planners in their prioritization 
decision-making process.  

3. Third, the proposed method is applied in a case study involving many locations in 
California. The study analyzes the 18 natural hazards included in the National Risk Index 
(NRI), e.g., avalanche, coastal flooding, cold wave, drought, earthquake, hail, heat wave, 
hurricane, ice storm, landslide, lightning, riverine flooding, strong wind, tornado, 
tsunami, volcanic activity, wildfire, and winter weather, and collectively assessing all 
these hazards in conjunction.  

Regarding Evacuation performance, the literature review highlights the need to develop a 
generalizable method to design evacuation plans based on risks. This method should 
incorporate general information from each location, such as historical wildfire data, 
socioeconomic characteristics of the population, and road network topology. One of the 
objectives of developing evacuation plans is identifying the most critical corridors within a road 
network and examining various scenarios, including simulated real-life wildfires. Additionally, 
identify corridors' performance regarding time, risk, and resource minimization to enhance 
their resilience for vulnerable populations in future evacuations. Table 1 shows the lack of 
consideration of expected risk perceived by the evacuees during the evacuation process and an 
analysis of the sociodemographic information and its influence on the evacuation. This project 
provides a decision-makers tool to identify the main corridors to be prioritized in a location to 
increase their resilience to vulnerable populations based on the population's socioeconomic 
characteristics and the risk assessment [4]. 

Road Network Performance 

One of the main objectives of this project is to evaluate the strengths and weaknesses of the 
road network by focusing a literature review on the analysis of the RNP measurements [16]. 
Literature provides various concepts, definitions, and methods to measure them, which could 
lead to confusion between concepts. Rivera-Royero et al. [10] provide a classification scheme to 
distinguish and identify relationships between a set of eleven RNPs: i) connectivity, ii) 
redundancy, iii) accessibility, iv) reliability, v) connectivity reliability (CR), vi) travel time 
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reliability (TTR), vii) capacity reliability (AR), viii) robustness, ix) flexibility, x) resilience, and xi) 
vulnerability. Additionally, they classify RNP concepts into three sets: I) Topology-based (T) for 
those that rely on the network infrastructure/topology, and decision-makers use them when 
they have the objective of designing or redesigning road networks, e.g., connectivity, 
redundancy, accessibility, reliability, and vulnerability. II) Threshold-based (H) for those that 
depend on a threshold defined by users, which generally involves the traffic speed, flow, and 
density, e.g., accessibility, reliability, TTR, AR, and CR. Finally, III) Event-based (E) for those 
considered when analyzing the impact of disturbing events on the road network, e.g., 
robustness, resilience, flexibility, reliability (TTR, AR), and vulnerability [10] (See Figure 1).  

 

Figure 1. Road Network performance classification. From Rivera-Royero, et.al. [10] 

Appendix A offers an expanded overview of the eighty-seven RNP measurements from Rivera-
Royero et al. [10], including the mathematical formulas and their key characteristics. None of 
the RNP measurements in Appendix A enables the identification of high-risk areas within a road 
network as they solely rely on road network characteristics without considering natural hazard 
risks. Nevertheless, some of these measurements provide insight into identifying nodes or arcs 
of relatively high importance within the road network. To identify the areas and directions with 
the highest risk concentration within a road network, we can construct upon the knowledge 
behind those 87 RNP measurements. 

The 87 RNP measurements indicate the strengths and weaknesses of the road network. These 
measurements can be categorized into global, regional, and local. Global RNP measurements 
consist of a single value representing the entire road network, regional RNP measurements 
consider a set of values for subgroups of elements (arcs or nodes) within the road network, and 
local RNP measurements provide values for each node or arc of the road network. 
Furthermore, the RNP measurements may or may not require information regarding traffic flow 
data for their computation. The authors can identify the network's characteristics by 
eliminating the impact of traffic behavior within the population and by analyzing those RNP 
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measurements that do not require traffic data. The RNP measurements that do not require 
traffic data can be classified as topology-based measurements and are supported by a well-
developed network science framework [17, 18].  

Local RNP measurements that do not require traffic data possess a mathematical formula that 
allows a relatively straightforward and quick estimation, facilitating comparison across a wide 
range of road networks. Furthermore, local RNP measurements provide spatial information on 
road network characteristics, as the precise location of each node is determined in the 
Coordinate Reference System (CRS). Therefore, local RNP node-based measures allow for 
identifying nodes of significant importance and their location. If combined with natural hazard 
risk data, it would be possible to identify high-risk areas within a road network. In this sense, 
eight of the 87 RNP measurements shown in Appendix A are local RNP measurements that do 
not require traffic data. These RNP measurements include i) ‘degree node’ and ‘number of 
paths’ [19] for connectivity, ii) ‘Hansen integral accessibility index’ [20], ‘betweenness 
centrality,’ ‘normalized betweenness centrality,’ ‘normalized closeness centrality’ [21], and 
‘average Shimbel index’ [22] for accessibility. Additionally, resilience has a ‘node resilience index’ 
[23].  

Road Network Performance Risk 

‘Risk’ is an RNP measurement not discussed in Rivera-Royero et al. [14] and is extended in this 
section. In addition to the previous RNP measurements, we identified measurements 
combining risk and the topological structure of the road network. For example, Casali and 
Heinimann [24], Zhang and Alipour [25], and Nelson et al. [18] addressed the risk of natural 
hazards on the road network using centrality measurements as indicators of the road network 
risk, e.g., betweenness centrality and closeness centrality, among others. Casali and Heinimann 
[24] examined flood impacts on road network topological characteristics in Zurich, Switzerland. 
The authors used centrality metrics such as node and edge betweenness and closeness 
centrality. They utilized GIS layers to visualize the centrality results on the map. One of the 
limitations of Casali and Heinimann [24] is that it was only performed in one city, and it does 
not allow for comparison with other locations or other natural hazards. Furthermore, each 
measurement was analyzed independently and did not include a measurement of the natural 
hazard risk. Likewise, Zhang and Alipour [25] linked connectivity measures with the topological 
risk analysis, and they proposed a framework for assessing the risk for Iowa's primary road 
network system in the event of flooding. They used the average node degree, cluster 
coefficients, and shortest path as the connectivity measures at the topologic network-level risk 
assessment.  

Despite identifying data scarcity in most disaster-prone cities, Nelson et al. [18] found that 
connectivity and centrality measurements could assess vulnerabilities and risks on the road 
network of Freetown, Sierra Leona. They identified high-centrality interceptions and high-
hazard areas with mainstream environmental GIS data. They measured the risk through the 
interaction of topological centrality and multi-hazard layers, where risk is the likelihood of 
occurrence of natural hazards times the consequences of the disruption given by the 
betweenness centrality. Finally, they provided a risk matrix for the city, where they classify the 
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road network nodes into nine clusters, given by the combination of low, moderate, or high 
hazard risk and low, moderate, or high betweenness centrality, e.g., cluster 1: low hazard risk 
and low betweenness centrality, cluster 2: low hazard risk and moderate betweenness 
centrality, etc. However, their limited data sources and specific methodology applied to a single 
location do not allow comparative analysis between different locations. In addition, most 
papers have only considered hydrological natural hazards for analyzing road network risk, 
excluding other types of natural hazards such as wildfires. 

Road Network Performance Risk: Spatial Analysis 

Appendix A shows three RNP measurements that group nodes into subgroups or regions: i) 
clustering (connectivity) [13], ii) total exposure (vulnerability), and iii) regional importance 
(vulnerability) [14]. However, those subgroups are not standard for all road networks and do 
not allow comparative analyses between two or more locations. Recalling that one of the main 
objectives of this project is to identify the areas and directions with the highest risk 
concentration within a road network and to provide a method that allows the comparison of 
risk between a set of locations and different natural hazards for prioritization purposes. One 
alternative is to provide a standard method that allows such comparison. This study uses a 
spatial method derived from the transportation system's urban landscape literature [15]. 
Boeing compared the orientation of the network patterns of around one hundred cities 
worldwide, independently of their geometry and shapes. Boeing [15] analyzed this diverse set 
of road networks by subgrouping the arcs using counterclock angle orientation, e.g., (90°) 
North, (270°) South, (180°) West, and (0°) East. Boeing divided the city into thirty-six equal-
sized bins, each representing 10°, and assigned an entropy value representing each angle. 
Finally, the method provided one entropy metric that identifies if a city stands on an idealized 
grid (North-South-East-West) (𝜙 = 0), or if the city is in complete disorder (𝜙 = 1). It is 
important to note that Boeing's orientation analysis does not include an assessment of the road 
network capabilities or risk against natural hazards in each location. 

Evacuation Performance 

Disaster Operation Management (DOM) strategies include the actions taken before, during, and 
after a natural or anthropogenic disaster [26]. DOM differs from commercial management 
operations because disasters are rare. This means that operations during a disaster have many 
uncertainties that increase complexity, e.g., unknown demand and supply, information systems 
disrupted, shorter response times, and social objectives are commonly used [27]. DOM 
strategies include mitigation, preparedness, response, and recovery [28]. Commonly, DOM 
relies on operations research and management science (OR/MS) [29]. Other examples of DOM 
are prepositioning supplies [30] and distributing relief items [31, 32]. Evacuations are one of the 
DOMs, and they play an important role in saving lives before and during natural hazards such as 
hurricanes, wildfires, and tsunamis. 

In the literature, researchers study evacuation by examining behavioral and engineering 
perspectives. From the initial perspective, researchers attempt to distinguish the factors that 
influence the decisions of the evacuees. Including behavioral elements in the transportation 
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models allows a more realistic estimation of the evacuation time [33, 34]. Studies examine the 
behaviors from surveys of the affected population after specific disasters by stated preference 
surveys evaluating hypothetical scenarios or by using walking evacuation simulation [35]. 

From the engineering perspective, researchers focus on time performance estimation and 
traffic flow modeling, among others [33]. The strategies to deal with evacuations from an 
engineering perspective can be based on the demand and supply of the transportation 
network. Strategies for the traffic supply include transit operations, special signal timings, 
shoulder lane use, crossing elimination, and contraflow operations [36, 37, 38]. The demand 
involves evacuation staging, departure time, route assignment, and reducing shadow or 
background traffic [37, 36].  

This project analyzes the performance of evacuation plans through optimization models, 
considering expected wildfire risk, evacuation time, vehicle demand, and road network 
capacities. One objective was to determine how the current state of the road network may 
impact evacuation performance and develop a generalized methodology for various locations. 
This scope limits the direct consideration of behavioral elements; however, the study considers 
the population's socioeconomic characteristics in the evacuation risk analysis estimation. Table 
1 summarizes papers that estimated the evacuation performance using the ‘evacuation 
scheduling problem’ and ‘evacuation network clearance time.’ All these papers involve traffic 
routing or traffic assignments in their modeling. Eighteen of the 47 papers focus on the 
staggered evacuation of the demand side, and just three papers combine the staggered 
evacuation with supply-side strategies, such as contraflow [38, 39] or traffic signal [40]. 
Thirteen papers provide shelter information in the modeling as part of the destination. Around 
20 papers used city level in their evacuation process, and the analyzed events are wildfire, 
hurricanes, floods, nuclear plants, and terrorist attack evacuation scenarios. The solution 
methods used in the modeling included mathematical programming (32), simulation (26), and 
algorithms (4). Twelve papers combined simulation and mathematical programming in the 
solution method, while 25 of the 30 papers used heuristics to solve the mathematical 
programming models. The papers have a variety of objective functions, but in general, the most 
widely used objectives are minimizing evacuation time and minimizing clearance time [41, 38]. 
Clearing time refers to when the last member of the population exits the area, and the total 
evacuation time refers to the total time spent by all the individuals exiting the area. Most 
papers assume safe collection points in the area and that it is possible to exit the town by 
vehicle. Among the constraints employed in literature, models usually include mass flow 
balance and capacities in the links and nodes. 

Additionally, the authors include behavioral elements in the transportation models; this allows 
a more realistic estimation of the evacuation time [33, 34]. In the literature, researchers obtain 
the simulation parameters from surveys of the affected population after the disaster or by 
stated preference survey when the interviewer provides hypothetical scenarios; however, such 
a methodology is beyond this project's scope. Another way to include the behavioral aspects in 
estimating the evacuation time is to use the parameters described in the literature [38]. 
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Moreover, Figure 2 summarizes relevant evacuation studies from the perspective of the 
evaluation approaches: mathematical programming (MP) and simulation (S), with MP&S being 
the sub-set with the largest share. However, [42, 43, 44] also considers the application of 
models such as machine learning, deep learning, and others that are beyond this project's 
scope due to the significant amount of data required from evacuation settings. As a source of 
such data, researchers have identified the Internet of Emergency Services (IoES) as an 
implementation of the Internet of Things (IoT) in emergency settings [45].  

Among the papers belonging to MP, only [46], [47], and [48] analyze the evacuation without 
including shelters as an option. On the one hand, [46] uses a time-expanded model to optimize 
the evacuation plan, and [47] models the capacity-constrained evacuation scheduling problem 
over discrete time as an integer optimization model. These approaches suffer from high 
computational costs and do not scale to large transportation networks. On the other hand, [48] 
provides a method to obtain the optimal egress time and path generation for large evacuation 
networks when all the population is requested to evacuate with no predetermined priorities, 
obtaining a set of mathematical models able to handle large-size networks with low 
computation time. Among papers on the MP set, only [49] include a risk analysis based on the 
time you are exposed to a particular hazard. 

In the simulation set (S), [50] used a household survey to model the risk perception of wildfire 
in a traffic simulation model. This survey method works well for evacuees’ behavior in the 
specific case of Mati, Greece; however, such results cannot be generalized to other cases in 
different places. [51] discuss another type of risk assessment based on priorities determined by 
the time the natural hazard is expected to affect a given node, allowing only a limited time for 
the population in those nodes to evacuate. They implement the method in a hurricane setting 
with path projections made in advance. In the event of a short- or no-notice wildfire, such 
projections are not feasible, as the information is usually unavailable, and the evacuation 
should be carried out quickly. Therefore, it is essential to use a methodology that is adaptable 
to different settings and does not depend on a priory projection but instead provides a robust 
plan for various situations, such as short- or no-time wildfire events. 
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Figure 2. Methodology classification on the literature review, including Mathematical 
Programming and Simulation  

Bottleneck Analysis with Omniscape 

Omniscape [89] is a raster-based model based on circuit theory [90] that uses a GIS to analyze 
flow or blockage levels across all landscape elements. It has been widely used in conservation 
assessments to simulate the connectivity of habitats or potential movement patterns of species 
[91]. The model is also used where current climates in some areas may be found, based on 
climate change projections [92, 93, 94]. More recently, team member Thorne applied it to 
model open space connectivity in Seoul, a city with 10 million inhabitants [95]. In this case, we 
restricted the “landscape” of the modeling to the transportation network of our test cities. We 
conducted a sensitivity analysis to determine whether the tool could be used to identify areas 
with a high potential for traffic bottlenecks during an evacuation.
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Table 1. Taxonomy evacuation management (LP: Linear Programming, IP: Integer Programming, NLP: No linear programming, MIP: Mixed 
Integer Programming, ABS: Agent-Based Simulation, MCS: Montecarlo Simulation, TS: Traffic Simulation.) 
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Sheffi et al. [52]   1     1           1 1           1     1                     1   

Tweedie et.al [53]   1     1           1 1           1     1                     1   

Stern el al. [54]   1     1           1 1           1     1                         

Sherali et al. [55]   1       1     1         1           1         1 1     1 1       

Church & Cova [56]   1                     1   1         1     1     1     1 1       

Cova & Johnson [57]   1     1               1   1           1                       1 

Kongsomsaksakul el 
al. [58]   1       1                   1                 1   1     1       

Sbayti et al. [59] 1 1                     1           1 1 1     1       1 1 1     1 

Han et al. [60]  1               1                 1   1         1               

Lu et al. [46] 1 1                                   1 1   1             1     1 

Wolshon et al. [61]   1     1             1                 1                           

Chiu et al. [62] 1 1                 1     1 1 1 1 1   1 1     1           1       1 

Chiu & Zheng [63] 1 1                 1     1 1 1 1 1   1 1     1           1       1 

Miller-Hooks et al. 
[64]   1             1         1 1 1 1 1   1       1   1   1     1       

Lindell [65]   1     1       1         1               1                         

Opasanon et al. [66]   1             1                   1 1   1       1   1     1       

Stepanov el al. [67]   1                   1             1 1 1         1         1       

Noh et al. [68]   1     1                               1                           

Alçada‐Almeida el al. 
[69]   1       1         1       1                       1               

Xie et al. [39]   1 1               1             1   1 1     1             1       

Abdelgawad el al. 
[70] 1 1           1      1 1 1   1 1    1      

Yazici & Ozbayi [71]   1                   1             1 1       1 1     1             

Ng et al. [72]   1       1         1     1   1       1           1         1       

Ng & Waller [73]   1                     1           1 1       1       1   1         

Lämmel et.al [74]   1                 1         1         1                     1   1 

Zheng et al. [49] 1 1                             1     1 1     1     1   1         1 

Osman et.al [47] 1  1                                 1           1           1       

Cova el al. [33] 1  1       1                 1         1         1           1       

Lim et al. [51] 1 1             1         1           1         1           1       
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Ozbay et al [75]   1                       1       1                               1 

Rungta el al. [48] 1 1             1                     1           1 1   1           

Li et al. [76] 1  1       1   1           1           1 1           1 1     1       

Coutinho et.al [77]   1       1         1       1         1       1     1       1       

Nassir et.al. [40]   1   1             1               1 1                             

Chen & Zhan [78] 1 1     1               1 1 1           1               1           

Lim et al. [79]   1                 1     1           1 1       1 1   1 1 1 1     1 

Tuydes-Yaman et.al 
[80] 1  1             1         1           1 1     1 1   1     1 1     1 

Bayram el al. [81] 1 1       1         1                 1           1       1         

Shahparvari et.al [82] 1         1         1       1         1       1 1           1       

Gan et al. [83] 1 1                 1       1         1 1       1       1 1 1     1 

Beloglazov et. Al [84]   1     1       1           1           1                           

Steer et al. [85]   1     1 1     1           1                           1     1     

Shahabi el al. [86]   1       1         1       1         1   1   1     1   1   1       

Shahparvari el al. [87]   1       1         1       1         1       1             1       

Zhao et al. [38] 1 1 1   1                                                           

Siam el al. [50] 1  1     1 1                                                   1     

Grajdura el al. [88]   1     1           1       1           1                     1     

This study 1 1         1   1 1 1 1 1  1    1   1   1 1    
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Methodology 

The author analyzed a sample of municipalities in California, for which the team had collected 
their evacuation plans and analyzed the natural hazard risk on their road networks. Based on 
the road network risk analysis results, the team selected a case study of a locality with a high 
risk of wildfire and conducted an in-depth analysis of evacuation that could be replicated in 
other localities. The project involves four tasks described as follows: 

Task 1: Evacuation Routes Data Collection and Database Construction 

California’s 58 counties and its many incorporated municipalities have obligations under 
Assembly Bill 747 to consider safety elements in their general plans, including identifying 
evacuation routes. However, these plans have not been compiled into a comprehensive 
database. This project addressed Caltrans’ data need to compile the evacuation routes 
developed by California municipalities into a single database to support other agencies in 
planning, maintaining, and providing access to routes that use state transportation highways 
under evacuation settings. This stage of the project did not involve the collection of original 
data. We conducted a search of different cities and counties to identify: 1) which jurisdictions 
have already identified their evacuation routes under AB 747; 2) which are in the process of 
doing so as part of their updates to their local hazard mitigation plans; 3) which have planned 
for the process; 4) which have evacuation routes, but not specific to wildfire, and 5) which have 
no available information. The search used publicly available spatial data from highways, buses, 
rail, and vulnerable communities. The team looked for data from previous evacuation events, as 
compiled by agencies such as Caltrans or CAL FIRE.  

This task aimed to create and maintain a database with the road network and evacuation 
routes. Among the data collected for each County or City were the Safety Elements, Local 
Hazard Mitigation Plan (LHMP), Emergency Operations Plan (EOP), Evacuation Map, Evacuation 
Analysis, GIS Map, Multimodal Evacuation Accessibility, and Shelter Map. Additionally, the 
contact information of the office responsible for the safety information for each locality in 
California at a county/MPO/city level was collected, depending on the public availability of the 
information. Local agencies usually provide such information following AB 747. The evacuation 
route collection was managed in an open architecture database that contains information on 
GIS maps for the localities that had such information, as well as the plans developed by the 
different localities. We analyzed the data from the cities according to the different formats they 
were in interactive maps, map pdfs, or evacuation routes for multiple hazards (e.g., tsunamis, 
floods, fires). For those evacuation routes not in GIS format, the team compiled the data in 
other formats and constructed (digitized) the routes for the two case study wildfire events.  

Additionally, the team collected information about the State Highway System and passenger 
rail and intercity bus routes and compared them with the current evacuation routes for our 
case study events. Most of this information is publicly available in the California State Geoportal 
[96] and is usually updated with information about its conditions. We also collected a range of 
other data for the analyses conducted in this study. Those data include sources such as 
California Department of Fish and Wildlife Regions, National Risk Index Census Tracts, Highway 
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Performance Monitoring System Layer, Fire Hazard Severity Zones Layer, National Land Cover 
Database Land Cover, CalEnviroScreen 4.0 Results, Wildland Urban Interface, and State 
Highway System data on passenger rail and intercity bus routes; US Census data [97]. 

Task 2: Assessing the Performance of the Road Network 

The team performed a quantitative assessment of the road networks for a representative 
selection of more than 450 cities in California based on historical information on different 
natural hazard risks, including wildfires, hurricanes, tsunamis, and earthquakes, among other 
risks. The proposed metrics were standardized or used network topography measures (e.g., 
connectivity, accessibility, degree). This task provides a quantitative analysis using the latest 
literature regarding performance metrics as described in [10].  

The team determined each selected location's Road Network Performance Risk using multiple 
descriptive statistics, graph theory algorithms, and spatial pattern analysis. This methodology 
incorporates natural hazard risk, socio-demographic vulnerability, and community resilience 
with Road Network Performance accessibility (𝑅𝑁𝑃𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦). indexes, which represent the 

importance of the road network nodes. These 𝑅𝑁𝑃𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦  measurements can either reduce 

or exacerbate the natural hazard risk for the population in each location. If a natural hazard 
affects crucial road network nodes vital for accessibility and mobility, the overall natural hazard 
risk for the population can increase. Figure 3 depicts the methodology followed to analyze each 
road network and the description of each measurement estimated in each step of the 𝑅𝑁𝑃𝑟𝑖𝑠𝑘 
methodology is given as follows. 

The methodology provides measurements at three levels of the road network: local at node 
level, regional level, and global or system-wide level. These different levels help, for example, to 
identify the geographic area of the most vulnerable nodes, sections, or directions of the road 
network against different types of natural hazards; to compare the 𝑅𝑁𝑃𝑟𝑖𝑠𝑘 of multiple 
locations or to identify the most vulnerable cities among a large set of locations, among other 
purposes. The main steps of the methodology include: 

1. Determining the Road Network for Each Location 

For this step, the authors used the ‘graph_from_place’ function from OpenStreetMapNX 
(OSMnx) [98, 99]. Based on the authors' experience, the road networks obtained directly from 
this function for each city do not reflect entirely the characteristics of the city boundaries; for 
this reason, the authors added a buffer between 1 and 2 miles depending on the diameter of 
the city.  
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Figure 3. 𝑹𝑵𝑷𝒓𝒊𝒔𝒌 methodology steps. 
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2. Estimating the Natural Risk (𝜽𝒊
𝒛) and Population (𝜷𝒊) at the Node Level 

According to Bründl [100], natural hazard risk depends on the probability of natural hazards and 
their consequences. To obtain the natural hazard risk of each node of each locality for each 
natural hazard 𝜃𝑖

𝑧 , the authors adapted the method used by FEMA in the construction of the 
National Risk Index (NRI) [101, 97]. NRI considers eighteen different types of natural hazards 
and provides individual and generalized risks considering All hazards (All-HZ). The data allows 
comparison and prioritization of strategies that depend on the type of natural hazard. NRI’s 
formulation is as follows: 

𝑁𝑅𝐼𝑧 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑛𝑛𝑢𝑎𝑙 𝐿𝑜𝑠𝑠𝑧 ∗ 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝑅𝑖𝑠𝑘 𝐹𝑎𝑐𝑡𝑜𝑟  Eq.1 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑛𝑛𝑢𝑎𝑙 𝐿𝑜𝑠𝑠𝑧 = 𝐴𝑛𝑛𝑢𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑧 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑧 ∗ 𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐 𝐿𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜𝑧  Eq.2 

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝑅𝑖𝑠𝑘 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑓 (
𝑆𝑜𝑐𝑖𝑎𝑙 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒
)  Eq.3 

The NRI calculates natural risk as the expected annual loss (EAL). This is determined by 
estimating the likelihood of the natural hazard through its annual frequency (AF) and assessing 
the consequences based on exposure (EXP) and the historical loss ratio (HLR). The NRI also 
utilizes a community risk factor influenced by two main elements: the Social Vulnerability Index 
(SOVI) and Community Resilience (CR). These community risk factors can increase or mitigate 
the natural hazard risk based on the community's socioeconomic characteristics. According to 
FEMA [101], the risk of a location increases with higher EAL and SOVI and decreases with higher 
CR. SOVI and CR are independent of the type of natural hazard (z). The EAL is distributed in 
dollars, while the other elements are represented as indexes. However, all are normalized 
between 0 and 100 using their maximum and minimum values. The NRI is also normalized 
according to the geographical area. FEMA provides the NRI to the county and census tract 
levels; in this project, the authors estimate the NRI at the census block group level and then at 
the local level using the road network nodes. 

Estimating the NRI at the census block group requires estimating or downscaling its 
components (e.g., SOVI, CR) at this geographical level. First, the SOVI considers sixteen variables 
obtained from the American Community Survey (ACS) [102]. The variables used to estimate the 
SOVI include the percentage of unemployed, the percentage of people living below 150% 
poverty, and the percentage of the population with a high school diploma, among others (see 
more details in [103]). It is important to highlight that not all the variables had values at the 
census block group; thus, the study utilized the census tract values for those cases since the 
variables are mostly percentage-based and independent of the geographical area. In the 
original method, the CDC grouped the 16 variables into four themes [103]: socioeconomic 
status, household characteristics, racial & ethnic minority status, and housing type & 
transportation. Estimating the SOVI requires selecting each variable and then adding the ranks 
grouped by each theme of variables. Afterward, it requires adding the ranks of all the themes 
and ranking them to acquire the SOVI for each census block group. The authors estimated the 
EAL at the census block group level as a proportion of the population of each census block 
relative to the census tract. In conclusion, as the CR is initially located at the county level and 
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then downscaled at the census tract in the NRI, this methodology employed the same 
assumption to downscale at the census block group level. 

The next step was to use Eq.1 to estimate the NRI at the node level (𝜃𝑖
𝑧), estimated as a 

proportion of the population assigned to each node relative to the population of the census 
block group to which the node belongs. Note that the population of each census block group is 
composed of the ACS and is assigned evenly proportional to the number of nodes in each 
census block group (𝛽𝑖).  

3. Normalized Betweenness Centrality (𝑩𝑪𝒊), Shortest Path Distance (𝒙𝒊𝒋), and Hansen 

Accessibility Index (𝑨_𝒊) 

From each road network, the method estimates the shortest path distance 𝑥𝑖𝑗 between each 

pair of nodes (𝑖, 𝑗) in the graph, and the normalized betweenness centrality for each node (𝐵𝐶𝑖). 
Based on Casali and Heinimann [21], 𝐵𝐶𝑖 is the proportion of times that node 𝑖 is in the shortest 
path of all the pairs of nodes (excluding pairs where i is the origin or destination node) in the 
road network. To obtain 𝑥𝑖𝑗 and 𝐵𝐶𝑖 efficiently, the authors modified the ‘floyd_warshall’ 

function given by python’s packages ‘NetworkX’ [104]. 𝑥𝑖𝑗 is the input of impedance function 

𝑓(𝑥𝑖𝑗) =
1

𝑥𝑖𝑗
, which is an indicator of the easiness of reaching all the other nodes from node i 

[105]. The smaller the shortest path distance (𝑥𝑖𝑗) between a pair the nodes, the larger the 

value of 𝑓(𝑐𝑖𝑗). Meaning easier reachability or higher accessibility between them, in 

comparison with other pairs of nodes. Then, the methods estimate the Hansen Accessibility 

Index (𝐴𝑖) for each node i that includes the population (𝛽𝑖) on node 𝑖 and the 𝑓(𝑐𝑖𝑗) impedance 

function. 𝐴𝑖 is a measurement indicating how far away or how easily vehicles can travel from 
node i to the rest of the nodes of the road network based on the population assigned to each 
node. Note that 𝐵𝐶𝑖 and 𝐴𝑖 are independent of the natural hazard risk.  

4. 𝑹𝑵𝑷𝒓𝒊𝒔𝒌 at the Node Level: 𝒗𝒊
𝒛  

𝑣𝑖
𝑧  represents the normalized risk of natural hazard z on node i, including the transportation 

risk represented by the RNP accessibility measurements. 𝑣𝑖
𝑧  associates the risk 𝜃𝑖

𝑧 of natural 
hazards 𝑧 enhanced or reduced by the socio-geographical characteristics of the population, and 
the road network performance accessibility measurements given by 𝐵𝐶𝑖 and 𝐴𝑖 . 𝐵𝐶𝑖 and 𝐴𝑖 act 
as measurements of how important the node is relative to the others. Therefore, the natural 
hazard risk is enhanced by the node's importance and the potential damage to its functionality 
due to a natural hazard. 

𝑣𝑖
𝑧(𝜃𝑖

𝑧 , 𝐵𝐶𝑖 , 𝐴𝑖) =
𝜃𝑖
𝑧∗𝐵𝐶𝑖∗𝐴𝑖

∑ (𝜃𝑗
𝑧∗𝐵𝐶𝑗∗𝐴𝑗)−𝜃𝑖

𝑧∗𝐵𝐶𝑖∗𝐴𝑖
𝑛
𝑗=1

  Eq.4 

5. 𝑹𝑵𝑷𝒓𝒊𝒔𝒌 at the Regional Level: 𝝍𝒓
𝒛  and 𝝍𝑵𝒓

𝒛 

To spatially standardize the risk of natural hazards on different types of road networks, the 
author used the 36-bin classification mentioned by Boeing in his orientation index estimation 
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[15]. Still, instead of estimating the entropy, the authors estimated a natural hazard risk at a 
regional level:  

𝜓𝑟
𝑧(𝑣𝑖

𝑧) =
1

𝑛𝑟
∑ 𝑣𝑖

𝑧
𝑖∈𝑟  ∀𝑟𝜖𝑅  Eq.5 

𝜓𝑁𝑟
𝑧(𝜓𝑟

𝑧) = 100 ∗
𝜓𝑟
𝑧

max(𝜓𝑟
𝑧)
 ∀𝑟𝜖𝑅  Eq.6 

𝜓𝑟
𝑧 is the average of the 𝑣𝑖

𝑧  on 𝑛𝑟, while 𝜓𝑁𝑟
𝑧 is a normalization of the 𝜓𝑟

𝑧, based on the 

maximum value of 𝜓𝑟
𝑧 in all the regions. 𝑛𝑟 is the number of nodes in region r (bin), and the 

regions are 𝑅 = {0°, 10°,… ,90°,… ,180°,… ,350°,0°}. Note that 𝜓𝑁𝑟
𝑧  can take values between 

0 and 100. When 𝜓𝑁𝑟
𝑧  is closer to one hundred means that the natural hazard risk, enhanced by 

the transportation risk at such a region (direction), is highly concentrated.  

6. 𝑹𝑵𝑷𝒓𝒊𝒔𝒌 at the global level: Standardized Spatial Risk Index (𝑺𝑺𝑹𝑰𝒛 )  

Finally, the authors propose the Standardized Spatial Risk Index as a measure of the 
concentration of the natural hazard risk within the city. 

𝑆𝑆𝑅𝐼𝑧(𝜓𝑁𝑟
𝑧 ) = 1 − (

𝑎𝑟𝑒𝑎(𝜓𝑁𝑟
𝑧 )

3600
)

2

 Eq.6 

In this case, if SSRIz⇾ 0, it means that the risk is distributed uniformly within the city; 
otherwise, if SSRIz⇾ 1 means that the risk concentrates in a specific(s) direction(s) of the city. 
Knowing such characteristics is essential to identify insights about prioritizing attention in a set 
of cities depending on the natural hazard considered. 

Task 3: Assessing the Map of Evacuation Routes Using the Other Data Collected 
to Determine the Equity of Access to Evacuations 

This task aimed to develop evacuation performance metrics and compare the evacuation 
routes against best practices. The team reviewed the previous evacuation events, examining 
data availability and historical consequences of these events. The team also assessed the 
accuracy of the evacuation routes relative to actual evacuation travel in the case study. We 
evaluated which sections of the state highway system and local streets are most important to 
maintain for evacuations based on local views of evacuation priorities and the level of 
evacuation routes served by bus and rail. Overall, these issues were addressed by conducting 
two independent modeling analyses: 1) Assessing evacuation time with mathematical 
programming modeling, where we modeled evacuation times on two urban areas that were 
affected by previous evacuation wildfire events, the 2018 Camp Fire that affected Paradise and 
Magalia, and the 2018 Thomas Fire that affected Ventura, Santa Paula, Ojai and other cities; 
and 2) Assessing bottleneck with Omniscape: where we employed a connectivity modeling tool 
to assess where bottlenecks were likely to occur. This section first details the evacuation time 
modeling with mathematical programming and then the bottleneck analysis with Omniscape. 
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Assessing Evacuation Time with Mathematical Programming Modeling 

We used a four-step modeling framework to design evacuation plans with a wildfire risk 
assessment depicted in Figure 4.  

 

Figure 4. General methodology 

Step 1: Road network preprocessing  

The team used Open Street Maps (OSM) to obtain the road network 𝐺 = (𝑁, 𝐴), where 𝐴 is the 
set of arcs (or streets) and 𝑁 nodes (or intersections) [98]. Complex intersections in road 
networks could be simplified to reduce the complexity of mathematical models. The nodes 𝑁 
can be classified as sink (𝑁𝑠) or intermediate (𝑁𝑖) nodes. 𝑁𝑠 are the nodes connected to 
external nodes that lead to safe locations outside the road network. Additionally, the arcs 
obtained from OSM contain information about the highway type and length and partial 
information about the maximum speed and number of lanes. The mathematical models 
consider the arc’s travel time (𝑡𝑡) and capacity (𝜇). The authors use the arc’s length (𝑙) and 
speed (𝑣) to calculate the 𝑡𝑡 (𝑡𝑡 = 𝑙/𝑣). Additionally, the authors use the information described 
in [106] that depends on the highway type to obtain the 𝜇, number of lanes, and the speed for 
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those arcs with not information available in OSM. Two types of artificial nodes are created to 
model the traffic demand: source nodes (𝑁𝑎)) and a super-node (𝑆𝑁). 

• Super-Node (𝑆𝑁): This artificial node is connected to the all the 𝑁𝑠. 𝑆𝑁 has enough 
capacity to attract the total vehicle demand, simplifying the problem into a multiple 
origin and single destination problem. Let us remark that this model evacuates the 
population to external areas outside the network, and no internal safe locations were 
considered. 

• Source Nodes (𝑵𝒂): These are origin nodes, with one 𝑁𝑎 corresponding to each census 
block group (CBG) in the location. The vehicle demand assigned to each 𝑁𝑎 can be 
obtained from the American Community Survey (ACS) by using the average household 
size and vehicle availability per CBG [102]. 𝑁𝑎 are connected to the road network via the 
two closest nodes using artificial arcs. 

The artificial arcs connecting 𝑁𝑠 to 𝑆𝑁, and 𝑁𝑎 to the road network have zero travel time and 
high capacity, ensuring smooth flow. This study builds on the methodologies discussed in [48] 
to develop the models in Stages 2, 3, and 4. The differences between our models in this project 
and the models in [48] are described as follows:  

Step 2: Evacuation with no paths (ENP)  

The problem setting in this stage is to evacuate all vehicle demand from 𝑁𝑎 to a safe location 
outside the road network, the 𝑆𝑁. There is no pre-established path; vehicles can use the entire 
road network and leave it as soon as possible without exceeding arcs’ capacity. The 
mathematical formulation of the ENP model is described as follows: 

Sets: 
𝑇: Set of time periods, indexed by t. 
𝑁𝑎: Set of source nodes, i.  
𝑁𝑠: Set of sink nodes, i 
𝑁𝑖: Set of intermediate nodes, i 
𝑁: Set of nodes in the road network, indexed by i. (𝑁𝑎 𝑈 𝑁𝑠 𝑈 𝑁𝑖)  
𝑆𝑁: Super node 
𝐴: Set of arcs in the road network, indexed by (i,j). 
𝐴(𝑖): Set of arcs going out of node i, indexed by (i,j). 
𝐴−1(𝑖): Set of arcs going into node i, indexed by (i,j). 

Parameters: 
𝜉𝑖 : Initial number of vehicles in node i 
𝜍𝑖: Capacity of node i 
𝜇𝑖𝑗: Maximum capacity of arc from node i to node j  

Variables: 

𝑦𝑖𝑗
𝑡 : Flow of vehicles from node i to node j at time i  

𝑥𝑖
𝑡: Number of vehicles present at node i at time t 
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Objective Function  
𝑍𝑚𝑎𝑥  ∑ 𝑡 ∗ 𝑥𝑖 𝜖 𝑆𝑁 

𝑡
𝑡𝜖𝑇  Eq.8 

Constraints  
1. Initializing vehicle demand in source nodes 𝑁  

𝑥𝑖
0 +∑ 𝑦𝑖𝑗

0
(𝑖,𝑗)𝜖𝐴(𝑖) =  𝜉𝑖            ∀𝑖 𝜖 𝑁  Eq.9 

2. Updating vehicle flow in nodes 𝑁 

𝑥𝑖
𝑡 − 𝑥𝑖

𝑡−1 + ∑ 𝑦𝑖𝑗
𝑡

(𝑖,𝑗)𝜖𝐴(𝑖) − ∑ 𝑦𝑗𝑖
𝑡−1

(𝑗,𝑖)𝜖𝐴−1(𝑖) =  0    ∀𝑡 𝜖 𝑇 \{0}, ∀𝑖 𝜖 𝑁 Eq.10 

3. Updating vehicle flow in nodes 𝑆𝑁. 

𝑥𝑖
𝑡 − 𝑥𝑖

𝑡−1 − ∑ 𝑦𝑗𝑖
𝑡

(𝑗,𝑖)𝜖𝐴−1(𝑖) =  0             ∀𝑡 𝜖 𝑇 \{0}, 𝑖 = 𝑆𝑁 Eq.11 

4. No vehicles at the end of the planning horizon. 

𝑥𝑖
|𝑇|−1 = 0                                              ∀𝑖 𝜖 𝑁 Eq.12 

5. Bounds of the vehicle inventory variable 

0 ≤  𝑥𝑖
𝑡 ≤ 𝜍𝑖                                  ∀𝑖 𝜖 𝑁, ∀𝑡 𝜖 𝑇 Eq.13 

6. Limitation flow to Super Node 

∑ ∑ 𝑦𝑗𝑖
𝑡

𝑡𝜖𝑇(𝑗,𝑖)𝜖𝐴−1(𝑆𝑁) =  ∑ 𝜉𝑖𝑖𝜖𝑁  Eq.14 

7. Limitation flow for each node. 

∑ ∑ 𝑦𝑗𝑖
𝑡−1

(𝑗,𝑖)𝜖𝐴−1(𝑖)𝑡𝜖𝑇|{0} ≤ 𝜍𝑖                                 ∀𝑖 𝜖 𝑁𝑠 Eq.15 

8. Limitation flow for each arc. 

0 ≤ 𝑦𝑖𝑗
𝑡 ≤ 𝜇𝑖𝑗                                             ∀𝑡 𝜖 𝑇, ∀(𝑖, 𝑗) 𝜖 𝐴 Eq.16 

9. Nature of the variables 

𝑦𝑖𝑗
𝑡 , 𝑥𝑖

𝑡 𝜖 𝑍+ Eq.17 

One of the main differences between the ENP and the Minimum Egress Time (MET) model 
described in [48] is in the objective function. The objective function of the ENP is to maximize 
the cumulative number of vehicles evacuated to the SN weighted by time (𝑍𝑚𝑎𝑥 ∑ 𝑡 ∗ 𝑥𝑖𝜖𝑆𝑁

𝑡
𝑡 𝜖𝑇  ) 

(see Eq.8), while the objective of the MET is to minimize the flow of vehicles to the 𝑁𝑠 for each 

time-unit (TU) in the planning horizon (𝑍𝑚𝑖𝑛 ∑ ∑ 𝑡 ∗ 𝑦(𝑖,𝑗)
𝑡

(𝑖,𝑗)𝜖𝐴(𝑁𝑠)𝑡 𝜖𝑇  ). In both cases, the 

objective is to minimize the time when all vehicles evacuate the location; however, Eq.8 avoids 
possible delays in the flow from 𝑁𝑠 to the SN, as may occur in MET. The ENP model is designed 
for road networks with arcs with 1 TU travel time. Initially, travel times could be in seconds; 
therefore, converting those travel times into TUs is necessary. One TU is the value of the 
minimum travel time within all the arcs (min(𝑡𝑡𝑎)), and the travel time for each arc in TU is 
obtained as 𝑇𝑈𝑎 = ⌈tta/min(𝑡𝑡𝑎)⌉. After determining the travel time in TU units, it is necessary 
to add as many artificial nodes and arcs as required between each pair of nodes with travel 
times greater than one TU. For example, if the minimum travel time in free flow in the road 
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network is 10 seconds, and the travel time for a random arc in free flow speed is 60 seconds, 
then it requires 6 TUs to cross the arc. Therefore, it is necessary to add 5 artificial nodes 
between these two nodes, connected by 6 arcs with one TU each and capacity transformed to 
the number of vehicles per min(𝑡𝑡𝑎). This process results with a road network with a larger 
size, 𝐺𝑚𝑜𝑑 = (𝑁𝑚𝑜𝑑 , 𝐴𝑚𝑜𝑑). From, Eq.9 initializes the demand for vehicles for each 𝑁𝑎. Eq.10 is 
a flow balance constraint to each node. Eq.11 updates the number of vehicles reaching the SN 
by adding the flow entering the SN from all the 𝑁𝑠. Eq.12 establishes that at the end of the 
planning horizon, the road network is empty, while Eq.13 and Eq.16 provide the bounds and 
the integer nature of each decision variable. Note that in Eq.13, the 𝜍𝑖 for intermediate nodes 
𝑁𝑖, must be zero, while for Eq.16, the arc’s flow value is constrained by the arc’s maximum 
capacity during each time. Eq.14 establishes that all the demand at the beginning of the 
planning horizon reaches the SN, and the time ‘t’ when the total demand is evacuated is when 
Eq.14 is activated. Finally, Eq.15 restricts the flow entering the 𝑁𝑠 to their capacities. 

Step 3: Generation of a pool of paths 

The GPP model uses the original road network described in Stage 1, and the mathematical 
formulation is described as follows: 

Sets: 
𝑁𝑎: Set of source nodes, i.  
𝑁𝑠: Set of sink nodes, i 
𝑁𝑖: Set of intermediate nodes, i 
𝑁: Set of nodes in the road network, indexed by i. (𝑁𝑎 𝑈 𝑁𝑠 𝑈 𝑁𝑖)  
𝐴: Set of arcs in the road network, indexed by (i,j). 
𝐴(𝑖): Set of arcs going out of node i, indexed by (i,j). 
𝐴−1(𝑖): Set of arcs going into node i, indexed by (i,j). 

Parameters: 
𝑡𝑖𝑗: Travel time of arc from node i to node j  

Variables: 
𝑦𝑖𝑗: 1 if arc (i,j) is present in the shortest path, 0 otherwise 

Objective Function  
𝑍𝑚𝑖𝑛  ∑ 𝑡𝑖𝑗 ∗ 𝑦𝑖𝑗(𝑖,𝑗)𝜖𝐴   Eq.18 

Constraints  
1. Initializing vehicle flow in the source node 𝑁𝑎 

∑ 𝑦𝑖𝑗𝑗|(𝑖,𝑗)𝜖𝐴(𝑖) − ∑ 𝑦𝑗𝑖𝑗|(𝑗,𝑖)𝜖𝐴−1(𝑖) =  1           𝑖 =  𝑁𝑎(𝑜) Eq.19 

2. Vehicle flow in intermediate nodes 𝑁 

∑ 𝑦𝑖𝑗𝑗|(𝑖,𝑗)𝜖𝐴(𝑖) − ∑ 𝑦𝑗𝑖𝑗|(𝑗,𝑖)𝜖𝐴−1(𝑖) =  0           ∀𝑖 𝜖 𝑁 |{𝑁𝑎(𝑜) 𝑈 𝑁𝑠(𝑑)} Eq.20 

3. Initializing vehicle flow in the source node 𝑁𝑠 

∑ 𝑦𝑖𝑗𝑗|(𝑖,𝑗)𝜖𝐴(𝑖) − ∑ 𝑦𝑗𝑖𝑗|(𝑗,𝑖)𝜖𝐴−1(𝑖) =  −1           𝑖 = 𝑁𝑠(𝑑) Eq.21 
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4. Initializing vehicle flow in the source node 𝑁𝑠 

∑ 𝑦𝑖𝑗𝑗|(𝑖,𝑗)𝜖𝐴(𝑖) ≤ 1          ∀𝑖 𝜖 𝑁 Eq.22 

5. Initializing vehicle flow in the source node 𝑁𝑠 

∑ 𝑦𝑗𝑖𝑗|(𝑗,𝑖)𝜖𝐴−1(𝑖) ≤ 1          ∀𝑖 𝜖 𝑁 Eq.23 

6. Nature of the variables 

𝑦𝑖𝑗 𝜖 𝐵
+{0,1}  Eq.24 

The difference between the GPP and PG models, described in [26], is in the problem setting. 
The GPP model estimates the shortest path between each pair of nodes (𝑁𝑎, 𝑁𝑠), instead of 
obtaining the shortest paths between each origin node 𝑁𝑎 to the SN. The advantage of this 
assumption is that it creates a more diverse set of paths compared to the method implemented 
in [48]. The pool of feasible paths includes those with an objective function that can be, at 
most, double the optimal shortest path time for each Origin-Destination pair. In Eq.18, the 
authors seek to minimize the total travel time in the network for one origin and destination pair 
(𝑁𝑎, 𝑁𝑠). Eq.19 indicates that from the selected origin node, only one arc exiting this node can 
have a non-zero value. Eq.20 indicates that the sum of the arcs selected to enter each node 
must equal those that exit (clear the system). Eq.21 indicates that only one arc must be 
selected to enter the sink node. Eq.22 and 23 provide the bounds of the decision variable, and 
Eq. 24 provides the nature of the decision variable. 

Step 4: Evacuation plan with paths  

The mathematical formulation of the EPWP model is described in this stage. The pool of paths 
obtained from Stage 3 is an input to the EPWP model, and the initial value of T is the clearance 
time (CT) obtained in Stage 2. Note it is possible that no feasible solution could be found when 
solving the EPWP with the initial CT and the pool of paths. Therefore, the EPWP is resolved 
iteratively, increasing the value of T by one unit for each iteration until the optimal solution is 
found. 

Sets: 
𝑇: Set of time periods, indexed by t. 
P: Set of paths, indexed by p. 
𝑁𝑎: Set of source nodes, indexed by i.  
𝑁𝑠: Set of sink nodes, indexed by i 
𝑁: Set of nodes in the road network, indexed by i. (𝑁𝑎 𝑈 𝑁𝑠 𝑈 𝑁𝑖)  
𝑆𝑁: Super node 
𝐴: Set of arcs in the road network, indexed by a. 
𝛿𝑎: Set of paths that use arc a, indexed by a  
𝛽𝑝: Set of arcs used in path p, indexed by p  

Parameters: 
𝜉𝑖 : Initial number of vehicles in node i 
𝜍𝑖: Capacity of node i 
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𝜃𝑝𝑎: time to reach arc a from the origin node of path p 

𝜇𝑎: Maximum capacity of arc a 
𝑂𝑝: Origin node of path p 

𝐷𝑝: Destination node of path p 

𝛼𝑝:𝑚𝑖𝑛(𝜇𝑎) ∀𝑎𝜖𝛽𝑝 

Variables: 
𝑓𝑝
𝑡: Flow of vehicles on path ‘p’ at time i  

𝑦𝑝: 1 if path p is selected, 0 otherwise. 

Objective Function  
𝑍𝑚𝑖𝑛  ∑ 𝑦𝑝𝑝𝜖𝑃  Eq.25 

Constraints  
1. Arc capacity restrictions from all paths. 

∑ 𝑓𝑝
(𝑡−𝜃𝑝𝑎)

𝑝𝜖𝛿𝑎 ≤  𝜇𝑎             ∀𝑎 𝜖 𝐴, ∀ 𝑡| {𝑡 − 𝜃𝑝𝑎 ≥ 0} Eq.26 

2. Active flow on selected paths. 

∑ 𝑓𝑝
𝑡

𝑡 𝜖 𝑇 ≤ 𝜉[𝑂𝑝] ∗ 𝑦𝑝     ∀𝑝 𝜖 𝑃 Eq.27 

3. Flow from the origin nodes for each path.  

∑ ∑ 𝑓𝑝
𝑡

𝑡 𝜖 𝑇𝑝|𝑂𝑝=𝑖 = 𝜉𝑖      ∀𝑖 𝜖 𝑁𝑎 Eq.28 

4. Updating vehicles flow in nodes 𝑆𝑁. 

∑ ∑ 𝑓𝑝
𝑡

𝑡 𝜖 𝑇𝑝|𝐷𝑝=𝑖 ≤ 𝜍𝑖     ∀𝑖 𝜖 𝑁𝑠  Eq.29 

5. Active flow on selected paths. 

𝑓𝑝
𝑡 ≤ 𝛼𝑝     ∀𝑝 𝜖 𝑃, ∀𝑡 𝜖 𝑇 Eq.30 

6. Nature of the variables 

𝑦𝑝 𝜖 𝐵
+{0,1}, 𝑓𝑝

𝑡 𝜖 𝑍+ Eq.31 

Eq.25 seeks to minimize the number of selected paths for evacuation. Eq.26 ensures that the 
incoming flow from all the paths reaching the arc a at time 𝑡 − 𝜃𝑝𝑎 to be lower or equal to the 

maximum capacity of the arc. Eq.27 indicates that the total flow departing from path p if 
selected, should be lower or equal to the initial demand at the 𝑁𝑎. Eq.28 establishes that the 
total flow leaving each 𝑁𝑎 must be equal to the initial vehicle demand. Eq.29 establishes that 
the total flow entering 𝑁𝑠 cannot exceed its capacity. The main difference between the EPWP 
model and the PSFG described in [48] is the addition of Eq.30, where the flow departing from 
each path at any time during the planning horizon cannot exceed the maximum capacity of the 
arc with the minimum capacity belonging to each path. This constraint avoids possible 
overlapping flow in all the arcs. Finally, Eq.31 provides the nature of the decision variables. 
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Assessing Bottlenecks with Omniscape 

We used Omniscape [89], a raster-based model based on circuit theory [90] that has been 
widely used in regional conservation efforts to simulate the connectivity of habitats or potential 
movement patterns of species [91]. In this case, we modified the application to assess the 
strength of the road network connections. We calibrated the model using the road network in 
Davis, CA, because this is a city we know well. The model uses two scores, which must be 
assigned to every grid cell: source and resistance. Source is an index for the suitability of a grid 
cell; resistance is the relative ease or difficulty of transitioning that cell. We used population 
numbers derived from the UC Census as an index of Source, with the idea that this would show 
the demand for a given cell in the network from the people living there. Resistance was 
determined based on road attributes such as type, number of lanes, and max speed in which 
any grid cell occurred. We also tested putting a strong attractor around the edge of the city to 
simulate the flow of traffic to the outside of the urban area during an evacuation. The model 
uses a moving window and tests the connectivity of every cell in the network relative to the 
radius of cells around it. In Figure 5, we tested radii of 50, 100, 200, and 400 pixels using a 30m 
raster of the road network in Davis buffered by 20m from the linear version of the roads. The 
dark outlines represent a model version with a strong exterior attraction to the city. Higher 
normalized demand indicates greater traffic congestion relative to the travel capacity of those 
roads. PEB (Population Edge Buffer) is the maximum population density value per pixel. 
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Figure 5. Traffic flow and evacuation choke points derived by Omniscape for Davis, CA. 

We found that those provided similar outputs but that the variable range helped to identify 
local traffic congestion within neighborhoods from 50-200 pixels, while the 200–400-pixel 
radius moving windows helped to identify potential slowdown areas around the major exits of 
the city. The model produces a view of the relative strength of connectivity, which stands for 
demand. It was particularly effective at identifying choke points (bottlenecks) within the road 
network modeled. 
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Task 4: Assessing the Performance of the Evacuation Routes to Serve Different 
Segments of the Population 

Here, we examined how the evacuation models would affect people with limited mobility. We 
also incorporated the local public transportation network and assessed the access to and 
vulnerability of that network under our simulated evacuation. First, we present methods for the 
performance evaluation and then for the public transportation network. 

Evacuation Route Performance for Different Segments of the Population  

For this analysis, the team conducted a detailed analysis of the case study cities to estimate 
performance metrics concerning the ability of the routes to serve different segments of the 
population. In doing so, the team analyzed the socio-demographic distribution of the 
population and its ability to evacuate the location into consideration. The team collected 
disaggregated information from the Census block groups to identify the socioeconomic 
characteristics of different regional populations corresponding to the social vulnerability index. 
For the entire population, we analyzed statistically how the population's socioeconomic 
characteristics affect the evacuees' perceived risk and evacuation time to establish whether the 
identified routes provide equitable evacuation opportunities.  

Evacuation Plan Risk Assessment 

To analyze the evacuation plan risk assessment, it was required to estimate the Road Network 
Risk (𝑅𝑁𝑃risk

𝑧 ) for wildfires. For this, the authors followed the methodology developed in [107]. 
This methodology assesses the 𝑅𝑁𝑃risk for different natural hazards (z) at three different levels 
of the road network: i) node level (𝑣𝑖

𝑧), ii) regional level (𝜓𝑟
𝑧), and iii) global level (Standardized 

Spatial Risk Index (𝑆𝑆𝑅𝐼𝑧)). In this project, the authors use the risk at the node level (𝑣𝑖
𝑧), and at 

the regional level (𝜓𝑟
𝑧), but not the 𝑆𝑆𝑅𝐼𝑧, specifically for wildfires.  

𝑣𝑖
𝑧  depends on the road network's topology given by the Betweenness Centrality (𝐵𝐶𝑖) and the 

Hansen Accessibility Index (𝐴𝑖) of each node. Additionally, 𝑣𝑖
𝑧  depends on the National Risk 

Index (NRI) (𝜃𝑖
𝑧) defined at the node level [101]. NRI depends on the expected annual losses 

(EAL) from historical data of a set of different natural hazards, and its consequences increase 
when the Social Vulnerability index (SOVI) is high but are reduced when the Community 
Resilience (CR) is high. The SOVI and CR are two indexes that depend on the socioeconomic 
characteristics of the population living in the area. 𝑣𝑖

𝑧 formulation is given in Eq.32: 

𝑣𝑖
𝑧 =

𝜃𝑖
𝑧∗𝐵𝐶𝑖∗𝐴𝑖

∑ (𝜃𝑗
𝑧∗𝐵𝐶𝑗∗𝐴𝑗)−𝜃𝑖

𝑧∗𝐵𝐶𝑖∗𝐴𝑖
𝑛
𝑗=1

 Eq.32 

The function of 𝜓𝑟
𝑧 is to group the 𝑣𝑖

𝑧 based on the directions or regions R from the center of 
the road network and to obtain its average, as described in Eq.33. Note that R is the set of 
regions, ranging from 0 to 360 degrees in increments of 10 degrees, e.g., r= {0, 10, 20, …, 350}, 
and 𝑛𝑟 is the number of nodes that belong to each region r. 

𝜓𝑟
𝑧 =

1

𝑛𝑟
∑ 𝑣𝑖

𝑧
𝑖∈𝑟  ∀𝑟 ∈ R  Eq.33 



 

 28 

𝜓𝑟
𝑧 is used to estimate the likelihood of a wildfire in specific directions of the network and 

analyze the sensitivity of the evacuation process if different exit routes are closed due to 
wildfire. 

The risk assessment consisted of three main tasks: 

• First, we modified the original objective function of the GPP model given in Eq.10 is travel 
time minimization from the origin node 𝑁𝑎 to destination node 𝑁𝑠. The authors modified 
the GPP model's objective function to analyze how the evacuation pattern changes to 
obtain different paths for input to the EPWP model. The two alternative objective functions 
are: 

𝑍𝑚𝑖𝑛    ∑ 𝑟𝑖𝑗 ∗ 𝑦𝑖𝑗(𝑖,𝑗)𝜖𝐴  Eq.34 

𝑍𝑚𝑖𝑛    ∑ 𝑡𝑖𝑗 ∗ 𝑟𝑖𝑗 ∗ 𝑦𝑖𝑗(𝑖,𝑗)𝜖𝐴   Eq.35 

Where Eq.34 minimizes the risk of the selected path, and Eq.35 minimizes the risk and time 
for each origin 𝑁𝑎 to destination 𝑁𝑠. 𝑟𝑖𝑗 is the risk associated with the link (i, j), and it is 

obtained as the average of the 𝑣𝑖 between each pair of nodes (See Eq.36).  

𝑟𝑖𝑗 =
𝑣𝑖+𝑣𝑗

2
  Eq.36 

Then, using different paths, the team identified the most important corridors among 
different scenarios. These analyses' results allow for identifying investment priorities to 
maintain and support specific infrastructure.  

• Second, the team generated network disruption scenarios for the study cases by using 𝜓𝑟
𝑧, 

as an estimation of the likelihood of a wildfire in specific directions. In this case, we 
analyzed evacuation risk as a measurement involving the road network's inherent 
characteristics. In this sense, the influence of road network characteristics on the 
performance of the evacuation process is expected to be identified. Such criticality 
assessment of the road network under disruptions and evacuation routes requires 
evaluating their effectiveness under a scenario or evacuation setting. As mentioned, the 
metrics indicate potential throughput in vehicles or people evacuated per unit of time, 
travel distance, or the impact of network disruptions on such metrics. Considering the 
findings and methodology developed by the PI in [12]. 

• Finally, we analyzed how our evacuation assessment aligned with the safety elements of 
emerging plans to previous evacuations by comparing our results with the ones observed in 
the documents disclosed by the cities affected by the fire in our case study. The case studies 
analysis is essentially a sensitivity analysis that examines how well local planning does in 
anticipating actual evacuations, which has been simulated. If travel data from actual events 
is like the evacuation plans, then the plans could be considered relatively robust. At the 
same time, disagreement would lead to further opportunities to refine and improve the 
plans. 
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Evaluation of the Public Transit Network During Evacuations 

We collected data on various characteristics of the transit routes in California to create a 
vulnerability index, a composite metric designed to evaluate transit accessibility and 
vulnerability across census tracts in California. It integrates three key factors: 

• Transit stops per 1,000 residents 

• Community resilience (CIScore) 

• Hazard risk (FEMA risk score) 

These components are weighed to reflect their differing impacts on the overall vulnerability of 
a community. Each component metric (stops_per_1000_residents, CScore, risk_score) is 
normalized to a 0-1 range for comparability. The following weights are assigned to each metric:  

• 1/3 for stops_per_1000_residents_norm (negative factor) 

• 1/3 for ciscore_norm (positive factor) 

• 1/3 for risk_score_norm (positive factor) 

The Combined Vulnerability Index is calculated using the following formula: 

combined_vulnerability_index = (-1/3 * stops_per_1000_residents_norm) 
 + (1/3 * risk_score_norm) + (1/3 * ciscore_norm) Eq.37 

This formula supposes equal positive contributions of the CalEnviroScreen CIScore and FEMA 
NRI Risk Score and the equal negative contribution of the number of stops per 1,000 residents.   
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Empirical Results 

The results of this project are based on the 4-task described in the methodology section. 

Task 1: Evacuation Routes Data Collection and Database Construction 

In this part of the project, the team created a database of cities and counties with available 
evacuation routes resulting from efforts as part of AB 747 requirements. The team gathered 
publicly available information for the routes.  

Figure 6 shows screenshots of the appearance of the database; when clicking on Search 
Database, a second window appears, where users can provide information such as the county 
or city name, and then the link of the safety elements obtained from each location appears. The 
database contains the safety elements of county and city general plans. It digitizes and compiles 
the evacuation routes into a centralized geographic information system (GIS) database with an 
architecture permitting subsequent additions and editing. Currently, the database contains 
information from more than 190 Localities, and the information collected includes the Safety 
Element, Local Hazard Mitigation Plan (LHMP), Emergency Operations Plan (EOP), Evacuation 
Map, Evacuation Analysis, GIS Map, Multimodal Evacuation Accessibility, Shelter Map and 
Contact person. Figure 7 shows the localities with public information about the above safety 
elements. Note that in this sample, there is a lack of localities that have public information 
about evacuation maps and their GIS maps. 

Additionally, the team created a centralized GIS portal that connects the database's information 
to the local jurisdiction evacuation plans and collects GIS of the State Highway System, bus and 
rail routes, CalEnviroscreen4, and other spatial data. The team developed an open architecture 
that will permit the addition of other evacuation routes and provide more details as plans 
develop, as well as metadata for all data fields and plans that are added to the database. It also 
provides information about the Road Network Performance measurements, including the RNP 
risk obtained in this project. The team categorized and processed the layers and created a 
database of evacuation routes in the state. The team conducted a descriptive analysis of the 
information in the basic database.  

Additionally, the team developed a dashboard that provides information for each locality and 
compiles the models' results, such as the risk at the node level of the road network and its 
directionality, displayed in the polar histogram. Figure 8 shows a dashboard sample where the 
user can interact with various map elements, such as selecting the city to analyze, the hazard 
type, and the different measurements defined for each road network node. Switching between 
data layers, such as the National Risk Index at the census tract level, the Fire Hazard Severity 
Zones layer, and others, is possible. 



 

 31 

 

Figure 6. Database characteristics 
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Figure 7. Number of localities with each safety element 

 

Figure 8. California evacuation hazards dashboard 

Task 2: Assessing the Performance of the Road Network 

For this task, the team used a sample of 475 of the more than 500 cities with Municipal codes in 
California, United States [108, 109]. One of the main interests of the authors is to provide 
evidence of the importance and utility of this RNP Risk methodology. For this, the authors 
analyze the influence of the main factors of the methodology: i) Hansen Accessibility Index (𝐴𝑖), 
ii) normalized betweenness (𝐵𝐶𝑖) and iii) the NRI (𝜃𝑖

𝑧), on the proposed metrics at each road 
network level. The first analysis identifies two values for such factors: i) the original values and 
ii) the min-max normalized values.  
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1. 𝑹𝑵𝑷𝒓𝒊𝒔𝒌 at the Node Level: Influence of 𝜽𝒊
𝒛, 𝑩𝑪𝒊 and 𝑨𝒊 on 𝒗𝒊

𝒛 

The team analyzes the proportional impact of both the original values and the max-min 
normalized values of 𝜃𝑖

𝑧, 𝐵𝐶𝑖 and 𝐴𝑖 on the numerator of the 𝑅𝑁𝑃𝑟𝑖𝑠𝑘 at the node level 𝑣𝑖
𝑧  (See 

Eq.4). This analysis is conducted across 475 cities in California, considering the eighteen natural 
hazards. Figure 9 shows evidence that the percentage influence of each factor fluctuates across 
different natural hazards. Figure 9’s x-axis is organized in ascending order based on the number 
of municipalities affected by the natural hazard risk in California: 1) cold wave (CWAV), 2) 
volcanic activity (VCLN), 3) avalanche (AVLN), 4) hurricane (HRCN), 5) tsunami (TSUN), 6) coastal 
flooding (CFLD), 7) winter weather (WNTW), 8) drought (DRGT), 9) landslide (LNDS), 10) riverine 
flood (RFLD), 11) wildfires (WFIR), 12) heat wave (HWAV), 13) earthquake (ERQK), 14) hail 
(HAIL), 15) lightning (LTNG), 16) tornado (TRND), 17) strong wind (SWND), and 18) All hazards 
(ALL). Ice storms (ISTM) are part of the NRI dataset, but not a single municipality in our sample 
in California has significant data on this natural hazard risk. Figure 9 shows the number of 
municipalities affected by each natural hazard based on the pointed line with the yellow dots. 
Additionally, the colors of the bars represent the influence of each factor 𝜃𝑖

𝑧(natural hazard 
risk), 𝐵𝐶𝑖 (Betweenness Centrality) and for 𝐴𝑖 (Hansen Accessibility Index) on the numerator of 
𝑣𝑖
𝑧  (local 𝑅𝑁𝑃𝑟𝑖𝑠𝑘

𝑧 ) denoted by its percentage in the y-axis. Note on Figure 9 that less than 470 
of the 475 municipalities in California (<99%) are at risk for the following natural hazards: 
CWAV, VLCN, AVLN, HRCN, TSUN, CFLD, WNTW, DRGT, LNDS, RFLD, and WFIR. The influence of 
the three factors on the 𝑣𝑖

𝑧  are around 52% for 𝜃𝑖
𝑧, 33% for 𝐵𝐶𝑖  and 15% for 𝐴𝑖, and the 

influence of their normalized values are around 30%, 12%, and 58% for 𝜃𝑖
𝑧, 𝐵𝐶𝑖 and 𝐴𝑖, 

respectively. In contrast, for other natural hazards like HWAV, SWND, ERQK, HAIL, TRND, LTNG, 
ALL, where more than 470 cities in California are in high risk (>99%), a noticeable imbalance 
emerges between the contribution of the original values and the contribution of normalized 
values to the numerator of 𝑣𝑖

𝑧 . Specifically, the influence of 𝜃𝑖
𝑧, 𝐵𝐶𝑖 and 𝐴𝑖 with the original 

values is 91%, 5% and 4%, respectively. Yet, these influences shift to 50%, 8% and 42% upon 
using normalized values. This disparity arises due to the different scales of each factor; for 
instance, 𝐴𝑖 is in the thousandth range, 𝐵𝐶𝑖 in the millionth/thousandth range, and 𝜃𝑖

𝑧 ranges 
from 0 to 100. It is important to note that the normalization brings balance to the expected 
influence of each factor on the 𝑣𝑖

𝑧  across most of the natural hazards. Consequently, the 
remaining analysis uses the normalized values of 𝜃𝑖

𝑧, 𝐵𝐶𝑖 and 𝐴𝑖.  

2. 𝑹𝑵𝑷𝒓𝒊𝒔𝒌 at the Regional Level: Influence of 𝝍𝒓
𝒛(𝜽𝒊

𝒛), 𝝍𝒓
𝒛(𝑨𝒊) and 𝝍𝒓

𝒛(𝑩𝑪𝒊) on 𝝍𝒓
𝒛(𝒗𝒊

𝒛)  

It is important to identify how the 𝑅𝑁𝑃𝑟𝑖𝑠𝑘 at the regional level 𝜓𝑟
𝑧 (or 𝜓𝑁𝑟

𝑧 ) is affected by 𝜃𝑖
𝑧, 

𝐵𝐶𝑖 and 𝐴𝑖. For this, the authors obtained the 𝜓𝑟
𝑧 as a function of 𝑣𝑖

𝑧 , 𝜃𝑖
𝑧, 𝐵𝐶𝑖 and 𝐴𝑖, 

individually. The team used a polar histogram based on the values of the regions given by Eq.5 
and Eq.6 to better understand how the risk spreads inside the cities. Each polar histogram has 
thirty-six regions, each with an angle of ten° (0° to 360°), and each bar of the polar histogram is 

the 𝜓𝑁𝑟
𝑧 (𝑣𝑖

𝑧). The length of each bar represents the relative risk of such direction compared to 

the other directions of the same city. This includes the natural hazard risk 𝜃𝑖
𝑧 enhanced or 

reduced by 𝐴𝑖 and 𝐵𝐶𝑖. Figure 10 and Figure 11 show the use of the polar histogram that 
standardizes the road networks in San Francisco and Los Angeles and three natural hazards 
categories: i) all hazards (ALL), ii) wildfires (WFIR), and iii) earthquakes in SF and tsunamis 
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(TSUN) in LA. In both figures, the authors superpose the patterns of the 𝑅𝑁𝑃𝑟𝑖𝑠𝑘  at the regional 
level 𝜓𝑟

𝑧(𝑣𝑖
𝑧) (blue) on top of the patterns of each factor at the regional level 𝜓𝑟

𝑧(𝜃𝑖
𝑧) (Orange), 

𝜓𝑟
𝑧(𝐴𝑖) (Green) and 𝜓𝑟

𝑧(𝐵𝐶𝑖) (Gray), for comparison purposes. For the estimation of 𝜓𝑟
𝑧(𝜃𝑖

𝑧), 
𝜓𝑟
𝑧(𝐴𝑖) and 𝜓𝑟

𝑧(𝐵𝐶𝑖), the authors used Eq.5 and Eq.6., but instead of using the 𝑣𝑖
𝑧 , the team 

used the values of 𝜃𝑖
𝑧, 𝐵𝐶𝑖 and 𝐴𝑖.  

It is interesting to see how the pattern of the 𝜓𝑟
𝑧(𝜃𝑖

𝑧) plays an important role in the pattern of 
𝜓𝑟
𝑧(𝑣𝑖

𝑧), and how the behavior of 𝜓𝑟
𝑧(𝐴𝑖) and 𝜓𝑟

𝑧(𝐵𝐶𝑖), may enhance or reduce the risk of 
some regions (directions) relative to others. For example, Figure 10 depicts that when analyzing 
wildfires (WFIR) in San Francisco, specifically the natural hazard risk given by 𝜃𝑖𝑧 on the direction 
of 130° is greater than the risk on 120° ( 𝜓𝑁 (𝑟=130°)𝑧 (𝜃𝑖

𝑧) >  𝜓𝑁 (𝑟=120°)
𝑧 (𝜃𝑖

𝑧) ), however when analyzing the 
RNP risk that includes the RNP accessibility indexes 𝐴𝑖 and 𝐵𝐶𝑖, can be noted that RNP risk at 
120° is higher than the RNP risk at 130° (𝜓𝑁 (𝑟=130°)𝑧 (𝑣𝑖

𝑧) <  𝜓𝑁 (𝑟=120°)
𝑧 (𝑣𝑖

𝑧) ). 
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Figure 9. Percentage 𝒗𝒊
𝒛 vs 𝜽𝒊

𝒛, 𝑩𝑪𝒊 and 𝑨𝒊 with original and normalized values. 
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This is because, despite there being a high risk of natural hazards at 130°, the relatively low 
importance of the nodes at 130° in comparison to the high importance of the nodes at 120°, 
makes the risk higher at 120°. The RNP risk leads to different conclusions when different 
factors are used as input in regional measurement. Situations like those described before can 
be found in different cities and different natural hazards, making clear the importance of 
including the 𝑅𝑁𝑃𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦  measurements on the natural hazard risk to reduce and enhance 

the consequences of the natural hazard risks on the performance of the transportation 
network. 

3. 𝑹𝑵𝑷𝒓𝒊𝒔𝒌 at the Global Level: Influence of 𝑺𝑺𝑹𝑰𝒛(𝝍𝒓
𝒛(𝜽𝒊

𝒛)), 𝑺𝑹𝑰𝒛(𝝍𝒓
𝒛(𝑨𝒊)) and 

𝑺𝑺𝑹𝑰𝒛(𝝍𝒓
𝒛(𝑩𝑪𝒊)) on 𝑺𝑺𝑹𝑰𝒛(𝝍𝒓

𝒛(𝒗𝒊
𝒛)) 

The authors identified how each factor’s spatial distribution affects the spatial distribution of 
the risk on the network given by the standardized spatial risk index (SSRIz) at the global level. 
The authors estimate the relationship between the SSRIz as a function of ψr

z(vi
z), against SSRIz 

as a function of ψr
z(θi

z),ψr
z(Ai) and ψr

z(BCi), by using Eq.7. 

Figure 12 shows that there is a relatively high and positive relationship between the 

SSRIz(ψr
z(vi

z)), against SSRIz(ψr
z(θi

z)), SSRIz(ψr
z(Ai)) and SSRIz(ψr

z(BCi)). This means that 

all positively affect the shape of the distribution of the risk, but neither of them has total 
control over the shape of the risk distribution. Statistically, the authors found a correlation 

between SSRIz(ψr
z(Ai)) and SSRIz(ψr

z(BCi)). Such a situation is expected because, despite Ai 

and BCi having different interpretations, both measurements depend on the shortest paths 
between each pair of nodes. Given such a multicollinearity issue, Ordinary Least Square (OLS) 
regression models are not recommended; therefore, the authors implemented the Ridge, 

Lasso, and Generalized Additive Model (GAM) to identify the influence of SSRIz(ψr
z(θi

z)), 

SSRIz(ψr
z(Ai)) and SSRIz(ψr

z(BCi)), on SSRIz(ψr
z(vi

z)). Those regression methods allow us to 

address the collinearity and overfitting problem frequently arising in multiple linear regression 
[110, 111, 112]. Figure 13 depicts that all the factors have a positive contribution given by the 
values within each stacked bar. Additionally, the y-axis of Figure 13 provides information about 
each factor's contribution percentage based on the regression models used. Note a consistent 
behavior in the percentage influence among the three factors on the different regression 

models, with around 15% influence of SSRIz(ψr
z(Ai)), between 50 and 65% of the influence of 

SSRIz(ψr
z(BCi)) and between 20% and 40% of the influence of SSRIz(ψr

z(Ai)).  
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Figure 10. Road network and histogram of the risk (𝝍𝒓
𝒛(𝒗𝒊

𝒛) 𝒗𝒔 𝝍𝒓
𝒛(𝜽𝒊

𝒛),𝝍𝒓
𝒛(𝑨𝒊),𝝍𝒓

𝒛(𝑩𝑪𝒊)) in San Francisco 
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Figure 11. Road network and histogram of the risk (𝝍𝒓
𝒛 (𝒗𝒊

𝒛 ) 𝒗𝒔 𝝍𝒓
𝒛 (𝜽𝒊

𝒛 ),𝝍𝒓
𝒛  (𝑨𝒊 ),𝝍𝒓

𝒛  𝑩𝑪𝒊 )) in Los Angeles 
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Figure 12. Correlation of 𝑺𝑺𝑹𝑰𝒛(𝝍𝒓
𝒛(𝜽𝒊

𝒛)), 𝑺𝑺𝑹𝑰𝒛(𝝍𝒓
𝒛(𝑨𝒊)) and 𝑺𝑺𝑹𝑰𝒛(𝝍𝒓

𝒛(𝑩𝑪𝒊)) on 

𝑺𝑺𝑹𝑰𝒛(𝝍𝒓
𝒛(𝒗𝒊

𝒛)) 

On the other hand, recall that (𝑆𝑆𝑅𝐼𝑧(𝜓𝑟
𝑧(𝑣𝑖

𝑧))) provides a single value that represents the 

global network; therefore, the authors statistically compare the (𝑆𝑆𝑅𝐼𝑧(𝜓𝑟
𝑧(𝑣𝑖

𝑧))) with the 

other RNP measurements that do not require traffic data obtained in Appendix A and provide a 
global value representing the road network using a GAM regression function. Among the RNP 

measurements to compare are: n (number of nodes), m (number of edges), 𝑘̅ (average degree), 
𝜇 (cyclomatic number) [113, 19, 13, 114, 22], 𝛽 (beta index) [19, 13, 114, 22, 14, 21], 𝛼 (alpha 
index) [19, 13], 𝛾 (gamma index, planar and no planar) [19, 13], 𝜇𝑚𝑎𝑥 (maximum network 
circuit, planar and no planar) [19, 13], 𝑒max (Maximum number of edges, planar and no planar) 
[19, 13], 𝜂 (Eta or Average Edge Length), 𝑁𝑆 (Network density), and 𝜍 (circuity). Note that most 
of the selected RNP are considered as connectivity RNP measurements based on the 
classification given in Appendix A. The findings in Figure 14 indicate that Eta and circuity 

average exhibit correlations with the 𝑆𝑆𝑅𝐼𝑧(𝜓𝑟
𝑧(𝑣𝑖

𝑧)), collectively explaining around 27% of 

𝑆𝑆𝑅𝐼𝑧(𝜓𝑟
𝑧(𝑣𝑖

𝑧)), variability. Circuity average and Eta are calculated differently: circuity average 

is the sum of edge lengths divided by the sum of straight-line distances between edge 
endpoints. Eta is the average edge length, obtained as the sum of edge lengths divided by the 
number of edges. This suggests that larger road networks may correspond to higher 

𝑆𝑆𝑅𝐼𝑧(𝜓𝑟
𝑧(𝑣𝑖

𝑧)) values. However, this relationship is not conclusive, as these variables only 

explain 27% of the variations of 𝑆𝑆𝑅𝐼𝑧(𝜓𝑟
𝑧(𝑣𝑖

𝑧)). In essence, none of the RNP measurements 

adequately capture the distribution of risk within a city, as they do not incorporate historical 
data on natural hazard risks, and their effectiveness is based solely on the characteristics of the 
roadway. 
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Figure 13. Contribution of 𝑺𝑺𝑹𝑰𝒛(𝝍𝒓
𝒛(𝜽𝒊

𝒛)), 𝑺𝑺𝑹𝑰𝒛(𝝍𝒓
𝒛(𝑨𝒊)) and 𝑺𝑺𝑹𝑰𝒛(𝝍𝒓

𝒛(𝑩𝑪𝒊)) on 

𝑺𝑺𝑹𝑰𝒛(𝝍𝒓
𝒛(𝒗𝒊

𝒛)) 

 

Figure 14. P-value of GAM model between 𝑺𝑺𝑹𝑰𝒛(𝝍𝒓
𝒛(𝒗𝒊

𝒛)) and a set of RNP measurements. 

4. Clustering Analysis Using the 𝑺𝑺𝑹𝑰𝒛 

As previously mentioned, the orientation of natural hazard risks differs depending on the 
specific type of natural hazard, the socio-demographic characteristics of the city, and its road 
network performance. Being familiar with these patterns, their directions, and the intensity of 
associated risks presents an opportunity to categorize and prioritize cities effectively. This 
awareness is essential in directing focused attention to planning and implementing disaster 
response operations adapted to the distinct needs of each city and the nature of the potential 
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hazards they face. Figure 15.a. and Figure 16.a. provide a clustering classification scheme of the 
cities for prioritization purposes for all hazards (ALL) and wildfire (WFIR) scenarios (See 
Appendix B to see the clustering classification of the 18 natural hazards). Where the y-axis 

indicates the average NRI (𝜃𝑧̅̅ ̅) of each city as a measurement of how risky each city is, and the 
x-axis is the 𝑆𝑆𝑅𝐼𝑧, that allows us to identify how the natural hazards will affect the road 
network of the city or the risk concentration. The size of the bubbles is a relationship between 
each city's population and network density. The color of the bubbles is derived from the region 
of California: Bay Area, Inland Desert, Northern, North Central, Central Region, and South Coast. 
The clustering classification scheme represented in Figure 15.a and Figure 16.a divides the 

scatter plot into four clusters depending on the median of each axis 𝜃̅𝑧̃ and 𝑆𝑆𝑅𝐼𝑧̃. Cluster 1: 

Moderate Risk (𝜃̅𝑧 ≤ 𝜃̅𝑧̃) and Low-Risk concentration (𝑆𝑆𝑅𝐼𝑧 ≤ 𝑆𝑆𝑅𝐼𝑧̃), Cluster 2: Moderate 

Risk (𝜃̅𝑧 ≤ 𝜃̅𝑧̃) and High-Risk concentration (𝑆𝑆𝑅𝐼𝑧 > 𝑆𝑆𝑅𝐼𝑧̃), Cluster 3: High Risk 

(𝜃̅𝑧 > 𝜃̅𝑧̃)and Low-Risk concentration (𝑆𝑆𝑅𝐼𝑧 ≤ 𝑆𝑆𝑅𝐼𝑧̃), and Cluster 4: High Risk (𝜃̅𝑧 > 𝜃̅𝑧̃) 

with High-Risk concentration (𝑆𝑆𝑅𝐼𝑧 > 𝑆𝑆𝑅𝐼𝑧̃). Figure 15.d and Figure 16.d provide the spatial 

distribution of each city on the map of California regions, where each city is represented 
depending on its cluster. This classification provides significant insights. In addition, the cities 
with the highest priority of attention are those with high risk, Cluster 3, and Cluster 4. However, 
the planning implications differ between the two cities. This is because, in Cluster 4, the risk is 
mainly in one or a few directions of the road network, while for cities in Cluster 3, the entire 
city is in danger. Prioritization also depends on the size of bubbles representing the population 
size concerning the network density. It is important to note that the priority ranking of risk 
depends on the considered natural hazard (these figures use ALL and WFIR hazards as 
examples). 

Additionally, based on Figure 15.c, the Inland Desert, Northern, and South Coast regions have 
the largest proportion of cities with a high risk of natural hazards, with 80%, 70%, and 55% of 
their cities in Cluster 3 or 4, respectively. Furthermore, cities in the Bay Area, Central Region, 
and Northern Central are relatively less risky than those mentioned before when analyzing ALL 
hazards. Figure 15.b shows that many cities in Cluster 3 belong to the South Coast region, 
meaning that such cities are at high risk of all natural hazards, which can affect the entire city. 
In contrast, the proportion of cities that belong to Cluster 4 is generally distributed among the 
six regions. On the other hand, when focusing on Wildfires, Figure 16.c depicts that all the 
Northern cities are at high risk of wildfire, followed by around 80% of the cities in Inland Deserts 
and around 65% in North Central. This shows that wildfire greatly affects the northern section 
of California. Figure 16.b shows that although only 40% of the cities that belong to the South 
Coast are at high risk of wildfire, they represent more than 30% of all the cities in Cluster 4, 
which is the largest proportion of all the cities that belong to Cluster 4 based on wildfire risk. 
However, the proportion of cities on the South Coast that belong to Cluster 3 is relatively small. 
The largest proportion of the cities in Cluster 3, where the entire city or a large area of the city 
is at risk of being affected by wildfires, is in the Inland Desert region. Finally, observe that the 
risk's behavior and distribution vary among natural hazards. However, compared to the rest, it 
is important to observe the vulnerability of cities in the Inland Desert, Northern, and South 
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Coast areas. The results highlight how South Coast and Inland Desert cities are closer to each 
other, which appears to share its clustering classification, with their geographical location being 
a key factor in their risk classification. 
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Figure 15. ALL hazards: Cluster and California region classification: a) Cluster classification, b) 
cluster distribution among California cities, c) Region distribution, d) Spatial distribution of 
cluster classification on California Regions 
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Figure 16. WIFIR hazard: Cluster and California region classification: a) Cluster classification, 
b) cluster distribution among California cities, c) Region distribution, d) Spatial distribution of 
cluster classification on California Regions 
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Task 3: Assessing the Map of Evacuation Routes Using the Other Data Collected 
to Determine the Equity of Access to Evacuations  

Based on the results obtained in Task 2, the team identified a set of previous evacuation events. 
It sought reports and data to identify them as case studies. Potential examples could be from 
numerous wildfires. In our case study, the team used two locations with a high risk of wildfires 
in California i) Paradise and Magalia, where the Camp Fire occurred in 2018. The team also 
analyzed the Thomas Fire in 2018, affecting many cities, including Ventura, Ojai, and Santa 
Paula. The analysis of the Thomas Fire case is described in Appendix C. 

The team utilized their data or reports regarding the previous evacuations to assess how well 
aligned the safety elements of the emerging plans are relative to previous evacuation routes 
used. In this task, the team conducts the modeling and quantitative evaluation of the 
performance based on two methods: 1) Mathematical Programming and 2) bottleneck analysis 
by using Omniscape. 

Assessing Evacuation Time with Mathematical Modeling  

Data Management 

Generally, this project uses data from three main sources. For Steps 1 to 4, the team requires 
data from open street maps (OSM) and the American Community Survey (ACS). The team used 
data from the National Risk Index (NRI) from FEMA for the Evacuation Plan Risk Assessment. To 
estimate the social Vulnerability Index (SOVI), the team collected the following variables from 
the American Community Survey [103]. See Appendix D. Sociodemographic Characteristics of 
Paradise and Magalia, for summaries of the variables in the study area. 

Table 2. Theme and variables used for the Social Vulnerability Index from American 
Community Survey. 

Theme Variable 

Theme 1: 
Socioeconomic 

Status 

POV150: Proportion of population under 150% poverty level. 

UNEMP: Proportion of population unemployed. 

HBURD: Proportion of population cost-burdened. 
NOHSDP: Proportion of the population with no high school diploma. 

UNINSUR: Proportion of the population with no insurance. 

Theme 2: 
Household 

characteristics 

AGE65: Proportion of the population with 65 or more years. 

AGE17: Proportion of population with 17 or less years. 

DISABL: Proportion of population with disability. 

SNGPNT: Proportion of the population is single parents. 

LIMENG: Proportion of population with English limitations. 
Theme 3: Minority MINRTY: Proportion of the population considered to be minority. 

Theme 4: housing 
type & 

transportation 

MUNIT: Proportion of structures with 10 or more units. 

MOBILE: Proportion of the population living in mobile homes. 

CROWD: Proportion of structures with more inhabitants than rooms. 

NOVEH: Proportion of the population with no vehicle. 

GROUPQ: Proportion of population living in group quarters. 
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Step 1: Road network preprocessing  

Figure 17 shows the map of Paradise and Magalia, highlighting the sink (X) and origin (O) nodes. 
Each origin node has been assigned a vehicle demand from the American Community Survey at 
the Census Block group level. Additionally, Figure 18 describes the most important parameters 
from the 1860 arcs of the road network of Paradise and Magalia. The arc's length is 101 to 2722 
meters, and most arcs are shorter than 1 km (1000 m). Furthermore, the arc's capacity ranges 
from 600 to 4000 vehicles/hour, and most arcs possess a capacity of 1200 vehicles/hour or less. 
The speed information not available in OSM was completed with the information given by 
[106], resulting in speeds ranging from 30 to 88.5 km/h. In this study, the authors used a 
congestion factor obtained from [106] to reduce the speed as an approximation of congestion 
speed in each arc of the road network. In this case, the minimum travel time is 15 seconds, 
while the maximum is 389 seconds, based on the speed, arc lengths, and congestion factors. 
The minimum travel time is crucial in the ENP model because it is the basis for transforming 
(expanding) the road network for mathematical modeling. 

Step 2: Evacuation with no paths (ENP) 

The ENP model requires the expansion of the road network, resulting in a time-expanded 
network with 6,673 nodes and 7,834 arcs. The authors initiated the modeling with many T, 
specifically 1,000 time-units (TUs), where each TU represents 15 seconds. The ENP model aims 
to maximize the number of vehicles reaching the SN at the minimum time. When constructing 
the ENP model in our case study, the last time window where all vehicles reached the SN 
(assumed safe destination) was 411 TU (6165 seconds, 102.75 minutes, or 1 hour and 42 
minutes). Figure 19 shows the evacuation rate and % of evacuated vehicles by time in minutes 
during the planning period of 411 UT (102 minutes). 

Step 3: Generation of a pool of paths 

The Paradise-Magalia case has 36 source nodes and nine sink nodes (See Figure 17), meaning at 
least 333 (36*9=333) paths exist. However, the authors included 43 additional feasible paths 
with a travel time at most double the shortest path of each OD pair, making 376 different 
paths. 

Step 4: Evacuation plan with paths 

To solve the EPWP model, the authors start solving the model with a T = CT obtained in the ENP 
model (411 TU). However, after increasing the value of T by one unit, the first feasible solution 
is obtained when T is equal to 450 TU (equivalent to 6750 seconds, 112.5 minutes, or one hour 
and 52.5 minutes). This indicates that with the chosen set of paths, it is possible to evacuate the 
city in only ten minutes more than the ENP, where all vehicles use any potential arc in the road 
network without any pre-existing path set. 

Figure 20.a indicates that the number of vehicles evacuating on each exit node is similar in both 
models, EPWP and ENP. Figure 20.b shows a decrease in the evacuation rate between both 
models: 30-40 for the EPWP model and 40-45 for the ENP model. Additionally, Figure 20.c 
shows the slope differences between both models. 
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Figure 17. Paradise Map with the labels of the source and sink nodes demand and sink 
capacity
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Figure 18. Density distribution of the arcs of the road network, including length, capacity, speed, and travel time 
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Figure 19. Evacuation percentage with time in minutes 

The box plot in Figure 21 depicts the departure and arrival times distribution for vehicles across 
different paths originating from each census block group (CBG). Figure 21.a shows that most 
paths have at least one vehicle departing at time zero, while Figure 21.b shows that most paths 
have at least one vehicle reaching the safe node at time 450. However, the distribution of 
vehicles throughout the planning horizon differs significantly across different regions. 

Figure 22 provides a snapshot of the evolution of Paradise-Magalia evacuation based on the 
EPWP model for around 110 minutes, highlighting the minimum number of corridors expected 
to be used during the evacuation process. 
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Figure 20. Exit nodes evacuation, evacuation rate, and cumulative percentage of vehicles 
evacuated under the ENP and EPWP models 
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Figure 21. Departure (top) /Arrival (bottom) time comparison between paths 
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Figure 22. Evolution of the total evacuation on the Paradise-Magalia Case (minutes) 
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Assessing Bottlenecks with Omniscape 

Here, we present the Omniscape outputs for Paradise, Magalia, and the combined metro 
region. The plots show the output for the cumulative current flow within the road network as 
the resistance layer connects source (population) pixels.  

The Paradise transportation network is shown without and with an external attractor, PEB 
(Population Edge Buffer). The population edge buffer is part of the source layer and extends 
400 meters from the outer edge of the raster plot. It has a value equal to the maximum 
population density per pixel from the interior of the source layer. This visualization shows how 
localized congestion gradually shifts towards more arterial roads as the search radius increases, 
and the edge buffer's effect connects more source pixels to the edge buffer. This view is of 4 
moving window scales (25-400 pixel moving window). These visualizations were chosen from an 
extensive set to illustrate the local and regional effects of the model. When the population 
edge buffer is zero, the road network connects population clusters in a neighborhood. As the 
radius increases, the neighborhoods become connected. The central sectors show potential 
bottlenecks at 25 and 50, while the 100 and 200 models with an edge buffer show the 
bottlenecks emerging on the major north-south exit routes. These differences correspond 
roughly to the sequence of evacuations, with local neighborhoods first experiencing local 
slowdowns, followed by larger traffic delays on the major internal evacuation routes. With a 
strong external attraction (boxes with black outlines), some internal congestion appears in the 
100-pixel model. Still, the congestion on the major exit routes to the south comes into focus in 
the 200-radius version (Figure 23).  
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Figure 23. Traffic flow and evacuation choke points (City of Paradise) 

For Magalia, the results are much the same. The model PEB 0 shows the internal traffic choke 
points and the southern connection to Paradise. The PEB 400, with an external attractor, shows 
the subsequent slowdowns on the major evacuation routes, with all four cardinal directions 
showing some about of slowdown (Figure 24). 
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Figure 24. Traffic flow and evacuation choke points (City of Magalia) 
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The combined metro region of Paradise-Magalia emphasizes the radius's impact, showing as 
much of the internal congestion as possible. However, it illustrates that the connector route 
between the two cities is a major choke point, and the 200 and 400 radii versions suggest that 
the northern evacuation route will experience the most slow-down, assuming the flow is not 
otherwise directed (Figure 25). 

 

Figure 25. Traffic flow and evacuation points (City of Magalia and Paradise) 
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Task 4: Assessing the Performance of the Evacuation Routes to Serve Different 
Segments of the Population 

Evacuation Route Performance for Different Segments of the Population  

In this Task, the team analyzed using the Social Vulnerability Index, National Risk Index, and the 
American Community Survey to identify different population segments and conduct 
performance assessments specific to their characteristics and transport requirements.  

To understand the behavior of arrival and departure times, we analyzed their correlation 
against the travel time of paths originating from each CBG, the population of the CBG, and the 
Social Vulnerability Index (SVI) of each CBG, which depends on socioeconomic characteristics. 

• In this analysis, Figure 26 demonstrates that travel time is the most significant factor in 
the decision-making process.  

• For those vehicles that depart 50-75% later than the rest of the vehicles, longer travel 
times tend to result in earlier departures than the rest.  

• Travel times are primarily impacted by the arrival times of vehicles that reach the safe 
node early. However, this does not significantly alter the arrival times of the remaining 
vehicles.  

• The population and Social Vulnerability Index were considered in the analysis but did 
not significantly impact the scheduling of departure and arrival times compared to 
travel time.  

• It is possible to indicate that travel time is the primary factor guiding the scheduling of 
vehicle departures and arrivals.  

• Larger travel times necessitate earlier departures to ensure timely arrivals at safe nodes, 
highlighting the importance of accounting for travel time in evacuation planning. 
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Figure 26. Correlation analysis Travel time OD, demand, and SOVI versus departure and 
arrival time (Y= Q (Departure/Arrival time) (min, Q1, Q2, Q3, Max)) 
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Evacuation Plan Risk Assessment 

The authors followed the methodology in [107], described in Task 2, to obtain the values of the 
natural hazard risk at the node level 𝑣𝑗 for each node of the road network. Figure 27 

summarizes the density distribution of the factors affecting the RNP risk at the local level, 
particularly for all the road network nodes. 

 

Figure 27. Density probability factors of the 𝒗𝒋 parameter (units) (min, max, mean) 
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The Hansen Accessibility Index (b) displays an almost symmetric distribution, while the 
Betweenness Centrality (d) among the nodes is skewed to the right. The NRI (c) displays a 
distribution with three modes. When analyzing the RNP at the local or node level 𝑣𝑗, it has a 

right-skewed distribution, indicating that some nodes have higher RNP risk than others. The 
RNP risk at the regional level indicates that the RNP risk is higher in the northeastern direction; 
however, there are some smaller risks in the north, east, and southwest of Paradise and 
Magalia. This stage analyzed three different scenarios. 

First, we modify the pool of paths by using two other objective functions in the GPP model. 
Secondly, we determine the anticipated risk of a wildfire on the evacuation by affecting the exit 
routes in different directions of the road network, such as N, S, W, E, NE, NW, SE, and SW. The 
RNP risk at the regional level allows for the identification of the likelihood of wildfire and the 
estimation of the anticipated evacuation time under risk conditions. Thirdly, we determine how 
aligned our modeling results are with the current analysis conducted by authorities in our case 
study. 

Modifying paths pool: based on different objective functions in the GPP model 

First, the authors obtain the pool of paths using two other objectives of the GPP model (see 
Eq.25 and Eq. 26). The pool size minimizing time, risk, and time is 362, 356, and 407, 
respectively. Recalling that the risk for each arc is based on Eq.38, where 𝑣𝑗 is the RNP at the 

node level. 

𝑟𝑖𝑗 =
𝑣𝑖+𝑣𝑗

2
  Eq.38 

Figure 28 shows that the result of the EPWP model is consistent with their objective. The model 
EPWP (r) has the lowest expected evacuation risk perceived by the evacuees, while the model 
EPWP (r*t) has the lowest expected evacuation risk combined with time. The original model 
minimizes the time and has the largest anticipated evacuation risk. Considering the average 
evacuation time of the ENP model, the EPWP models that minimize evacuation time, risk, and 
risk & time add approximately 10-, 20- and 30-minute delays in the average evacuation time, 
respectively. 

On the other hand, Figure 29.a shows the difference in the number of vehicles leaving each exit 
node depending on the model employed. Typically, the number of vehicles leaving each exit 
node is slightly different when using the EPWP model with the pool of paths that minimize 
time, risk, and time. Figure 29.b and c. show that the average evacuation rate and cumulative 
are ordered as ENP, EPWP (t), EPWP (r), and EPWP (r*t), respectively. This behavior increases 
the clearance time, the total evacuation time, and the average evacuation time of vehicles. 
Time and risk are inversely proportional because evacuation time increases when minimizing 
the anticipated risk, and vice versa. Therefore, planners must determine which objective is best 
for evacuation. For example, a reduction of approximately 50% in risk implies an increase in 
clearance time of around 20 to 40 minutes, while the average evacuation time increases by 10 
to 20 minutes. 
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Additionally, Figure 30 shows the use of the arcs in the road network regarding flows during the 
evacuation process, revealing different behaviors among the various models and objectives. 
The ENP model utilizes most of the arcs of the road network, while the EPWP models change 
their patterns depending on the objectives. In this context, the authors identified a measure of 
significance for each arc (a) on the road network in Eq.30, based on the average flows (Eq. 39) 
and their standard deviation (Eq.40), across the flows obtained in the three scenarios used in 
the EPWP model: i) time, ii) risk, and iii) time & risk. 

 

Figure 28. Risk, risk and time, clearance time of EPWP models with different pools of paths. 

𝐹̅𝑎 = 𝑎𝑣𝑔(𝐹𝑎(𝐸𝑃𝑊𝑃(𝑡𝑖𝑚𝑒)), 𝐹𝑎(𝐸𝑃𝑊𝑃(𝑟𝑖𝑠𝑘)), 𝐹𝑎(𝐸𝑃𝑊𝑃(𝑡𝑖𝑚𝑒&𝑟𝑖𝑠𝑘))) Eq.39 

𝑠𝑑(𝐹𝑎) = 𝑠𝑑(𝐹𝑎(𝐸𝑃𝑊𝑃(𝑡𝑖𝑚𝑒)), 𝐹𝑎(𝐸𝑃𝑊𝑃(𝑟𝑖𝑠𝑘)), 𝐹𝑎(𝐸𝑃𝑊𝑃(𝑡𝑖𝑚𝑒&𝑟𝑖𝑠𝑘))) Eq.40 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑎 = 𝐹̅𝑎/𝑠𝑑(𝐹𝑎) Eq.41 

The importance 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑎 is greater if the arc has a large average flow and a low standard 
deviation, meaning that the arc is mostly used independently of the evacuation scenario, with 
low variability among those scenarios. Figure 30 shows the importance map, highlighting 
corridors crucial during evacuation processes, regardless of the situation under consideration. 
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Figure 29. a) distribution of evacuation by exit nodes, b) evacuation flow, and c) cumulative 
flow of the four models ENP, EPWP (time), EPWP (risk), and EPWP (time & risk) 
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Figure 30. Corridor importance of different EPWP objectives 
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Impact of exit node availability on evacuation performance 

Let us assume that the route leading to the exit node is blocked, and no vehicles can reach a 
safe destination through this node. Figure 31 and Table 3 show the clearance and average 
evacuation times when each exit node is closed (independently) using the ENP model. For 
instance, when node ‘1086470272’ in the NE is closed, the clearance time (CT) increases to 
162.5 minutes and the average evacuation time to 72 minutes, compared to the base scenario 
(102.5 and 52.1 minutes, respectively). This represents a 60% and 38% increase, respectively. In 
other cases, closing different exit nodes results in evacuation times ranging from 3% to 23% 
above the base case, while the average evacuation time is 2% to 15% above the base case. 

 

Figure 31. Clearance Time and Average Evacuation Time when closing each exit node 

Table 3. Clearance Time, Total Evacuation Time, and Average Evacuation Time when closing 
each exit node.  

Closing scenario 

PC 
Time 
(mins) 

Clearance Time Total Evacuation Time (ET) 
Average 
ET 

UT minutes UT minutes minutes 

E, SE, W Base  60 410 102.5 3’248,413 812,103.25  52.1 

N 
86492387 52 425 106.25 3’318,996 829,749.00  53.2 

86432737 53 501 125.25 3’523,871 880,967.75  56.5 

NW 86488516 65 506 126.5 3’443,404 860,851.00  55.2 

SW 

3294115589 55 421 105.25 3’462,615 865,653.75  55.5 

3739916026 51 452 113 3’625,379 906,344.75  58.1 

86483530 (99.9%) 345 472 118 3’738,000 934,500.00  59.9 

S 
86430030 55 447 111.75 3’576,064 894,016.00  57.3 

2191412294 71 422 105.5 3’473,506 868,376.50  55.7 

NE 1086470272 90 650 162.5 4’494,163 1’123,540.75  72.0 
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Table 4 provides information about the probability of occurrence of a natural hazard under the 
eight different directions: d=N, S, W, E, NE, SE, NW, SW. To determine the probability of 
affecting any of the eight directions: d=N, S, W, E, NE, SE, NW, SW due to the wildfire. The 

authors use the 𝜓𝑟
𝑧=𝑤𝑓𝑖𝑟

, this is the RNP risk at the regional level r={0, 10, 20,…, 340, 350} 
depicted in Figure 27.f. The eight directions are subsets of the region; for instance, if r is equal 
to 0, 10, 20, 340, and 350, those values represent the East (E), and if r is equal to 30, 40, 50, 60, 
then North-East (NE) and so on. The authors utilize Eq.42 and Eq.43 to estimate the probability 
of each region (r) and direction (d). Moreover, Eq.44 allows us to estimate the expected 
clearance time (CT), total evacuation time (TET), and average evacuation time (avg_ET) of each 
direction. 

𝑝(𝑥 = 𝑟) =
𝜓𝑟
𝑧=𝑤𝑓𝑖𝑟

∑ 𝜓𝑟
𝑧=𝑤𝑓𝑖𝑟

𝑟

 Eq.42 

 𝑝(𝑥 = 𝑟| 𝑦 = 𝑑) =
𝜓𝑟
𝑧=𝑤𝑓𝑖𝑟

∑ 𝜓𝑟
𝑧=𝑤𝑓𝑖𝑟

𝑟𝜖𝑑

  Eq.43 

𝐸[𝑉𝑎𝑟𝑑] = ∑ 𝑝(𝑥 = 𝑟| 𝑦 = 𝑑) ∗ 𝑉𝑎𝑟𝑟𝑟 𝜖 𝑑  Eq.44 

Eq.44 is the sum of the multiplication between the variable's value (CT, TET, avg_ET) when the 
natural hazard blocks the exit in the region r times the probability of this hazard in the region r 
belonging to the directions d. For example, note that in the NE direction, the exit node 
‘1086470272’ is located in the region 50°. The consequence of closing this exit node is a 
clearance time of 650 Units of Time (U.T.) (2 hours and 42 minutes). In contrast, if the wildfire 
affects other regions (r) like 30°,40°, or 60° in this direction (d), there is no node affected, and 
the CT is the same as the base case, which is 410 U.T. (1 hour and 42 minutes). Therefore, the 
expected clearance time if a wildfire threatens the northeast side of the road network is around 
486 U.T. (around 2 hours) (see Eq.45 and Eq.46).  

𝐸[𝐶𝑇𝑁𝐸] =  𝑝(𝑥 = 50| 𝑦 = 𝑁𝐸) ∗ 𝐶𝑇50 + (1 − 𝑝(𝑥 = 50| 𝑦 = 𝑁𝐸)) ∗ 𝐶𝑇𝑏𝑎𝑠𝑒 Eq.45 

𝐸[𝐶𝑇𝑁𝐸] =  0.32 ∗ 650 + (0.68) ∗ 410 = 486  Eq.46 

Table 5 provides the steps to estimate the expected CT, TET, and avg_ET for the eight 
directions. The expected CT under wildfire threat on all cardinal directions independently is 442 
UT (110 minutes or 1 hour and 50 minutes), TET is 3’438,858 UT (or 859,714 minutes), and 
avg_ET is 55.1 minutes. 
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Table 4. Estimation of the probability of each grade and direction of the road network 

Region (r) 𝝍𝒓 Direction (d) P(r) P(r)/P(d) 

340 0.0008 

E 

0.02085 0.10754 

350 0.0015 0.03871 0.19960 

0 0.0024 0.06067 0.31286 

10 0.0020 0.05253 0.27087 

20 0.0008 0.02116 0.10912 

30 0.0017 

NE 

0.04370 0.14666 

40 0.0028 0.07182 0.24103 

50 0.0037 0.09467 0.31771 

60 0.0034 0.08779 0.29460 

70 0.0019 

N 

0.04829 0.28457 

80 0.0018 0.04728 0.27860 

90 0.0019 0.04976 0.29319 

100 0.0005 0.01217 0.07171 

110 0.0005 0.01221 0.07193 

120 0.0003 

NW 

0.00721 0.80668 

130 0.0000 0.00000 0.00000 

140 0.0001 0.00173 0.19332 

150 0.0000 0.00000 0.00000 

160 0.0000 

W 

0.00000 0.00000 

170 0.0000 0.00000 0.00000 

180 0.0000 0.00000 0.00000 

190 0.0002 0.00482 0.37482 

200 0.0003 0.00804 0.62518 

210 0.0004 

SW 

0.00909 0.08440 

220 0.0005 0.01327 0.12321 

230 0.0012 0.03216 0.29853 

240 0.0021 0.05320 0.49386 

250 0.0012 

S 

0.03157 0.24428 

260 0.0010 0.02473 0.19139 

270 0.0017 0.04369 0.33811 

280 0.0005 0.01261 0.09759 

290 0.0006 0.01662 0.12863 

300 0.0005 

SE 

0.01273 0.15984 

310 0.0005 0.01307 0.16412 

320 0.0014 0.03544 0.44503 

330 0.0007 0.01840 0.23101 
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Table 5. Estimates the expected clearance time, total evacuation time, and average 
evacuation time. 

Dir 𝝍𝒅 P(Dir) E[CT] E[TET] E[avg ET] 

N 0.0013 0.1510 420.9234 63.5773 3288860.1248 496757.7001 52.7095 7.9614 

NE 0.0029 0.3315 486.2513 161.1986 3644204.6465 1208101.2978 58.4045 19.3618 

E 0.0015 0.1726 410.0000 70.7605 3248413.0000 560632.1727 52.0612 8.9851 

SE 0.0008 0.0886 410.0000 36.3288 3248413.0000 287831.9254 52.0612 4.6130 

S 0.0010 0.1150 418.6249 48.1472 3340075.2002 384151.0371 53.5303 6.1567 

SW 0.0010 0.1199 449.0779 53.8220 3600591.4995 431531.2897 57.7055 6.9160 

W 0.0001 0.0114 410.0000 4.6915 3248413.0000 37170.8505 52.0612 0.5957 

NW 0.0001 0.0099 428.5586 4.2622 3286108.3901 32681.8940 52.6654 0.5238 

  
𝐸[𝐶𝑇]̅̅ ̅̅ ̅̅ ̅̅  442.7882 𝐸[𝑇𝐸𝑇]̅̅ ̅̅ ̅̅ ̅̅ ̅̅  3438858.167 

𝐸[𝑎𝑣𝑔 𝐸𝑇]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  55.1134 
Minutes 110.6970531 Minutes 859714.5418 

Evaluate how well-aligned safety elements of emerging plans are to previous evacuations. 

This task examines how well the evacuation route compares to case studies of previous 
evacuation events, particularly the 2018 Camp Fire in Paradise, California. For this reason, the 
team used the results of the Evacuation Technical Memorandum from the Paradise 
Transportation Master Plan [115]. Figure 32 provides an overview of how the evacuation routes 
of the EPWP models align with the primary and secondary evacuation routes described in the 
plan [115] for Paradise. Note that the width of the figures in the EPWP models reflects the flow 
across each arc; the wider the arc, the higher the flow or usage. It is evident that flows become 
wider on the primary roads, particularly at the endpoints of segments. 

Additionally, secondary roads are highlighted in the figures; however, their usage varies 
depending on the model’s objective. Figure 33 illustrates the proposed investments in Paradise 
for evacuation processes [115], and it includes the map that highlights the importance of the 
arcs based on their usage, independent of the evacuation scenario objectives. Most of the 
Paradise administration's recommendations align with the importance analysis. However, the 
analysis also identifies other segments, specifically the road network, with potential benefits for 
improvement, given their significant usage and low variability across different scenarios. 
Specifically, the road leading to SB 191 and some residential streets play an important role in 
evacuation.
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Figure 32. Comparison Evacuation Routes with the routes based on the different models 
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Figure 33. Recommendation Improvement compared with importance measurement of case analysis 
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Evaluation of the Public Transit Network During Evacuations 

The results in Paradise-Magalia show that some stations overlap with high traffic congestion, 
but there’s a strong question as to whether buses would run during an evacuation setting. 
Operating with the assumption that the routes and stops would be active, the composite 
vulnerability index provides a more complete view of community vulnerability and accessibility. 
Understanding the individual empirical contributions and weighting accordingly is beyond this 
project's scope. This combined index and mapping comparison provides alignment and 
direction for future work between modeled results and transit routes. This analysis can be 
repeated in additional regions with the aggregated data provided.  

As the CalEnviroScreen score measures pollution burden (average of exposures and 
environmental effects) multiplied by the population characteristics (average of sensitive 
populations and socioeconomic factors), a higher value shows a burdened community. We 
observe (Figure 34) that the more burdened regions in this community are to the southwest, 
lower to the northwest, and southeast, slightly lower to the north. 

 

Figure 34. Prioritized risk and time with transit stop and CI Score. 
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Compared with the FEMA NRI hazard score (Figure 35), it shows an increased trend in the north 
and northwest but follows the same pattern as the CalEnviroScreen score in the south and 
southeast. This is likely primarily an indication of the wildfire risk in those directions. 

 

Figure 35. Prioritized risk and time with transit stop and NRI. 

The transit stops per 1,000 residents (see Figure 36 left) have a high value in the central 
Paradise region, where a concentration of transit stops exist. We observe that the route does 
have some significant alignment with the prioritized evacuation route (risk and time model) and 
likely reflects the primary structure of the road network through that location. 

The combined vulnerability index (see Figure 36 right) shows some of the same trends with the 
highs to the southwest and north; however, the high in the central region from the 
CalEnviroScreen Score is offset by the concentration of per capita transit stops. 
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Figure 36. Prioritized risk and time with transit stop and (left) Transit Stops/1000 residents; 
and (right) Combined Vulnerability Index. 
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Discussion 

This section briefly discusses the results obtained in tasks 2, 3, and 4, which describe the road 
network performance risk and evacuation performance. This project's outcomes, methodology, 
and analyses allow the assessment of the interaction between various factors, including natural 
hazard risk and road network performance at the topological level. The findings demonstrate 
that the natural hazard risk can be effectively enhanced or reduced based on the topological 
characteristics of the road network. The results provide insights and guide future research 
activities, such as analyzing broader areas like Statistical Metropolitan Areas (SMA) instead of 
individual cities. Furthermore, there is potential to extend the analysis to the street level (arcs 
or edges) to identify prioritization in cases such as evacuations. However, it is essential to 
observe certain limitations in this research, such as using the National Risk Index (NRI) obtained 
initially at the census tract level and subsequently downscaled to a census block and node level. 

Despite some of these limitations, the analysis shows that the proposed approach, using the 
road network from OpenStreetMaps and the risk from the NRI database, allows planners to 
measure, quantify, and identify the potential hazard risks associated with each city and the 
pattern of such risks in a standardized way for a set of multiple urban areas. Knowledge of the 
risk patterns provides a better understanding of the different issues in diverse geographical 
areas. The proposed methodology provides additional information for decision-makers to plan 
against natural hazards. For instance, identifying the locations with the highest risk of being 
affected by natural hazards and how this risk is distributed within each location provides 
insights into which localities should be prioritized for future investments under a limited 
budget. However, identifying specific priority locations or investment opportunities requires a 
deeper analysis of each selected city. The team focused on two case studies derived from Task 
2 to explore these opportunities. In Tasks 3 and 4, the team concentrated on the case of 
Paradise for evacuation purposes, identifying the most critical corridors within the road 
network under a set of scenarios. The results showed similarities with the priorities or 
investment opportunities identified by the local government of Paradise. However, our analysis 
also highlights opportunities to enhance the capacity or performance of an extended set of 
corridors based on their importance. Additionally, our case study demonstrated the need to 
develop alternative strategies to support and alleviate the usage of road network capacities and 
avoid large-scale calamities in the event of a no-notice wildfire when the city's current road 
network capacity does not allow demand to evacuate effectively. 

The methodology developed in this project helps to close the gap related to the lack of 
methods that can provide a standardized spatial analysis that permits the comparison between 
a relatively large set of road networks and includes the latent risks of natural hazards in each 
location. This method contributes to the literature because it is an understudied use of the RNP 
concepts, such as spatial analysis. Additionally, this method is applied to a case study with a 
relatively large set of localities in California, including a wide variety of natural hazard risks. A 
discussion of the results on the two areas of RNP risk and Evacuation Performance is described 
below: 
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Road network performance Risk 

On task 2, the team introduced a method to address an underexplored aspect of RNP risk that 
combines historical data on past natural hazards and the socioeconomic characteristics, e.g., 
community vulnerability and resilience, given by 𝜃𝑖

𝑧, with the topological characteristics of the 
road network given by 𝐵𝐶𝑖 and 𝐴𝑖. Given the different scales of each factor (𝜃𝑖

𝑧, 𝐵𝐶𝑖 and 𝐴𝑖) 
included in the estimation of the 𝑅𝑁𝑃𝑟𝑖𝑠𝑘 at the local or node level. This study recommends 
normalizing these factors to balance their expected influence on the 𝑅𝑁𝑃𝑟𝑖𝑠𝑘 at the local level. 
This normalization will also impact the 𝑅𝑁𝑃𝑟𝑖𝑠𝑘 at regional and global levels. The standardized 
distribution of the contributions of each factor is essential for effective planning. For example, 
while natural hazard risks are not controllable, other elements, such as topological features, 
can be improved to enhance the resilience of the road network. These enhancements can 
inform the population at each location of the expected risk. 

Additionally, the results from task 2 offer insights into adapting Boeing's [15] orientation 
methodology for spatially standardizing natural hazard risk in road networks. This facilitates 
comparing various locations and natural hazards in a standardized manner, thereby enhancing 
prioritization in the planning and decision-making process for mitigation, preparedness, and 
disaster response strategies. Below are the key insights derived from this study: 

• The 𝑅𝑁𝑃𝑟𝑖𝑠𝑘 at the regional level depicted on the polar histogram of the Risk (𝜓𝑟
𝑧) works 

as a tool to identify the pattern of risk inside each city, and its use also depends on the 
type of natural hazard and the topological characteristics of the city's road network. The 
polar histogram of the Risk (𝜓𝑟

𝑧) standardizes the patterns of the natural hazard risks 
spatially with each city’s road network characteristics and allows the comparison of 
multiple natural hazards and road networks.  

• The knowledge of the different patterns of risk that depend on the natural hazard and 
the topological characteristics of the road network is beneficial for disaster operation 
managers because such prior knowledge allows for the planning of disaster 
management operations. For instance, when analyzing natural hazards that require 
evacuation, like wildfires, hurricanes, tsunamis, or floods, the evacuation routes should 
consider the city's expected risk direction. In other words, this polar histogram of the 
risk makes clear where not to try to direct the population in such cases. Another case is 
for the location of hubs or warehouses with prepositioned inventory. For instance, if the 
risk of hurricanes or tsunamis in one city is in the North, while the risk of other natural 
hazards like floods or wildfires is on the West side of the city, it means that the possible 
location of such hubs or warehouses should be at other locations in the city with a lower 
risk, like the South, East, or even outside the city when it is clear that the whole city is at 
risk of being affected by a natural hazard. The selection of this lowest risk direction 
depends on analyzing the risk of all the common natural hazards in the location. 

• 𝑆𝑆𝑅𝐼𝑧 provides information about how the concentration of the risk is distributed 
across a city’s road network. The analysis showed 𝑆𝑆𝑅𝐼𝑧 is affected positively and 
significantly by 𝜃𝑖

𝑧, 𝐴𝑖 and 𝐵𝐶𝑖. The share of each factor is particularly interesting 
because despite the shape of the polar histogram of Risk (𝜓𝑟

𝑧(𝑣𝑖
𝑧)) looks similar to the 
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shape of the Risk (𝜓𝑟
𝑧 (𝜃𝑖

𝑧)), the 𝜓𝑟
𝑧 (𝐴𝑖) and 𝜓𝑟

𝑧𝐵𝐶𝑖) act as a mediator to increase or 
decrease the risk in specific directions of the road network, receiving relatively high 
importance based on the statistical correlation analysis. 

• Note also that none of the RNP measurements described in the literature review 
adequately capture the distribution of risk within a city because they depend only on 
the topological characteristics of the road network and do not incorporate historical 
data on natural hazard risks. 

• The analysis performed in this study allowed us to identify the areas and directions with 
the highest risk concentration within a road network to prioritize mitigation, 
preparedness, and disaster response planning. 

Task 2 also introduced a methodology that provides a standardized method for comparing 
spatially divergent locations, and it effectively enhanced our understanding of the risk by 
comparing around 475 municipalities in our case study in California. The results provide insights 
that are relevant to decision-makers, as summarized below: 

• The clustering analysis provides a sense of prioritization for a large set of cities. It is 
important to note that the priority ranks of the cities vary depending on the natural 
hazards considered. The analysis's variety of natural risk measurements allows disaster 
managers to design different strategies depending on which natural hazards are most 
critical to each city. Additionally, thresholds in the cluster analysis are adjustable, 
depending on the decision-maker's or planner's interests.  

• Planners can identify at least two types of cities with high risk among the cluster: those 
where the risk is concentrated in specific directions and those where the risk affects the 
entire population or a larger share of it. The strategies to address the risk in these 
groups of locations may differ. For example, when considering evacuation strategies, 
areas where the risk affects the entire population will require plans to evacuate the 
whole population. In contrast, those where the risk is concentrated in specific directions 
may be able to explore alternatives to evacuation, such as sheltering in place or finding 
safe zones within the city boundaries. However, specific alternatives should be analyzed 
individually. 

• When aggregating the 𝑆𝑆𝑅𝐼𝑧 Into regions, it was evident that different areas are more 
likely to be affected by different natural hazards. Additionally, the authors noted similar 
risk distributions between cities that are close to each other. This illustrates a spatial 
correlation between cities based on their distance. The primary evidence of such 
behavior is found in the cities of the South Coast and the Inland Desert, where 
component cities are close. The opposite behavior was found in the Northern region of 
California, where cities are further apart from each other, and their road networks are 
less complex than those in the rest of the state.  
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Evacuation Performance 

Regarding evacuation performance, Task 3 provided a methodology to identify evacuation 
plans for no-notice wildfire events. The team used the American Community Survey, 
OpenStreetMap, NRI datasets, and the RNP risk at different levels of the road network [102]. In 
Task 3, the authors estimated the minimum clearance time, a pool of paths between each OD 
pair, the minimum number of paths that could be used to evacuate the population in the 
minimum time, the RNP risk at the node and arc level, and regional. The authors also analyzed 
the sensitivity of the evacuation performance based on different objective functions and 
closures of exit routes. The authors also evaluated how the evacuation plans performed during 
a simulated wildfire event in Paradise, California. Despite differences in area and vehicle 
demand, the mathematical programming models showed comparable clearance times (~1 hour, 
50 minutes) between the two case studies, the Camp Fire and the Thomas Fire. This was 
attributed to variations in exit routes and road network capacity. The Thomas Fire area has 
more exit routes than the Camp Fire area. Additionally, the road network capacity in the 
Thomas Fire area is greater than that of the Camp Fire area, providing insights into the reasons 
for this difference in performance. 

The travel time from origin to destination for each path is the primary factor guiding the 
scheduling of vehicle departures and arrivals. However, on Task 4, with the inclusion of an 
evacuation plan risk assessment that considers the inclusion of a different pool of paths that 
minimize the total risk between each origin-destination (OD) pair and those that minimize time, 
it became possible to identify the minimum number of corridors vital for evacuation planning. 
Additionally, it is possible to identify the most critical exit routes, directions with higher risk, 
and the expected evacuation time under wildfire risk. 

We conducted a second analysis of the road network for the Paradise/Magalia network using 
Omniscape. Omniscape uses electrical circuit theory to measure the level of connectivity to a 
central grid cell from a set of cells within a given buffer distance. The central grid cell moves 
across the entire spatial domain to create a view of the connectivity strength among all cells, in 
this case, the pixels in the transportation network. We used several buffer distances and found 
that a more restrictive buffer size permitted the identification of localized or neighborhood-
scale bottlenecks, where traffic would be slowed if all the people (from the census) within the 
buffer were trying to leave at once on the road network. A larger buffer distance identified 
bottleneck areas that were very similar in location to those identified using the RNP model. No 
similar studies use Omniscape because this model is primarily a conservation planning tool. 
However, it has previously been applied to map open space within cities [95]. We found this 
tool promising because it requires only parameterizing two variables. However, the road 
network requires both local spatial estimates of the existing population and travel speed on a 
per-arc basis. However, the Omniscape model was particularly useful in our study because its 
results converged with the spatial results from the other modeling, for example, with expected 
high levels of congestion at the point that connects the road network of Paradise in the south 
and Magalia in the north. 
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Limitations and Assumptions 

This project analyzes the performance of evacuation plans through optimization models, 
considering factors such as wildfire risk, evacuation time, vehicle demand, and road network 
capacities. The methodology offers a generalized approach that can be applied to various 
locations. However, the following limitations and assumptions should be noted: 

Limitations 

1. Data Resolution and Downscaling: 
o The wildfire risk data is derived from the National Risk Index (NRI), originally available at 

the census tract level. The data was downscaled to the census block and node levels for 
finer analysis, introducing potential inaccuracies in the risk estimation at these granular 
levels. 

2. Behavioral Dynamics: 
o While this study considers the socioeconomic characteristics of the population for 

evacuation risk estimation, behavioral elements such as individual decision-making, 
compliance rates, and route choices during evacuations are not explicitly modeled. This 
limits the real-world applicability of the evacuation performance analysis in highly 
dynamic and unpredictable settings. 

3. Assumptions of Road Network Integrity: 
o The analysis uses road network data from OpenStreetMaps. This approach assumes the 

network accurately represents real-world conditions, including connectivity and 
capacities. However, it may not account for temporary road closures, maintenance, or 
other disruptions. 

4. Simplified Traffic Congestion Dynamics: 
o Traffic congestion estimates rely on aggregated vehicle demand and assumed network 

capacities. The model does not fully capture micro-level traffic dynamics, such as driver 
behavior, vehicle breakdowns, or other localized disruptions. 

5. Transit Accessibility: 
o In areas like Paradise-Magalia, bus stops, and transit routes are assumed to remain 

active during an evacuation. However, the feasibility of operating public transportation 
during such events remains uncertain, and the analysis does not account for potential 
interruptions in service. 

Assumptions 

1. Evacuation Scheduling: 
o Clearing time (when the last individual exits the area) and total evacuation time (the 

cumulative time for all individuals to evacuate) are key performance indicators. The 
model assumes vehicles can evacuate uninterrupted to designated safe areas unless 
explicitly stated otherwise. 
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2. Path Diversity: 
o The shortest path between nodes is calculated using the Generalized Path Problem 

(GPP) model, which generates a more diverse set of evacuation paths than some 
alternative methods. This assumption enhances route diversity but may deviate from 
real-world driver preferences. 

3. Blocked Route Scenario: 
o It is assumed that if a route leading to an exit node is blocked, no vehicles can reach a 

safe destination through that node. This scenario tests the network's resilience under 
adverse conditions. 

4. Congestion Dynamics in Paradise-Magalia: 
o The analysis emphasizes internal congestion within the combined metro region of 

Paradise-Magalia and identifies choke points, such as the connector route between the 
two cities. The model assumes external interventions do not redirect traffic flows. 

5. Vulnerability Index: 
o The composite vulnerability index incorporates assumptions about the availability of 

evacuation routes, public transit, and community accessibility to provide a 
comprehensive view of vulnerability. 

Despite these limitations and assumptions, the proposed methodology demonstrates utility in 
quantifying and standardizing city risk patterns. It provides actionable insights for planners, 
enabling a more informed approach to evacuation planning and disaster risk management. 

Tool Limitations 

While mathematical programming and Omniscape offer valuable insights for evacuation 
modeling, several limitations need to be considered for further refinement and future 
applications: 

Mathematical Programming Limitations: 

1. Simplified Assumptions on Behavior and Decision-Making: Mathematical programming 
models often utilize simplified assumptions, such as fixed evacuation paths or 
predetermined vehicle demand. These assumptions are not based on dynamic changes in 
evacuee behavior, such as deviations from optimal evacuation routes, congestion 
avoidance, or uncertainty in demand based on real-time information. To address this 
limitation, future models could incorporate adaptive decision-making mechanisms or 
machine learning techniques to rapidly adjust to real-time conditions. However, the models 
used in this project are expected to be used as a planning tool, not an operational tool.  

2. Computational Complexity and Scalability: As evacuation scenarios grow in complexity, 
especially when considering large-scale urban areas with numerous nodes and evacuation 
routes, the computational complexity of mathematical models increases significantly. This 
can lead to longer solution times, making implementing the models to real-time decision-
making difficult. Future research could explore heuristic or metaheuristic approaches, such 
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as genetic algorithms or simulated annealing, to provide faster and more efficient solutions 
without sacrificing model accuracy. 

3. Lack of Behavioral Data: Mathematical models in evacuation planning often exclude 
behavioral elements that can significantly affect evacuation efficiency. While behavioral 
factors are outside the scope of this study, future work could incorporate these elements 
through agent-based modeling or data-driven approaches, improving model realism and 
predictive accuracy. 

4. Parametrization of the mathematical model: The minimum travel time on all arcs 
determines the models' complexity when constructing and loading the road network. 
Therefore, it is crucial to identify the best tolerance to use when simplifying the network 
without losing its structure. The ENP model does not provide a plan for the evacuation 
process. However, it is possible to obtain an evacuation plan when combined with the GPP 
model and integrated into the EPWP model.  

Omniscape Limitations: 

Limited Real-Time Adaptability: Like mathematical programming, Omniscape does not account 
for real-time fluctuations in traffic or emergency response strategies. This limits its applicability 
for real-time evacuation decision-making. Future developments could incorporate real-time 
data streams from traffic monitoring systems or integrate Omniscape with real-time 
optimization models to enhance its adaptability during an ongoing evacuation event. 

Future Directions: 

Future research should explore: 

• Integrating mathematical programming and Omniscape with real-time data for a more 
dynamic and adaptable evacuation. 

• Implementing behavioral insights and traffic simulation models enhances realism and 
granularity in evacuation scenarios. 

• Investigating hybrid approaches that combine the strengths of both methods while 
mitigating their limitations, such as integrating optimization models with traffic flow 
simulations and real-time adjustment capabilities. 

Future evacuation models can provide more accurate, responsive, and actionable 
recommendations by addressing these challenges improving emergency preparedness and 
response strategies.  
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Conclusion and Key Takeaways 

The project focused on enhancing road network performance (RNP) analysis to understand 
better and mitigate California's natural hazards from the evacuation perspective. Specifically, it 
introduced a new approach to assessing the risks posed to road networks by natural hazards 
while incorporating factors such as community vulnerability, resilience, and the topological 
features of road networks. The study aims to prioritize mitigation efforts, preparedness, and 
disaster response in areas with the highest level of risk concentration. 

Key Takeaways: 

• Methodology Innovation: The study introduces a new method to assess RNP risk by 
combining historical natural hazard data and socio-economic factors (e.g., community 
vulnerability) with the road network's topological features (e.g., betweenness centrality 
and accessibility). A critical insight is that these factors operate at different levels, 
necessitating normalization to balance their impact on risk assessments at both local 
and regional levels. This normalization is crucial for fair planning, allowing decision-
makers to improve road networks' resilience by addressing controllable elements, such 
as road design and connectivity, even if the natural hazards cannot be changed. The 
methodology allows cities to be compared based on their natural hazards, facilitating 
the prioritization of disaster preparedness investments.  

o We also found the Omniscape, a spatial tool used for conservation corridor 
planning, could identify congestion points within city networks, which were also 
found using the more computationally intensive RNP approach. However, the 
Omniscape approach did not provide as many highly detailed results. 

• Spatial Standardization: The study uses a standardization approach to mapping the risk 
of natural hazards in road networks. This standardization allows for comparisons among 
different cities and hazards, enabling a strategic prioritization for disaster response. For 
instance, when planning evacuation routes, decision-makers can use this method to 
avoid high-risk areas and direct populations to safer areas. 

• Risk Patterns and Decision-Making: The polar histogram of risk allows disaster 
managers to visualize how risk is distributed across a city. This tool informs decisions, 
such as where to locate evacuation routes or pre-position inventory hubs, based on the 
direction of the highest risk. Alternatively, if certain hazards are predominantly 
threatening the north or west sides of a city, resources can be strategically located in 
lower-risk areas to optimize disaster preparedness. 

• Evacuation Insights: The project provides a framework for evaluating evacuation 
strategies during no-notice events such as wildfires, including assessing the minimum 
clearance times, the number of evacuation paths, and critical road corridors. Using a 
wildfire event in Paradise, California, highlighted the importance of optimizing 
evacuation routes and ensuring sufficient road capacity to handle emergencies. The 
project highlights the importance of developing alternative evacuation strategies for 
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cities with insufficient road network capacity, particularly during no-notice events like 
wildfires. 

• California Preparedness: The findings indicate that California has a relatively complex 
road network, and preparedness levels vary across regions, revealing that California's 
readiness is uneven. Cities in the South Coast and Inland Desert regions have similarities 
in risk due to their geographical and network proximity and exhibit a higher spatial 
correlation of risk due to their proximity and similar network characteristics. Conversely, 
cities in Northern California face challenges due to isolation and less complex road 
networks, facing challenges in managing risk effectively. Some high-risk areas are 
inadequately prepared for evacuation during no-notice events like wildfires. Cities with 
denser, more connected road networks have a significant advantage in mitigating risk, 
while more isolated areas may struggle with road capacity during emergencies. Overall, 
the study emphasizes that preparedness in California is fragmented, with significant 
improvements needed in infrastructure resilience, especially in regions with higher risk 
concentrations. One of the next steps is to enhance the granularity of risk data, possibly 
through downscaling national datasets more precisely, which would allow for more 
accurate local risk assessments and inform targeted infrastructure investments. 

Finally, decision-makers can use the project's results to determine which cities or regions 
require immediate investment to increase resilience. This could include upgrading road 
networks in high-risk areas, adjusting land use planning to account for hazard-prone areas, and 
refining evacuation protocols based on the specific vulnerabilities of each area.  
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Data Summary  

Products of Research  

The project used the following public datasets: 

• Open Street Map. The team collected the road network arcs and nodes of the selected 
localities and will make the graph used for each public locality. 

• National Risk Index (NRI): The team used the NRI obtained publicly from FEMA at the 
census tract level 

• American Community Survey (ACS): The team used ACS data to estimate the Social 
Vulnerability Index at the census block level.  

Data Format and Content  

The team processed the raw data and created several datasets: 

• Geo-located risk data. The team processes the methodology developed by the authors 
to obtain the risk at the node level of the road network. The data generated is made 
available in the Comma-delimited format. The data is useful for risk and spatial analyses. 

Data Access and Sharing  

The algorithms in Python and Excel and file reports are made available through Dryad.  

Reuse and Redistribution  

Data generated from this research have been transferred to a publicly accessible data archive, 
available at https://doi.org/10.5061/dryad.w9ghx3g0j. The resulting analysis incorporating 
these will be published as part of reports and peer-reviewed journal articles archived for public 
access.  

https://doi.org/10.5061/dryad.w9ghx3g0j
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Appendix A. Summary of RNP Metrics and Models 

Table A.1. Overview of Mathematical formulation for the 11 RNPs (connectivity, redundancy, 
accessibility, reliability, resilience, robustness, flexibility, and vulnerability) 

RNP Name Measurement Mathematical Formulation Reference Traffic 
Data? 

Global(G)/ 
Regional 

(R)/Local (L) 

C
o

n
n

ec
ti

vi
ty

 

Cyclomatic Number 𝜇 = 𝑒 − 𝑣 + 𝑔 
𝑣 =  𝑁𝑜. 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 
𝑒 =  𝑁𝑜. 𝐸𝑑𝑔𝑒𝑠 

𝑔 =  𝑁𝑜. 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 

[108, 19, 
13, 109, 

22] 

N G 

Maximum Network 
Circuits (No planar) 

𝜇𝑚𝑎𝑥 = (1 2⁄ )𝑣(𝑣 − 1) − (𝑣 − 1) =  𝑁𝑜. 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 [19, 13] N G 

Maximum Number 
Edges (No planar) 

𝑒max =
1

2
𝑣(𝑣 − 1) 

𝑣 =  𝑁𝑜. 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

[19, 13] N G 

Beta Index 𝛽 = 𝑒
𝑣⁄  

𝑒 =  𝑁𝑜.  𝑒𝑑𝑔𝑒𝑠 
𝑣 =  𝑁𝑜.  𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

[19, 13, 
109, 22, 
14, 21] 

N G 

Alpha Index 
𝛼 = (

ⅇ − 𝑣 + 1

𝑒max − (𝑣 − 1)
) 

ⅇmax =
1

2
v(v − 1) 

𝑒 =  𝑁𝑜.  𝑒𝑑𝑔𝑒𝑠 
𝑣 =  𝑁𝑜.  𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

[19, 13] N G 

Gamma Index 𝛾 = (
ⅇ

𝑣 (𝑣 − 1) 2⁄
) ∗ 100 

𝑒 =  𝑁𝑜.  𝑒𝑑𝑔𝑒𝑠 
𝑣 =  𝑁𝑜.  𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

[19, 13] N G 

Maximum Number 
Edges Planar 

𝑒max = 3(𝑣 − 2) 
𝑣 =  𝑁𝑜.  𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

[13, 109, 
22] 

N G 

Maximum Network 
Circuits (Planar) 

𝜇max = 2𝑣 − 5 
𝑣 =  𝑁𝑜.  𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

[13, 109, 
22, 21] 

N G 

Alpha Index (Planar) 𝛼 =
𝜇

2𝑣 − 5
 

𝜇 = 𝑐𝑦𝑐𝑙𝑜𝑚𝑎𝑡𝑖𝑐 𝑛𝑢𝑚𝑏𝑒𝑟 
𝑣 = 𝑁𝑜.  𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

[14, 13, 
109, 22, 

21] 

N G 

Gamma Index 
(Planar) 

𝛾 =
ⅇ

3(𝑣 − 2)
 

𝑣 =  𝑁𝑜. 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 
𝑒 =  𝑁𝑜. 𝐸𝑑𝑔𝑒𝑠 

[108, 13, 
109, 22, 
21, 111, 

112] 

N G 

Lambda 
𝜆 =

1

𝑣(𝑣 − 1)
∑ 𝑑𝑖𝑗

𝑖,𝑗∈𝐸𝑗𝑖≠𝑗

 

𝑑𝑖𝑗 = 𝑆𝑃 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗 

𝑣 =  𝑁𝑜. 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

[108, 19, 
113, 114, 

115] 

N G* 

Efficiency 
𝐸 =

1

𝑣(𝑣 − 1)
∑

1

𝑑𝑖𝑗
𝑖,𝑗∈𝐸𝑗𝑖≠𝑗

 

𝐸 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑖𝑛𝑡𝑎𝑐𝑡 𝑟𝑜𝑎𝑑 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 
𝑑𝑖𝑗 = 𝑆𝑃 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗 

𝑣 =  𝑁𝑜. 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

[114, 115, 
116] 

N G* 

Degree Node 
𝑐𝑖 =∑𝐶𝑖𝑗

𝑁

𝑗=1

, 𝑐𝑖𝑗 = {
1,  𝑖𝑓 𝑖 𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑗

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[19] N L 

Average Degree 
𝑑̅ =

∑ 𝛿𝑖𝑖

𝑣
 

𝑣 =  𝑁𝑜. 𝑣𝑒𝑟𝑡𝑖𝑐𝑒s 

[22] N G 

Average Node Degree 
⟨𝑘⟩ =

2𝑒

𝑣
 

𝑣 =  𝑁𝑜. 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 
𝑒 =  𝑁𝑜. 𝑒𝑑𝑔𝑒𝑠 

[21] N G 
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RNP Name Measurement Mathematical Formulation Reference Traffic 
Data? 

Global(G)/ 
Regional 

(R)/Local (L) 

Matrix Of Network 
Accessibility 𝑇 = 𝑐 + 𝑐2 + 𝑐3 +⋯+ cn =∑𝐶𝑘

𝑛

𝑘=1

 

𝑇𝑖 =∑𝑇𝑖𝑗
𝑖≠𝑗

 

[19] N G* 

Number Of Paths 𝑃𝑖𝑗 = 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑃𝑖 =∑𝑃𝑖𝑗
𝑖≠𝑗

 

[19] N  L 

Eta (Average Edge 
Length) 

𝜂 =
𝑅

𝑒
 

𝑅 =  𝑡𝑜𝑡𝑎𝑙 𝑟𝑜𝑢𝑡𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 
𝑒 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 

[13, 109] N G 

Pi 
𝜋 =

𝑅

𝑑
 

𝑅 =  𝑡𝑜𝑡𝑎𝑙 𝑟𝑜𝑢𝑡𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 
𝑑 =  𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

[13, 109] N G* 

Theta (Average 

Traffic) 
𝜃 =

𝑇

𝑣
 

𝑇 =  𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑓𝑙𝑜𝑤 
𝑣 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

[13, 109] Y G 

Iota 
𝑙 =

𝑅

𝜔
 

𝑅 =  𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 
𝜔 =  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒𝑖𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

[13] N G* 

Iota 
𝑙 =

𝑅

𝑇
 

𝑅 =  𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 
𝑇 =  𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑓𝑙𝑜𝑤 

[13] Y G 

Lower Bound 
Network Connectivity 

𝐿𝐶 =
𝑛

𝑚(𝑛 −𝑚)
 ∑ 𝑊𝑒
𝑒∈𝜕(𝑆)

 

𝑛 = |𝑉|,  𝑚 = |𝑆|,𝑤𝑒 ∈ 𝑤 
∂(𝑆) ≡ {(𝑢, 𝑣) ∈ 𝐸:𝑢 ∈ 𝑆,  𝑣 ∈ 𝑉 − 𝑆}, boundary of S 
𝑉 = 𝑠𝑒𝑡 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠, 𝑆 =  𝑠𝑢𝑏𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑒 =  𝑒𝑑𝑔𝑒 

[117] N G* 

Degree of K of a Node 𝑘 = 𝑘 𝑖𝑛 + 𝑘𝑜𝑢𝑡 

⟨𝑘⟩ =∑
𝑘𝑖
𝑁

𝑁

𝑖=1

 

𝑃(𝑘) =
𝑛𝑘
𝑁
,   

𝑛𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘 

[118] N G 

Normalized 
Reciprocal Harmonic 

Mean 𝑅𝑡 =
𝑇̅

𝑡̅
=

1

(
1
𝑛) ∗

∑ (
1
𝑇𝑖
)𝑛

𝑖=1

1

(
1
𝑛) ∗

∑ (
1
𝑡𝑖
)𝑛

𝑖=1

 

[111, 13] Y Dynamic 

*Clustering 
𝐶𝑖 =

𝑒𝑖
𝑒𝑖
max =

2𝑒𝑖
𝑘𝑖(𝑘𝑖 − 1)

 

𝐶 =
1

𝑣
∑𝐶𝑖
𝑖

 

𝑒𝑖 =No. Edges in cluster i 
𝑘𝑖 = No.  vⅇrticⅇs sharing ⅇdgⅇ i 

v= Total No vertices 

[13] N R 
 

R
ed

u
n

d
an

cy
 

Alternative Routes 𝐴𝑙𝑡𝑟𝑜𝑢𝑡𝑒𝑠𝑎 =
𝑐𝑎𝑝𝑎

∑ (𝑐𝑎𝑝𝑎𝑎 ∗ 𝜍1
𝑑𝑖𝑠𝑡𝑎,𝑎𝑎)𝑎𝑎∈𝐴𝑎

=
𝑐𝑎𝑝𝑎

∑ (𝑐𝑎𝑝𝑎𝑎 ∗ 𝑒
𝜍2𝑑𝑖𝑠𝑡𝑎,𝑎𝑎)𝑎𝑎∈𝐴𝑎

 

𝜍2 = ln(𝜍1) 
𝑎 = 𝑙𝑖𝑛𝑘 𝑤ℎ𝑒𝑟𝑒 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑐𝑐𝑢𝑟𝑠 

𝑎𝑎 =  𝑙𝑖𝑛𝑘 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑎 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑙𝑖𝑛𝑘 𝑎 
𝑐𝑎𝑝 = 𝑙𝑖𝑛𝑘 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

𝜍1 𝑎𝑛𝑑 𝜍2 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑟𝑜𝑢𝑡𝑒𝑠 
𝑑𝑖𝑠𝑡𝑎, 𝑎𝑎 =  𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎 𝑎𝑛𝑑 𝑎𝑎 

[119] N L(arcs) 
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RNP Name Measurement Mathematical Formulation Reference Traffic 
Data? 

Global(G)/ 
Regional 

(R)/Local (L) 

Alternative Routes 2a 𝐴𝑙𝑡𝑟𝑜𝑢𝑡𝑒𝑠2𝑎 =
𝑣𝑎

∑ (𝑟𝑐𝑎𝑎 ∗ 𝑒
𝜍2∗𝑑𝑖𝑠𝑡𝑎,𝑎𝑎)𝑎𝑎∈𝐴𝑎

=
𝑐𝑎𝑝𝑎

∑ (𝑐𝑎𝑝𝑎𝑎 ∗ 𝑒
𝜍2𝑑𝑖𝑠𝑡𝑎,𝑎𝑎)𝑎𝑎∈𝐴𝑎

 

𝜍2 = ln(𝜍1) 
𝑣𝑎=flow 

𝜍1 and 𝜍2 importance of the distance from alternative routes 
𝑑𝑖𝑠𝑡𝑎,𝑎𝑎 =  𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎 𝑎𝑛𝑑 𝑎𝑎 

𝑟𝑐𝑎𝑎 =  𝑠𝑝𝑎𝑟𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑛 𝑙𝑖𝑛𝑘 𝑎𝑎 

[119] N L (arcs) 

A
cc

es
si

b
ili

ty
 

Diameter 𝐷 = max(𝑆𝑃𝑖,𝑗) 

𝑆𝑃 =  𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 
𝑖 𝑎𝑛𝑑 𝑗 

[109, 22, 
21] 

N G* 

Shimbel Index 
𝐷(𝑉) =∑∑𝑑𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

𝑑𝑖𝑗 = 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖, 𝑗 

[19] N G* 

Average Shimbel 
Index 𝐴𝑖 =

∑ 𝑑𝑖𝑗
𝑛
𝑗=1

𝑣 − 1
 

𝑑𝑖𝑗 = 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖, 𝑗 

[22] N L 

Betweenness 𝐶𝐵𝑘 =∑∑
𝑚𝑖𝑗𝑘

∑ 𝑚𝑖𝑗𝑘𝑘

 

𝑗

𝑖 ≠ 𝑗 ≠ 𝑘

𝑖

 

𝑚𝑖𝑗𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 

𝑙𝑖𝑛𝑘𝑖𝑛𝑔 𝑖 𝑎𝑛𝑑 𝑗 𝑖𝑛𝑣𝑜𝑙𝑣𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑘 

[19, 22, 
113, 21, 

120, 121] 

N L 

Normalized 
Betweenness 

𝐵𝐶(𝑖) =
1

(𝑣 − 2)(𝑣 − 1)
∑

𝜎𝑠𝑡(𝑖)

𝜎𝑠𝑡
𝑠≠𝑖≠𝑗

 

𝜎𝑠𝑡=shortest paths form s to j 
𝜎𝑠𝑡(𝑖)=shortest paths from s to j that pass through i 

v=No. vertices 

[21] N L 

Normalized 
Closeness Centrality 

𝐶𝐶(𝑖) =
𝑣 − 1

𝑙𝑖𝑗
 

𝑙𝑖𝑗=shortest path length between i and j 

[21] N L 

Detour Index 
(circuity) 𝐷𝐼 =

𝐷(𝑆)

𝐷(𝑇)
 

𝐷(𝑆) = 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
𝐷(𝑇) = rⅇal distancⅇ 

[109] N G 

Efficiency 
𝐸𝑟𝑒𝑙 =

𝐷𝐼 − 𝐷𝐼𝑀𝑆𝑇

𝐷𝐼𝐺𝑇 − 𝐷𝐼𝑀𝑆𝑇
 

MST=minimum spanning tree 
GT= greedy triangulation 

𝐶𝑜𝑠𝑡 =∑𝑎𝑖𝑗𝑙𝑖𝑗
𝑖𝑗

 

[109] N G* 

Network Density 
𝑁𝑆 =  

𝑅

𝑆
 

𝑅 =  𝑡𝑜𝑡𝑎𝑙 𝑟𝑜𝑢𝑡𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 
𝑆 =  𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 

[109] N G 

Length Of Network 
Open 

𝐿(𝑡) =
𝑥(𝑡)

𝑥̅
 

𝑥̅= pre-earthquake open 
𝑥(𝑡)= open at time t 

[122] N G (dynamic) 

Total Distance-Base 
Accessibility 𝐷(𝑡) =

𝑓 − 𝐴(𝑡)

𝑓 − 1
 

𝐴(𝑡) =
∑ ∑ 𝑑𝑖𝑗(𝑡)𝑗𝑖

∑ ∑ 𝑑𝑖𝑗̅̅ ̅̅𝑗𝑖

,  1 ≤ 𝐴 ≤ 𝑓 

𝑓 = effective distance multiplier for link closure 
A = total network accessibility ratio 

𝑑𝑖𝑗 and 𝑑𝑖𝑗̅̅ ̅̅ = minimum travel distance between i and j on damaged 

network and intact network 

[122] N G 
(dynamic) 
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RNP Name Measurement Mathematical Formulation Reference Traffic 
Data? 

Global(G)/ 
Regional 

(R)/Local (L) 

Areal Distance-Base 
Accessibility 

𝐷𝑠(𝑡) =
𝑓−𝐴𝑠(𝑡)

𝑓−1
, accessibility performance for area s 

𝐴𝑠(𝑡) =
1

𝑛𝑆
∑ 𝐴𝑖(𝑡)𝑖 ∈𝑁𝑠 , transport accessibility ratio area s. 

𝐴𝑖(𝑡) =
∑ 𝑤𝑖𝑗𝑑𝑖𝑗(𝑡)𝑗≠𝑖

∑ 𝑤𝑖𝑗𝑑𝑖𝑗̅̅ ̅̅𝑗≠𝑖

, 𝑤𝑖𝑗 =
1\ 

𝑛𝑟 − 𝛿𝑟
.
𝑣𝑠𝑟\ 

∑ 𝑣𝑠𝑝𝑝

 𝑖 𝜖 𝑁𝑠 ,  𝑗 𝜖𝑁𝑟  

𝑛𝑆=number of nodes on area s, 𝑁𝑆= set of nodes on area s, 𝑤𝑖𝑗= 

destination weight for node j for commuter originated from i, 
𝑣𝑠𝑟=commuter traffic flow subarea s to subarea r 

[122] Y  G 
(Dynamic) 

ARIA 
(Access/Remoteness 

Index of Australia) 

vrs =∑∑𝑑𝑖𝑗vijrs
𝑗𝑖

 

vijrs= change in generalized cost of travel from 

i to j if network link 𝑒rs fails. 
𝑒rs link connecting r and s) 

𝑑ij =demand movement from i to j. 

[20] Y G 

Aria L 𝐴𝑅𝐼𝐴𝑖𝐿 =∑min{3,
𝑥𝑖𝐿
𝑥𝐿̅̅ ̅
}

𝐿

 

L= category A, B, C, D, E. 
𝑥𝐿̅̅ ̅ = 𝑚𝑒𝑎𝑛 𝑟𝑜𝑎𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 L service 

[20] N G* 

Hansen Integral 
Accessibility Index 𝐴𝑖 =∑𝐵𝑗𝑓(𝑐𝑖𝑗)~

∑ 𝐵𝑗𝑓(𝑐𝑖𝑗)𝑗

∑ 𝐵𝑗𝑗

 

𝑗

 

𝐵𝑗= attractiveness of location j (pop) 

𝑓(𝑐𝑖𝑗) =
1

𝑥𝑖𝑗
, impendance function 

𝑥𝑖𝑗= cost tor travel between i to j 

[123, 20, 
124] 

N L 

Accessibility Score 

𝐴𝑖 = 4 [𝛼
𝑃𝑖

∑ Pk
24
𝑘=1

∑(
𝑃𝑗

∑ 𝑃𝑘
24
𝑘=1

𝑑𝑖𝑗
−𝛽

∑ 𝑑𝑖𝑘∗
−𝛽24

𝑘=1

)

23

𝑗=1

+ (1 − 𝛼)
𝑃𝑖

∑ Pk
24
𝑘=1

∑(
𝑃𝑗

∑ 𝑃𝑘
24
𝑘=1

𝑡𝑖𝑗
∑ 𝑡𝑖𝑘∗
24
𝑘=1

)

23

𝑗=1

] (𝑖

≠ 𝑗) 
𝐴𝑖= accessibility county i, 𝛼=weighting factor (0-1), 𝑃𝑖(𝑗)= 

Population in County i(j) 
𝑑𝑖𝑗= shortest road distance between i and j under a scenario 

𝑑𝑖𝑗∗= initial shortest road distance between i and j 

𝑡𝑖𝑗 = ∑
𝐴𝐴𝐷𝑇𝑚𝑑𝑚

𝑑𝑖𝑗

𝑛
𝑚=1 , average traffic between i and j on the sp 

𝐴𝐴𝐷𝑇𝑚= annual average daily traffic on link m 
𝑑𝑚= distance on link segment m 

[125] Y L 

Origin Standpoint 𝐴𝑖𝑘
𝑝 =∑𝑔(𝑊𝑗𝑘)𝑓(𝑐𝑖𝑗

𝑝)

𝑗

= ∑ 𝑔(𝑊𝑗𝑘)

𝑗∈𝑅𝑖
𝑝

, 

i= location, k=opportunity, p=individual, 

𝑅𝑖
𝑝=region defined for individual p based 

at location i 

[126] N L 

Destination 
Standpoint 

𝑀𝑘𝑗
𝑝 =∑𝑔(𝑃𝑖𝑘

𝑝)𝑓(𝑐𝑖𝑗
𝑝)

𝑖

, 

j= location, k=opportunity, p=individual, 
𝑃=size p of population segment p at i. 

𝑐𝑖𝑗
𝑝= cost of traveling between i and j as perceived by members of 

population segment p 

[126] N L 

Accessibility 𝐴 = 𝑚𝑒𝑎𝑛(𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒) 
A=𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 

𝑤𝑖𝑡ℎ𝑖𝑛𝑛 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑡𝑖𝑚𝑒 

[127] Y G 
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RNP Name Measurement Mathematical Formulation Reference Traffic 
Data? 

Global(G)/ 
Regional 

(R)/Local (L) 

Accessibility Index 
𝐴𝐼𝑤 =

1

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑎𝑡ℎ 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡𝑤
 

=
𝑞𝑤

∑ 𝑓𝑘
𝑤𝑐𝑘

𝑤
𝑘𝜖𝐻𝑤

,  ∀𝑤 𝜖 𝑊 

𝐴𝐼 =
∑ 𝑞𝑤 . 𝐴𝐼𝑤𝑤𝜖𝑊

∑ 𝑞𝑤𝑤𝜖𝑊

,  ∀𝑤 𝜖 𝑊 

𝑞𝑤= travel demand of OD movement w 
𝑐𝑤 =𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑝𝑎𝑡ℎ𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑂𝐷 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑤 

[128] Y G 

R
o

b
u

st
n

es
s 

Normalized Giant 
Connected 
Component 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐺𝐶𝐶 =
𝑁𝐺𝐶𝐶,𝑎𝑓𝑡𝑒𝑟
𝑁𝐺𝐶𝐶,𝑏𝑒𝑓𝑜𝑟𝑒

 

GCC=Giant connected component 

[113] N G* 

Network Robustness 
Index 

𝑁𝑅𝐼𝑎 = 𝑞𝑎 = 𝑐𝑎 − 𝑐 
𝑐𝑎=∑ 𝑡𝑖𝑥𝑖𝛿𝑖𝑖

 

𝛿𝑖 = {
1 𝑖𝑓 𝑙𝑖𝑛𝑘 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑟𝑒𝑚𝑜𝑣𝑒𝑑

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑐 = ∑ 𝑡𝑎𝑥𝑎𝑎 , 𝑡𝑎 = 𝑡𝑎(𝑥𝑎) 
= 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑓𝑙𝑜𝑤) 

[112, 129] Y G 

Modified NRI 𝑁𝑅𝐼𝑎(𝑚𝑜𝑑) = 𝑞𝑎 = 𝑐𝑎 − 𝑐 
𝑐𝑎=∑ 𝑡𝑖𝑥𝑖𝛿𝑖𝑖

 

𝑝𝑖 =percentage of capacity reduction on link i 
{99, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 

40, 35, 30}. 
𝑐 = ∑ 𝑡𝑎𝑥𝑎𝑎 , 𝑡𝑎 = 𝑡𝑎(𝑥𝑎) 
= 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑓𝑙𝑜𝑤) 

[129, 130] Y G 

Network Trip 
Robustness 𝑁𝑇𝑅𝑛 =  

∑ 𝑁𝑅𝐼𝑎𝑎∈𝐼

𝐷𝑛
 

𝐷𝑛 =Total demand between all origins and 
all destinations in network n. 

[129] Y G 

R1 
𝑅1(𝑛) =

𝑎𝑛𝑙(𝑛)

𝑚
,  𝑅1(𝑛)𝜖 (0,  +  ∞) 

n= number of components to decompose the network 
m= number of nodes in the network 

𝑎𝑛𝑙(𝑛) = average number of nodes to remove from the network to 
disintegrate it in n parts. 

[131] N G* 

R2 
𝑅2(𝑛) =

1

𝑘
∑

𝑐𝑜𝑚𝑝(𝐺𝑖) − 1

𝑙𝑖𝑛𝑘(𝐺𝑖)

𝑘

𝑖=1

,  𝑅2  𝜖 (0,  1), 

𝑘 =∑(
𝑙

𝑗
)

𝑙

𝑗

 

𝐾 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠 𝑡ℎ𝑎𝑡 𝑐𝑎𝑛 𝑏𝑒  
𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

𝑐𝑜𝑚𝑝(𝐺𝑖) =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑎𝑓𝑡𝑒𝑟 
𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ  𝑙𝑖𝑛𝑘,  

𝑙𝑖𝑛𝑘 (𝐺𝑖) =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑡ℎ 
𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑛𝑒𝑡𝑤𝑜𝑟𝑘. 

 𝐺𝑖 =  𝑁𝑒𝑡𝑤𝑜𝑟𝑘 
𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠 

[131] N G* 

Robustness Network 
Design Alternative 

rn
max =e𝜖𝐸 max(Δy(n|ⅇ)) 

𝑟𝑛 = 𝐸[Δ𝑦(𝑛|𝑒)] =∑[𝑝𝑒Δ𝑦(𝑛|𝑒)]

𝑒𝜖𝐸

 

Δ𝑦(𝑒|𝑛) = 𝑦(𝑛, 𝑒) − 𝑦(𝑛0, 𝑒) 
𝑦(𝑛, 𝑒)=disturbance occurs on link e 

𝑦(𝑛0, 𝑒)= disturbance occurs on link e on 
base case network 

𝑝𝑒 =  probability link e fail 

[132] N G* 

Topological Index 

𝑇𝐼(𝐺) =∑〖𝑃(𝐺, 𝑘〗)

𝑚

𝑘=0

,  𝑚 = {

𝑛

2
, 𝑖𝑓 𝑒𝑣𝑒𝑛

𝑛 − 1

2
.  𝑖𝑓 𝑜𝑑𝑑

 

[133] N G* 
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Data? 

Global(G)/ 
Regional 

(R)/Local (L) 

R
es

ili
en

ce
 

*Node Resilience 
𝑟𝑖 = ∑ 𝑣𝑗 ∑ ∑ 𝑞𝑙

𝑙 𝜖𝐿𝑘(𝑖,𝑗)∀𝑘 𝑙𝑖𝑛𝑘 (𝑖,𝑗)

𝑛

𝑗=1, 𝑗≠𝑖

 

𝑣𝑗 =
𝑢𝑖

(∑ 〖𝑢𝑗 − 𝑢𝑖)
𝑛
𝑗 〗

 

𝑣𝑗=self-exhausted weight 

𝑢𝑗 = population on node i 

[134] N L 

Resilience 
𝑅(𝐺) =∑𝑤𝑖 ∑ 𝑣𝑗 ∑ ∑ 𝑞𝑙

𝑙 𝜖𝐿𝑘(𝑖,𝑗)∀𝑘 𝑙𝑖𝑛𝑘 (𝑖,𝑗)

𝑛

𝑗=1, 𝑗≠𝑖

𝑛

𝑖=1

 

𝑤𝑖 =
𝑢𝑖
∑ 𝑢𝑗
𝑛
𝑗

 

𝑤𝑗=weight 

𝑢𝑗 = population on node i 

[134] N G* 

Adaptive Capacity 
𝐴 =

∑ 𝑚𝑖(𝑘)
𝑛
𝑖

𝑚𝑖

 

𝑚𝑖=C-F (Capacity- Flow) 
𝑚𝑖=margin of node i 

𝑚𝑖(k)= margin of node i after node k is removed. 

[20] Y G 

Resilience Metric 
𝑅𝑒𝑠𝑠1,𝑒𝑓𝑓 =

∫ 𝜆  ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑡𝑖𝑐𝑎𝑙 −
𝑝0.95

𝑝0
∫ 𝜆  𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑝0.95

𝑝0

∫ 𝜆  ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑡𝑖𝑐𝑎𝑙 
𝑝0.95

𝑝0

∗ 100 

𝑅𝑒𝑠𝑠1,𝐺𝐶𝐶 =
∫ 𝑁𝐺𝐶𝐶,  ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑡𝑖𝑐𝑎𝑙 −
𝑝0.95

𝑝0
∫ 𝑁 𝐺𝐶𝐶,  𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑝0.95

𝑝0

∫ 𝑁 𝐺𝐶𝐶,  ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑡𝑖𝑐𝑎𝑙 
𝑝0.95

𝑝0

∗ 100 

𝐷𝑖𝑓𝑓𝑥 = 𝐵𝐶𝑥, 𝑏𝑒𝑓𝑜𝑟𝑒 −
1

𝑠
𝐵𝐶𝑥, 𝑎𝑓𝑡𝑒𝑟 

[113] Y G 

Travel Time 
Resilience 𝑇𝑇,𝐵 =

𝑡𝑡𝑟
−1

𝑡𝑡𝑜
−1 =

< 𝑥0, 𝑡0 >

< 𝑥𝑟 , 𝑡𝑟 >
 

𝑡𝑡𝑟
−1

=reciprocal ttt achieved in reaching a PUE at the end of the 
response stage 

𝑡𝑡𝑜
−1

=reciporcal ttt achieved in reaching a UE in pre-event 

[16] Y G 

R
el

ia
b

ili
ty

 

Travel Time Index 
𝑇𝑇𝐼 =

𝑇𝑃𝑃
𝑇𝐹𝐹

 

𝑇𝑃𝑃 = 𝑡𝑖𝑚𝑒 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑝𝑒𝑎𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 
𝑇𝐹𝐹 = 𝑡𝑖𝑚𝑒 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑓𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 

[135] Y G 

Herman-Prigogine 𝑇 = 𝑇𝑟 + 𝑇𝑠 
𝑇= trip time per unit distance 

𝑇𝑟 = 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 “𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒”  
𝑇𝑠 = stop time per unit distance. 

[135] Y G 

Buffer Time 𝑇𝑏 = 𝑇90%(95%) +  𝑇̅ 

𝑇90%(95%)= 90 or 95 percentile of trip duration 

𝑇̅ = average trip duration 

𝐼𝑏 =
𝑇𝑏
𝑇̅
∗ 100% 

[135] Y G 

Coefficient Of 
Variation 𝐶𝑉 =

𝜎

𝑡̅
= 𝛽𝛽𝑡𝑜𝑑𝛽𝑠𝑝𝑒𝑒𝑑𝐿

𝛼𝑡𝛾−1 (
𝑡̅

𝑇
− 1)

𝜔

 

𝜎=standard deviation travel time, 𝑡=̅ mean travel time, 
T= travel time under free flow, L= length link 

𝛽𝑡𝑜𝑑 , 𝛽𝑠𝑝𝑒𝑒𝑑 =dummy variable for the time of day and speed, 

𝜔,  𝛼,  𝛾,  𝛽 = ⅇstimatⅇd paramⅇtⅇrs 

[130, 136] Y G 

Statistical Range 
𝜎 = √

1

𝑁− 1
∑(𝑇𝑇𝑖 − 𝑡̅)

2

𝑁

 
[136] Y G 

Buffer Time 
𝐵𝐼 =

𝑇𝑇90 − 𝑡̅

𝑡̅
 

[136] Y G 

Tardy Trip MI=
𝑀𝐼𝑇𝑇𝑖>𝑇𝑇80−𝑡

̅

𝑡̅
 

Probabilistic P(𝛼) = 𝑃(𝑇𝑇𝑖 ≥ 𝛼𝑇𝑇50) 
e.g., 𝛼 = 1.2 
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RNP Name Measurement Mathematical Formulation Reference Traffic 
Data? 

Global(G)/ 
Regional 

(R)/Local (L) 

Skewness 
𝐺 =

𝑁∑ (𝑇𝑇𝑖 − 𝑡̅)
3

𝑁

3𝜎3(𝑁 − 1)(𝑁 − 2)
 

Lambda Skew 
𝜆𝑠𝑘𝑒𝑤 =

𝑇𝑇90 − 𝑇𝑇50
𝑇𝑇50 − 𝑇𝑇10

 

Lambda Width 
𝜆𝑣𝑎𝑟 =

𝑇𝑇90 − 𝑇𝑇10
𝑇𝑇50

 

Unreliability 

𝑈𝐼𝑟 =

{
 
 

 
 𝜆

𝑣𝑎𝑟 ln(𝜆𝑠𝑘𝑒𝑤)

𝐿𝑟
,  𝑖𝑓 𝜆𝑠𝑘𝑒𝑤 > 1 

𝜆𝑣𝑎𝑟

𝐿𝑟
,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

𝐿𝑟= length route 

Arc Performance 
Reliability 

R_i = P(C_i ≥ v_i ) = {█(𝑎,  𝑣_𝑖 ≥ 𝑐_min ^𝑖@0,  𝑐_max ^𝑖
< 𝑣_𝑖 )┤ 

𝑎 = ∫ _(𝑣_𝑖)^(𝐶_max ^𝑖)▒〖𝑓_𝑖^𝑝 (𝑥)𝑑𝑥
=〗 ∫ _(𝑣_𝑖)^(𝐶_max ^𝑖)▒(𝑓_𝑖 (𝑥) + (1
− ∫ _(𝑐_min ^𝑖)^(𝐶_max ^𝑖)▒〖𝑓_𝑖 (𝑐)𝑑𝑐〗)/(𝑐_max ^𝑖
− 𝑐_min ^𝑖 ))𝑑𝑥 

vi=flow volume, Ci=random capacity 
R_i = P(C_i ≥ v_i/𝛼_𝑖 )

= { ({
𝑣𝑖
𝛼𝑖
∫ 𝑓𝑖

𝑝(𝑐)𝑑𝑐 =
𝐶(max

𝑖
)

,
 𝑣𝑖
𝛼𝑖
𝑐

≥ min
𝑖 0

 𝑐,max
𝑖

<
𝑣𝑖
𝛼𝑖

 

[137] Y 

Capacity Reliability 𝑀𝑎𝑥 𝜇 
ss.t. va( 𝜇𝑞) ≤,  ∀𝑎 𝜖𝐴 

va( 𝜇𝑞) user equilibrium flow on a link a 
with the demands of all OD pairs 

[138] Y G 

Objectives 𝑀𝑎𝑥((𝑀𝑖𝑛(𝑡𝑟𝑖𝑝 𝑐𝑜𝑠𝑡)) [117] Y G 

V
u

ln
er

ab
ili

ty
 

Link Failure 
Vulnerability 

𝑣𝑟𝑠 =∑∑𝑑𝑖𝑗𝑣𝑖𝑗𝑟𝑠
𝑗𝑖

 

𝑑𝑖𝑗= demand for movement i to j 

𝑣𝑖𝑗𝑟𝑠= =𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡𝑟𝑎𝑣𝑒𝑙 from i to j if link 𝑟𝑠 

fails 
𝑣_𝑖𝑗𝑟𝑠 = 𝑠[𝑖𝑗, 𝐺(𝑁, 𝐸] − 𝑠[𝑖𝑗, 𝐺(𝑁, 𝐸 − 𝑒_𝑟𝑠] 

s [] path from i to j 

[123] Y G 

Vulnerability Index 𝑣𝑖𝑗𝑟𝑠 = 𝑠[𝑖𝑗, 𝐺(𝑁,𝑊)] − s[ij,  G(N, E − ⅇrs)] 

𝑠[𝑖𝑗, 𝐺(𝑁, 𝐸]= cost of the least cost from i to j 

[123] N L (arc) 

*Structural 
Vulnerability 𝑉𝑡 =

E− 𝐸𝑡
𝐸

,  𝐸 =
1

𝑣(𝑣 − 1)
∑

1

𝑑𝑖𝑗
𝑖,𝑗∈𝐸𝑗𝑖≠𝑗

 

𝐸=average efficiency intact road network 
𝐸𝑡=average efficiency intersection or section t  

interrupted road network 
dij=SP distance between i and j 

v = No. vertices 

[114] N G (dynamic) 

Importance 
𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑛𝑒𝑡(𝑘) =

∑ ∑ 𝑤𝑖𝑗𝑗≠𝑖 Δ𝑐𝑖𝑗
(𝑘)

𝑖

∑ ∑ 𝑤𝑖𝑗𝑗≠𝑖𝑖

,  𝑘𝜖𝐸𝑛𝑐  

𝑢𝑖𝑗
(𝑒) = {

𝑥𝑖𝑗 𝑖𝑓 𝑐𝑖𝑗
(𝑒) = ∞

0  𝑖𝑓 𝑐𝑖𝑗
(𝑒) < ∞

, Δ𝑐𝑖𝑗
(𝑒) = 𝑐𝑖𝑗

(𝑒)- 𝑐𝑖𝑗
(0) 

𝑐𝑖𝑗
(𝑒)=cost of travel i to j link e failed, 𝑐𝑖𝑗

(0)=cost of undamaged 

network, 𝑥𝑖𝑗 = travel demand i to j,  𝐸 = 𝐸𝐶 ∪𝐸𝑁𝐶  ,  𝑤𝑖𝑗={equal | 

xij} 

[139] 
 

Y 
 

G 

Exposure 
𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑟𝑎𝑛𝑑(𝑚) =

∑ ∑ ∑ 𝑤𝑖𝑗𝑗≠𝑖 Δ𝑐𝑖𝑗
(𝑘)

𝑖𝜖𝑉𝑚
𝑑𝑘𝜖𝐸𝑛𝑐

𝐿𝑛𝑐 ∑ ∑ 𝑤𝑖𝑗𝑗≠𝑖𝑖𝜖𝑉𝑚
𝑑

 

𝐿𝑛𝑐=number of noncut links 

G 
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RNP Name Measurement Mathematical Formulation Reference Traffic 
Data? 

Global(G)/ 
Regional 

(R)/Local (L) 

𝑉𝑚
𝑑=set of demand nodes located in municipality m 

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒max(𝑚) = max
𝑘𝜖𝐾𝑛𝑐 

∑ ∑ 𝑤𝑖𝑗𝑗≠𝑖 Δ𝑐𝑖𝑗
(𝑘)

𝑖𝜖𝑉𝑚
𝑑

∑ ∑ 𝑤𝑖𝑗𝑗≠𝑖𝑖𝜖𝑉𝑚
𝑑

 

Expected User 
Exposure 𝑈𝐸𝑟 =

∑ 𝑤𝑘 ∑ ∑ Δ𝑐𝑖𝑗
(𝑘)

𝑗≠𝑖𝑖𝜖𝑟𝑘

∑ ∑ 𝑥𝑖𝑗𝜏𝑗≠𝑖𝑖𝜖𝑟

 

𝜏=time from the closure to fully functional 

Δ𝑐𝑖𝑗
(𝑘)=total increase in travel time between i and j 

𝑥𝑖𝑗=average travel demand per unit of time 

r= region, 𝑙𝑘 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙𝑖𝑛𝑘 𝑘, 𝑤𝑘 =
𝑙𝑘

∑ 𝑙𝑘𝑘
 

Closure probability link k. 

[14] Y G 

Total Exposure 𝑇𝐸𝑟 =∑𝑤𝑘∑∑Δ𝑐𝑖𝑗
(𝑘)

𝑗≠𝑖𝑖𝜖𝑟𝑘

 

Δ𝑐𝑖𝑗
(𝑘)=total increase in travel time between i and j 

r= region, 𝑙𝑘 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙𝑖𝑛𝑘 𝑘, 𝑤𝑘 =
𝑙𝑘

∑ 𝑙𝑘𝑘
 

Closure probability link k. 

[14] N R 

*Regional 
Importance 

𝐼𝑟 =∑𝑣𝑘∑∑Δ𝑐𝑖𝑗
(𝑘)

𝑗≠𝑖𝑖𝜖𝑟𝑘

 

Δ𝑐𝑖𝑗
(𝑘)=total increase in travel time between i and j 

r= region, 𝑙𝑘 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙𝑖𝑛𝑘 𝑘, 𝑣𝑘 =
𝑙𝑘

∑ 𝑙𝑘𝑘𝜖𝑟
 Closure probability link 

k.   Δ𝑐𝑖𝑗
(𝑘)
= {

𝑥𝑖𝑗𝜏
2

2
 𝑖𝑓 Δ𝑐𝑖𝑗

𝑘 ≥ 𝜏

𝑥𝑖𝑗 Δ𝑐𝑖𝑗
𝑘 (𝜏 −

Δ𝑐𝑖𝑗
𝑘

2
) 𝑖𝑓 Δ𝑐𝑖𝑗

𝑘 < 𝜏 
 

[14] N R 

Vulnerability 𝐸[𝑟(𝑠)] =∑𝑝(𝑎)𝑟(𝑎)

𝑎𝜖𝐴

 

𝑉𝑟(𝑠) =
|𝐸[𝑟(𝑠0)] − 𝑟0|

𝑟0
 

[116] Y G 

Isolation Index 𝐼(𝑠, 𝑡) = (𝑟𝜍, 𝛾(𝑠, 𝑡))
−1
× 𝑒(𝛼×𝑑̅(𝑠,𝑡)) 

𝑟𝜍, 𝛾(𝑠, 𝑡) =redundancy index s to t 

𝑒(𝛼×𝑑̅(𝑠,𝑡))= exp. function of avg. length of redundant paths 

[140] N L (dynamic) 

Trip Type Isolation 
Index 

𝐼𝑖 =∑∑(𝑟𝜍, 𝛾(𝑠𝑖 , 𝑡𝑖))
−1
× 𝑒(𝛼×𝑑̅(𝑠𝑖,𝑡𝑖))

𝑠𝑖𝑡𝑖

 

𝑟𝜍, 𝛾(𝑟, 𝑡) =redundancy index s to t 

𝑒(𝛼×𝑑̅(𝑠,𝑡))= exp. function of avg. length of redundant paths 

[133] N L (dynamic) 
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Appendix B. SSRI and NRI for Multiple Hazards 

This appendix shows the cluster of each Natural Hazards analyzed by setting the cluster on 0.9 
on SSRI and 0.5 on NRI. The captions of the figures identify the natural hazard into 
consideration. 

 

Figure B.1. Winter Weather (WNTW) 

 

Figure B.2. Earthquake (ERQK) 
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Figure B.3. Drought (DRGT) 

 

Figure B.4. Cold Wave (CWAV) 
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Figure B.5. Coastal Flooding (CFLD) 

 

Figure B.6. Avalanche (AVLN) 
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Figure B.7. Hail (HAIL) 

 

Figure B.8. Hot Wave (HWAV) 
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Figure B.9. Hurricane (HRCN) 

 

Figure B.10. Landslide (LNDS) 
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Figure B.11. Lighting (LTNG) 

 

Figure B.12. Strong Wind (SWND) 
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Figure B.13. Rapid Flood (RFLD) 

 

Figure B.14. Tornado (TRND) 
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Figure B.15. Tsunami (TSUN) 

 

Figure B.16. Volcano (VLCN) 
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Figure B.17. Wildfire (WFIR) 

 

Figure B.18. All hazards (ALL)  



 

 110 

Appendix C. Thomas Fire Case Study 

Like the case study described in the Results section, this appendix summarizes the results of the 
Thomas Fire affecting the cities of Ventura, Ojai, Santa Paula, Meiners Oaks, Mira Monte, and 
Oak View. The team used their data or reports regarding the previous evacuations to evaluate 
how well aligned the safety elements of the emerging plans are relative to previous evacuation 
routes. The team conducted the same modeling and quantitative assessments. 

Data Management 

Generally, this project uses data from three main sources. Open Street Maps (OSM), the 
American Community Survey (ACS), and the National Risk Index (NRI) from FEMA. To estimate 
the social Vulnerability Index (SOVI), the team collected the following variables from the 
American Community Survey [98]: 

Table C.1. Theme and variables used for the Social Vulnerability Index from American 
Community Survey. 

Theme Variable 
Theme 1: 

Socioeconomic 
Status 

POV150: Proportion of population under 150% poverty level. 

UNEMP: Proportion of population unemployed. 
HBURD: Proportion of population cost-burdened. 

NOHSDP: Proportion of the population with no high school diploma. 

UNINSUR: Proportion of the population with no insurance. 
Theme 2: 

Household 
characteristics 

AGE65: Proportion of the population with 65 or more years. 

AGE17: Proportion of population with 17 or less years. 

DISABL: Proportion of population with disability. 

SNGPNT: A proportion of the population is considered to be single parents. 

LIMENG: Proportion of population with English limitations. 
Theme 3: 
Minority 

MINRTY: The proportion of the population considered to be a minority. 

Theme 4: 
housing type & 
transportation 

MUNIT: Proportion of structures with 10 or more units. 

MOBILE: Proportion of the population living in mobile homes. 

CROWD: Proportion of structures with more inhabitants than rooms. 
NOVEH: Proportion of the population with no vehicle. 

GROUPQ: Proportion of population living in group quarters. 

Tables C.2 through C.8 summarize the key characteristics of the study region based on the 
variables across the four themes. 
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Table C.2. Summary of the population percentage with each of the characteristics required to estimate the Social Vulnerability Index at the 
census block group in Ventura, Santa Paula, and Ojai. 

Census block group: 
THEME 1:  
Socio Economic Status 

THEME 2: 
Household characteristics 

THEME 3: Racial & Ethnic Minority Status 
THEME 4: 
Housing Type & Transportation 

POV150 UNEMP HBURD NOHSDP UNINSUR AGE65 AGE17 DISABL SNGPNT LIMENG MINRTY MUNIT MOBILE CROWD NOVEH GRQ 

61110004001 29% 7% 37% 21% 14% 10% 8% 11% 1% 22% 49% 0% 4% 1% 4% 7% 

61110004002 29% 0% 37% 9% 14% 26% 21% 11% 0% 22% 40% 0% 4% 0% 0% 7% 

61110004003 29% 7% 37% 36% 14% 20% 22% 11% 4% 22% 83% 0% 4% 14% 0% 7% 

61110004004 29% 1% 37% 48% 14% 8% 37% 11% 8% 22% 100% 0% 4% 18% 0% 7% 

61110005001 22% 3% 34% 28% 8% 32% 24% 23% 7% 14% 52% 0% 48% 7% 6% 0% 

61110006001 34% 14% 51% 36% 9% 6% 32% 16% 10% 27% 87% 0% 0% 5% 24% 0% 

61110006002 34% 6% 51% 42% 9% 16% 48% 16% 14% 27% 91% 42% 0% 0% 16% 0% 

61110006003 34% 4% 51% 66% 9% 1% 22% 16% 5% 27% 99% 10% 0% 8% 6% 0% 

61110006004 34% 7% 51% 51% 9% 15% 33% 16% 0% 27% 94% 17% 0% 21% 15% 0% 

61110006005 34% 5% 51% 29% 9% 3% 26% 16% 14% 27% 89% 2% 0% 7% 11% 0% 

61110007011 30% 8% 41% 25% 16% 8% 31% 10% 5% 19% 91% 7% 13% 18% 1% 1% 

61110007012 30% 10% 41% 45% 16% 8% 40% 10% 19% 19% 93% 22% 13% 18% 4% 1% 

61110007013 30% 1% 41% 54% 16% 8% 23% 10% 9% 19% 97% 0% 13% 24% 2% 1% 

61110007014 30% 7% 41% 51% 16% 3% 30% 10% 12% 19% 93% 16% 13% 20% 6% 1% 

61110007021 13% 7% 33% 27% 7% 6% 24% 15% 1% 12% 90% 0% 0% 8% 8% 0% 

61110007022 13% 8% 33% 15% 7% 26% 18% 15% 4% 12% 78% 0% 0% 1% 1% 0% 

61110008001 17% 8% 29% 16% 8% 8% 44% 8% 8% 12% 96% 0% 8% 0% 0% 0% 

61110008002 17% 6% 29% 26% 8% 10% 33% 8% 11% 12% 68% 0% 8% 7% 1% 0% 

61110008003 17% 3% 29% 24% 8% 17% 15% 8% 0% 12% 79% 2% 8% 6% 2% 0% 

61110008004 17% 5% 29% 13% 8% 33% 22% 8% 4% 12% 74% 0% 8% 2% 2% 0% 

61110009011 11% 2% 32% 5% 6% 40% 11% 11% 5% 1% 12% 11% 0% 6% 7% 3% 

61110009012 11% 10% 32% 7% 6% 30% 3% 11% 0% 1% 17% 0% 0% 0% 13% 3% 

61110009021 27% 2% 33% 2% 10% 27% 16% 11% 2% 4% 11% 5% 1% 3% 0% 1% 

61110009022 27% 2% 33% 13% 10% 19% 24% 11% 1% 4% 34% 11% 1% 5% 6% 1% 

61110009031 8% 5% 29% 23% 6% 29% 9% 11% 6% 5% 42% 0% 8% 0% 0% 6% 

61110009032 8% 0% 29% 5% 6% 28% 7% 11% 0% 5% 32% 10% 8% 0% 10% 6% 

61110009033 8% 0% 29% 0% 6% 14% 30% 11% 4% 5% 18% 0% 8% 0% 0% 6% 

61110009034 8% 10% 29% 4% 6% 42% 11% 11% 3% 5% 14% 12% 8% 4% 20% 6% 

61110009035 8% 17% 29% 7% 6% 25% 19% 11% 8% 5% 25% 0% 8% 0% 0% 6% 

61110010021 15% 8% 21% 8% 4% 46% 15% 15% 0% 3% 21% 0% 25% 1% 0% 1% 

61110010022 15% 12% 21% 8% 4% 34% 16% 15% 0% 3% 15% 0% 25% 2% 11% 1% 

61110010023 15% 9% 21% 10% 4% 21% 22% 15% 5% 3% 39% 0% 25% 0% 0% 1% 

61110010024 15% 1% 21% 5% 4% 16% 13% 15% 9% 3% 25% 7% 25% 0% 4% 1% 

61110011011 7% 1% 26% 11% 7% 18% 12% 16% 3% 4% 38% 0% 12% 2% 5% 0% 

61110011012 7% 7% 26% 17% 7% 11% 17% 16% 2% 4% 37% 0% 12% 2% 2% 0% 

61110011021 15% 6% 22% 2% 7% 28% 13% 9% 2% 3% 16% 1% 3% 6% 1% 0% 

61110011022 15% 0% 22% 11% 7% 17% 24% 9% 1% 3% 23% 0% 3% 7% 0% 0% 

61110012011 14% 2% 42% 16% 4% 5% 30% 13% 16% 4% 72% 30% 9% 10% 9% 0% 

61110012012 14% 5% 42% 8% 4% 26% 16% 13% 7% 4% 43% 48% 9% 1% 19% 0% 

61110012013 14% 16% 42% 18% 4% 35% 15% 13% 3% 4% 62% 0% 9% 11% 13% 0% 

61110012021 5% 4% 9% 2% 5% 12% 22% 8% 0% 0% 42% 0% 0% 2% 0% 0% 
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Census block group: 
THEME 1:  
Socio Economic Status 

THEME 2: 
Household characteristics 

THEME 3: Racial & Ethnic Minority Status 
THEME 4: 
Housing Type & Transportation 

POV150 UNEMP HBURD NOHSDP UNINSUR AGE65 AGE17 DISABL SNGPNT LIMENG MINRTY MUNIT MOBILE CROWD NOVEH GRQ 

61110012022 5% 4% 9% 4% 5% 16% 19% 8% 1% 0% 35% 6% 0% 0% 1% 0% 

61110012023 5% 4% 9% 1% 5% 30% 18% 8% 2% 0% 33% 0% 0% 0% 0% 0% 

61110012041 17% 3% 28% 21% 12% 10% 22% 9% 13% 8% 58% 0% 28% 4% 2% 3% 

61110013021 21% 1% 23% 25% 4% 31% 22% 25% 1% 14% 75% 9% 33% 11% 9% 0% 

61110013031 11% 1% 28% 19% 5% 8% 29% 12% 0% 9% 61% 0% 0% 0% 0% 0% 

61110013032 11% 6% 28% 10% 5% 19% 18% 12% 6% 9% 55% 28% 0% 15% 4% 0% 

61110013041 13% 0% 33% 23% 1% 33% 6% 11% 0% 2% 50% 2% 3% 0% 2% 0% 

61110013042 13% 4% 33% 12% 1% 5% 21% 11% 9% 2% 54% 7% 3% 5% 5% 0% 

61110014011 9% 7% 21% 1% 8% 23% 21% 10% 17% 4% 46% 0% 0% 2% 5% 1% 

61110014012 9% 6% 21% 7% 8% 18% 23% 10% 7% 4% 31% 6% 0% 5% 3% 1% 

61110014021 10% 11% 22% 7% 5% 8% 24% 10% 3% 2% 53% 0% 0% 4% 0% 0% 

61110014022 10% 2% 22% 2% 5% 31% 10% 10% 1% 2% 21% 47% 0% 1% 13% 0% 

61110014023 10% 4% 22% 3% 5% 22% 17% 10% 0% 2% 45% 0% 0% 0% 3% 0% 

61110015061 9% 3% 24% 6% 4% 20% 16% 13% 2% 5% 52% 1% 2% 0% 11% 0% 

61110015062 9% 2% 24% 14% 4% 20% 22% 13% 1% 5% 54% 0% 2% 6% 0% 0% 

61110015063 9% 3% 24% 5% 4% 25% 15% 13% 3% 5% 38% 0% 2% 2% 2% 0% 

61110015071 15% 8% 31% 8% 6% 10% 27% 10% 0% 2% 41% 0% 1% 0% 11% 1% 

61110015072 15% 0% 31% 7% 6% 21% 23% 10% 4% 2% 45% 17% 1% 1% 5% 1% 

61110015073 15% 5% 31% 22% 6% 9% 25% 10% 9% 2% 64% 14% 1% 10% 3% 1% 

61110015081 18% 4% 26% 9% 4% 16% 24% 15% 8% 5% 50% 8% 17% 4% 6% 0% 

61110015091 25% 15% 57% 25% 6% 15% 29% 15% 16% 8% 73% 13% 7% 5% 9% 4% 

61110015092 25% 6% 57% 9% 6% 21% 21% 15% 6% 8% 51% 35% 7% 7% 18% 4% 

61110015101 22% 10% 34% 3% 3% 23% 15% 17% 3% 2% 44% 15% 24% 4% 12% 27% 

61110015111 27% 0% 42% 11% 4% 7% 25% 11% 5% 15% 59% 26% 0% 3% 11% 0% 

61110015112 27% 0% 42% 4% 4% 9% 21% 11% 0% 15% 77% 64% 0% 6% 0% 0% 

61110016021 15% 2% 28% 8% 2% 28% 16% 16% 3% 1% 36% 10% 12% 2% 4% 1% 

61110016022 15% 1% 28% 2% 2% 20% 30% 16% 2% 1% 31% 0% 12% 2% 0% 1% 

61110018011 13% 10% 12% 3% 5% 27% 18% 13% 2% 0% 32% 2% 1% 0% 3% 2% 

61110018012 13% 2% 12% 2% 5% 16% 28% 13% 4% 0% 24% 0% 1% 5% 3% 2% 

61110018013 13% 5% 12% 3% 5% 18% 32% 13% 2% 0% 35% 0% 1% 8% 2% 2% 

61110019011 24% 7% 34% 2% 5% 22% 22% 11% 2% 1% 18% 0% 0% 2% 2% 2% 

61110019012 24% 5% 34% 9% 5% 20% 24% 11% 18% 1% 51% 5% 0% 3% 0% 2% 

61110020001 7% 2% 27% 0% 6% 20% 18% 13% 7% 1% 22% 0% 0% 0% 0% 1% 

61110020002 7% 7% 27% 0% 6% 26% 17% 13% 2% 1% 18% 0% 0% 6% 0% 1% 

61110020003 7% 15% 27% 1% 6% 34% 18% 13% 6% 1% 16% 12% 0% 0% 1% 1% 

61110021021 14% 5% 41% 4% 1% 10% 15% 22% 2% 2% 30% 52% 0% 3% 15% 0% 

61110021022 14% 2% 41% 0% 1% 17% 8% 22% 0% 2% 26% 40% 0% 4% 1% 0% 

61110022001 29% 7% 42% 34% 14% 5% 32% 12% 3% 8% 88% 10% 1% 26% 15% 1% 

61110022002 29% 4% 42% 10% 14% 13% 29% 12% 8% 8% 63% 12% 1% 5% 0% 1% 

61110022003 29% 1% 42% 11% 14% 5% 33% 12% 22% 8% 82% 10% 1% 8% 13% 1% 

61110022004 29% 15% 42% 17% 14% 22% 16% 12% 16% 8% 48% 14% 1% 7% 13% 1% 

61110023011 33% 3% 58% 35% 29% 5% 35% 12% 29% 24% 84% 16% 6% 0% 5% 4% 

61110023012 33% 18% 58% 42% 29% 6% 9% 12% 0% 24% 68% 23% 6% 0% 8% 4% 

61110023021 43% 11% 61% 50% 10% 2% 41% 23% 27% 15% 89% 0% 1% 2% 0% 0% 
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Census block group: 
THEME 1:  
Socio Economic Status 

THEME 2: 
Household characteristics 

THEME 3: Racial & Ethnic Minority Status 
THEME 4: 
Housing Type & Transportation 

POV150 UNEMP HBURD NOHSDP UNINSUR AGE65 AGE17 DISABL SNGPNT LIMENG MINRTY MUNIT MOBILE CROWD NOVEH GRQ 

61110023022 43% 0% 61% 3% 10% 2% 30% 23% 0% 15% 52% 0% 1% 0% 0% 0% 

61110023023 43% 0% 61% 44% 10% 14% 22% 23% 0% 15% 88% 5% 1% 6% 26% 0% 

61110024001 39% 5% 47% 14% 10% 24% 11% 26% 0% 4% 40% 87% 2% 4% 22% 4% 

61110024002 39% 7% 47% 4% 10% 13% 13% 26% 11% 4% 30% 37% 2% 7% 19% 4% 

61110025001 14% 0% 29% 2% 4% 19% 9% 11% 0% 0% 22% 0% 18% 5% 0% 0% 

61110025002 14% 11% 29% 2% 4% 15% 24% 11% 3% 0% 56% 17% 18% 13% 0% 0% 

61110025003 14% 0% 29% 0% 4% 73% 0% 11% 0% 0% 8% 0% 18% 0% 0% 0% 

61110025004 14% 0% 29% 3% 4% 30% 12% 11% 5% 0% 17% 3% 18% 1% 2% 0% 

61110026001 11% 4% 23% 5% 7% 18% 8% 13% 2% 1% 38% 4% 0% 0% 3% 2% 

61110026002 11% 4% 23% 3% 7% 19% 14% 13% 8% 1% 24% 9% 0% 2% 3% 2% 

61110026003 11% 7% 23% 7% 7% 15% 16% 13% 3% 1% 41% 0% 0% 0% 6% 2% 

61110027001 15% 2% 32% 5% 7% 8% 15% 18% 7% 5% 46% 27% 0% 0% 12% 2% 

61110027002 15% 1% 32% 7% 7% 25% 19% 18% 7% 5% 40% 28% 0% 0% 24% 2% 

61110028001 22% 15% 26% 14% 7% 17% 20% 13% 1% 3% 51% 43% 1% 13% 11% 2% 

61110028002 22% 0% 26% 1% 7% 12% 16% 13% 0% 3% 34% 0% 1% 0% 3% 2% 

61110028003 22% 5% 26% 0% 7% 11% 21% 13% 4% 3% 36% 0% 1% 0% 2% 2% 

61110028004 22% 3% 26% 10% 7% 10% 32% 13% 7% 3% 32% 1% 1% 0% 5% 2% 

61110028005 22% 0% 26% 20% 7% 0% 21% 13% 0% 3% 37% 0% 1% 0% 0% 2% 

61110050041 11% 1% 29% 13% 5% 7% 23% 7% 9% 8% 73% 45% 0% 4% 3% 1% 

61110050062 21% 7% 44% 50% 15% 14% 14% 11% 0% 26% 91% 0% 0% 6% 2% 0% 

61110052041 5% 4% 12% 2% 2% 31% 11% 16% 2% 2% 21% 1% 0% 0% 0% 0% 

61110052051 6% 7% 17% 2% 2% 45% 10% 11% 1% 1% 31% 0% 5% 0% 0% 0% 

61110092002 12% 0% 34% 20% 9% 8% 26% 11% 5% 11% 95% 15% 0% 12% 0% 0% 

61110093002 12% 3% 20% 17% 7% 22% 18% 12% 2% 6% 57% 0% 6% 5% 0% 4% 

61110094001 10% 0% 33% 2% 5% 8% 35% 6% 6% 3% 42% 0% 0% 0% 1% 0% 

61110094002 10% 10% 33% 6% 5% 13% 23% 6% 2% 3% 45% 45% 0% 11% 4% 0% 

61110095001 16% 24% 26% 3% 5% 27% 16% 15% 9% 1% 27% 0% 13% 0% 0% 1% 

61110095002 16% 0% 26% 5% 5% 21% 17% 15% 1% 1% 19% 0% 13% 4% 4% 1% 

61110095003 16% 0% 26% 14% 5% 15% 28% 15% 0% 1% 26% 0% 13% 0% 6% 1% 

61110095004 16% 0% 26% 8% 5% 40% 11% 15% 2% 1% 37% 0% 13% 0% 2% 1% 

61110096001 4% 3% 10% 0% 11% 24% 23% 14% 0% 1% 19% 0% 0% 0% 0% 1% 

61110096002 4% 11% 10% 5% 11% 36% 15% 14% 0% 1% 24% 2% 0% 0% 1% 1% 

61110097003 18% 21% 32% 3% 10% 22% 8% 14% 0% 15% 8% 0% 8% 3% 7% 0% 
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Table C.3. Spatial distribution of the variables required to estimate Theme 1: Socio-economic 
status: poverty, unemployment, house burdened, high school diploma, and health insurance 
(Thomas Fire Cities). 

% Poverty 150% % Unemployment % House Burdened 

   
% No high school Diploma % No health insurance Theme 1 

   

Table C.4. Spatial distribution of the variables required to estimate Theme 2: Household 
characteristics: Age 65 or older, age 17 and younger, civilian with a disability, single-parent 
households, English language proficiency (Thomas Fire Cities). 

%Age 17 % Age 65 % Disability 

   
% Single Parent Family % English limitation Theme 2 
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Table C.5. Spatial distribution of the variables required to estimate Theme 3: Racial & Ethnic: 
Minority status: belongs to a minority group (Thomas Fire Cities). 

% Minority Theme 3 

  

Table C.6. Spatial distribution of the variables required to estimate Theme 4: Housing type 
and Transportation: Multi-unit structure, mobile home, crowding, no vehicle, group quarter 
(Thomas Fire Cities). 

% more than 10 units % living mobile home % more habitants than rooms 

   
% No vehicles % Group Quarter Theme 4 
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Table C.7. Spatial distribution of the four themes and the Social Vulnerability index at the 
census block level. 

Theme 1: Socio-economic 
status 

Theme 2: Household 
characteristics 

Theme 3: Minority 

   
Theme 4: Housing and 

transportation 
SOVI: Social Vulnerability Index 

 

 

Figure C.1 shows the Ventura, Ojai, Santa Paula, Mira Monte, and Oaks map. Each origin node 
has assigned a vehicle demand obtained from the American Community Survey at the Census 
Block group level. Additionally, Figure C.2 summarizes the most important parameters of the 
4,787 arcs of the road network of Ventura, Santa Paula, Ojai, Meiners Oaks, Mira Monte, and 
Oak View. In this study, the authors used a congestion factor obtained from [101] to reduce the 
speed as an approximation of congestion speed in each arc of the road network to obtain the 
travel time for each arc. Note that the minimum travel time is a crucial parameter in the ENP 
model because it is the foundation for transforming (expanding) the road network for 
mathematical modeling.  
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Table C.8. Spatial distribution of each Social Vulnerability index, Community Resilience, 
Expected Annual Loss, and the National Risk Index (NRI) at the census block level. 

SOVI Community Resilience Expected Annual Loss 

   
NRI: National Risk Index 
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Figure C.1. Ventura, Ojai, Santa Paula with the labels of the source and sink nodes demand and sink capacity 
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Figure C.2. Density distribution of the arcs of the road network, including length, capacity, speed, and travel time Thomas Fire 
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Ventura, Santa Paula, Ojai, Meiners Oaks, Mira Monte, and Oak View: The arc’s length ranges 
from 99.8 to 14626.1 meters, and most arcs are shorter than 2 km (2000 m). Furthermore, the 
arc’s capacity ranges from 600 to 12000 vehicles/hour, and most arcs have a capacity of 6000 
vehicles/hour or less. The speed information not available in OSM was completed with the 
information given by [101], resulting in speeds ranging from 24 to 104.6 km/h. In the case of 
Ventura, Santa Paula, Ojai, Meiners Oaks, Mira Monte, and Oak View, the minimum travel time, 
including the congestion factor, is 6.28 seconds. In comparison, the maximum is 1053 seconds, 
determined by the speeds, arc lengths, and congestion factors.  

When comparing the characteristics of the road network of both sets of cities, we note that the 
road network of the cities in the Thomas Fire case has higher capacities than the ones in the 
Camp Fire cities. Importantly, the number of exit nodes is more than three times higher in the 
case of the Thomas Fire cities than in the case of the Camp Fire. The ENP model requires 
expanding the road network, resulting in a time-expanded network with 53509 nodes and 
56780 arcs for Thomas Fire Cities. The authors initiated the modeling with a large value of T. 
The authors used 1500 time units for the Thomas Fire, where each TU represents 6.28 seconds. 
The objective of the ENP model is to maximize the number of vehicles reaching the SN at the 
minimum time. In the case of the Thomas Fire, the last time window is 1074 TU (6749 seconds, 
112 minutes, 1 hour and 51 minutes). Figure C.3 shows the evacuation rate and % of evacuated 
vehicles by time in minutes during their respective planning period.  

 

Figure C.3. Evacuation percentage with time in minutes in 2018 Thomas Fire Cites 
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Evacuation Plan Risk Assessment 

The authors followed the methodology in [86], described in Task 2, to obtain the values of the 
natural hazard risk at the node level 𝑣𝑗 for each node of the road network. Figure C.4 provides 

an overview of the density distribution of the factors affecting the RNP risk at the local level, 
particularly for all the road network nodes. The Hansen Accessibility Index (b) displays an 
almost symmetric distribution, while the Betweenness Centrality (d) among the nodes is 
skewed to the right. The NRI (c) shows a distribution with three modes. When analyzing the 
RNP at the local or node level 𝑣𝑗, it has a right-skewed distribution, indicating that some nodes 

have higher RNP risk than others. The RNP risk at the regional level shows that the RNP risk is 
higher in the northwest direction; however, there are some smaller peaks of risk in the north, 
east, west, and southwest of the cities affected by the Thomas Fire. In this stage, we identify 
the expected impact of a wildfire on the evacuation by affecting the exit routes in different 
directions of the road network, such as N, S, W, E, NE, NW, SE, and SW. The RNP risk at the 
regional level allows for the identification of the probability of wildfire and the estimation of 
the expected evacuation time under risk conditions. 

Additionally, Table C.9, Table C.10, and Table C.11 show the results of the clearance time, total 
evacuation time, average evacuation time, the probability of risk in each region and direction, 
and the expected value of each of the mentioned performance measures. Additionally, Figure 
C.5 provides a picture of the performance measures when closing the exit nodes in each region 
and direction.  
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Figure C.4. Density probability factors of the v_j parameter (units) (min, max, mean) in 
Thomas Fire Cities 
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Table C.9. Clearance Time, Total Evacuation Time, and Average Evacuation Time when closing 
each exit node. 

    ET Total ET Average ET 

DIRECTION exit nodes UT minutes UT minutes minutes 

E [102425678718, 
483579341244] 

1306 136.7942 35349905 3702651.11 65.75009962 

NW [572874390201] 1166 122.1302 31650479 3315162.55 58.869243 

W [562637414] 1133 118.6737 30237384 3167150.9 56.24091523 

[95689117] 1288 134.9088 34466398 3610110.036 64.10679469 
SW [410553504009, 

775208614771] 
1166 122.1302 31645668 3314658.632 58.86029464 

S  [432216758] 1119 117.2073 30437032 3188062.608 56.61225642 

[233843828790, 
95390273, 
562903250678, 
853783080, 
62411927331, 
853782913] 

1122 117.5215 32176577 3370267.574 59.84777451 

[365903020800, 
918451694332, 
95558731, 
57079373839] 

1074 112.4939 29333196 3072443.638 54.55914406 

SE [10566765649] 1074 112.4939 29231902 3061833.812 54.37073929 
[7037619028, 
95408984] 

1075 112.5986 29311868 3070209.682 54.51947441 

[95431819, 
95431833, 
95476934, 
95530985] 

1074 112.4939 29397862 3079216.942 54.67942149 

[95412425] 1074 112.4939 29248798 3063603.548 54.4021655 
E [95412431, 

95606450] 
1074 112.4939 29234841 3062141.652 54.37620577 

[95218853] 1084 113.5413 29648654 3105485.62 55.14588948 

[962823779392, 
95260763, 
95192615, 
95347494] 

1109 116.1599 30384490 3182559.207 56.51452937 

NE, N Base 1074 112.4939 29223662 3060970.731 54.35541306 
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Table C.10. Estimation of the probability of each grade and direction of the road network 

Region (r) 𝝍𝒓 Direction (d) P(r) P(r)/P(d) 

340 0.000643 E 0.02724 0.14593 

350 0.001126 0.04770 0.25559 

0 0.000683 0.02891 0.15489 

10 0.000453 0.01920 0.10289 

20 0.001502 0.06359 0.34071 

30 0.000502 NE 0.02128 0.20105 

40 0.000709 0.03004 0.28385 

50 0.000265 0.01122 0.10599 

60 0.001022 0.04330 0.40910 

70 0.000637 N 0.02699 0.13219 

80 0.000643 0.02723 0.13336 

90 0.000708 0.02996 0.14674 

100 0.0016 0.06776 0.33183 

110 0.001234 0.05225 0.25587 

120 0.000426 NW 0.01803 0.11835 

130 0.000553 0.02343 0.15384 

140 0.000404 0.01712 0.11239 

150 0.002214 0.09375 0.61542 

160 0.00224 W 0.09487 0.36873 

170 0.001342 0.05683 0.22088 

180 8.64E-05 0.00366 0.01423 

190 0.001979 0.08380 0.32570 

200 0.000428 0.01813 0.07046 

210 0.000352 SW 0.01489 0.40777 

220 0.000152 0.00642 0.17580 

230 0.000138 0.00585 0.16015 

240 0.000221 0.00936 0.25628 

250 0.000146 S 0.00618 0.17631 

260 0.000193 0.00818 0.23314 

270 0.000208 0.00881 0.25117 

280 0.000167 0.00709 0.20227 

290 0.000114 0.00481 0.13710 

300 0.000462 SE 0.01957 0.20169 

310 0.001527 0.06466 0.66636 

320 0.000164 0.00695 0.07161 

330 0.000138 0.00586 0.06034 
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Table C.11. Estimation of the expected clearance time, total evacuation time, and average 
evacuation time. 

Dir PSI_DIR P(direction) E[ET] E[TET] E[avg_ET] 

N 0.0010 0.1741 1074.00 186.98 29223662.00 5087649.44 54.36 9.46 

NE 0.0006 0.1128 1074.00 121.15 29223662.00 3296496.59 54.36 6.13 

E 0.0009 0.1591 1105.85 175.98 30144049.62 4796940.01 56.07 8.92 

SE 0.0006 0.1034 1074.67 111.14 29298092.46 3029999.85 54.49 5.64 

S 0.0002 0.0299 1094.20 32.71 30118858.78 900484.48 56.02 1.67 

SW 0.0002 0.0389 1097.58 42.73 29844375.46 1161753.73 55.51 2.16 

W 0.0012 0.2194 1143.02 250.75 30755469.07 6746878.33 57.20 12.55 

NW 0.0009 0.1624 1084.89 176.14 29510882.83 4791215.46 54.89 8.91 

6.284573229 𝐸[𝐶𝑇]̅̅ ̅̅ ̅̅ ̅̅  1097.57 𝐸[𝑇𝐸𝑇]̅̅ ̅̅ ̅̅ ̅̅ ̅̅  29811417.88 𝐸[𝑎𝑣𝑔 𝐸𝑇]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

55.45 

Minutes 114.96 Minutes 3122533.98 

When comparing the expected total evacuation time, the Camp Fire area involves 859,714.54 
minutes, while the Thomas Fire involves 3,122,533 minutes, given the total evacuation demand. 
However, the average evacuation time in the case of the Thomas Fire is around 55.44 minutes, 
which is close to that expected in Paradise (55.11 minutes), despite the Thomas Fire region 
having a larger area and a higher demand for vehicles compared to the Camp Fire region. One 
reason for this performance is that the Thomas Fire area has more exit routes, unlike Paradise. 
Additionally, the road network capacity in the Thomas Fire region is larger than in Paradise, 
providing insights into the reasons for this performance. 
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Figure C.5. Clearance Time and Average Evacuation Time when closing each exit node   
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Appendix D. Sociodemographic Characteristics of Paradise and 
Magalia 

This appendix summarizes the data used to estimate the SOVI for the Camp Fire case study. 

Table D.1. Spatial distribution of the variables required to estimate Theme 1: Socio-economic 
status: poverty, unemployment, house burdened, high school diploma, and health insurance. 

% Poverty 150% % Unemployment % House Burdened 

   
% No high school Diploma % No health insurance Theme 1 
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Table D.2. Spatial distribution of the variables required to estimate Theme 2 Household 
characteristics 

%Age <17 % Age 65 % Disability 

   
% Single Parent Family % English limitation Theme 2 

   

Table D.3. Spatial distribution of the variables required to estimate Theme 3: Racial & Ethnic 

% Minority Theme 3 
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Table D.4. Spatial distribution of the variables required to estimate Theme 4: Housing type 
and Transportation: Multi-unit structure, mobile home, crowding, no vehicle, group quarter. 

% more than 10 units % living mobile home % more inhabitants than rooms 

   
% No vehicles % Group Quarter Theme 4 
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Table D.5. Spatial distribution of the four themes and the Social Vulnerability index at the 
census block level. 

Theme 1: Socio-economic 
status 

Theme 2: Household 
characteristics 

Theme 3: Minority 

   
Theme 4: Housing and 

transportation 
SOVI: Social Vulnerability Index 
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Table D.6. Spatial distribution of each Social Vulnerability index, Community Resilience, 
Expected Annual Loss, and the National Risk Index (NRI) at the census block level. 

SOVI Community Resilience Expected Annual Loss 

   
NRI: National Risk Index 
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Table D.7. Summary of the population percentage with each characteristic required for the SOVI at the census block group. 

Census block 
group: 

THEME 1:  
Socioeconomic Status 

THEME 2: 
Household characteristics 

THEME 3: Racial & 
Ethnic  

THEME 4: 
Housing Type & Transportation 

POV150 UNEMP HBURD NOHSDP UNINSUR AGE65 AGE17 DISABL SNGPNT LIMENG MINRTY MUNIT MOBILE CROWD NOVEH GRQ 

60070017021 17% 0% 26% 6% 3% 34% 0% 24% 0% 0% 33% 0% 29% 0% 0% 0% 

60070017022 17% 0% 26% 15% 3% 37% 11% 24% 0% 0% 13% 0% 29% 0% 8% 0% 

60070017023 17% 7% 26% 3% 3% 23% 11% 24% 1% 0% 11% 9% 29% 0% 2% 0% 

60070017024 17% 9% 26% 0% 3% 22% 20% 24% 7% 0% 26% 0% 29% 0% 3% 0% 

60070017031 22% 8% 33% 10% 4% 24% 25% 17% 7% 1% 10% 0% 20% 0% 3% 0% 

60070017032 22% 7% 33% 5% 4% 24% 30% 17% 0% 1% 11% 2% 20% 10% 0% 0% 

60070017041 34% 18% 37% 13% 3% 16% 28% 21% 8% 2% 36% 6% 42% 8% 7% 0% 

60070017042 34% 8% 37% 2% 3% 14% 13% 21% 0% 2% 42% 0% 42% 7% 12% 0% 

60070017043 34% 11% 37% 5% 3% 22% 17% 21% 4% 2% 11% 0% 42% 0% 5% 0% 

60070018001 23% 11% 33% 18% 7% 35% 9% 26% 7% 1% 24% 0% 31% 0% 7% 3% 

60070018002 23% 0% 33% 2% 7% 53% 19% 26% 22% 1% 14% 0% 31% 8% 7% 3% 

60070018003 23% 13% 33% 10% 7% 48% 3% 26% 0% 1% 3% 13% 31% 0% 15% 3% 

60070018004 23% 19% 33% 4% 7% 7% 22% 26% 20% 1% 6% 0% 31% 0% 10% 3% 

60070018005 23% 0% 33% 11% 7% 13% 32% 26% 20% 1% 9% 0% 31% 17% 6% 3% 

60070019001 37% 18% 25% 9% 2% 69% 6% 23% 0% 1% 6% 0% 19% 0% 0% 3% 

60070019002 37% 0% 25% 6% 2% 50% 14% 23% 0% 1% 6% 0% 19% 6% 12% 3% 

60070019003 37% 5% 25% 0% 2% 39% 3% 23% 0% 1% 13% 5% 19% 0% 0% 3% 

60070019004 37% 0% 25% 18% 2% 31% 13% 23% 0% 1% 20% 3% 19% 2% 10% 3% 

60070020001 15% 17% 43% 0% 7% 65% 17% 14% 0% 1% 12% 12% 9% 0% 8% 1% 

60070020002 15% 0% 43% 0% 7% 38% 0% 14% 0% 1% 9% 0% 9% 0% 0% 1% 

60070020003 15% 0% 43% 3% 7% 27% 21% 14% 0% 1% 5% 0% 9% 0% 0% 1% 

60070020004 15% 14% 43% 0% 7% 14% 35% 14% 6% 1% 1% 0% 9% 0% 0% 1% 

60070020005 15% 13% 43% 6% 7% 42% 19% 14% 0% 1% 9% 0% 9% 7% 4% 1% 

60070020006 15% 16% 43% 4% 7% 55% 9% 14% 10% 1% 27% 0% 9% 0% 26% 1% 

60070021001 32% 22% 32% 3% 9% 24% 3% 29% 0% 3% 16% 0% 12% 0% 1% 4% 

60070021002 32% 1% 32% 19% 9% 25% 38% 29% 0% 3% 51% 0% 12% 13% 28% 4% 

60070021003 32% 0% 32% 4% 9% 24% 15% 29% 0% 3% 7% 0% 12% 0% 10% 4% 

60070021004 32% 11% 32% 9% 9% 31% 19% 29% 0% 3% 9% 0% 12% 0% 0% 4% 

60070021005 32% 4% 32% 9% 9% 43% 0% 29% 0% 3% 17% 8% 12% 0% 16% 4% 

60070022001 24% 16% 40% 7% 4% 27% 19% 19% 0% 0% 17% 13% 3% 0% 8% 1% 

60070022002 24% 0% 40% 1% 4% 42% 15% 19% 3% 0% 21% 0% 3% 0% 6% 1% 

60070022003 24% 14% 40% 4% 4% 17% 10% 19% 0% 0% 1% 0% 3% 0% 0% 1% 

60070022004 24% 6% 40% 10% 4% 15% 27% 19% 9% 0% 5% 10% 3% 7% 4% 1% 

60070023001 28% 6% 30% 5% 8% 38% 14% 23% 0% 0% 17% 0% 41% 0% 0% 2% 

60070023002 28% 0% 30% 9% 8% 60% 0% 23% 0% 0% 2% 0% 41% 0% 17% 2% 

60070023003 28% 0% 30% 13% 8% 17% 13% 23% 0% 0% 23% 9% 41% 0% 9% 2% 

60070023004 28% 0% 30% 6% 8% 37% 10% 23% 0% 0% 15% 0% 41% 0% 17% 2% 
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