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SUMMARY 

This report provides a summary of the framework and methodology underlying the 

second-generation seismic fragility work (g2F) using selected concrete box-girder bridges 

in California. It outlines the key components and processes involved in the g2F project 

designed to improve earthquake risk assessment and mitigation strategies. 

The report first introduces the modeling techniques that enhance numerical model 

fidelity. It then summarizes the development of comprehensive capacity models for bridge 

components, incorporation of material and geometric uncertainties, and sampling methods 

to ensure realistic bridge representations compliant with California design standards. The 

probabilistic seismic demand model (PSDM) construction is discussed, highlighting the 

proposed modified multiple adaptive regression splines (M-MARS) approach. Finally, the 

report covers the hierarchical development of fragility models, from individual 

components to entire bridge systems. 

This summary serves as an overview of the g2F framework, with detailed findings and 

analyses available in referenced publications. 
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CHAPTER 1 

INTRODUCTION 

1.1 Problem Description 

Highway bridges play a crucial role in the transportation systems, yet past earthquakes 

have demonstrated their vulnerability (Caltrans, 1994; Jibson and Harp, 2011). 

Earthquake damage to highway bridges could cause significant disruption to the 

transportation network, delay emergency response, and finally lead to casualties and 

economic losses to communities. Therefore, understanding the seismic behavior of 

highway bridges is valuable for pre-earthquake planning and post-earthquake responses. 

Fragility analysis provides an approach for characterizing the seismic behavior of 

highway bridges. A seismic fragility curve quantitatively depicts the vulnerability of 

bridges with a conditional probabilistic measurement, which describes the probability that 

the demand of a structural component or structural system exceeds a given capacity limit 

state when subjected to a range of potential seismic events with a specified measure of 

intensity (such as pseudo-spectral acceleration at 1.0 second, Sa1). 

It is well recognized that California is a state exposed to high seismic risk by historical 

earthquakes. To mitigate potential impacts, the California Department of Transportation 

(Caltrans) has deployed the ShakeCast platform (Lin and Wald, 2008), developed by the 

United States Geological Survey (USGS), to estimate earthquake damage to highway 

bridges in California. The ShakeCast platform combines capabilities of ShakeMap – a 

map showing the severity of a ground-shaking broadcast in nearly real-time after an 

earthquake – with pre-established fragility models for each bridge in California inventory 

to provide post-earthquake situational awareness of damage to the transportation network 

and valuable guidance for prioritizing emergency response and inspection. It is also used 
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as a planning tool to examine and mitigate the impacts of scenario earthquakes. 

The operation of the ShakeCast platform posts the need for proper fragility models of 

various bridge systems. The currently deployed fragility models in the ShakeCast platform 

are HAZUS-based models developed in the 1990s (FEMA, 2003). By necessity, these early 

models are too broad and simplified to achieve the full potential for Caltrans application 

in terms of the following aspects. (1) The estimation of bridge seismic performance is 

based on simplified two-dimensional analysis and compared to a limited set of damage 

observations. (2) The bridge taxonomy is based on the limited data fields available in the 

National Bridge Inventory (NBI) and considers only limited bridge parameters. (3) The 

damage definitions were broadly classified as four bridge-system-level states, from minor 

to complete, that can neither adequately account for Caltrans’ post-earthquake inspection 

and repair strategies nor be readily tied to bridge downtime and repair cost estimates. (4) 

This early framework is not well aligned with Caltrans seismic design philosophy or the 

California bridge inventory. 

1.2 Research Objectives and Scope 

This research seeks to add to the existing body of knowledge of bridge seismic fragility 

analysis. The intention is to improve upon the HAZUS fragility models for the ShakeCast 

application. Specifically, it broadly outlines procedures being adopted for the development 

of ’Generation-2 Fragility (g2F)’ models and illustrates the methodology for a select set of 

modern box-girder concrete bridge classes. To achieve this goal, this study centers on 

improving modeling fidelity in terms of demand model and bridge uncertainty sampling, 

refining damage state definitions, advancing the regression methodologies for highly 

nonlinear seismic demand data, and establishing multiple-stage fragility models. 

This report summarizes research advances in the following areas: 

• Applied emerging numerical modeling techniques to capture the seismic response of 
bridge columns with different failure modes, including calibration of the numerical models 
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against laboratory tests; 

• Developed an improved abutment modeling scheme and incorporated new backwall-
connection models to account for backwall fracture mechanism; 

• Compiled a literature-based dataset summarizing the performance of 198 laboratory 
column tests, including systematic characterization of specimen detailing, testing 

parameters, and damage states as a function of load-displacement response. These column 

designs were further grouped for different design eras and failure modes to support the 

development of a family of capacity models; 

• Developed an extensive analytically based column performance data set using the 

validated column models for the same design era, and failure mode groupings noted 

above. These analytical results are used to extend the literature-based experimental 

findings, specifically for: 1) California bridge-column designs, 2) high damage state 

performance, and 3) consideration of the effects of bent configuration and boundary 

conditions; 

• Facilitated Caltrans development of a new system of column capacity limit states 

involving eight states (including ‘no observable damage’) for each of the design eras and 

failure modes noted above. These models are based on combined findings from the 

experimental and analytical data sets noted above; 

• Facilitated Caltrans development of comparable eight-state capacity models for other 

bridge components including abutment backwalls and shear keys and column keys; 

• Developed and implemented several sampling constraints for generating realistic 

virtual bridge realizations for demand analysis which reflect both bridge design policies 

and observed California bridge inventory trends; 

• Generated and completed three-dimension nonlinear finite-element analyses for 

models of several Caltrans bridge classes, including capture of the seismic response of 

individual bridge components; 

• Adapted advanced statistical regression techniques to model probabilistic seismic 
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demand models (PSDMs) for highly nonlinear seismic demand data; 

• Generated internally-consistent sets of fragility curves for components, component 
groups, bridge regions, and the overall bridge system. 

Although this study is primarily centered on modern box-girder bridges with ductile 

seismic design details, it also considers same numerical modeling techniques and capacity 

models applicable to bridges with other design detailing. 
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CHAPTER 2 

LITERATURE REVIEW 

Since 2008, the California Department of Transportation (Caltrans) has used the 

ShakeCast (Lin and Wald, 2008) alerting system to provide early situational awareness to 

emergency managers. ShakeCast uses a combination of ground-shaking maps – created in 

nearly real-time by the United States Geological Survey (USGS), coupled with 

pre-calculated bridge fragility models – to estimate the bridge damage rapidly. This 

research outlines methods applicable to the development of fragility models for concrete 

bridge types representing roughly 75% of California’s bridge inventory and demonstrates 

these methods for a subset of concrete bridge classes. This chapter first reviews the 

general framework for fragility modeling, then provides a more detailed look at existing 

practices for the modeling and capacity definitions of two critical bridge components, 

columns, and abutments. Subsequent chapters detail advances in modeling these 

components better to support overall bridge seismic risk evaluation for California bridges. 

2.1 Framework of Seismic Fragility Analysis 

A seismic fragility model is specified under a seismic ground motion intensity. As 

represented in Equation 2.1, a fragility model depicts the probability of a structure 

reaching a damage state (DS) given an hazard intensity parameter, or Intensity 

Measurement (IM). 

Fragility = 𝑃𝑃(DS|IM). (2.1) 

Expert opinion, empirical, and analytical analysis are three widely-used methods to 

develop fragility curves. Expert opinion fragility curves are built using an estimation of its 

percentiles provided by experts, which is highly subjective and primarily relies on the 
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seismic experience of experts (ATC, 1985). Empirical models are developed based on the 

damage level of past hazard events, offering an expected value to a database of structure 

damage observations. Limitations of the empirical method include the scarcity of detailed 

damage data along with the limited magnitude range and geographic regions where 

damaging earthquake motions have been recorded (Basö z et al., 1999a; Basö z and 

Kiremidjian, 1999b; Yamazaki et al., 1999; Shinozuka et al., 2000a). 

Due to the limitations of the expert opinion and the empirical methods, analytical 

fragility analysis is frequently adopted. Analytical fragility analysis is conducted with 

numerical simulations accounting for uncertainties embedded in design parameters, such 

as bridge geometry, materials properties, and ground motions. The fragility model in this 

method represents the probability of conditional demand (D|IM) exceeding capacity (C) 

corresponding to a specific damage state: 

Fragility = 𝑃𝑃(𝐷𝐷 ≥ 𝐶𝐶|IM) (2.2) 

If the capacity is expressed as a cumulative probability function 𝐹𝐹𝐶𝐶(·) and a structural 

demand given an intensity measurement is assumed to have a probability density function 

𝑓𝑓𝐷𝐷|𝐼𝐼𝐼𝐼 (·), the above probability in can be written in a convolutional form: 
∞ 

𝑃𝑃(𝐷𝐷 ≥ 𝐶𝐶|IM) = � 𝐹𝐹𝐶𝐶 (𝑥𝑥)𝑓𝑓𝐷𝐷|𝐼𝐼𝐼𝐼(𝑥𝑥)𝑑𝑑𝑥𝑥 (2.3) 
−∞ 

Based on different methods of acquiring seismic demand values, analytical fragility 

analysis is further categorized as elastic spectral method (Hwang et al., 2000), nonlinear 

static analysis (or capacity spectrum method) (Dutta and Mander, 1998), and Nonlinear 

Time History Analysis (NLTHA). Compared to the other two, NLTHA has been identified 

as a more reliable method (Shinozuka et al., 2000b) in terms of prediction the structural 

seismic demands. 

The conditional probability distribution of seismic demand in Equation 2.2 is 
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established by Probabilistic Seismic Demand Model (PSDM) through analysis of bridge 

classes subjected to different ground motion intensities. Based on the way of selecting 

ground motions, multiple methods for establishing PSDM using NLTHA were proposed. 

Formulated by Vamvatsikos and Cornell (2002), Incremental Dynamic Analysis (IDA) is a 

method that involves scaling each ground motion in a suite until it causes 

structure-collapse. The scaling approach raises concerns about unrealistic ground motion 

frequencies that might not be representative of the seismic hazard of the site. 

Multiple-Stripe Analysis (MSA) is then proposed in the work by Jalayer (2003), and 

further discussed by Baker (2015), to overcome the scaling issue in IDA. Unlike IDA that 

only one suite of ground motion is scaling to all IM, MSA scales unique suite of ground 

motions for each targeting IM. While many researchers used this method to study 

structural fragility, this method requires a sufficient number of ground motions in a suite 

to get a reliable estimation of failure probability. Moreover, both of IDA and MSA predict 

failure probability at some specific IM, and cannot directly establish a continuous fragility 

model. 

Therefore, this research uses the cloud approach to establish PSDM due to its relatively 

high accuracy and cost-efficiency compared to the other methods. Cloud approach conducts 

NLTHA in a suite of ground motions which possesses nearly continuous IM, and then 

generates the conditional demand probability distribution by regression analysis. By means 

of regression, the continuity of the data is taken into account, thus minimizing the effect of 

possible outliers. 

Figure 2.1 demonstrates the basic procedure for developing fragility models and 

implementation of these models into the ShakeCast platform. The first step is establishing 

a proper ground motion suite for California earthquakes. The list of ground motions used 

in this project was assembled by Caltrans using the NGA-2 database (see Appendix B). 

Next, three-dimensional non-linear finite-element models for different Representative 

Bridge System (RBS) are built within the research-grade finite element simulation 
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Figure 2.1: Procedure for developing fragility models using the cloud method. 

platform Open System for Earthquake Engineering Simulation (OpenSees) (McKenna 

et al., 2000). NLTHA are carried out to obtain the maximum/average responses of 

multiple pre-determined Engineering Demand Parameter (EDP). 

Component capacity models establish the relationship between component damage 

and one or more EDP’s. To develop such models, experimental results related to bridge 

component capacities are collected and organized to create limit state thresholds for all 

bridge components and corresponding damage definitions. Specifically, this research 

compiles a dataset for laboratory column test specimens based on an extensive literature 

review. The dataset summarizes specimen details and damage state values. To 

complement the limited data for the high damage states, calibrated finite element models 

are established to analyze the column till collapse, accounting for the effect of column 

bent. The capacity models are ultimately developed considering different failure modes 

and column bent effect. 

A combination of PSDM and capacity models generates fragility models for different 

components. A roll-up procedure is then applied to develop component-group and system 
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fragility models. 

In application, these fragility models will be assigned to each bridge in California 

within the ShakeCast platform. Combined with the site-specific ground-motion hazard 

determined by the USGS, the seismic damage risk for highway bridges can be estimated 

for either individual events or on a uniform hazard basis. 

2.2 Seismic Analysis of Bridge Components 

The establishment of a demand model is critical, and the most computationally complex 

step in fragility modeling. Among all the bridge components, the internal supports and 

abutments are pivotal in the demand model due to their high nonlinearity and seismic 

vulnerability. 

2.2.1 Column Modeling 

In modern ductile design, bridge design policies have evolved to ensure the columns are 

flexural critical in most cases. But back to early design eras, bridge columns were usually 

lightly confined and thus tended to have a shear failure or flexural-shear failure during 

earthquake loading. As depicted in Figure 2.2, a column is defined as flexural critical 

if the shear force is always smaller than its shear capacity, whereas the other two types 

of columns would touch the shear capacity line during the increase of shear force. The 

difference between flexural-shear and shear critical columns is that a flexural-shear column 

triggers shear failure after its yield displacement (Ghannoum and Moehle, 2012). 

Various models for shear capacity and modeling of shear columns are introduced in 

the literature (Umehara, 1983; Priestley et al., 1994, 1996; Sezen, 2002; Elwood, 2002; 

Giannini et al., 2008; Ghannoum and Moehle, 2012; Jeon et al., 2015) and design codes 

(Elwood et al., 2007; Caltrans, 2015d, 2018; AASHTO, 2010; ACI, 2014). The easiest 

approach to consider a shear behavior is using the Section Aggregator in OpenSees to 

couple a shear behavior into a typical fiber section (Giannini et al., 2008). However, in 
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Figure 2.2: Definition of flexural, flexural-shear, and shear columns. 

this method, the shear behavior is only considered at the sectional level, and it is difficult 

to develop the relationship between shear stress and shear deformation. Other approaches 

focused on developing a relationship of shear force and shear displacement. Shear failure 

can be captured using a “zero-length” spring (or a shear spring). There are a few methods 

available to define a trigger condition of shear failure. Elwood (2002) proposed a shear 

spring with a shear limit curve. Shear degradation is triggered when the demand value 

reaches the shear capacity limit curve Vu, as shown in Figure 2.2, which was defined to 

happen at a drift ratio of 1%. In addition, the axial limit curve can also be implemented to 

consider the axial failure after the shear failure occurs using a shear-friction model so that 

users can model the column from the initial state to the collapsed state. Ghannoum and 

Moehle (2012) proposed a trigger condition relevant to a rotation angle in the plastic hinge 

length. 

Among these methods, defining a zero-length shear spring is the most straightforward 

and thus has been widely used. The most important step for defining a shear spring is to 

find the shear capacity for a column. There are many existing shear capacity models, but 

most are used in building columns. Due to different ranges of axial load ratios between 

building columns and bridge columns, three shear capacity models applicable to bridge 

columns are introduced in the following. 
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Model proposed by Priestley et al. (1994) 

Priestley proposed a shear capacity model based on experimental tests of bridge piers. He 

proposed a model with three terms, concrete Vc, steel Vs, and axial load VP. Priestley 

pointed out the concrete shear capacity decreases as displacement ductility increases while 

the steel term remains the same. Priestley indicated the compression angle as demonstrated 

in Figure 2.3(a) was relative to the shear capacity, which also shows that the axial load term 

is inversely proportioned to the compression depth of concrete c. 

(a) (b) 

Figure 2.3: Shear capacity model proposed by Priestley et al. (1994): (a) demonstration of 
axial load term; and (b) amplification factor. 

As the displacement ductility increases, the compression depth of concrete c will 

decrease. Therefore, the axial load component increases as displacement increases. 

Moreover, increasing column displacement could result in a larger shear capacity when a 

large axial load situation exists. The model is finally represented in Equation 2.4, where k 

is an amplification factor determined by Figure 2.3(b) and accounts for concrete material 

′softening; 𝑓𝑓𝑐𝑐𝑐𝑐 is the compression strength of concrete; Ag is the gross area of the 

cross-sections; ks is a multiplier for steel transverse reinforcement area. As suggested by 

Priestley et al. (1994), for circular section, ks = 1.571; for rectangular section, ks is the 

number of total transverse reinforcement number in a layer. Ah, fyh, and s are the area, 

yield strength, and spacing of transverse reinforcement, respectively; Dc is the depth of 
11 



  

          

      

 

  

  

  

  

 

 

            

 

 
     

 
       

              

             

  

    

    

 
   

   
   

 

core concrete. In the calculation of steel term, cot 30o accounts for the assumption that the 

shear crack is about 30 degrees. In the term for axial load P, M/VD is the component 

shear span. 

𝑉𝑉 = 𝑉𝑉𝑐𝑐 + 𝑉𝑉𝑠𝑠 + 𝑉𝑉𝑃𝑃 (2.4a) 

′𝑉𝑉𝑐𝑐 = 𝑘𝑘�𝑓𝑓𝑐𝑐𝑐𝑐psi ∙ 0.8𝐴𝐴𝑔𝑔 (2.4b) 

𝐴𝐴ℎ𝑓𝑓𝑦𝑦ℎ𝐷𝐷𝑐𝑐 𝑉𝑉𝑠𝑠 = 𝑘𝑘𝑠𝑠 cot 30° 
𝑠𝑠 

(2.4c) 

𝐷𝐷 − 𝑐𝑐 
𝑉𝑉𝑃𝑃 = 𝑃𝑃 2𝑀𝑀 (2.4d) 

𝑉𝑉 

This model considers a shear crack angle in the transverse reinforcement term. 

Additionally, the ductility modification term is separated into two parts, which indicates 

that the shear span ratio may affect the member ductility. However, the determination of c 

is not an easy practice in the calculation. 

Model used in Caltrans (2015d) 

Two terms named the concrete Vc and the steel Vs are considered in the Caltrans’ shear 

capacity model. The axial load effect is accounted in the concrete term with a multiplier no 

larger than 1.5. The steel term is approximately equal to the model proposed by Priestley 

12 



  

   
 

  

  

  

  

  

 
         

 
  

  

 
        

 
 

  

 
 

  

  

  

 
     

 
          

  

             

         
 

   

     

 
  

      

 

 
 

 

     

  

 

et al. (1994). 

𝑉𝑉 = 𝑉𝑉𝑐𝑐 + 𝑉𝑉𝑠𝑠 (2.5a) 

′𝑉𝑉𝑐𝑐 = 𝑣𝑣𝑐𝑐𝐴𝐴𝑒𝑒 ≤ 4�𝑓𝑓𝑐𝑐𝑐𝑐psi ∙ 0.8𝐴𝐴𝑔𝑔 (2.5b) 

𝐴𝐴ℎ𝑓𝑓𝑦𝑦ℎ𝐷𝐷𝑐𝑐 𝑉𝑉𝑠𝑠 = 𝑘𝑘𝑠𝑠 
′ psi ∙ 0.8𝐴𝐴𝑔𝑔 (2.5c) ≤ 4�𝑓𝑓𝑐𝑐𝑐𝑐 𝑠𝑠 

′𝑣𝑣𝑐𝑐 = 𝑓𝑓1𝑓𝑓2�𝑓𝑓𝑐𝑐𝑐𝑐psi (2.5d) 

𝑃𝑃 
𝑓𝑓2 = 1 + < 1.5 (2.5e) 2000𝐴𝐴𝑔𝑔 

For 𝑓𝑓1, if calculate the shear capacity inside the plastic hinge region: 

0.3 ≤ 𝑓𝑓1 = (𝜌𝜌𝑠𝑠𝑠𝑠𝑓𝑓ℎ)/0.15 + 3.67 − 𝜇𝜇 ≤ 3.0 (2.5f) 

𝜌𝜌𝑠𝑠𝑠𝑠𝑓𝑓ℎ ≤ 0.35 (2.5g) 

If it is outside the plastic hinge region: 

𝑓𝑓1 = 3.0 (2.5h) 

Material softening effects are considered in Equation 2.5d, where µ is the column 

displacement ductility. However, as a model used for design, this model is more 

conservative than other models. 

Model proposed by Sezen (2002) 

This model is adopted in ASCE specifications (Elwood et al., 2007) and other researchers’ 

works by the reason of its relatively high accuracy and easy implementation. Shear 

capacity from steel is the same as the equations in Caltrans’ model, while concrete 

component additionally considers the shear span, axial load, and material properties. 
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𝑉𝑉 = 𝑘𝑘(𝑉𝑉𝑐𝑐 + 𝑉𝑉𝑠𝑠) (2.6a) 

′6�𝑓𝑓𝑐𝑐𝑐𝑐psi 𝑃𝑃 
𝑉𝑉𝑐𝑐 = 𝜆𝜆 � �1 + � ∙ 0.8𝐴𝐴𝑔𝑔 (2.6b) 𝑀𝑀 ′6�𝑓𝑓𝑐𝑐𝑐𝑐psi 

𝑉𝑉𝐷𝐷 

𝐴𝐴ℎ𝑓𝑓𝑦𝑦ℎ𝐷𝐷𝑐𝑐 𝑉𝑉𝑠𝑠 = 𝑘𝑘𝑠𝑠 (2.6c) 
𝑠𝑠 

In Equation 2.6, λ equals to 0.75 and 1.0 for light- and normal-weight aggregate 

concrete respectively. Shear capacity degrades as displacement ductility increases, 

following the coefficient k, which accounts for material softening, and possible geometry 

nonlinearity. 

Figure 2.4: Definition of coefficient k in the shear capacity model proposed by Sezen 
(2002). 

2.2.2 Abutment Modeling 

There are two general types of abutments in California bridge inventory, seat abutment 

and diaphragm abutment (Figure 2.5). The inclusion of bearings denotes seat abutments, 

while an integral connection of the deck with the abutment wall is a defining deature of 

diaphragm abutments. 

Figure 2.6 and Table 2.1 summarize seat abutment type findings from an inventory 
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(a) (b) 

Figure 2.5: Examples of abutment in California bridges: (a) seat abutment, and (b) 
diaphragm abutment. 

analysis of a sample of California box-girder bridges within three design eras. Abutment 

choice has evolved from prevailingly diaphragm-type abutments in earlier design eras to 

seat-type abutments in over 98% of bridges designed since the 1990’s. As detailed in 

Table 2.1, seat-abutment types B and C with the use of haunches on the backwall and/or 

deck are limited mainly to bridges designed prior to the early 1970’s. Modern bridge 

designs in California use either a stem wall or cantilever wall with a straight backwall 

and no haunch on the deck resulting a relatively small gap between the deck and straight 

backwall having mean value of approximately 2.1 inch. 

Figure 2.6: Conceptual illustration of alternative seat-abutment designs used in California 
box-girder bridges: A) stem wall support, B) pedestal support, C) free wall support and D) 
cantilever. (Roblee, 2020e) 
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Table 2.1: Seat-type abutment usage from inventory analysis of Caltrans box-girder bridge 
class (Roblee, 2020e) 

Bridges w/ Proportion of Seat-Type Abutment by Design Type 
Year Bridge Built Seat-Type Straight Backwall and Deck 

Abutments Total A B C D 
>1991 98% 100% 82% 0% 0% 18% 

1973-1991 53% 94% 71% 0% 0% 23% 
<1973 30% 35% 6% 16% 0% 13% 

Haunch on Backwall and/or Deck 
Total A B C D 
0% 0% 0% 0% 0% 
6% 5% 0% 0% 1% 
65% 11% 22% 8% 24% 

Previous studies regarding abutment modeling focused on the constitutive behavior of 

abutment components, such as backfills, bearings, and shear keys; and on capturing the 

overall abutment response. 

For the backfill modeling, early Caltrans guidelines (Caltrans, 1990) had adopted an 

approximate bilinear form and specified a unit-width stiffness value of 20.0 kips/in/ft and 

truncation pressure value of 55.0 psi for modeling the passive resistance of abutment 

backfills. However, the bilinear form does not fully account for the real nonlinear behavior 

of backfills. Experimental studies (Caltrans, 1990; Maroney et al., 1993) showed that the 

ultimate soil pressure occurred at displacements from 6 to 10% of the backwall height. 

Subsequent studies (Nielson, 2005; Jeon et al., 2015b) used multi-linear models for 

modeling backfills, where the initial stiffness and ultimate deformation of sandy and 

clayey backfills were assumed to be within 20.0 kips/in/ft to 50.0 kips/in/ft, and 6 to 10% 

of the backwall height, respectively. Further experimental and theoretical studies also led 

to the use of hyperbolic curves to model backfills (Duncan and Mokwa, 2001; Shamsabadi 

et al., 2007; Wilson and Elgamal, 2006; Shamsabadi and Yan, 2008), some of which were 

applied in preliminary bridge-fragility feasibility analyses (Ramanathan, 2012). Current 

Caltrans guidelines (Caltrans, 2019) retain the approximate bilinear form, but now specify 

a unit-width stiffness value of 50.0 kips/in/ft and truncation pressure value of 35.0 psi, 

along with wall-height scaling rules, for modeling the passive resistance of abutment 

backfills meeting current material standards. 

Other abutment components can be modeled at various degrees of sophistication. On 

the simpler end, seismic responses of backfills and foundation piles or footings have been 
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combined into a single simplified trilinear hysteresis model – with only the foundation 

capacity acting in the active direction and the combination of foundation capacity and 

backfill considered in the passive direction (Gehl et al., 2014). For bearings, various 

models (e.g., for steel and elastomeric bearings) were proposed in Nielson (2005) due to 

their distinctive constitutive behaviors revealed by experiments. Constitutive behaviors for 

three different types of shear keys have been studied experimentally and analytically 

(Megally et al., 2001, 2003), where the types are internal shear keys, external non-isolated 

shear keys, and external isolated shear keys. The role of shear keys in bridges crossing 

fault-rupture zones has been examined (Goel and Chopra, 2008), and the effects of 

abutment-embankment interaction have also been investigated (Zhang and Makris, 2002; 

Inel, 2002; Kotsoglou and Pantazopoulou, 2007; Taskari and Sextos, 2015). Other studies 

have examined the vertical responses of abutment systems (Kavianijopari, 2011; Liang 

et al., 2016). The vertical stiffness of an abutment was assumed to be contributed by the 

bearings, embankments, and stem wall. 

The aforementioned abutment components have been examined and applied in 

numerical analyses. Figure 2.7 illustrates a conventional modeling scheme (Nielson, 2005; 

Mangalathu, 2017; Mangalathu et al., 2016) which considers bearings, the gap and impact 

between the abutment and deck, foundations, and backfills in the longitudinal direction; 

and bearings, shear keys, and foundations in the transverse direction. The backwall and 

the stem wall are connected rigidly and are represented with only one node. A spring with 

a bilinear behavior is usually used to represent elastomeric bearings. Model verification 

and detailed modeling techniques of other types of bearings can be found in a relevant 

study (Nielson, 2005). The gap and impact spring is used to capture the gap between the 

backwall and the deck, as well as energy dissipation during the impact process 

(Muthukumar and DesRoches, 2006; Muthukumar, 2003). A multi-linear model is used to 

capture the seismic responses of piles in the abutment foundations (Xie et al., 2021). 

Different types of shear keys can be simulated by three backbone curves (Megally et al., 
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2001, 2003). The backfill is typically modeled using nonlinear springs with a hyperbolic 

backbone (Shamsabadi et al., 2007; Shamsabadi and Yan, 2008; Xie et al., 2019) where 

the passive resistance of the backfill depends on the mobilized soil height. Conventional 

model responses for two backfill-height options will be examined and compared to those 

for a new proposed model in later chapters. These options are taken as either the height of 

the backwall only, or the total height of the abutment wall (backwall plus stem wall), 

which serve to bracket and provide context for the responses of the proposed model. 

Figure 2.7: Conventional abutment modeling schemes 

Crucial damage mechanisms associated with abutment backwalls (Figure 2.8) were 

observed in past earthquakes. To be specific, an abutment backwall in modern bridges is 

designed to be a sacrificial component, which is intended to fail prior to the foundations 

supporting the bridge and backwall (Caltrans, 2019). This design philosophy limits 

demand on abutment foundations so as to avoid time-consuming foundation excavation 

and repair, thus ensuring rapid post-earthquake repair actions and reduction of both direct 

repair costs and downtime-induced indirect losses (Caltrans, 2017). 

In a bridge with seat abutment, the bridge decks are supported by abutments through 

bearings and restrained longitudinally by backwalls once the joint gaps are closed. The 

backwall is a key component that significantly affects the interaction between backfills and 

abutments, and the dynamic interplay of various bridge components changes dramatically 

before and after the backwall fracture. In particular, abutment foundations are completely 

engaged in the lateral support system before the backwall failure, whereas only the backfill 
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(a) (b) 

Figure 2.8: Examples of backwall damage (Jibson and Harp, 2011): (a) punching of the 
Tubul bridge deck into the backwall of the north abutment, and (b) damage at the base of 
the north abutment backwall of the El Bar bridge. 

behind the backwall provides the primary lateral resistance once the backwall fails. As a 

result, lateral responses of columns and bearings will be underestimated if the backwall 

failure is not considered. Stefanidou et al. (2017) investigated soil-structure interaction 

and seismic fragility assessment of bridges with backwalls using a numerical backwall 

model that considered the flexural failure mechanism – the formation of a plastic hinge 

at the backwall bottom. Taskari and Sextos (2015) considered an additional lower bound 

case in the force transformer mechanism prior to and after backwall failure (i.e., backwall 

completely breaks off). 

Three drawbacks are inherent to the conventional abutment modeling scheme. First, it 

does not account for a backwall fracture mechanism that is expected to significantly 

impact the seismic performance of adjacent components, including abutment foundations, 

bent columns, and deck displacements. Second, as a consequence of neglecting backwall 

fracture, the entire backfill height is inaccurately assumed to contribute to passive 

resistance. In fact, before backwall fracture, the full height of backfill behind the abutment 

wall provides lateral support to the bridge system. However, after fracture, only the soil 

behind the backwall contributes to lateral support of the deck. Therefore, it is imperative 
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to separate the backfill behind the abutment wall into two parts to model their behaviors at 

different stages of loading appropriately. Finally, bearing deformation in the longitudinal 

passive-direction is limited to the size of the deck-abutment joint gap since the backwall 

restrains further movement in that direction. 

To this end, a holistic modeling scheme that can capture the shear failure mechanism 

of abutment straight backwalls is required to more accurately simulate the seismic 

performance of modern highway bridges with abutment straight backwalls. 

2.3 Column Capacity Limit State Models 

In addition to the establishment of probabilistic demand models, the development of 

compatible capacity models (or Component Capacity Limit State (CCLS)) is essential to 

the definition of fragility models. 

Since the column is the most critical component in the bridge system, this section 

focuses on the existing practice of defining CCLS for columns. Table 2.2 provides a 

summary of several recent column capacity models and Table 2.3 summarizes the values 

for column capacity damage states for a couple of existing studies. 

Table 2.2: Comparison of capacity model descriptions in existing works 

DS2 (Slight/Minor) DS3 (Moderate) DS4 (Extensive) DS5 (Complete) 
Year 

Bridge 
Built 

FEMA (1999)  

Minor cracking & 
spalling at hinges, 

Column minor spalling 
(Requires no more than 

cosmetic repair) 

Moderate (shear 
cracks) cracking 

& spalling of column 
(Structurally sound) 

Column degrading 
without collapse -

shear failure 
(Structurally unsafe) 

Column collapse 
(May lead to imminent 

deck collapse) 

Pan et al. (2007)  








Crushing of 
concrete when 
concrete strain 
equals -0.005 

Ramanathan (2012); 
 

Dukes (2013) 

 





Large shear cracks; 
major spalling; 
exposed core; 

confinement yielding 

Loss of confinement; 
longitudinal bar buckling 
or rupture; core crushing 

1973 
to 

1991 
Cracking 

Minor cover spalling 
anywhere along 
the column height 

Major spalling; 
exposed core; 

confinement yielding 

Loss of confinement; 
longitudinal bar buckling 

or rupture; 
core crushing; 

large residual drift 

>1991 Cracking 
Minor cover spalling 

concentrated at the top 
and bottom of the column 

Major spalling; 
exposed core; 

confinement yielding 

Loss of confinement; 
longitudinal bar 

buckling or rupture; 
core crushing 
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Hwang et al. (2001) used a model based on HAZUS (FEMA, 1999), in terms of 

displacement ductility, with thresholds of 1.00, 1.20, 1.76, and 4.76 corresponding to the 

first yielding of longitudinal reinforcement, column yielding, concrete strain reaching 

-0.002, and maximum displacement ductility defined by Buckle and Friedland (1995), 

respectively. Their damage states ranged from no damage to the complete state and were 

calculated based on material properties. For the first three states, the section curvature 

values were obtained and then converted to displacement ductility values using an 

assumed plastic hinge length. As suggested by FEMA (1999), the total dispersion 

(capacity and demand) was taken as 0.4 for fragility curves expressed in terms of SA; and 

0.5 for those expressed in terms of PGA. 
Choi and Jeon (2003) and Choi et al. (2004) defined column capacity limit states with 

curvature ductility thresholds of 1.00, 2.00, 4.00, and 7.00, corresponding to five damage 

states similar to the research by Hwang et al. (2001). The capacity model developed using 

experimental tests of non-seismically designed columns. Also, lap-splice columns were 

considered in these researches. Engineering judgment was needed when the damage state 

thresholds for different experimental tests values were defined. 

Similarly, Nielson (2005) used a column capacity model with median curvature 

ductility values of 1.00, 1.58, 3.22, and 6.84 as thresholds of the damage states described 

as minor spalling, moderate cracking (shear cracks) and spalling, degradation without 

collapse, and collapse, respectively. These values were converted from the displacement 

ductility model from Hwang et al. (2001). 

Pan et al. (2007) assumed that shear failure would not happen in bridge columns and 

defined five damage states with curvature ductility as the EDP. These critical limit states 

were related to the column integrity, the initiation of yielding, formation of the plastic 

hinge, reaching the peak moment, and crushing of concrete when the strain of concrete 

equal to about 0.005. The damage state values in this research were obtained based on ten 
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numerical simulations of bridge columns, considering variation in material strength and 

dead loads. 

Ramanathan (2012) and Dukes (2013) used curvature ductility in their research. Four 

damage states were defined based on expert opinions from Caltrans design engineers and 

maintenance personnel combined with consideration of limited experimental test data of 

components. A set of Caltrans-specific damage states were proposed in their research. 

However, follow-up work (DesRoches et al., 2012) found the column capacity values 

extremely conservative and called for additional research to better define column capacity 

models. A clear contribution of this capacity limit state system was the consideration of 

column capacity varied from different design eras. 

Mangalathu (2017) extended the column capacity limit states by considering 

experimental test data for a total of 48 columns. Based on these tests, new column 

capacity limit states were proposed using the same four damage state definitions as 

Ramanathan (2012). However, these models combined different failure modes such as 

flexural, shear, and lap-splice, so they did not differentiate between failure modes now 

recognized to have very different capacity model values. 

Several existing studies focused on post-1990 ductile designed columns (Kim and 

Shinozuka, 2004; Banerjee and Shinozuka, 2007; Mackie et al., 2007; Kwon and 

Elnashai, 2010) are also summarized in Table 2.3. 

The following chapter will detail how this research investigation addressed these 

issues by clearly separating column failure modes, extending the experimental dataset, 

and enhancing the experimental findings with analytical simulations of column 

performance for each failure mode. 
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Table 2.3: Comparison of capacity model values in existing works 

DS2 DS3 DS4 DS5 
(Slight/Minor) (Moderate) (Extensive) (Complete) 

Engineering Year 
Demand Bridge 

Parameter Built 

Hwang et al. (2001) Displacement 
ductility All 1 1.2 1.76 4.76 

Choi and Jeon (2003) Curvature 
ductility All 1 2 4 7 

Kim and Shinozuka (2004) 
(Bridge-I) 

Displacement 
ductility >1991 1.3 2.6 4.3 8.3 

Kim and Shinozuka (2004) 
(Bridge-II) 

Displacement 
ductility >1991 1.4 2.8 4.6 9.2 

Nielson (2005) Curvature 
ductility All 1 1.58 3.22 6.84 

Banerjee and Shinozuka (2007) Rotational 
ductility >1991 1.58 3.33 6.24 9.16 

citetaddcap2007b Displacement 
ductility >1991 0.23 1.64 6.09 6.72 

Kwon and Elnashai (2010) Column top 
displacement >1991 - 2.86 4.88 19.69 

Ramanathan (2012) 
 

Dukes (2013) 

 


<1973 0.8 0.9 1 1.2 
1973 

to 
1991 

1 2 3.5 5 

>1991 1 4 8 12 

Mangalathu (2017)  


<1973 0.8 2.3 5.2 8.8 
1973 

to 
1991 

1 5 8 11 

>1991 1 5 11 17.5 
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CHAPTER 3 

ADVANCED FINITE ELEMENT MODELING OF BRIDGE COMPONENTS 

Previous researchers have devoted considerable attention to accurate and effective 

modeling of the seismic behavior of various bridge components, including the deck, 

columns, and abutment. These efforts include modeling the structure in a realistic scheme, 

capturing a proper failure mode, and simplifying the model to improve computational 

efficiency. This chapter discusses the modeling techniques for developing a three-

dimensional nonlinear bridge model within finite element modeling platform OpenSees 

(McKenna et al., 2000). The improvement of modeling fidelity through these proposed 

techniques is illustrated using a two-span bridge. 

3.1 Superstructure 

It is recommended by Nielson (2005) to model the deck elements in OpenSees using elastic 

elements since the superstructure elements typically remain elastic during an earthquake. 

Two alternative strategies for modeling the superstructure were proposed by Priestley et al. 

(1996) as shown in Figure 3.1, grillage and spine, both of which model the superstructure 

with stick elements. The spine model is a further simplification of the grillage model. 

(a) (b) 

Figure 3.1: Modeling scheme for bridge superstructure: (a) grillage, and (b) spine. 

While saving some computational time, the spine model has a significant drawback. 

The axial load is concentrated at the bridge centerline, and thus the force transfer to the 

substructure is influenced by the transverse beam stiffness. The undesirable impacts 
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become most notable in bents having a central column and include: 1) The center column 

has a higher axial load than the others, and 2) external columns have an initial transverse 

displacement at the base upon gravity loading. The central column’s high axial load 

incorrectly estimates column strength degradation due to concrete crushing, notable 

P-Delta effect, or shear failure. The initial transverse displacement amplifies the 

transverse demand under a small ground motion intensity range, influences the regression 

model, and ultimately overestimates the failure probability by about 0.1 to 0.2 g in terms 

of median Sa1 of the column fragility models. The added modeling sophistication 

increases computational time, but not significantly. Hence, this research has elected to use 

the grillage scheme to model the superstructure. 

3.2 Internal Support Bents 

California bridges have different internal support types, with the most common being single 

column bent (isSB) and multi-column bents (isMB). Pier walls and shaft bents are also 

common but are not considered herein. 

3.2.1 Bents 

As shown in Figure 3.2, the column bent is modeled using a combination of fiber-section 

column elements and rigid links for connection to the superstructure. Column foundation 

elements, including both lateral and rotational springs are discussed in subsection 3.2.6 

and Figure 3.19. Separate lateral element models represent piles, spread footings, and the 

soil loads applied to the sides of the pile cap or footing. The rotational element considers 

rotation failure associated with either excessive axial pile displacement (i.e., geotechnical 

failure) or foundation-to-column connection details (i.e., structural failure). 

Columns in single-column bents are located at the bottom of the center cell, while in 

multi-column bents, they are evenly spaced as a function of column and cell number. Note 
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Figure 3.2: Typical modeling scheme for a bridge bent. 

that all bridge models are constrained to have an odd number of cells. In this research, the 

distance is assumed to follow a relationship in Table 3.1. For example, a bent with five 

cells and two columns, the column spacing is 3.0 times the cell spacing, as illustrated in 

Figure 3.2. 

Table 3.1: Column spacing (times of cell spacing) with respect to the number of box-girder 
cells and bent columns 

3 
5 
7Cells 9 
11 
13 

Column Number 
2 3 4 

2.0 - -
3.0 1.5 1.0 
4.0 2.5 2.0 
5.0 3.0 2.0 
- 4.0 3.0 
- - 4.0 

3.2.2 Flexural Columns 

Columns are one of the most vulnerable components in a bridge system during 

earthquakes. As presented in Figure 3.2, a column is simulated with force-based elements 

along with zero-length section elements to account for strain-penetration effects at the two 

ends of the column (Zhao and Sritharan, 2007). Cross-sections in the force-based element 
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and the zero-length section element are fiber-based. Fiber cross-sections benefit from 

allowing the specification of unique material properties for different locations across the 

cross-section. Specifically, the concrete is simulated using different constitutive models in 

cover (unconfined concrete) and core (confined concrete). Reinforcement is modeled with 

hysteretic material accounting for reinforcement rupture and buckling. 

Concrete 

This research uses the Concrete02 material (Yassin, 1994) in OpenSees for modeling of 

concrete. Compared to other materials available in OpenSees, Concrete02 is the most 

stable and computationally-efficient. Although Concrete02 material applies the Kent-and-

Park concrete model (Kent and Park, 1971) having a linear descending branch, this research 

adopts the Mander’s concrete model to achieve a better accuracy. 

As suggested by Mander et al. (1988), the basic formula of the concrete constitutive 

model is given by Equation 3.1 and Figure 3.3. 

𝑓𝑓𝑐𝑐𝑐𝑐′ 𝑥𝑥𝑥𝑥 
𝑓𝑓𝑐𝑐 = (3.1) 

𝑥𝑥 − 1 + 𝑥𝑥𝑟𝑟 

′where 𝑓𝑓𝑐𝑐𝑐𝑐 is the compressive strength of confined concrete (defined later). 

𝜀𝜀𝑐𝑐 𝑥𝑥 = (3.2) 𝜀𝜀𝑐𝑐𝑐𝑐 

defines the ductility of the concrete strain, where 𝜀𝜀𝑐𝑐 is the compressive concrete strain 

normalized by 𝜀𝜀𝑐𝑐𝑐𝑐, the strain at peak stress (defined later). 

𝐸𝐸𝑐𝑐 𝑥𝑥 = (3.3) 𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑠𝑠𝑒𝑒𝑐𝑐 

′is the parameter to define the relationship of the secant stiffness 𝐸𝐸𝑠𝑠𝑒𝑒𝑐𝑐 = 𝑓𝑓𝑐𝑐𝑐𝑐/𝜀𝜀𝑐𝑐𝑐𝑐 and 
′tangent stiffness 𝐸𝐸𝑐𝑐 = 57000�𝑓𝑓𝑐𝑐𝑐𝑐psi. Using the Concrete02 material inherently implies 
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Figure 3.3: Stress-strain model for concrete in compression (Mander et al., 1988). 

the constant value of r = 2 as a result of the assumption that the strain at peak strength is 
′ ′defined by 𝜀𝜀𝑐𝑐𝑐𝑐 = 2𝑓𝑓𝑐𝑐𝑐𝑐/𝐸𝐸𝑐𝑐. Denote 𝑦𝑦 = 𝑓𝑓𝑐𝑐/𝑓𝑓𝑐𝑐𝑐𝑐, Equation 3.1 simplifies into the following 

form: 

2𝑥𝑥 
𝑦𝑦 = (3.4) 

1 + 𝑥𝑥2 

For concrete, the compressive strength is related to the effective lateral confining stress 

in the two directions of the section: 

𝑓𝑓𝑙𝑙𝑙𝑙 
′ = 𝑘𝑘𝑒𝑒𝜌𝜌𝑙𝑙𝑓𝑓𝑦𝑦ℎ (3.5a) 

𝑓𝑓𝑙𝑙𝑦𝑦 
′ = 𝑘𝑘𝑒𝑒𝜌𝜌𝑦𝑦𝑓𝑓𝑦𝑦ℎ (3.5b) 

where ρx and ρy is the transverse reinforcement ratio; fyh is the transverse reinforcement 

strength; and ke is a confinement effectiveness coefficient defined by Equation 3.6: 
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 where s ′ is clear spacing of transverse reinforcements; ds, bc, and dc are the dimensions of 

the confined concrete; wi is the clear distance of two adjacent longitudinal reinforcement in 

rectangular sections; ρcc is the longitudinal reinforcement ratio of core concrete. The 

effective lateral confining stresses then induce the confined concrete strength given by Chang 

and Mander (1994): 

29 



  

              
  

             

           
                

  

    

     

   

  

   

 

        

 
  

             

            

  

  

Figure 3.4 illustrates the enhancement of confined concrete strength f ′ /f ′ with 
cc co 

relationship to different parameters. Confinement strength ratio x is the ratio of lateral 

confining stress to the unconfined concrete strength. x represents unconfined concrete, as 
the plot indicates f ′ /f ′ = 1. As the confinement strength ratio increases, the 

cc co 

enhancement increases in a hyperbolic shape. The other parameter q indicates the 

unbalance confinement in the two directions of the section. Unbalance confinement 

decreases the enhancement of confined concrete, especially for the range of q < 0.5. In 

real situations, the unbalanced ratios for wide sections are commonly larger than 0.5, 

which causes a slight difference compared to a balanced confined section (regular 

section). 

Figure 3.4: Compression strength enhancement of confined sections. 

As suggested by Priestley et al. (1996), the strain corresponding to peak stress for 

confined concrete is given by Equation 3.8a; and the ultimate strain is given by 

Equation 3.8b, where εsu is the transverse reinforcement strain at maximum tensile 
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strength (defined later). 

Note that unconfined concrete is a special case when there is zero confining stress (x = 

0) and thus Equation 3.1 to Equation 3.8 are all applicable to unconfined concrete. 

Determination of the end of the linear degrading portion (residual strength) of the 

Concrete02 material is an important part of defining the concrete material. In this 

research, stress is assumed to be linear degrading after 2εco and degrading to zero strength 

at the spalling strain εsp for unconfined concrete (Mander et al., 1988). Based on 

Equation 3.4, 2εco corresponds to 0.8f ′ and therefore results in a spalling strain co 

εsp = 6εco for unconfined concrete with zero residual strength. Confined concrete is 

assumed to have 20% capacity remaining and then interpolate the corresponding residual 

strain using εcu. 

Reinforcement 

Hysteretic material is selected to model the reinforcement behavior because it has good 

stability, the capability to define a buckling branch, and compatibility with other possible 

failure modes such as a lap-splice column (subsection 3.2.4). The material accounts for 

strain hardening and reinforcement fracture on the tension side, while on the compression 

side, the material reflects the buckling effect. 

Tension parameters includes stress-strain values for yielding (εy, fy), ultimate strength 

(εsu, fu), and fracture strain εf . 
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While it is straightforward to define the yield point with yielding strength and initial 

stiffness Es = 29 000 ksi, the ultimate strength point is defined differently in 

various studies. Priestley et al. (1996) suggested that fu = 1.5fy for most reinforcement 

types and indicated the ratio would decrease as the strength increases. 

Figure 3.5: Stress-strain model for steel in tension. 

Bozorgzadeh et al. (2006) use a normal distribution which has 1.55 mean and ranges 

between 1.40 and 1.70 to define the ratio fu/fy. In this research, data in Paik et al. (2017) 

is analyzed, and a linear relationship is proposed to define the ultimate strength as: 

𝑓𝑓𝑢𝑢 = −0.11𝑓𝑓𝑦𝑦 + 2.067 (3.9) 𝑓𝑓𝑦𝑦 

Substituting the typical reinforcements strength in California bridges, 50.0 ksi to 78.0 ksi, 
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Figure 3.6: Linear model to estimate the steel ultimate strength. 

the ratio derived from the model is 1.20 to 1.52, which is comparable to values used in 

another existing research. Strain εsu corresponding to the ultimate strength is determined by 

Equation 3.10 (Caltrans, 2019). Reinforcement sizes used in California bridge columns are 

typically #11 or #14, and thus εsu = 0.060 is used in most of cases. 

In order to determine the necking/degrading branch, it is assumed that the descending 

line is passing through 30% tensile strain when the strength degrades to 80% of the ultimate 

strength. This determines a linear descending model for the steel. Fracture strain is then 

imposed to the Hysteretic material using the MinMax material in OpenSees, which models a 

sudden drop at the specified strain εf. An exponential relationship is developed based on 

coupon test data in various studies (Priestley et al., 1996; Paik et al., 2017; Schoettler et al., 

2012; Bao et al., 2017): 

𝜀𝜀𝑓𝑓 = 2850 exp�−0.05𝑓𝑓𝑦𝑦� (3.11) 𝜀𝜀𝑦𝑦 

Based on this relationship, typical steel strength results in a fracture strain with a range 
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of 20% to 35%. This model also has a negative relationship with the steel yield strength, 

which coincides with the idea that high-strength steel tends to be brittle. 

The compression side of the steel considers buckling behavior, where the model 

proposed by Zong et al. (2014) is adopted. Except for the yield point defined by 

(−εy, −fy), the other two points for buckling (εb, fb) and residual (εr, fr) are described 

 

Figure 3.7: Exponential model to estimate the steel fracture strain. 

Figure 3.8: Stress-strain model for steel in compression. 

The buckling point is defined in Equation 3.12: 
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𝜀𝜀𝑏𝑏 = −𝐶𝐶𝑠𝑠𝐿𝐿1𝜀𝜀𝑦𝑦 (3.12a) 

𝛼𝛼 
𝑓𝑓𝑏𝑏 = −𝐶𝐶𝑠𝑠 � (𝐿𝐿1 + 1) − 1� 𝑓𝑓𝑦𝑦 ≤ −0.1𝑓𝑓𝑦𝑦 (3.12b) 100 

where L1 = 800M−2.5 + 2.5, α = 3.0 − 0.2M 2, and material strength parameter 𝑀𝑀 = 
𝑠𝑠/𝑑𝑑𝑏𝑏�𝑓𝑓𝑦𝑦/61ksi. 

The stiffness reduction coefficient Cs that varies with relative stiffness k/k0 and 

material strength parameter M is estimated by: 

Critical stiffness k0 = 0.5π4EsIb/s3 is a property parameter for the longitudinal 

reinforcement with moment of inertia Ib and center-to-center transverse reinforcement 

spacing s (un-support length). The equivalent stiffness of transverse reinforcement 

confinement k is calculated by k = Fy/∆y. ∆y and Fy are the solution of the following 

equations, which result in a buckling distance with force equilibrium between buckling force 

and confinement force: 

where R is the radius of column core, and Ah is the area of transverse reinforcement section. 

Lastly, the residual strength fr is simply defined as 80%fb, and the residual strain is 

calculated by the following: 
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𝜀𝜀𝑟𝑟 = min(𝐿𝐿1 − 30, 1.5𝐿𝐿1) + 𝐿𝐿1 (3.15) 𝜀𝜀𝑏𝑏 

The pinching parameters used in this research are px = 0.35 and py = 0.95, and the 
damage parameters are approximated as d1 = 0.02 − 0.008ρsvρsl ≥ 0.007 and d2 = 0.02. 

Strain Penetration 

Strain penetration occurs at the joint area of columns in the bridge. The connections of 

the column bottom with foundations and the column top with the bridge deck are the two 

locations to consider strain penetration effects. In these locations, bar-slip decreases the 

stiffness of the component. As such, the Bond_SP01 material is used in a zero-length 

section at the end of the column. The most critical modeling parameter to determine is 

the amplification factor SF, which simplifies the bar-slip deformation in the embedded 

longitudinal reinforcements into a zero-length section. 

As suggested by Lehman and Moehle (2000), the development length for the tensile 

embedded reinforcement to develop the yield strength is: 

𝑓𝑓𝑦𝑦𝑑𝑑𝑏𝑏 =𝑙𝑙𝑠𝑠𝑦𝑦 (3.16) ′48�𝑓𝑓𝑐𝑐𝑐𝑐psi 

and the bar-slip at the joint is: 

usy = 0.5εylsy. (3.17) 

Then the amplification factor is determined by the following: 

𝑢𝑢𝑠𝑠𝑦𝑦 𝑆𝑆𝐹𝐹 = (3.18) 𝜀𝜀𝑦𝑦 

In the above equations Equation 3.16 to Equation 3.18, db and fy are the diameter and yield 

strength of the longitudinal reinforcements. When amplifying the steel strain with a factor 
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of SF , the concrete material should also be amplified with the same multiplier in order to 

keep the section integrity and numerical stability (Jeon et al., 2015). 
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Mesh-Dependent Strain Localization 

Modeling of a structural member with a fiber-based model, with the consideration of axial 

load-bending moment interaction, gives relatively higher accuracy than achieved with a 

hinge-type model (Powell and Chen, 1986). However, in the presence of softening 

constitutive model, two problems stand out in the fiber-based model simulation. First, the 

global post-peak displacement-loading response is highly sensitive to the discretization of 

structure members. In order words, changing either the length of the first member (hinge 

region) in a displacement-based formulation (DBE), or the distance of the first two 

integration points (IPs) in a force-based formulation (FBE), significantly impact the 

strength-degradation branch in the simulation. Second, the local strain-stress response 

concentrates at the first member (or between the first two integration points), which 

generates unexpected high strain at the first element and, in turn, governs the global 

responses’ degradation. 

Figure 3.9: Localization issue in force-based formulation (Coleman and Spacone, 2001). 
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In order to address the localization issue, this research adopts a modeling technique 

similar to the plastic hinge integration method proposed by Scott and Fenves (2006). As 

shown in Figure 3.2, the column is modeled using a fixed length of force-based element 

at the hinge region with two Gauss-Lobatto integration points located at the element ends. 

The length of the hinge element is estimated based on the formula proposed by Paulay and 

Priestley (1992): 

lp = 0.08L + 0.15fydb (3.19) 

In this manner, the local plastic deformation is fixed in a reasonable range. 

Figure 3.10: Comparison of the adopted modeling scheme with other modeling methods. 

Validation is conducted by comparing the modeling results against the laboratory tests 

in Appendix C. It is noticed that most of the laboratory tests stop with 80% capacity 

remaining and thus cannot be used to study the localization problem. Instead of 

comparing the experiment results, the simulation result using this proposed method is 

compared with a simulation using the non-local method. Non-local is an emerging 

modeling technique that is objective to member discretization (Kenawy et al., 2018). 

Although not easy to apply to large bridge models, results for a single column model are 
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compared herein using the column configuration in Appendix A. Figure 3.10 illustrates 

that the adopted modeling scheme generates results that are comparable with the non-local 

method (Kenawy et al., 2020), whereas other traditional methods with FBE (or DBE) 

produce results that are dependent on the number of integration points (or elements). 

3.2.3 Reduced Sections 

California bridges supported on multi-column bents often use a “pinned” or reduced 

section, connection to the foundation element. Figure 3.11(a) provides an example 

connection illustrating that pin bases are constructed with smaller section sizes and fewer 

longitudinal reinforcements. It can also be seen from the figure that a construction joint 

disconnects the column and foundation, but a smaller “column key” section with reduced 

reinforcements extends into the foundation. In order to capture its behavior, this project 

uses a zero-length strain-penetration section to model the pin section. 

(a) 

(b) 

Figure 3.11: (a) Reinforcement detailing of a typical pin base in California bridge; and (b) 
pushover response comparing two modeling techniques for configuration in Appendix A. 
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Figure 3.11(b) compares the adopted model to the typical simplified pin-base model 

(ideal pin with zero moment capacity) and shows the adopted model shows almost twice of 

base shear and initial stiffness for this reduced section detail. 

Although the proposed model improves upon the model with an ideal pin in estimating 

the moment capacity, the expansion joint-filler is not considered here and thus leads to 

underestimation of the moment capacity. Validation in Appendix C shows approximately 

15% underestimation for the tests with free-top. However, because the column top for 

box-girder bridges is almost always fixed to the bridge deck, such an underestimation is 

expected to have a negligible effect on estimating bridge performance. 

3.2.4 Lap-splice Columns 

It is estimated (Roblee, 2017a) that nearly 80% of pre-ductile California bridge columns 

have ’starter bar’ details or a lap-spliced connection of longitudinal reinforcement at the 

column base. Previous studies Hwang et al. (2001); Zhang et al. (2004); Kim and 

Shinozuka (2004); Barkhordary et al. (2009) showed that lap-splice columns quickly lose 

their capacity once reinforcement in the lap-splice region starts to dislocate. Therefore, 

lap-splice columns often behave very brittlely and substantially impact bridge seismic 

performance. 
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(a) (b) 

Figure 3.12: (a) Lap-splice reinforcement behavior in tension (Priestley et al., 1996) and 
compression; and (b) material model in tension side. 

The mechanism of lap-splice reinforcement is represented in Figure 3.12. As suggested 

by Priestley et al. (1996) and Barkhordary et al. (2009), lap-splice stress on the compression 

side is assumed to behave the same as regular reinforcement since lap-splice reinforcement 

is supported by concrete. However, dislocation of lap-splice reinforcement in the tension 

side results in the lap-splice failure stress flsmax. It is the forces to overcome the tension of 

concrete blocks surrounding the reinforcement: 

Tb = Abflsmax = ftplp ≤ Abfy (3.20) 

in which Ab is the area of lapped reinforcements, ft is the tensile strength of concrete that 

′can be estimated with 7.5�𝑓𝑓𝑐𝑐𝑐𝑐psi (Chang and Mander, 1994), lp is lap-splice length, and 

fy is yield strength of reinforcement. It can be seen from this equation that lengthening the 

lap-splice length is an effective way to prevent lap-splice failure. If the developed strength 

in the lapped reinforcement can attain the steel yield strength, the member will not fail at 

the lap-splice and the steel follows the original constitutive model in Figure 3.5. 

Figure 3.13: Perimeter of concrete block during lap-splice failure (Priestley et al., 1996): 
white and black circles represent the two lapped reinforcements. 
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The perimeter of concrete blocks surrounding the reinforcement p is illustrated in 

Figure 3.13. For cases with small spacing between longitudinal reinforcements (sa), the 

surrounding concrete block considered to dislocate is calculated by adding up half of the 

average spacing between the reinforcements (sa/2), twice the clear cover c and 

reinforcement diameter db (2(c + db)). If the spacing between longitudinal reinforcement 

(sa) is large enough, the cross-section of the dislocating concrete block becomes a 

45-degree triangle. Therefore, the perimeter of the concrete block surrounding 

reinforcement is given by Priestley et al. (1996): 

𝑠𝑠𝑎𝑎 𝑝𝑝 = + 2(𝑐𝑐 + 𝑑𝑑𝑏𝑏) ≤ 2√2(𝑐𝑐 + 𝑑𝑑𝑏𝑏 ) (3.21) 2 

After the complete spalling of cover concrete, the lap-splice strength degrades to the 

residual stress flsr. Residual stress describes the friction forces between reinforcement and 

core concrete with compression in their surface provided by transverse reinforcement in 

the lap-splice region. 

𝑙𝑙𝑝𝑝 𝐴𝐴𝑏𝑏𝑓𝑓𝑙𝑙𝑠𝑠𝑟𝑟 = 𝜇𝜇𝐴𝐴ℎ𝑓𝑓𝑦𝑦ℎ ≤ 𝐴𝐴𝑏𝑏𝑓𝑓𝑙𝑙𝑠𝑠𝑙𝑙𝑎𝑎𝑙𝑙 (3.22) 
𝑠𝑠 

where µ takes 1.4 as suggested by Barkhordary et al. (2009). When the calculated residual 

strength is larger than flsmax, the softening branch in Figure 3.12(b) becomes flat. From 

this point of view, decreasing the spacing of transverse reinforcement in the lap-splice 

region is another strategy to prevent brittle behavior in lap-splice columns. 
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Lap-splice strain is determined by adding up elastic deformation and lap-splice 

deformation (Barkhordary et al., 2009). 

Lap-splice displacement u corresponding to maximum stress flsmax is suggested as 0.04 

inches, while a typical lug-spacing of about 0.4 inches is used to compute the residual 

stress flsr. Fictitious length lss is used to measure the length of lap-splice deformation, 

which is estimated to be equal to the section depth as suggested by Barkhordary et al. 

(2009). 
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3.2.5 Shear/Flexural-Shear Columns 

As outlined in subsection 2.2.1, multiple modeling techniques can be used to model a 

shear or flexural-shear column. In this research, a zero-length shear spring is used, and the 

capacity model proposed by Sezen (2002) is adapted herein. 

Examination of three experimental tests reveals the limitations of the Sezen (2002) 

model. Load-deflection responses for three tests by Ang (1985) are shown in Figure 3.14 

with their corresponding design parameters summarized in Table 3.2. The table notes that 

Unit-6 and Unit-1 are generally identical except for the shear span ratio, and Unit-15 and 

Unit-1 have identical designs except for their longitudinal reinforcement ratio. 

Table 3.2: Parameters for three specimen in tests by Ang (1985) 

Specimen § D M/V D αP fy fh 
′fco db s Ah ρsl ρsv Vn 

parameter in − % ksi ksi ksi in in in2 % % kips 
Unit-6 15.75 1.5 0.0 63.24 47.57 4.37 0.63 2.36 0.044 3.20 0.509 87.67 
Unit-1 15.75 2.0 0.0 63.24 47.57 5.44 0.63 2.36 0.044 3.20 0.509 71.94 

Unit-15 15.75 2.0 0.0 63.24 47.28 5.05 0.63 2.36 0.044 1.92 0.509 51.70 
§ D = diameter of specimen; M/V D = shear span ratio; αP = axial load ratio; fy = longitudinal reinforcement 

yield strength; fh = transverse reinforcement yield strength; f ′ = concrete strength; db = diameter of longitudinal c 
reinforcement; s = spacing of transverse reinforcement; Ah = area of transverse reinforcement; ρsl = longitudinal 
reinforcement ratio; ρsv = transverse reinforcement ratio; and Vn = experimental shear strength. 

(a) (b) (c) 

Figure 3.14: Experimental results (Ang, 1985): (a) Unit-6; (b) Unit-1; and (c) Unit-15. 
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Modification-1: Degradation Factor 

Compared to Unit-1, Unit-6 has a smaller shear span ratio equaling 1.5, and the response 

is more brittle after the peak shear capacity. Similar behaviors are observed in other cases 

like Figure 3.15. 

(a) (b) 

Figure 3.15: Experimental results with highly brittle performance: (a) Unit-20 (Ang, 1985) 
with M/V D = 1.75 and ρsv = 0.38%; and (b) 2CUS (Umehara, 1983) with M/V D = 
1.13 and ρsv = 0.36%. 

Consequently, the proposed model modifies the amplification factor k considering the 

geometry and reinforcement configuration effects on the column ductility. With calibration 

to the experiment test result, the column is classified as a ’normal’ case if the shear span 

ratio M/V D is larger than 2.0 and the transverse reinforcement ratio ρsv is larger than 

0.20%. In the figure, ’Highly brittle’ cases are columns either with shear span ratios smaller 

than 1.75 or transverse reinforcement ratios smaller than 0.15%. The test result for Unit-20 

in Figure 3.15(a) leads to the selection of 1.75 as the lower bound for shear span ratio. 

Lastly, linear interpolation is assumed for columns located between the two bounds. 

Broadly, this model implies that the shear capacity degrades as displacement ductility 

increases. This model relates the rate of degradation to a function of the geometry (M/V D) 

and confinement condition (ρsv). 
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Figure 3.16: Modified amplification factor k in the proposed shear capacity model. 

Modification-2: Longitudinal Reinforcement Term 

Comparison of Unit-1 and Unit-15 also suggest that the shear capacity may be affected by 

the longitudinal reinforcement ratio. Unit-1 has a larger longitudinal reinforcement ratio 

and a higher shear capacity than Unit-15. A similar observation occurs in specimen R-5 in 

tests conducted by Sun et al. (1993). This column has a 5% longitudinal reinforcement 

ratio and results in a flexural failure with longitudinal reinforcement buckling with minor 

diagonal cracking, even with a relatively small transverse reinforcement ratio (0.18%). 

This phenomenon can be explained by considering the additional confinement provided 

by longitudinal reinforcements. Therefore, an additional term is added to the shear 

capacity to account for the possible additional confinement effect from longitudinal 

reinforcement per Equation 3.24d, in which ksl is the participation coefficient of 

longitudinal reinforcement and the corresponding bending depth, which is suggested to 

use 0.075. However, if the transverse reinforcement ratio is too small, the flexural capacity 

provided by longitudinal reinforcement may not develop before the shear failure happens. 

Therefore, a threshold of 0.175% transverse reinforcement ratio is adopted to apply this 

term. The threshold is taken as the mean value of column transverse reinforcement ratio in 
pre-ductile (era-1) column designs (era-1). 

47 



  

 
    

 
  

   

   

   

                

 
    

 
                 

   

    

  

       
 

 

Modification-3: Transverse Reinforcement Term 

In the model proposed by Priestley et al. (1994), the transverse reinforcement term 

considers a cracking angle. This term depicts the number of transverse reinforcements 

across the shear cracks. The model takes the cracking angle as 30 degrees. In another 

shear capacity model (Kato and Ohnishi, 2002), the cracking angle was taken as 45 

degrees. Therefore, a mean value of these two (37 degrees) is used in the proposed model. 

Modification-4: Shear Span Ratio 

In the model proposed by Sezen (2002), the shear span ratio was limited to the range of 2.0 

to 4.0. After modeling and comparing with the experimental results, the shear span ratio 

for a valid model is extended to 1.5. When the shear span ratio is smaller than 1.5, it is 

taken as 1.5 for the following calculation. 

The final model is summarized as below: 
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Modeling of Degradation of Monotonic to Collapse State 

After establishing the nominal shear capacity of the column, the shear spring response 

must control degradation to the residual capacity following a specified degradation 

stiffness. The residual capacity is often specified as 20% of the nominal shear capacity. 

However, from the limited yet informative monotonic pushover results, the degradation 

may be better characterized using a bi-linear relationship. The highly brittle cases 

(M/V D < 1.75 or ρsv < 0.175%) has a steeper first degradation branch and a flatter 

second branch (Figure 3.17(a)), while the normal cases exhibit the opposite sequence 

(Figure 3.17(b)). Based on these experiment results, a new degradation model is 

developed to construct a shear spring for modeling shear failure. 

(a) (b) 

Figure 3.17: Approximated bi-linear degradation of shear columns: (a) Unit-20 in highly 
brittle case (Ang, 1985) with M/V D = 1.75; and (b) specimen-4 in normal case (Sezen, 
2002). 

Before shear failure occurs, the specimen follows typical flexural behavior, and the 

shear spring deforms elastically with stiffness calculated by Equation 3.25 where Gc is the 

concrete shear modulus. 
GcAg

Kelastic = (3.25) M 
V 

After triggering the shear failure, the shear capacity degrades following the degradation 
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stiffness given by the shear capacity model, i.e.: 

in which dy = yield displacement of the column specimen, and linear interpolation is 

applied to those cases between the above two situations. 

The second leg of the degradation line is assumed to apply from about 65% capacity 

remaining through zero capacity (or entirely collapsed). Equation 3.27 is adopted to 

calculate the ultimate displacement at collapse, illustrated by the red dashed extension in 

the shear-spring model shown in Figure 3.18. The ultimate displacement assumes half of 

the capacity degrades following Kd1 and the other half degrades following Kd2. 

Figure 3.18: Illustration of shear spring definition. 
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Appendix C provides comparisons of responses using the proposed analytical 

methodology with experimental test results for an extensive and diverse set of column designs 

having a range of failure modes. Overall, these results show that the new modified 

methodology captures critical response characteristics for a broader range of column designs 

and at a higher degree of fidelity than could be achieved using the unmodified method. 

3.2.6 Column Foundation 

Figure 3.19: Response models for column foundations. 

As illustrated in Figure 3.19, column foundations are modeled as a combination of 

lateral translational springs and rotational springs in each of two directions. The lateral 

springs include ones to capture the foundation-base response, associated with pile lateral 

resistance or spread-footing frictional resistance, and soil springs capturing soil load on the 

side faces of either the pile cap or spread footing. The response model for foundation-base 

springs is the same as those used in the abutment foundation and will be discussed next. 

The soil springs capture the resistance applied by the soil to the side faces of a pile cap or 

footing and are therefore symmetric. More detail is provided in the next section. 

The rotational spring assigned to the column foundation considers the lesser of two 

potential rotational failure mechanisms: 1) ‘geotechnical’ failure associated with 
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excessive axial displacement of piles at the foundation perimeter, and 2) ‘structural’ 

failure associated with excessive rotation of poor column-foundation connection details. 

The TzSimple1 material in OpenSees is used to model the column foundation rotation. 

Compared to past studies which used elastic rotational springs, this enhanced strategy 

allows for characterization of alternative foundation failure mechanisms for 

poorly-designed foundations where column hinge capacity exceeds either the structural or 

geotechnical capacity of the foundation. 

3.3 Abutment 

As previously noted in Table 2.1 and Figure 2.6, abutment choice in California has evolved 

from primarily diaphragm-type abutments used in earlier design eras to seat-type abutments 

used in over 98% of bridges designed since the 1990’s. Modern bridge designs use either a 

stem wall or cantilever wall with a straight backwall and no haunch on the deck. Therefore, 

under considerable seismic loading, the superstructure end diaphragm pushes against the 

straight backwall, resulting in shear fracture near the base of the backwall. Moreover, the 

use of haunches on the backwall and/or deck is generally limited to early bridge designs 

from before the early 1970’s. This section will focus primarily on modeling the type A 

abutment without a haunch as it is widely used in modern bridge designs. Other types of 

abutment types will also be discussed based on this study. 

3.3.1 General Scheme 

A new abutment modeling scheme shown in Figure 3.20(a) has been developed to address 

the aforementioned modeling issues with the conventional modeling scheme in Figure 2.7. 

A more rigorous and robust spring system is considered in the longitudinal direction by 

separating the abutment wall into two segments – the backwall and the stem wall. The 

lateral behavior of the backwall is simulated using a backwall connection spring that 

connects the backwall node and the stem wall node (i.e., the seat node). In this way, the 

52 



  

        

   

            

   

      

   

  

  

 

   

  

 

 

  

   

       

   

    

  

 
   

 
              

          

   

           

        

 

backfill can be consequently separated into two portions, namely backfill-A and 

backfill-B, if the backwall connection fractures. Specifically, the backfill-A spring 

represents the backfill behind the backwall and connects the backwall node to the 

free-field node. The backfill-B spring connects the abutment stem wall/seat node to the 

free field node, capturing the passive resistance of the remaining backfill (i.e., the backfill 

behind the stem wall). Therefore, impact forces between the deck and backwall will 

transfer into backfill-B and the abutment foundation before the failure of the backwall 

connection. However, after complete fractures of the backwall, only a limited amount of 

lateral force from the deck can be transferred to the abutment foundations through the 

bearings, and most of the force is taken by backfill-A. In the transverse direction, a soil 

spring is added to the model to approximate soil resistance acting on the side of the stem 

wall and wing wall. 

The geometric interactions of various abutment and soil components are well 

represented using the new spring system, where each spring captures the appropriate 

response of each distinct component. In this manner, the temporal change in the dynamic 

interplay among these components can be reliably quantified, particularly before and after 

the backwall fracture when subjected to strong earthquakes. The shape of the backbone 

curves for each constitutive nonlinear spring is provided in Figure 3.20(b) and will be 

discussed in the following sections. 

3.3.2 Shear Key 

Megally et al. (2001) summarized the behavior of three types of shear keys named external 

isolated shear key, external non-isolated shear key, and internal shear key. As illustrated in 

Figure 3.21, the component response of external keys (both non-isolated and isolated) can 

be generically represented with three segments, whereas only two segments are needed to 

capture the response of internal keys. In this research, the OpenSees modeling of all shear 

keys uses Hysteretic material in series with a gap spring. 
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(a) 

(b) 

Figure 3.20: (a) Adopted abutment model incorporating the backwall fracture mechanism 
(Zheng et al., 2021), and (b) backbone responses of bridge component nonlinear springs 
within the abutment modeling scheme. 

(a) (b) 

Figure 3.21: Generic response models for abutment shear keys: (a) external; and (b) 
internal. 

As an emerging type of shear key, the external isolated key fuses at a lower capacity 

level than the non-isolated key as a means to protect the lower portion of the abutment, i.e., 

abutment foundations. Although it is not considered in the probabilistic simulations due to 

its limited usage in existing bridges, the isolated shear key is used in the bride shown in 

Appendix A and therefore is used in the deterministic simulation of the following section. 

The most prevalent abutment shear key in California box-girder bridges is the external 
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(a) (b) 

Figure 3.22: (a) Example of shear key diagonal cracking’s during tests (Megally et al., 
2001), and (b) simplified response models for three types of shear keys. 

non-isolated shear key. The response of a typical non-isolated shear key is modeled as 

three phases until failure following the simplification by Goel and Chopra (2008). Initial 

observed damage is the onset of concrete cracking, indicating the yielding of the shear key. 

As the extending cracks cut across more and more reinforcements in the abutment wall, the 

shear key capacity climbs to the peak. Strength softening initiates when the reinforcement 

cannot resist the widening of concrete cracks. In this stage, concrete spalling is seen at the 

toe of the wall. An external non-isolated key fails through a combination of mechanisms, 

including fracture of reinforcements, concrete crushing at the toe, and large opening of the 

inclined cracks. 

The capacity Vkey for the external non-isolated shear key consists of a concrete term Vc 

and a steel term Vs. The associated variables in Equation 3.28 are schematically illustrated 

in Figure 3.23(a). Through experimental verification (Megally et al., 2001, 2003), the 

concrete term was directly adopted from the ACI 318-14 (ACI, 2014), in which b denotes 

the out-of-plane breadth. The steel term can be derived by considering the moment 

equilibrium of the left portion of the cracked shear key relative to the base of the diagonal 

shear cracks in the stem wall (i.e., point R in Figure 3.23(a)). Specifically, the term of 
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(a) (b) 

Figure 3.23: Illustration of the failure mechanisms: (a) the non-isolated shear key (out-of-
plane breadth noted as b); and (b) backwall passive fracture (out-of-plane width noted as 
w). 

FpHp denotes the moment induced by the pretension force Fp multiplied by the lever arm 

of Hp. Similarly, T1H and T2D denote the moments contributed by the major horizontal 

reinforcement and the first row of steel bars crossing the shear key interface, respectively. 

The last two terms denote the moments contributed by the distributed reinforcement, 

where nh and nv are the numbers of side faces for horizontal and vertical side 

reinforcement, respectively. 

It was then proposed in Megally et al. (2001) that the force and deformation for the 

shear key response model in Figure 3.21(a) can be calculated as the following, in which 
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b in Equation 3.29g is the out-of-plane breadth. Note that ∆1, ∆2 and ∆3 here does not 

include the initial shear key gap. 

Although internal shear keys are uncommon in modern ductile (era-3) abutment 

designs, they appear in about 30% of early-ductile (era-2) bridges and are often used in 

combination with external non-isolated shear keys. Such a combination increases the 

transverse resistance and hence might cause damage to the abutment foundation. It was 

suggested by Megally et al. (2001) that the softening brunch of the internal shear key 

typically extends approximately 3.5 in after the peak and the strength approximately takes 
′the minimal of three terms as shown in Equation 3.30, where 𝑓𝑓𝑐𝑐𝑐𝑐 is concrete strength and 

Ac is the area of the shear key-abutment interface. 

′′𝑉𝑉𝑁𝑁 = min�11.3�𝑓𝑓𝑐𝑐𝑐𝑐psi, 800psi, 0.2𝑓𝑓𝑐𝑐𝑐𝑐� 𝐴𝐴𝑐𝑐 (3.30) 

Validation of the finite element simulation versus experimental tests (Megally et al., 

2001) is demonstrated in Figure 3.24. 

Based on the inventory results, it is assumed that no shear key elements exist in pre-
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ductile designed (era-1) bridges. Instead, the constrained transverse response of rocker 

bearings provide lateral restraint for era-1 bridges. 

Figure 3.24: Validation of the OpenSees model (red lines) against experimental tests by 
Megally et al. (2001). 

3.3.3 Backwall Fracture 

Figure 3.25: (a) Active bending, (b) passive fracture, and (c) a typical seat abutment design 
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This section describes the development of the backwall connection model that 

considers two different failure modes in the two longitudinal loading directions. In the 

active direction (Figure 3.25(a)), the backwall undergoes flexural bending when there is an 

active displacement of the stem wall (seat node) relative to the free-field, and backwall 

nodes: (1) the seat node moves toward the free-field and backfill-A causes bending of the 

backwall; or (2) the backwall node itself moves along the active direction under 

earthquakes because of its lumped inertia mass. This backwall response in the active 

direction is referred to as active bending. In the passive direction (Figure 3.25(b)), the 

backwall response is dominated by shear failure when the deck impacts the base of the 

backwall. Such shear failure in the passive direction is termed the passive fracture. 

Figure 3.26(a) shows the complete parameterized backwall-connection response 

model for straight backwall systems that exhibits both passive fracture and active bending, 

while Figure 3.26(b) shows the bending response is used in both loading directions for 

haunched backwalls where the deck load in the passive direction is applied near the top of 

the backwall. Note that for straight-backwall systems, the passive fracture failure 

mechanism is considered essential for capturing designed sacrificial backwall behavior. In 

contrast, the active bending mechanism is not expected to cause backwall connection 

failure but is included in model development to have a numerically complete response 

model for loading in both longitudinal directions. 

(a) (b) 

Figure 3.26: Generic abutment-backwall connection response models: (a) straight type 
exhibiting passive fracture and active bending; and (b) haunched type showing bending 
response in both loading directions. 
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Figure 3.25(c) shows a typical straight-backwall abutment design, where its geometry 

and reinforcement details are summarized in Table 3.3. These dimensional models were 

created from a sample of 75 straight backwall of abutment designs for California box-

girder bridges (Roblee, 2018g). The bridges in the sample were randomly selected by 

bridge number and broadly reflected geometric variability representative of modern (post-

1970’s) abutment designs used throughout the state. Based on a statistical analysis of the 

sample plans, the backwall depth is assumed to be constant, and the remaining parameters 

are considered lognormally distributed. In particular, distributions for three parameters 

characterizing steel reinforcement are obtained, including the horizontal reinforcement on 

the top of the stem wall (RHW), the vertical reinforcement close to the backfill (RCB), and 

the vertical reinforcement close to the deck (RCD). The statistical distributions of these 

parameters listed in Table 3.3 form the basis to develop the probabilistic response model 

for the backwall connection spring. 

Table 3.3: Distributions of geometric parameters and reinforcing details for 
abutment backwall 

Distribution Parameter Unit EB EB 
Type§ µ† σ† UB 

Backwall depth d in C 12 - - -
Backwall height h ft LN 6 0.24 4.5 7 

Bearing thickness a in LN 3 0.3 1.5 5.5 
RCB area per wall width, ARCB in2/ft LN 0.35 0.6 0.15 1.6 
RCD area per wall width, ARCD in2/ft LN 0.2 0.4 0.15 0.6 
RHW area per wall width, ARHW in2/ft LN 0.4 0.6 0.15 1.6 
§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal distribution, 

respectively; σ denotes standard deviation and dispersion (logarithmic standard deviation) for 
normal distribution and lognormal distribution, respectively. 

EB LB = lower bound, UB = upper bound. 

Active Bending 

Static pushover analyses were conducted in OpenSees on 320 backwall samples with a 

unit width (1 foot) to generate probabilistic backbone curves in active bending. Latin 
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Hypercube Sampling (LHS) is used to generate the 320 numerical backwall samples from 

the statistical distributions shown in Table 3.3. Note that the 320 number is considered 

sufficiently large to obtain accurate results from LHS sampling and capture a 

representative range of responses. The pushover force is applied at the mass center for 

each analysis, namely mid-height on the backwall. 

Figure 3.25(a) represents the simplification procedure used to characterize each 

active-direction pushover response as a trilinear backbone model. Each backbone 

response exhibits three phases: the initial linear elastic phase, the post-yielding plateau 

phase, and the strength degradation phase. The simplification process involved first 

identifying the fracture point with two controlling parameters: the displacement where the 

reinforcement fractures e2p (unit: in) and the corresponding capacity sp (unit: kips per ft). 

A horizontal line was then drawn back from the fracture point to the initial response to 

define the yield displacement e1p (unit: in), which determines the initial stiffness. Finally, 

a residual strength was assumed to be a conservatively low value of 5% of sp. 

(a) (b) (c) 

Figure 3.27: Backwall active bending model: (a) backbone curve modified from each 
pushover response, comparison of distributions between analytical results and samples 
from the generic model for (b) sp, and (c) e2p. 

For application in the probabilistic analyses, it is convenient to express the backbone 

shape with two controlling parameters, accounting for variable backwall heights. A 

generic model was proposed in Equation 3.31. From basic mechanics for a cantilever 

beam, Equation 3.31a relates the lateral resistance of a cantilever beam sp to be the base 

moment capacity, M , divided by the backwall height h. Equation 3.31b provides the 
distribution parameters for M determined from 320 backwall realizations. The other 
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controlling parameter e2p is approximately proportional to h2, as given by Equation 3.31c, 

because the contribution of the yield displacement to the total displacement is implicit and 

the plastic hinge length is a proportion of the backwall height h. The value for the 

proportion parameter k in Equation 3.31c is estimated as 0.1 in/ft2. The yield 

displacement is assumed to be 0.1e2p for simplicity. 

Fixed ratio models in terms of e2p were found to reasonably characterize the backbone 

displacement values e1p and e3p. Figure 3.25(b) and (c) compare the distributions between 

the analytical results (from pushover responses) and the sampled results (from the proposed 

generic model) for the remaining two controlling parameters. A two-sample Kolmogorov-

Smirnov test (Kolmogorov, 1933; Smirnov et al., 1948) is applied to the data to test whether 

the two datasets come from the same distribution. The p-values for testing sp and e2p 

are 0.546 and 0.997, respectively, much higher than the typical significance level of 0.05. 

Therefore, the test does not reject the null hypothesis and concludes that the data are drawn 

from the same distribution. 

𝑀𝑀 
𝑠𝑠𝑝𝑝 = (3.31a) 

ℎ 

ft
𝑀𝑀 ~ LN(37.0 kips ∙ , 0.40) (3.31b) 

ft 

𝑒𝑒2𝑝𝑝 = 𝑘𝑘ℎ2 (3.31c) 

Passive Fracture 

Due to the lack of experiments of straight backwall with a shear fracture in the literature, 

a mechanical model for a non-isolated shear key (Figure 3.19(a)) is adapted to create the 

backwall passive fracture model (Figure 3.21(b)). The similarity between these elements 

is illustrated in Figure 3.23. Although a backwall is a longitudinal component and a shear 

key is a transverse component, this adaption is reasonable because: (1) both the backwall 

and the non-isolated shear key are subjected to impact forces from the deck; (2) the impact 
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forces act at the locations where the shear key and backwall collide with the decks, i.e., the 

bearing height a in Figure 3.20; and (3) the connection details between the shear key and 

stem wall are similar to the ones between the backwall and stem wall. 

Equation 3.32 are modified from Equation 3.28 and adopted for the calculation of 

passive fracture capacity sn of the backwall. It is more reasonable to assume that the 

orientation of the cracks in the backwall is 45◦ rather than cutting through to the base of 

the stem wall because the backwall depth d in Figure 3.23(b) is much smaller than the 

stem wall height H. Such a 45◦ cracking has been validated by previous experimental 

results Megally et al. (2001). Equation 3.32c can be derived from Equation 3.28c because 

the corresponding reinforcement is not transected by the proposed shear crack. ARHW and 

ARCD are defined in Table 3.3. 

The complete mechanical model (Zheng et al., 2021) for the backwall passive fracture is 

shown in Figure 3.28(a). Displacement parameters are determined by applying the essential 

formulas of the non-isolated shear key model Megally et al. (2001, 2003). Equation 3.33 

expresses the relationship between the horizontal crack width (δ0) at the RHW level and the 

strain of the horizontal reinforcement (ε), in which Ld is the reinforcement development 

length, as given by Equation 3.29f and La is the horizontal distance of the crack region 

(see Figure 3.23(a)). Experimental results indicate that such a crack region approximately 

equals the bending wall width (Megally et al., 2001). 

δ0 = ε(Ld + La) (3.33) 
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When the backwall fractures and rotates as a rigid body, displacement compatibility is 

obtained and given by Equation 3.34a. The left-hand side describes the rotation angle at the 

impact level relative to the bottom-left end of the crack, namely the backwall displacement 

en divided by the impact level height of (a + d). The right-hand side calculates the crack 

width at the RHW level divided by the corresponding height of (d − c), in which c is 

the concrete cover for the RHW. Substituting Equation 3.33 into Equation 3.34a yields 

Equation 3.34b, which represents the passive fracture displacement en. The backwall starts 

to yield when ε reaches the yield strain εy and loses strength when ε reaches εu = 0.7% 

(Megally et al., 2001, 2003). 

A procedure similar to that used to develop the generic backwall active bending model is 

also employed to develop a model for passive fracture response. Here, application of LHS to 

Equation 3.32 and Equation 3.34 is used to generate 320 probabilistic backbone curves. 

Figure 3.28(a) shows a sample backbone curve, in which sn is calculated by Equation 3.32, 

and e1n and e2n are calculated by substituting εy and εu into Equation 3.34b, respectively. 

The generic model is then summarized in Equation 3.35 for the two controlling parameters 

sn and e1n. The displacement e2n, where the strength starts to decrease, is assumed to be 

3.5 times of e1n for simplicity as εu/εy ≈ 3.5. 

The same procedure is also applied to early-ductile (era-2) straight backwall designs, 

which differ slightly from the modern (era-3) designs by the inclusion of additional 
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(a) (b) (c) 

Figure 3.28: Backwall passive fracture model (Zheng et al., 2021): (a) backbone curve, 
comparison of distribution between analytical results and samples from the generic model 
for pre-ductile bridges: (b) sn , and (c) e1n 

reinforcement stirrups at the base of the wall as shown in Figure 3.29. This increases the 

fracture capacity of the backwall connection. The applicable model for era-2 designs is 

summarized in Equation 3.36. 

Haunched Backwall 

As detailed in Table 2.1 and Figure 2.6, many pre-ductile bridges (era-1) backwalls 

incorporate a haunch detail, commonly on the backwall, but sometimes alternatively or 

also on the deck. For these haunched cases, the failure mode in both loading directions is 

flexural bending. The difference with the straight backwall in the passive direction is that 

the point of loading application is now at the backwall top. For simplicity of application, 

the response model for haunched backwall is taken as symmetric in both active and 

passive directions, following the model described in Equation 3.31. 
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Figure 3.29: Straight backwall designed in early-ductile (era-2) bridges. 

Figure 3.30: Response model for pounding 

3.3.4 Pounding 

The study by Muthukumar and DesRoches (2006) indicated that pounding between bridge 

components causes energy dissipation and therefore can have a significant impact on the 

overall bridge response. 

The adopted pounding model is established by determining two stiffness K1 and K2 

as the initial stiffness and post-yield stiffness, respectively (Muthukumar, 2003; Nielson, 

2005). Derived from a two-degree-of-freedom system, the contact force due to pounding is 

based on the Hertz contact model with nonlinear hysteresis damper. The adjacent pounding 
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components are assumed to be two spheres with the density of concrete material. With this 

assumption, calculating the volume of two pounding objects leads to the radii of the two 

spheres noted as R1 and R2. Then the stiffness parameter Kh of the Hertz model can be 

derived using the following equation: 

4 𝑅𝑅1𝑅𝑅2𝐾𝐾ℎ = � (3.37) 
3𝜋𝜋(ℎ1 + ℎ2) 𝑅𝑅1 + 𝑅𝑅2 

where h1 and h2 are material parameters also representative of the same concrete material: 

1 − 𝜈𝜈2 

ℎ1 = ℎ2 = ℎ = (3.38) 
𝜋𝜋𝐸𝐸𝑐𝑐 

where ν and Ec are the poisson ratio and elastic modulus of concrete, respectively. The 

energy dissipated during the pounding procedure ∆E is calculated as: 

𝐾𝐾ℎ𝛿𝛿𝑙𝑙𝑛𝑛+1(1 − 𝑒𝑒2)
Δ𝐸𝐸 = (3.39) 

𝑛𝑛 + 1 

Incorporating several constant parameter values (maximum penetration displacement 

𝛿𝛿𝑙𝑙 = 1.0 inch, n = 1.5, e = 0.6), Equation 3.39 is further simplified into ∆E = 0.256Kh. 

Effective stiffness then determined as 𝐾𝐾𝑒𝑒𝑓𝑓𝑓𝑓 = Δ𝐸𝐸�𝛿𝛿𝑙𝑙 and used to compute the two 

desired stiffness’s with Equation 3.40 with a = 0.1: 

OpenSees modeling of the hysteresis properties of this material is accomplished by 

incorporating two ElasticPPGap elements in parallel. Note that this model considers the 

mass of two pounding structures, and thus, the force and stiffness scale of the material used 

in the abutment system will be different from the one used in the pounding of adjacent 
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decks in an in-span hinge. Figure 3.31 compares the responses for pounding between 

decks versus deck-to-abutment pounding for the bridge in Appendix A. Both responses 

take the gap size as 0.5 inches. The figure indicates that the pounding force between decks 

is significantly higher than that between deck and abutment. 

Figure 3.31: Pounding models hysteretic loops for different adjacent objects 

3.3.5 Bearing 

Elastomeric pads are used in all ductile (era-3) and early-ductile (era-2) designed bridges. 

Steel rocker bearings are very common for non-ductile (era-1) designed bridges, although 

a few late-era bridges adopted elastomeric pads. 

This research models elastomeric pads as having a simple bilinear response as 

illustrated in Figure 3.32(a). This is done within OpenSees using the Steel01 material with 

zero strain hardening. Two parameters Ke and µ are used to construct a pad’s constitutive 

model, in which Ke is the initial stiffness, and µ is the friction coefficient that generates 

the yield strength Fy by multiplying by axial load N on the pad. 

While elastomeric pads have the same constitutive model in both directions, steel 

rocker bearings have very different responses in the longitudinal and transverse directions. 
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(a) 

(b) (c) 

Figure 3.32: Response models for bearings: (a) elastomeric pads; and rocker bearings in (b) 
longitudinal direction; and (c) transverse direction. The transverse rocker bearing model 
includes both a frictional and a fuse component. 

Figure 3.33(a) shows the rocker bearing most commonly used in early California bridge 

designs. The bearing has a curved surface at the top and bottom in the longitudinal 

direction, which accommodates translational movement. However, in the transverse 

direction, the bearing must first fail a pair of retainer bracket bolts before responding as a 

frictional connection. In these designs, the transverse restraint provided by the bearing 

retainer assembly serves to limit transverse deck movement similar to a shear key. 

This research adapts a model by Nielson (2005), developed for high expansion steel 

bearings as shown in Figure 3.33(c), to the modeling of the typical California bridge 

bearing assembly shown in Figure 3.33(a). The failure modes are comparable with the 

exception that the transverse restraint is provided by a pair of pintles rather than 

retainer-bracket bolts. However, once the pintles are sheared, all transverse restraint is 

lost, whereas the shearing of any pair of the retainer-bracket bolts only allows movement 

in one direction. Responses are considered comparable in the longitudinal direction. 
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(a) (b) (c) 

Figure 3.33: (a) Typical rocker bearings used in era-1 California bridges (6.0 inch height 
with 2 nuts on each side in the transverse direction); (b) simplified diagram for force 
calculation; and (c) high expansion steel bearings (Mander et al., 1996). 

In the longitudinal direction, Nielson (2005) validated the model against an 

experimental test by using Steel01 material with parameters KeL = 80.0 kips/in, 

KpL = 0.018KeL, and FyL = µN , in which µ = 0.04 is the friction coefficient and N is 

the axial load acting on the bearing. The dimension used by Nielson (2005) for validation 

is 16.7 inch, which is different from the 6.0 inch bearing height used in California concrete 

box-girder bridges. In order to adapt this validated model, it is assumed that the 

overturning moment provided by the pintle (or the flat surface in Figure 3.33(b)) is the 

yield base moment My. A bearing rocks to the yield base moment My when it reaches the 

same tilted angle θ. Under this assumption, Equation 3.41 derives the relationship of 

variables with bearing height H: 
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Consequently, the model for typical rocker bearings used in California concrete box-girder 

bridges is defined used the parameters: KeL = 620.0 kips/in, KpL = 0.018KeL, and 

FyL = µN , in which µ = 0.11 is the friction coefficient and N is the axial load acting on 

the bearing. 

In the transverse direction, two springs are used parallel to capture the complete 

response, namely the fuse and friction springs. The fuse spring models the failure of 

retainer pintles (or retainer bracket bolts), whereas the fiction spring models the kinetic 

frictional movement between the rocker and the base plate after the failure of pintle (or 

retainer bracket bolts). The friction spring is modeled using KeT1 = 1440 kips/in 

(Nielson, 2005), and FyT1 = 0.30N, where N is the axial load acting on the bearing. The 

yield deformation of fuse spring is assumed to be 10 mm or 0.39 inch. The model 

proposed by Steelman et al. (2014) is used to estimate the capacity of retainer pintles (or 

bolts): 

FyT 2 = nb(0.6fu)Agb (3.42) 

where nb is the number of retainer pintles or bolts; the 0.6 coefficient reflects the assumption 

that pure shear controls capacity; fu is ultimate tensile strength of steel; and Agb is the 

effective cross-section area of a pintles or bolts, and it’s recommended to be taken as 80% 

of the nominal cross-section area for threaded nuts. Validation of the high expansion steel 

bearing with pintles design against the experimental tests by Steelman et al. (2014) is shown 

below. To adapt this model to rocker bearings used in California concrete bridges, the bolt 

number nb in Equation 3.42 is changed to 2, accounting for the pair of bolts is sheared in 

the transverse direction. 
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3.3.6 Foundations 

Two general classes of foundations, piles and spread footings, are commonly used to 

support both abutments and bents of California bridges. Figure 3.35 illustrates 

parameterized models for the translational response of these two foundation types. Note 

that large-diameter drilled shafts of various designs are also used at bent locations, but 

these are treated as special cases of column-bent modeling. 

Figure 3.34: Validation of the OpenSees model (red lines) against experimental tests by 
Steelman et al. (2014). 

(a) (b) 

Figure 3.35: Response models for foundation translational springs: (a) piles; and (b) spread 
footings. 

Pile Foundation 

A multi-linear model, defined by Hysteretic material in OpenSees, is used to capture the 

seismic response of various pile foundation types using a set of models developed by Xie 

et al. (2021, 2020). These transverse-response models all require five parameters as 
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illustrated in Figure 3.35(a): the ultimate strength s2 and corresponding deformation e2, 

the ratio ρe12 between yield deformation and e2, ratio ρs32 between degraded strength and 

s2, and the ratio ρe32 between the deformation at onset of degraded strength and e2. 

The modeled s2 value represents the ultimate lateral resistance of a single pile. 

Most pile foundations involve an array of multiple rows and/or columns of piles, and 

their interactions typically reduce pile-group capacity below that of the simple 

summation of individual pile capacities. This is commonly handled with “group 

factors” or capacity-reduction ratios. These factors, herein denoted fm, are applied to 

individual piles based on pile spacing and pile position within the group and relative to 

the direction of motion. 

(Xie et al., 2021) suggested the following procedure, based on Rollins et al. (2006), for 

computing a group amplification factor gf to scale up the backbone response of a single pile 

to that for a group of piles. This process is performed separately for each loading direction. 

Note that the amplification factor gf incorporates the impact of multiple group factor fm 

applied to individual rows of piles. Figure 3.36 shows a 4 × 6 pile group representative 

of a typical pile cap which might underlie a single column bent of a modern bridge. For 

procedure illustration purposes, the amplification factor is only considered for the longer 

axis undergoing a leftward direction of motion. In the direction of motion, there are nr = 6 

rows and np = 4 piles at each row. S in the figure represents the center-to-center spacing of 

piles, and D is the pile dimension. The group factors are largest for the leading row of piles 

in the direction of motion, which engage the largest volume of soil, and become smaller for 

trailing rows that are in the shadow of the leading row. The Rollins et al. (2006) procedure 

assigns the largest group-factor value fm1 to the first row, a reduced value fm2 to the 

second row, and the smallest value fm3 to the third and all subsequent rows as follows: 
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Figure 3.36: Illustration for calculating pile group effect. 

The final amplification factor gf for this direction of motion sums up the individual pile 

contributions by row and can be written as follows, where I(·) is the indicator function that 

equals 1 if the condition is true and 0 otherwise. 

Spread Footing Foundation 

In this research OpenSees modeling of footing sliding behavior uses the TzSimple2 

material (Raychowdhury and Hutchinson, 2008). This model requires two controlling 

parameters: ultimate capacity tu and a deformation value z50 corresponding to 50% of tu. 

The distributions adopted for this research are summarized in the Chapter 5. 
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3.3.7 Soil Loads on Structural Elements 

Figure 3.37: Response model for passive soil loads. 

The passive resistance of soil on a structural element, such as the backfill load on an 

abutment, is typically modeled using nonlinear springs with a hyperbolic shape 

(Shamsabadi et al., 2007; Shamsabadi and Yan, 2008; Xie et al., 2019), where the soil 

resistance is a function of the contact dimensions and embedment depth of the structural 

element. Active soil resistance is not modeled. The probabilistic hyperbolic backfill-soil 

model with depth effects developed by Xie et al. (2019) is adopted herein and modeled in 

OpenSees using HyperbolicGap material. This same hyperbolic model formulation used 

for backfill loads is also used to characterize passive loads acting on the front and side of 

the abutment as well as on the sides of pile caps and footings. Depending on location, 

these soil loads may be referred to as backfill, frontfil, or sidefill loads. 

An important feature of abutment modeling adopted in this research per Figure 3.20 

is isolating the different soil loads acting on the backwall and stem wall after backwall 

fracture. To implement this, the Xie et al. (2019) model is extended used to allow separation 

of backwall reactions into the backfill-A and backfill-B components. Equation 3.45 are 

the general formulae for the backbone model where P is the unit reaction force for wall 

displacement y, H is the wall height, H0 = 5.5 feet, and the parameters Pult,0, Kmax,0, α1, 

and α2 are model coefficients which depend on backfill soil type. Rf is back-calculated for 

the sampled values of Pult and Kmax. 
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Equation 3.46 show the implementation for backfill-A response where the parameters 

Pult,A and Kmax,A are scaled from the total-height (i.e., backfill-A and backfill-B) response 
parameters which are initially specified. 

As a first approximation considering the two backfill loads as parallel springs, 

Equation 3.47 show that backfill-B response parameters 𝑃𝑃𝑢𝑢𝑙𝑙𝑢𝑢,𝐵𝐵 and 𝐾𝐾𝑙𝑙𝑎𝑎𝑙𝑙,𝐵𝐵 are taken as 

the difference between values for the total height and backwall height. For both the 

backfill-A and backfill-B calculations, the 𝑅𝑅𝑓𝑓 term is back-calculated assuming the 

ultimate resistance is attained at the same mobilized deformation, which is taken as 5% of 

the total wall height (HT ). 

An alternative strategy is adopted to address two minor deficiencies in parallel spring 

simplification to separate the backfill-A and backfill-B. First, the Rf,A calculation in 
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Equation 3.46c is a function of the total height HT . The assumption means the response 

model for the backfill-A soil depends on the height of the backfill-B soil, which is not 

rigorously defined. Second, in the simplified approach, the resistance calculated by 

subtracting backfill-A from total (PT − PA) is about 10% less than the backfill-B model 

calculated by Equation 3.47 (Figure 3.38(a)); or in other words, the total resistance from 

the two parallel springs (backfill-A and backfill-B) is not the same as modeling the 

combined backfill directly. 

 

(a) (b) 

Figure 3.38: (a) Difference between calculation of backfill-B model by subtracting backfill-
A from total and by Equation 3.47; (b) same comparison using Appendix D. 

deformation attaining ultimate capacity in Equation 3.48. The remainder of the 

modification uses polynomial equality to calculate the backfill-B parameters as detailed 

Appendix D. Figure 3.38(b) shows this modified strategy addresses the deficiency in the 

parallel spring approximation and produces compatible response values for backfills T, A, 

and B. 

3.3.8 Skew Effects on Backfill Soil Response 
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Bridge skew has long been recognized to have an impact on bridge response and is routinely 

incorporated into fragility assignments (FEMA, 2003). Accurate prediction of overall skew 

effects must include consideration of the impact which skew has on backfill soil response. 

This research adopts two modifications to backfill response models resulting from skew: 

1) an overall reduction factor, and 2) a non-uniform distribution factor as illustrated in 

Figure 3.39. 

The overall reduction factor, identified by Shamsabadi and Rollins (2014), reduces the 

total backfill response acting on a skewed abutment relative to an unskewed (or straight) 

abutment per Figure 3.39(a). The reduction factor R(θ) is applied to the strength/stiffness 

of the response model of a straight bridge. An exponential decay relationship was proposed 

by Shamsabadi and Rollins (2014) and then updated by Shamsabadi et al. (2020). This 

project adopts the median reduction-factor model proposed in Shamsabadi et al. (2020) 

where θ in Equation 3.49 is the bridge skew angle. Note that dispersion in this reduction 

factor model is not considered since the Xie et al. (2019) backfill response model already 

incorporates probabilistic effects. 

e−0.021θR(θ) = (3.49) 

(a) (b) 

Figure 3.39: Skew effects on soil behaviors: (a) overall reduction factor; and (b) non-
uniform distribution of soil resistance. 

The second factor pertains to the local distribution of the soil capacity in a skew 

bridge. As illustrated in Figure 3.39(b), the skewed abutment develops an asymmetric 
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passive soil wedge when the abutment is rotated. Moreover, the backfill soil volume, 

mobilized per unit length of abutment wall, increases from the deck-obtuse corner toward 

the deck-acute corner, as more soil is engaged at the deck-acute corner than at the 

deck-obtuse corner. Equation 3.50 is the model proposed by Kaviani et al. (2012) which is 

adopted for this research. The β(θ) value represents the maximum difference in response 

over the full width of the abutment. Thus, the combination of the two skew factors on 

backfill response becomes R(θ)(1 + β(θ)/2) at the deck-acute corner, and 

R(θ)(1 − β(θ)/2) at the deck-obtuse corner. These response modifiers are applied 

individually to both strength and stiffness values of each soil response in the 

finite-element model and are assumed to vary linearly with position along the abutment. 

tan θ
β(θ) = 0.3 (3.50) 

tan 60◦ 
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3.4 Ground Motion Set and Structural Damping Model 

3.4.1 Ground Motions 

To develop fidelity in the PSDM, it is important to have a wide range of ground motions 

with a large variation of Sa1 (spectral acceleration at 1.0 second) values or PGA (peak 

ground accelerations) to ensure the evaluation of a sufficient range of bridge responses. 

The current study utilizes the T1780 ground motions specified by Roblee (2015c,b), 

selected from the NGA-2 database (Bozorgnia et al., 2014) and assembled by Mangalathu 

(2017) and Soleimani (2017). These motions were developed specifically to be broadly 

representative of a wide range of California bridge sites, and consist of the 320 scaled 

recorded ground motions listed in Appendix B. As illustrated in Figure 3.40(a), the 

distribution of the Sa1 values for the T1780 ground motions (from 0.01 g to 2.72 g) is 

wider than that of Baker et al. (2011) used in early feasibility phase of this project. 

Further, a greater proportion of the T1780 records have high Sa1 values to better assess 

bridge responses in the nonlinear regime. These T1780 ground motions were specified as 

20 sets with 16 ground motions in each set having an ensemble average Sa1 which closely 

approximates a target Sa1 value for the set. As shown in Figure 3.40(b), the median Sa1 

increases from set-20 to set-1 with a progressively higher concentration of motions from 

the elastic to the highly-nonlinear structural response regimes. All 320 downloaded 

excitations have two orthogonal components and are randomly oriented and applied to the 

longitudinal and transverse directions of bridge models. 

Although the original T1780 set shown here included several motions in the high 

nonlinear response region, project experience showed that these alone were insufficient to 

accurately constrain the high-demand response of modern ductile bridges having 
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(a) (b) 

Figure 3.40: Features of the T1780 (Roblee, 2015c,b, 2016d) ground motion sets: (a) 
comparison of Sa1 distributions used in earlier feasibility studies (from Baker et al. (2011)) 
with T1780 set used in this study; and (b) distribution of Sa1 values for each of the 20 
T1780 sets relative to the target spectrum for each set. 

high-capacity components. Therefore, an additional set of even high-level motions was 

created by uniformly scaling set-1 and set-2 of the T1780 motions to 3.00 g to improve the 

prediction accuracy of the demand models of modern bridges. 

Finally, note that the selection of Sa1 as the intensity measurement (IM) in the PSDM 

model is based on the work of Ramanathan (2012), which indicated that Sa1 is the optimal 

intensity measure for the class of California concrete box-girder bridges. 

3.4.2 Damping Model 

Rayleigh damping (Rayleigh, 1896) is one of the most commonly used damping models 

that is adopted in this research. The frequency characterizes Rayleigh damping within two 

bounding structural frequencies ωi and ωj, where the damping ratio within this range is 

smaller than ξ. For a mode shape involving oscillation of only a small part of the structure 

(a local mode), the corresponding frequency is usually substantial, which results in a 

substantial damping ratio. Those high-frequency modes are overdamped and thus limit the 

considered modes to lower frequencies. 
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Figure 3.41: Rayleigh damping model. 

Two parameters are needed to specify a Rayleigh damping model. These two 

parameters correspond to the structure mass matrix (M) and tangent stiffness matrix 

(KT ), respectively, and the damping matrix for an element (D) is specified as a 

combination of M and KT by the following equation: 

where 

2𝜉𝜉𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗 𝛼𝛼 = 
𝜔𝜔𝑖𝑖 + 𝜔𝜔𝑗𝑗 

Based on the established rules for use of Rayleigh damping, in order to damp out higher 

modes, the modes considered in this research are specified as the 1st and the 5th modes. 

This assumption is based on simulation results which show that most analyzed concrete 

bridges have a local mode shape after the 5th mode. 
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CHAPTER 4 

EMERGING COMPONENT CAPACITY LIMIT STATE MODELS 

A ’limit state model’ establishes a direct relationship between a qualitative named 

condition, or ’state’, and quantitative metrics expected to predict that state. Limit state 

models can be implemented at both the ’component level’ and at higher ’subsystem’ or 

’system’ levels. 

At the component level, a state definition is expressed in terms of specific expected 

damage to a single component type, and this is coupled with a ’Component Capacity 

Limit State (CCLS) model’, or the statistical distribution of a specific ’Engineering 

Demand Parameter (EDP)’, which is expected to predict that state. In this research, all 

CCLS models are expressed as lognormal distributions having median and dispersion 

terms. 

At the higher subsystem/system levels, the state definition is expressed in broader 

terms indicative of the more generalized performance of the combination of included 

components. These higher-level models must consider the CCLS models of each included 

component and ’roll up’, or logically combine, the likelihood that the damage state of any 

single component corresponds with the generalized subsystem/system performance 

definition. This roll-up procedure requires an ’alignment’ of the individual component 

damage states to have common performance implications that are described in the 

generalized subsystem/system state definition. 

Whether deployed at the component or subsystem/system level, a complete set of limit 

state models typically considers multiple states which specify a progression of damage or 

performance from least to most impactful. The preponderance of existing fragility literature 

is organized around a framework of four damage states (plus a no-damage state). This 

corresponds with the widely adopted loss-estimation framework of HAZUS (FEMA, 2003) 
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which defines a progression of generalized system-level damage states listed as none (ds1), 

slight/minor (ds2), moderate (ds3), extensive (ds4), and complete (ds5). 

For the development of the ’2nd-Generation Fragility (g2F)’ models considered 

herein, Caltrans (Roblee, 2017d) outlined a refined limit-state framework consisting of 

seven damage states (plus a no-damage state) intended for consistent application from the 

component to the system levels. This 7-state framework was better aligned with Caltrans’ 

emerging probabilistic bridge-design methodologies (Saini and Saiidi, 2014; 

Bromenschenkle et al., 2015), and met recognized needs for added granularity at both 

ends of the damage spectrum to better define secondary-component damage at the low end 

and to better characterize operational implications of failure at the high end. Taken 

together, this enhanced limit state framework facilitates improved post-earthquake 

situational awareness and response operations, supports better damage and loss estimates, 

and provides planners and bridge designers with information needed to advance seismic 

mitigation and transportation-network reliability initiatives. 

It is critical to note, as this report is written, the g2F project is actively underway and 

important details of the CCLS models, and their alignment within the 7-state framework, 

have not been finalized nor vetted through Caltrans review processes. Nevertheless, this 

chapter presents several emerging CCLS models and alignments which represent current 

concepts. These, in turn, are used in the remaining chapters to illustrate the complete 

methodology for development of g2F fragility models at the component, subsystem and 

system levels. Although the CCLS models and fragility results presented herein cannot be 

viewed as final and authoritative, they are considered reasonably representative of general 

trends in expected seismic performance for the modern bridge classes considered. 

However, these results are subject to change as the details and alignment of the CCLS 

models are finalized. Caltrans serves as the sole source for final authoritative models and 

information regarding the g2F project. 

The remainder of this chapter describes the emerging CCLS models used herein to 
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compute fragility models in the remaining chapters. Discussion begins with an overview 

of the g2F state framework which aligns component damage CCLS models to 

whole-bridge system level states. Next is an extended overview of the research completed 

to define CCLS models for the most critical component in a bridge system - columns. This 

includes compilation of experimental column test data from the research literature into a 

data set called ’Resource Package 1 (RP1)’ (Zheng et al., 2020) and supplemental 

analyses conducted to extend the experimentally-based models to higher states and for 

consideration of bent-frame or redundancy effects. Finally, this chapter covers the 

development of CCLS models for several other bridge components, including several 

expressed in terms of ranges of performance-backbone response. 

4.1 g2F State Framework 

The g2F project establishes an overarching framework for alignment of top-level ’Bridge 

System States (BSS)’ through to underlying ’Component Damage States (CDS)’ for 

multiple bridge components and their groupings. The BSS are expressed in terms of 

post-earthquake operational considerations including traffic state and potential emergency 

repairs per Table 4.1. 

This framework is structured around seven aligned earthquake-impacted states, BSS 1 

through BSS 7 at the system level, and CDT 1 through CDT 7 at the component level, 

plus an assessed no-observable damage state (BSS 0 and CDT 0). Table 4.1 also shows 

an approximate mapping of the g2F system-level states to those of HAZUS (FEMA, 2003) 

which attempts to balance differences in g2F-HAZUS state mapping relationships which 

vary by bridge component (Roblee, 2020d). 

Comparison of the two state frameworks (i.e. g2F vs. HAZUS) in Table 4.1 reveals 

similar concepts expressed and grouped somewhat differently. The first two g2F states 

separate the ’slight/minor (ds2)’ state of HAZUS into ’observable damage (BSS 1)’ (such 

as observable concrete hairline cracking not likely to require emergency repair) and the 
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lower portion of ’repairable minor damage (BSS 2)’ (such as minor open cracking that 

can be simply repaired using epoxy injection). The exact positioning of the g2F separation 

relative to the HAZUS state varies by g2F component and is approximate. The ’moderate 

(ds3)’ HAZUS state overlaps with all or portions of several g2F states (BSS 2 through 

BSS 4) which involve repairable damage having varied impact on bridge-system function, 

but where the bridge remains open to at least some level of traffic. The ’extensive (ds4)’ 

HAZUS state overlaps with all or portions of the g2F states (BSS 4 through BSS 6) 

mainly associated with a severely damaged bridge likely to be closed to public traffic for 

an extended period. The g2F state BSS 5 is intended to encompass ’design failure’ 

corresponding to the ultimate state in most design procedures where the bridge system has 

failed from a design point of view, but is considered stable with roughly 80% of ultimate 

lateral force capacity remaining. The ’complete (ds5)’ state in the HAZUS model 

encompasses the remainder of the g2F states (BSS 6 and BSS 7). The g2F framework 

seeks to differentiate degrees of “failure” having different operational implications. While 

states BSS 5 through BSS 7 all denote failure and bridge closure of some kind, BSS 5 is 

considered stable requiring little immediate attention (beyond closure), while BSS 6 

denotes an unstable bridge requiring site security and rapid demolition, and BSS 7 

denotes bridge collapse which may involve search and recovery operations. 

Table 4.2 extends the bridge-system state descriptions in Table 4.1 downward to 

lower-level groupings of components identified as primary and secondary components. 

Primary components are those components that have a significant impact on bridge 

stability and life safety. Among all components considered in this research, only the 

internal supports (i.e. column hinge and overturning damage and single-column-bent 

foundation-rotation damage) and deck unseating are considered primary components; and 

all other components (e.g. the abutment backwall and shear keys, abutment and bent 

foundations, joint components such as seals and bearings, etc.) are taken as secondary 

components as their failure will not cause bridge collapse. In the capacity model, primary 
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components are defined through the final state (CDS 7), while CDS 5 is the highest 

defined state for secondary components. Note that secondary components are aligned to 

the g2F framework based on system-level operational consequences, so complete failure 

of any specific component may align with any one of multiple states (i.e. CDS 1 through 

CDS 5). 

4.2 Column Capacity Limit States 

Columns are one of the primary components and have a significant, and often governing 

impact on the seismic reliability of a bridge system. Therefore, carefully defined column 

capacity limit states are essential for developing an accurate fragility model. This section 

reviews the development of a seven-damage-state column capacity model. An extensive 

experimental column data set is first compiled and analyzed to establish an initial CCLS 

framework based on physical tests. However, very few of these experimental tests were 

carried to the unstable and collapse states due to laboratory limitations and safety 

protocols. To supplement the limited experimental information, a series of finite element 

analyses were conducted to consider both high-state column damage and load-path 

redundancy effects of multi-column bents. 
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Table 4.1: g2F bridge-system level state definitions in terms of post-earthquake operational impacts (Roblee, 2021c) and approximate 
alignment with HAZUS bridge-system level damage states (Roblee, 2020d). 

Proposed 
Bridge-System 

State: 
Impact 
Level: 
Likely 
Traffic 
State: 

Potential 
Emergency 

Repair: 

HAZUS state 

BSS 0 

Assessed-
No Damage 

None 

Public w/ Near-
Normal Ride Quality 

None 

ds1 (None) 

T 01 
BSS 1 

T 12 

Observable Damage 
Intact System Function 

Very Low 
Potential Impact 

Public w/ 
Reduced Ride Quality 

Inspection & 
Debris Clean-Up 

ds2 (Slight/Minor) 

BSS 2 

Repairable 
Minor Damage 

To System Function 
Low 

Potential Impact 

Public w/ 
Speed Restrictions 

Traffic Controls, 
Minor Grade Leveling 

BSS 3 
T 23 

Repairable 
Moderate Damage 

To System Function 
Low-Medium 

Potential Impact 

Public w/ Lane or 
Weight Restrictions 

Major Grade Leveling, 
Lane Barriers 

ds3 (Moderate) 

T 34 
BSS 4 

Repairable 
Major Damage 

To System Function 
Medium 

Potential Impact 

Emergency Vehicles Only 
w/ Restrictions 

Precautionary 
Shoring/Bracing 

BSS 5 
T 45 

Failed, But Stable System 
”Design Failure” 
(∼80% RemCap) 

Medium-High 
Potential Impact 

Closed (At Least) 
Temporarily 

Shoring/Bracing 
Required to Re-Open 

ds4 (Extensive) 

T 56 
BSS 6 

Unstable 
System 

(∼50% RemCap) 
High 

Potential Impact 

Closed Long-Term 
(Demo Equip Access) 

Secure Site for 
Demolition/Safety 

BSS 7 
T 67 

Collapsed 
System 

(∼20% RemCap) 
Extreme 

Potential Impact 

Closed Long-Term 
Emergency Response 

Controls/Services for 
Search/Recovery/Safety 

ds5 (Complete) 
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Table 4.2: g2F generic damage state definitions in terms of primary and secondary component functionality (Roblee, 2021c) 

CDS 0 CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 

Undamaged 

T 01 
Incidental 

Component Damage 
Full Function Intact 

T 12 
Minor 

Component Damage 
Core Function Intact 

T 23 
Moderate 

Component Damage 
Core Function Intact 

T 34 
Major 

Component Damage 
Restorable Function 

T 45 

 

 
 
 
 
 
 
 
 
 
 
 

 
              

 
                        

                      

 
 
 

 
 

  

 

  

  

  

  

  

  

  

 

  

 

  
 

 
 
 
 

 
 

  
 

  
  

   
  

  

 

  
 

  
 

  
 

 
 
 

 
 

  

 

  

 

  
 

 
 

 
 

 

  

 

 

 
 
 

 
 

 

  
 

 
 

   

  

  
  

 

T 56 
Irreparable 

Component Damage 
(w System Instability) 

T 67 
Catastrophic 
Component 

Damage 

Primary 
Component 

Damage: 

Irreparable 
Component Damage 
(But System Stable) 

Primary 
Component 

Repairs: 
na Routine 

Maintenance 
Minor Repairs of 

Existing Component 
Substantial Repairs of 
Existing Component 

Enhancements 
of Existing 
Component 

Replacement 
of Components 

Replacement 
of Bridge 

Replacement 
of Bridge 

Secondary 
Component 

Damage: 
Undamaged 

Minor 
Component Damage 
Core Function OK 

Substantial 
Component Damage 
Diminished Function 

Component 
Failure 

Low System 
Impacts 

Component Failure 
Medium 

System Impacts 

Component Failure 
High System Impacts 

Secondary 
Component 

Repairs: 
na Minor Comp. Repair, 

Largely Aesthetic 
Major Comp. Repair 
To Restore Function 

Replace Component 
To Restore Function 

Replace Component 
and Minor 

System Repairs 

Replace Comp. & 
Major System Repairs 



  

     
 

 

  

         

 

 

    

   

  

           

 

    
  

 
 

    

   

  

    

      

 

4.2.1 Column Types in California Bridges 

Researchers have shown that the seismic detailing of bridges in California significantly 

changed in different periods, and therefore, the responses of different components varied 

(Ramanathan, 2012). Sensitivity analysis also showed that the design era is a key variable 

in bridge fragility analysis (Mangalathu, 2017). 

Identification of systematic differences in column detailing between design eras was 

the first step in developing a rational framework for both grouping experimental tests and 

identification of response trends. Toward that end, Roblee (2017e) compiled typical 

column-design details for three eras of California bridges having both regular and wide 

sections and having both fixed-base and pinned-base connections to the foundation. 

Figure 4.1 provides compares typical detailing for three eras of fixed-base regular-section 

single-column bents. 

Figure 4.1: Illustration of detailing differences for typical California single-column-bent 
bridges from design era-1 to era-3 (from left to right) (Roblee, 2017e). 

Era-1 is considered the pre-ductile era of California bridge design before practices 

incorporated the lessons of the 1971 San Fernando earthquake. Lap spliced longitudinal 

reinforcement is typical at the base of columns. The typical transverse reinforcement 

configuration is #4@12′′ hoops with cross-ties for wide sections, and the transverse 

reinforcement ratio ranged from roughly 0.1% to 0.25%. Rectangular wide sections were 

frequently employed, often having aspect ratios exceeding 2.0. Transverse reinforcement 
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was typically terminated with 18-inch lap splices or 90-degree hooks. 

Era-2 is considered the early-ductile era of California bridge design existing between 

roughly the 1971 San Fernando and the 1989 Loma Prieta and 1994 Northridge events. 

This design era saw removal of longitudinal lap-splice connections from the plastic hinges 

regions and ductile detailing of most columns and some foundation connections. 

Continuous spiral reinforcement around circular cores became common, and volumetric 

reinforcement ratio ranged from about 0.3% to 1.0% with spacing from about 3 to 6 

inches. Wide sections transitioned from rectangular to oblong sections, typically having 

an aspect ratio of 1.5 to 2.0. Flared columns were common, but flare detailing is now 

recognized as poor as it could reduce effective shear-span ratio and lead to mixed 

flexure-shear failure. 

Era-3 is considered the modern ductile era of California bridge design existing since 

incorporation of lessons from the 1994 Northridge event. Specifications now limit 

transverse spacing to be less than 6 times the diameter of longitudinal reinforcement and 

volumetric reinforcement ratio ranges from about 0.55% to 1.35%. Foundation connection 

details were significantly enhanced with the addition of top mats and by extending column 

confinement fully into thicker footings/caps. The use of architectural flares diminished, 

and those that exist typically adopt a flare-isolation detail having a 2 to 4 inches gap 

between the flared top and the superstructure. 

Although columns within a specific design era have similar design details, their 

responses may differ substantially due to distinctive failure modes arising from different 

column geometries, fixity conditions, axial loads, and reinforcement detailing. Nearly all 

era-3 and most era-2 designs fail in flexure mode, with some predicted to fail in mixed 

shear-flexure mode. In era-1, all column failure modes (flexure, mixed flexure-shear, and 

brittle shear) can occur. Additionally, the longitudinal lap splice (starter bar) detail can 

induce a relatively brittle lap-splice failure mode. Also, the existence of lapped-hoop 

details introduces significant uncertainty into the integrity of lateral confinement. 
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4.2.2 Column Experiment-Based Performance Dataset, RP1 

In an effort to establish a firm physical basis for column CCLS models, experimental results 

from 198 test specimens were compiled from the research literature and summarized in a 

column-performance dataset called ’Resource Packet 1 (RP1)’ (Zheng et al., 2020). 

The dataset adopts column displacement ductility as the recorded engineering demand 

parameter EDP. Previous methodologies of developing column damage states used 

curvature ductility as the EDP . However, most experimental tests did not include 

curvature ductility values in the experimental reports. Some previous researchers 

converted displacement ductility into curvature ductility using an estimated plastic hinge 

length. This processing procedure caused an objective bias in the curvature ductility 

values. Furthermore, in numerical modeling, curvature estimation may not be accurate 

enough when there is a localization issue, as mentioned in Chapter 3. Moreover, curvature 

ductility only reflects a column’s local flexural damage, compared to displacement 

ductility that represents the overall global column damage including shear mechanisms. 

For some tall slender columns, local damage cannot account for overturning hazard due to 

the P-∆ effect, while this hazard can be expressed in terms of metrics related to 

displacement ductility. Consequently, in this research, the displacement ductility is used 

as the primary metric for column damage. 

The RP1 column-performance dataset is based on a collection of column tests from the 

United States and New Zealand which includes column dimensions, materials strength, 

design codes, reinforcement details, experimental column boundary conditions, 

experimental lateral strengths, computed shear capacities, damage descriptions, and limit 

state values in terms of displacement ductility. In addition, the transverse reinforcement 

spacings are categorized for inside and outside plastic hinge regions, respectively. The 

spacing inside the plastic hinge regions, and other parameters such as transverse 

reinforcement ratio, are used to distinguish column design eras. 

Classification of column failure modes is based on a combination of the calculated 
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shear capacity, recorded descriptions, and reported specimen damage. Ultimately, the 198 

columns are classified into “Era-3 Flexural Columns” (58 columns), “Era-2 Flexural 

Columns” (48 columns), “Era-1 Flexural Columns” (15 columns), “Era-3 and Era-2 

Flexural-Shear Columns” (32 columns), ”Era-1 Flexural-Shear Columns” (18 columns), 

“Shear Columns” (14 columns), and “Era-1 Lap Spliced Columns” (13 columns). 

Adoption of displacement ductility as the primary metric for column CCLS models 

required identification of a reference displacement for normalization of the test data. 

Generally, the yield displacement of the column is used as the reference displacement. 

However, the actual yield point corresponding to the first reinforcement yielding is not 

always accessible. In order to apply the same rule for all the selected experimental test 

columns, the idealized yield displacement as defined by Park (1989) was selected for this 

project. The idealized yield displacement is determined by first identifying the maximum 

lateral strength Vmax as the envelope of the lateral strength versus displacement response, 

as demonstrated by the upper horizontal dashed line in Figure 4.2. Then, the elastic linear 

stiffness branch is defined by passing through the point of 75% Vmax on the column 

response and extending to the Vmax level on the envelop. The idealized yield 

displacement is determined as the displacement corresponding to the intersection between 

the Vmax level and the elastic linear branch. 

Figure 4.2: Definition of idealized yield displacement (Park, 1989) 
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4.2.3 High State and Redundancy (HS-R) Study 

Although the RP1 dataset established a firm physical basis for the column limit state 

system, 75% and 95% of these experiments did not extend testing into the last two limit 

states desired for the g2F project. In order to supplement the experimental dataset, a 

complementary program of column analyses, herein called ’High State and Redundancy 

(High State - Redundancy (HS-R))’ studies were conducted to analytically extend 

understanding of column performance through the last three (failure) states and to 

investigate other effects of both column fixity and bent-frame effects (load-path 

redundancy). Note that bent-frame effects were only considered for transverse loading of 

multi-column bents, but both 2-column and 3-column bents were investigated. For 

single-column bents, the effects of column-top fixity (free or fixed) was investigated. All 

HS-R analyses were conducted on column designs representative of California bridge 

columns. 

The first step of the HS-R studies was sampling of bridge column designs for each 

failure type. The sampling procedure and considered uncertainties will be covered in 

Chapter 5. Next, using the procedure introduced in Chapter 3, finite element models of 

column bents are constructed in OpenSees. Cyclic pushover analyses were carried out 

until the column reached 20% remaining lateral force capacity (i.e., 80% degradation of 

the capacity). Displacement ductilities corresponding to different specified levels of 

capacity remaining (80%, 50%, and 20%) were then identified from the recorded ∆-F 

hysteretic curves. These three remaining capacity values (80%, 50%, and 20%) were 

selected as performance-based states and later merged with the laboratory data for the last 

three experimentally-observed damage states, respectively, in the capacity model. 

The HS-R analyses showed some added displacement-ductility capacity of 

multi-column bents loaded in the transverse direction relative to single-column bents. This 

effect is called the ’redundancy effect’ herein. Figure 4.3 illustrates the physical basis for 

the redundancy effect using the example case of era-3 flexural columns subjected to 
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monotonic pushover. The three models represent a single-column, two-column, and three 

column bent. All columns are 20 feet tall with 2% longitudinal reinforcement ratio, 0.8% 

transverse reinforcement ratio, and 10% axial load ratio. Due to different column 

numbers, the regular designed section sizes are different in these three models. The three 

models have 84, 60, and 48 inches diameter circular sections for the single-column, 

two-column, and three-column bent, respectively. The results in Figure 4.3 demonstrate 

that individual column responses are affected by the changes in axial load caused by 

bent-frame effects, and these varied responses impact the shape of the bent-total response. 

The total-response displacement ductility values corresponding to the three high states 

defined in this section show that displacement ductility increases modestly (∼15%) at 

extreme demand for multi-column versus single-column bents. 

Figure 4.3: Illustration of redundancy effects (Zheng and Roblee, 2021) 
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4.2.4 Column Capacity Limit State Models 

This section outlines emerging column damage state definitions and CCLS model values 

primarily for the modern (era-3) flexural-mode columns used in the fragility models 

presented in the remainder of this report. These capacity models are expressed in terms of 

displacement ductility and the damage described by the state may be observed at various 

locations in the whole column. Later, localized column-hinge damage models will also be 

presented. 

Table 4.3 provides observation-based damage state definitions used for analysis of 

RP1 experimental data for the three primary column failure modes, flexure, mixed 

flexure-shear, and brittle shear. The CDS 1 state for all three failure modes start with an 

earthquake-related tight cracking of concrete cover. At this level, the typical repair 

procedure would be to seal or paint the column, perhaps as part of a routine maintenance 

schedule. The following two states (CDS 2 and CDS 3) are the same for flexural and 

flexural-shear columns as both column types will develop the full flexural strength during 

the initial stage. Shear columns behave differently, starting from developing diagonal 

cracks, then transferring to the formation of a shear plane. The following CDS 4 state 

defines exposure of core concrete for all of the failure modes. However, this exposure may 

involve either of two different mechanisms. For both flexural and mixed flexural-shear 

columns which haven’t triggered shear response, core exposure is primarily due to 

spalling of the cover concrete, which is a type of flexural damage. For shear columns or 

mixed flexural-shear columns which have triggered shear response, core exposure is 

associated with widening of diagonal shear cracks. The final three states (CDS 5 to 

CDS 7) are the same for the flexural-shear and shear failure modes following the intensity 

of permanent offset, from minor offset to major offset, and ultimately collapse with loss of 

axial capacity. Flexural column failure is more related to reinforcement performance. In 

CDS 5, longitudinal reinforcement buckling develops to a visible level, which is a sign of 

imminent buckling or rupture of multiple reinforcements and is thus taken as an 
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approximation of design failure. If multiple longitudinal bars visibly buckle or rupture, or 

the core concrete begins to crush, the column is considered to be at the unstable state 

(CDS 6). The final collapse state (CDS 7) is assigned to cases where axial column 

capacity, provided by either or both of the core concrete and longitudinal reinforcement, is 

effectively lost due to either flexural or shear mechanisms. 

Table 4.3: Experimentally observed damage state definitions for columns with different 
failure modes 

CDS 1 
CDS 2 
CDS 3 
CDS 4 
CDS 5 
CDS 6 
CDS 7 

Earthquake-related tight cracking of cover 
Moderate cracking & minor spalling/flaking 
Open cracking or major spalling which reveal the confinement 
Exposed core (reveal the longitudinal reinforcement) 
Visible bar buckling; confinement loss or core shedding 
Multi-bar buckling/rupture; large drift; or core crushing 
Column collapse (near-total loss of axial capacity) 

a) Flexural Columns 

CDS 1 
CDS 2 
CDS 3 
CDS 4 
CDS 5 
CDS 6 
CDS 7 

Earthquake-related tight cracking of cover 
Moderate cracking & minor spalling/flaking 
Open cracking or major spalling which reveal the confinement 
Exposed core or initial formation of diagonal shear zones, but no permanent offset 
Diagonal shear zone penetrating core with minor offsets and intact confinement 
Offset shear plane with core crushing, confinement loss or long-bar buckling 
Column collapse (near-total loss of axial capacity) 

b) Mixed Flexural-Shear Columns 

CDS 1 
CDS 2 
CDS 3 
CDS 4 
CDS 5 
CDS 6 
CDS 7 

Earthquake-related tight cracking of cover 
Discontinuous web of short diagonal cracks, mostly in cover 
Pronounced diagonal cracks forming, partial shear plane with no core offset 
Continuous diagonal shear zone with core exposure, but no permanent offset 
Diagonal shear plane penetrating core with minor offsets and intact confinement 
Offset shear plane with core crushing, confinement loss or long-bar buckling 
Column collapse (near-total loss of axial capacity) 

c) Shear Columns 

Table 4.4 and Table 4.5 present the emerging g2F CCLS models for modern (era-3) 

flexural columns that are used in the remainder of this report. These models are based on a 

combination of experimental observations at low states from the RP1 data set, and 
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analytical findings for high states from the HS-R studies as described by Roblee (2021d). 

This scheme replaces the RP1 experimentally observed damage states for CDS 5 through 

CDS 7 appearing in Table 4.3 with the HS-R analytically-based performance definitions, 

80%, 50%, 20% remaining lateral force capacity, respectively. This combined 

experimental-analytical strategy has several benefits including: 1) less reliance on small 

RP1 data sets at high states, 2) less ambiguous definitions for high-state column 

performance, 3) the analytical HS-R studies are based completely on modeling of 

California bridge columns rather than the assortment of bridge and building columns 

compiled in RP1, and 4) the analytical HS-R studies could isolate impacts of boundary 

fixity and bent redundancy that are cannot be considered in the RP1 experimental data set. 

Table 4.4 presents a summary of the combined experimental-analytical state definitions 

for era-3 flexural columns including typical column repair strategies expected for each 

state. Column retrofit with steel casings is likely for columns in the CDS 4 state, column 

replacement in the CDS 5 state, and bridge replacement is likely for the CDS 6 and CDS 7 

states. 

Table 4.4: Emerging g2F CCLS state definitions for era-3 flexural columns (Roblee, 
2021d). 

Table 4.5 provides CCLS model distribution values for single-column and 

multi-column bents loaded in the longitudinal and transverse directions. In the transverse 

direction, single-column bents behave differently in different bridge zones where a bridge 

zone is defined in terms of a bents proximity to the abutment which provides torsional 
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support to the deck. Zone-1 bents, or those bents adjacent to abutments, have strong 

constraints that prevent deck rotation in the translational direction, thus resulting in a 

fixed-top column boundary condition. The other zones are closer to the deck center and 

less affected by abutment torsional constraints. For example, in a four-span bridge with 

three internal support bents, the first and third bents next to the abutment are called zone-1 

bents in this research and hence use the double-curvature (i.e. fixed top) model in 

Table 4.5(a). The center bent is called a zone-2 bent which is assigned the single-curvature 

(i.e. free-top) model. Note, although not considered herein, zone-3 represents bent 

locations within an isolated frame of a multi-frame bridge having no adjacent abutment. 

Multi-column bents in era-3 nearly all have a pinned-base detail, and therefore, only 

a single-curvature model is needed for multi-column bents loaded in both transverse and 

longitudinal directions. However, the model for longitudinal direction (Table 4.5(c)) is 

smaller than that for transverse direction (Table 4.5(a)) due to bent redundancy effects. 

There is no redundancy effect for loading of multi-column bents in the longitudinal 

direction. Nevertheless, higher capacities are assigned to single-column bents than 

multi-column bents due to boundary fixity considerations. Deck stiffness functionally 

fixes column-tops in the longitudinal direction. Single-column bents also have a fixed base 

which results in a double-curvature condition which simulation results have shown to have 

higher capacity. Multi-column bents, with a pinned base, have a single-curvature shape 

associated with somewhat lower capacity at high states. The higher double-curvature 

capacity may be related to engagement of two hinges to sustain possible damage versus 

the single hinge engaged in the single-curvature. 

4.2.5 Local Column Damage - Fixed Hinge 

The models described above define displacement-ductility ranges over which damage is 

predicted to occur anywhere (globally) within a column bent. There are benefits to also 

separately characterize damage occurring locally in both fixed and pinned hinge regions of 
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Table 4.5: Emerging g2F CCLS lognormal distribution parameters for era-3 flexural 
column bents in terms of displacement ductility (µ∆) (Roblee, 2021d): median (σ) and 
dispersion (β) 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Matric 

Single-Curvature (zones 2&3) 
Median (σ) 

LN Dispersion (β) 
1.25 2.43 4.05 5.4 6.0 6.8 8.5 
0.35 0.32 0.26 0.22 0.20 0.20 0.20 

Double-Curvature (zone 1) 
Median (σ) 

LN Dispersion (β) 
1.25 2.43 4.05 5.5 6.2 7.5 11.0 
0.35 0.32 0.26 0.22 0.20 0.20 0.22 

a) Single-Column Bents Loaded in the Transverse Direction 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Matric 

Single-Curvature 
Median (σ) 

LN Dispersion (β) 
1.25 2.43 4.05 6.0 7.5 9.2 13.5 
0.35 0.32 0.26 0.21 0.18 0.18 0.25 

Double-Curvature 
Median (σ) NA NA NA NA NA 

NA 
NA 

LN Dispersion (β) NA NA NA NA NA 
NA 
NA 

b) Multi-Column Bents Loaded in the Transverse Direction 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Matric 

Single-Curvature (Multi-Column Bents) 
Median (σ) 

LN Dispersion (β) 
1.25 2.43 4.05 5.4 6.0 6.8 8.5 
0.35 0.32 0.26 0.22 0.20 0.20 0.20 

Double-Curvature (Single-Column Bents) 
Median (σ) 

LN Dispersion (β) 
1.25 2.43 4.05 5.5 6.2 7.5 11.0 
0.35 0.32 0.26 0.22 0.20 0.20 0.22 

c) Single/Multi-Column Bents Loaded in the Longitudinal Direction 

a column. While the global metric for a multi-column bent includes the redundancy (bent 

framing) effect, a local metric can better capture damage to each individual column. 

Further, the global metric provides no means to capture hidden damage which occurs in 

pinned (i.e. reduced section) hinges or from separate mechanisms such as slippage of 

lapped-splice connections. Therefore, the g2F project has adopted a 

multiple-complementary-metrics approach to the characterization of bridge columns 

which, together, capture different damage mechanisms which may occur at various 
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locations on the column, and express these within a common performance framework. 

This strategy provides additional insight into column and bridge-system behavior, and the 

additional information regarding damage mechanism and location is beneficial to g2F 

end-users interested in field-inspection efficiency, repair-strategy selection, and 

cost/impact estimation. 

This section outlines methods developed to characterize localized flexural damage to 

fixed column hinges. The most applicable EDP for this type of localized damage is 

curvature ductility. Despite the limitations noted in subsection 4.2.2 for RP1 experimental 

data-analysis applications, the conceptual advantages of using curvature ductility in 

analytical studies are fully recognized, and models developed herein serve as a convenient 

basis for comparison with extensive prior research expressed in these terms. 

Here, as a means to maintain full compatibility with the global column-bent capacity 

models described above, a conversion equation between curvature-ductility (µϕ), and 

displacement-ductility (µ∆) is developed and then applied to the applicable global column 

capacity model. The single-column bent, single-curvature, global model was selected as 

most applicable as it directly represents a cantilever beam where performance is primarily 

controlled by local section damage. 

The conversion equation used herein is derived from the following relationship 

provided by FHWA (Buckle and Friedland, 1995), where l and lp denotes for the height 

and plastic hinge length of the column respectively. 

µ∆ − 1 (4.1) 
µϕ = 1 + l ( l \ 

3 1 0.5lp − lp 

For application to the displacement ductility capacity model, l and lp are unknown. 

To approximate these values, three column models were simulated in OpenSees. These 

models correspond to era-1 through era-3 designs having median height and reinforcement 

ratios. Cyclic pushover loading to median global-model displacement-ductility values for 
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each era produced the data point pairs in terms of (µ∆, µϕ) shown in Figure 4.4, which 

were then used to regress the conversion model in Equation 4.2. These results estimate the 

plastic hinge length as approximately 0.1 times of the column height. 

µϕ = 1 + 3.35(µ∆ − 1) (4.2) 

Figure 4.4: Conversion relationship between µ∆ and µϕ 

The top set of curvature ductility (µϕ) values shown in Table 4.6 are from direct 

application of the conversion in Equation 4.2 to the single-curvature models in 

Table 4.5(c)). These models are applicable to prediction of localized damage at fixed 

hinges of single-column bents and for (simultaneous) bent-average response of 

multi-column bents. However, additional considerations apply to the case of individual 

columns within a multi-column bent loaded transversely. Here, the global models (see 

Table 4.5(b)) account for bent redundancy effects at high (failure) states and allow any 

individual column in the bent to experience higher damage levels than the bent as a whole. 

To maintain compatibility of the local and global models for this case, a revised state – 

CCLS model proposed by Roblee (2021e) was adopted which shifts the highest possible 

state for local hinge damage to an individual column to be CDS 6, or that associated with 

bridge instability. Bridge collapse risk (CDS 7) is only assessed using bent-average 

metrics for either the global or local criteria. The bottom set of capacity model values in 
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Table 4.6 are applicable to the localized fixed-hinge damage state of individual columns in 

a multi-column bent loaded transversely. 

Table 4.6: Emerging curvature ductility lognormal distribution parameters for fixed-hinge 
damage in era-3 flexural columns in terms of curvature ductility (µϕ): median (σ) and 
dispersion (β) 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Matric 

Bent-Average 
Median (σ) 

LN Dispersion (β) 

Bent-Maximum¶ 

Median (σ) 
LN Dispersion (β) 

1.85 5.8 11.2 15.8 17.8 20.4 26.1 
0.35 0.32 0.26 0.22 0.20 0.20 0.20 

1.85 5.8 11.2 15.8 20.8 24.8 
0.35 0.32 0.26 0.22 0.20 0.20 

¶ Only used for multi-column bents loaded in the transverse direction. 

4.2.6 Local Column Damage – Pinned Hinge (Reduced Section) 

Unlike the case of fixed hinge damage, no displacement capacity model can be directly 

adopted to depict localized damage to reduced sections used in pinned column hinges. 

Therefore, the development of the state - CCLS capacity model for pinned hinges is based 

on fiber-mechanical responses for the reduced section. Specifically, Table 4.7 summarizes 

four damage states along with fiber-mechanical criteria used to define those states. For 

example, the first damage state, CDS 1, is identified as “crushing of cover concrete (outside 

of confinement) with no/minor reinforcement yield. The threshold for entering that state, 

CDST 01, is the reduced-section curvature induces compressive strain in the inner-cover 

concrete of the reduced section that exceeds that corresponding to the compressive strength 

for cover concrete. Using these thresholds, cyclic pushover analyses were conducted on 50 

column realizations and sampled to acquire the curvature-ductility distributions for each 

threshold. The center-state curvature ductility values were defined as the geometric mean 

of those for the two adjacent thresholds. Figure 4.5 illustrates a single simulation case, and 

the state values are denoted with circles. Table 4.8 provides the curvature-ductility models 
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developed from all 50 cases. 

Table 4.7: Definition of damage states and associated reduced-section fiber-mechanical 
thresholds used for pinned-hinge local-damage capacity model. 

Damage 
State 

CDS 0 

State Damage and Threshold Condition Description 

None 
CDST 01 

CDS 1 
First fiber of inner-cover concrete: compression demand exceeds compressive strength. 

Crushing of Cover Concrete (Outside Confinement) with No/Minor Rebar Yield 

CDST 12 

CDS 2 

1st fiber of inner-cover concrete: compression demand exceeds spalling strain; and 
1st fiber of outer-core concrete: compression demand exceeds compressive strain. 

Initial Core-Concrete Crushing (Inside Confinement) with Moderate Rebar Yield 
1st fiber of inner-core concrete: compression demand exceeds mean of compressive strain and crushing strain; or 

CDST 23 1st rebar: tension demand exceeds the end of yield plateau; or 

CDS 3 
1st rebar: compression demand exceeds visible bar buckling strain εb. 

Major Core-Concrete Crushing (Inside Confinement) with Major Rebar Yield or Buckling 

CDST 34 

CDS 4 

1st fiber of inner-core concrete: compression demand exceeds core-crushing strain; or 
1st rebar: tension demand exceeds the mean of peak strength and fracture; or 
1st rebar: compression demand exceeds bar buckling strain εr. 

Complete Core Crushing and/or Multi-Bar Rupture or Severed Pin Connection 

CDST 45 
50% fibers of inner-core concrete: compression demand exceeds crushing strain; or 
50% Rebars: tension demand exceeds fracture strain; or 
50% Rebars: compression demand exceeds bar buckling strain εr 

For example, the threshold to define a CDS 1, named CDST 01, is the curvature that 

the inner cover concrete has compressive strain exceeding the strain corresponding to 

compressive strength. After carefully defining the thresholds, 50 column realizations are 

sampled and analyzed to acquire the curvatures for each threshold. The state values are 

defined by the geometry mean of two adjacent thresholds. Ultimately, the resulting 

curvature values are converted to curvature ductilities. Figure 4.5 illustrates a single 

simulation case, and the state values are labeled with circles. Summarizing all 50 

simulated cases produces a capacity model in Table 4.8 in terms of curvature ductility. 

Table 4.8: Emerging curvature ductility lognormal distribution parameters for pinned-hinge 
(reduced section) damage in era-3 flexural columns in terms of curvature ductility (µϕ): 
median (σ) and dispersion (β) 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Matric 

Median (σ) 
LN Dispersion (β) 

3.6 7.0 12.0 20.0 
0.60 0.40 0.25 0.25 
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Figure 4.5: Illustration of pin section performance with limit states. 

4.3 Other Components — Simple CCLS 

The fragility models developed in this research consider several California era-3 bridge 

components other than bent columns. This section describes emerging capacity models that 

are based on simple CCLS models expressed in terms of direct linear relationships to deck 

displacement at the abutment joint. These include the mechanism of deck unseating and 

both the bearing and joint seal components. Section 4.4 will consider additional abutment-

joint components where the CCLS models are based on response backbones. 

4.3.1 Deck Unseating 

Besides column failure, deck unseating is the other primary mechanism which can result 

in bridge collapse. Here, the mechanism of deck unseating is treated as a ’component’ 

where capacity is defined in terms of net seat width, and demand expressed in terms of 

deck displacement relative to the abutment seat node in the active direction. Net seat width 

is defined as the nominal total seat with minus the width of the joint gap. California bridge 

designs employ a range of seat widths depending on the length, height, and skew of the 

bridge. Roblee (2021a) compiled a sample of abutment seat widths for California era-3 
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box-girder bridge designs and proposed a capacity model in terms of four standard widths: 

30-inch, 36-inch, 48-inch, and 60-inch representing 50%, 20%, 25%, and 5% of the era-3 

inventory, respectively, as shown in Figure 4.6. 

Figure 4.6: Era-3 bridge seat width proportion model (Roblee, 2021a) 

Table 4.9 summarizes emerging g2F capacity models for deck unseating in terms of 

two complementary metrics which account for different deck responses having 

comparable bridge-system operational consequences (Roblee, 2021e). The ’2-corner 

average displacement’ model assigns capacity in terms of standard values for remaining 

average seat width. The ’peak-1-corner displacement’ model provides a complementary 

check on deck-corner remaining seat width for cases where deck rotation occurs. 

Differences between these models become more pronounced at lower states where 

additional latitude is allowed for deck rotations provided the average displacement 

remains within the state range. Figure 4.7 is useful for visualizing the concept behind the 

two metrics. For the scenario presented in Figure 4.7(a), the deck might be considered 

marginally stable, while the scenario in Figure 4.7(b) is treated as clearly unseated. 

However, note that the models presented in Table 4.9 limit even peak-corner net remaining 

seat width to 0-inch at the CDST 67 boundary to account for the limited bearing capacity 

of cover concrete at abutment lip; thus, even the scenario presented of Figure 4.7(a) would 

be assigned to CDS 7 using those models. 
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(a) (b) 

Figure 4.7: Illustration of two cases of unseating: (a) peak corner is slightly unseated 
but the deck-average remains (marginally) on the seat; (b) both the peak corner and deck 
average are considered unseated. 
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Table 4.9: Emerging active-displacement lognormal distribution parameters for deck 
unseating damage (Roblee, 2021e): median (σ) and dispersion (β) 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

2-Corner Average Displacement 
Median (σ) 

LN Dispersion (β) 

Peak 1-Corner Displacement 

7 13 19 25 30 
0.25 0.15 0.10 0.08 0.06 

Median (σ) 
LN Dispersion (β) 

14 18 22 26 30 
0.08 0.06 0.05 0.04 0.04 

a) Design-1: 30-in Seat Width 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

  

       
 

                    
  

 
  

 
   

 

   
 

   
 
 
 
 

  
 

  
 

   
 

   
 

   
 
 
 
 

  
 

  
 

   
 

   
 

   
 
 
 
 

  
 

  
 

   
 

   
 

   

 
       
       

     
 

                    
 

       

 
       
       

 
       
       

     
 

                    
 

       

 
       
       

 
       
       

     
 

                    
 

       

 
       
       

 
       
       

     

       

       
       

2-Corner Average Displacement 
Median (σ) 

LN Dispersion (β) 
13 19 25 31 36 

0.15 0.12 0.08 0.06 0.04 

Peak 1-Corner Displacement 
Median (σ) 

LN Dispersion (β) 
20 24 28 32 36 

0.06 0.05 0.04 0.03 0.03 

b) Design-2: 36-in Seat Width 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

2-Corner Average Displacement 
Median (σ) 

LN Dispersion (β) 
25 31 37 43 48 

0.08 0.07 0.06 0.05 0.04 

Peak 1-Corner Displacement 
Median (σ) 

LN Dispersion (β) 
32 36 40 44 48 

0.04 0.03 0.03 0.03 0.02 

c) Design-3: 48-in Seat Width 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

2-Corner Average Displacement 
Median (σ) 

LN Dispersion (β) 
37 43 49 55 60 

0.07 0.06 0.05 0.04 0.03 

Peak 1-Corner Displacement 
Median (σ) 

LN Dispersion (β) 
44 48 52 56 60 

0.03 0.03 0.02 0.02 0.02 

d) Design-4: 60-in Seat Width 
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4.3.2 Elastomeric Bearings 

Era-3 bridges in California primarily use elastomeric bearings to support the bridge deck 

at the abutment joint. The capacity model for this bearing type is characterized in terms of 

shear strain (i.e. translational displacement normalized by bearing height) so that a 

consistent metric can be used for bridge realizations having different bearing thicknesses. 

Table 4.10 describes the two component damage states considered, and Table 4.11 

provides the emerging CCLS model values. Note that both states are aligned with having 

low bridge-system level consequences per Table 4.1. CDS 1, aligned with observable 

damage, involves initial inelastic performance which may result in bearing degradation 

and/or minor permanent distortions. Repair of this level of damage would likely be 

deferred until a routine bridge-maintenance cycle. CDS 2 involves bearing displacements 

well beyond design limits which may result in elastomer tearing, bearing rollup or 

distortion, or sliding dislocation. This level of damage typically calls for bearing reset or 

replacement. 

Table 4.10: Emerging CCLS state definitions for damage to elastomeric bearings with 
illustration of associated absolute shear-strain ranges (Roblee, 2021e) 
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Table 4.11: Emerging lognormal distribution parameters for damage to elastomeric 
bearings (Roblee, 2021e) : median (σ) and dispersion (β) 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

Absolute Bearing Shear Strain [] 
Median (σ) 

LN Dispersion (β) 
150% 300% 
0.20 0.20 
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4.3.3 Joint Seals 

Three of the most common types of joint seals used in California bridges are shown in 

Figure 4.8. Seal type selection is typically based on the design ’Movement Rating (MR)’ 

for the joint which considers thermal-expansion movements and governs the joint gap size. 

Poured seals can be used in bridges with MR ranging from 0.5 to 1.0 inches; compression 

seals are commonly used with MR from 1.0 to 2.0 inches; and strip seals are used with MR 

from 2.0 to 4.0 inches. A variety of assembly seals used for even larger MR are not shown. 

Table 4.12 summarizes damage states for the three different seal types, and Table 4.13 

provides the emerging CCLS model values applicable to each. Here, the EDP used for 

damage prediction is gap-size increase (i.e. deck movement in the active direction relative 

to the abutment seat) normalized by the MR for the joint. Although the state damage 

descriptions change for each seal type, the same normalized CCLS values are used. Note 

that the poured seal only involves one damage state, while the others involve two. 

(a) (b) 

(c) 

Figure 4.8: Illustration of common joint seal types: (a) poured; (b) compression; and (c) 
strip 
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Table 4.12: Emerging CCLS state definitions for damage to three types of joint seals with 
illustration of associated MR-normalized active joint displacement ranges (Roblee, 2021e) 

a) Poured Seal 

b) Compression Seal 

c) Strip Seal 
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Table 4.13: Emerging lognormal distribution parameters for damage to three types of joint 
seals (Roblee, 2021e) : median (σ) and dispersion (β) 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

Active MR-Normalized ¶ Joint Displacement [] 
Median (σ) 

LN Dispersion (β) 
¶ Normalized to design movement rating (MR) of joint. 

150% 300% 
0.20 0.20 

4.4 Other Components -– Response Based CCLS 

The capacity models for the remaining components of the bridge systems considered 

herein are characterized in terms of expected performance over ranges on an analytical 

response backbone model. These response-based models address abutment-joint damage 

associated with shear key and backwall fracture, pounding damage at the abutment-deck 

interface, and both pile and spread-footing damage occurring at abutment-wall and 

column-bent foundations. Before describing these specific component models, common 

aspects of the general response-based CCLS model methodology are first reviewed. 

4.4.1 Stochastic Backbone Responses, Performance Points, and Double Normalization 

A central feature of analytical fragility models is their ability to capture overall response 

uncertainty arising from multiple simultaneous component interactions within the 

bridge-system. Development of a PSDM requires FEM analysis of a large set of bridge 

configurations representing a bridge class. For each configuration, one realization of the 

backbone response for each bridge component is stochastically assigned. The PSDM then 

captures peak responses for the collection of configurations which includes interactions 

between these varied component combinations. 

Stochastic assignment of bridge-component response involves random sampling of 

correlated parameters of a probabilistic component-response model. Figure 4.9 provides 

an illustration of 20 such stochastic realizations of the translational response for CIDH 

piles (bottom) based on the median backbone model (top) and associated tables of 
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dispersion and correlation values for each of five parameters used in that model (Xie et al., 

2021). This particular model was explicitly developed for probabilistic application 

through analysis of an extensive set of simulations which considered variations in soil 

profiles and pile properties. Response models for other components (e.g. shear keys, 

backwall connections, backfills, etc.) were developed in a similar fashion and typically 

validated against available experimental data. It is important to note that while only a 

single realization of each component backbone is assigned to an analyzed bridge model, 

the ensemble average of all assigned backbones would closely approximate the median 

model. It is equally important to note that, due to bridge-system interactions, the median 

component response of using the stochastic backbone models is not necessarily the same 

as that of using the median backbone model directly. 

Figure 4.9: Example of stochastic backbone responses for CIDH piles (Xie et al., 2021) 

Use of unique component response backbone realizations in each FEM bridge analysis 

poses a challenge for development of an associated capacity model for that component. 

This project adopts a novel methodology, herein called ’double normalization’ aimed at 

assuring consistent use of a stochastic backbone-model realization for both demand and 

capacity assessment of the component within the analysis. This is implemented by 
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characterizing a backbone as a series of integer-numbered ’performance points’ to 

represent the boundaries between linear segments in the backbone. Response values along 

the segment are expressed as segment-normalized distances along the horizontal (typically 

displacement) axis added to the segment’s lower endpoint label. Within the FEM demand 

analysis of each bridge realization, the peak component response is captured and then 

normalized by the backbone assigned to that realization to yield a result expressed in 

terms of the performance-point scale. This ’apples to apples’ strategy assures that a strong 

component used in demand analysis is also assessed against the same strong component 

for purposes of damage assessment. Conversely, it prevents ’apples to oranges’ cases 

where the performance of the same strong component could be assessed using a model for 

a much weaker component. 

The resulting output of a complete set of FEM analyses for multiple bridge 

realizations then becomes a distribution of performance point values. This distribution 

incorporates two components of dispersion: 1) that associated with stochastic variation in 

the backbone shape, and 2) that associated with all other demand-analysis factors such as 

bridge geometry, ground motion features, and interactions with other stochastically 

defined component responses. Since the uncertainty in backbone shape is already 

accounted for within the set of demand-analysis output, there is no need to also include it 

in the capacity model. Instead, the remaining dispersion on the capacity side primarily 

relates to the ‘state’ uncertainty in defining the relationship between backbone response 

ranges and the damage described in the state definition. 

The second normalization is required for proper display and analysis of the 

distribution cloud of peak component responses on lognormal EDP -IM axes. Recall that 

each performance-point interval (say 1 to 2, or 2 to 3) represents one linear segment of the 

backbone response, and in physical-dimension space (say displacement), the segment 

lengths can vary substantially. Using the example in Figure 4.9, the second segment of the 

median response curve is roughly six times longer than the first segment. To restore at 
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least a first-order approximation of the fundamental component backbone shape for 

purposes of display and analysis, the performance-point output is scaled by the relative 

lengths of the median response backbone. This can be done using either of two 

approaches. For optimal insight into component performance, it is most beneficial to 

express models in terms of physical units which can be readily visualized. However, for 

standardized displays and analysis, it is often more convenient to normalize these rescaled 

results by a reference value, typically taken as the value of the first performance point (i.e. 

end of idealized linear-elastic performance). In the remainder of this chapter, component 

capacity CCLS models are expressed using both approaches. 

4.4.2 External Non-Isolated Shear Key 

The non-isolated external shear key (see Figure 3.23(a)) is the predominant design used in 

modern (era-3) California box-girder bridge abutments, and is the sole design considered 

herein. The backbone response shape adopted for this key’s capacity model is illustrated 

with performance-point labels in Figure 4.10 where the fundamental backbone shape is 

based on experimental tests by Megally et al. (2001). A stochastic version of this 

backbone model was developed by varying the geometric and material parameters of 

Megally’s mechanistic model per details found in the California bridge inventory. 

Table 4.14 provides state descriptions for four damage levels along with an illustration 

of the associated ranges in backbone performance. These damage states are based on an 

interpretation of Megally’s experimental damage observations (levels I to V in 

Figure 4.10) put into the broader context of the bridge-system framework outlined in 

Table 4.1 and Table 4.2. Table 4.15 provides emerging CCLS model values in terms of 

center-state performance point values and both absolute and normalized key displacement 

values. 
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Figure 4.10: Illustration of shear key performance levels (Megally et al., 2001). 

Table 4.14: Illustration of capacity limit state definition for external non-isolated shear key. 

Table 4.15: Emerging lognormal distribution parameters for damage to external non-
isolated shear keys (Roblee, 2021e): median (σ) and dispersion (β) 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

Backbone Performance Point [] 
Median (σ) 

LN Dispersion (β) 
1.3 2.0 2.5 3.1 
NA NA NA NA 

Absolute Key Displacement [Inch] 
Median (σ) 

LN Dispersion (β) 
1.25 3.3 7.6 12.9 
0.45 0.25 0.2 0.15 

Normalized¶ Key Displacement [] 
Median (σ) 

LN Dispersion (β) 
3.20 8.3 19.6 33.0 
0.45 0.25 0.2 0.15 

¶ Normalized to median e1n value of 0.39-inch corresponding to backbone performance point 1. 
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4.4.3 Straight Abutment-Backwall Connection 

Straight backwalls are solely used in modern (era-3) California box-girder bridge 

abutments, and its connection to the stem wall (see Figure 3.23(b)) is the sole design 

considered herein. The backbone response shape for shear fracture of the backwall 

connection is developed in subsection 3.3.3 and illustrated with performance-point labels 

in Figure 4.11. 

Figure 4.11: Illustration of backbone response shape and performance points for abutment 
backwall connection relative to sample of analytical data (Zheng et al., 2021) 

Table 4.16 provides state descriptions for three damage levels along with an 

illustration of the associated ranges in backbone performance. Table 4.17 provides 

emerging CCLS model values in terms of center-state performance point values and both 

absolute and normalized backwall displacement values. Backwall damage only occurs for 

deck motion in the passive direction. 
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Table 4.16: Emerging CCLS state definitions for passive damage to abutment backwall 
connection with illustration of associated backbone response ranges (Roblee, 2021e). 

Table 4.17: Lognormal distribution parameters for backwall passive damage states: median 
(σ) and dispersion (β) 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

Backbone Performance Point [] 
Median (σ) 

LN Dispersion (β) 

Absolute Backwall Displacement [Inch] 
Median (σ) 

LN Dispersion (β) 

Normalized¶ Backwall Displacement [] 

1.3 2.5 3.7 
NA NA NA 

0.51 1.04 2.35 
0.30 0.25 0.20 

Median (σ) 
LN Dispersion (β) 

¶ Normalized to median e1n value of 0.29-inch corresponding to backbone performance point 1. 

1.75 3.6 8.1 
0.30 0.25 0.20 
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4.4.4 Pounding 

subsection 3.3.4 outlined the analytical basis and development of a pair of pounding 

models. For the single-frame bridge systems considered herein, only the 

’deck-to-abutment’ model is considered. Figure 4.12 provides field examples of various 

types of bridge pounding damage. Figure 4.13 illustrates the backbone response shape for 

the pounding model along with definitions of performance points. Note that the EDP used 

in this model is normalized to an assumed maximum penetration value of 0.1-inch per 

Muthukumar (2003). 

Table 4.18 provides state descriptions for three pounding damage levels along with an 

illustration of the associated ranges in backbone performance. Table 4.19 provides 

emerging CCLS model values in terms of center-state performance point values and both 

absolute and normalized pounding displacement values. 

(a) (b) (c) 

Figure 4.12: Illustration of pounding damage: (a) a pounding mark in the bridge backwall 
(Yen et al., 2011); (b) abutment damage in 1994 Northridge earthquake; and (c) barrier rail 
pounding damage (Moehle and Eberhard, 2003). 
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Figure 4.13: Illustration of backbone response shape (red) and performance points (blue) 
for abutment joint pounding relative to analytical data (Muthukumar, 2003). 

Table 4.18: Emerging CCLS state definitions for abutment joint pounding damage with 
illustration of associated backbone response ranges (Roblee, 2021e). 

Table 4.19: Emerging lognormal distribution parameters for abutment joint pounding 
damage: median (σ) and dispersion (β) 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

Backbone Performance Point [] 
Median (σ) 

LN Dispersion (β) 
2.0 3.2 4.0 
NA NA NA 

Absolute Post-Contact Displacement§ [Inch] 
Median (σ) 

LN Dispersion (β) 
0.13 0.23 0.39 
0.15 0.15 0.15 

Normalized¶ Post-Contact Displacement [] 
Median (σ) 

LN Dispersion (β) 
1.36 2.3 3.9 
0.15 0.15 0.15 

§ Displacement after closure of joint gap; 
¶ Normalized to median e1n value of 0.10-inch corresponding to backbone performance point 1. 
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4.4.5 Foundations 

Two general types of foundations, pile/cap systems and spread footings, are used to 

support both abutment walls and column bents. This research considers damage 

associated with translational movement of both types of foundations at both locations as 

well as rotational damage at column-bent locations. Damage is assessed separately for 

transverse and longitudinal loading. 

Pile Foundations 

Caltrans employs a variety of ’standard plan pile’ designs within foundation systems used 

at bridge bents and abutments (Caltrans, 2014, 2015a,b,c). Figure 4.14 shows some of 

the designs used in the modern (era-3) bridges considered herein. These vary in material, 

section shape and reinforcement, and cap-connection details, and are classified by nominal 

axial load capacity as Class 90, Class 140, and Class 200 where a larger class number 

correspond to a higher capacity. Similar and additional standard pile designs were used 

in earlier (eras 1 and 2) bridges, but these have different section properties and details, 

particularly as related to the cap-connection. 

Xie et al. (2021) completed an extensive program of analytical research into the 

development of stochastic backbone response models for translational pile-head 

displacement of California standard plan piles. Figure 4.15 illustrates the generic 

backbone shape adopted for all models, along with enumerated performance-points used 

herein for capacity model development. Xie’s work developed separate models to specify 

load and displacement distributions for performance points identified as 1-3 in Figure 4.15 

for each pile type, era, and class for five ranges of pile-cap embedment depth. 
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(a) (b) 

(c) 

Figure 4.14: Standard plan pile types used in modern California bridges (Caltrans, 2015a,b,c): (a) CIDH group; (b) Precast group; and 
(c) Steel group. 



  

 

 

  
 

 
 

            

 

              

            

   

            

   

   

  

   

  

 

   

  

  

  

               

    

 

Figure 4.15: Illustration of generalized backbone response shape and performance points 
for pile-head translational response (Xie et al., 2021) 

For purposes of capacity model development herein, three groups of pile designs were 

identified based on having similar backbone shape: 1) Cast-In-Drilled-Hole (CIDH) 

concrete piles, 2) precast, prestressed concrete piles (PC), and 3) steel piles including both 

H-section and open pipe piles (Steel). A fourth group, concrete-filled steel pipes known as 

Cast-In-Steel-Shell (CISS) piles is also being considered for future development. 

A variation of the double normalization strategy outlined in subsection 4.4.1 was used 

for modeling pile translational response. For FEM demand analysis, each bridge 

realization was assigned a standard-plan pile design (i.e. type and class), and embedment 

depth per distributions representative of era-3 bridge designs found in the California 

inventory. Procedures for this assignment are detailed in Chapter 5. As usual, peak 

demand output from the FEM analysis was expressed in terms of performance point 

values to assure the same backbone shape was used for demand and capacity assessment. 

The variations in the double normalization procedure occur in the handling of the 

performance point distributions. Here, separate distributions are reported for each of the 

three pile groups (CIDH, PC, Steel) and separate scaling is used for each to reintroduce 

physical dimensions back into the backbone shapes. Scaling values for the median 

backbone shape of each group were defined using the weighted average of the median Xie 

et al. (2021) backbone model values for the pile types and embedment depths assigned in 

the demand modeling (Roblee, 2021b). 
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Table 4.20 shows that the backbone shapes for the three pile groups differ substantially. 

The CIDH group reaches its idealized elastic limit (e1p) at 0.25 inch, while displacements 

for the other two groups are over four times greater. Differences are even more pronounced 

for displacements required to achieve peak capacity (e2p). This occurs for the CIDH pile at 

under 2-inches, while it requires nearly 14-inch and 22-inch for the precast and steel groups, 

respectively. Broadly, the CIDH system is considered much more brittle in translation 

response than the remaining systems, and each group undergoes a unique damage sequence. 

Table 4.20: Comparison of median era-3 column-bent pile-head displacement values for 
three pile groups at three response-backbone performance points (Roblee, 2021b) 

Median Displacement [inch] CIDH Group Precast Group Steel Group 
Performance Point 1 (e1p) 0.25 1.10 1.16 
Performance Point 2 (e2p) 1.68 13.8 21.9 
Performance Point 3 (e3p) 4.14 22.4 30.2 

Table 4.21 provides 3 sets of state descriptions, each having five damage levels, for the 

three pile-type groups (CIDH, PC, Steel) along with illustrations of the associated ranges 

in backbone performance. Table 4.22 and Table 4.23 provide emerging CCLS model 

values for column-bent and abutment foundations, respectively, in terms of center-state 

performance point values and both absolute and normalized pile-head displacement 

values. The minor difference between the column-bent and abutment model values arises 

from the different distributions of pile design (type and class) and embedment depth used 

in these two applications. 

Note that different state descriptions and response-backbone performance-point ranges 

are used in the capacity models for the three pile groups. This arises from the very different 

displacement responses for the three groups noted in Table 4.20 which can induce damage 

to the pile-cap and its connection which is not explicitly considered by Xie et al. (2021) 

Broadly, these three independent capacity models were aligned to have comparable system-

level impacts per Table 4.1 and Table 4.2. 
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Table 4.21: Emerging CCLS state definitions for pile-foundation translational response 
damage with illustration of associated backbone response ranges for three era-3 pile-type 
groups (Roblee, 2021e) 

a) Cast-In-Drill-Hole (CIDH) Pile Group 

b) Precast, Prestressed Concrete Pile Group 

c) Steel Pile Group (H-Section and Open Pipe) 
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Table 4.22: Emerging lognormal distribution parameters for abutment pile-foundation 
translational response damage for three era-3 pile-type groups (Roblee, 2021e):median (σ) 
and dispersion (β) 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

Backbone Performance Point [] 
Median (σ) 

LN Dispersion (β) 
1.2 1.8 2.4 3.0 3.6 
NA NA NA NA NA 

Absolute Pile-Head Displacement§ [Inch] 
Median (σ) 

LN Dispersion (β) 
0.6 1.4 2.7 4.1 6.6 
0.40 0.25 0.15 0.15 0.15 

Normalized¶ Pile-Head Displacement [] 
Median (σ) 

LN Dispersion (β) 
2.1 5.5 10.3 15.8 25.3 
0.40 0.25 0.15 0.15 0.15 

§ Displacement values based on inventory-averaged pile section and embedment depth for the CIDH group. 
¶ Normalized to inventory median e1n value of 0.26-inch corresponding to backbone performance point 1. 

a) Cast-In-Drill-Hole (CIDH) Pile Group 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

Backbone Performance Point [] 
Median (σ) 

LN Dispersion (β) 
1.0 1.4 2.1 3.0 3.6 
NA NA NA NA NA 

Absolute Pile-Head Displacement§ [Inch] 
Median (σ) 

LN Dispersion (β) 
1.2 6.4 15.1 21.6 34.6 
0.40 0.30 0.15 0.15 0.15 

Normalized¶ Pile-Head Displacement [] 
Median (σ) 

LN Dispersion (β) 
1.0 5.6 13.1 18.8 30.1 
0.40 0.30 0.15 0.15 0.15 

§ Displacement values based on inventory-averaged pile section and embedment depth for the Precast group. 
¶ Normalized to inventory median e1n value of 1.15-inch corresponding to backbone performance point 1. 

b) Precast, Prestressed Concrete Pile Group 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

Backbone Performance Point [] 
Median (σ) 

LN Dispersion (β) 
0.8 1.1 1.5 2.3 3.1 
NA NA NA NA NA 

Absolute Pile-Head Displacement§ [Inch] 
Median (σ) 

LN Dispersion (β) 
1.3 3.8 12.6 26.4 36.3 
0.25 0.35 0.30 0.15 0.15 

Normalized¶ Pile-Head Displacement [] 
Median (σ) 

LN Dispersion (β) 
0.8 2.4 7.8 16.3 22.3 
0.25 0.35 0.30 0.15 0.15 

§ Displacement values based on inventory-averaged pile section and embedment depth for the Steel group. 
¶ Normalized to inventory median e1n value of 1.63-inch corresponding to backbone performance point 1. 

c) Steel Pile Group (H-Section and Open Pipe) 
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Table 4.23: Emerging lognormal distribution parameters for column-bent pile-foundation 
translational response damage for three era-3 pile-type groups (Roblee, 2021e):median (σ) 
and dispersion (β) 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

Backbone Performance Point [] 
Median (σ) 

LN Dispersion (β) 
1.2 1.8 2.4 3.0 3.6 
NA NA NA NA NA 

Absolute Pile-Head Displacement§ [Inch] 
Median (σ) 

LN Dispersion (β) 
0.5 1.4 2.7 4.1 6.6 
0.40 0.25 0.15 0.15 0.15 

Normalized¶ Pile-Head Displacement [] 
Median (σ) 

LN Dispersion (β) 
2.1 5.5 10.6 16.4 26.3 
0.40 0.25 0.15 0.15 0.15 

§ Displacement values based on inventory-averaged pile section and embedment depth for the CIDH group. 
¶ Normalized to inventory median e1n value of 0.25-inch corresponding to backbone performance point 1. 

a) Cast-In-Drill-Hole (CIDH) Pile Group 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

Backbone Performance Point [] 
Median (σ) 

LN Dispersion (β) 
1.0 1.4 2.1 3.0 3.6 
NA NA NA NA NA 

Absolute Pile-Head Displacement§ [Inch] 
Median (σ) 

LN Dispersion (β) 
1.1 6.2 14.7 22.4 35.8 
0.40 0.30 0.15 0.15 0.15 

Normalized¶ Pile-Head Displacement [] 
Median (σ) 

LN Dispersion (β) 
1.0 5.6 13.3 20.3 32.4 
0.40 0.30 0.15 0.15 0.15 

§ Displacement values based on inventory-averaged pile section and embedment depth for the Precast group. 
¶ Normalized to inventory median e1n value of 1.10-inch corresponding to backbone performance point 1. 

b) Precast, Prestressed Concrete Pile Group 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

Backbone Performance Point [] 
Median (σ) 

LN Dispersion (β) 
0.8 1.1 1.5 2.3 3.1 
NA NA NA NA NA 

Absolute Pile-Head Displacement§ [Inch] 
Median (σ) 

LN Dispersion (β) 
0.9 3.2 11.5 24.4 33.2 
0.25 0.35 0.30 0.15 0.15 

Normalized¶ Pile-Head Displacement [] 
Median (σ) 

LN Dispersion (β) 
0.8 2.8 10.0 21.0 28.7 
0.25 0.35 0.30 0.15 0.15 

§ Displacement values based on inventory-averaged pile section and embedment depth for the Steel group. 
¶ Normalized to inventory median e1n value of 1.16-inch corresponding to backbone performance point 1. 

c) Steel Pile Group (H-Section and Open Pipe) 
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Spread Footing Foundation 

Spread footing foundations are used for bridge foundations where axial loads are 

relatively low and/or the native soils have relatively high bearing capacity. A hyperbolic 

response backbone is used to model their elastoplastic behavior under translational 

loading. Figure 4.16 illustrates such a backbone along with the set of performance points 

used herein for capacity model definition. In the multi-segmented backbones considered 

in previous models, the performance points were defined at segment boundaries and used 

in the double-normalization procedure. Here, the performance points are simply labels to 

represent a progression of displacement values. Point 1 represents the z50 value in the 

hyperbolic model where total displacement is comprised of approximately 60%-40% 

elastic-plastic components, respectively. Points 2 and higher simply represent a specific 

geometric progression of plastic displacements, 1-inch, 2-inch, 4-inch, 8-inch, etc. 

obtained through analysis of the OSB-1 column-foundation design. Subsequent analyses 

for other footing configurations yield similar backbones. 

Figure 4.16: Illustration of backbone response shape and performance points for spread-
footing translational response 

Table 4.24 provides state descriptions for three damage levels along with an 

illustration of the associated ranges in backbone performance. Table 4.25 provides 

emerging CCLS model values in terms of center-state performance point values and both 

absolute and normalized footing translational displacement values. Direct damage to the 

footing element itself was not modeled and it was assumed that the structural connection 
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was sufficiently robust to mobilize footing slippage relative to the underlying native soil. 

Instead, damage states were broadly defined in terms of wide ranges in residual plastic 

displacement values and considered the impacts which such displacements might have on 

adjacent facilities. 

Table 4.24: Emerging CCLS state definitions for spread-footing translational response 
damage with illustration of associated backbone response ranges (Roblee, 2021e) 

Table 4.25: Emerging lognormal distribution parameters for spread-footing translational 
response damage (Roblee, 2021e): median (σ) and dispersion (β) 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

Backbone Performance Point [] 
Median (σ) 

LN Dispersion (β) 
3.0 5.0 7.0 
0.35 0.35 0.35 

Residual∗ Footing Displacement [Inch] 
Median (σ) 

LN Dispersion (β) 
2.0 8.0 32.0 
0.35 0.35 0.35 

Absolute Total§ Footing Displacement [Inch] 
Median (σ) 

LN Dispersion (β) 
2.5 8.6 32.6 
0.35 0.35 0.35 

Normalized¶ Total Footing Displacement [] 
Median (σ) 

LN Dispersion (β) 
5.1 17.6 66.5 
0.35 0.35 0.35 

∗ Residual plastic component of total displacement; 
§ Sum of elastic and residual plastic displacement components; 
¶ Normalized to the z50 value for OSB-1 bridge of 0.49-inch corresponding to backbone performance point 1. 
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Foundation Rotation 

As noted in subsection 3.2.6, foundation rotation is also modeled as a hyperbolic 

response. A single rotational spring is assigned to represent the weaker of two potential 

failure mechanisms: 1) ’geotechnical failure’ associated with excessive axial displacement 

of piles at the foundation perimeter, and 2) ’structural’ failure associated with excessive 

rotation of poor column-foundation connection details. Era-3 California foundation 

designs are quite robust both structurally and geotechnically as they are explicitly 

designed to have rotational capacities which exceed column-bottom hinge capacity by a 

specified margin (typically 1.2). Foundation designs for earlier eras were not as robust 

and either failure mechanism was possible before column fusing. Although 

foundation-rotation damage risk is low for the era-3 bridge designs considered herein, the 

following discussion outlines concepts used to develop such models, primarily for 

application to other eras. This model development is done in the context of geotechnical 

failure of a pile foundation which is assumed to be also applicable to spread-footing 

rotation. Similar compatible CCLS models are anticipated for structural failure with 

different descriptions of damage state. 

Table 4.26 summarizes emerging sets of state descriptions developed in conjunction 

with the emerging CCLS model values listed in Table 4.27. Separate CCLS models were 

developed for fixed-base and pinned-base column connections as foundations beneath 

these two systems differ substantially. Further, the fixed-base-column model allows for 

additional damage states through possible overturning (CDS 7) of single-column bents. In 

contrast, even severe damage to a pinned-base-column foundation is not associated with a 

bridge collapse risk, but rather to ’repairable major damage to system function’ per 

Table 4.1. 
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Table 4.26: Emerging CCLS state definitions for column-foundation rotational response 
damage for 2 column base-fixity types (Roblee, 2021f) 

CDS 1 
CDS 2 
CDS 3 
CDS 4 
CDS 5 
CDS 6 
CDS 7 

>90% Design Geotech Capacity, ∼Elastic (Non-Linear) Pile Response 
Initial Minor Residual Pile Displacements 
Exceed Geotech Capacity, Observable Residual Pile Displ. 
Substantial Residual Pile Displacement & Observable Cap Rotation 
Foundation Rotational Failure, Bent Marginally Stable 
Excessive Cap Rotation, Column Instability Risk 
Extreme Cap Rotation, Column Collapse Risk 

a) Fixed-Base Column Connection 

CDS 1 
CDS 2 
CDS 3 
CDS 4 
CDS 5 
CDS 6 
CDS 7 

>90% Design Geotech Capacity, ∼Elastic (Non-Linear) Pile Response 
Exceed Geotech Capacity, Observable Residual Pile Displ. & Cap Rotation 
Substantial Residual Pile Displacement & Cap Rotation 
Foundation Rotational Failure & Excessive Cap Rotation 

b) Pinned-Base Column Connection 

4.5 Capacity Model Dispersion 

Each of the CCLS models presented in this chapter include a lognormal dispersion term 

to capture uncertainty in the capacity definition. Determination of dispersion values was 

straightforward for the column-bent damage states where both the RP1 experimental test 

results and the HS-R analytical programs provided clear and easily modeled distributions 

of the displacement-ductility EDP used for capacity definition. 

However, the definition of the dispersion terms for most other components was less 

clear, particularly when simple numerical thresholds were used to differentiate states (e.g. 

deck unseating, bearing strain, foundation rotation, etc.) or for components analyzed 

within the framework of response-based CCLS and double normalization (e.g. shear keys, 

backwall connections, translational pile response, etc.). This remains a vexing issue for 

the project team and the values presented here are subject to change as the issues are more 

fully addressed. In the interim, a standard approximation was adopted herein whereby the 

EDP range between adjacent state thresholds was typically assumed to represent four 
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Table 4.27: Emerging lognormal distribution parameters for column-foundation rotational 
response damage for 2 column base-fixity types (Roblee, 2021e): median (σ) and 
dispersion (β) 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

Inv-Ave Cap-Edge-Pile∗ Axial Displ. [Inch] 
Median (σ) 

LN Dispersion (β) 

Inv-Ave Pile-Cap§ Rotation [Degrees] 

0.6 1.2 2.4 4.8 10 19 38 
0.27 0.17 0.17 0.17 0.17 0.17 0.17 

Median (σ) 
LN Dispersion (β) 

Normalized¶ Pile-Cap Rotation [] 

0.3 0.6 1.2 2.4 5 10 19 
0.27 0.17 0.17 0.17 0.17 0.17 0.17 

Median (σ) 
LN Dispersion (β) 

2 4 8 16 32 64 128 
0.27 0.17 0.17 0.17 0.17 0.17 0.17 

∗ Approx. axial deflection of outer row of piles based on inventory-average era-3 fixed-column-base foundation design; 
§ Approx. pile-cap rotation based on inventory-average era-3 fixed-column-base foundation design; 
¶ Normalized by θy of 0.15-degrees. (Inventory-ave cap rotation of ∼0.07-deg for 50% moment capacity.) 

a) Fixed-Base Column-Foundation Connection 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
Model Basis 

Inv-Ave Cap-Edge-Pile∗ Axial Displ. [Inch] 
Median (σ) 

LN Dispersion (β) 

Inv-Ave Pile-Cap§ Rotation [Degrees] 

0.7 2.3 5 9 
0.35 0.27 0.17 0.17 

Median (σ) 
LN Dispersion (β) 

Normalized¶ Pile-Cap Rotation [] 

0.6 2.0 4 8 
0.35 0.27 0.17 0.17 

Median (σ) 
LN Dispersion (β) 

2.5 8 16 32 
0.35 0.27 0.17 0.17 

∗ Approx. axial deflection of outer row of piles based on inventory-average era-3 pinned-column-base foundation design; 
§ Approx. pile-cap rotation based on inventory-average era-3 pinned-column-base foundation design; 
¶ Normalized by θy of 0.25-degrees. (Inventory-ave cap rotation of ∼0.124-deg for 50% moment capacity.) 

b) Pinned-Base Column-Foundation Connection 

standard deviations (±2σ from the mean value in the natural logarithm space) under the 

assumption that component capacity was nearly always within the EDP range defined by 

half the distance to the adjacent state. 
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CHAPTER 5 

CALIFORNIA BRIDGE INVENTORY AND SAMPLING TECHNIQUES 

Understanding and characterizing the variability in California bridge designs is necessary 

to establish reasonable and reliable fragility models. This chapter presents an in-depth 

characterization of modern (era 3) box-girder bridges in the California inventory. 

Geometric, materials, and design-detail data were developed with Caltrans assistance 

directly from the National Bridge Inventory (NBI), through queries and interpretations of 

information held in Caltrans’ bridge maintenance database ‘SMART’, and through 

manual review of scanned bridge plans available through Caltrans ‘BIRIS’ 

records-archive system. 

From these, statistical models were developed and sampled to characterize the design 

parameters and details needed to specify realistic and representative sets of virtual bridge 

realizations for FEM demand modeling. 

It was recognized that completely random pairing of multiple distributed variables 

could generate bridge realizations that would not reflect realistic bridge designs. 

Therefore, this study also develops rational procedures to address three inherent 

correlations between components embedded in the design process: namely the 

relationships between column section size and contributing deck area, between column 

moment capacity and foundation design, and for reasonable pairing of design and applied 

ground motions. Extensive effort was focused on developing the sampling procedures to 

capture these design constraints. 

5.1 Initial System of Representative Bridge Systems (RBS) 

Through taxonomic characterization and analysis of California’s 2013 inventory of 7839 

concrete box-girder bridges, representing roughly 30% of California’s total bridge 
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inventory, Roblee (2016f)developed an initial set of 129 ‘Representative Bridge Systems 

(RBS)’ needing separate PSDM model development. Identification of these RBS was 

based on: 1) an initial set of taxonomic assumptions regarding populations of bridge types 

expected to have similar performance (i.e. single-column vs. multi-column bent, or seat 

vs. diaphragm abutment type), 2) the number of bridges found in the California inventory 

for each taxonomic combination, 3) findings from a program of sensitivity analyses 

(Mangalathu, 2017; Soleimani, 2017) using ANOVA analysis to investigate potential 

taxonomic combinations expected to perform similarly (e.g. 2-column bents are combined 

with other multi-column bents rather than being treated separately), and 4) judgement 

regarding the optimal balance between RBS granularity, modeling workload, and fragility 

model application needs. As the project advanced, it became apparent that additional RBS 

would be needed to better represent unique performance expectations of originally 

combined bridge systems (i.e. separating era 2 from era 3; shaft bents from pile/footing 

supported bents, cantilever from seat-type abutments). Recent versions of the RBS work 

plan (Roblee, 2020a) have 176 base models. 

This chapter considers design features of a subset of the taxonomically-based RBS 

classes noted above, and the following chapter will propose an optimization method to 

combine these models based on similarity of their fragility models. Table 5.1 summarizes 

the RBS subset characterized herein which consists of modern (e33) single-frame concrete 

box girder bridges having no (is0B), single-column (isSB), or multi-column (isMB) bents 

and seat type abutments (aUS). These are the most common configurations found in the 

California inventory. Less common multi-frame structures and those having either pier 

wall or shaft bent interior supports are not considered. Further, diaphragm abutments are 

extremely uncommon in era-3 designs, and therefore not considered. The multi-column 

RBS are modeled as having 2 columns to 4 columns, and the span ranges considered are 

single-span (s11), two-span (s22), three or four-span (s34), and five or six-span (s56). 
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Table 5.1: Initial bridge categories considered in the analysis. 

Design era Span number Column number Abutment Type 
e33 s11 is0B aUS 1 NA 

Seat 

e33 s22 isSB aUS 2 single-column 
e33 s22 isMB aUS 2 multi-column 
e33 s34 isSB aUS >1991 3 or 4 single-column 
e33 s34 isMB aUS 3 or 4 multi-column 
e33 s56 isSB aUS 5 or 6 single-column 
e33 s56 isMB aUS 5 or 6 multi-column 

5.2 Superstructure 

Superstructures (or decks) of concrete box-girder bridges in California can have two types 

of girders, namely reinforced concrete (RC) and prestressed concrete (PC). Inventory data 

compiled by Roblee (2017c) shows overall usage of PC in era-3 bridges is relatively high 

(70% to 80%). Table 5.2 summarizes the percentage breakout for each span range ID of 

girder type by span number. These proportions are used for sampling of the deck structure 

parameters in era-3 bridges. 

Table 5.2: Proportion of deck girder types 

Span Range ID Number of Spans Span Mix (%) RC Percentage (%) PC Percentage (%) 
s11 1 100 30 70 
s22 2 100 20 80 

s34 3 70 14 56 
4 30 6 24 

s56 5 65 13 52 
6 35 7 28 

5.2.1 Span Length 

Prestressed concrete beams have higher stiffness than reinforced concrete beams, and 

therefore can have a longer span length. Table 5.3 summarizes span length models 

developed by Roblee (2017c) from a sample of 390 single-span and 550 single-frame 

multi-span era-3 box-girder bridges in the California inventory. The span length for 

single-span RC ranges from 35-feet to 200-feet, whereas single-span PC bridges range 

from 50-feet to 220-feet. Multi-span minimum lengths are somewhat higher. Broadly, 
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median span length for PC bridges is about 30-feet longer than for RC bridges. 

Span ratio is defined as the ratio between the end-span length and the interior-span 

lengths, and is only defined for bridges with more than two spans. For modeling purposes, 

all interior spans are assumed to have equivalent length. The span ratio distribution 

parameters are given in Table 5.3 which show that RC and PC median end-span lengths 

are 60% and 75% of interior span lengths, respectively. 

Table 5.3: Distributions of span length and span ratio (end-span length/interior-span length) 

Span 
Type 

Girder 
Type 

Span Length Model Distribution Span Ratio Distribution 
Unit Type§ µ† σ† EB 

LB 
EB 

UB Unit Type§ µ† σ† EB 
LB 

EB 
UB 

s11 RC feet N 105 40 35 200 - N - - - -
PC feet N 130 35 50 220 - N - - - -

s22 RC feet N 135 35 85 200 - N - - - -
PC feet N 135 35 75 230 - N - - - -

s34 RC feet N 110 35 55 190 ft/ft N 0.6 0.2 0.35 1 
PC feet N 155 45 75 250 ft/ft N 0.75 0.2 0.4 1 

s56 RC feet N 125 35 75 165 ft/ft N 0.6 0.2 0.35 1 
PC feet N 155 35 95 240 ft/ft N 0.75 0.2 0.4 1 

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard 

deviation and dispersion (logarithmic standard deviation) for normal distribution and lognormal distribution, respectively. 
EB LB = lower bound, UB = upper bound. 

5.2.2 Deck Width 

Typically, there is an increased number of both bent columns and box-girder cells with 

increased deck width. Modeling distributions capturing the relationships between these 

transverse bent-profile parameters were developed by Roblee (2016e) from a sample of 

the combined era-2 and era-3 California box-girder bridge inventory comprised of 363 

single span and 663 multi-span bridges, 194 having single-column bents and 469 having 

multi-column bents. Table 5.4 summarizes these models. Note that only odd numbers 

of cells are considered to accommodate modeling practicalities. For single-span (is0B) 

bridges, modeled deck width ranges from 22-feet to 110-feet, and can include 3-cell to 

11-cell designs in the proportions given in Table 5.4. Two categories of multi-span bridges 

are considered, those with single-column bents (isSB) and those with multi-column bents 

(isMB). Bridges with single-column bents are modeled as having deck widths ranging from 
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22-feet to 60-feet with a maximum of 7-cells. Bridges with multi-column bents consisting 

of 2 to 4 columns per bent are modeled as having widths that range from 36-feet to 128-feet 

and have from 3 to 13 cells. Both width range and cell numbers increase with the number 

of columns, but some overlap occurs per the distributions shown. 

Table 5.4: Model distributions for deck widths and cell count as a function of number of 
bent columns for era-3 box girder bridges. 

Internal 
Support 

Column 
Number 

Mix 
(%) 

Span Width Model Distribution Cell Number Mix (%) 
Unit Type§ µ† σ† EB 

LB 
EB 

UB 3-cell 5-cell 7-cell 9-cell 11-cell 13-cell 

is0B 0 

5 feet N 29 6 22 34 100 0 0 0 0 0 
30 feet N 41 5 34 48 60 40 0 0 0 0 
25 feet N 56 8 48 64 0 70 30 0 0 0 
30 feet N 71 9 64 82 0 25 60 15 0 0 
10 feet N 88 12 82 110 0 0 50 35 15 0 

isSB 1 

15 feet N 28 1.2 22 30 100 0 0 0 0 0 
20 feet N 34 4 30 38 85 15 0 0 0 0 
55 feet N 42 2 38 46 75 25 0 0 0 0 
10 feet N 50 14 46 60 30 50 20 0 0 0 

isMB 

2 
20 feet N 43 7 36 50 40 60 0 0 0 0 
15 feet N 57 8 50 66 0 80 20 0 0 0 
10 feet N 73 22 66 88 0 25 50 25 0 0 

3 
10 feet N 59 18 50 68 0 50 50 0 0 0 
15 feet N 79 20 68 88 0 0 50 50 0 0 
10 feet N 98 20 88 108 0 0 20 40 40 0 

4 5 feet N 75 32 58 90 0 25 40 35 0 0 
15 feet N 107 38 90 128 0 0 0 40 35 25 

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation and dispersion 

(logarithmic standard deviation) for normal distribution and lognormal distribution, respectively. 
EB LB = lower bound, UB = upper bound. 

5.2.3 Deck-Section Depth 

Deck-section structural depth is very closely correlated to the maximum span length but 

differ between the RC and PC girder types. Table 5.5 summarizes model values for the 

ratio of structural section depth to maximum span length developed from a sample of 197 

cast-in-place box-girder bridges of all eras in California (Roblee, 2016b). The means of 

these inventory-based models closely match standard design values of 0.055 and 0.040 for 

cast-in-place RC and PC bridge superstructures, respectively. PC decks, due to relatively 

higher stiffness, have a smaller ratio compared to RC decks. However, considering PC 

decks are also relatively longer than RC decks, PC decks are only a bit shallower (about 

6.0-feet) than the RC decks (about 6.5-feet). 
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Table 5.5: Models for deck depth to maximum span ratio. 

Girder Span Depth Ratio Model Distribution 
Type Unit Type§ µ† σ† EB 

LB 
EB 

UB 
RC ft/ft N 0.054 0.003 0.048 0.061 
PC ft/ft N 0.041 0.003 0.036 0.046 

§ C = constant, LN = lognormal, N = normal, B = binomial, and U 
= uniform. 

† µ denotes the mean and median for normal distribution 
and lognormal distribution, respectively; σ denotes standard 
deviation and dispersion (logarithmic standard deviation) for 
normal distribution and lognormal distribution, respectively. 

EB LB = lower bound, UB = upper bound. 

5.2.4 Other Transverse Cross Section Dimensions 

To completely define the shape of a deck, several additional dimensional parameters are 

needed. In this research, these parameters are the same as defined in Mangalathu (2017): 

top-flange thickness is related to the spacing of cells following the design policy (Caltrans, 

2017), bottom-flange thickness is assumed to be 7.0-inches, and inner-wall flange thickness 

is taken as 1.0-foot. 

5.3 Interior Supports – Column Bents 

Column bents are the most common interior support type found in California box-girder 

bridges, although pier walls and shaft bents are also used. This research considers only 

column bents. 

Column designs in California have evolved from pre-ductile designs in era-1, to 

early-ductile designs in era-2 due to the 1971 San Fernando earthquake’s impact, and 

more recently to modern-ductile designs in era-3 arising from additional design 

modifications which emerged from the 1989 Loma Prieta and 1994 Northridge 

earthquakes. These three eras have distinct designs reflecting changes in design 

philosophies. Although only era-3 fragility models are developed in this research, some of 

the column design parameters presented below are for all eras to provide insight into 

evolving practices. 
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5.3.1 Average Column Height – Base Models 

Bridge column height is a critical parameter in seismic demand modeling of bridges that 

affects structural periods and can influence the column failure mode. Here, column height 

is defined as the average clear distance from the top of the bent foundation (footing or pile 

cap) to the bottom of the bridge deck soffit. When heights vary within or between bents, 

the average height for the entire bridge frame is used. 

Table 5.6 presents base column-height models for the three design eras based on 

analysis of the California single-frame box-girder bridge inventory (Roblee, 2017b). 

These models were developed from manual plans review of a random sample of 427 

bridges including 152 single-column bents and 285 multi-column bents. The ‘base’ 

models were developed from the subset of bridges having column height less than 32-feet, 

representing about 85% of the random sample. Separate models were developed for taller 

bridges which are considered separately as discussed below. Systematic differences with 

bent type were not observed, so the base models are applicable to both single- and 

multi-column bent bridges. However, systematic height differences with era were 

observed with slight increases in median height occurring in later design eras. While the 

reasons for this height increase are unclear, one outcome for seismic purposes is that the 

taller modern bridges have slightly higher ductility capacity. 

Table 5.6: Base model distributions for average column height. 

Design Span Width Model Distribution 
Era Unit Type§ µ† σ† EB 

LB 
EB 

UB 
era-1 feet N 21.7 0.122 17.0 29.0 
era-2 feet N 22.4 0.122 17.5 30.0 
era-3 feet N 23.6 0.122 18.5 31.0 
§ C = constant, LN = lognormal, N = normal, B = binomial, and 

U = uniform. 
† µ denotes the mean and median for normal distribution 

and lognormal distribution, respectively; σ denotes standard 
deviation and dispersion (logarithmic standard deviation) for 
normal distribution and lognormal distribution, respectively. 

EB LB = lower bound, UB = upper bound. 

In addition to the ‘base’ models listed in Table 5.6, a separate set of ‘tall’ column-height 
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models were developed from a combination of the base box-girder data set and a targeted 

sample of all bridge types thought to have reasonably high likelihood of having either tall 

or unbalanced (TU) longitudinal profiles. The plans-selection criteria for this targeted set 

included bridges identified as ‘stream crossings’ and bridges where names included the 

words ‘ramp’, ‘connector’ or ‘viaduct’. Related studies by Soleimani (2017) used this TU 

data set to explore development of adjustment factors for tall and unbalance effects which 

are not considered herein. Rather, this research only considers bridges of uniform height 

as specified by the era-3 model in Table 5.6. 

5.3.2 Column-Section Types 

A large variety of column-section shapes and sizes are used in California bridges. These 

include various sized ‘regular’ sections having circular, square, hexagonal, and octagonal 

shapes with equivalent nominal size in both directions, and various sized ‘wide’ sections 

including transversely elongated versions of the same basic shapes. Roblee (2018a) 

characterized a representative range in column-section types through manual plans review 

of 438 California single-frame box-girder bridges designed over all three design eras. For 

modern (era-3) multi-column bridges, 16 unique regular-section types and an additional 

12 unique wide section types were observed in the sample of 75 bridges. For era-3 

single-column bridges, 10 unique regular-section types and 10 unique wide section types 

were observed the sample of 30 bridges. Similar levels of section-type variability were 

observed in era-2, and even greater variability occurs in era-1. 

For purposes of fragility analysis, it was deemed impractical to set up FEM models for 

all of these unique section types. Therefore, a smaller representative set was selected to 

broadly reflect the variability in section size, shape, and aspect ratio found in the 

inventory. Table 5.7 summarizes the section types and inventory-mix proportions selected 

to represent modern (era-3) bridges modeled herein. Note that single-column designs use 

larger sections and a larger proportion of wide type than multi-column designs. 

138 



  

          
 

             
 
 

 

    
    
    
    
    

 
 

 

    
    
    
    
    

 
 

  

     

         

          

 

    

   

  

   

 

 

 
   

 
    

 

  

          

           

Table 5.7: Proportion of modern (era 3) section types used in analyses 

Section Shape Section Size [Inch] CDA Group isSB Mix (%) isMB Mix (%) 
48 2 0 25 
60 3 0 10 

Regular/Circular 66 3 20 30 
84 4 10 5 
108 5 10 0 

48×72 3 10 15 

Wide/Oblong 
48×96 3 10 0 
66×99 4 25 10 
72×108 4 15 0 
84×126 5 0 5 

All era-3 regular shapes are modeled as circular columns with spiral or welded hoop 

reinforcement surrounding a circular core. All era-3 wide shapes are modeled as oblong 

shapes containing overlapping sets of circular reinforcement. All single-column bents are 

modeled as having fixed-base connections to the foundation, while all multi-column bents 

have nominally pinned-base connections to the foundation through use of a reduced section 

size (i.e., column key). 

Table 5.7 also lists a value for the ‘CDA Group’ of each column section. The CDA 

classification was developed as part of the inventory plans review (Roblee, 2018a) as a 

means to loosely associate larger column sizes with bridge designs having larger 

‘contributing deck area (CDA)’ to support. The CDA group value ranges from 1 to 5 

where larger numbers correspond to larger sections and higher CDA. This topic is further 

developed in section 5.7.1 where the CDA designation is used as one sampling constraint 

to assure more realistic bridge designs. 

5.3.3 Material Properties 

Table 5.8 and Table 5.9 summarize materials strength models for concrete and 

reinforcement steel that are adopted herein for structural demand modeling. These values 

were obtained by scaling nominal values by factors to account for overstrength. A factor 

of 1.25 was applied to concrete materials, and 1.15 to steel materials. The nominal values 

were assigned by (Roblee, 2016a) based on data compiled from manual review of 201 

139 



  

    

       

  

 

          
 

 
 

 
 

      
            

              
             

              
             

              
             

                 
                   

           
         

 
 
 

        
 

 
 

        
            

             
             
             

            
     

 
       

 

 
   

 
   

   

  

    

          

     

             

 

 

bridge plans of all three eras. Separate values of concrete strength are assigned to the 

superstructure and column concrete for both RC and PC designs. Similarly, separate steel 

strength values are assigned to the longitudinal and transverse reinforcing elements. 

Materials strengths increase modestly with design era. 

Table 5.8: Distributions of column and superstructure concrete strength model. 

Design 
Era 

Girder 
Type 

Column Concrete Model Superstructure Concrete Model 
Unit Type§ µ† σ† EB 

LB 
EB 

UB Unit Type§ µ† σ† EB 
LB 

EB 
UB 

era-1 RC ksi N 3.750 0.375 3.000 4.500 ksi N 3.750 0.375 3.000 4.500 
PC ksi N 4.000 0.400 3.200 4.800 ksi N 4.500 0.450 3.600 5.400 

era-2 RC ksi N 4.000 0.400 3.200 4.800 ksi N 4.000 0.400 3.200 4.800 
PC ksi N 4.000 0.400 3.200 4.800 ksi N 4.500 0.450 3.600 5.400 

era-3 RC ksi N 4.000 0.400 3.200 4.800 ksi N 4.000 0.400 3.200 4.800 
PC ksi N 4.500 0.450 3.600 5.400 ksi N 5.000 0.500 4.000 6.000 

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation and 

dispersion (logarithmic standard deviation) for normal distribution and lognormal distribution, respectively. 
EB LB = lower bound, UB = upper bound. 

Table 5.9: Distributions of longitudinal and transverse reinforcement strength model. 

Design Column Longitudinal Reinforcement Model Column Transverse Reinforcement Model 
Era Unit Type§ µ† σ† EB 

LB 
EB 

UB Unit Type§ µ† σ† EB 
LB 

EB 
UB 

era-1 ksi N 57.500 3.750 50.000 65.000 ksi N 57.500 3.750 50.000 65.000 
era-2 ksi N 69.000 4.500 60.000 78.000 ksi N 63.250 4.125 55.000 71.500 
era-3 ksi N 69.000 4.500 60.000 78.000 ksi N 69.000 4.500 60.000 78.000 

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation and 

dispersion (logarithmic standard deviation) for normal distribution and lognormal distribution, respectively. 
EB LB = lower bound, UB = upper bound. 

5.3.4 Column Reinforcement Ratios 

Simple uniform distribution models were developed for characterization of both 

longitudinal and transverse column reinforcement ratios for each design era based on a 

review of 431 column designs in the California bridge inventory (Roblee and Zheng, 

2017). These models are depicted as red lines in Figure 5.1 and Figure 5.2, respectively, 

and model bounds are summarized in Table 5.10. While longitudinal reinforcement ratios 

are comparable through all eras, the transverse reinforcement ratio increased significantly 

from era-1 to era-3. Note that the high-reinforcement tails in the data distributions are 
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typically associated with unusual column designs and are ignored as outliers for purposes 

of demand modeling. 

(a) (b) (c) 

Figure 5.1: Longitudinal reinforcement ratio for (a) era-1; (b) era-2; and (c) era-3. 

(a) (b) (c) 

Figure 5.2: Transverse reinforcement ratio for (a) era-1; (b) era-2; and (c) era-3. 

Table 5.10: Uniform distribution bounds for longitudinal (ρsl) and transverse (ρsv) 
reinforcement ratios for bridge columns of three eras . 

Model Reinforcement Ratio Model 
Unit Type§ µ† σ† EB 

LB 
EB 

UB 
era-1 ρsv % U - - 0.10 0.25 
era-2 ρsv % U - - 0.30 1.00 
era-3 ρsv % U - - 0.55 1.35 

All eras ρsl % U - - 1.00 3.00 
§ C = constant, LN = lognormal, N = normal, B = binomial, and 

U = uniform. 
† µ denotes the mean and median for normal distribution 

and lognormal distribution, respectively; σ denotes standard 
deviation and dispersion (logarithmic standard deviation) for 
normal distribution and lognormal distribution, respectively. 

EB LB = lower bound, UB = upper bound. 
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5.3.5 Reduced Sections for Pinned Column Connections 

Reduced sections (or column keys) are used for pinned-base connections at the base of 

multi-column bents. While multi-column bents of era 1 used both pinned-base and 

fixed-base connections in similar numbers, the fixed-base detail became less common in 

era-2 and was virtually eliminated from era-3 bridges not supported on shaft foundations. 

This section reviews development of a model for specifying reduced section design details 

needed for creating virtual bridges for demand modeling. 

Figure 3.11 shows an example detail for a modern reduced section (or pin or column 

key) connection at the base of a column. There are three variables needed to specify such 

a design: the concrete bearing size of the reduced section, the diameter of the pin’s 

reinforced core, and the longitudinal reinforcement ratio (or bar diameters and count) for 

the pin. Figure 5.3 presents data distributions for related variables obtained through 

manual plans review of pin details of 63 column designs in the era-3 California box-girder 

bridge inventory (Zheng, 2020b). The three distributions include breakouts into seven 

groups, categorized by section types (regular/wide) and CDA groups. 

(a) (b) (c) 

Figure 5.3: Reduced section parameters (Zheng, 2020b): (a) area ratio; (b) dimension ratio; 
and (c) longitudinal reinforcement ratio. 

The first variable, called the area ratio, determines the concrete bearing size. It 

describes the ratio between the concrete bearing area in the reduced section and that in the 

main section (column main body section). These data reveal three distinct subgroups 

corresponding to, from bottom to top: regular sections with CDA ≤ 2; wide sections; and 
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regular sections with CDA ≥ 3. Lognormal models fit to these subgroups are summarized 
in Table 5.11. For modeling purposes, it is assumed that the concrete bearing area is a 

circular section for regular columns and a rectangular section for wide columns where the 

rectangle has the same aspect ratio as the main section. The additional assumption 

coupled with the area defines the dimension of a reduced section. 

The inventory cases show that the reinforcement used in a reduced section are 

arranged circularly regardless of the section types. Thus, the second variable named 

‘dimension ratio’ defines the ratio between the pin-core diameter and the ‘critical 

dimension’ of concrete bearing. This critical dimension equals either the diameter of a 

regular-column section or the shorter dimension of a wide-column section. Based on the 

data in Figure 5.3(b), the two section-types and different CDA groups all have comparable 

distributions. Therefore, the specification model for the ‘dimension ratio’ is assumed to be 

the same for all types of sections considered in this research. 

Table 5.11: Distributions of multiple reduced section parameters. 

Variables Distribution Models EB EB 
Unit Type§ µ† σ† LB UB 

Area Ratio for Regular Sections (CDA ≤ 2) in2/in2 LN 0.450 0.300 0.250 0.800 
Area Ratio for Regular Sections (CDA ≥ 2) in2/in2 LN 0.350 0.200 0.250 0.500 

Area Ratio for Wide Sections in2/in2 LN 0.400 0.250 0.250 0.700 
Dimension Ratio in/in LN 0.500 0.300 0.250 0.850 

Reinforcement Ratio for Regular Sections % LN 1.000 0.400 0.500 2.250 
Reinforcement Ratio for Wide Sections % LN 0.950 0.250 0.500 1.500 

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes 

standard deviation and dispersion (logarithmic standard deviation) for normal distribution and lognormal 
distribution, respectively. 

EB LB = lower bound, UB = upper bound. 

The last variable is the longitudinal reinforcement ratio for the reduced section, defined 

as reinforcement area per unit concrete bearing area. Based on the inventory cases, the 

reinforcement sizes used in the reduced section tend to be somewhat smaller than those 

used in the main section. This study assumes the longitudinal reinforcement used in main 

sections to be evenly split between #11 and #14 bars, and uses 20%, 20%, 20%, and 40% 

for #8, #9, #10, and #11 bars, respectively, for the reduced sections. 
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5.3.6 Column Axial Load Ratio 

Column axial load ratio is an influential design parameter, and its evaluation here serves 

as an independent check on the reasonableness of the set of virtual bridges specified using 

combinations the deck, column and material variables noted in previous sections. Axial 

load ratio values easily computed after specifying all the geometric variables considered in 

a box-girder bridge. The column axial load ratio is estimated using a uniformly-distributed 

deck gravity load and assuming a fixed-pin boundary condition for a two-span bridge. The 

resistance or axial load acting on the column is 3/8 of the total deck load. Considering other 

variables such as deck dimensions, column section size and concrete strength, the axial load 

ratio distribution for a simulated set of era-3, 2-span concrete box-girder bridges is shown 

in Figure 5.1. Note that very similar distributions for single-column and multi-column 

bent are achieved regardless of the substantive differences in specified deck geometries and 

column-section sizes. Overall, the resulting axial load ratio distributes with a median of 

about 10% and ranges from 5% to 30% with 0.40 dispersion. This is reasonably consistent 

with design experience. 

Figure 5.4: Column axial load ratio distribution for simulated set of era-3 bridges 
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5.4 Abutment 

Virtually all era-3 concrete box-girder bridges have seat-type abutments which 

accommodate thermal movement better than older diaphragm systems. Seat-type 

abutments provide bearing support to the superstructure and constrain deck movement 

longitudinally by the abutment backwall and transversely by the shear key. This section 

reviews the parameter distributions used for the specification of seat-type abutments, 

except for the more complicated foundation elements which are addressed in section 5.5. 

5.4.1 Backfill, Side-fill, and Front-fill 

subsection 3.3.7 described the hyperbolic backbone response model proposed by Xie et al. 

(2019) which is used in this research to characterize soil loads acting on the back, side 

and front surfaces of the abutment. Table 5.12 provides distribution parameters for the two 

base model parameters (Pult,0, Kmax,0)) which apply specifically to a 5.5-foot soil height. 

Scaling factors described in subsection 3.3.7 are used to compute parameter values (Pult, 

Kmax) for other soil heights. Only the ‘sand’ model is considered for the era-3 bridges 

modeled herein. This is based on revised Caltrans backfill specifications for the era which 

largely eliminated fine-grained and clayey materials. The ‘all’ model, which incorporates 

both soil types is used for analyses of earlier eras. 

Table 5.12: Distributions for Xie et al. (2019) hyperbolic backfill response model 
parameters (Pult,0 and Kmax,0) for the 5.5-foot soil height base case (per foot width). 

Soil 
Type 

Pult,0 EB EB Kmax,0 EB EB Other parameters 
Unit Type§ µ† σ† LB UB Unit Type§ µ† σ† LB UB ρ† α1 α2 

Sand kips/ft LN 35.0 0.25 22.0 55.0 kips/ft/in LN 85.0 0.20 60.0 120.0 0.45 1.60 0.70 
Clay kips/ft LN 29.0 0.25 18.0 47.0 kips/ft/in LN 45.0 0.20 30.0 70.0 0.95 1.40 0.60 
All kips/ft LN 32.0 0.25 20.0 51.0 kips/ft/in LN 65.0 0.35 30.0 120.0 0.65 1.50 0.65 

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation and dispersion 

(logarithmic standard deviation) for normal distribution and lognormal distribution, respectively. ρ is correlation between the two parameters. 
EB LB = lower bound, UB = upper bound. 

Table 5.13 provides model distributions for two abutment dimensions, the backwall and 

stem wall , for each of the three design eras. All eras have comparable backwall heights 
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which are largely tied to deck structural depth. However, median stem wall height increases 

over the three design eras. In era-1, the backwall is higher than the stem wall, while in era-

3 backwall is shorter than the stem wall. The changes in stem wall height increase the 

probability of backwall-connection fracture in era-3 bridges because the shorter stem walls 

of earlier eras might provide insufficient backfill-B resistance to fail the backwall. 

Table 5.13: Distributions of abutment dimensions. 

Design Backwall Height (Backfill-A) Model Stem Wall Height (Backfill-B) Model 
Era Unit Type§ µ† σ† EB 

LB 
EB 

UB Unit Type§ µ† σ† EB 
LB 

EB 
UB 

era-1 feet LN 6.10 0.221 3.90 9.50 feet LN 4.10 0.400 1.80 9.70 
era-2 feet LN 6.20 0.217 4.00 9.60 feet LN 7.40 0.300 4.00 13.60 
era-3 feet LN 6.10 0.262 3.60 10.30 feet LN 10.20 0.200 6.40 16.20 

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard 

deviation and dispersion (logarithmic standard deviation) for normal distribution and lognormal distribution, respectively. 
EB LB = lower bound, UB = upper bound. 

The ‘frontfill’ is the soil resistance acting on the front of the stem wall in the 

longitudinal direction, whereas backfill-B was acting on the back of the stem wall). The 

frontfill soil depth is estimated as HFF = HA + HB − Hdeck − 3.0 feet − 1.0 feet where 

HA and HB are the heights of the backwall and stem wall, respectively. This equation 

assumes the frontfill contact at the abutment is 3.0-feet below the bottom of the deck, and 

has a slope that reduces the soil capacity assumed to be approximately equivalent to 

1.0-foot of front-fill height. This approximation is based on the design shown in the 

’Section A-A’ detail in Figure A.3. 

The ‘sidefill’ is the soil resistance acting in the transverse direction on the side of the 

stem wall. For rough estimation purposes, the height of the sidefill is assumed to be the 

mean of backfill and frontfill given that there is typically a uniform soil slope from the back 

to the front. While the frontfill resistance applies to the same abutment width as the backfill, 

sidefills have a different width model which roughly approximates the stem wall width plus 

some portion of connected wingwalls. The crude relationship adopted for sidefill width is 

a lognormal distribution with median = 3.7-feet and dispersion = 0.20 which again is based 

on the design in Figure A.3. 
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5.4.2 Elastomeric Bearing 

California seat-type abutment design underwent substantial change late in era 1, and the 

design evolution included a change in bearing type from rocker bearings to elastomeric 

bearings. Virtually all of era-2 and era-3 designs, and a small proportion of era-1 designs 

use elastomeric bearings. Roblee (2018h) compiled bearing dimensional data from 

manual review of bridge plans for 19 era-1, 52 era-2 and 66 era-3 bridges which was used 

to develop the era-based height and unit stiffness models shown in Table 5.14. Unit 

elastomeric bearing stiffness is a function of bearing thickness, area, average spacing and 

temperature-dependent modulus of the elastomeric material (Roblee, 2015a) and 

represents linear-elastic stiffness per unit width of abutment. In the development of these 

models, elastomeric modulus was computed for a randomized temperature range from -20 

to +120 degrees Fahrenheit to represent the wide range of environmental conditions in 

California. Note that the unit stiffness value for era-3 is lowest as it is associated with 

thicker pads. A uniform range for friction coefficient was assumed for all eras. 

Table 5.14: Distributions of modeling parameters for elastomeric bearings. Stiffness value 
is normalized by abutment length. 

Parameters Design 
Era 

Parameter Model EB EB 
Unit Type§ µ† σ† UB LB 

Height 
era-1 

inch LN 
1.50 0.200 1.00 2.00 

era-2 1.70 0.300 1.00 3.00 
era-3 3.00 0.300 1.50 5.50 

Unit 
Stiffness 

era-1 
(kips/in)/ft LN 

1.50 0.350 0.30 7.00 
era-2 2.00 0.550 0.70 6.00 
era-3 1.00 0.450 0.40 2.50 

Friction 
Coefficient all eras kips/kips N 0.30 0.100 0.10 0.50 

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal distribution, 

respectively; σ denotes standard deviation and dispersion (logarithmic standard 
deviation) for normal distribution and lognormal distribution, respectively. 

EB LB = lower bound, UB = upper bound. 
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5.4.3 Backwall 

Seat-type abutments with straight backwalls, as illustrated in Figure 3.25 , are virtually the 

only design used in era-3 California bridge inventory and considered in the analyses herein. 

Figure 3.25 provides an illustration of this design and subsection 3.3.3 discusses design 

parameters. Backwall height models are provided in subsection 3.3.3, and subsection 3.3.3 

discusses reinforcement details affecting the shear-failure fusing mechanism. 

5.4.4 External Non-Isolated Shear Key 

California box-girder bridges in era-3 are typically designed with external non-isolated 

shear keys. Subsection 3.3.2 illustrated the response backbone shape using methods 

proposed by Megally et al. (2001). Figure 5.5 summarizes results of applying these 

methods to key designs for 22 inventory bridges . To generalize a key-response 

specification procedure, a four-variable model (Zheng, 2019) is used to specify the first 

two points in the shear key model shown in Figure 3.21 namely Fsk2, ∆2, Fsk1/Fsk2, and 

∆1/∆2. Lognormal distribution parameters for this model are provided in Table 5.15. 

There is an internal correlation between these variables as shear keys with higher strength 

(Fsk2) tend to have larger corresponding deformation at peak strength (∆2). The 

correlation models between these four variables is also provided in Table 5.15. The last 

parameter needed for the shear key response model is ∆3, which is assumed to be 3.35 

times of ∆2 as a result of the relationship between Equation 3.29b and Equation 3.29c. 

5.4.5 Abutment Joint Gaps 

Abutment joint gaps, longitudinally between the deck and abutment backwall, and 

transversely between the deck and the shear key, play an important role in whole-bridge 

response as they govern how much deck deflection needs to occur before abutment 

responses are engaged. Large gaps tend to transfer more load to the internal supports, 

while small gaps quickly engage abutment responses. 
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Figure 5.5: Shear key model samples. 

Table 5.15: Distributions of modeling parameters for specifying external non-isolated shear 
keys (Zheng, 2019). 

Variable Shear Key Model EB EB Correlation 
Unit Type§ µ† σ† LB UB Fsk2 ∆2 Fsk1/Fsk2 ∆1/∆2 

Fsk2 kips LN 1550.0 0.350 1000.0 3200.0 1.00 0.85 0.45 -0.85 
∆2 inch LN 2.75 0.500 1.50 8.50 0.85 1.00 0.45 -0.85 

Fsk1/Fsk2 kips/kips LN 0.65 0.150 0.45 0.85 0.45 0.45 1.00 -0.30 
∆1/∆2 inch/inch LN 0.15 0.350 0.05 0.25 -0.85 -0.85 -0.30 1.00 

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation 

and dispersion (logarithmic standard deviation) for normal distribution and lognormal distribution, respectively. 
EB LB = lower bound, UB = upper bound. 

Table 5.16 summarizes the lognormal distribution parameters for joint gaps adopted 

herein. The longitudinal values are based on inventory analysis of movement rating data 

for 145 era-1, 132 era-2, and 338-era bridges (Roblee, 2018c). Generally, median values for 

longitudinal joint gap size increase from era-1 to era-3. Era-2 has the largest dispersion in 

values as this represents a transitional period in design practices. The model for transverse 

joint size is assumed and applies only to eras 2 and 3 when external keys were used. For 

these eras, median longitudinal gap size is larger than transverse gap size. Constraints on 

lateral movement of era-1 designs is provided by rocker bearing assemblies which are not 

considered herein. 
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Table 5.16: Distributions of longitudinal joint gap sizes for three eras (Roblee, 2018c) and 
assumed transverse joint model for eras 2 and 3. 

Direction Design 
Era 

Joint Gap Size Model EB EB 
Unit Type§ µ† σ† UB LB 

era-1 0.85 0.5 0.31 2.31 
Longitudinal era-2 inch LN 1.55 0.6 0.47 5.14 

era-3 2.1 0.45 0.85 5.17 
Transverse eras 2 & 3 inch LN 1 0.08 0.85 1.15 

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal distribution,

respectively; σ denotes standard deviation and dispersion (logarithmic standard 
deviation) for normal distribution and lognormal distribution, respectively. 

EB LB = lower bound, UB = upper bound. 

5.5 Foundations 

In era-3 bridges, responses of both column-bent and abutment foundations are modeled 

with lateral springs in the longitudinal and transverse direction. Column-bent foundations 

also consider rotational springs in each direction. 

5.5.1 Pile-Cap and Spread-Footing Dimensions 

The first step in the process of specifying a foundation system for a virtual bridge realization 

is to sample models of pile-cap or footing dimensions. Pile cap dimensions affect the 

geotechnical group-effects factor of pile foundations and also the lateral soil resistance 

acting on the sides of the cap/footing of both types of column foundations. Spread footing 

response models also highly depend on the footing dimension. 

Column Bents 

The dimensions of both pile caps and spread footings beneath column bents are primarily 

defined by four parameters: length (L), breadth (B), thickness (T ), and embedment depth 

(D), as illustrated in Figure 5.6. Additionally, two dimensional constraints, total area and 

aspect ratio, are adopted to assure realistic cap/footing sizes and shapes. For multiple 

column bents, footing dimensions are also somewhat constrained by the column spacing 

(see Chapter 3). 
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Figure 5.6: Primary Pile-Cap/Footing Dimensions.. 

The cap/footing dimensional models presented in Table 5.17 through Table 5.18 were 

developed from analysis of a sample of 77 era-3 box-girder bridges in the California 

inventory (Roblee, 2020b). Separate models were developed for single-column and 

multi-column bents and further broken out by column-section shape (i.e. regular/wide) 

and column-section size category (i.e. CDA Group). Note that spread footings are not 

typically used with single-column bent designs due to low rotational capacity, and usage is 

limited to multi-column bents having smaller column-section sizes and pinned-base 

connections. 

Table 5.17: Distributions of column pile-cap/footing dimensions (length and breadth) by 
bent type and both column-section size and shape (Roblee, 2018d, 2020b). 

Support 
Type CDA Type Cap/Footing Length (L) Model Cap/Footing Breadth (B) Model 

Unit Type§ µ† σ† EB 
LB 

EB 
UB Unit Type§ µ† σ† EB 

LB 
EB 

UB 
isSB 

Regular 

3 Pile-Cap inch N 261.0 38.0 216.0 328.0 inch N 260.0 39.0 216.0 328.0 
4 Pile-Cap inch N 312.0 36.0 276.0 348.0 inch N 319.0 27.0 204.0 360.0 
5 Pile-Cap inch N 378.0 30.0 348.0 408.0 inch N 378.0 30.0 348.0 408.0 

isSB 
Wide 

3 Pile-Cap inch N 293.0 21.0 264.0 315.0 inch N 222.0 26.0 197.0 258.0 
4 Pile-Cap inch N 299.0 67.0 204.0 407.0 inch N 237.0 48.0 180.0 335.0 

isMB 
Regular 

2 Pile-Cap inch N 152.0 49.0 106.0 288.0 inch N 134.0 30.0 106.0 216.0 
Footing inch N 182.0 20.0 153.0 216.0 inch N 174.0 26.0 134.0 216.0 

3 Pile-Cap inch N 158.0 33.0 108.0 228.0 inch N 152.0 27.0 138.0 228.0 
Footing inch N 188.0 11.0 177.0 207.0 inch N 188.0 11.0 177.0 207.0 

4 Pile-Cap inch N 216.0 10.0 204.0 228.0 inch N 204.0 20.0 180.0 228.0 
Footing inch N - - - - inch N - - - -

isMB 
Wide 

3 Pile-Cap inch N 170.0 25.0 144.0 216.0 inch N 154.0 18.0 134.0 180.0 
Footing inch N 213.0 25.0 181.0 242.0 inch N 197.0 14.0 181.0 216.0 

4 Pile-Cap inch N 228.0 44.0 192.0 288.0 inch N 187.0 27.0 144.0 228.0 
Footing inch N - - - - inch N - - - -

5 Pile-Cap inch N 294.0 42.0 252.0 336.0 inch N 243.0 21.0 222.0 264.0 
Footing inch N - - - - inch N - - - -

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation and dispersion 

(logarithmic standard deviation) for normal distribution and lognormal distribution, respectively. 
EB LB = lower bound, UB = upper bound. 

As shown in Table 5.17, both the length and breadth of pile-caps and footings are larger 

151 



  

             

           

  

   

              

 

  

               

  

          
 

 
 

        
      

 
 

        
        
        

 
 

        
        

 
 

 

        
       

        
       

        
       

 
 

 
 

        
       

        
       

        
       

         
 

 
           

   

  

 

for single-column bents (isSB) than for multi-column bents (isMB), and increase with the 

column-section size range (i.e. represented by CDA value). For regular sections, these two 

dimensions are distributed in a comparable range, while wide-section columns generally 

have a larger breadth dimension in the bent-transverse direction. Note that spread footing 

usage in the era-3 inventory sample was limited to use in multi-column bents with CDA-2 

or CDA-3 columns. 

Table 5.18 provides inventory values used to constrain dimensional sampling of the 

values in Table 5.17. Oversampling of plan dimensions was used as needed when a pair of 

randomized values did not meet both constraint criteria. 

Table 5.18: Column pile-cap/footing size constraints by bent type and both column-section 
size and shape (Roblee, 2018d, 2020b). 

Support 
Type CDA Type Area Constraints Aspect Ratio Constraints 

Unit EB 
LB 

EB 
UB Unit EB 

LB 
EB 

UB 
isSB 

Regular 

3 Pile-Cap in2 47000.0 108000.0 in/in 1.00 1.00 
4 Pile-Cap in2 56000.0 133000.0 in/in 1.00 1.35 
5 Pile-Cap in2 121000.0 166000.0 in/in 1.00 1.00 

isSB 
Wide 

3 Pile-Cap in2 55000.0 77000.0 in/in 1.16 1.60 
4 Pile-Cap in2 41000.0 136000.0 in/in 1.00 2.00 

isMB 
Regular 

2 Pile-Cap in2 11000.0 62000.0 in/in 1.00 1.56 
Footing in2 23000.0 47000.0 in/in 1.00 1.35 

3 Pile-Cap in2 16000.0 52000.0 in/in 0.75 1.36 
Footing in2 31000.0 43000.0 in/in 1.00 1.00 

4 Pile-Cap in2 39000.0 52000.0 in/in 1.00 1.20 
Footing in2 - - in/in - -

isMB 
Wide 

3 Pile-Cap in2 21000.0 39000.0 in/in 1.00 1.25 
Footing in2 33000.0 47000.0 in/in 1.00 1.24 

4 Pile-Cap in2 28000.0 66000.0 in/in 1.00 1.53 
Footing in2 - - in/in - -

5 Pile-Cap in2 56000.0 89000.0 in/in 1.14 1.27 
Footing in2 - - in/in - -

EB LB = lower bound, UB = upper bound. 

Table 5.19 provides models for footing thickness and embedment depth. As illustrated 

in Figure 5.6, embedment depth is measured from ground surface to the base of the 

cap/footing. Generally, both thickness and embedment depth values increase with larger 

column-section size (i.e. CDA value). 
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Table 5.19: Distributions of column pile-cap/footing dimensions (thickness and 
embedment depth) by bent type and both column-section size and shape (Roblee, 2018d, 
2020b). 

Support 
Type CDA Type Cap/Footing Thickness (T ) Model Cap/Footing Embedment Depth (D) Model 

Unit Type§ µ† σ† EB 
LB 

EB 
UB Unit Type§ µ† σ† EB 

LB 
EB 

UB 
isSB 

Regular 

3 Pile-Cap inch N 59.0 8.0 47.0 69.0 inch N 88.0 8.0 71.0 96.0 
4 Pile-Cap inch N 69.0 9.0 60.0 78.0 inch N 119.0 9.0 84.0 128.0 
5 Pile-Cap inch N 83.0 5.0 78.0 87.0 inch N 150.0 10.0 140.0 160.0 

isSB 
Wide 

3 Pile-Cap inch N 69.0 7.0 60.0 78.0 inch N 96.0 13.0 84.0 115.0 
4 Pile-Cap inch N 58.0 10.0 42.0 72.0 inch N 94.0 12.0 80.0 120.0 

isMB 
Regular 

2 Pile-Cap inch N 44.0 7.0 36.0 60.0 inch N 81.0 18.0 60.0 120.0 
Footing inch N 42.0 4.0 36.0 48.0 inch N 80.0 14.0 55.0 96.0 

3 Pile-Cap inch N 47.0 4.0 39.0 55.0 inch N 82.0 14.0 60.0 100.0 
Footing inch N 47.0 4.0 42.0 51.0 inch N 88.0 16.0 65.0 115.0 

4 Pile-Cap inch N 62.0 1.0 60.0 63.0 inch N 103.0 5.0 100.0 110.0 
Footing inch N - - - - inch N - - - -

isMB 
Wide 

3 Pile-Cap inch N 48.0 5.0 42.0 57.0 inch N 89.0 15.0 70.0 115.0 
Footing inch N 50.0 2.0 48.0 52.0 inch N 87.0 19.0 60.0 100.0 

4 Pile-Cap inch N 57.0 5.0 48.0 60.0 inch N 103.0 11.0 90.0 120.0 
Footing inch N - - - - inch N - - - -

5 Pile-Cap inch N 60.0 1.0 59.0 61.0 inch N 110.0 10.0 100.0 120.0 
Footing inch N - - - - inch N - - - -

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation and dispersion 

(logarithmic standard deviation) for normal distribution and lognormal distribution, respectively. 
EB LB = lower bound, UB = upper bound. 

Abutment Walls 

Unlike for columns, dimensional models for pile-cap/footing foundations supporting 

abutment walls require only two parameters. Values used for era-3 abutment wall 

foundations are provided in Table 5.12. Here, it is assumed that the sampled bridge width 

defines the abutment length model, and the embedment depth is taken to be equal to the 

frontfill depth. 

5.5.2 Spread Footings – Inventory Proportions and Response Modeling Parameters 

Inventory analyses of era-3 bridge foundation design suggest usage of spread footings is 

less common than pile foundations. Roblee (2018d) shows spread footing usage for 

column foundations is extremely rare for single-column bents and for multi-column bents 

having very large column-section size (CDA 4 or 5). For multi-column bents having 

smaller column sections (CDA ≤ 3), only about 40% are supported on spread footings 
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Table 5.20: Distributions of pile-cap/footing dimensions used for era-3 abutment-wall 
foundations (Roblee, 2018b). 

Parameters Abutment Dimension Model 
Unit Type§ µ† σ† EB 

LB 
EB 

UB 
Length (L) Deck Width 
Breadth (B) feet LN 9.3 0.2 6.8 12.5 

Thickness (T ) feet LN 2.0 0.2 1.5 2.7 
Embedment Depth (D) Front-fill Depth 
§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal 

distribution, respectively; σ denotes standard deviation and dispersion 
(logarithmic standard deviation) for normal distribution and lognormal 
distribution, respectively. 

EB LB = lower bound, UB = upper bound. 

based on a sample size of 45 bridges. 

Roblee (2018e) shows approximately 30% of abutment walls are founded on spread 

footings in an inventory sample of 89 bridges. There may also be a positive correlation 

between spread footing usage at both the column and abutment locations for bridge sites 

underlain by firmer soil/rock materials. For example, spread footing usage for abutment 

foundations is very rare for single-column bents and for multi-column bents having very 

large column-section size (CDA 4 or 5). In multi-column bents bridges, there are 60% 

of abutments seating on spread footing for those having CDA-2 column sections, and the 

proportion decreases to 40% for bridges having CDA-3 column sections. 

Spread-footing response is modeled as a hyperbolic backbone shape as noted in 

subsection 3.3.7. Table 5.21 provides model-parameter distributions developed by Xie 

(2021) for separate application to column and abutment locations based on analysis of 

typical era-3 bridge-foundation designs. Differences in these models is due to differences 

in the foundation shape and embedment at the two locations. 

5.5.3 Pile Layout 

subsection 5.5.1 described models and constraints for the dimensioning of pile caps. This 

and the next sections describe considerations for the specification of both the layout and 

type of piles. subsection 5.7.2 will describe the iterative process used for pile-foundation 
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Table 5.21: Distributions of response-backbone parameters for spread-footing foundations 
at column bents and abutment walls (Xie, 2021). 

Location Spread Footing Unit Strength (tu/BL) Model Spread Footing Unit Yield Deformation (z50/B) Model 
Unit Type§ µ† σ† EB 

LB 
EB 

UB Unit Type§ µ† σ† EB 
LB 

EB 
UB 

Column ksi LN 3.05 0.40 1.40 6.80 in/in LN 0.0040 0.5000 0.0015 0.0110 
Abutment ksi LN 1.95 0.33 1.00 3.75 in/in LN 0.0050 0.5000 0.0015 0.0135 
§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation and dispersion

(logarithmic standard deviation) for normal distribution and lognormal distribution, respectively. 
EB LB = lower bound, UB = upper bound. 

specification at column-bent locations to assure the foundation capacity is commensurate 

with the column moment capacity. 

Column Bents 

Table 5.22 presents the models for the layout of a pile foundation beneath a column-bent 

based on the inventory analysis noted earlier in subsection 5.5.1. These models define the 

number of pile rows in both the longitudinal and transverse directions as a function of bent 

type and column shape and size. The total-pile count model provides a constraint to assure 

the separately sampled pile-row models yield a realistic total. 

Table 5.22: Distributions of pile layout parameters for era-3 column-bent pile foundations 
by bent type and both column-section size and shape (Roblee, 2018d, 2020b). 

Support 
Type CDA Longitudinal Pile Number Model Transverse Pile Number Model Total Number Constraints 

Type§ µ† σ† EB 
LB 

EB 
UB Type§ µ† σ† EB 

LB 
EB 

UB 
EB 

LB 
EB 

UB 
isSB 

Regular 

3 N 5.0 0.8 4 6 N 5.0 0.8 4 6 16 32 
4 N 7.0 0.5 3 8 N 7.0 1.0 4 8 12 46 
5 N 7.5 1.5 6 9 N 7.5 1.5 6 9 36 68 

isSB 
Wide 

3 N 5.0 0.8 4 6 N 6.7 1.2 5 8 20 36 
4 N 5.0 0.7 4 6 N 6.3 1.0 5 8 20 42 

isMB 
Regular 

2 N 3.2 0.6 2 4 N 3.5 0.7 3 5 6 16 
3 N 3.9 0.6 3 5 N 4.0 0.5 3 5 12 16 
4 N 5.0 0.0 5 5 N 5.3 0.5 5 6 25 30 

isMB 
Wide 

3 N 3.8 0.7 3 5 N 4.2 0.7 3 5 8 25 
4 N 3.8 0.7 3 5 N 4.4 0.8 3 5 8 25 
5 N 4.5 0.5 4 5 N 5.5 0.5 5 6 20 30 

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ denotes standard deviation and 

dispersion (logarithmic standard deviation) for normal distribution and lognormal distribution, respectively. 
EB LB = lower bound, UB = upper bound. 
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Abutment Walls 

Piles within foundations beneath seat-type abutments are typically arranged as two rows 

along the length of abutment, where pile spacing within the row is variable. Figure 5.7 

presents inventory data and a model for relationship between total piles and abutment 

length. The lognormal model has median µ = exp (ln L − 1.2). and dispersion β = 0.35 

where L is the abutment length in feet. This model is directly sampled to specify the total 

number of piles in a virtual bridge realization. 

Figure 5.7: Relationship between the total pile number and abutment length in natural 
logarithm space. 

5.5.4 Pile Types and Inventory Proportions 

Caltrans defines a ‘Class’ of piles to include a variety of standard pile designs that meet 

the same nominal design requirement for axial load capacity. Figure 4.14(a-c) show the 

variety of era-3 designs used in California bridges, though only Class-140 and Class-200 

designs are commonly found in era-3 box-girder designs. By definition, the Class-200 piles 

have a higher axial capacity than Class-140 piles, but there is some overlap in the lateral 

performance of various piles within these two classes. 

Inventory analysis of era-3 box-girder bridges shows that the usage proportions of 

Class-140 and Class-200 piles varies between the column-bent and abutment-wall 
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locations, and also by the bent type and column size at the bent location. At abutment 

walls, approximately 65% of pile-supported foundations are on Class-140 designs. At 

single-column bent locations, Class-140 pile usage decreases from approximately 40% for 

CDA-3, to 30% for CDA-4, and lastly, to 0% for CDA-5 column sections. Similarly, at 

multi-column bent locations, Class-140 pile usage decreases from approximately 75% for 

CDA-2, to 60% for CDA-3, to 25% for CDA-4, and again, 0% for CDA-5 column 

sections. 

Next, one must identify the usage proportions of specific pile designs within each class. 

Roblee (2018f) summarized design distinctions of Caltrans standard piles used in each 

of the three design eras, and also developed the approximate inventory-usage proportions 

shown in Table 5.23 for the most commonly used era-3 design variations within the two 

classes. Separate proportions are provided for foundations supporting column-bents and 

abutment walls. 

The translational backbone response of each individual pile selection is specified using 

stochastic models developed by Xie et al. (2021, 2020) for each Caltrans standard pile 

design of all three eras. The median value for peak strength from these models was used to 

rank order the 11 types of standard piles of both classes as noted at the left of Table 5.23. 

This rank order is used in the iterative column-foundation specification procedure discussed 

in subsection 5.7.2. A lower rank in the list indicates a relatively lower peak strength for 

the pile type. 

5.5.5 Column-Foundation Rotation 

As discussed in subsection 3.2.6 and subsection 4.4.5, damage associated with 

column-foundation rotation is being considered as a separate column component model in 

the g2F framework. The controlling case of two possible rotational failure mechanisms, 

‘geotechnical’ (i.e. edge-pile axial failure) or ‘structural’ (i.e. connection bending failure), 

is being modeled using the same hyperbolic parametric form. Table 5.24 presents model 
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Table 5.23: Approximate inventory proportions of pile types for column and abutment 
foundations for era-3 bridges (Roblee, 2018f, 2020c) 

Pile Type Class Pile Size [inch] Column Piles Abutment Piles Ranking % of Cl-140 % of Cl-200 % of Cl-140 % of Cl-200 
CIDH, 16”, Era 33 140 16 30% 30% 1 
CIDH, 24”, Era 33 200 24 30% 25% 6 

CISS 14x0.438 140 PP14 x 0.438 10% 5% 11 
Steel Pipe, 14x0.438 140 PP14 x 0.438 10% 5% 7 
Steel Pipe, 16x0.500 200 PP16 x 0.500 15% 10% 10 
Prestr Conc, Alt-X 140 12 (+- 3/8) 15% 20% 2 
Prestr Conc, Alt-X 200 14 (+- 3/8) 25% 25% 5 
Prestr Conc, Alt-Y 140 15 15% 20% 4 
Prestr Conc, Alt-Y 200 15 20% 25% 8 
Steel HP, HP 10x57 140 HP10x57 20% 20% 3 
Steel HP, HP 14x89 200 HP14x89 10% 15% 9 

parameters developed by Yang (2020a,b) which involves three parameters, the initial 

stiffness K, and two strength-ratio models corresponding to the two damage modes: 

geotechnical (RG) and structural (RS). RG and RS are the strength ratio between the 

rotational strength (tu) and the column section moment capacity. These models were 

developed through analysis of 24 fixed-base single-column bent, and 36 pinned-base 

multi-column bent bridges from the era-3 California box-girder bridge inventory. As seen 

by the median strength ratio values in Table 5.24, both the geotechnical and structural 

designs of typical era-3 foundations provide ample rotational capacity which exceeds 

column-hinge capacity. However, the lower bound values indicate there is some minor 

risk of foundation-rotation damage exceeding column-fusing damage, particularly for the 

fixed-base case. It is unclear if this result is an artifact of the analysis strategy, but because 

of the large median ratios, it is not expected to have significant impact on which 

component controls fragility near the base of era-3 columns. Implementation of the 

2-mechanism rotation model involves randomly sampling both strength-ratio models for 

each bridge realization, then selecting the controlling value for use in demand analysis. 

The proportion of total realizations controlled by each mechanism is tracked and used to 

assign the proper capacity model. 
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Table 5.24: Distributions of model parameters used for column foundation rotational 
springs (Yang, 2020a,b). 

Variable Foundation Rotation Model EB EB Correlation 
Unit Type§ µ† σ† LB UB RG RS K 

Pin-Based Columns 
RG kip-in/kip-in LN 4.50 0.40 2.10 16.50 1.00 0.35 0.50 
RS kip-in/kip-in LN 5.50 1.00 1.30 100.00 0.35 1.00 0.55 
K 106 kip-ft/rad LN 2.50 0.95 0.50 20.00 0.50 0.55 1.00 

Fix-Based Columns 
RG kip-in/kip-in LN 2.30 0.40 0.80 6.50 1.00 0.65 0.15 
RS kip-in/kip-in LN 16.00 1.35 0.75 180.00 0.65 1.00 0.25 
K 106 kip-ft/rad LN 17.00 0.75 5.00 80.00 0.15 0.25 1.00 

§ C = constant, LN = lognormal, N = normal, B = binomial, and U = uniform. 
† µ denotes the mean and median for normal distribution and lognormal distribution, respectively; σ 

denotes standard deviation and dispersion (logarithmic standard deviation) for normal distribution and 
lognormal distribution, respectively. 

EB LB = lower bound, UB = upper bound. 

5.6 Miscellaneous 

Several other miscellaneous parameters are required to specify a FEM bridge-model 

realization. Model values such as damping ratio and mass factor are taken to be the same 

as used in prior work by Mangalathu (2017); Soleimani (2017); Ramanathan (2012). 

Ground motion components are assigned randomly as these models are intended for 

generic application where orientation to the fault is unknown. The effects of vertical 

acceleration are not considered in this study. 

5.7 Design Constraints 

The stochastic analysis strategy generally involves simultaneous consideration of multiple 

variables which are randomly sampled. This research adopts the Latin-Hypercube 

Sampling (LHS) technique (McKay et al., 2000). LHS is found to be an efficient way of 

capturing the uncertainties in fragility analysis (Nielson, 2005). Nevertheless, a 

completely random sampling approach ignores inherent correlations in parameter 

specification that naturally arise from bridge design practices. Some correlations are 

directly embedded within the component models, such as in the case of pile models. 

However, some exist between multiple components that are normally considered 
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separately and are difficult to identify. 

This section describes three important constraints incorporated into the sampling 

process herein which address several recognized bridge-component parameter correlations 

arising from standard design practices. Taken together, these assure more realistic and 

proportional virtual bridge designs. 

5.7.1 Contributing Deck Area (CDA) Group Constraint 

The CDA-group constraint aims to broadly align the deck area supported by a column 

with an appropriate column-section size so as to generate a realistic axial load ratio. 

Bridge design practices do not allow overloading (extremely high axial load) of columns. 

However, completely random sampling of span-length, deck width, and column section 

size could result in unrealistic outlier combinations where a large deck area is supported 

by a small column section or vice versa. The CDA-group constraint on column sampling 

addresses this issue. 

Figure 5.8 illustrates the CDA-group constraints adopted herein. These are based on 

analysis of inventory data from 434 California single-frame box-girder bridges of all 

design eras (Roblee, 2016c). Each data point relates a bridges’ column-section gross area 

to its contributing deck area (CDA) value, where CDA is approximated as the product of 

the average deck width per bent column and the average span length. Breakouts of these 

data by design era and bent configuration were also explored. While the data for 

multi-column bents of each era, and era-1 bridges of either bent configuration, all had 

smaller columns (i.e. section area) and lower CDA values, clear trends in their ratios could 

not be differentiated from the overall trends in the combined data shown here. 

The data in Figure 5.8 show that the same column section size can be used to support 

a wide range of deck areas; a single value for deck area might be supported on a range of 

column sizes; and there is a broad but clear trend for larger columns being used to support 

larger deck areas as one would expect from proportional bridge designs. The red boxes 

160 



  

 

 
            

 

 
    

    

  

  
 

 

        
    

     
     
     
     
     

Figure 5.8: California bridge inventory data and illustration of CDA-group constraints used 
in virtual bridge sampling processes (Roblee, 2016c). 

in Fig. 5.8 define the set of loose CDA-group constraints adopted herein with boundary 

values listed in Table 5.25. These are defined in terms of overlapping ranges of deck area 

for distinct ranges of column section size. 

Table 5.25: CDA-Group constraints used for virtual bridge proportioning and assignment 
of column-related components (Roblee, 2016c). 

CDA Column Area [inch2] Contributed Deck Area [feet2] 
Low High Low High 

1 1000 1600 500 2500 
2 1600 2600 1000 4500 
3 2600 5400 1500 7000 
4 5400 7600 3000 9000 
5 7600 12000 4500 10000 
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The CDA-group values identify the five column-section ranges as CDA-1 to CDA-5 

with larger numbers representing larger column sizes. These ranges are used directly to 

constrain overall bridge geometry using an acceptance/rejection procedure with 

oversampling as needed. The CDA-groups are also used as breakout categories for other 

component-parameter specification models for items related to column design. These 

include the size of the pinned-base reduced section (see Table 5.11) and various 

foundation parameters including cap/footing dimensions (see Table 5.17 thru Table 5.19), 

pile-array layout parameters (see Table 5.22), the proportions of column foundations 

having footings (see subsection 5.5.2), and assignment of specific pile classes and types 

(see subsection 5.5.4). They are also used to differentiate ranges of design moment 

capacity in the ground-motion pairing procedure described in Section 5.7.3. 

5.7.2 Pile-Foundation Design Constraints 

The second adopted constraint on virtual bridge specification assures that pile-foundation 

systems used at bent columns are well matched to the specified column. As outlined in 

earlier sections, specification of a pile foundation system includes multiple parameters 

including overall cap size and embedment as well as the quantity, layout, and type of 

piles. Random specification of all these parameters can result in an inadequate foundation 

capacity. Specifically, modern bridge design practices in California take steps to assure 

that column-foundation is stronger than the column so the preferred damage mechanism 

of column fusing occurs before foundation damage during an earthquake. 

Based on discussions with Caltrans designers, this study assumes that the total 

capacity of a modern (era-3) pile-foundation system (i.e. pile-group lateral resistance plus 

sidesoil resistance on the cap) has 20% higher capacity (ϕ = 1.2) than the column. 

However, completely random sampling of the various parameters of the pile foundation 

models described herein yields column-foundation combinations that do not meet this 

criterion. In the worst case, as many as 30% of randomly sampled single-column bridge 
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realizations violated this criterion by varying amounts. 

Therefore, a more sophisticated iterative re-sampling process, as outlined in the 

flowchart shown in Figure 5.9, was adopted for specification of pile-foundation systems at 

column bents. The process first compares foundation and column capacities of each 

bridge to identify the Nf cases which fail to meet the (ϕ = 1.2) criteria. For those cases 

which fail, the embedment depth is resampled first as it retains the specified proportions of 

pile types. Increases in embedment depth typically increases pile capacity. Therefore, the 

procedure updates pile capacities correspondingly. 

Figure 5.9: Flowchart for sampling pile foundations. 

For the set of remaining failure cases not addressed by embedment-depth re-sampling, 

the second step is to increase the number of pile rows in the failure direction within model 

constraint limits. Similarly, the pile capacities are re-sampled and the failure cases are 
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updated. A decreasing the number of failure cases Nf indicates the current pile type has 

sufficient capacity. When that strategy is exhausted, the third step in the re-sampling 

procedure is applied to the remaining cases. Here, an increased pile-type rank is assigned 

per Table 5.23 which results in selection of a new pile type with increased peak pile 

capacity. Overall, the three stages of re-sampling and iteration outlined in the flowchart 

are followed until Nf stops decreasing. Any remaining failure cases are accepted as 

substandard, but within the parameter bounds set by inventory analysis. In actual design 

practice, those cases would likely consider using other foundation types such as shaft or 

mat foundations. Note that for the single-column-bent case noted earlier as having a 30% 

failure rate, application of iterative resampling procedure reduced the failure rate to 0.6%. 

5.7.3 Ground Motion Pairing Constraints 

Perhaps the most fundamental principle of earthquake engineering is to design higher 

capacity into bridges expected to undergo higher levels of ground shaking. However, most 

prior analytically based fragility methodologies randomly pair any one of a wide range of 

ground motions to a random virtual-bridge selection for purposes of capturing peak 

responses used in the PSDM. However, this random pairing process violates the noted 

fundamental seismic design principle by allowing the lowest-capacity bridges to be 

subjected to the highest level of motions, thereby incorporating unrealistically high peak 

responses into the PSDM model. This issue is addressed herein with the introduction of a 

combination of two new methodological steps together referred to as ‘ground motion 

pairing constraints’. 

The ground motion pairing procedure seeks to avoid an inappropriate pairing of strong 

earthquake shaking with a weak bridge design. Here, the term ‘applied ground motion 

(AGM)’ is that specified for use in the demand analysis. Seismic bridge design practice 

involves the selection, proportioning and detailing of components to withstand a ‘design 

ground motion (DGM)’ typically specified in terms of a site-specific response spectrum. 
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For purposes herein, both the AGM and DGM are taken as 1-second spectral acceleration 

(Sa1). Bridges designed for a high DGM have higher capacities (i.e. are “stronger”) than 

bridges designed for low DGM (i.e. “weaker”). In the field, strong bridges can be subjected 

to either high or low AGM whereas weak bridges are unlikely to be subjected to high AGM. 

The ground motion pairing procedures introduced here serve to implement this fundamental 

seismic design principle into the otherwise random pairing process. 

Pairing Step 1: Moment Capacity (or DGM) with Column Section Size 

This first pairing step establishes and enforces realistic ranges of seismic capacity for 

different sized bridge-column sections. Here, seismic capacity is defined in terms of 

column moment capacity which mirrors seismic design practices where column sections 

are initially sized and detailed to resist moments arising from a specified shaking hazard. 

The determination of realistic capacity ranges for each column size is based on analysis of 

a sample of 420 column designs from the California box-girder bridge inventory. For each 

design, an approximate design moment was computed as the product of the superstructure 

mass, the column height, and a design ground motion. The design motion for each case 

was approximated using current probabilistic shaking hazard values for Sa1 at each bridge 

location. Superstructure mass was approximated using column-section properties and 

applying a median axial-load ratio value of 10%. 

Figure 5.10 presents results of this inventory-column analysis in terms of the total 

longitudinal reinforcement area, approximate design moment, and the CDA group (which 

conveniently represents groups of column sections having similar size). The total 

longitudinal reinforcement area parameter captures the combined effects of column 

section size and reinforcement ratio. These results show a clear positive proportional 

relationship between approximate design moment and longitudinal reinforcement. It also 

shows how ranges in both parameters increase with column section size (as represented by 

the CDA-group value). Ranges in approximate design moment for each CDA-group are 
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summarized in Table 5.26. 

Figure 5.10: Relationship between total longitudinal reinforcement and approximate design 
moment by CDA group for 420 CA bridge column designs (Zheng, 2020a): solid-line 
boundaries are generated by removing outliers in dashed-line boundaries 

Table 5.26: Approximate design moment ranges for CDA groups (Zheng, 2020a). 

CDA Approximate Designed 
Moment Range [103 kip-ft] 

1 <25 
2 <50 
3 5 to 100 
4 10 to 150 
5 25 to 200 

Recall that the overall goal of the ground-motion pairing procedure is to associate 

strong bridge designs (i.e. configured to withstand high design moment) with high applied 

ground motions. Toward that end, the information in Table 5.26 allows for the creation of 

proportional virtual bridge designs to withstand the full range of seismic demands. For 

average column height and superstructure mass, the largest column sections are required 

to handle the largest demands while smaller demands can be accommodated by a range of 

smaller section sizes. 
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Implementation of this first paring step in the virtual-bridge specification process occurs 

within the bridge-model sampling sequence. First, separate candidate pools for design 

moment and column section are specified. Each candidate design moment is computed as 

the product of randomly sampled values for column height, superstructure mass and DGM. 

Column sections are classified by CDA group. The superstructure mass value requires 

separate sampling of the deck width, span length, section depth distributions. 

The DGM is sampled from the distribution of ground motions used in the California 

inventory analysis of Figure 5.10. Note that a minimum DGM value of 0.5g is assigned 

because smaller values have been found to have little impact on bridge designs which then 

become governed by other load combinations and design requirements. Next, the two pools 

are paired by assigning the pool of design moments in reverse rank order (i.e. highest to 

lowest) to a random selection from the largest available CDA pool of column sections. 

For example, the highest design moments are first assigned to CDA-5 sections until that 

pool is exhausted, then to the CDA-4 and so forth. Once this process is complete, the 

moment-section pairs are checked against the ranges shown in Table 5.26. Experience to 

date has shown the entire virtual bridge set is within the inventory-based boundaries using 

this process. 

Pairing Step 2: DGM and AGM 

The second pairing step assures realistic assignment of a virtual bridge design, having a 

design capacity represented by a DGM, with an AGM value in the demand analysis. Note, 

the DGM for each virtual bridge design was specified as part of the moment-section pairing 

procedure discussed above. 

The core of the AGM-DGM pairing procedure used herein is tied to an assumed 

probability distribution for r, defined as the ratio of a Target AGM (TAGM) to the DGM. 

The distribution assigns any TAGM below the DGM (i.e. 0 ≤ r ≤ 1) to have equal 

probability. TAGM values above the DGM (i.e. r > 1.0) have decreasing probability per 
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the form of an assumed lognormal distribution until a hard truncation limit of that 

distribution is imposed where the TAGM reaches 1.5 times the DGM (i.e. r = 1.5). 

Appendix E outlines the development of the r distribution. 

The AGM-DGM pairing process is implemented by first assigning a TAGM value to 

each virtual bridge realization by multiplying its DGM by a randomly sampled value of r 

and then sorting the bridge designs by their TAGM value. The AGM’s for the set of ground 

motions used in the demand analysis (e.g. the T1780 set defined in Appendix B) are then 

sorted by Sa1 value. Pairing of a virtual bridge design to a ground motion is then finalized 

by using the same rank from the ordered lists of TAGM and AGM. Note that while the 

ratio of TAGM to DGM in the r distribution was truncated at 1.5, the ratio of AGM (in 

the demand analysis) to DGM depends on the ground motion set adopted for the demand 

analysis. The T1780 set yields maximum AGM/DGM ratios of approximately 2. 

Figure 5.11 illustrates the impact of the ground-motion pairing process. The figure on 

the left shows AGM-DGM pairing combinations of the T1780 set resulting from a random 

pairing process as adopted by most other research. The data points on the upper left 

represent highly unrealistic combinations where applied motions are as much as five times 

design values. In contrast, the figure on the right shows the same set of motions paired 

using the procedures outlined above. Here, the unrealistic combinations are eliminated, 

and applied motions are systematically limited to roughly two times the design values, 

while lower motions can be applied to all designs. 

Another way to consider the results in Figure 5.11 is to look at bands of applied 

motion. At low AGM, both methods consider similar DGM ranges, or similar bridge 

designs. However, at high AGM, the ground motion pairing method described herein 

assigns stronger bridges compared to the randomly sampled case where both strong and 

weak bridges are assigned. Thus, it is anticipated that the ground motion pairing will 

reduce the probability of higher damage states since more of the bridges subjected to high 

motions were designed with higher capacities per fundamental seismic design principles. 
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(a) (b) 

Figure 5.11: Illustration of ground motion sampling results: (a) without ground motion 
pairing; and (b) with ground motion pairing. 

Figure 5.12 illustrates the overall impact of this ground motion pairing procedure by 

contrasting two sets of fragility curves for column damage from a case study simulation. 

Both sets of curves show similar median Sa1 for damage states CDS 1 to CDS 3, but the 

sets using ground motion pairing show lower failure probability for the remaining states. 

For the CDS 7 collapse state, the increase of median Sa1 is nearly 20%, from roughly 2.25g 

to 2.70g. 

(a) (b) 

Figure 5.12: Illustration of the effect of ground motion sampling: (a) without ground 
motion pairing; and (b) with ground motion pairing. 
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CHAPTER 6 

ADVANCED PROBABILISTIC SEISMIC DEMAND MODELS AND FRAGILITY 

CURVES 

The generation of fragility models involves the convolution of demand models and 

capacity models. Using the component models and methods described in Chapter 3, 

dynamic nonlinear finite-element models are constructed in the analytical platform 

OpenSees (McKenna et al., 2000). Specific EDP’s described in Chapter 4 were recorded 

during the dynamic analysis. Probabilistic Seismic Demand Models (PSDM’s) are then 

used to establish a relationship between the EDPs and the ground motion IM. A linear 

relationship is commonly used to represent the EDP-IM relationship in the PSDM and this 

method is both mature and well used for the development of fragility models through 

these years (Cornell et al., 2002; Nielson, 2005; Padgett, 2007; Ramanathan, 2012; 

Mangalathu, 2017; Soleimani, 2017). However, as both more nonlinear component 

behavior and higher IM levels are considered, the conventional assumptions are not 

always valid and higher order regression models are needed to address the increased 

nonlinearity. Additional methodological refinements are warranted to support the more 

demanding g2F framework involving more components, states, and EDPs for refined 

assessment of both high and low-damage conditions. 

As component fragility models offer valuable detailed information about component 

damage, higher-stage fragility models are also needed to identify generalized damage for 

a specific bridge region (e.g. column bent or abutment), zone (e.g. interior bents, base of 

column) or the operational condition of the whole system. While elements of the 

procedures needed to handle multi-level fragility models have been widely used since 

Nielson (2005), these strategies are extended herein for generation of fragility model for 

various meaningful combinations of component groups. Additionally, formal 
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consideration is given herein to the construction of a correlation matrix between different 

components, which to the best of the author’s knowledge, has not been previously 

addressed. 

This chapter starts with the discussion of conventional methods for constructing the 

PSDM and component fragility models. After outlining limitations of these, this chapter 

proposes strategies to address them. Next, a detailed comparison of different 

methodologies is presented. The remainder of this chapter introduces the methodology 

used to construct fragility models for multiple component groups and the whole bridge 

system. 

6.1 Conventional PSDM Model - Linear Regression Model 

It is suggested by Cornell et al. (2002) that the estimate of the median of seismic demand 

SD has a power relationship with IM as shown in Equation 6.1. 

SD = a · IMb (6.1) 

This relationship indicates that the seismic demand D, discussed in Chapter 3 has a linear 

relationship with the IM. Transformation of the relationship into natural logarithm 

simplifies the parameters estimation into simple linear regression model concerning data 

pair of (x = ln IM, y = ln D) following Equation 6.2. 

ln D = ln a + b · ln IM + ε (6.2) 

where ε ∼N(0,σ2). 

As illustrated in Figure 6.1, the linear regression model estimates the seismic demand D 

as a conditional lognormal (LN) distribution with median SD and dispersion, or lognormal 

standard deviation, βD|IM. Given an IM, for example when ln IM = x0, while the median 

estimation Ŝ D is trivial, and the calculation of variance for dispersion estimation is per 
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Figure 6.1: PSDM illustration in natural logarithm space.

 Equation 6.3. 

1 (𝑥𝑥0 − 𝑥̅𝑥)2 

𝛽𝛽𝐷𝐷|IM=𝑙𝑙0 
= 𝜎𝜎��1 + + 𝑁𝑁 (6.3) 

𝑁𝑁 ∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2 
𝑖𝑖=1 

Here, N is the total number of the regression data points, x̄ is the mean of x, and 𝜎𝜎� is 

the unbiased estimation of σ, or the root mean square error (RMSE) measurement of the 

regression model, which is calculated by Equation 6.4. 

∑𝑁𝑁
𝑖𝑖=1(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2 

𝜎𝜎� = � (6.4) 
𝑁𝑁 − 2 

where yi is the ith seismic demand ln Di, and 𝑦𝑦�𝑖𝑖 is the estimation of the ln Di, or ln Ŝ D . 

With the knowledge that both of the seismic demand and capacity models are lognormal 

distributions conditioned on a specific IM (Chapter 4), fragility curves for the component 

can be developed. As indicated before, fragility curves depict the probability of seismic 
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demands larger than capacities given an IM, which is represented in Equation 6.5. 

P (D ≥ C|IM) = P (ln D ≥ ln C|IM) 
(6.5) 

= P (ln C − ln D ≤ 0|IM). 
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Notate (Z|IM) = ln C - ln (D|IM), then (Z|IM) is a normal distribution 𝒩𝒩 �ln�𝑆𝑆𝐶𝐶 / 

2𝑆𝑆𝐷𝐷|IM� , �𝛽𝛽𝐶𝐶2 + 𝛽𝛽𝐷𝐷|IM�. This indicates the fragility can be evaluated by Equation 6.6, in 

which Φ(·) is the cumulative probability function (CDF) of the standard normal distribution. 

⎛0 − ln�𝑆𝑆𝐶𝐶/𝑆𝑆𝐷𝐷|𝐼𝐼𝐼𝐼� 𝑃𝑃(𝐷𝐷 ≥ 𝐶𝐶|IM) = 𝑃𝑃[(𝑍𝑍|𝐼𝐼𝑀𝑀) ≤ 0] = Φ ⎞ 
2 

⎝ 
�𝛽𝛽𝐶𝐶2 + 𝛽𝛽𝐷𝐷|IM ⎠ 

(6.6) 
= Φ⎛ln�𝑆𝑆𝐷𝐷|𝐼𝐼𝐼𝐼 /𝑆𝑆𝐶𝐶�⎞ 

2�𝛽𝛽𝐶𝐶2 + 𝛽𝛽𝐷𝐷|IM⎠⎝ 

To this end, a fragility model using the conventional linear regression model is 

established. However, this study identifies that some components do not follow a linear 

relationship between seismic demand and intensity measurement. By using linear regression, 

the resulting residuals also violate the normal assumption. This is illustrated in Figure 6.2 

which comes from a simulation for the era-3 two-span multi-column bent bridges. The first 

figure is the PSDM for the column hinge curvature ductility in the transverse direction. After 

column yielding, there is a significant change in the data distribution slope. The linear model 

underestimates the response in the low Sa1 region (say ln Sa1 < −1.5) and then first 

overestimates (to say ln Sa1 ≈ 0), then again underestimates (say ln Sa1 > 0) response in the 

high Sa1 region. It can be seen in the residual plot that the normal assumption for linear 

regression is violated. The case on the right is for longitudinal displacement of the abutment 

foundation. As previous described, abutment foundations provide only a small force 

after backwall fracture, and their deformations are limited to a low level by design to 

prevent damage. The linear model, as illustrated here, cannot model this phenomenon. 

Similar to the first case, the residual of this regression model is not uniformly distributed. 
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Therefore, linear regression is not a good choice to describe these two components, and it 

indicates the need for a better statistical strategy to represent the PSDM. 

(a) (b) 

(c) (d) 

Figure 6.2: Illustration of linear regression. (a) and (c): PSDM and residual plots for 
hinge curvature ductility in transverse direction; (b) and (d): PSDM and residual plots for 
abutment footing foundation displacement in longitudinal direction. 

6.2 Emerging Methods to Capture High Non-linearity in PSDM 

As mentioned before, the research community has recognized the nonlinearity of PSDM’s 

constructed in lognormal space. Additionally, heteroscedasticity (i.e. non-uniform 
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standard deviation) of the data violates the basic assumption of linear regression. This 

section reviews three methods that seek to address these issues. 

6.2.1 Quadratic Model 

Work by Pan et al. (2007) attempted to represent the high non-linearity of the seismic 

demand data with quadratic models. It was assumed that the seismic demand and IM 

follows quadratic relationship in the following form. Dispersion can be calculated based 

on Equation 6.3. 

ln D = ln a + b1 · ln IM + b2 · (ln IM )2 + ε (6.7) 

6.2.2 Bi-linear Model 

A similar technique was proposed by Jeon (2013) for handling high PSDM nonlinearity. It 

was assumed that the seismic demand is represented by two linear segments as shown in 

Equation 6.8, where the breaking point (IM0) between segments is determined by 

minimizing the errors between actual and fitted values. The original work by Jeon (2013) 

indicates the dispersions were calculated with Equation 6.4 for each segment. However, as 

stated before, predicted dispersion using Equation 6.3 is preferable and will be used for 

comparison. 

ln 𝑎𝑎 + 𝑏𝑏1 ∙ ln IM + 𝜀𝜀1, IM ≤ IM0ln 𝐷𝐷 = � (6.8) ln 𝑎𝑎 + 𝑏𝑏2 ∙ ln IM + (𝑏𝑏1 − 𝑏𝑏2) ln IM0 + 𝜀𝜀2, IM > IM0 

The study by Jeon et al. (2015a) also identified that dispersion is not constant across the 

IM range for linear regression. Comparison of the linear and bi-linear models showed that 

the bi-linear regression model addressed the heteroscedasticity issue. 
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6.2.3 Multi-Phase Model (M-PARS) 

Unlike the two aforementioned studies where nonlinearity was handled with regression 

techniques, Zareian et al. (2015) proposed a model combining regression with explicit 

consideration of the causes for the multi-phases of seismic demand. The fundamental idea 

of this method, named Multiphase Performance Assessment of structural Response to 

Seismic Excitations (M-PARS), is total probability is represented as a combination of 

separate mechanism-dependent models per Equation 6.9, where BS represents ”Bridge 

Survival”, BC represents ”Bridge Collapse”, SKS represents ”Shear Key Survival”, and 

SKF represents ”Shear Key Failure”. The four terms (BS, BC, SKS, and SKF) 

represent different phases of the bridge behavior. 

Figure 6.3: Illustration of M-PARS method. 
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P (D ≥ C|IM) = P (D ≥ C|IM ∧ BS ∧ SKS)P (BS ∧ SKS|IM ) 

+ P (D ≥ C|IM ∧ BS ∧ SKF )P (BS ∧ SKF |IM ) (6.9) 
+ P (D ≥ C|IM ∧ BC)P (BC|IM ) 

To calculate the failure probability by Equation 6.9, the three equations below are 

evaluated which considers that the two pairs of phases (BS and BC, SKS and SKF ) are 

collectively exhaustive, and the fragility is always equated to 1.0 given bridges collapse, 

i.e., P (D ≥ C|IM ∧ BC) ≡ 1. 

P (BS ∧ SKS|IM ) = [1 − P (SKF |IM ∧ BS)][1 − P (BC|IM )] (6.9a) 

P (BS ∧ SKF |IM ) = P (SKF |IM ∧ BS)[1 − P (BC|IM )] (6.9b) 

P (D ≥ C|IM ∧ BC)P (BC|IM ) = P (BC|IM ) (6.9c) 

As illustrated in Figure 6.3, the two terms P (D ≥ C|IM ∧ BS ∧ SKS) and P (D ≥ 
C|IM ∧ BS ∧ SKF ) in Equation 6.9 are determined using linear regression (Equation 6.2 
to Equation 6.6). The other two critical terms P (SKF |IM ∧ BS) and P (BC|IM) are 
determined using logistic regression as suggested by Zareian et al. (2015). 

In practice, this study did not consider possible application of this method to multi-

phase response in the longitudinal direction. An additional limitation is that the linear 

regressions for the two phases, SKS ∧ BS, and SKF ∧ BS, sometimes cannot accurately 

capture the trend if the data leverage is too short; or in other words, this method cannot 

consider data continuity between different phases. 

6.3 Modified Multivariate Adaptive Regression Spline (M-MARS) for PSDM 

Multivariate Adaptive Regression Spline (MARS) is a non-parametric regression method 

(Friedman, 1991). Employing multiple segments, MARS is frequently used to model a 

nonlinear data set. In this research, the standard MARS model is modified to meet specific 
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engineering requirements of this project. Specifically, the segments in this method are 

fixed so that each segment represents one recognized phase in the seismic demand data. 

The procedure is presented in four steps. 

First, seismic demand data points are separated into the five bridge-system response 

phases listed in Table 6.1. These phases focus on three mechanistic causes for PSDM 

data non-linearity: abutment-joint gap closure, the yielding of the internal supports (e.g. 

column bents, pier walls), and the fusing of the end constraint (e.g. abutment backwall 

in longitudinal direction and shear key in transverse direction). The phases in Table 6.1 

represent pre-gap-closure (PGC) and four post-closure phases: the internal supports have 

not yielded and end constraint has not failed (𝐼𝐼𝑆𝑆� ∧𝐸𝐸𝐶𝐶����); the internal supports have yielded 

but the end constraint has not failed (IS ∧ 𝐸𝐸𝐶𝐶����); the internal supports have not yielded but 
the end constraint has fused (𝐼𝐼𝑆𝑆� ∧ EC); and both the internal support has yielded, and the 
end constraint has fused (IS ∧ EC). For bridges with multiple internal supports, internal 
support yielding is taken to represent yielding (i.e., displacement ductility larger than 1.0-

in/in) occurring at all the internal supports across all the bents. End constraint failure is 

taken as failure of either one of the end constraint components. As indicated in Chapter 4, 

abutment components are modeled by multiple spring elements. Failure of either one of 

the elements indicates end constraint failed (EC) in this context. For backwall or shear 

keys, failure of the component represents the seismic demand exceeds e3n in the material 

backbone stated in Chapter 4. Figure 6.4(a) uses unique color and symbol designations to 

illustrate the five phases of column-response data for a 2-span bridge case. 

Table 6.1: Definition for five phases used in M-MARS 

Notation Gap Closure Internal Support(s) Yielded End Constraint(s) Failed 
PGC No No No 
IS ∧ EC Yes No No 
IS ∧ EC Yes Yes No 
IS ∧ EC Yes No Yes 
IS ∧ EC Yes Yes Yes 

Second, the boundaries between each pair of adjacent phases are located, which are 
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called “knots” by the MARS method. These knots are illustrated by the large colored dots 

in Figure 6.4(b). In this example, the IS ∧ 𝐸𝐸𝐶𝐶 � ∧ EC data are combined together as ���� and 𝐼𝐼𝑆𝑆 

a single transitional phase. Therefore, four phases remain to be considered to determine 

three internal knots and one end knot. The end knot could be taken at either the lower bound 

or upper bound of the data set. To avoid overfitting (i.e. use of too many small segments), 

especially at the edge of the data set, spacings between the edge knots are checked. If the 

length of the edge phase (i.e., PGC and IS ∧ EC) is smaller than a threshold IM value, 

the corresponding internal knot would be removed. In this study, the threshold is set as 

0.5 ln g. 

Next, similar basis functions Bi(x) are applied to these pre-determined knots to enable 

segmentation per the MARS method. As shown in Equation 6.10, a linear function is used 

for the edge knot, and a hinge function is used for internal knots. At this stage in the 

process, seismic demand is ready for regression (in lognormal space) with respect to no 

more than four basis functions Bi(x) of IM. 

𝑥𝑥 − 𝑐𝑐𝑖𝑖 , if 𝑐𝑐𝑖𝑖 is an edge knot 
𝐵𝐵𝑖𝑖(𝑥𝑥) = � (6.10) max(0, 𝑥𝑥 − 𝑐𝑐𝑖𝑖) , if 𝑐𝑐𝑖𝑖 is an internal knot 

Finally, the problem becomes a multivariate linear regression with variable selection, 

during which one would regress the data and consider a fair number of base functions to 

avoid overestimation. Stepwise regression or best-subset selection could be used here. In 

this study, forward and backward stepwise regression is adopted (Figure 6.4(c)). 

To address possible heteroscedasticity, dispersion is represented by a separate 

regression model as a function of IM. In this research, a linear relationship (Figure 6.4(d)) 

is established for the residual. Under such an assumption, the residual still follows a 

conditional normal distribution. 
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(a) (b) 

(c) (d) 

Figure 6.4: Procedure of constructing M-MARS model: (a) Definition of phases; (b) Locate 
knots; (c) Stepwise regression to fit the mean response; and (d) Linear model of dispersion. 

6.4 Filtered Adaptive Regression with Logistic Incorporation of Omitted Data 

(FAR+) for PSDM 

In the previous section, the Modified Multivariate Adaptive Regression Spline (Modified 

Multivariate Adaptive Regression Spline (M-MARS)) was introduced, and it is used to 

handle nonlinearity in the PSDM data for most components herein. However, as the 

bridge-system model has become more comprehensive with the engagement and fusing of 
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components at different IM levels, the resulting PSDM seismic demand data may not be 

ideal enough to use M-MARS directly for all components. Therefore for application, it is 

recommended to first review the data and determine the most appropriate approach for 

constructing the PSDM. This section presents an alternative method for handling two 

types of exceptions to the use of the M-MARS method. 

6.4.1 Two Types of Exceptions 

The first “low-end exception” refers to components that have extremely low responses 

under small ground motions. Components directly engaged by gap closure or those 

connected to them are good examples of this exceptional group. 

For example, the impact element model (Chapter 4) includes the gap-closure process. 

Under small ground motions that do not cause gap closure, there is no pounding between 

adjacent components, and thus no damage to the component 1. Other components, 

including shear key and residual joint deformation, sometimes contain non-positive values 

in the low-IM portions of the PSDM that should not be considered with regular regression 

in logarithm space. However, these data points do contain important information that 

component response is negligible for the applied IM, and therefore should be considered 

for evaluation of the failure probability; otherwise, the generated fragility model would 

overestimate failure probability based only on cases having high responses. 

Another example for the low-end exception is the backwall-connection element which 

connects to the impact element. Under small ground motion and before gap closure, the 

backwall generates very small, randomly fluctuating seismic demand data associated with 

small inertial loads of the backwall or numerical noise (Figure 6.5(a)). These data points 

represent seismic demand on the order of 10−4 which is far below that associated with any 

damage. So, while the EDP values in such cases should not be considered in the assessment 
1In this research, impact damage describes possible pounding-caused damage in the contacting surface of 

adjacent structures. Although the strip-seal element in this research use the same recorded data as the impact 
element, ”damage” in this context does not refer to the possible strip-seal damage. 
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of fragility, the IM values from these cases contain important information regarding the 

level of excitation required engage these components in a way that may induce damage. 

The second “high-end exception” is similar to the low-end exception but refers to 

seismic demand data under high ground motion where the EDP value no longer has 

significant meaning. For example, after column demand exceeds a realistic range of its 

capacity (say 99th percentile of CCLS model), the important information is to simply 

know the column has failed, but not by how much. Demand data in this range can be 

treated as a “separate set” representing cases of complete component failure. 

6.4.2 FAR+ Methodology for Handling Data Exceptions 

This research introduces a new methodology called “Filtered Adaptive Regression -

Logistic Incorporation of Omitted Data (FAR+)” to handle the two types of exceptions 

mentioned before. The basic concept of FAR+ involves total probability in a way that is 

similar to M-PARS. Construction of a FAR+ model involves four steps as outlined below. 

First, the exceptional low-end/high-end data points are filtered out from the set to be 

considered using regular regression methods. For the low-end exception, a low-pass filter 

is applied for separation of the low-end data set (SL) from the regular regression data set 

(SR). Similarly, a high-pass filter is used to separate the high-end data (SH) from (SR). In 

order to classify the two sets of data, the K-Means clustering (Lloyd, 1982) for data pairs 

(ln IM, ln EDP )s is adopted. The start point can be set at the center of the pre-gap closure 

(PGC) phase in the low-end exceptions, or the center of the all fused (IS ∧ EC) phase in 

high-end exceptions, and the center of the remaining points for SR. Figure 6.5(a) illustrates 

this first step in the FAR+ method using response data for the backwall connection which 

contains a large amount of ‘low exception’ data mostly related to pre-gap closure. Here, 

the large colored dots identify the start points for the K-Means clustering algorithm which 

were taken as the center of phase PGC and the rest of the data. After clustering, data points 

are split into the SL and SR sets shown in Figure 6.5(b). 
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Second, apply the M-MARS regression to the data points in the SR set as illustrated in 
Figure 6.5(c). 

Third, apply Logistic Regression to the SL or SH sets to establish the probability of data 

points located in low-end/high-end. With this model, the probability that the remaining 

demand data points are in SR can be derived from the theory of complementary events. 

The dashed line (“Low-Pass Filter”) shown in Figure 6.5(d) is the logistic regression result, 

representing the probability that the data point is located in SR given IM. 

Finally, incorporation of omitted data is accomplished using the total probability 

equation below, where 𝑃𝑃𝐿𝐿(IM) = 𝑃𝑃�(IM, 𝐷𝐷) ∈ 𝑆𝑆𝐿𝐿�IM� and 𝑃𝑃𝐻𝐻(IM) = 

𝑃𝑃�(IM, 𝐷𝐷) ∈ 𝑆𝑆𝐻𝐻�IM� are the two logistic regression models derived before. Figure 

6.5(d) presents the three-state fragility models for backwall connection failure 

incorporating the omitted data. 

𝑃𝑃(𝐷𝐷 ≥ 𝐶𝐶|𝐼𝐼𝑀𝑀) = 𝑃𝑃(𝐷𝐷 ≥ 𝐶𝐶 |𝐼𝐼𝑀𝑀 ∧ (𝐼𝐼𝑀𝑀, 𝐷𝐷) 
(6.11) 

∈ 𝑆𝑆𝑅𝑅 )(1 − 𝑃𝑃𝐿𝐿 (𝐼𝐼𝑀𝑀) − 𝑃𝑃𝐻𝐻(𝐼𝐼𝑀𝑀)) + 𝑃𝑃𝐻𝐻(𝐼𝐼𝑀𝑀) 

6.5 Comparison of Different Regression Models for Establishing Component 

Fragility 

This section compares fragility models generated using the adopted M-MARS model 

relative to those from the regular linear regression model, the quadratic model, and the 

bilinear model, all introduced in section 6.2. The PSDM and fragility results are for the 

case of displacement ductility response in the longitudinal direction for regular-section 

columns in era-3 two-span multi-column bent bridges. 

Figure 6.6 shows that the adopted M-MARS model captures three segments of 

response. From left to right, the first segment represents the initial pre-gap closure stage, 

where columns must absorb virtually all seismic demand, the second segment represents 
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(a) (b) 

(c) (d) 

Figure 6.5: Procedure of constructing FAR+ model: (a) Define initial K-means center 
points; (b) K-means clustering result; (c) M-MARS regression; and (d) Fragility model. 

the transition stage where the backwall is engaged and fuses, and the last segment having 

the largest slope (or highest nonlinearity) represents progressive column failure due to 

high ground motions. Thus, the segment boundaries in the PSDM using the M-MARS 
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method occur at physically meaningful points in the response. Median fragility values for 

the seven states are listed in Table 6.2 with the highest CDS 7 value of 2.07 g. 

Comparable results using the other regression strategies are presented in Figure 6.7 

through Figure 6.9 with fragility model values also summarized in Table 6.2. 

The linear model is illustrated in Figure 6.7. This single-slope model provides a 

reasonable match to the data, but the fragility results show that dispersion has increased 

significantly. Table 6.2 shows the linear produces the smallest median Sa1 at CDS 1 and 

the largest at CDS 7 with median values crossing in the mid-state region between states 

CDS 3 and CDS 4. The difference in the median CDS 7 is roughly 12%, and differences 

in failure probability at the very high IM of 3.0 g are about 15% to 20%, both in the 

non-conservative direction. 

The quadratic model, illustrated in Figure 6.8, performs somewhat better than the linear 

model as it can capture more nonlinearity at high Sa1 region. As such, its median Sa1 for 

CDS 7 is smaller than the linear model, indicating the quadratic model is modestly more 

conservative relative to the linear model. 

The bilinear model, illustrated in Figure 6.9, produces results closest to the adopted 

M-MARS model. In this case, the difference in median fragility model median values is 

negligible suggesting two segments are sufficient in this instance. However, as seen in the 

response data chart on the left of Figure 6.9, the slope-change point ln (IM0) is determined 

by the data alone and therefore lacks a physical explanation for why it is located at 1.0 g. 

Table 6.2: Comparison of the fragility median Sa1 for the four regression models: the red 
(green) color highlights overestimation (underestimation) of failure probability. 

CDS M-MARS Linear Quadratic Bi-linear 
1 0.52 0.46 0.48 0.50 
2 0.91 0.8 0.83 0.89 
3 1.28 1.24 1.24 1.29 
4 1.55 1.58 1.55 1.56 
5 1.65 1.73 1.67 1.66 
6 1.79 1.92 1.84 1.80 
7 2.07 2.32 2.18 2.07 
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Figure 6.6: Comparison of different regression models: M-MARS model. 

Figure 6.7: Comparison of different regression models: Linear model. 

Table 6.4 provides a comparison of mean-squared error (MSE) values from the 

alternative regression models for several additional components. It shows that the linear 

model always has the highest error (i.e. ‘worst’ accuracy). The proposed M-MARS model 

does not always produce the ’best’ model in terms of the MSE. The components where 
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Figure 6.8: Comparison of different regression models: Quadratic model. 

Figure 6.9: Comparison of different regression models: Bilinear model. 

higher MSE is observed for M-MARS compared with bilinear or quadratic models are all 

cases where the PSDM data are readily represented as bilinear. For components requiring 

higher-order estimation (tri-linear or quad-linear), M-MARS outperforms other models in 

these terms. The additional benefit of M-MARS is that the segment boundaries, at least 
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initially, correspond with physically significant events in the overall bridge response. 

Table 6.3: Comparison of MSE for various methods for PSDM generation. 

MSE COL RL § COL RT maxCTH WL CFF L maxUNS 30 SEAL T3 AFP HPL AFP HPT 
Linear 0.636 0.728 0.838 0.558 0.435 0.495 0.930 0.831 
Quadratic 0.631 0.712 0.683 0.546 0.424 0.492 0.912 0.817 
Bilinear 0.622 0.686 0.657 0.537 0.435 0.483 0.851 0.807 
M-MARS 0.615 0.688 0.661 0.529 0.397 0.482 0.833 0.811 
M-MARS 
Segments 3 2 2 3 3 3 3 2 
§ See Appendix F for abbreviation of components. 

6.6 Component-Groups/System Fragility Models and Roll-Up Procedure 

Using the methodologies discussed above, one can establish fragility models for different 

individual components and responses. Some use cases for fragility model application such 

as inspection guidance, cost estimation, and assessment of bridge-subsystem performance 

require simultaneous consideration of multiple components. This section details so called 

‘roll up’ processes used to assemble higher-stage fragility models representing various 

groupings of components. 

6.6.1 Multi-Stage Framework for Roll-Up of Fragility Models 

The base fragility models developed using methods outlined in prior sections are called 

”Stage-0” models in this research. These apply to a single bridge component assessed with 

a single EDP acting in a single direction, and can only be developed based on a PSDM. 

Table 6.4 outlines a larger multi-stage framework for the roll-up of the Stage-0 models 

to represent ever larger groupings of components categorized as Stage-A through Stage-E 

roll-ups, each of which is described below. 

The “Stage-A” roll-up is referred to as “omni-directional” and represents the overall 

multi-directional damage state probability developed from separate Stage-0 PSDM 

models for the two orthogonal directions. As described in Chapter 4, some component 

responses, such as the backwall-connection and shear key elements are specified in only 
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Table 6.4: Multi-stage framework for roll-up of base (Stage 0) fragility models 

Roll-up Stage Roll-up objects Roll-up type Example 
0 NA NA backfill-A 
A orthogonal directions Type-II regular section column displacement ductility 

B.1 multiple sub-types Type-I pile-foundations 
B.2 multiple EDP’s Type-II columns 
C multiple components within zone Type-II abutment, bent 
D all components in one system Type-II e33 s22 isMB aUS bridges 
E multiple RBS’s Type-II all e33 bridges 

one direction. An elastomeric bearing is an example of an omni-directional component 

where the maximum recorded EDP (shear strain) could happen in any direction. In this 

case, the demand model itself could be simply expressed in terms of the omnidirectional 

peak value and a Stage-0 fragility model developed directly since the capacity model is 

identical in all directions. However, other components, such as columns, may have 

separate capacity models for each orthogonal direction (i.e. for a multi-column bent where 

transverse capacity includes bent-frame effects). The State-0 fragility models for each 

loading direction thereby reflects only part of the failure probability. Hence, a roll-up 

procedure is needed for combining the pair of one-directional models into a “Stage-A” 

fragility model to represent omni-directional damage to a component. Figure 6.10 

provides an illustration of a Stage-A roll-up for the case of regular-section column 

response in the longitudinal and transverse directions. These results show that damage in 

both directions contribute to the combined fragility model for column performance. In this 

case, the transverse direction, represented with the dotted line, is seen to control the 

response (has a smaller median) for the first few states, while the longitudinal direction, 

represented by the dashed line, has increasing influence at higher states. 

The two “Stage-B” roll-ups involves more complicated component assessments where 

either multiple component subtypes/subgroups are considered, or multiple EDP’s are 

involved in the performance assessment. A “Stage-B.1” roll-up captures overall damage 

probability to multiple types of the same basic component. Pile foundations provide a 

good example of multiple component types where separate CCLS models were defined for 
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each of three subgroups (CIDH, PC, Steel) which themselves are combinations of a larger 

set of individual standard pile types. The capacity models for each subgroup have 

different values and correspond to distinct failure mechanisms. It is therefore 

unreasonable to put these subgroups together in a single PSDM. The illustration in 

Figure 6.11 provides another example, where in this case, the Stage-B.1 rollup combines 

damage for the two-column section-types (regular and wide). 

Note that the relationship between individual component fragilities and the combined 

fragility results in the Stage-B.1 case in Figure 6.11 differs from the pattern observed for 

Stage-A rollups in Figure 6.10. In the Stage-A case, both Stage-0 curves contribute to 

combined hazard and the combination always exceeds either part. However, in the 

Stage-B.1 case, the two Stage-0 curves represent mutually exclusive component types, so 

the combined curve represents some mixture of the two hazards and the fragility curve is 

always in the middle of those for the two subgroups. The precise position of the combined 

curve is dependent on the mix of subtypes considered in the analysis. In this research, 

subtype proportions are selected to be consistent with the California bridge inventory. 

“Stage-B.2” roll-up captures overall damage probability to one physical component 

implied by multiple EDPs and capacity models used to assess performance of that 

component. The g2F framework allows for multi-metric assessment of components, 

particularly for vital components having multiple failure mechanisms having life-safety 

implications. For example, column failure could be identified by either global-column 

damage from excessive displacement ductility demand or local hinge-section damage 

from excessive curvature ductility demand (or by other mechanisms such as column 

overturning due to P-∆ effects or lap-splice reinforcement failures in earlier era designs). 

Under these situations, the Stage-B.2 roll-up procedure is used to establish a combined 

model considering different failure modes. Figure 6.12 illustrates this using the example 

of global and local column damage. Both the global and local metrics contribute to the 

assessment of overall column damage state, thus the combined fragility model is always 
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larger than those for the two individual metrics. Broadly, this multi-metric strategy allows 

different recognized mechanisms of component failure to be recognized and become the 

controlling parameter as conditions warrant. In the case shown in Figure 6.12, the global 

damage controls all of the states and the local damage contributes very little additional 

hazard. 

One of the ShakeCast use cases envisioned for g2F model application is to provide 

field inspectors with additional guidance for where to look for damage starting with 

specific bridge regions or zones. A “Stage-C” roll-up is designed to support this use case. 

This stage of fragility model combines multiple components within a bridge zone. 

Typically, a bridge can be segmented into three regions: 1) the abutment wall region 

considering damage to abutment stem walls, wing walls, and foundations; 2) the abutment 

joint region including the unseating mechanism, the backwall and shear-key fusing 

mechanisms, and miscellaneous joint component such as bearings and joint seals; and 3) 

the interior support (e.g. column bent) region considering damage to bent columns and 

their foundation systems. The interior support region can be further subdivided into zones. 

In the g2F framework, zone-1 bents refers to those adjacent to the abutment, zone-2 bents 

are the remaining bents in a single- or dual-frame bridge, and zone-3 bents are those on a 

freestanding frame having no adjacent abutment. For these regions and zones, Stage-C 

fragility models reflect damage to all components within the zone. Armed with Stage-C 

roll-up information, field inspectors could quickly locate likely damage regions or zones 

and thus improve the inspection efficiency. Figure 6.13 provides an example of a State-C 

roll-up for zone-1 bent damage including damage contributed by column, foundation 

rotation connection, and foundation translation. The two foundation damage mechanisms 

are secondary components with damage models extending only to CDS 5. Thus, for 

higher states, column damage is the sole contributor to bent damage. In this era-3 bridge 

case having well-designed foundation systems, column damage controls combined 

damage for all the states. 
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A “Stage-D” roll-up generates the overall bridge-system fragility model used to depict 

the operational state of the bridge. Figure 6.14 shows the State-D roll-up for the case of an 

era-3 two-span multi-column box-girder bridge. It includes damage to the bent (per 

Figure 6.13) as well as to the abutment joint and abutment wall regions. The abutment 

joint damage is further detailed in Appendix F which presents separate and combined 

fragility models for unseating, backwall, shear key, bearing, and pounding. In this case, 

the backwall and shear key control abutment joint damage for the respective loading 

directions as might be expected for these sacrificial elements designed to protect the 

foundation. These abutment-region damage types control the first three states of the 

bridge-system fragility model. Beyond that, column-bent damage governs the higher 

system states. In this study of era-3 abutment design, the abutment wall considers only 

abutment foundation damage – a component that is not vulnerable due to the fusing action 

of the backwall and shear key – and thus has only a minor contribution to the overall 

bridge-system damage state. 

Appendix F presents the complete set of 92 fragility models created at all stages for 

this case study. Note that Table 6.4 includes a “Stage-E” roll-up which is a placeholder 

for envisioned potential future development of more generic fragility models (e.g. era-3 

box girder) which combine multiple RBS for applications where bridge-type information 

is limited. 
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Figure 6.10: Stage-A roll-up: column regular section global displacement ductility response 
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Figure 6.11: Stage-B.1 roll-up: column global displacement ductility response 
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Figure 6.12: Stage-B.2 roll-up: column response 
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Figure 6.13: Stage-C roll-up: bent response 
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Figure 6.14: Stage-D roll-up: system response 



  

     
 

            

    

 

          

 

 
  

      

           

   

   

 

 

  

    

          

 

        

 

  

           

         

 

 

  

 

 

        
 

6.6.2 Roll-Up Types and General Methods 

As detailed in the last section, there are multiple stages in the overall roll-up process, each 

serving its own objectives. To implement these roll-ups, two different roll-up procedures 

are used herein called Type-I and Type-II. As noted in Table 6.4, most roll-ups uses the 

Type-II procedure, the exception here being for” Stage-B.1” roll-ups. These two procedures 

are detailed below. 

Type-I roll-up 

The “Type-I” roll-up in this research refers to those cases involving the combination of 

multiple sub-types of the same component. For instance, two subtypes of column sections, 

regular and wide, each have their own PSDM. Similarly, pile-foundations have three 

separates PSDM’s corresponding to CIDH concrete, precast concrete, and steel piles. 

These three types of piles have distinct damage mechanisms and capacity models. While 

detailed insight on performance can only be provided by considering these subtypes 

separately, a roll-up of all three types can provide useful a general sense of the 

approximate component damage if the sub-type is unknown. Using the total probability 

concept, a simple procedure for implementing the Type-I roll-up is shown in 

Equation 6.12, where the proportion of each type is written as P(Typei) and there are T 

subtypes in total. The failure probability P (Di ≥ Ci|IM ∧ Typei) is the fragility model 

developed in “Level-0”. 
𝑇𝑇 

𝑃𝑃(𝐷𝐷 ≥ 𝐶𝐶|IM) = � 𝑃𝑃(𝐷𝐷𝑖𝑖 ≥ 𝐶𝐶𝑖𝑖|𝐼𝐼𝑀𝑀 ∧ Type𝑖𝑖) ∙ 𝑃𝑃(Type𝑖𝑖) (6.12) 
𝑖𝑖=1 

Figure 6.11 was an example of the Type-I roll-up. The two mutually exclusive 

subgroups generate a combined fragility curve located in the middle. Therefore, the 

boundary for a Type-I roll-up is the minimum and maximum probability of all the 

considered subgroups. 

Type-II roll-up 
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The “Type II” roll-up in this research refers to a mature procedure to generate system 

fragility curves using Monte-Carlo simulations as per the work by Nielson (2005) which is 

adopted herein. Type-II roll-ups provide a means to combine fragility for different loading 

directions, EDP’s, components regions. 

To generate a fragility model using Type-II roll-up, first step is to determine a sample 

space consisting of multiple steps for the IM of interest, and then also set the number of 

samples N at each step. A small number of samples N may cause instability of fragility 

curves, especially when it includes multiple components, while a large number slows down 

the computation time. In this research, 60 sample steps are set from Sa1 = 0 g to 3.0 g with 

5000 samples at each step. 

Next, sample N number of seismic demands and capacities for all components at each 

step of IM. Estimation of the mean and dispersion vectors for seismic demands is calculated 

by the regression model (PSDM). It is easy to see that both seismic demand and capacity 

are multivariate normal distributions in logarithm space. Correlation is a crucial part of 

this sampling procedure and will be discussed separately below. Note that the demand 

samples included components with sub-types should keep the same proportion of missing 

data. After generating the N samples at each sample step, the fragility is calculated by 

averaging the sample number that any of the demands are greater than the corresponding 

capacities. To represent it mathematically, note that for each component j, there are N 

sample points, and their corresponding demands and capacities are denoted as Dij and Cij, 

where 1 ≤ i ≤ N and 1 ≤ j ≤ M given there are total M components in this roll-up 

procedure. Then the roll-up procedure is written as: 
𝑁𝑁 

1
𝑃𝑃(𝐷𝐷 ≥ 𝐶𝐶|𝐼𝐼𝑀𝑀) = � max 𝕀𝕀�𝐷𝐷𝑖𝑖𝑗𝑗 ≥ 𝐶𝐶𝑖𝑖𝑗𝑗�IM� (6.13) 

𝑁𝑁 1≤𝑗𝑗≤𝐼𝐼 
𝑖𝑖=1 

where 𝕀𝕀(∙) is the indicator function, which equals to 1 if the condition is true and 0 
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otherwise. 

Similar to the Type-I roll-up, there is a boundary for the Type-II roll-up in terms of the 

underlying fragility curves used to create the combined curve. The lower bound is the 

maximum probability (or envelope) of all underlying components. This represents the 

idealized case when responses of all underlying components are fully correlated. In 

contrast, the upper bound is the calculated probability for the opposite idealized case 

when all roll-up components are fully independent and uncorrelated. For these purposes, 

the expression “fully correlated” components indicate that both their demand and 

capacity models are fully correlated. Similarly, ‘independent’ applies to both the demand 

and capacity models. In real-world applications, most components are neither fully 

correlated nor fully independent. The next section discusses how to determine correlation 

for such cases. 

6.6.3 Demand Correlation: Pearson Correlation and Partial Correlation 

In order to properly sample seismic demands for multiple components at each IM step, it is 

critical to determine the correlation matrix for components and/or EDPs considered in the 

roll-up procedure. 

However, to the knowledge of the author, prior studies have directly calculated the 

correlation based on the original data, which is the Pearson correlation (Freedman et al., 

2020). Pearson correlation does not remove the effect of a set of controlling random 

variables, i.e., the intensity measurement, which would result in significant 

over-estimation of the correlation coefficient. Statistically, the sampling procedure of 

seismic demand data indicates that these data are conditioned on a given IM, or in other 

words, that the correlation is a measurement with the controlling variable removed. For a 

sampling procedure that is going to use the correlation matrix, the calculation of the 

correlation matrix should also be conditioned on a given IM. 

To illustrate this problem from an engineering point of view, consider the seismic 
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demands of a component in two orthogonal directions. Given a ground motion intensity, 

any knowledge of the seismic response in the longitudinal direction cannot improve the 

prediction accuracy of the response in the transverse direction. On the other hand, if one 

has no idea of the ground motion, the situation is different because a large seismic 

response in the longitudinal direction would indicate a relatively large ground motion, 

which will consequently cause a large response in the transverse direction with relatively 

high probability. This example illustrates that the seismic responses in two orthogonal 

directions are indeed conditionally independent given the ground motion intensity. 

To address this problem, it is proposed to calculate the correlation matrix using partial 

correlation (Baba et al., 2004). Partial correlation is calculated based on the residual of the 

regression model, reflecting the conditional correlation of seismic demands. Using partial 

correlation is an approximation of the intrinsic value by averaging the correlation through 

the whole range of IM. 

The second issue arises due to the existence of components with sub-types, non-positive 

responses, and different seismic demand data between abutment components and other 

components. It is not an easy practice to calculate the correlation matrix directly using 

the residual data. For example, in a roll-up procedure with K bridge realization, abutment 

components (e.g., elastomeric bearing pad elements) include 2K (two sides of abutment) 

data points while internal bent components (e.g., column displacement ductility) have only 

K data points. It is therefore suggested to calculate the correlation matrix pair-wisely. 

However, it would fail to construct a positive semi-definite matrix. In order to resolve this 

issue, one would like to compute the nearest positive semi-definite matrix (Higham, 1988) 

for the covariance matrix. 

A comparison of the correlation matrices using the Pearson correlation and Partial 

correlation is shown in Table 6.5. The matrices shown here includes multiple components 

including column displacement ductility in longitudinal (COL L) and transverse (COL T) 

directions, column spread footing foundation response in longitudinal (CFF L) and 
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transverse (CFF T) directions, and abutment spread footing foundation response in 

longitudinal (AFF L) and transverse (AFF T) directions. 

Table 6.5: Demand correlations for damage states 

Pearson Correlation 
COL L COL T CFF L CFF T AFF L AFF T 

COL L 
COL T 
CFF L 
CFF T 
AFF L 
AFF T 

1.00 
0.94 
0.86 
0.85 
0.85 
0.82 

0.94 0.86 0.85 
1.00 0.79 0.84 
0.79 1.00 0.96 
0.84 0.96 1.00 
0.81 0.81 0.82 
0.80 0.78 0.83 

0.85 
0.81 
0.81 
0.82 
1.00 
0.91 

0.82 
0.80 
0.78 
0.83 
0.91 
1.00 

Partial Correlation 
COL L COL T CFF L CFF T AFF L AFF T 

COL L 
COL T 
CFF L 
CFF T 
AFF L 
AFF T 

1.00 
0.60 
0.47 
0.30 
0.29 
0.29 

0.60 0.47 0.30 
1.00 0.15 0.36 
0.15 1.00 0.79 
0.36 0.79 1.00 
0.21 -0.02 0.10 
0.33 -0.02 0.23 

0.29 
0.21 
-0.02 
0.10 
1.00 
0.63 

0.29 
0.33 
-0.02 
0.23 
0.63 
1.00 

As indicated above, the Pearson correlation generates correlation coefficients that are 

mostly larger than 0.75, while the partial correlation coefficients have large variance 

ranging from -0.02 to 0.79. Based on the partial correlation coefficient result, the same 

component in different directions has a correlation value of approximately 0.60 to 0.70; 

and for different components in the same zone, the correlation value is about 0.10 to 0.50. 

Responses of the column foundation are only loosely correlated to the responses of 

abutment foundation, but column response has about 0.30 correlation to the abutment 

foundation. 

6.6.4 Capacity Correlation 

Capacity correlations are defined in two parts, namely the correlation between 

components and the correlation between states. Prior research typically applied a 0% 

correlation between components and 100% correlation between states. 

In this research, the state correlation is formally established using the dataset developed 
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in Chapter 4 and shown below. Although the state correlation is developed based on the 

column dataset, this correlation is also assumed to be applicable for other components. 

It can be seen from Table 6.6 that the correlation between states is large when states are 

adjacent and then degrades as their separation increases. 

Table 6.6: Capacity correlations for damage states 

CDS 1 CDS 2 CDS 3 CDS 4 CDS 5 CDS 6 CDS 7 
CDS 1 1.00 0.85 0.60 0.50 0.45 0.40 0.40 
CDS 2 0.85 1.00 0.85 0.60 0.50 0.50 0.50 
CDS 3 0.60 0.85 1.00 0.85 0.60 0.60 0.60 
CDS 4 0.50 0.60 0.85 1.00 0.85 0.80 0.80 
CDS 5 0.45 0.50 0.60 0.85 1.00 0.95 0.95 
CDS 6 0.40 0.50 0.60 0.80 0.95 1.00 1.00 
CDS 7 0.40 0.50 0.60 0.80 0.95 1.00 1.00 

To avoid the violation of rank order between states, the demand samples need to be 

sampled separately for each damage state. The resulting fragility models are the same as 

long as the sample number is sufficient. 

Determine the correlation between components is more complex. Table 6.7 lists some 

values used in this research, which separates the components and/or EDP ’s into multiple 

categories. When sampling the capacity data points for an abutment component on the 

east and west sides, their capacities are assumed to be the same. The same EDP’s in two 

orthogonal directions, such as column responses in longitudinal and transverse directions, 

are highly correlated. Capacity correlation between different components is then all 

assumed to be 15%. 

Table 6.7: Capacity correlations for different components 

Category Value Example 
same components in a different zones 1.00 BKW in east and west abutment 
same EDP but in orthogonal direction 0.90 zone 1 COL RL & zone 1 COL RT 
different components in a same zone and same direction 0.15 zone 1 COL RL & zone 1 CFF L 
different components in a same zone but different direction 0.15 BKW & SKY 
different components in different zones 0.15 zone 1 COL RL & BKW 
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6.7 Smoothing of Fragility Curves: Re-Sampling for Two-Parameter Model 

The primary application now envisioned for the g2F models is implementation within the 

ShakeCast platform, where two-parameter lognormal fragility model values are required. 

Therefore, all generated fragility models are further simplified into two-parameter 

lognormal models. This provides a clear and consistent basis for comparing median 

fragility model values, or the IM corresponding to 50% failure probability. 

6.7.1 Generic Form of Two-Parameter Component Fragility Models 

This section outlines the process to compute two-parameter models for component fragility 

curves. Equation 6.6 depicts the generic form of a fragility model that the SD|IM and 

βD|IM are only constrained by normal assumption of the conditional demand response: 

D|IM ∼ N (SD|IM, βD|IM). Assume 𝑆𝑆𝐷𝐷|IM = 𝑓𝑓(ln IM) is any function of ln IM that 

satisfies the conditional normal assumption. Then Equation 6.6 can be rewritten as below. 

ln IM − ln 𝑆𝑆𝐹𝐹 𝑃𝑃(𝐷𝐷 ≥ 𝐶𝐶|IM) = Φ� � (6.14) 𝛽𝛽𝐹𝐹|IM 

where SF is the estimation of median for the fragility model that satisfies the relation in 

Equation 6.14a. The SF value defines the intersection point of the regression and capacity 

lines as the fragility median. The fragility model dispersion changes with IM but can 

approximated as Equation 6.14b using RMSE. 

𝑓𝑓(ln 𝑆𝑆𝐹𝐹 ) = ln 𝑆𝑆𝐶𝐶 (6.14a) 

𝛽𝛽𝐹𝐹|IM = �𝛽𝛽𝐶𝐶2 + 𝛽𝛽𝐷𝐷2 
|IM ≈ �𝛽𝛽𝐶𝐶2 + 𝜎𝜎�2 (6.14b) 

6.7.2 Optimization Method 

The model discussed above does not include M-PARS or FAR+ because they violate the 

conditional normal assumption at some IM. For example, in any PSDM that needs to use 
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the FAR+ method, the demand data is a mixture distribution given an IM. In addition, there 

is no closed form solution for roll-up fragility models. In order to represent the model as 

two parameters in the form of Equation 6.14, one can use linear regression to approximate 

the fragility model by rewriting Equation 6.14 into the following form, where Φ−1(·) is 

the inverse normal function. 

ln IM = 𝛽𝛽𝐹𝐹 ∙ Φ−1�𝑃𝑃(𝐷𝐷 ≥ 𝐶𝐶|IM)� + ln 𝑆𝑆𝐹𝐹 (6.15) 

However, this equation will produce a fragility model that is dominated by the most 

extended segment. Since the longest segment predicts about 100% failure probability, the 

regression model gives a poor estimation on the more important transient portion (i.e., from 

0% to 100%) of the curve. 

Therefore, this research adopts an optimization procedure to minimize the error 

between the original (multi-segmented) curve and the approximated (2-parameter) curve 

where the median of the fragility model is the primary emphasis. If available, the median 

is first determined by Equation 6.14a or interpolation using data around the median. The 

problem then becomes a one-parameter optimization problem. The other situation is 

where the median is not available or the failure probability does not reach 50% at the high 

end of the IM range considered (e.g., 3.0g Sa1 in this research). In this case, 

two-parameter optimization is applied to approximate the fragility model. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Summary and Conclusions 

This report provides a comprehensive summary of the framework for the development of a 

new generation of seismic fragility curves for highway bridges and details several 

important new research contributions to this overall methodology. These fragility models 

are being designed primarily for deployment in the ShakeCast platform and will be used 

in the planning of mitigation strategies for, and supporting emergency response 

immediately after, a damaging earthquake. The methodology and models developed 

herein are systematically illustrated in the context of a modern California concrete 

box-girder bridge. 

This study makes several significant advances toward increasing the accuracy and utility 

of seismic risk estimation including the following: 

• Improvements in modeling fidelity: 

Multiple new modeling strategies are proposed in this study. Specifically, the 

adopted column model is shown to overcome the localization issue and refinements 

in column-response models provides more accurate simulation of various failure 

mechanisms such as buckling, shear, and lap-splice damage. Validation of a variety 

of the column models is also included in this study. Additionally, a new abutment 

response model is developed to account for the backwall fracture mechanism within 

a larger context of deck-abutment interactions. A case study illustration for the 

OSB1 bridge shows the proposed abutment modeling scheme produces more 

realistic results compared to prior models. Through an in-depth review of 

component modeling strategies, improved three-dimensional nonlinear finite 
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element models are established for dynamic seismic analysis. 

• Refinement of capacity models: 

An emerging seven-state framework for consistent sets of component and 

bridge-system level fragility models is established. Within this framework, 

component capacity models are proposed for various primary and secondary bridge 

components. In particular, this study significantly advanced the development of 

column capacity models by harmonizing an extensive set of experimental tests (i.e. 

the RP1 dataset) with results from a systematic program of finite element 

simulations focused on high state performance and the effects of alternate 

bent-configurations (i.e. the HS-R study). The resulting capacity models provide a 

refined and well-grounded vision for bridge damage assessment. 

• Identification of uncertainties and design constraints in creating virtual bridge 

realizations: 

The study develops probabilistic models for specifying all major components of 

modern single-frame concrete box-girder bridges where the component models are 

based on a comprehensive review of the California bridge inventory. Moreover, 

three types of design constraints are developed and implemented within the 

sampling procedure to reflect inherent bridge design correlations. The combination 

of inventory-based stochastic component models and design-based sampling 

constraints support the creation of realistic virtual bridge realizations used for 

production simulations. 

• Methodology improvements for integrating demand and capacity to generate fragility 

models: 

The maximum/average responses (demand data) are obtained through conduct of 

nonlinear dynamic numerical simulations on the virtual bridges created using the 

adopted modeling strategies. This study examined multiple methods of integrating 
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demand data and capacity models and concluded that the adopted M-MARS and 

FAR+ methods are capable of not only representing highly nonlinear data but also 

allows consideration of the PSDM data in terms of physical phenomena controlling 

highly non-linear bridge response. Furthermore, this study develops four stages of 

fragility models to facilitate various engineering applications. To generate more 

accurate component-group fragility models, this study carefully examined the 

correlation between demand components and concludes that the use of partial 

correlation is more appropriate than Pearson correlation. Ultimately, the study seeks 

to develop an innovative method to group bridges by distinguishing different system 

fragility models. 

As part of these endeavors to establish more useful and reliable seismic bridge fragility 

models, several important findings emerged including: 

1. Accurate modeling of the straight backwall fracture mechanism has a significant 

impact on bridge performance. The comparison of static pushover results in Chapter 

3 indicates that the newly-developed model accurately simulates the protective 

effect of backwall fusing on the abutment foundation. In contrast to the 

conventional model — in which abutment foundations completely fail -– the new 

model shows that the abutment foundation is protected by the backwall-fracture 

mechanism, resulting in only minor damage to the lower portion of the abutment. 

The new model also shows that columns must resist larger loads and bearings 

undergo fully elasto-plastic behavior which is all consistent with modern bridge 

design principles. 

2. The newly developed column capacity models introduce a redundancy effect to 

account for framing behavior of flexural columns in multi-column bents loaded 

transversely. Inclusion of this effect results in about 15% improvement in the 

displacement ductility capacity of multi-column bents relative to single-column 
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bents for the safety-related states (CDS 5 to CDS 7). 

3. In Chapter 5, the incorporation of three design constraints on the bridge-component 

sampling procedure, most notably the ground motion pairing strategy, is shown to 

have significant influence on the resulting column and bridge fragility models for the 

last three safety-related states. Compared with the fragility model without ground 

motion pairing, the median Sa1 of the proposed model (with ground motion pairing) 

increases nearly 20% (2.25g to 2.70g) for the collapse state (CDS 7) and causes the 

failure probability at 2.00g to decrease from about 39% to 25%. 

4. Comparison of multiple PSDM development methodologies is shown in Chapter 6. 

The regular linear regression model fails to accurately predict the median. In 

contrast, the proposed M-MARS and FAR+ provide better estimation to the data 

median, generate a smaller MSE, and allow a clear physical interpretation of the 

PSDM model. 

5. A complete set of base and roll-up fragility models for the case study of a modern 

ductile designed bridge are provided in Appendix F. The stage-3 roll-up indicates 

that the vulnerability sequence of components in a column bent is: column, 

foundation rotation connection, and lastly the foundation transition. In the abutment 

joint region, the backwall and shear key control the fragility models of the first four 

damage states. It also demonstrates that unseating is not as likely as damage to other 

components for CDS 1 to CDS 4 (CDS 5 to CDS 7 have only the unseating 

component). In the system fragility model, the abutment joint region is found to 

control vulnerability for the first three states, while the column bent region controls 

the last four states as fewer components are included in the abutment joint. For this 

modern bridge design, the abutment foundation is always the least vulnerable 

component as a result of the designed protective effect from the abutment backwall 

fracture. 
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7.2 Future Work 

Independent checking and validation of the developed models using the described 

framework is underway in preparation for use in ShakeCast. Meanwhile, work should 

continue on compiling experimental test data for columns and other bridge components, 

and using these data to guide development of refinements in the response models used for 

both demand and capacity assessment. As a separate focus, efficient means of developing 

bridge-specific fragility models from basic design-floor information should be explored. 
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APPENDIX A 

BRIDGE PLAN FOR OSB1 

The following is a generic bridge plan representative of modern Caltrans design practices 

called Ordinary Standard Bridge 1 (OSB1). OSB1 is a two-span bridge with a two-column 

bent. The bridge superstructure has a span length of 150.0 ft, deck width of 47.5 ft, and 

section depth of 6.0 ft. The columns are 20.0 ft height. The circular column section has 

66 inch diameter with #8@6-inch transverse reinforcement, which corresponds to 

approximately 0.85% transverse reinforcement ratio. Note that the column reinforcing 

detail (Section H-H) was modified slightly to be 44 rather than 36#11 reinforcements such 

that the longitudinal reinforcement ratio is approximately 2.0%. 
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Figure A.1: OSB1 bridge plan drawing page-1 
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Figure A.2: OSB1 bridge plan drawing page-2 
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Figure A.3: OSB1 bridge plan drawing page-3 
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Figure A.4: OSB1 bridge plan drawing page-4 
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Figure A.5: OSB1 bridge plan drawing page-5 
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Figure A.6: OSB1 bridge plan drawing page-6 
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Figure A.7: OSB1 bridge plan drawing page-7 
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Figure A.8: OSB1 bridge plan drawing page-8 
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Figure A.9: OSB1 bridge plan drawing page-9 
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Figure A.10: OSB1 bridge plan drawing page-10 
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Figure A.11: OSB1 bridge plan drawing page-11 
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Figure A.12: OSB1 bridge plan drawing page-12 



 

  

       
 
 

 

  

  

           

    

      

                  

                

                

           

                

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

APPENDIX B 

LIST OF GROUND MOTIONS FOR FRAGILITY ANALYSIS 

The T1780 ground motion sets provided by Caltrans (Roblee, 2015c,b) are listed in this 

appendix. There are 20 sets of recorded time histories with 16 ground motions per set, 

resulting in a total of 320 ground motions. Records were selected such that the ensemble 

average spectra of each set approximated a specified target spectrum. The target-spectrum 

Sa1 value decreases from set-1 to set-20, ranging from approximately 1.870 g to 0.018 g. 

The Sa1 values for individual records in all sets range from 0.010 g to 2.716 g. However, 

only 14 ground motions in the list have a Sa1 larger than 2.000 g, with two larger than 

2.500 g. The lack of high Sa1 ground motions limits the accuracy of regression in PSDM at 

high Sa1, and this, in turn, limits the accuracy of fragility models for modern bridges having 

high component capacities. Therefore, for the simulation of modern ductile bridges, the 

first two ground motion sets are also scaled to 3.000 g to achieve higher prediction accuracy 

in the high Sa1 region. 
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GM ID 

PEER 

Record 

Sequence 

Number 

Scale 

Factor 

RotD50 

Sa1 

[g] 

Vs30 

[m/sec] 

Earthquake 

Name 
Year 

Station 

Name 
Magnitude Mechanism 

S01 R01 0825 2.2944 1.3880 567.78 Cape Mendocino 1992 Cape Mendocino 7.01 Reverse 

S01 R02 0983 1.9298 1.9254 525.79 Northridge-01 1994 Jensen Filter Plant Generator Building 6.69 Reverse 

S01 R03 1063 1.8567 2.7159 282.25 Northridge-01 1994 Rinaldi Receiving Sta 6.69 Reverse 

S01 R04 1119 2.2672 1.8626 312 Kobe Japan 1995 Takarazuka 6.9 strike slip 

S01 R05 1120 1.6166 2.0883 256 Kobe Japan 1995 Takatori 6.9 strike slip 

S01 R06 1492 2.2163 2.2741 579.1 Chi-Chi Taiwan 1999 TCU052 7.62 Reverse Oblique 

S01 R07 1503 1.8964 2.2239 305.85 Chi-Chi Taiwan 1999 TCU065 7.62 Reverse Oblique 

S01 R08 1605 2.3620 1.5102 281.86 Duzce Turkey 1999 Duzce 7.14 strike slip 

S01 R09 3968 1.8432 2.5842 310.21 Tottori Japan 2000 TTRH02 6.61 strike slip 

S01 R10 4040 2.2834 1.7395 487.4 Bam Iran 2003 Bam 6.6 strike slip 

S01 R11 4219 2.2457 1.7233 480.4 Niigata Japan 2004 NIGH01 6.63 Reverse 

S01 R12 4856 2.1655 1.7974 294.38 Chuetsu-oki Japan 2007 Kashiwazaki City Center 6.8 Reverse 

S01 R13 4894 1.3610 2.1513 329 Chuetsu-oki Japan 2007 Kashiwazaki NPP Unit 1: ground surface 6.8 Reverse 

S01 R14 5657 1.8484 1.3997 506.44 Iwate Japan 2008 IWTH25 6.9 Reverse 

S01 R15 5992 2.4994 1.5150 196.25 El Mayor-Cucapah Mexico 2010 El Centro Array #11 7.2 strike slip 

S01 R16 6906 1.7853 1.8152 344.02 Darfield New Zealand 2010 GDLC 7 strike slip 

S02 R01 0126 2.1058 1.3320 259.59 Gazli USSR 1976 Karakyr 6.8 Reverse 

S02 R02 0180 2.2452 1.3260 205.63 Imperial Valley-06 1979 El Centro Array #5 6.53 strike slip 

S02 R03 0181 2.3701 1.1521 203.22 Imperial Valley-06 1979 El Centro Array #6 6.53 strike slip 

S02 R04 0723 2.2238 1.5962 348.69 Superstition Hills-02 1987 Parachute Test Site 6.54 strike slip 

S02 R05 0821 2.4202 1.8739 352.05 Erzican Turkey 1992 Erzincan 6.69 strike slip 

S02 R06 0828 2.3571 1.9311 422.17 Cape Mendocino 1992 Petrolia 7.01 Reverse 
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S02 R07 1084 1.6212 2.2358 251.24 Northridge-01 1994 Sylmar - Converter Sta 6.69 Reverse 

S02 R08 1086 1.7538 1.1434 440.54 Northridge-01 1994 Sylmar - Olive View Med FF 6.69 Reverse 

S02 R09 1244 2.3459 1.7328 258.89 Chi-Chi Taiwan 1999 CHY101 7.62 Reverse Oblique 

S02 R10 1549 2.4168 1.3715 511.18 Chi-Chi Taiwan 1999 TCU129 7.62 Reverse Oblique 

S02 R11 1602 2.2344 2.1573 293.57 Duzce Turkey 1999 Bolu 7.14 strike slip 

S02 R12 4876 2.1144 1.9752 655.45 Chuetsu-oki Japan 2007 Kashiwazaki Nishiyamacho Ikeura 6.8 Reverse 

S02 R13 5264 1.7743 1.6631 198.26 Chuetsu-oki Japan 2007 NIG018 6.8 Reverse 

S02 R14 5658 2.3663 1.0599 371.06 Iwate Japan 2008 IWTH26 6.9 Reverse 

S02 R15 5818 2.3537 1.2385 512.26 Iwate Japan 2008 Kurihara City 6.9 Reverse 

S02 R16 6911 2.0410 1.4244 326.01 Darfield New Zealand 2010 HORC 7 strike slip 

S03 R01 0160 2.2724 1.0064 223.03 Imperial Valley-06 1979 Bonds Corner 6.53 strike slip 

S03 R02 0182 2.2703 1.5345 210.51 Imperial Valley-06 1979 El Centro Array #7 6.53 strike slip 

S03 R03 0779 1.5782 1.1880 594.83 Loma Prieta 1989 LGPC 6.93 Reverse Oblique 

S03 R04 0982 1.7438 2.4752 373.07 Northridge-01 1994 Jensen Filter Plant Administrative Building 6.69 Reverse 

S03 R05 1044 1.7056 1.7100 269.14 Northridge-01 1994 Newhall - Fire Sta 6.69 Reverse 

S03 R06 1106 1.6933 2.3427 312 Kobe Japan 1995 KJMA 6.9 strike slip 

S03 R07 1505 1.5083 1.0614 487.34 Chi-Chi Taiwan 1999 TCU068 7.62 Reverse Oblique 

S03 R08 1507 2.0460 1.4320 624.85 Chi-Chi Taiwan 1999 TCU071 7.62 Reverse Oblique 

S03 R09 2114 2.3968 1.7911 329.4 Denali Alaska 2002 TAPS Pump Station #10 7.9 strike slip 

S03 R10 4874 2.4248 1.2791 561.59 Chuetsu-oki Japan 2007 Oguni Nagaoka 6.8 Reverse 

S03 R11 4895 1.3258 1.5058 265.5 Chuetsu-oki Japan 2007 Kashiwazaki NPP Unit 5: ground surface 6.8 Reverse 

S03 R12 5663 2.3817 0.9608 479.37 Iwate Japan 2008 MYG004 6.9 Reverse 

S03 R13 5664 2.3788 1.0683 361.24 Iwate Japan 2008 MYG005 6.9 Reverse 

S03 R14 5827 2.3508 1.3769 242.05 El Mayor-Cucapah Mexico 2010 MICHOACAN DE OCAMPO 7.2 strike slip 

S03 R15 6927 2.2644 1.2785 263.2 Darfield New Zealand 2010 LINC 7 strike slip 

S03 R16 8161 2.4903 1.6684 196.88 El Mayor-Cucapah Mexico 2010 El Centro Array #12 7.2 strike slip 
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S04 R01 0179 2.1278 1.1400 208.91 Imperial Valley-06 1979 El Centro Array #4 6.53 strike slip 

S04 R02 0183 2.2374 0.7756 206.08 Imperial Valley-06 1979 El Centro Array #8 6.53 strike slip 

S04 R03 0753 2.4659 1.2448 462.24 Loma Prieta 1989 Corralitos 6.93 Reverse Oblique 

S04 R04 1004 1.6596 1.4154 380.06 Northridge-01 1994 LA - Sepulveda VA Hospital 6.69 Reverse 

S04 R05 1013 2.3259 1.4570 628.99 Northridge-01 1994 LA Dam 6.69 Reverse 

S04 R06 1114 2.3096 2.1524 198 Kobe Japan 1995 Port Island (0 m) 6.9 strike slip 

S04 R07 1176 2.3332 0.8957 297 Kocaeli Turkey 1999 Yarimca 7.51 strike slip 

S04 R08 1197 1.4877 1.5145 542.61 Chi-Chi Taiwan 1999 CHY028 7.62 Reverse Oblique 

S04 R09 1509 1.8506 2.1059 549.43 Chi-Chi Taiwan 1999 TCU074 7.62 Reverse Oblique 

S04 R10 3748 2.4770 1.6312 387.95 Cape Mendocino 1992 Ferndale Fire Station 7.01 Reverse 

S04 R11 4886 2.2196 1.1903 338.32 Chuetsu-oki Japan 2007 Tamati Yone Izumozaki 6.8 Reverse 

S04 R12 4894 0.9684 1.5306 329 Chuetsu-oki Japan 2007 Kashiwazaki NPP Unit 1: ground surface 6.8 Reverse 

S04 R13 5656 2.3398 0.7813 486.41 Iwate Japan 2008 IWTH24 6.9 Reverse 

S04 R14 5825 2.3359 0.9142 242.05 El Mayor-Cucapah Mexico 2010 CERRO PRIETO GEOTHERMAL 7.2 strike slip 

S04 R15 5837 2.2679 1.2229 229.25 El Mayor-Cucapah Mexico 2010 El Centro - Imperial & Ross 7.2 strike slip 

S04 R16 6962 2.2290 0.8534 295.74 Darfield New Zealand 2010 ROLC 7 strike slip 

S05 R01 0174 2.4477 0.5827 196.25 Imperial Valley-06 1979 El Centro Array #11 6.53 strike slip 

S05 R02 0184 1.8524 0.7914 202.26 Imperial Valley-06 1979 El Centro Differential Array 6.53 strike slip 

S05 R03 0741 2.2993 1.2275 476.54 Loma Prieta 1989 BRAN 6.93 Reverse Oblique 

S05 R04 0803 2.2728 1.3710 347.9 Loma Prieta 1989 Saratoga - W Valley Coll. 6.93 Reverse Oblique 

S05 R05 1054 2.1164 2.4748 325.67 Northridge-01 1994 Pardee - SCE 6.69 Reverse 

S05 R06 1080 2.3163 1.6550 557.42 Northridge-01 1994 Simi Valley - Katherine Rd 6.69 Reverse 

S05 R07 1111 2.3132 0.6613 609 Kobe Japan 1995 Nishi-Akashi 6.9 strike slip 

S05 R08 1120 1.0150 1.3111 256 Kobe Japan 1995 Takatori 6.9 strike slip 

S05 R09 1158 2.0056 0.9817 281.86 Kocaeli Turkey 1999 Duzce 7.51 strike slip 

S05 R10 1231 1.1141 2.3362 496.21 Chi-Chi Taiwan 1999 CHY080 7.62 Reverse Oblique 
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S05 R11 1517 1.0584 1.9886 665.2 Chi-Chi Taiwan 1999 TCU084 7.62 Reverse Oblique 

S05 R12 3746 2.2317 0.9690 459.04 Cape Mendocino 1992 Centerville Beach Naval Fac 7.01 Reverse 

S05 R13 4228 2.4179 0.9634 375 Niigata Japan 2004 NIGH11 6.63 Reverse 

S05 R14 4895 1.0324 1.0504 265.5 Chuetsu-oki Japan 2007 Kashiwazaki NPP Unit 5: ground surface 6.8 Reverse 

S05 R15 5985 2.1850 1.2177 202.26 El Mayor-Cucapah Mexico 2010 El Centro Differential Array 7.2 strike slip 

S05 R16 6906 1.1209 1.1397 344.02 Darfield New Zealand 2010 GDLC 7 strike slip 

S06 R01 0721 2.2656 0.6605 192.05 Superstition Hills-02 1987 El Centro Imp. Co. Cent 6.54 strike slip 

S06 R02 0767 2.1105 0.6676 349.85 Loma Prieta 1989 Gilroy Array #3 6.93 Reverse Oblique 

S06 R03 0779 1.0845 0.8163 594.83 Loma Prieta 1989 LGPC 6.93 Reverse Oblique 

S06 R04 0983 1.0692 1.0668 525.79 Northridge-01 1994 Jensen Filter Plant Generator Building 6.69 Reverse 

S06 R05 1084 1.0143 1.3988 251.24 Northridge-01 1994 Sylmar - Converter Sta 6.69 Reverse 

S06 R06 1101 1.8653 1.5789 256 Kobe Japan 1995 Amagasaki 6.9 strike slip 

S06 R07 1106 1.1635 1.6098 312 Kobe Japan 1995 KJMA 6.9 strike slip 

S06 R08 1505 1.0364 0.7294 487.34 Chi-Chi Taiwan 1999 TCU068 7.62 Reverse Oblique 

S06 R09 1510 1.9862 0.6925 573.02 Chi-Chi Taiwan 1999 TCU075 7.62 Reverse Oblique 

S06 R10 3968 1.0212 1.4317 310.21 Tottori Japan 2000 TTRH02 6.61 strike slip 

S06 R11 4031 2.2820 0.7604 410.66 San Simeon CA 2003 Templeton - 1-story Hospital 6.52 Reverse 

S06 R12 4451 1.9679 1.7131 462.23 Montenegro Yugoslavia 1979 Bar-Skupstina Opstine 7.1 Reverse 

S06 R13 5264 1.1101 1.0405 198.26 Chuetsu-oki Japan 2007 NIG018 6.8 Reverse 

S06 R14 5657 1.0241 0.7755 506.44 Iwate Japan 2008 IWTH25 6.9 Reverse 

S06 R15 5991 1.7633 1.0066 202.85 El Mayor-Cucapah Mexico 2010 El Centro Array #10 7.2 strike slip 

S06 R16 6893 2.1415 0.8574 344.02 Darfield New Zealand 2010 DFHS 7 strike slip 

S07 R01 0776 1.7656 1.2586 282.14 Loma Prieta 1989 Hollister - South & Pine 6.93 Reverse Oblique 

S07 R02 0825 1.1218 0.6786 567.78 Cape Mendocino 1992 Cape Mendocino 7.01 Reverse 

S07 R03 1063 0.9077 1.3278 282.25 Northridge-01 1994 Rinaldi Receiving Sta 6.69 Reverse 

S07 R04 1086 0.9682 1.1211 440.54 Northridge-01 1994 Sylmar - Olive View Med FF 6.69 Reverse 
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S07 R05 1119 1.1084 0.9106 312 Kobe Japan 1995 Takarazuka 6.9 strike slip 

S07 R06 1197 1.0223 1.0407 542.61 Chi-Chi Taiwan 1999 CHY028 7.62 Reverse Oblique 

S07 R07 1503 0.9272 1.0873 305.85 Chi-Chi Taiwan 1999 TCU065 7.62 Reverse Oblique 

S07 R08 1605 1.1548 0.7383 281.86 Duzce Turkey 1999 Duzce 7.14 strike slip 

S07 R09 3749 2.0583 0.6795 355.18 Cape Mendocino 1992 Fortuna Fire Station 7.01 Reverse 

S07 R10 4219 1.0979 0.8425 480.4 Niigata Japan 2004 NIGH01 6.63 Reverse 

S07 R11 4863 1.9954 1.3493 514.3 Chuetsu-oki Japan 2007 Nagaoka 6.8 Reverse 

S07 R12 4875 1.0774 0.8864 282.57 Chuetsu-oki Japan 2007 Kariwa 6.8 Reverse 

S07 R13 5780 1.9118 0.8099 345.55 Iwate Japan 2008 Iwadeyama 6.9 Reverse 

S07 R14 5975 1.8672 0.5995 231.23 El Mayor-Cucapah Mexico 2010 Calexico Fire Station 7.2 strike slip 

S07 R15 6911 1.1268 0.7864 326.01 Darfield New Zealand 2010 HORC 7 strike slip 

S07 R16 6953 2.1580 0.6390 206 Darfield New Zealand 2010 Pages Road Pumping Station 7 strike slip 

S08 R01 0126 1.0259 0.6489 259.59 Gazli USSR 1976 Karakyr 6.8 Reverse 

S08 R02 0180 1.0938 0.6460 205.63 Imperial Valley-06 1979 El Centro Array #5 6.53 strike slip 

S08 R03 0723 1.0834 0.7776 348.69 Superstition Hills-02 1987 Parachute Test Site 6.54 strike slip 

S08 R04 0900 2.1828 0.9177 353.63 Landers 1992 Yermo Fire Station 7.28 strike slip 

S08 R05 0982 0.9331 1.3244 373.07 Northridge-01 1994 Jensen Filter Plant Administrative Building 6.69 Reverse 

S08 R06 1044 0.9126 0.9150 269.14 Northridge-01 1994 Newhall - Fire Sta 6.69 Reverse 

S08 R07 1492 0.9562 0.9811 579.1 Chi-Chi Taiwan 1999 TCU052 7.62 Reverse Oblique 

S08 R08 1513 1.3912 0.8789 363.99 Chi-Chi Taiwan 1999 TCU079 7.62 Reverse Oblique 

S08 R09 1602 1.0885 1.0510 293.57 Duzce Turkey 1999 Bolu 7.14 strike slip 

S08 R10 3750 2.0797 0.5091 515.65 Cape Mendocino 1992 Loleta Fire Station 7.01 Reverse 

S08 R11 4040 0.9851 0.7504 487.4 Bam Iran 2003 Bam 6.6 strike slip 

S08 R12 4458 1.9486 1.0610 318.74 Montenegro Yugoslavia 1979 Ulcinj - Hotel Olimpic 7.1 Reverse 

S08 R13 4856 0.9342 0.7755 294.38 Chuetsu-oki Japan 2007 Kashiwazaki City Center 6.8 Reverse 

S08 R14 4876 1.0301 0.9623 655.45 Chuetsu-oki Japan 2007 Kashiwazaki Nishiyamacho Ikeura 6.8 Reverse 
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S08 R15 5658 1.1528 0.5164 371.06 Iwate Japan 2008 IWTH26 6.9 Reverse 

S08 R16 5992 1.0783 0.6536 196.25 El Mayor-Cucapah Mexico 2010 El Centro Array #11 7.2 strike slip 

S09 R01 0160 1.1090 0.4912 223.03 Imperial Valley-06 1979 Bonds Corner 6.53 strike slip 

S09 R02 0181 1.0531 0.5119 203.22 Imperial Valley-06 1979 El Centro Array #6 6.53 strike slip 

S09 R03 0821 1.0754 0.8327 352.05 Erzican Turkey 1992 Erzincan 6.69 strike slip 

S09 R04 0828 1.0474 0.8581 422.17 Cape Mendocino 1992 Petrolia 7.01 Reverse 

S09 R05 0953 1.1756 1.1547 355.81 Northridge-01 1994 Beverly Hills - 14145 Mulhol 6.69 Reverse 

S09 R06 1004 0.9179 0.7828 380.06 Northridge-01 1994 LA - Sepulveda VA Hospital 6.69 Reverse 

S09 R07 1244 1.0424 0.7700 258.89 Chi-Chi Taiwan 1999 CHY101 7.62 Reverse Oblique 

S09 R08 1507 0.9985 0.6988 624.85 Chi-Chi Taiwan 1999 TCU071 7.62 Reverse Oblique 

S09 R09 2114 1.1697 0.8741 329.4 Denali Alaska 2002 TAPS Pump Station #10 7.9 strike slip 

S09 R10 4874 1.1834 0.6242 561.59 Chuetsu-oki Japan 2007 Oguni Nagaoka 6.8 Reverse 

S09 R11 4896 0.9299 0.9119 201 Chuetsu-oki Japan 2007 Kashiwazaki NPP Service Hall Array 2.4 m depth 6.8 Reverse 

S09 R12 5664 1.1609 0.5214 361.24 Iwate Japan 2008 MYG005 6.9 Reverse 

S09 R13 5818 1.0459 0.5503 512.26 Iwate Japan 2008 Kurihara City 6.9 Reverse 

S09 R14 5827 1.1472 0.6720 242.05 El Mayor-Cucapah Mexico 2010 MICHOACAN DE OCAMPO 7.2 strike slip 

S09 R15 6927 1.1051 0.6239 263.2 Darfield New Zealand 2010 LINC 7 strike slip 

S09 R16 8161 1.2153 0.8142 196.88 El Mayor-Cucapah Mexico 2010 El Centro Array #12 7.2 strike slip 

S10 R01 0182 0.9770 0.6604 210.51 Imperial Valley-06 1979 El Centro Array #7 6.53 strike slip 

S10 R02 0184 1.0238 0.4374 202.26 Imperial Valley-06 1979 El Centro Differential Array 6.53 strike slip 

S10 R03 0753 1.2026 0.6071 462.24 Loma Prieta 1989 Corralitos 6.93 Reverse Oblique 

S10 R04 1013 1.1343 0.7106 628.99 Northridge-01 1994 LA Dam 6.69 Reverse 

S10 R05 1054 1.1697 1.3677 325.67 Northridge-01 1994 Pardee - SCE 6.69 Reverse 

S10 R06 1114 1.1264 1.0497 198 Kobe Japan 1995 Port Island (0 m) 6.9 strike slip 

S10 R07 1176 1.1379 0.4368 297 Kocaeli Turkey 1999 Yarimca 7.51 strike slip 

S10 R08 1509 0.9025 1.0270 549.43 Chi-Chi Taiwan 1999 TCU074 7.62 Reverse Oblique 
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S10 R09 1549 0.9470 0.5374 511.18 Chi-Chi Taiwan 1999 TCU129 7.62 Reverse Oblique 

S10 R10 3748 1.2080 0.7955 387.95 Cape Mendocino 1992 Ferndale Fire Station 7.01 Reverse 

S10 R11 4451 1.2325 1.0729 462.23 Montenegro Yugoslavia 1979 Bar-Skupstina Opstine 7.1 Reverse 

S10 R12 4886 1.0825 0.5805 338.32 Chuetsu-oki Japan 2007 Tamati Yone Izumozaki 6.8 Reverse 

S10 R13 5656 1.1411 0.3810 486.41 Iwate Japan 2008 IWTH24 6.9 Reverse 

S10 R14 5663 1.0250 0.4135 479.37 Iwate Japan 2008 MYG004 6.9 Reverse 

S10 R15 5991 1.1044 0.6304 202.85 El Mayor-Cucapah Mexico 2010 El Centro Array #10 7.2 strike slip 

S10 R16 6962 1.0871 0.4162 295.74 Darfield New Zealand 2010 ROLC 7 strike slip 

S11 R01 0179 0.8593 0.4604 208.91 Imperial Valley-06 1979 El Centro Array #4 6.53 strike slip 

S11 R02 0183 0.9036 0.3132 206.08 Imperial Valley-06 1979 El Centro Array #8 6.53 strike slip 

S11 R03 0767 1.0945 0.3462 349.85 Loma Prieta 1989 Gilroy Array #3 6.93 Reverse Oblique 

S11 R04 0776 1.0377 0.7397 282.14 Loma Prieta 1989 Hollister - South & Pine 6.93 Reverse Oblique 

S11 R05 1080 1.0600 0.7574 557.42 Northridge-01 1994 Simi Valley - Katherine Rd 6.69 Reverse 

S11 R06 1101 0.9674 0.8188 256 Kobe Japan 1995 Amagasaki 6.9 strike slip 

S11 R07 1111 1.0586 0.3027 609 Kobe Japan 1995 Nishi-Akashi 6.9 strike slip 

S11 R08 1158 0.9179 0.4493 281.86 Kocaeli Turkey 1999 Duzce 7.51 strike slip 

S11 R09 1510 1.0301 0.3591 573.02 Chi-Chi Taiwan 1999 TCU075 7.62 Reverse Oblique 

S11 R10 1513 0.9265 0.5853 363.99 Chi-Chi Taiwan 1999 TCU079 7.62 Reverse Oblique 

S11 R11 3746 1.0213 0.4434 459.04 Cape Mendocino 1992 Centerville Beach Naval Fac 7.01 Reverse 

S11 R12 4228 1.1065 0.4409 375 Niigata Japan 2004 NIGH11 6.63 Reverse 

S11 R13 4863 1.1727 0.7930 514.3 Chuetsu-oki Japan 2007 Nagaoka 6.8 Reverse 

S11 R14 5825 0.9433 0.3692 242.05 El Mayor-Cucapah Mexico 2010 CERRO PRIETO GEOTHERMAL 7.2 strike slip 

S11 R15 5837 0.9159 0.4939 229.25 El Mayor-Cucapah Mexico 2010 El Centro - Imperial & Ross 7.2 strike slip 

S11 R16 6893 1.1106 0.4447 344.02 Darfield New Zealand 2010 DFHS 7 strike slip 

S12 R01 0174 0.9097 0.2166 196.25 Imperial Valley-06 1979 El Centro Array #11 6.53 strike slip 

S12 R02 0721 0.9542 0.2782 192.05 Superstition Hills-02 1987 El Centro Imp. Co. Cent 6.54 strike slip 
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S12 R03 0741 0.8546 0.4562 476.54 Loma Prieta 1989 BRAN 6.93 Reverse Oblique 

S12 R04 0803 0.8447 0.5095 347.9 Loma Prieta 1989 Saratoga - W Valley Coll. 6.93 Reverse Oblique 

S12 R05 1052 0.9704 0.5005 508.08 Northridge-01 1994 Pacoima Kagel Canyon 6.69 Reverse 

S12 R06 1551 1.0399 0.4487 652.85 Chi-Chi Taiwan 1999 TCU138 7.62 Reverse Oblique 

S12 R07 3744 1.0644 0.3976 566.42 Cape Mendocino 1992 Bunker Hill FAA 7.01 Reverse 

S12 R08 3749 0.9824 0.3243 355.18 Cape Mendocino 1992 Fortuna Fire Station 7.01 Reverse 

S12 R09 4031 0.9611 0.3203 410.66 San Simeon CA 2003 Templeton - 1-story Hospital 6.52 Reverse 

S12 R10 4207 0.9773 0.3281 274.17 Niigata Japan 2004 NIG017 6.63 Reverse 

S12 R11 4218 0.9554 0.3243 430.71 Niigata Japan 2004 NIG028 6.63 Reverse 

S12 R12 4458 1.0539 0.5739 318.74 Montenegro Yugoslavia 1979 Ulcinj - Hotel Olimpic 7.1 Reverse 

S12 R13 5780 0.9125 0.3865 345.55 Iwate Japan 2008 Iwadeyama 6.9 Reverse 

S12 R14 5975 0.8912 0.2861 231.23 El Mayor-Cucapah Mexico 2010 Calexico Fire Station 7.2 strike slip 

S12 R15 5985 0.8121 0.4526 202.26 El Mayor-Cucapah Mexico 2010 El Centro Differential Array 7.2 strike slip 

S12 R16 6953 1.0300 0.3050 206 Darfield New Zealand 2010 Pages Road Pumping Station 7 strike slip 

S13 R01 0020 1.1000 0.3453 219.31 Northern Calif-03 1954 Ferndale City Hall 6.5 strike slip 

S13 R02 0161 1.0097 0.2630 208.71 Imperial Valley-06 1979 Brawley Airport 6.53 strike slip 

S13 R03 0587 0.9948 0.2070 551.3 New Zealand-02 1987 Matahina Dam 6.6 Normal 

S13 R04 0764 1.0589 0.3927 308.55 Loma Prieta 1989 Gilroy - Historic Bldg. 6.93 Reverse Oblique 

S13 R05 0900 0.8754 0.3680 353.63 Landers 1992 Yermo Fire Station 7.28 strike slip 

S13 R06 0952 0.8821 0.2614 545.66 Northridge-01 1994 Beverly Hills - 12520 Mulhol 6.69 Reverse 

S13 R07 1006 1.0908 0.2525 398.42 Northridge-01 1994 LA - UCLA Grounds 6.69 Reverse 

S13 R08 1107 0.9747 0.3253 312 Kobe Japan 1995 Kakogawa 6.9 strike slip 

S13 R09 1116 1.0195 0.2651 256 Kobe Japan 1995 Shin-Osaka 6.9 strike slip 

S13 R10 3750 0.8340 0.2041 515.65 Cape Mendocino 1992 Loleta Fire Station 7.01 Reverse 

S13 R11 4456 0.9250 0.4187 543.26 Montenegro Yugoslavia 1979 Petrovac - Hotel Olivia 7.1 Reverse 

S13 R12 4849 0.9581 0.3632 342.74 Chuetsu-oki Japan 2007 Kubikiku Hyakken Joetsu City 6.8 Reverse 
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S13 R13 4879 1.0947 0.5742 265.82 Chuetsu-oki Japan 2007 Yan Sakuramachi City watershed 6.8 Reverse 

S13 R14 5774 0.9387 0.1902 276.3 Iwate Japan 2008 Nakashinden Town 6.9 Reverse 

S13 R15 6886 1.0034 0.1588 280.26 Darfield New Zealand 2010 Canterbury Aero Club 7 strike slip 

S13 R16 8166 1.0093 0.1931 425 Duzce Turkey 1999 IRIGM 498 7.14 strike slip 

S14 R01 0068 0.9236 0.1638 316.46 San Fernando 1971 LA - Hollywood Stor FF 6.61 Reverse 

S14 R02 0162 0.9207 0.1469 231.23 Imperial Valley-06 1979 Calexico Fire Station 6.53 strike slip 

S14 R03 0285 0.9892 0.2717 649.67 Irpinia Italy-01 1980 Bagnoli Irpinio 6.9 Normal 

S14 R04 0730 1.0729 0.3167 343.53 Spitak Armenia 1988 Gukasian 6.77 Reverse Oblique 

S14 R05 0737 0.9465 0.1569 239.69 Loma Prieta 1989 Agnews State Hospital 6.93 Reverse Oblique 

S14 R06 0739 0.9052 0.1625 488.77 Loma Prieta 1989 Anderson Dam (Downstream) 6.93 Reverse Oblique 

S14 R07 0881 0.9416 0.2031 396.41 Landers 1992 Morongo Valley Fire Station 7.28 strike slip 

S14 R08 0998 1.0039 0.1783 315.06 Northridge-01 1994 LA - N Westmoreland 6.69 Reverse 

S14 R09 1115 1.0227 0.1782 256 Kobe Japan 1995 Sakai 6.9 strike slip 

S14 R10 1121 0.9052 0.3691 256 Kobe Japan 1995 Yae 6.9 strike slip 

S14 R11 1486 1.0989 0.1832 465.55 Chi-Chi Taiwan 1999 TCU046 7.62 Reverse Oblique 

S14 R12 1628 0.9661 0.2695 306.37 St Elias Alaska 1979 Icy Bay 7.54 Reverse 

S14 R13 4212 1.0955 0.1328 193.2 Niigata Japan 2004 NIG022 6.63 Reverse 

S14 R14 4842 0.9588 0.1652 655.45 Chuetsu-oki Japan 2007 Joetsu Uragawaraku Kamabucchi 6.8 Reverse 

S14 R15 4859 0.9525 0.3665 274.23 Chuetsu-oki Japan 2007 Mitsuke Kazuiti Arita Town 6.8 Reverse 

S14 R16 6928 0.9831 0.1708 649.67 Darfield New Zealand 2010 LPCC 7 strike slip 

S15 R01 0175 0.9092 0.1598 196.88 Imperial Valley-06 1979 El Centro Array #12 6.53 strike slip 

S15 R02 0724 1.0564 0.1586 316.64 Superstition Hills-02 1987 Plaster City 6.54 strike slip 

S15 R03 0827 0.9490 0.1730 457.06 Cape Mendocino 1992 Fortuna - Fortuna Blvd 7.01 Reverse 

S15 R04 0990 0.9805 0.1519 365.22 Northridge-01 1994 LA - City Terrace 6.69 Reverse 

S15 R05 1001 0.9757 0.1911 285.28 Northridge-01 1994 LA - S Grand Ave 6.69 Reverse 

S15 R06 1166 0.9426 0.2069 476.62 Kocaeli Turkey 1999 Iznik 7.51 strike slip 
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S15 R07 1234 0.9202 0.2141 665.2 Chi-Chi Taiwan 1999 CHY086 7.62 Reverse Oblique 

S15 R08 1636 1.0818 0.1256 302.64 Manjil Iran 1990 Qazvin 7.37 strike slip 

S15 R09 1794 0.9168 0.2755 379.32 Hector Mine 1999 Joshua Tree 7.13 strike slip 

S15 R10 3758 1.0099 0.2050 333.89 Landers 1992 Thousand Palms Post Office 7.28 strike slip 

S15 R11 3908 1.0743 0.1345 293.37 Tottori Japan 2000 OKY005 6.61 strike slip 

S15 R12 4208 0.9050 0.1361 198.26 Niigata Japan 2004 NIG018 6.63 Reverse 

S15 R13 4872 1.0422 0.2661 640.14 Chuetsu-oki Japan 2007 Sawa Mizuguti Tokamachi 6.8 Reverse 

S15 R14 5799 1.0360 0.0830 552.38 Iwate Japan 2008 Misato Akita City - Tsuchizaki 6.9 Reverse 

S15 R15 5972 0.9103 0.1120 208.71 El Mayor-Cucapah Mexico 2010 Brawley Airport 7.2 strike slip 

S15 R16 6965 0.9471 0.1183 263.2 Darfield New Zealand 2010 SBRC 7 strike slip 

S16 R01 0070 1.1181 0.3653 425.34 San Fernando 1971 Lake Hughes #1 6.61 Reverse 

S16 R02 0078 1.0429 0.1410 452.86 San Fernando 1971 Palmdale Fire Station 6.61 Reverse 

S16 R03 0172 1.0360 0.0848 237.33 Imperial Valley-06 1979 El Centro Array #1 6.53 strike slip 

S16 R04 0288 1.0039 0.1023 561.04 Irpinia Italy-01 1980 Brienza 6.9 Normal 

S16 R05 0726 1.0807 0.1937 191.14 Superstition Hills-02 1987 Salton Sea Wildlife Refuge 6.54 strike slip 

S16 R06 0748 0.9886 0.1386 627.59 Loma Prieta 1989 Belmont - Envirotech 6.93 Reverse Oblique 

S16 R07 0800 1.0002 0.1006 279.56 Loma Prieta 1989 Salinas - John & Work 6.93 Reverse Oblique 

S16 R08 0880 1.0088 0.0920 355.42 Landers 1992 Mission Creek Fault 7.28 strike slip 

S16 R09 0968 0.9681 0.1460 271.9 Northridge-01 1994 Downey - Co Maint Bldg 6.69 Reverse 

S16 R10 0984 1.0544 0.1383 301 Northridge-01 1994 LA - 116th St School 6.69 Reverse 

S16 R11 1162 1.0555 0.1407 347.62 Kocaeli Turkey 1999 Goynuk 7.51 strike slip 

S16 R12 1289 1.0727 0.2598 484.97 Chi-Chi Taiwan 1999 HWA041 7.62 Reverse Oblique 

S16 R13 3937 1.0936 0.1129 182.3 Tottori Japan 2000 SMN005 6.61 strike slip 

S16 R14 3994 1.0456 0.1011 365.15 San Simeon CA 2003 San Luis Obispo - Lopez Lake Grounds 6.52 Reverse 

S16 R15 4844 0.9338 0.1812 640.14 Chuetsu-oki Japan 2007 Tokamachi Matsunoyama 6.8 Reverse 

S16 R16 5471 1.0835 0.0894 158.16 Iwate Japan 2008 AKT016 6.9 Reverse 
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S17 R01 0009 1.1686 0.0616 213.44 Borrego 1942 El Centro Array #9 6.5 strike slip 

S17 R02 0065 1.2013 0.0745 308.35 San Fernando 1971 Gormon - Oso Pump Plant 6.61 Reverse 

S17 R03 0122 0.8143 0.1056 249.28 Friuli Italy-01 1976 Codroipo 6.5 Reverse 

S17 R04 0191 0.8770 0.0581 242.05 Imperial Valley-06 1979 Victoria 6.53 strike slip 

S17 R05 0745 0.9046 0.0513 422.79 Loma Prieta 1989 Bear Valley #14 Upper Butts Rn 6.93 Reverse Oblique 

S17 R06 0860 1.1552 0.1067 328.09 Landers 1992 Hemet Fire Station 7.28 strike slip 

S17 R07 0966 0.9956 0.0784 324.79 Northridge-01 1994 Covina - W Badillo 6.69 Reverse 

S17 R08 1154 0.9983 0.1211 612.78 Kocaeli Turkey 1999 Bursa Sivil 7.51 strike slip 

S17 R09 1626 1.0697 0.0513 649.67 Sitka Alaska 1972 Sitka Observatory 7.68 strike slip 

S17 R10 1782 1.0329 0.0833 436.14 Hector Mine 1999 Forest Falls Post Office 7.13 strike slip 

S17 R11 2111 0.8824 0.0915 341.56 Denali Alaska 2002 R109 (temp) 7.9 strike slip 

S17 R12 3915 1.2281 0.0756 296.96 Tottori Japan 2000 OKY012 6.61 strike slip 

S17 R13 4054 0.8284 0.0447 574.88 Bam Iran 2003 Mohammad Abad-e-Madkoon 6.6 strike slip 

S17 R14 4222 1.0456 0.0428 244.84 Niigata Japan 2004 NIGH05 6.63 Reverse 

S17 R15 5258 1.0028 0.0691 229.95 Chuetsu-oki Japan 2007 NIG012 6.8 Reverse 

S17 R16 6933 1.0852 0.0531 342.7 Darfield New Zealand 2010 MAYC 7 strike slip 

S18 R01 0007 1.1801 0.0388 219.31 Northwest Calif-02 1941 Ferndale City Hall 6.6 strike slip 

S18 R02 0051 1.0168 0.0469 280.56 San Fernando 1971 2516 Via Tejon PV 6.61 Reverse 

S18 R03 0056 0.9012 0.0273 235 San Fernando 1971 Carbon Canyon Dam 6.61 Reverse 

S18 R04 0188 0.9553 0.0438 316.64 Imperial Valley-06 1979 Plaster City 6.53 strike slip 

S18 R05 0294 0.8683 0.0534 496.46 Irpinia Italy-01 1980 Tricarico 6.9 Normal 

S18 R06 0897 1.0421 0.0276 635.01 Landers 1992 Twentynine Palms 7.28 strike slip 

S18 R07 0975 0.9117 0.0937 362.31 Northridge-01 1994 Glendora - N Oakbank 6.69 Reverse 

S18 R08 1061 1.1377 0.0670 580.03 Northridge-01 1994 Rancho Palos Verdes - Hawth 6.69 Reverse 

S18 R09 1109 0.9091 0.0349 609 Kobe Japan 1995 MZH 6.9 strike slip 

S18 R10 1627 1.0671 0.0318 432.58 Caldiran Turkey 1976 Maku 7.21 strike slip 
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S18 R11 3583 1.2248 0.0656 309.41 Taiwan SMART1(25) 1983 SMART1 I08 6.5 Reverse 

S18 R12 3946 0.9864 0.0480 271.29 Tottori Japan 2000 SMN018 6.61 strike slip 

S18 R13 4997 0.9987 0.0875 305.54 Chuetsu-oki Japan 2007 FKS028 6.8 Reverse 

S18 R14 5648 1.1235 0.0376 534.71 Iwate Japan 2008 IWTH16 6.9 Reverse 

S18 R15 5768 0.9873 0.0274 291.48 Iwate Japan 2008 YMTH09 6.9 Reverse 

S18 R16 5864 1.0143 0.0750 384.66 El Mayor-Cucapah Mexico 2010 Frink 7.2 strike slip 

S19 R01 0287 0.8610 0.0393 356.39 Irpinia Italy-01 1980 Bovino 6.9 Normal 

S19 R02 0432 1.0059 0.0476 267.67 Taiwan SMART1(25) 1983 SMART1 O01 6.5 Reverse 

S19 R03 0436 1.0107 0.0178 279.97 Borah Peak ID-01 1983 CPP-601 6.88 Normal 

S19 R04 0747 0.8080 0.0288 509.87 Loma Prieta 1989 Bear Valley #7 Pinnacles 6.93 Reverse Oblique 

S19 R05 1037 0.9554 0.0301 422.73 Northridge-01 1994 Mojave - Oak Creek Canyon 6.69 Reverse 

S19 R06 1097 0.9780 0.0303 506 Northridge-01 1994 Wrightwood - Nielson Ranch 6.69 Reverse 

S19 R07 1620 1.1206 0.0221 411.91 Duzce Turkey 1999 Sakarya 7.14 strike slip 

S19 R08 1767 0.9701 0.0228 667.42 Hector Mine 1999 Banning - Twin Pines Road 7.13 strike slip 

S19 R09 3594 1.0378 0.0622 300.22 Taiwan SMART1(25) 1983 SMART1 M11 6.5 Reverse 

S19 R10 3882 1.2227 0.0176 571.63 Tottori Japan 2000 HRS016 6.61 strike slip 

S19 R11 3981 0.8611 0.0488 333.61 San Simeon CA 2003 Coalinga - Fire Station 39 6.52 Reverse 

S19 R12 3987 0.8661 0.0311 280.64 San Simeon CA 2003 Greenfield - Police Station 6.52 Reverse 

S19 R13 4198 0.9814 0.0246 220.65 Niigata Japan 2004 NIG008 6.63 Reverse 

S19 R14 5254 0.9642 0.0235 220.65 Chuetsu-oki Japan 2007 NIG008 6.8 Reverse 

S19 R15 5467 0.9766 0.0204 449.45 Iwate Japan 2008 AKT012 6.9 Reverse 

S19 R16 8163 1.0183 0.0248 483.02 El Mayor-Cucapah Mexico 2010 SANTA ISABEL VIEJO 7.2 strike slip 

S20 R01 0058 0.8749 0.0188 477.22 San Fernando 1971 Cedar Springs Pumphouse 6.61 Reverse 

S20 R02 0092 0.8077 0.0136 347.67 San Fernando 1971 Wheeler Ridge - Ground 6.61 Reverse 

S20 R03 0427 1.0281 0.0216 671.52 Taiwan SMART1(25) 1983 SMART1 E02 6.5 Reverse 

S20 R04 0440 0.9071 0.0114 324.2 Borah Peak ID-01 1983 TRA-642 ETR Reactor Bldg(Bsmt) 6.88 Normal 
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05

06

07

08

09

10

11

12

13

14

15

16238 

S20 R 0441 1.0743 0.0153 324.2 Borah Peak ID-01 1983 TRA-670 ATR Reactor Bldg(Bsmt) 6.88 Normal 

S20 R 2093 1.0784 0.0199 382.5 Nenana Mountain Alaska 2002 TAPS Pump Station #09 6.7 strike slip 

S20 R 3899 1.0028 0.0122 617.44 Tottori Japan 2000 HYGH02 6.61 strike slip 

S20 R 3945 0.8604 0.0181 262.19 Tottori Japan 2000 SMN017 6.61 strike slip 

S20 R 5003 0.8012 0.0125 245.88 Chuetsu-oki Japan 2007 FKSH04 6.8 Reverse 

S20 R 5064 1.0319 0.0266 342.36 Chuetsu-oki Japan 2007 GNM005 6.8 Reverse 

S20 R 5461 0.8859 0.0190 279.36 Iwate Japan 2008 AKT006 6.9 Reverse 

S20 R 5490 1.1355 0.0132 232.58 Iwate Japan 2008 AKTH14 6.9 Reverse 

S20 R 5839 1.0089 0.0161 388.01 El Mayor-Cucapah Mexico 2010 El Cajon - Marshall 7.2 strike slip 

S20 R 5970 0.8201 0.0100 619 El Mayor-Cucapah Mexico 2010 Borrego Springs 7.2 strike slip 

S20 R 6515 0.9517 0.0205 279.58 Niigata Japan 2004 FKS016 6.63 Reverse 

S20 R 6783 1.0118 0.0175 265.6 Niigata Japan 2004 TCG008 6.63 Reverse 

Table B.1: Earthquake records 



  

  

    
 

 
  

   

    

 

 

         

         

  

 

  

  

 
   

 
    

APPENDIX C 

VALIDATION OF COLUMN MODELS AGAINST LABORATORY TESTS 

A subset of the columns summarized in RP1 (Zheng et al., 2020) are validated against 

the laboratory tests, and results are presented here. The selected subset comprises those 

experiments where the failure-mode determination was not obvious (e.g., modern flexural 

column) and represents a wide range of specimen and testing conditions where flexure, 

mixed flexure-shear, and shear failure could occur. Results are generally organized by 

section, each representing a unique failure mode. Where applicable, subsection breakouts 

are provided for results representing different design eras for column detailing. Additional 

sections are included for special cases of reduced-section (pinned) columns (section C.2), 

lapped-splice connections (section C.3), and dynamic loading (section C.5). 

In all cases, the OpenSees simulation results are presented as red lines in the figures 

atop the black responses reproduced from the original literature. 

C.1 Flexural Columns 

C.1.1 Pre-Ductile Design (Era-1) 
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       Figure C.1: e1F-1 (Chai et al., 1991) 
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C.1.2 Early-Ductile Design (Era-2) 

(a) (b) 

Figure C.2: (a) e2F-18 (Calderone et al., 2000); (b) e2F-37 (Tanaka, 1990). 

C.1.3 Ductile Design (Era-3) 

(a) (b) 

(c) (d) 
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(e) (f) 

(g) (h) 

(i) (j) 

Figure C.3: Tests by Calderone et al. (2000): (a) e3F-1; (b) e3F-2; (c) e3F-3; tests by 
Lehman and Moehle (2000): (d) e3F-6; (e) e3F-7; (f) e3F-8; (g) e3F-9; (h) e3F-10; and 
tests by Prakash (2009): (i) e3F-20; (j) e3F-21. 
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C.2 Reduced Sections (i.e., Used in Pinned-Base Column Connections) 

(a) (b) 

Figure C.4: Tests by Lim and Mclean (1991): (a) CA1; (b) CA2 

C.3 Lap-splice Columns 

(a) (b) 

Figure C.5: (a) e1L-1 (Chai et al., 1991); (b) e1L-6 (Sun et al., 1993). 
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C.4 Shear/Flexural-Shear Failure Columns 

C.4.1 Flexural-Shear Columns in Era-2 and Era-3 

(a) (b) 

(c) (d) 

(e) (f) 
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(g) (h) 

(i) 

Figure C.6: Tests by Ang (1985): (a) e23M-1; (b) e23M-3; (c) e23M-13; (d) e23M-14; (e) 
e23M-15; (f) e23M-16; (g) e23M-17; (h) e23M-18; and (i) e23M-19. 

. 
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C.4.2 Flexural-Shear Columns in Era-1 

(a) (b) 

(c) (d) 

(e) (f) 
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(g) (h) 

(i) (j) 

Figure C.7: (a) e1M-1 (Ang, 1985); (b) e1M-2 (Priestley and Benzoni, 1996); tests by 
(Sezen, 2002): (c) e1M-3; and (d) e1M-4; (e) e1M-5 (Umehara, 1983); tests by Ang (1985): 
(f) e1M-6; (g) e1M-7; and (h) e1M-8; tests by Lynn et al. (1996): (i) e1M-9; and (j) e1M-
12. 

. 
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C.4.3 Shear Columns 

(a) (b) 

(c) (d) 

(e) (f) 

. 
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(g) (h) 

(i) 

Figure C.8: Tests by Ang (1985): (a) eXS-1; (b) eXS-2; and (c) eXS-3; tests by Umehara 
(1983): (d) eXS-8; and (e) eXS-9; Tests by Ang (1985): (f) eXS-10; and (g) eXS-11; (h) 
eXS-12 (Hose et al., 1997); and (i) eXS-14 (Umehara, 1983). 
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C.5 Dynamic Analysis 

Table C.1: Ground motion parameters in UCSD shake-table tests (Schoettler et al., 2012). 

Test Earthquake Date Moment 
Magnitude Station Scale 

Factor 

Table 
PGA 
[g] 

Table 
PGV 

[in./sec] 

Feedback 
Sa1 
[g] 

EQ1 Loma Prieta 1989 6.9 Agnew State Hospital 1.0 -0.199 6.0 0.25 
EQ2 Loma Prieta 1989 6.9 Corralitos 1.0 0.409 15.0 1.00 
EQ3 Loma Prieta 1989 6.9 LGPC 1.0 0.526 35.0 1.00 
EQ4 Loma Prieta 1989 6.9 Corralitos 1.0 0.454 15.0 1.00 
EQ5 Kobe 1995 6.9 Takatori -0.8 -0.533 38.0 0.80 
EQ6 Loma Prieta 1989 6.9 LGPC 1.0 -0.512 34.0 1.00 
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(a) (b) 

(c) 

(d) 
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(e) 

(f) 
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(g) 

(h) 

253 



  

 
 

 
 

 

  
  

               
 

(i) 

(j) 

Figure C.9: Comparison of the UCSD column (Schoettler et al., 2012) and OpenSees 
modeling results: (a) peak displacement ; (b) peak base shear; (c) time history result; (d) 
histeretic loops; and (e) to (j) individual ground motion EQ1 to EQ6 simulation results with 
initial displacement shifted to zero. 
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APPENDIX D 

MODIFIED CALCULATION FOR BACKFILL-B MODEL 

This appendix documents the calculation procedure for separating backfill-B introduced 

near the end of subsection 3.3.7. Before proceeding to the modified calculation procedure, 

known relationships are first reviewed below, where the variables are described in 

Chapter 3. 

The overall relationship to construct a hyperbolic curve can be written as: 

y
P = (D.1) 1 y+ Rf

Kmax Pult 

Substituting HT or HA into the following equations provides a model for either the 

total-backfill (backfill-T) response Pult,T or backfill-A response Pult,A. In this manner, 

these two use a common formula. 

( α1H 
Pult = Pult,0 H0 (D.2a) 

\( \α2 

Kmax = Kmax,0 
H 

(D.2b) H0 
Pult R = 1 − (D.2c) 

f 0.05KmaxH 

1 RfNext, denote a = and b = . The response of backfill-T and backfill-A is 
Kmax Pult 

simplified to Equation D.3. 

yPT = (D.3a) 
aT + bT y 

yPA = (D.3b) aA + bAy 
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Subtracting Equation D.3b from Equation D.3a results in backfill-B’s response: 

PB = PT − PA 

[(aA + bAy) − (aT + bT y)] y= 
(aT + bT y)(aA + bAy) 
y

= 
(D.4) aB + bBy 

Rearranging Equation D.4 generates the following relationship: 

bB(bA − bT )y2+ [bB(aA − aT ) + aB(bA − bT )]y+aB(aA − aT ) 

= bAbT y2+ (aAbT + aT bA) y+ aAaT (D.5) 

Use polynomial equating to equate the coefficients for the two terms with y2 and y, 

leaving out the constant term, to yield a function of aB and bB with respect to 

(aA, bA, aT , bT ). This approximation captures the primary effects and does not change 

with y: 

bAbT
b ≈ (D.6a) 
B 

bA − bT 

≈ 
aAbT + aT bA − bB(aA − aT ) (D.6b) aB bA − bT 

Finally, these equations can be used to compute Pult,B, Kmax,B and Rf,B as follows: 

1
Kmax,B = (D.7a) 

aB 

Pult,B = Pult,T − Pult,A (D.7b) 

Rf,B = Pult,BbB (D.7c) 
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APPENDIX E 

RATIO DISTRIBUTION FOR GROUND MOTION PAIRING 

This appendix is documenting the development of distribution for ratio of target applied 

ground motions (TAGM) to design ground motions (DGM), as well as the sampling 

procedure. 

Denote the ratio of intensity measurement (e.g., Sa,1.0) as r. It was assumed to distribute 

with constant probability at the range of 0 to 1, and then with decreasing probability from 

1 to 1.5, as demonstrated below in Figure E.1(b). 

(a) (b) 

(c) (d) 

Figure E.1: Illustration of lognormal distribution and desired r distribution. 

A lognormal distribution (FX(x) and fX(x)) is assumed firstly with median = 1.0 and 

dispersion = d (Figure E.1(a) and (c)). The assumed median is for convenient calculation 
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in the following, which can be changed to any number correspondingly. The assumed 

lognormal distribution is applied for the decreasing portion in the distribution of r . 

Correspondingly, non-scaled area in Figure E.1(b) can be calculated as: 

A 1 = fX (1. 0) (E.1a) 

A 2 = 0. 5 − (1 − FX (1. 5)) (E.1b) 

And therefore, the scaled factor F is derived: 

A 1
F = . (E.2) 

A 1 + A 2 

In Figure E.1(d), the blue line is the scaled from the original lognormal CDF (red line). 

Thus, for a number r 0 < 1. 5, the CDF value is calculated the following: 
 

r0F, 0 ≤ r 0 ≤ 1;
F (r ) = (E.3) 

R 0 
[A 1 + A 2(1. 0 < r ≤ r 0)]/ (A 1 + A 2), 1 < r 0 < 1. 5. 

where A 2(1. 0 < r ≤ r 0) is demonstrated in Figure E.1(b) as the non-scaled area between 

1.0 to r 0. 

Considering 1.0 is the median of original lognormal distribution, the corresponding 

CDF value at r 0 > 1. 0 is: 

FX (r 0) = 0. 5 + A 2(1. 0 < r ≤ r 0). (E.4) 

Combining Equation E.3 and Equation E.4, when 1 < r 0 < 1. 5: 

FR (r 0) = (A 1 + FX (r 0) − 0. 5)/ (A 1 + A 2) (E.5a) 

FX (r 0) = (A 1 + A 2)FR (r 0) − A 1 + 0. 5 (E.5b) 
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To this end, a probability p can be transformed to a corresponding r value: 

 
p/F, 0 ≤ p ≤ F 

r0 = (E.6) 
FX 

−1((A 1 + A 2)p − A 1 + 0. 5), F < p < 1. 0. 
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APPENDIX F 

FRAGILITY MODELS FOR ERA-3 TWO-SPAN MULTI-COLUMN BENT 

BOX-GIRDER BRIDGES 

This appendix presents the complete set of the fragility models for all three regions and 

then rolls up these three models into a system model. 

Figure F.1 and Figure F.2 outline the roll-up stages for a column bent where Figure F.1 

considers Stage-0 models contributing to the Stage-B.2 column model, and Figure F.2 

considers the other components leading to a Stage-C bent model. 

Figure F.3 through Figure F.33 present all of the underlying fragility models used to 

create the combined Stage-B.2 column model, while Figure F.34 through Figure F.55 

present the additional underlying fragility models used to create the Stage-C bent model in 

Figure F.56, which is the sole element of the interior support region. 

Figure F.57 depicts the roll-up stages for the abutment joint region. Similarly, 

Figure F.58 through Figure F.80 presents all the underlying fragility models. 

Figure F.81 depicts the roll-up stages for the abutment wall region, which in this case, 

only involves the abutment foundations. Figure F.82 through Figure F.95 present fragility 

models for the abutment foundation components. 

Figure F.96 provides the overall Stage-D roll-up for the entire bridge systems 

considering hazard contributions from all three regions. 
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Figure F.1: Roll-up steps to create a Stage-B.2 fragility model for column response. 



 

 
 
 
 
 
 
 

 

          

 
262 

Figure F.2: Additional roll-up steps for a Stage-C bent fragility model. 



            

 
 
 
 

 

 

 
263 

Figure F.3: Stage-0: Regular section column displacement ductility in longitudinal direction 
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Figure F.4: Stage-0: Regular section column displacement ductility in transverse direction 
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Figure F.5: Stage-A: Regular section column displacement ductility. 
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Figure F.6: Stage-0: Wide section column displacement ductility in longitudinal direction 
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Figure F.7: Stage-0: Wide section column displacement ductility in transverse direction 
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Figure F.8: Stage-A: Wide section column displacement ductility. 
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Figure F.9: Stage-B.1: Column displacement ductility (global response). 



              

 
 
 
 

 

 

 
270 

Figure F.10: Stage-0: Regular section column top fixed-section maximum curvature ductility in longitudinal direction 
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Figure F.11: Stage-0: Regular section column top fixed-section maximum curvature ductility in transverse direction 
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Figure F.12: Stage-A: Regular section column top fixed-section maximum curvature ductility. 
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Figure F.13: Stage-0: Wide section column top fixed-section maximum curvature ductility in longitudinal direction 
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Figure F.14: Stage-0: Wide section column top fixed-section maximum curvature ductility in transverse direction 



            

 
 
 
 

 

 

 
275 

Figure F.15: Stage-A: Wide section column top fixed-section maximum curvature ductility. 
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Figure F.16: Stage-B.1: Column top fixed-section maximum curvature ductility. 
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Figure F.17: Stage-0: Regular section column top fixed-section average curvature ductility in longitudinal direction 
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Figure F.18: Stage-0: Regular section column top fixed-section average curvature ductility in transverse direction 
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Figure F.19: Stage-A: Regular section column top fixed-section average curvature ductility. 
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Figure F.20: Stage-0: Wide section column top fixed-section average curvature ductility in longitudinal direction 



              

 
 
 
 

 

 

 
281 

Figure F.21: Stage-0: Wide section column top fixed-section average curvature ductility in transverse direction 
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Figure F.22: Stage-A: Wide section column top fixed-section average curvature ductility. 
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Figure F.23: Stage-B.1: Column top fixed-section average curvature ductility. 
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Figure F.24: Stage-B.2: Column top fixed-section curvature ductility. 
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Figure F.25: Stage-0: Regular section column base pinned-section curvature ductility in longitudinal direction 
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Figure F.26: Stage-0: Regular section column base pinned-section curvature ductility in transverse direction 
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Figure F.27: Stage-A: Regular section column base pinned-section curvature ductility. 
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Figure F.28: Stage-0: Wide section column base pinned-section curvature ductility in longitudinal direction 
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Figure F.29: Stage-0: Wide section column base pinned-section curvature ductility in transverse direction 
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Figure F.30: Stage-A: Wide section column base pinned-section curvature ductility. 



       

 
 
 
 

 

 

 
291 

Figure F.31: Stage-B.1: Column base pinned-section curvature ductility. 
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Figure F.32: Stage-B.2: Column curvature ductility (local response). 



 

Figure F.33: Stage-B.2: Column response. 
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Figure F.34: Stage-0: CIDH column pile foundation damage in longitudinal direction 
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Figure F.35: Stage-0: CIDH column pile foundation damage in transverse direction 
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Figure F.36: Stage-A: CIDH column pile foundation damage 



            

 
 
 
 

 

 

 
297 

Figure F.37: Stage-0: Precast column pile foundation damage in longitudinal direction 
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Figure F.38: Stage-0: Precast column pile foundation damage in transverse direction 
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Figure F.39: Stage-A: Precast column pile foundation damage 
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Figure F.40: Stage-0: Steel column pile foundation damage in longitudinal direction 
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Figure F.41: Stage-0: Steel column pile foundation damage in transverse direction 
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Figure F.42: Stage-A: Steel column pile foundation damage 
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Figure F.43: Stage-B.1: Column pile foundation damage. 
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Figure F.44: Stage-0: Column spread footing foundation damage in longitudinal direction 
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Figure F.45: Stage-0: Column spread footing foundation damage in transverse direction 
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Figure F.46: Stage-A: Column spread footing foundation damage 
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Figure F.47: Stage-B.1: Column foundation translational damage. 
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Figure F.48: Stage-0: Column foundation rotational geotechnical damage in longitudinal direction 
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Figure F.49: Stage-0: Column foundation rotational geotechnical damage in transverse direction 
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Figure F.50: Stage-A: Column foundation rotational geotechnical damage 
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Figure F.51: Stage-0: Column foundation rotational structural damage in longitudinal direction 
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Figure F.52: Stage-0: Column foundation rotational structural damage in transverse direction 
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Figure F.53: Stage-A: Column foundation rotational structural damage 
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Figure F.54: Stage-B.1: Column foundation rotational damage 
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Figure F.55: Stage-B.2: Column foundation rotation connection damage. 



 

Figure F.56: Stage-C: Column bent damage. 
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Figure F.57: Roll-up steps to create a Stage-C fragility model for abutment joint response. 
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Figure F.58: Stage-0: Abutment maximum unseating damage with 30-in seat width 
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Figure F.59: Stage-0: Abutment maximum unseating damage with 36-in seat width 
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Figure F.60: Stage-0: Abutment maximum unseating damage with 36-in seat width 
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Figure F.61: Stage-0: Abutment maximum unseating damage with 36-in seat width 
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Figure F.62: Stage-B.1: Abutment maximum unseating damage. 
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Figure F.63: Stage-0: Abutment average unseating damage with 30-in seat width 
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Figure F.64: Stage-0: Abutment average unseating damage with 36-in seat width 
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Figure F.65: Stage-0: Abutment average unseating damage with 36-in seat width 
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Figure F.66: Stage-0: Abutment average unseating damage with 36-in seat width 
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Figure F.67: Stage-B.1: Abutment average unseating damage. 
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Figure F.68: Stage-B.2: Abutment unseating damage. 
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Figure F.69: Stage-0: Abutment backwall damage with compression seal 
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Figure F.70: Stage-0: Abutment backwall damage with strip seal 
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Figure F.71: Stage-B.1: Abutment backwall damage 
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Figure F.72: Stage-0: Abutment joint seal damage with compression seal 
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Figure F.73: Stage-0: Abutment joint seal damage with strip seal 
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Figure F.74: Stage-B.1: Abutment joint seal damage 
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Figure F.75: Stage-0: Abutment joint pounding damage with compression seal 



           

 
 
 
 

 

 

 
336 

Figure F.76: Stage-0: Abutment joint pounding damage with strip seal 
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Figure F.77: Stage-B.1: Abutment joint pounding damage 
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Figure F.78: Stage-0: Abutment external non-isolated shear key damage 
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Figure F.79: Stage-0: Abutment elastomeric bearing pads damage 
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Figure F.80: Stage-C roll-up: Abutment joint damage. 
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Figure F.81: Roll-up steps to create a Stage-C fragility model for abutment wall response. 
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Figure F.82: Stage-0: CIDH abutment pile foundation damage in longitudinal direction 
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Figure F.83: Stage-0: CIDH abutment pile foundation damage in transverse direction 
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Figure F.84: Stage-A: CIDH abutment pile foundation damage 
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Figure F.85: Stage-0: Precast abutment pile foundation damage in longitudinal direction 
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Figure F.86: Stage-0: Precast abutment pile foundation damage in transverse direction 
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Figure F.87: Stage-A: Precast abutment pile foundation damage 
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Figure F.88: Stage-0: Steel abutment pile foundation damage in longitudinal direction 
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Figure F.89: Stage-0: Steel abutment pile foundation damage in transverse direction 
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Figure F.90: Stage-A: Steel abutment pile foundation damage 
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Figure F.91: Stage-B.1: Abutment pile foundation damage. 
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Figure F.92: Stage-0: Abutment spread footing foundation damage in longitudinal direction 
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Figure F.93: Stage-0: Abutment spread footing foundation damage in transverse direction 
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Figure F.94: Stage-A: Abutment spread footing foundation damage 
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Figure F.95: Stage-B.1: Abutment foundation translational damage (Same as Stage-C roll-up for abutment wall damage). 



       

 
 
 
 

 

 

 
356 

Figure F.96: Stage-D roll-up: System fragility. 
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