1. REPORT NO.	2. GOVERNMENT ACCESSION NO	D.	3. RECIPIENT'S CATALOG NO.	
FHWA/CA22-3033				
4. TITLE AND SUBTITLE	•		5. REPORT DATE	
DEVELOPMENT AND CRASH TESTING OF A STEEL POST-AND-BEAM E CALIFORNIA ST-75		E RAILING,	August	2022
			6. PERFORMING ORGANIZATI	ON CODE
7. AUTHOR(S)			8. PERFORMING ORGANIZATI	ON REPORT NO.
David Whitesel, Robert Meline, Christophe	r Caldwell		FHWA/CA22-3033	
9. PERFORMING ORGANIZATION NAME AND ADDRESS			10. WORK UNIT NO.	
Decide Cafety December Crown				
Roadside Safety Research Group				
California Department of Transportation 5900 Folsom Blvd.,				
Sacramento, CA. 95819			11. CONTRACT OR GRANT NO.	
· · ·			FHWA/CA	
12. SPONSORING AGENCY NAME AND ADDRESS			13. TYPE OF REPORT & PERIOD	COVERED
California Department of Transportation			FINAL	
5900 Folsom Blvd.,				
Sacramento, CA. 95819			14. SPONSORING AGENCY COD	E
15. SUPPLEMENTARY NOTES				
This project was performed in cooperation with the US Department of Transportation, Federal Highway Administration, under the research project titled "DEVLEOPMENT AND CRASH TESTING OF A STEEL POST-AND-BEAM BRIDGE RAILING IN COMPLIANCE WITH MASH 2016, TEST LEVEL 4, FOR USE IN CALIFORNIA". This work was performed at the request of Caltrans Division of Engineering Services, Structures and				
Engineering Services. 16. ABSTRACT				
Three full-scale crash tests of the California ST-75 Bridge Rail (ST-75) were completed to meet the Implementation Agreement for Manual for Assessing Safety Hardware (MASH) 2016. California Department of Transportation (Caltrans) needed a MASH 2016 compliant steel post and beam bridge rail to replace existing NCHRP Report 350 (Report 350) rails. The July 2019 Caltrans "MASH Implementation for California Bridge Railings" identified the ST-75 as a design intended to replace existing Caltrans bridge rails: the ST-10, ST-20S, ST-30 and the ST-70. The ST-75 is a 914 mm (36 in) vehicular and a 1067 mm (42 in) high combination (vehicular and bicycle) bridge rail. The rail elements are ASTM A500/A500M, Grade B, hollow structural 203 mm x 102 mm x 8 mm (8 in x 4 in x 5/16 in) sections bolted to A709 Grade 36 steel posts. The post spacing is 3m (10 feet) and are anchored using ASTM F1554, Grade 105, bolts to a 6-inch-high concrete curb. The tested ST-75 rail was 28.7 m (94 feet) long and constructed and tested at the Caltrans Dynamic Test Facility in West Sacramento, CA. The first 21.3 m (70 feet) of the rail was mounted to a simulated bridge deck overhang which connected to a concrete anchor block with last 7.3 m (24 feet) of the downstream rail mounted to a reaction slab.				
The full suite of MASH 2016 Test Level 4 (TL-4) crash tests were conducted; Test 4-10 (1100C), 4-11 (2270P) and 4-12 (10000S) (test designations 110MASH4C19-01, 110MASH4P18-02, 110MASH4S19-02 respectively). All three tests met MASH 2016 evaluation criteria for TL-4 longitudinal barriers. The results of all three tests were within the limits of MASH 2016 guidelines.				
17. KEY WORDS		18. DISTRIBUTION STATEMENT		
Barriers, Crash Test, Bridge rail, Vehicle Impact beam	Test, Steel, Post-and-		ocument is available thro ervice, Springfield, VA 22	-
19. SECURITY CLASSIF. (OF THIS REPORT)	20. SECURITY CLASSIF. (OF THIS	PAGE)	21. NO. OF PAGES	22. PRICE
Unclassified	Unclassified		242	

DEVELOPMENT AND CRASH TESTING OF A STEEL POST-AND-BEAM BRIDGE RAILING, CALIFORNIA ST-75

STATE OF CALIFORNIA

DEPARTMENT OF TRANSPORTATION

DIVISION OF RESEARCH, INNOVATION AND SYSTEM INFORMATION OFFICE OF SAFETY INNOVATION AND COOPERATIVE RESEARCH ROADSIDE SAFETY RESEARCH GROUP

Supervised by	Robert Meline, P.E.
Principal Investigator	John Jewell, P.E.
Report Prepared by	David Whitesel, P.E.
Research Performed by	

STATE OF CALIFORNIA

DEPARTMENT OF TRANSPORTATION DIVISION OF RESEARCH, INNOVATION AND SYSTEM INFORMATION OFFICE OF SAFETY INNOVATION AND COOPERATIVE RESEARCH ROADSIDE SAFETY RESEARCH BRANCH

DEVELOPMENT AND CRASH TESTING OF A STEEL POST-AND-BEAM BRIDGE RAILING, CALIFORNIA ST-75

Supervised by	Robert Meline, P.E.
Principal Investigator	John Jewell, P.E.
Report Prepared by	David Whitesel, P.E.
Research Performed by	Roadside Safety Research Group

Joseph W Horton

Joseph W. Horton, P.E. Office Chief Office of Safety Innovation and Cooperative Research

John Jewell

John Jewell, P.E. Senior Engineer Specialist Roadside Safety Research Group

Talent of Med

Robert Meline, P.E. Branch Chief Roadside Safety Research Branch Roadside Safety Research Group

Danha

David Whitesel, P.E. Transportation Engineer Roadside Safety Research Group

DISCLAIMER STATEMENT

This document is disseminated in the interest of information exchange. The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the Federal Highway Administration. This publication does not constitute a standard, specification or regulation. This report does not constitute an endorsement by the Department of any product described herein.

For individuals with sensory disabilities, this document is available in alternate formats. For information, call (916) 654-8899, TTY 711, or write to California Department of Transportation, Division of Research, Innovation and System Information, MS-83, P.O. Box 942873, Sacramento, CA 94273-0001.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Caltrans Roadside Safety Research Group (RSRG) has determined the uncertainty of measurements in the testing of roadside safety hardware as well as in standard full-scale crash testing of roadside safety features. The results contained in this report are only for the tested article(s) and not any other articles based on the same design. Information regarding the uncertainty of measurements for critical parameters is available upon request by the California Department of Transportation Roadside Safety Research Group.

ACKNOWLEDGEMENTS

This work was accomplished in cooperation with the United States Department of Transportation, Federal Highway administration.

Special appreciation is due to the following staff members of the Materials Engineering and Testing Services, Structures Construction and Division of Research, Innovation, and Systems Information for their enthusiastic and competent help on this project:

Thanks to Robert Meline, John Jewell, Vue Her, Christopher Caldwell, John Williams, Dave Sawko, Steve Wake, Rachel Kwong, Jean Vedenoff, Victor Lopez, Samira Zalekian, Ed Ung, Eric Jacobson, Karim Mirza, Arvern Lofton, and Larry Baumeister for test preparation, data reduction, vehicle preparation, video processing, and assistance during tests. Thanks to Christopher Caldwell for Finite Element Modeling and the FEM report included at the end of this document. Thanks to Dave Bengal, Independent Camera Operator. Thanks to Martin Zanotti, Charles Gill, James Olivo, and Michael Pieruccini for their support in the machine shop. Thanks to Larry McCrum for his support in the concrete lab. Thanks to John Milne and Scott Lorenzo in the Photography Unit for their support with still photos. Also thanks to John Lammers and Rusty D'Anna for test article constructability and construction support.

The bridge rail design and load evaluation were performed by Greg Kaderabek, Tillat Satter, Tony Yoon, Don Lee, Ashraf Ahmed, and Jim Gutierrez, Caltrans Division of Engineering Services, Structures and Engineering Services.

Thanks to:

ROADSIDE SAFETY RESEARCH GROUP

Bob Meline, P.E., *Branch Chief* John Jewell, P.E., *Principal Investigator* David Whitesel, P.E., Transportation Engineer, Project Manager Vue Her, M.S., P.E., Senior Transportation Engineer Christopher Caldwell, Transportation Engineer Victor Lopez, P.E., Transportation Engineer Jean Vedenoff, P.E., Transportation Engineer Dave Sawko, *Lab Manager* Steve Wake, *Lab Manager* Rachel Kwong, *Audio Visual Manager*

Table of Contents

1.	Intro	oduct	ion	1
1	.1.	Prot	plem	1
1	.2.	Obje	ective	1
1	.3.	Back	ground	1
1	.4.	Liter	rature Search	3
1	.5.	Scop	De	3
2.	Test	Artic	le Details	3
2	.1.	Barr	ier Design	3
2	.2.	Con	struction	4
3.	Test	Requ	uirements and Evaluation Criteria	. 10
3	.1.	Cras	h Test Matrix	. 10
3	.2.	Eval	uation Criteria	. 10
4.	Test	Cond	ditions	. 10
4	.1.	Test	Facilities	. 10
4	.2.	Test	Vehicles	. 10
	4.2.	1.	Test 4-10	. 10
	4.2.2	2.	Test 4-11	. 14
	4.2.3	3.	Test 4-12	. 18
4	.3.	Test	Documentation	. 24
5.	Test	110	MASH4C19-01 (4-10)	. 25
5	.1.	Impa	act Description and Results	. 25
5	.2.	Test	Description	. 25
5	.3.	Barr	ier Damage	. 28
5	.4.	Vehi	icle Damage	. 30
5	.5.	Disc	ussion of Test Results	. 36
	5.5.	1.	General Evaluation Methods	. 36
	5.5.2	2.	Structural Adequacy	. 36
	5.5.3	3.	Occupant Risk	. 36
	5.5.4	4.	Vehicle Trajectory	. 36
6.	Test	110	MASH4P18-02 (4-11)	. 38
6	.1.	Impa	act Description and Results	. 38
6	.2.	Test	Description	. 39

	6.3	3.	Barr	ier Damage	.41
	6.4			cle Damage	
	6.5	5.		ussion of Test Results	
		6.5.1	1.	General Evaluation Methods	. 49
		6.5.2	2.	Structural Adequacy	. 49
		6.5.3	3.	Occupant Risk	. 49
		6.5.4	1.	Vehicle Trajectory	. 49
7.		Test	110	ИАЅН4Ѕ19-02 (4-12)	. 51
	7.1	1.	Impa	act Description and Results	.51
	7.2	2.	Test	Description	. 53
	7.3	3.	Barr	ier Damage	. 55
	7.4	4.	Vehi	cle Damage	. 59
	7.5	5.	Disc	ussion of Test Results	. 68
		7.5.1	1.	General Evaluation Methods	. 68
		7.5.2	2.	Structural Adequacy	. 68
		7.5.3	3.	Occupant Risk	. 68
		7.5.4	1.	Vehicle Trajectory	. 68
8.		Cond	clusio	ons and Recommendations	. 70
9.		Арр	endix	A: Vehicle Equipment and Test Data	.71
	9.1	1.	Test	Vehicle Equipment	. 71
		9.1.1	1.	Test 110MASH4C19-01	. 71
		9.1.2	2.	Test 110MASH4P18-02	. 72
		9.1.3	3.	Test 110MASH4S19-02	. 74
	9.2	2.	Test	Vehicle Guidance System	. 76
	9.3	3.	Phot	o - Instrumentation	. 77
	9.4	4.	Elect	tronic Instrumentation and Data	. 80
	9.5	5.	Vehi	cle Measurements	. 85
		9.5.1	1.	Test 110MASH4C19-01	. 85
		9.5.2	2.	Test 110MASH4P18-02	. 93
		9.5.3		Test 110MASH4S19-021	
	9.6	5.	Data	Plots	113
		9.6.1	1.	Data Plots - Test 110MASH4C19-01 (Test 4-10)	
		9.6.2	2.	Data Plots - Test 110MASH4P18-02 (Test 4-11)1	126

9.6.3.	Data Plots - Test 110MASH4S19-02 (Test 4-12)	
10. Api	pendix B: Detail Drawings	
	pendix C: Quasi-static Push Test and Anchor Bolt Tensile Testing	
11.1.	Quasi-static Push Test	
11.2.	Anchor Bolt Tensile Testing	
12. Apj	pendix D: Material Properties and Certifications	
13. Ref	erences	
14. Apj	pendix E: Finite Element Modeling Report	
14.1.	Objective	
14.2.	ST-75 Bridge Rail Model	
14.3.	Vehicle Models	
14.3.1	. 2270P Truck	
14.3.2	2. 1100C Car	
14.3.3	8. 10000S Single-Unit Van Truck	
14.4.	Comparing Modeling Data to Real World Data	
14.4.1	. 2270P Truck	
14.4.2	2. TRAP Data Comparison	
14.4.3	8. Visual Comparison	
14.5.	1100C Small Car	
14.5.1	. TRAP Data Comparison	
14.5.2	2. Visual Comparison	
14.6.	10000S Single Unit Truck	
14.6.1	. TRAP Data Comparison	
14.6.2	2. Visual Comparison	
14.7.	Conclusions	
15. Do	cument Revision History	

List of Figures
Figure 1-1 Existing Caltrans Steel Post and Beam Bridge Rails
Figure 2-1 ST-75 Cross-Section
Figure 2-2 Top 12 Inches of Concrete Being Removed from Anchor Block
Figure 2-3 Rebar and Strain Gauges in Place for Anchor Block Concrete Replacement and Deck Overhang
Figure 2-4 Uniaxial Strain Gauges and Cable Prior to Deck Pour
Figure 2-5 Rebar in Slab Footing for Downstream Section
Figure 2-6 Downstream Section on Slab Complete7
Figure 2-7 Reaction Block and Deck Rebar in Place for Concrete Pour7
Figure 2-8 Formwork and Rebar in Place for Simulated Deck Concrete Pour
Figure 2-9 Simulated Deck Concrete Pour Complete8
Figure 2-10 Bridge Rail Curb Concrete Pour9
Figure 2-11 Completed Bridge Rail9
Figure 4-1 MASH 4-10 Test Vehicle Front Right
Figure 4-2 MASH 4-10 Test Vehicle Passenger Side11
Figure 4-3 MASH 4-10 Test Vehicle Front
Figure 4-4 MASH 4-10 Test Vehicle Driver Side12
Figure 4-5 MASH 4-10 Test Vehicle Rear13
Figure 4-6 MASH 4-10 Test Vehicle at Impact Point13
Figure 4-7 MASH 4-11 Test Vehicle Front Right14
Figure 4-8 MASH 4-11 Test Vehicle Passenger Side15
Figure 4-9 MASH 4-11 Test Vehicle Front15
Figure 4-10 MASH 4-11 Test Vehicle Driver Side16
Figure 4-11 MASH 4-11 Test Vehicle Rear16
Figure 4-12 MASH 4-11 Test Vehicle Ballast17
Figure 4-13 MASH 4-11 Test Vehicle at Impact Point17
Figure 4-14 MASH 4-12 Test Vehicle Front Right19
Figure 4-15 MASH 4-12 Test Vehicle Passenger Side19
Figure 4-16 MASH 4-12 Test Vehicle Front
Figure 4-17 MASH 4-12 Test Vehicle Driver Side20
Figure 4-18 MASH 4-12 Test Vehicle Rear21

Figure 4-19 MASH 4-12 Test Vehicle at Impact Point	21
Figure 4-20 MASH 4-12 Test Vehicle Ballast in Cargo Box	22
Figure 4-21 MASH 4-12 Test Vehicle Instrumentation Equipment in Cargo Box	22
Figure 4-22 MASH 4-12 Test Vehicle Front Shear Plate	23
Figure 4-23 MASH 4-12 Test Vehicle Ballast Mounting Plate	23
Figure 4-24 MASH 4-12 Test Vehicle Rear Shear Plate	24
Figure 5-1 Test Article Impact Area Pre-Test 4-10	25
Figure 5-2 Test Article Downstream of Impact Area Pre-Test 4-10	25
Figure 5-3 Test 4-10 Downstream Camera Impact View	27
Figure 5-4 Test 4-10 Upstream Camera Impact View	27
Figure 5-5 Test 4-10 Pan Camera Impact View	28
Figure 5-6 Test 4-10 Overview of Barrier Post-Test	28
Figure 5-7 Test 4-10 Vehicle Marks on ST-75 Impact Point Post-Test	29
Figure 5-8 Test 4-10 Post 4 Post-Test	29
Figure 5-9 Test 4-10 Downstream of Post 4 Post-Test	30
Figure 5-10 Test 4-10 Test Vehicle Damage (Right Side)	31
Figure 5-11 Test 4-10 Test Vehicle Damage (Rear Right)	31
Figure 5-12 Test 4-10 Test Vehicle Damage (Front Left)	32
Figure 5-13 Test 4-10 Test Vehicle Damage (Front Right)	32
Figure 5-14 Test 4-10 Test Vehicle Occupant Compartment Floorboard Deformation	33
Figure 5-15 Test 4-10 Test Vehicle Occupant Compartment Deformation (Front Seat Area)	33
Figure 5-16 Test 4-10 Test Vehicle Windshield Separation	34
Figure 5-17 Test 4-10 Test Vehicle Front Right Bumper and Bumper Support Member Deformation	34
Figure 5-18 Exit Box for Longitudinal Barriers (AASHTO, 2016)	36
Figure 6-1 Test 4-11 Critical Impact Point Pre-Test	38
Figure 6-2 Bridge Railing Downstream of Critical Impact Point Pre-Test	38
Figure 6-3 Test 4-11 Pan Camera Impact View	40
Figure 6-4 Test 4-11 Downstream Camera Impact View	40
Figure 6-5 Test 4-11 Upstream Impact View	41
Figure 6-6 Test 4-11 Vehicle Marks on ST-75 at Impact Point Post-Test	42
Figure 6-7 Test 4-11 Minor Concrete Spalling of Concrete Curb Post-Test	42
Figure 6-8 Test 4-11 ST-75 Bridge Rail Post-Test Downstream of Impact Post-Test	43

Figure 6-9 Test 4-11 Test Vehicle Damage (Rear Right)	44
Figure 6-10 Test 4-11 Test Vehicle Damage (Front Right)	44
Figure 6-11 Test 4-11 Test Vehicle Damage (Left Side)	45
Figure 6-12 Test 4-11 Test Vehicle Damage (Front)	45
Figure 6-13 Test 4-11 Test Vehicle Damage Front Passenger Floorpan (Occupant Compartment	
Deformation)	46
Figure 6-14 Test 4-11 Test Vehicle Front Right Wheel Deformation	46
Figure 6-15 Test 4-11 Test Vehicle Front Right Suspension (with wheel removed)	47
Figure 6-16 Test 4-11 Test Vehicle Front Right Suspension Lower Control Arm Connector Fracture	47
Figure 6-17 Exit Box for Longitudinal Barriers (AASHTO, 2016)	49
Figure 7-1 Test 4-12 ST-75 Impact Area with Checkered Tape at Impact Point Pre-Test	51
Figure 7-2 Test 4-12 ST-75 Post 5 Downstream of Impact Point Pre-Test	51
Figure 7-3 Test 4-12 ST-75 Post 5 Downstream of Impact Point Pre-Test	52
Figure 7-4 Test 4-12 ST-75 Post 6 Downstream of Impact Point Pre-Test	52
Figure 7-5 Test 4-12 Across Camera Impact View	54
Figure 7-6 Test 4-12 Downstream Camera Impact View	54
Figure 7-7 Test 4-12 Upstream Camera Impact View	55
Figure 7-8 Test 4-12 Vehicle Marks on ST-75 Impact Point Between Posts 3 and 4 Post-Test	56
Figure 7-9 Test 4-12 Vehicle Marks on ST-75 at Post 4 Downstream of Impact Point Post-Test	57
Figure 7-10 Test 4-12 ST-75 Post 5 Downstream of Impact Point Post-Test	57
Figure 7-11 Test 4-12 ST-75 Post 3 Post-Test	58
Figure 7-12 Test 4-12 Post 3 Bent Bottom Plate Close Up Post-Test	58
Figure 7-13 Test 4-12 Post 4 Bent Bottom Plate Close Up Post-Test	59
Figure 7-14 Test 4-12 Test Vehicle Top Post-Test	60
Figure 7-15 MASH 4-12 Test Vehicle Undercarriage After Impact	60
Figure 7-16 MASH 4-12 Test Vehicle Ballast After Impact	61
Figure 7-17 MASH 4-12 Test Vehicle Front Undercarriage and Suspension After Impact	61
Figure 7-18 MASH 4-12 Test Vehicle Undercarriage and Suspension After Impact	62
Figure 7-19 Test 4-12 Test Vehicle (Impact, Right Side) Post-Test (righted)	62
Figure 7-20 Test 4-12 Test Vehicle (Front Right) Post-Test (righted)	63
Figure 7-21 Test 4-12 Test Vehicle (Front) Post-Test (righted)	63
Figure 7-22 Test 4-12 Test Vehicle (Left Side) Post-Test (righted)	64

Figure 7-23 Test 4-12 Test Vehicle (Front Left Side) Post-Test (righted)	64
Figure 7-24 Test 4-12 Test Vehicle (Rear Left) Post-Test (righted)	65
Figure 7-25 Test 4-12 Test Vehicle (Rear) Post-Test (righted)	65
Figure 7-26 Test 4-12 Test Vehicle (Front Right) Post-Test (righted)	66
Figure 7-27 Test 4-12 Test Vehicle Occupant Compartment Deformation Post-Test	66
Figure 7-28 Exit Box for Longitudinal Barriers (AASHTO, 2016)	68
Figure 9-1 Data Brick III's installed for Test 4-10	71
Figure 9-2 Test 4-10 Vehicle Dummy and Instrumentation	72
Figure 9-3 Test 4-11 Vehicle Instrumentation	73
Figure 9-4 Test 4-11 Vehicle Instrumentation	73
Figure 9-5 Test 4-11 Accelerometers and Angular Rate Sensors	74
Figure 9-6 Test 4-12 Accelerometers and Angular Rate Sensors in Cab	75
Figure 9-7 Test 4-12 Accelerometers, Angular Rate Sensors, and other Instrumentation ir	ו Cargo Box 75
Figure 9-8 Typical Guidance System Layout	76
Figure 9-9 Guide Arm Releasing from Test Vehicle	77
Figure 9-10 Guide Arm Released from Vehicle	77
Figure 9-11 High-Speed Video Camera Locations (Not to Scale)	78
Figure 9-12 Speed Trap Tape Layout	
Figure 9-13 Test 4-10 TRAP Summary Sheet (DataBrick 3)	114
Figure 9-14 Test 4-10 Longitudinal Acceleration (Databrick 3)	115
Figure 9-15 Test 4-10 Lateral Acceleration (Databrick 3)	115
Figure 9-16 Test 4-10 Vertical Acceleration (Databrick 3)	116
Figure 9-17 Test 4-10 Roll, Pitch, and Yaw Rates (DataBrick 3)	116
Figure 9-18 Test 4-10 Roll, Pitch, and Yaw Angles (DataBrick 3)	117
Figure 9-19 Test 4-10 Acceleration Severity Index (DataBrick 3)	117
Figure 9-20 Test 4-10 TRAP Summary Sheet (SLICE 656)	118
Figure 9-21 Test 4-10 Longitudinal Acceleration (SLICE 656)	119
Figure 9-22 Test 4-10 Lateral Acceleration (SLICE 656)	119
Figure 9-23 Test 4-10 Vertical Acceleration (SLICE 656)	120
Figure 9-24 Test 4-10 Roll, Pitch, and Yaw Rates (SLICE 656)	120
Figure 9-25 Test 4-10 Roll, Pitch, and Yaw Angles (SLICE 656)	121
Figure 9-26 Test 4-10 Acceleration Severity Index (SLICE 656)	

Figure 9-27 Test 4-10 TRAP Summary Sheet (SLICE 659)	
Figure 9-28 Test 4-10 Longitudinal Acceleration (SLICE 659)	
Figure 9-29 Test 4-10 Lateral Acceleration (SLICE 659)	123
Figure 9-30 Test 4-10 Vertical Acceleration (SLICE 659)	124
Figure 9-31 Test 4-10 Roll, Pitch, and Yaw Rates (SLICE 659)	124
Figure 9-32 Test 4-10 Roll, Pitch, and Yaw Angles (SLICE 659)	125
Figure 9-33 Test 4-10 Acceleration Severity Index (SLICE 659)	125
Figure 9-34 Test 4-11 TRAP Summary Sheet (DataBrick 3)	126
Figure 9-35 Test 4-11 Longitudinal Acceleration (DataBrick 3)	
Figure 9-36 Test 4-11 Lateral Acceleration (DataBrick 3)	127
Figure 9-37 Test 4-11 Vertical Acceleration (DataBrick 3)	128
Figure 9-38 Test 4-11 Roll, Pitch, and Yaw Rates (DataBrick 3)	128
Figure 9-39 Test 4-11 Roll, Pitch, and Yaw Angles (DataBrick 3)	129
Figure 9-40 Test 4-11 Acceleration Severity Index (DataBrick 3)	129
Figure 9-41 Test 4-11 TRAP Summary Sheet (SLICE 656)	130
Figure 9-42 Test 4-11 Longitudinal Acceleration (SLICE 656)	131
Figure 9-43 Test 4-11 Lateral Acceleration (SLICE 656)	131
Figure 9-44 Test 4-11 Vertical Acceleration (SLICE 656)	132
Figure 9-45 Test 4-11 Roll, Pitch, and Yaw Rates (SLICE 656)	132
Figure 9-46 Test 4-11 Roll, Pitch, and Yaw Angles (SLICE 656)	133
Figure 9-47 Test 4-11 Acceleration Severity Index (SLICE 656)	133
Figure 9-48 Test 4-12 Longitudinal Acceleration Inside Cab (Databrick 3)	134
Figure 9-49 Test 4-12 Lateral Acceleration Inside Cab (Databrick 3)	134
Figure 9-50 Test 4-12 Vertical Acceleration Inside Cab (Databrick 3)	135
Figure 9-51 Test 4-12 Roll, Pitch, and Yaw Rates Inside Cab (Databrick 3)	135
Figure 9-52 Test 4-12 Roll, Pitch, and Yaw Angles Inside Cab (Databrick 3)	136
Figure 9-53 Test 4-12 Longitudinal Acceleration Inside Cargo Box (SLICE 656)	
Figure 9-54 Test 4-12 Longitudinal Acceleration Inside Cargo Box (SLICE 656)	
Figure 9-55 Test 4-12 Vertical Acceleration Inside Cargo Box (SLICE 656)	
Figure 9-56 Test 4-12 Roll, Pitch, and Yaw Rates Inside Cargo Box (SLICE 656)	138
Figure 9-57 Test 4-12 Roll, Pitch, and Yaw Angles Inside Cargo Box (SLICE 656)	139
Figure 9-58 Test 4-12 Longitudinal Acceleration Inside Cargo Box (SLICE 659)	140

Figure 9-59 Test 4-12 Longitudinal Acceleration Inside Cargo Box (SLICE 659)	140
Figure 9-60 Test 4-12 Vertical Acceleration Inside Cargo Box (SLICE 659)	141
Figure 9-61 Test 4-12 Roll, Pitch, and Yaw Rates Inside Cargo Box (SLICE 659)	141
Figure 9-62 Test 4-12 Roll, Pitch, and Yaw Angles Inside Cargo Box (SLICE 659)	142
Figure 10-1 ST-75 Test Article Reaction Block Details	144
Figure 10-2 ST-75 Test Article Reaction Slab Details	145
Figure 10-3 ST-75 Test Article Details 1	146
Figure 10-4 ST-75 Test Article Details 2	147
Figure 10-5 ST-75 Test Article Details 3	148
Figure 11-1 Load vs Displacement Test Setup and Curve for Quasi-static Push Test at Post 6	149
Figure 11-2 Post 3 Anchor Bolts with Post Removed	150
Figure 11-3 Post 4 Anchor Bolts with Post Removed	151
Figure 11-4 Post 6 Anchor Bolts with Post Removed	151
Figure 11-5 Tensile Test (ASTM A449) Results for Anchor Bolts at Posts 3 and 4 (Post Crash Test), ar	nd
Post 6 (Post Quasistatic Push Test)	152
Figure 11-6 Summary of Tensile Test Results in English Units	152
Figure 14-1 ST-75 Bridge Rail CAD Model Front	192
Figure 14-2 – ST-75 Bridge Rail CAD Model Profile	192
Figure 14-3 – ST-75 Bridge Rail FE Shell Model Profile	192
Figure 14-4 – Typical Section and Dimension for the ST-75 Bridge Rail	193
Figure 14-5 2270P Truck	193
Figure 14-6 1100C Car	194
Figure 14-7 10000S Single-Unit Van Truck	195
Figure 14-8 Graph of Roll Angles for Full Scale and FE Model TRAP Results for 2270P Truck	197
Figure 14-9 Graph of Pitch Angles for Full Scale and FE Model TRAP Results for 2270P Truck	197
Figure 14-10 Graph of Yaw Angles for Full Scale and FE Model TRAP Results for 2270P Truck	198
Figure 14-11 Graph of Roll Rates for Full Scale and FE Model TRAP Results for 2270P Truck	198
Figure 14-12 Graph of Pitch Rates for Full Scale and FE Model TRAP Results for 2270P Truck	199
Figure 14-13 Graph of Yaw Rates for Full Scale and FE Model TRAP Results for 2270P Truck	199
Figure 14-14 Graph of Longitudinal Accelerations for Full Scale and FE Model TRAP Results for 227	OP
Truck	200

Figure 14-15	Graph of Lateral Accelerations for Full Scale and FE Model TRAP Results for 2270P Truck
Figure 14-16	Graph of Vertical Accelerations for Full Scale and FE Model TRAP Results for 2270P Truck
Figure 14-17	Graph of Longitudinal Velocities for Full Scale and FE Model TRAP Results for 2270P Truck
Figure 14-18	Graph of Lateral Velocities for Full Scale and FE Model TRAP Results for 2270P Truck202
Figure 14-19	Visual Comparison of Actual Crash Test and Simulations for 2270P Truck
Figure 14-20	Graph of Roll Angles for Full Scale and FE Model TRAP Results for 1100C Car
Figure 14-21	Graph of Pitch Angles for Full Scale and FE Model TRAP Results for 1100C Car
Figure 14-22	Graph of Yaw Angles for Full Scale and FE Model TRAP Results for 1100C Car
Figure 14-23	Graph of Roll Rates for Full Scale and FE Model TRAP Results for 1100C Car207
Figure 14-24	Graph of Pitch Rates for Full Scale and FE Model TRAP Results for 1100C Car
Figure 14-25	Graph of Yaw Rates for Full Scale and FE Model TRAP Results for 1100C Car
Figure 14-26	Graph of Longitudinal Accelerations for Full Scale and FE Model TRAP Results for 1100C Car
Figure 14-27	Graph of Lateral Accelerations for Full Scale and FE Model TRAP Results for 1100C Car. 209
Figure 14-28	Graph of Vertical Accelerations for Full Scale and FE Model TRAP Results for 1100C Car. 209
Figure 14-29	Graph of Longitudinal Velocity for Full Scale and FE Model TRAP Results for 1100C Car210
Figure 14-30	Graph of Lateral Velocity for Full Scale and FE Model TRAP Results for 1100C Car210
Figure 14-31	Visual Comparison of Actual Crash Test and Simulations for 1100C Small Car
Figure 14-32	Graph of Roll Angles for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck
Figure 14-33	Graph of Pitch Angles for Full Scale and FE Model TRAP Results for 10000S Single Unit
Truck	
Figure 14-34	Graph of Yaw Angles for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck
Figure 14-35	Graph of Roll Rates for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck
-	
	Graph of Pitch Rates for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck
-	

Figure 14-37 Graph of Yaw Rates for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck
Figure 14-38 Graph of Longitudinal Accelerations for Full Scale and FE Model TRAP Results for 10000S
Single Unit Truck
Figure 14-39 Graph of Lateral Accelerations for Full Scale and FE Model TRAP Results for 10000S Single
Unit Truck
Figure 14-40 Graph of Vertical Accelerations for Full Scale and FE Model TRAP Results for 10000S Single
Unit Truck
Figure 14-41 Graph of Longitudinal Velocity for Full Scale and FE Model TRAP Results for 10000S Single
Unit Truck
Figure 14-42 Graph of Lateral Velocity for Full Scale and FE Model TRAP Results for 10000S Single Unit
Truck
Figure 14-43 Visual Comparison of Actual Crash Test and Simulations for 10000S Single Unit Truck 219

List of Tables

Table 5-1 Test 110MASH4C19-01 Test Sequence of Events	26
Table 5-2 Test 110MASH4C19-01 Test Data Summary Sheet	35
Table 5-3 110MASH4C19-01 Assessment Summary	37
Table 6-1 Test 110MASH4P18-02 Test Sequence of Events	39
Table 6-2 Test 110MASH4P18-02 Test Data Summary Sheet	48
Table 6-3 110MASH4P18-02 Assessment Summary	50
Table 7-1 Test 110MASH4S19-02 Test Sequence of Events	53
Table 7-2 Test 110MASH4S19-02 Test Data Summary Sheet	67
Table 7-3 110MASH4S19-02 Assessment Summary	69
Table 9-1 110MASH4C19-01 Camera Types and Location Coordinates	78
Table 9-2 110MASH4P18-02 Camera Types and Location Coordinates	79
Table 9-3 110MASH4S19-02 Camera Types and Location Coordinates	79
Table 9-4 Test 110MASH4C19-01 Accelerometer and Angular Rate Sensor Specifications 8	81
Table 9-5 Test 110MASH4P18-02 Accelerometer and Angular Rate Sensor Specifications 8	82
Table 9-6 Test 110MASH4S19-02 Accelerometer and Angular Rate Sensor Specifications	83
Table 9-7 Test 4-10 Exterior Vehicle Measurements 8	85
Table 9-8 Test 4-10 CG Calculation: Curb Weight 8	86
Table 9-9 Test 4-10 CG Calculation: Test Inertial Weight 8	87
Table 9-10 Test 4-10 CG Calculation: Gross Static Weight	88
Table 9-11 Test 4-10 Interior Floor and Transmission Tunnel Pre, Post, and Deformation Measurement	S
	89
Table 9-12 Test 4-10 Interior Side Front Panel and Roof Pre, Post, and Deformation Measurements	9 0
Table 9-13 Test 4-10 Interior Windshield and Dashboard Pre, Post, and Deformation Measurements	91
Table 9-14 Test 4-10 Interior Side Pre, Post, and Deformation Measurements	92
Table 9-15 Test 4-11 Exterior Vehicle Measurements Sector	93
Table 9-16 Test 4-11 CG Calculation: Curb Weight	Э4
Table 9-17 Test 4-11 CG Calculation: Test Inertial Weight	95
Table 9-18 Test 4-11 CG Calculation: Gross Static Weight 9	96
Table 9-19 Test 4-11 CG Calculation: Vertical CG Weight	Э7
Table 9-20 Test 4-11 Vertical CG Calculation: Worksheet	98
Table 9-21 Test 4-11 Vertical CG Calculation: Measurement and Report 10	00

Table 9-22 Test 4-11 Interior Floor Pre, Post, and Deformation Measurements 101
Table 9-23 Test 4-11 Interior Dash and Roof Pre, Post, and Deformation Measurements 102
Table 9-24 Test 4-11 Interior Door Pre, Post, and Deformation Measurements 103
Table 9-25 Test 4-12 Exterior Vehicle Measurements 104
Table 9-26 Test 4-12 CG Calculation: Curb Weight
Table 9-27 Test 4-12 CG Calculation: Test Inertial Weight 106
Table 9-28 Test 4-12 CG Calculation: Gross Static Weight 107
Table 9-29 Test 4-10 Interior Floor and Transmission Tunnel Pre, Post, and Deformation Measurements
Table 9-30 Test 4-10 Interior Roof Pre, Post, and Deformation Measurements
Table 9-31 Test 4-10 Interior Windshield and Dashboard Pre, Post, and Deformation Measurements 111
Table 9-32 Test 4-10 Side Pre, Post, and Deformation Measurements
Table 14-1 Center of Gravity for 2270P Truck Test Vehicle and LS-Dyna Finite Element Model
Table 14-2 TRAP Results Data Comparison for Full Scale and FE Models for 2270P Truck (Absolute
Values)
Table 14-3 Center of Gravity for 1100C Car Test Vehicle and LS-Dyna Finite Element Model
Table 14-4 TRAP Data Comparison for Full Scale and FE Model TRAP Results for 1100C Car (Absolute
Values)
Table 14-5 Center of Gravity for 10000S Single Unit Truck and LS-Dyna Finite Element Model
Table 14-6 TRAP Data Comparison for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck
(Absolute Values)

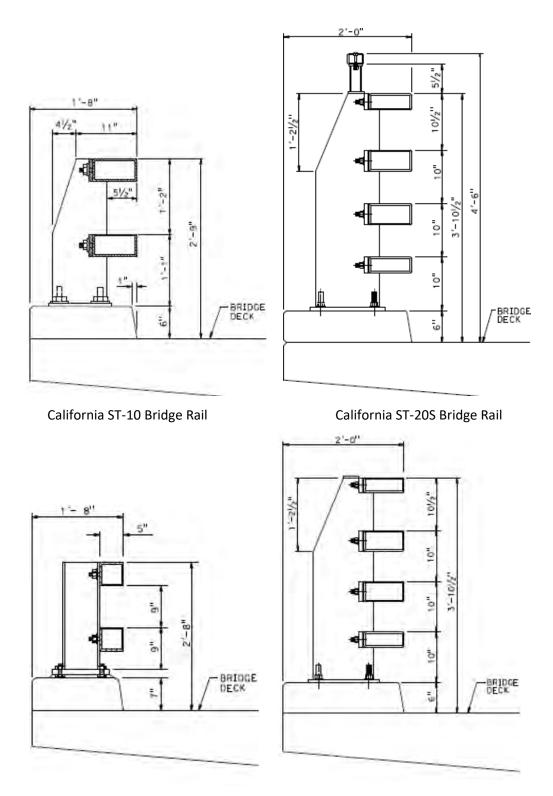
THIS PAGE WAS LEFT INTENTIONALLY BLANK

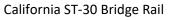
1. Introduction

1.1. Problem

In 2016, the California Department of Transportation (Caltrans) established a timeline for the implementation of the Manual for Assessing Safety Hardware (MASH) (AASHTO, 2016). MASH is a testing standard for evaluating the safety of roadside hardware. The Caltrans timeline was consistent with the 2015 American Association of State Highway Transportation Officials (AASHTO) and Federal Highway Administration (FHWA) Joint Implementation Agreement. The agreement specifies that new installations of roadside safety hardware comply with MASH 2016 for Federal Aid Eligibility. Caltrans adopted that all bridge rail projects that include permanent and full bridge rail replacements advertised on or after October 31, 2019 meet MASH criteria. Caltrans currently has no MASH-compliant top mounted bridge rails.

1.2. Objective


The objective of this research project is to construct a test section of the CA ST-75 and then conduct the required crash tests for MASH 2016 Test Level 4 (TL-4) for longitudinal barriers.


1.3. Background

Due to the recent adoption of MASH, few steel post and beam bridge rails have been tested for MASH compliance. Caltrans has used the ST-20S and ST-70 since the mid-2000s as steel post-and-beam bridge railings. The ST-70 Bridge Rail has the same details as California ST-20S, except the CA ST-70 does not have the bicycle railing mounted on the top. The ST-20 was tested in 2003 by Caltrans and meets TL-4 crash test requirements of National Cooperative Highway Research Committee Report 350 guidelines (Report 350) (NCHRP, 1993). Crash testing for the CA ST-20 showed that there was no vehicular contact with the railing or post for the top bicycle railing. To improve performance, the tested version of the ST-20 was modified to lessen the level of snagging demonstrated in Test 651 (4-11) by extending the rail element further away from the post by increasing the rail width an additional 50 mm (2 in) and increasing the curb width by the same amount. The tested version of the ST-20 was modified to improve performance and renamed the ST-20S. This modified version was renamed the ST-20S. The July 2019 Caltrans "MASH Implementation for California Bridge Railings" identified the ST-70 bridge rail as design meant to replace both the ST-20S and the ST-70.

Two additional steel post and beam bridge rails, the California ST-10 and ST-30, were also identified to be replaced by the ST-75. In 2013 Caltrans tested the 838 mm (33 in) high ST-10 for MASH compliance. Test 3-11, the 2270P pickup test, resulted in the test vehicle rolling onto its side, exceeding the maximum roll angle of 75 degrees and failing the test. This rolling behavior and resulting failure was possibly an anomaly or outlier based on other 3-11 tests on similar height and configuration bridge rails (Roger Bligh, 2017).

During the ST-75 project, a taller steel post and beam bridge rail was developed, the ST-76. The ST-76 is identical to the ST-75 except the curb is 12 in tall instead of 6 in, resulting in a vehicular rail height of 42 in and overall height of 48 rather than 36 in and 42 in, respectively. Due to similarities of the two rails and crash test performance of the ST-75, no crash testing is currently planned for the ST-76. Although not covered in this project report, the ST-76 is being evaluated for MASH compliance by using the results of the ST-75 testing.

California ST-70 Bridge Rail

Figure 1-1 Existing Caltrans Steel Post and Beam Bridge Rails (Caltrans, 2019)

1.4. Literature Search

A literature and product search were conducted prior to project initiation related to MASH TL-4 steel post and beam bridge rails. The results of the search concluded that MASH testing had not been conducted by the roadside safety community on a bridge rail similar enough to the ST-75 that would eliminate the need for all crash testing.

1.5. Scope

The full MASH 2016 TL-4 test matrix for longitudinal barriers requires three full-scale crash tests: a small car impacting at 100 kph (62 mph) and 25°, a pickup impacting also at 100 kph (62 mph) and 25°, and a single-unit truck impacting at 90 kph (56 mph) and 15°. All three tests were planned to be performed and evaluated in accordance with MASH 2016 TL- 4 evaluation criteria for longitudinal barriers. For this testing, the ST-75 Bridge Rail was constructed at the Caltrans crash testing facility following Caltrans construction standards.

2. Test Article Details

2.1. Barrier Design

The ST-75 bridge rail was designed to be a MASH compliant replacement for two similar Caltrans steel post and beam bridge rails: the ST-20S and ST-70. The design and load evaluation were completed by Caltrans Division of Engineering Services, Structures and Engineering Services. The design of the ST-75 focused on the structural integrity of the barriers subject to MASH TL-4 loading in compliance with 2012, Sixth Edition, AASHTO LRFD Bridge Design Specification with California Amendments. The three barrier components (Rail, Post, & Curb) and the deck overhang were separately evaluated against flexural, shear, and torsional demands under different limit states in accordance with AASHTO LRFD with California Amendments. In addition to the hand calculations, a finite element analysis study was conducted using the software CSiBridge in order to determine the demands on each component. Strengths and demands of the rail, post, and curb were then assessed under Extreme II Limit State, and the overhang under Extreme II and Strength I Limit State. For comparison and informational reasons, LS-Dyna simulations for the MASH TL-4 tests for longitudinal barriers are compared to the real-world crash tests. The results are shown in a separate report included in Appendix E: Finite Element Modeling Report of this report.

The design consists of a steel railing and posts mounted on a concrete curb that is 914 mm (36 in) high to the top of the traffic railing and 1067 mm (42 in) high to the top of the bicycle rail. The ST-75 posts are spaced 3 m (10 ft) apart. Each post is anchored to the bridge deck using anchor bolts and anchor bars (see cross-section below). The detail sheets, which were used to construct the test article, are shown in the Appendix (Figure 10-1 through Figure 10-5). The material design strengths are as follows (C = Compressive Strength, T = Tensile Strength): Concrete, 24.8 Mpa (3.6 ksi) (C), reinforcing bars 413.7 Mpa (60 ksi) (T), structural steel posts 248.2 Mpa (36 ksi) (T), and structural steel rails 317.2 Mpa (46 ksi) (T).

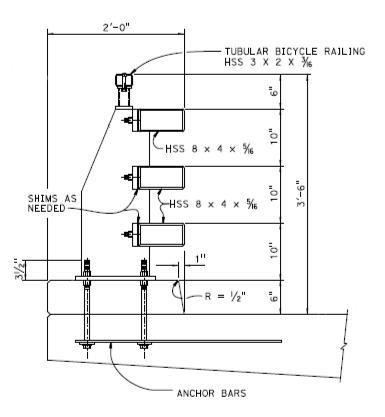


Figure 2-1 ST-75 Cross-Section

2.2. Construction

A section of the ST-75 bridge rail, 29 m (94 ft) in length, was constructed in 2018 at the Caltrans Dynamic Test Facility. The upstream 21 m (70 ft) was installed on a simulated bridge deck. To reduce cost, the remaining 7 m (24 ft) was installed on a newly constructed slab foundation on the downstream side where vehicle impact loading would not occur or would be minimal. The new simulated bridge deck consisted of an overhang rigidly attached to a Portland Cement Concrete anchor block that was constructed for a previous project. To ensure the new overhang (bridge deck) was adequately secured to the anchor block, the top 305 mm (12 in) of anchor block were removed to allow for the addition of new deck reinforcing steel (rebar). During construction, strain gauges were installed at strategic locations in the deck, curb and post anchor blots so that loading during impact could be determined.

Construction was completed in different stages. First, the existing simulated bridge deck and top 305 mm (12 in) of concrete of the existing anchor block were removed. The concrete slab foundation for the downstream end was then constructed, leaving rebar and anchor bolts exposed for future construction of the concrete curb and installation of the ST-75 steel bridge rail. Then, after addition of new rebar for the ST-75 bridge rail, the next concrete pour was to repair the top 305 mm (12 in) of the anchor block and construct the new bridge deck, again leaving rebar and anchor bolts exposed for future construction of the concrete curb and installation of the ST-75 steel bridge rail. Each concrete pour was sampled and cast into standard 152 mm x 305 mm (6 in x 12 in) cylinders for testing. The minimum 28-day concrete for any of the three concrete pours was 38 MPa (5,500 psi). A615 Grade 60 rebar with a tested yield strength of approximately 63 ksi (434 MPa) minimum was used for reinforcement. The ST-75 posts were A709 Grade

36 steel and the rails were A500 Grade B steel. Construction details can be found in the Appendix, Figure 10-1 through Figure 10-5. Concrete strength test results and material certifications can be found in the Appendix, Section 11.

Once adequate concrete strength was obtained, the ST-75 steel posts were mounted to the exposed anchor bolts. The tubular rail elements and bicycle rail were then added and connection adjustments were made to level and straighten barrier alignment. Construction photos are shown below.

Figure 2-2 Top 12 Inches of Concrete Being Removed from Anchor Block

Figure 2-3 Rebar and Strain Gauges in Place for Anchor Block Concrete Replacement and Deck Overhang

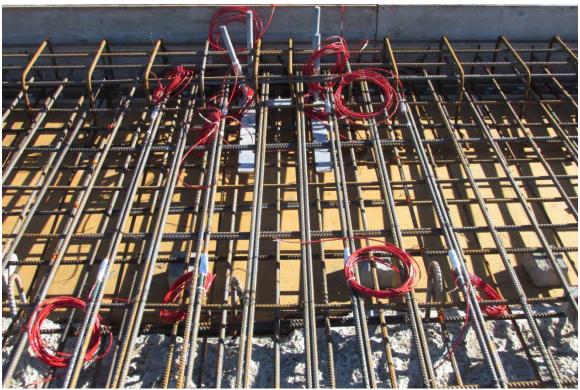


Figure 2-4 Uniaxial Strain Gauges and Cable Prior to Deck Pour

Figure 2-5 Rebar in Slab Footing for Downstream Section

Figure 2-6 Downstream Section on Slab Complete

Figure 2-7 Reaction Block and Deck Rebar in Place for Concrete Pour

Figure 2-8 Formwork and Rebar in Place for Simulated Deck Concrete Pour

Figure 2-9 Simulated Deck Concrete Pour Complete

Figure 2-10 Bridge Rail Curb Concrete Pour

Figure 2-11 Completed Bridge Rail

3. Test Requirements and Evaluation Criteria

3.1. Crash Test Matrix

MASH Test Level 4 for longitudinal barriers consists of three crash tests as follows:

- 1. A 1,100 kg (2,420 lbs.) small car at 100 kph (62 mph) and a 25° impact angle (MASH 2016 Test No. 4-10).
- 2. A 2,270 kg (5,000 lbs.) pickup truck at 100 kph (62 mph) and a 25° impact angle (MASH 2016 Test No. 4-11).
- 3. A 10,000 kg (22,000 lbs) single-unit truck at 90 kph (56 mph) and a 15° impact angle (MASH 2016 Test No. 4-12).

The objective of this project is to verify that the ST-75 Bridge Rail meets the evaluation criteria of MASH Test 4-10, 4-11, and 4-12.

3.2. Evaluation Criteria

The evaluation criteria for longitudinal barriers are those set forth in MASH 2016 Table 2-2. For Test 4-10 and 4-11 they are A, D, F, H, and I. For Test 4-12 they are: A, D, and G. Evaluation Criteria are explained later in Table 5-3.

4. Test Conditions

4.1. Test Facilities

Crash testing was conducted at the Caltrans Dynamic Test Facility in West Sacramento, California. The test area is a large, flat, asphalt concrete surface. At the time of testing, there were no obstructions nearby.

4.2. Test Vehicles

4.2.1.Test 4-10

The vehicle for Test 4-10 was a 2017 Nissan Versa S in good condition. The MASH 2016 1100C test vehicle for the ST-75 Bridge Rail was assigned test identification number 110MASH4C19-01. The vehicle was free of major body damage and not missing any structural parts. It was not modified in any way and had no standard equipment missing. The test inertial mass of 1084 kg (2389 lb) was within the recommended mass limits of MASH 2016. Test vehicle measurement sheets are shown in the appendix, Table 9-7 through Table 9-10. To achieve the desired impact speed, the vehicle was towed with a 2:1 mechanical advantage. A speed control device was installed in the tow vehicle, which limited the acceleration of the vehicle once the target impact speed was reached. The steering was accomplished by means of a guidance rail anchored to the ground and a guide arm attached to the vehicle wheel hub. Remote braking was possible at any time during the test via radio control. The vehicle are shown in Figure 4-1 through Figure 4-6. See Appendix Figure 9-1 and Figure 9-2 for more information on vehicle equipment and instrumentation.

Figure 4-1 MASH 4-10 Test Vehicle Front Right

Figure 4-2 MASH 4-10 Test Vehicle Passenger Side

Figure 4-3 MASH 4-10 Test Vehicle Front

Figure 4-4 MASH 4-10 Test Vehicle Driver Side

Figure 4-5 MASH 4-10 Test Vehicle Rear

Figure 4-6 MASH 4-10 Test Vehicle at Impact Point

4.2.2. Test 4-11

The test vehicle for Test 4-11 was a 2018 Dodge RAM 1500 Quad Cab pickup. The MASH 2016 2270P test for the ST-75 Bridge Rail was assigned test identification number 110MASH4P18-02. The vehicle was free of major body damage and not missing any structural parts. It was not modified in any way and had no standard equipment missing. The test inertial mass of 2252 kg (4965 lb) was within the recommended mass limits of MASH 2016. The height of the vehicle center of gravity was 748 mm (29.4 inches) and was above the minimum recommended in MASH of 710 mm (28 inches). Test vehicle measurement sheets are shown in the appendix, Table 9-15 through Table 9-21. To achieve the desired impact speed, the vehicle was self-powered. A speed control device was installed in the vehicle to limit the acceleration of the vehicle once the target impact speed was reached. The steering was accomplished by means of a guidance rail anchored to the ground and a guide arm attached to the vehicle wheel hub. The electric power steering system was de-energized prior to testing to reduce steering harmonics and improve lateral impact point accuracy. Remote braking was possible at any time during the test via radio control. The vehicle was released from the guidance rail and power to the engine was killed a short distance before impact. Photos of the test vehicle are shown in Figure 4-7 through Figure 9-5 for more information on vehicle equipment and instrumentation.

Figure 4-7 MASH 4-11 Test Vehicle Front Right

Figure 4-8 MASH 4-11 Test Vehicle Passenger Side

Figure 4-9 MASH 4-11 Test Vehicle Front

Figure 4-10 MASH 4-11 Test Vehicle Driver Side

Figure 4-11 MASH 4-11 Test Vehicle Rear

Figure 4-12 MASH 4-11 Test Vehicle Ballast

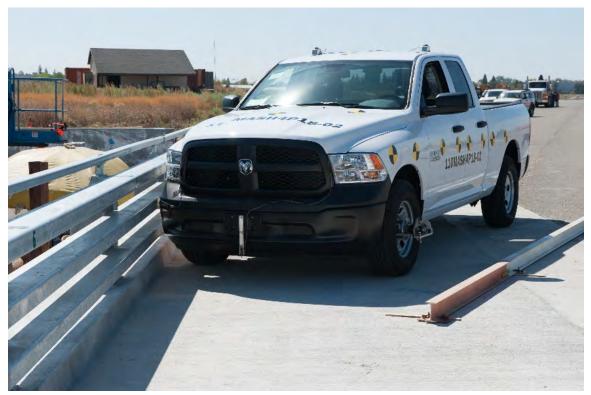


Figure 4-13 MASH 4-11 Test Vehicle at Impact Point

4.2.3. Test 4-12

The test vehicle for Test 4-12 was a 2013 International 4300 SBA. The test vehicle complied with all MASH 2016 requirements for 10000S vehicles. The MASH 2016 10000S test for the ST-75 bridge rail was assigned test identification number 110MASH4S19-02. The vehicle was in good condition and not missing any standard equipment. The cargo box was strengthened according to Ford's 2005 Body Builder Layout Book to reduce the chance of it separating from the frame and reducing loading on the barrier during the test, Figure 4-22 and Figure 4-24. The curb weight of the vehicle was 6683 kg (14733 lb). With instrumentation, other equipment, and ballast installed, the test inertial mass was 10014 kg (22077 lb), which was within the recommended mass limits of MASH 2016. See Figure 4-20 for ballast in the cargo box. The ballast consisted of three 1.5 m by 1.5 m by 51 mm (5 ft by 5 ft by 2 in) steel plates placed on top of wood posts laying on the cargo bed. Each plate weighed approximately 907 kg (2000 lbs). They were mounted uniformly across the length and width of the cargo bed using 8 threaded rods through the bed to c-channel brackets under the bed. The wood posts were spliced to each other with steel plates and wood screws, and secured to the cargo bed with wood screws and angle brackets. The center of mass of the ballast was 1588 mm (62.5 in) from the ground, which was within MASH recommended limits of 1600 mm +/- 50 mm (63 in +/- 2 in). Test vehicle measurement sheets are shown in the appendix, Table 9-25 through Table 9-28. To achieve the desired impact speed, it was necessary to push the test vehicle with a Ford F-350 Dually in addition to its own self-power to get up to the target impact speed. The Ford F-350 Dually backed off the test vehicle about 213.4 m (700 ft) prior to impact. A speed control device was installed in the push vehicle, which limited the acceleration of the push vehicle once the target impact speed was reached. The speed governor of the test vehicle was reprogrammed to limit speed the maximum speed to 90.1 kph (56 mph). The steering was accomplished by means of a guidance rail anchored to the ground and a guide arm attached to the vehicle wheel hub. Remote braking was possible at any time during the test via radio control. The vehicle was released from the guidance rail and power to the engine was killed a short distance before impact. Photos of the test vehicle are shown in Figure 4-14 through Figure 4-24. See Appendix Figure 9-6 and Figure 9-7 for more information on vehicle equipment and instrumentation.

Figure 4-14 MASH 4-12 Test Vehicle Front Right

Figure 4-15 MASH 4-12 Test Vehicle Passenger Side

Figure 4-16 MASH 4-12 Test Vehicle Front

Figure 4-17 MASH 4-12 Test Vehicle Driver Side

Figure 4-18 MASH 4-12 Test Vehicle Rear

Figure 4-19 MASH 4-12 Test Vehicle at Impact Point

Figure 4-20 MASH 4-12 Test Vehicle Ballast in Cargo Box

Figure 4-21 MASH 4-12 Test Vehicle Instrumentation Equipment in Cargo Box

Figure 4-22 MASH 4-12 Test Vehicle Front Shear Plate

Figure 4-23 MASH 4-12 Test Vehicle Ballast Mounting Plate

Figure 4-24 MASH 4-12 Test Vehicle Rear Shear Plate

4.3. Test Documentation

The tests were documented through the use of still cameras, video cameras, high-definition high-speed digital video cameras, and both GMH Engineering Data Brick III and DTS SLICE data acquisition systems to record accelerations and angular rate changes. The impact phase of each crash test was recorded with five high-definition high-speed digital video cameras, a normal-speed DVC format video camera, digital SLR cameras and action cameras mounted inside and outside the test vehicle set to record video. The test vehicle and barrier were photographed before and after impact with the DVC format camera and a digital SLR camera.

For Tests 4-10 and 4-11, four sets of orthogonal accelerometers and angular rate sensors were mounted at the center of gravity of the test vehicles (as per MASH 2016 specifications) to measure lateral, longitudinal, and vertical accelerations, and roll, pitch, and yaw rates, respectively. The data was analyzed in Test Risk Assessment Program version 2.3.11 (TRAP) to determine the occupant impact velocities, ridedown accelerations, and maximum vehicle rotation. For test 4-12, two sets of accelerometers and angular rate sensors were mounted in the vehicle cab and two sets were mounted in the vehicle cargo box. TRAP was also used to determine 50 ms average accelerations and maximum vehicle rotation at the locations where the instruments were mounted (inside the cab and inside the cargo box). See Appendix Figure 9-1 through Figure 9-7 for more information on vehicle instrumentation and test documentation.

5. Test 110MASH4C19-01 (4-10)

5.1. Impact Description and Results

The Critical Impact Point selected was 3.6 ft (1.1 meters) upstream from the centerline of post 4, as recommended in Table 2-7 of MASH 2016 (AASHTO, 2016). The impact angle of 25° was set with a Total Station. The intended impact speed was 100 kph (62 mph).

Figure 5-1 Test Article Impact Area Pre-Test 4-10

Figure 5-2 Test Article Downstream of Impact Area Pre-Test 4-10

5.2. Test Description

The crash was performed in the late morning of April 11, 2019. According to the Sacramento Executive Station, weather conditions were as follows: cloudy, temperature approximately 63 deg F, and wind of

approximately 13 mph from the west-northwest (WNW). The vehicle was traveling approximately northnortheast (NNE).

The 1100C vehicle impacted the barrier at 102.1 kph (63.4 mph) and 25.0°. The vehicle impact point on the ST-75 bridge rail was approximately 1.3 m (4.2 ft) upstream of the centerline of post 4, which was about 180 mm (7 in) upstream of the Critical Impact Point. The vehicle was contained and smoothly redirected at an exit speed and angle of 79.8 kph (49.6 mph) and 7.7°, respectively. There was evidence that the passenger-side of the front bumper had snagged slightly on the edge of post 4 but it was not severe enough to cause excessively high ridedown accelerations, occupant impact velocities, or occupant compartment deformations. After exiting the bridge rail, the remote brakes were applied. The car came to a stop about 65 m (213 feet) downstream of and 17 m (56 feet) on the traffic side of the impact point. Still photos of the vehicle during the test are shown in Figure 5-3 through Figure 5-5. A detailed description of the sequential events is shown in the table below.

Time (s)	EVENT			
0.000	Vehicle front-right bumper impacted the lower rail			
0.002	Vehicle bumper begins to deform			
0.012	Vehicle hood begins to deform			
0.016	Vehicle grill begins to contact upper rail			
~0.034	Vehicle passenger door contacts rails			
~0.050	Vehicle begins to noticeably yaw and redirect, windshield begins to spider-crack			
0.086	Surrogate Occupant head contacts passenger window			
0.098	Passenger window shatters from door distortion			
0.152	Vehicle is approximately parallel to rail face			
0.160	Rear passenger taillight contacts top rail			
0.168	Rear passenger taillight begins to shatter			
~0.294	Vehicle exits test article with exit angle and speed of 7.7° and 79.8 kph (49.6 mph)			

Table 5-1 Test 110MASH4C19-01 Test Sequence of Events

Figure 5-3 Test 4-10 Downstream Camera Impact View

Figure 5-4 Test 4-10 Upstream Camera Impact View

Figure 5-5 Test 4-10 Pan Camera Impact View

5.3. Barrier Damage

There was no significant damage to the barrier. The only damage was extremely minor surface scrapes and gouges of the steel rail. Barrier damage is shown in Figure 5-6 through Figure 5-9. The orange contact marks are from the front right tire. The green contact marks are from the rear right tire. Dynamic deflection of the bridge rail measured from overhead video was 15 mm (0.6 in). There was no permanent deflection. String potentiometer and strain gage data were collected during the test. They do not fall under the Scope of Accreditation but are available upon request.

Figure 5-6 Test 4-10 Overview of Barrier Post-Test

Figure 5-7 Test 4-10 Vehicle Marks on ST-75 Impact Point Post-Test

Figure 5-8 Test 4-10 Post 4 Post-Test

Figure 5-9 Test 4-10 Downstream of Post 4 Post-Test

5.4. Vehicle Damage

The 1100C front right corner, passenger's side, and front end of the test vehicle sustained damage during the impact. The entire length of the passenger side of the vehicle made contact with the barrier. The front passenger wheel was pushed back and partially torn off. The entire front bumper cover separated from the vehicle along with both headlights. The windshield spider-cracked and was pushed sideways about two inches, creating a separation at the driver's side "A" pillar. The passenger side front window was shattered and broken out due to door deformation. The remaining window glass was undamaged. The interior metal bumper, it's support bracket and connecting frame member were deformed, possibly from snagging slightly on the upstream vertical member of post 4. The hood and front right door and front fender were severely damaged. The airbags did not deploy because the vehicle was towed and there was no power to the airbag system. The maximum amount of passenger compartment deformation measured by known points was 125 mm (4.9 in), which occurred at the toe pan/wheel well area of the floorboard. All interior deformation measurements are shown in Table 9-11 through Table 9-14.

Figure 5-10 Test 4-10 Test Vehicle Damage (Right Side)

Figure 5-11 Test 4-10 Test Vehicle Damage (Rear Right)

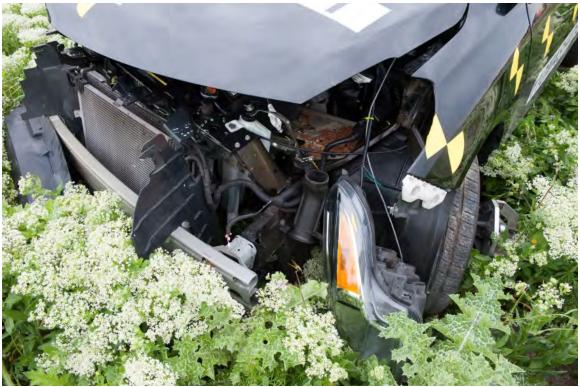
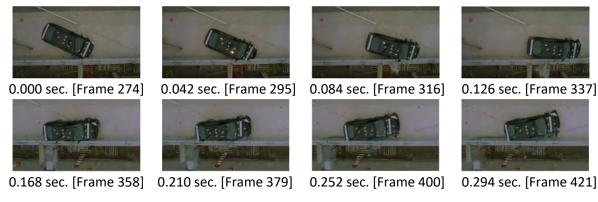


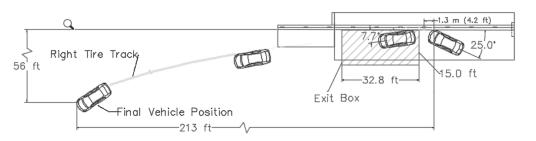
Figure 5-12 Test 4-10 Test Vehicle Damage (Front Left)

Figure 5-13 Test 4-10 Test Vehicle Damage (Front Right)

Figure 5-14 Test 4-10 Test Vehicle Occupant Compartment Floorboard Deformation

Figure 5-15 Test 4-10 Test Vehicle Occupant Compartment Deformation (Front Seat Area)




Figure 5-16 Test 4-10 Test Vehicle Windshield Separation

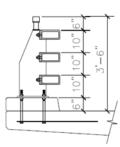


Figure 5-17 Test 4-10 Test Vehicle Front Right Bumper and Bumper Support Member Deformation

Table 5-2 Test 110MASH4C19-01 Test Data Summary Sheet

Τe	est Age	ncy	
			Transportation
		nber	
	Test Designation		
		cle	
		ngth	100 ft (30.5 m)
Ke	ey Elem	ients – Barrier	
	•	Description	
	•	Base Width	
	٠	Height	_36 in (910 mm)
Te	est Veh	icle	
	٠	Designation/Make/Model	_1100C / 2017 Nissan Versa
	•	Curb	2344 lb (1063 kg)
	٠	Test Inertial	_2389 lb (1084 kg)
	•	Gross Static	
In	npact C	onditions	
	•	Speed	_63.4 mph (102.1 kph)
	•	Angle	
	•	Location/Orientation	
			of middle of post 4
	•	Impact Severity	
E>	kit Cond		
	•	Speed	49.6 mph (79.8 kph)
	•	Angle	
Ex	(it Box	Criterion	
		rajectory	-
•	•	icle Stability	Satisfactory
•			impact) Approx. 213 ft (64.9 m)
		nstream and 56 ft (17.0 m) la	
Τe		cle Damage	
		cle Deflections	
	•	Permanent Set	0.0 in (0 mm)
	•	Dynamic	
	•		24.0 in (610 mm) at barrier base
Ve	ehicle r	Damage	Moderate to Heavy
•	•	-	01-RFQ-7, 01-RD-4, 03-RP-4,

04-RBQ-3

- CDC⁴_____01RRAK5, 03RDAS2 Maximum Deformation Approx. 4.9 in (125 mm) at

Floorboard/wheel well

- Vehicle Snagging ______Minor snagging of right side of front bumper on post 4
- Vehicle Pocketing None

		Transducer			MASH
Evaluation Criteria		DataBrick 327	SLICE- 656	SLICE- 659	Limit
OIV Ft/s	Long.	21.3 (6.5)	23.3 (7.1)	23.6 (7.2)	±40 (12.2)
(m/s)	Lat.	33.1 (10.1)	33.8 (10.3)	34.4 (10.5)	±40 (12.2)
ORA	Long.	-3.4	-3.9	-3.8	±20.49
g's	Lat.	-9.9	-10.4	-10.4	±20.49
	Roll	5.7	5.5	6.3	±75
Max Angle Deg.	Pitch	-4.4	-4.5	-4.6	±75
568.	Yaw	-38.3	-39.7	-39.7	N/A
THIV – ft/s (m/s)		39.7 (12.1)	41.0 (12.5)	41.3 (12.6)	N/A
PHD – g's		10.0	10.5	10.5	N/A
ASI		2.83	2.92	2.98	N/A

5.5. Discussion of Test Results

5.5.1. General Evaluation Methods

MASH 2016 recommends that crash test performance be assessed according to three evaluation factors: (1) structural adequacy, (2) occupant risk, and (3) post-impact vehicular response.

The structural adequacy and occupant risk associated with the ST-75 Bridge Rail were evaluated using evaluation criteria found in Tables 2.2A (Recommended Test Matrices for Longitudinal Barriers), 5.1A (Safety Evaluation Guidelines for Structural Adequacy), and 5.1B (Safety Evaluation Guidelines for Occupant Risk) of MASH 2016. The post-impact vehicular response was evaluated using Section 5.2.3 of MASH 2016.

5.5.2. Structural Adequacy

The structural adequacy of the ST-75 Bridge Rail was acceptable during Test 4-10.

Refer to Table 5-3 for the assessment summary of the safety evaluation criteria for the ST-75 Bridge Rail.

5.5.3. Occupant Risk

The occupant risk was acceptable. As mentioned previously, all interior deformation measurements were below the maximum MASH 2016 limits. All interior deformation measurements are shown in Table 9-11 through Table 9-14.

There was no occupant compartment penetration or potential for it. The occupant compartment was not compromised. The dummy head protruded slightly beyond the plane of the passenger side window when it was broken but did not show potential for striking any portion of the barrier. Occupant impact velocities and ridedown accelerations were below MASH 2016 limits. The yaw, pitch, and roll of the vehicle were within acceptable limits.

Refer to Table 5-3 for the assessment summary of the safety evaluation criteria for the ST-75 Bridge Rail.

5.5.4. Vehicle Trajectory

The vehicle trajectory was acceptable. The exit trajectory was within the exit box.

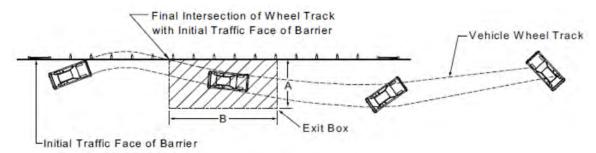


Figure 5-18 Exit Box for Longitudinal Barriers (AASHTO, 2016)

Refer to Table 5-3 for the assessment summary of the safety evaluation criteria for the ST-75 Bridge Rail.

Evaluation Criteria				Test Results	Assessment	
	ctural Adequacy					
A. Test article should contain and redirect the vehicle; the vehicle should not penetrate, underride, or override the installation, although controlled lateral deflection of the test article is acceptable.			The vehicle was contained and redirected smoothly.	PASS		
Occ	upant Risk					
 D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 				The barrier did not detach any elements, fragments, and/or other debris. Deformations of, or intrusions into, the occupant compartment were within MASH 2016 limits.	PASS	
	2 and Appendix E. upant Risk					
F. T colli	he vehicle should re sion. The maximun eed 75 degrees.		-	The vehicle remained upright during and after the collision.	PASS	
Occ H. (Sect	Occupant Risk H. Occupant Impact Velocities (OIV) (see Appendix A, Section A5.2.2 for calculation procedure) should satisfy the following limits:			DAS Long. ft/sec (m/s) DB 327: 21.3 (6.5) SLICE 656: 23.3 (7.1) SLICE 659: 23.6 (7.2)		
	Occupant Impact	Velocity Limits, ft/s	s (m/s)		PASS	
	Component Longitudinal and Lateral	Preferred 30 ft/s (9.1 m/s)	Maximum 40 ft/s (12.2 m/s)	DAS Lat. ft/sec (m/s) DB 327: 33.1 (10.1) SLICE 656: 33.8 (10.3) SLICE 659: 34.4 (10.5)		
I. TI Sect	Occupant Risk I. The occupant ridedown acceleration (see Appendix A, Section A5.3 for calculation procedure) should satisfy the following limits: Occupant Ridedown Acceleration Limits (G) Component Preferred Maximum Longitudinal and Lateral 15.0 G 20.49 G			DAS Long. G Lat. G DB 327: -3.4 -9.9 SLICE 656: -3.9 -10.4 SLICE 659: -3.8 -10.4	PASS	
It is this with by t the widt vehi trac of B	Vehicle Trajectory It is preferable that the vehicle be smoothly redirected, and this is typically indicated when the vehicle leaves the barrier within the "exit box". The concept of the exit box is defined by the initial traffic face of the barrier and a line parallel to the initial traffic face of the barrier, at a distance A plus the width of the vehicle plus 16 percent of the length of the vehicle, starting at the final intersection (break) of the wheel track with the initial traffic face of the vehicle should not cross the parallel line within the distance B.			A = 15.0 ft (4.57 m) B = 32.8 ft (10 m)	PASS	

6. Test 110MASH4P18-02 (4-11)

6.1. Impact Description and Results

The Critical Impact Point selected was 1.3 meters (4.3 ft) from the centerline of post 5, as recommended in Table 2-7 of MASH 2016 (AASHTO, 2016). The impact angle of 25° was set with a Total Station. The intended impact speed was 100 kph (62 mph).

Figure 6-1 Test 4-11 Critical Impact Point Pre-Test

Figure 6-2 Bridge Railing Downstream of Critical Impact Point Pre-Test

6.2. Test Description

The crash was performed the afternoon of September 12, 2018. According to the Sacramento Executive Station, weather conditions were as follows: cloudy, temperature approximately 74 deg F, and wind of approximately 5 mph from the southwest (SW). The vehicle was traveling approximately north-northeast (NNE).

The 2270P vehicle impacted the barrier at 102.0 kph (63.4 mph) and angle of 26.3°. The vehicle impact point on the ST-75 Bridge Rail was approximately 1.6 meters (5.3 ft) upstream from the centerline of post 5, which was 0.3 m (12 inches) upstream of the Critical Impact Point. The vehicle was contained and smoothly redirected with an exit speed and angle of 86 kph (54 mph) and 6°, respectively. After exiting the bridge rail, the remote brakes were applied. The vehicle came to a stop about 66.8 m (219 ft) downstream and 12.5 m (41 ft) on the traffic side of the impact point. Still photos of the vehicle during the test are shown in Figure 6-3 through Figure 6-5. A detailed description of the sequential events is shown in the table below.

Time (s)	EVENT	
0.000	Vehicle front-right bumper impacted the middle rail	
0.002	Vehicle bumper begins to deform	
0.004	Vehicle hood begins to override top rail	
0.030	Vehicle hood contacts handrail	
~0.036	Vehicle hood begins to deform	
0.038	Front passenger door impacts rail	
0.046	Vehicle begins to redirect	
0.048	Top of front passenger door begins to deform and bend outward	
0.058	Passenger side airbag begins to deploy	
0.060	Front grill begins to detach from vehicle	
0.068	Vehicle hood is at maximum override	
0.158	Vehicle is approximately parallel to rail face	
0.168	Rear passenger taillight contacts top rail and begins to shatter	
0.300	Vehicle exits test article with exit angle and speed of 6° and 86 kph (54 mph)	

Table 6-1 Test 110MASH4P18-02 Test Sequence of Events

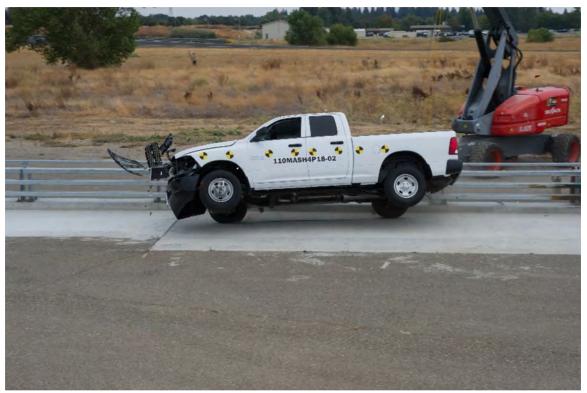


Figure 6-3 Test 4-11 Pan Camera Impact View

Figure 6-4 Test 4-11 Downstream Camera Impact View

Figure 6-5 Test 4-11 Upstream Impact View

6.3. Barrier Damage

There was no significant damage to the barrier. The only damage was extremely minor surface scrapes and gouges of the steel rail, and minor spalling of the concrete curb. Barrier damage is shown in Figure 6-6 through Figure 6-8. The orange contact marks are from the front right tire. The green contact marks are from the rear right tire. Dynamic deflection of the bridge rail measured from overhead video was 30 mm (1.2 in). There was no permanent deflection. String potentiometer and strain gage data were collected during the test. They do not fall under the Scope of Accreditation but are available upon request.

Figure 6-6 Test 4-11 Vehicle Marks on ST-75 at Impact Point Post-Test

Figure 6-7 Test 4-11 Minor Concrete Spalling of Concrete Curb Post-Test

Figure 6-8 Test 4-11 ST-75 Bridge Rail Post-Test Downstream of Impact Post-Test

6.4. Vehicle Damage

The 2270P front right corner and right side of the test vehicle sustained most of the damage from the impact. The front bumper was damaged, mainly the front right portion during initial impact with the barrier. The right headlight was shattered and detached from the vehicle. The front passenger wheel was pushed back significantly but the suspension system remained attached except for the aluminum lower control arm front connection to the frame. The entire length of the passenger side of the vehicle made contact with the barrier including the right front fender, right doors, and the right side of the bed. All of the test vehicle doors remained closed and latched during impact except the window frame of the front passenger door deformed outward, creating an opening. The windshield had minor cracking and the remaining window glass was undamaged. The front grill and left headlight were also detached during the impact. The maximum amount of passenger compartment deformation measured by known points was 100 mm (4.0 in), which occurred at the footwell. All interior deformations were below the maximum MASH 2016 limits and are shown in Figure 9-22 through Figure 9-24.

Figure 6-9 Test 4-11 Test Vehicle Damage (Rear Right)



Figure 6-10 Test 4-11 Test Vehicle Damage (Front Right)

Figure 6-11 Test 4-11 Test Vehicle Damage (Left Side)

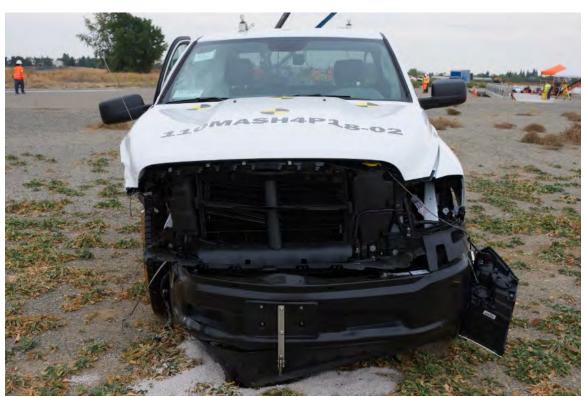


Figure 6-12 Test 4-11 Test Vehicle Damage (Front)

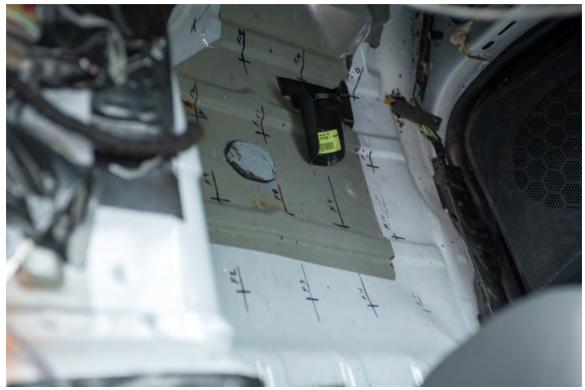


Figure 6-13 Test 4-11 Test Vehicle Damage Front Passenger Floorpan (Occupant Compartment Deformation)

Figure 6-14 Test 4-11 Test Vehicle Front Right Wheel Deformation

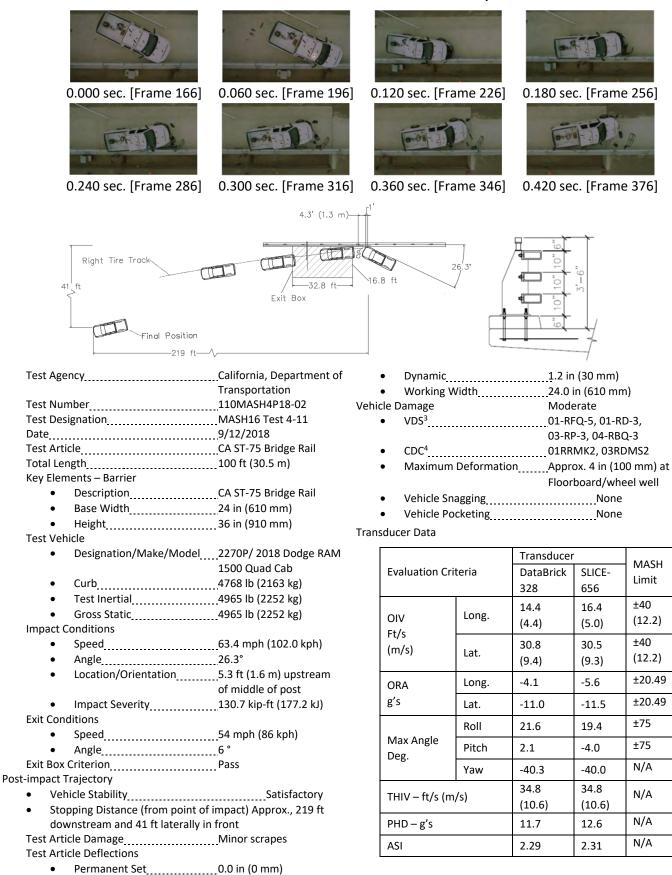


Figure 6-15 Test 4-11 Test Vehicle Front Right Suspension (with wheel removed)

Figure 6-16 Test 4-11 Test Vehicle Front Right Suspension Lower Control Arm Connector Fracture

Table 6-2 Test 110MASH4P18-02 Test Data Summary Sheet

48

6.5. Discussion of Test Results

6.5.1.General Evaluation Methods

MASH 2016 recommends that crash test performance be assessed according to three evaluation factors: (1) structural adequacy, (2) occupant risk, and (3) post-impact vehicular response.

The structural adequacy and occupant risk associated with the ST-75 Bridge Rail were evaluated using evaluation criteria found in Tables 2.2A (Recommended Test Matrices for longitudinal barriers), 5.1A (Safety Evaluation Guidelines for Structural Adequacy), and 5.1B (Safety Evaluation Guidelines for Occupant Risk) of MASH 2016. The post-impact vehicular response was evaluated using section 5.2.3 of MASH 2016.

6.5.2.Structural Adequacy

The structural adequacy of the ST-75 Bridge Rail was acceptable during Test 4-11.

Refer to Table 6-3 for the assessment summary of the safety evaluation criteria for the ST-75 Bridge Rail for Test 4-11.

6.5.3.Occupant Risk

The occupant risk was acceptable. As mentioned previously, the interior deformations were below MASH 2016 limits. All interior deformation measurements are shown in Table 9-22 through Table 9-24. There was no occupant compartment penetration or potential for it. The occupant compartment was not compromised. Occupant impact velocities and ridedown accelerations were below MASH 2016 limits. The yaw, pitch, and roll of the vehicle were within acceptable limits.

Refer to Table 6-3 for the assessment summary of the safety evaluation criteria for the ST-75 Bridge Rail for Test 4-11.

6.5.4. Vehicle Trajectory

The vehicle trajectory was acceptable. The exit trajectory was within the exit box. The yaw, pitch, and roll of the vehicle were below the maximum limits.

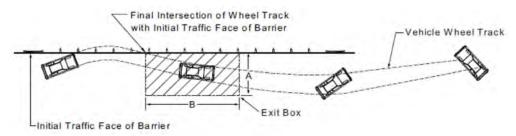


Figure 6-17 Exit Box for Longitudinal Barriers (AASHTO, 2016)

Refer to Table 6-3 for the assessment summary of the safety evaluation criteria for the ST-75 Bridge Rail for Test 4-11.

Evaluati	ion Criteria			Test Results	Assessment	
 Structural Adequacy A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable. 			The vehicle was contained and redirected smoothly.	PASS		
Occupant Risk D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E.			The barrier did not detach any elements, fragments, and/or other debris	PASS		
Occupant Risk F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			The vehicle remained upright during and after the collision.	PASS		
Section A following Occ Cor Lor	pant Impact V A5.3 for calcula g limits:	elocities (OIV) (see ation procedure) s Velocity Limits, ft, Preferred 30 ft/s (9.1 m/s)	hould satisfy the	DB3 Long.= 14.4 ft/s (4.4 m/s) Lat.= 30.8 ft/s (9.4 m/s) <u>SLICE</u> Long.= 16.4 ft/s (5.0 m/s) Lat.= 30.5 ft/s (9.3 m/s)	PASS	
Occupant Risk I. The occupant ridedown acceleration (see Appendix A, Section A5.3 for calculation procedure) should satisfy the following limits: Occupant Ridedown Acceleration Limits (G) Occupant Ridedown Acceleration Limits (G) Component Preferred Maximum Longitudinal and Lateral 15.0 G 20.49 G			DB3 Long4.1 G Lateral -11.0 G <u>SLICE</u> Long5.6 G Lateral -11.5 G	PASS		
Vehicle Trajectory It is preferable that the vehicle be smoothly redirected, and this is typically indicated when the vehicle leaves the barrier within the "exit box". The concept of the exit box is defined by the initial traffic face of the barrier and a line parallel to the initial traffic face of the barrier, at a distance A plus the width of the vehicle plus 16 percent of the length of the vehicle, starting at the final intersection (break) of the wheel track with the initial traffic face of the vehicle should not cross the parallel line within the distance B.			A = 16.8ft (5.11 m) B = 32.8 ft (10 m)	PASS		

7. Test 110MASH4S19-02 (4-12)

7.1. Impact Description and Results

The Critical Impact Point selected was 1.5 meters (5.0 ft) from the centerline of post 5, as recommended in Table 2-7 of MASH 2016 (AASHTO, 2016). The impact angle of 15° was set with a Total Station. The intended impact speed was 90 kph (56 mph).

Figure 7-1 Test 4-12 ST-75 Impact Area with Checkered Tape at Impact Point Pre-Test

Figure 7-2 Test 4-12 ST-75 Post 5 Downstream of Impact Point Pre-Test

Figure 7-3 Test 4-12 ST-75 Post 5 Downstream of Impact Point Pre-Test

Figure 7-4 Test 4-12 ST-75 Post 6 Downstream of Impact Point Pre-Test

7.2. Test Description

The crash was performed just before noon on June 19, 2019. According to the Sacramento Executive Station, weather conditions were as follows: fair, temperature approximately 82 deg F, and wind of approximately 3 mph from the south. The vehicle was traveling approximately north-northeast (NNE).

The 10000S vehicle impacted the barrier at a speed of 87.6 kph (54.4 mph) and angle of 15.3°. The vehicle impacted the ST-75 Bridge Rail at approximately 1.4 meters (4.9 ft) upstream from the centerline of post 4, which was approximately 75 mm (3 in) downstream of the Critical Impact Point. The vehicle was contained and smoothly redirected at an exit speed and angle of 79.8 kph (49.6 mph) and 8°, respectively. During the impact, the cargo box leaned over the bridge rail approximately 21 inches (not within the Lab's Scope of Accreditation) for a Working Width of about 45 inches at a height of approximately 11.5-12 ft. After exiting the bridge rail, the remote brakes were applied. The vehicle came to a stop, after rolling onto the driver side of the vehicle, about 73.5 ft (241 feet) downstream of and 15.5 m (51 feet) on the non-traffic side of the impact point. Still photos of the vehicle during the test are shown in Figure 7-5 through Figure 7-7. A detailed description of the sequential events is shown in the table below.

Time (s)	EVENT
0.000	Vehicle front-right bumper impacted the top rail
0.006	Vehicle bumper begins to deform
0.010	Vehicle hood begins to override top rail
0.040	Vehicle passenger side front wheel well contacts handrail and begins to deform
~0.078	Vehicle begins to redirect
~0.088	Front passenger door impacts rail
~0.164	Vehicle passenger side front wheel well is at maximum override
0.280	Rear right corner of vehicle contacts steel rails, vehicle is approximately parallel to bridge rail
~0.760	Vehicle exits test article with exit angle and speed of 8° and 79.8 kph (49.6 mph)

Figure 7-5 Test 4-12 Across Camera Impact View

Figure 7-6 Test 4-12 Downstream Camera Impact View

Figure 7-7 Test 4-12 Upstream Camera Impact View

7.3. Barrier Damage

There was minor to moderate damage to the barrier. The traffic side of the base plates at Posts 3, 4, and 5 were permanently deformed from the moment created during impact, see Figure 7-11 through Figure 7-13. The deformation left a gap between the middle portion of the plate and concrete curb. Base plate deformation at Posts 3, 4, and 5 were approximately 8 mm (5/16 in), 6 mm (1/4 in), less than 2 mm (1/16 in), respectively. As a result of the base plate deformation, the anchor bolts bent outward. The anchor bolt bending and after impact straightening, as part of barrier repairs, was thought to be a concern due to the high levels of plastic deformation. To better understand the condition of the bolts, bolt material properties were investigated. A barrier quasi-static (push) test and bolt tensile tests were performed to determine remaining bolt strength and roughly how far the bolts had elongated or otherwise progressed into yield. These tests are not within the Lab's Scope of Accreditation. The results showed that the bolts at Posts 3 and 4 (which were impacted during the crash test) were slightly in the plastic range and the Post 6 bolt (which was deformed during the push test) had high residual strength but was far into the plastic range. The tensile tests for Posts 3 and 4 concluded that after the TL-4 impact, the bolts were still above design tensile strength requirements and still had some ductility. However, the bending caused by the base plate deformed the threads enough to potentially complicate repairs if a post needed to be removed. A brief summary of the quasi-static push test and tensile load tests are shown in 11 Appendix C: Quasi-static Push Test and Anchor Bolt Tensile Testing. Photos of the anchor bolts at posts 3 and 4 with the posts removed are also included in Appendix C.

Other damage to the barrier included minor surface scrapes and gouges. See Figure 7-8 through Figure 7-13 for photos of barrier damage. The orange contact marks are from the front right tire. The green contact marks are from the rear right tire. String potentiometer and strain gage data were collected

during the test. They do not fall under the Scope of Accreditation but are available upon request. The dynamic and permanent deflections could not be determined from overhead video. They were, however, able to be measured from string potentiometers using a data acquisition system collecting measurements at 10,000 sample/sec. The dynamic and permanent deflections from string potentiometers (not within the Scope of Accreditation) were 83 mm (3.25 in) and 38 mm (1.5 in), respectively.

Figure 7-8 Test 4-12 Vehicle Marks on ST-75 Impact Point Between Posts 3 and 4 Post-Test

Figure 7-9 Test 4-12 Vehicle Marks on ST-75 at Post 4 Downstream of Impact Point Post-Test

Figure 7-10 Test 4-12 ST-75 Post 5 Downstream of Impact Point Post-Test

Figure 7-11 Test 4-12 ST-75 Post 3 Post-Test

Figure 7-12 Test 4-12 Post 3 Bent Bottom Plate Close Up Post-Test

Figure 7-13 Test 4-12 Post 4 Bent Bottom Plate Close Up Post-Test

7.4. Vehicle Damage

The 10000S front right corner and passenger's side of the test vehicle sustained most of the damage from the initial impact with the steel rail and post system. The entire length of the passenger side of the vehicle made contact with the bridge rail. The driver's side of the front bumper was deformed, the headlight was torn loose, and part of the right front fender was broken off. The right front wheel and suspension remained intact with the exception that the ends of the leaf springs fractured near their mounts at both forward and rear connection points. The left front and rear suspension remained attached as well as all the vehicle wheels and tires. All tires remained inflated. The steps on the passenger side were deformed from making contact with the steel rail. The driver's side door, A-pillar, fender, and cab roof were deformed when the vehicle rolled onto its side, including cracking the windshield. All the window glass was undamaged during interaction with the test article. Nearly all the damage to the cargo box also occurred when the vehicle rolled onto its side. The shear plates on the frame were slightly bent but otherwise remained intact. The bed shifted a minor amount. The threaded rods to secure the ballast were undamaged and helped to keep motion of the ballast to a minimum. Photos of the vehicle postimpact can be found in Figure 7-14 through Figure 7-24. The maximum amount of passenger compartment deformation measured by known points was 81 mm (3.2 in), which occurred at the floorboard. All interior deformations were below the maximum MASH 2016 limits. All interior deformation measurements are shown in Table 9-29 through Table 9-32.

Figure 7-14 Test 4-12 Test Vehicle Top Post-Test

Figure 7-15 MASH 4-12 Test Vehicle Undercarriage After Impact

Figure 7-16 MASH 4-12 Test Vehicle Ballast After Impact

Figure 7-17 MASH 4-12 Test Vehicle Front Undercarriage and Suspension After Impact



Figure 7-18 MASH 4-12 Test Vehicle Undercarriage and Suspension After Impact

Figure 7-19 Test 4-12 Test Vehicle (Impact, Right Side) Post-Test (righted)

Figure 7-20 Test 4-12 Test Vehicle (Front Right) Post-Test (righted)

Figure 7-21 Test 4-12 Test Vehicle (Front) Post-Test (righted)

Figure 7-22 Test 4-12 Test Vehicle (Left Side) Post-Test (righted)

Figure 7-23 Test 4-12 Test Vehicle (Front Left Side) Post-Test (righted)

Figure 7-24 Test 4-12 Test Vehicle (Rear Left) Post-Test (righted)

Figure 7-25 Test 4-12 Test Vehicle (Rear) Post-Test (righted)

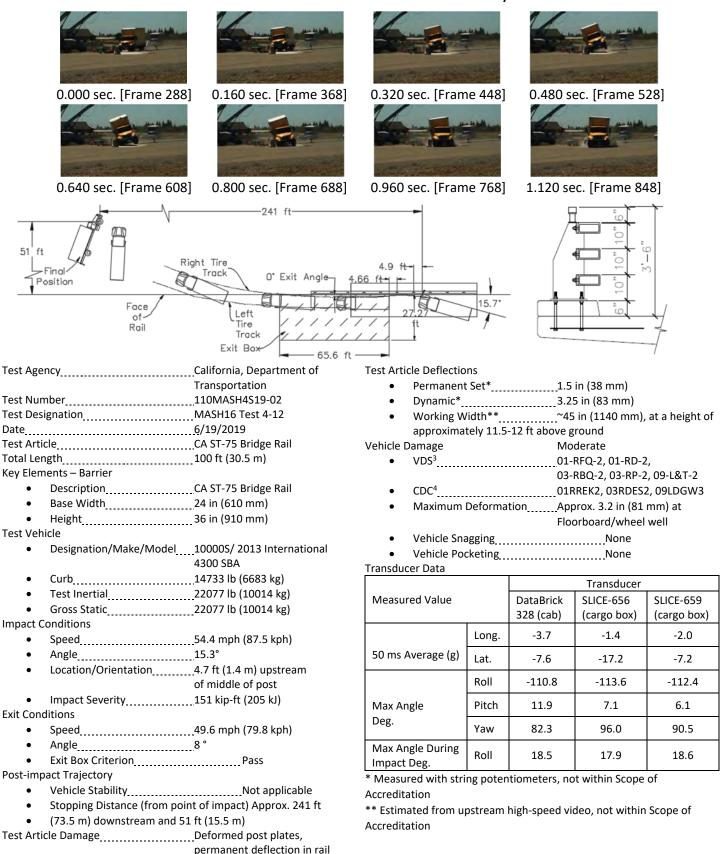


Figure 7-26 Test 4-12 Test Vehicle (Front Right) Post-Test (righted)

Figure 7-27 Test 4-12 Test Vehicle Occupant Compartment Deformation Post-Test

Table 7-2 Test 110MASH4S19-02 Test Data Summary Sheet

7.5. Discussion of Test Results

7.5.1.General Evaluation Methods

MASH 2016 recommends that crash test performance be assessed according to three evaluation factors: (1) structural adequacy, (2) occupant risk, and (3) post-impact vehicular response.

The structural adequacy and occupant risk associated with the ST-75 Bridge Rail were evaluated using evaluation criteria found in Tables 2.2A (Recommended Test Matrices for longitudinal barriers), 5.1A (Safety Evaluation Guidelines for Structural Adequacy), and 5.1B (Safety Evaluation Guidelines for Occupant Risk) of MASH 2016. The post-impact vehicular response was evaluated using Section 5.2.3 of MASH 2016.

7.5.2.Structural Adequacy

The structural adequacy of the ST-75 Bridge Rail was acceptable in MASH Test 4-12.

Refer to Table 7-3 for the assessment summary of the safety evaluation criteria for Test 4-12 of the ST-75 Bridge Rail.

7.5.3.Occupant Risk

The occupant risk was acceptable. The maximum amount of passenger compartment deformation measured by known points was 81 mm (3.2 in), which occurred at the floorboard. All interior deformations were below the maximum MASH 2016 limits. All interior deformation measurements are shown in Table 9-29 through Table 9-32. There was no occupant compartment penetration or potential for it. The occupant compartment was not compromised. The vehicle rolled onto its side after it lost contact with the bridge rail. However, it is preferable but not a requirement of MASH Test 4-12 that the vehicle remain upright during and after impact.

Refer to Table 7-3 for the assessment summary of the safety evaluation criteria for Test 4-12 of the ST-75 Bridge Rail.

7.5.4.Vehicle Trajectory

The vehicle trajectory was acceptable. The exit trajectory was within the exit box.

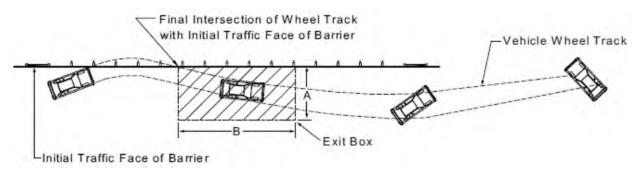


Figure 7-28 Exit Box for Longitudinal Barriers (AASHTO, 2016)

Refer to Table 7-3 for the assessment summary of the safety evaluation criteria for Test 4-12 of the ST-75 Bridge Rail.

Evaluation Criteria	Test Results	Assessment
Structural Adequacy A. Test article should contain and redirect the vehicle; the vehicle should not penetrate, underride, or override the installation, although controlled lateral deflection of the test article is acceptable.	The vehicle was contained and redirected smoothly.	PASS
Occupant Risk D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E.	The barrier did not detach any elements, fragments, and/or other debris	PASS
Occupant Risk E. It is preferable, although not essential, that the vehicle remain upright during and after the collision.	The vehicle rolled onto the driver's side and skidded until it came to rest.	PASS
Vehicle Trajectory It is preferable that the vehicle be smoothly redirected, and this is typically indicated when the vehicle leaves the barrier within the "exit box". The concept of the exit box is defined by the initial traffic face of the barrier and a line parallel to the initial traffic face of the barrier, at a distance A plus the width of the vehicle plus 16 percent of the length of the vehicle, starting at the final intersection (break) of the wheel track with the initial traffic face of the vehicle should not cross the parallel line within the distance B.	A = 27.27 ft (8.31 m) B = 65.6 ft (20 m)	PASS

Table 7-3 110MASH4S19-02 Assessment Summary

8. Conclusions and Recommendations

Based on the physical crash testing involved in this project, the following conclusions can be drawn:

- 1. The ST-75 Bridge Rail can successfully redirect an 1100-kg (2420 lbs) small car impacting at 100 kph (62 mph) and 25°.
- 2. The ST-75 Bridge Rail can successfully redirect a 2270-kg (5000 lbs) pickup car impacting at 100 kph (62 mph) and 25°.
- 3. The ST-75 Bridge Rail can successfully redirect a 10000-kg (22000 lbs) single-unit truck impacting at 90 kph (56 mph) and 15°.

As tested, The ST-75 Bridge Rail meets the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware 2016* (MASH 2016) criteria for Test 4-10, Test 4-11, and Test 4-12 for longitudinal barriers. Based on the successful completion of these tests the ST-75 Bridge Rail meets the MASH 2016 safety criteria for a Test Level 4 (TL-4) longitudinal barrier.

For reduced maintenance after more severe hits such as Test 4-12 in this report, it is recommended to stiffen the post base plates in order to reduce or eliminate the type of deformation observed in Test 4-12. The ST-75 demonstrated it has significant remaining capacity to contain and redirect the 10000S test vehicle and stiffening the base plate would likely not compromise this capacity. Also, this base plate change should have no adverse effect on the results of Tests 4-10 and 4-11 since the post base plates were already rigid enough to withstand those impacts without permanent deformation. The statements in this paragraph are outside the Lab's Scope of Accreditation.

Implementation will be carried out by Caltrans Division of Engineering Services, Structures and Engineering Services. They will be responsible for the preparation of Standard Plans (if required) and specifications for the California ST-75 Bridge Rail, with technical support from the Division of Research, Innovation and System Information.

9. Appendix A: Vehicle Equipment and Test Data

- 9.1. Test Vehicle Equipment
 - 9.1.1. Test 110MASH4C19-01

The vehicle used for this test was a 2017 Nissan Versa Sedan. Since the vehicle was towed and not selfpowered, the fuel in the gas tank was pumped out and gaseous CO₂ added to purge the gas vapors and eliminate oxygen. One pair of 12-volt wet cell batteries was mounted in the vehicle. The batteries powered two GMH DataBrick 3 transient data recorders. Each DataBrick 3 was connected to a set of orthogonal accelerometers and angular rate sensors, and one with an optical switch to measure impact speed. Two DTS SLICE MICRO systems were also installed each with a set of triaxial accelerometers and angular rate sensors. A 12-volt deep-cycle gel cell battery powered the Electronic Control Box. The Databrick 3 with the optical switch had a power-related data loss so the impact speed had to be determined using an overhead camera rather than the optical switch.

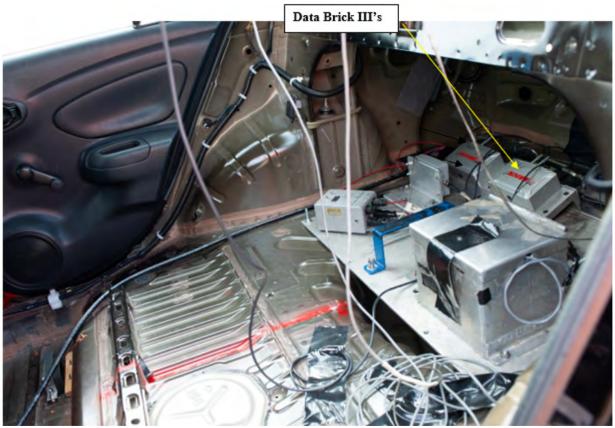


Figure 9-1 Data Brick III's installed for Test 4-10

Figure 9-2 Test 4-10 Vehicle Dummy and Instrumentation

A 4800 kPA (700 psi) CO_2 system, actuated by a solenoid valve, controlled remote braking after the impact and emergency braking if necessary. Part of this system was a pneumatic ram which was attached to the brake pedal. The operating pressure for the ram was adjusted through a pressure regulator during a series of trial runs prior to the actual test. Adjustments were made to ensure the shortest stopping distance without locking up the wheels. When activated, the brakes could be applied in less than 100 milliseconds.

A speed control device was connected in-line with the engine ignition coil power circuits on the tow vehicle. It was used to regulate the speed based on the signal from the tow vehicle transmission speed sensor. This device was calibrated prior to the test by conducting a series of trial runs through a speed trap comprised of two tape switches (set at a specific distance apart) and a digital timer.

9.1.2. Test 110MASH4P18-02

The vehicle used for this test was a 2018 Dodge RAM 1500 Quad Cab. One pair of 12-volt wet cell batteries was mounted in the vehicle. The batteries powered two GMH DataBrick 3 transient data recorders. Each DataBrick 3 was connected to a set of orthogonal accelerometers and angular rate sensors, and one with an optical switch to measure impact speed. Two DTS SLICE MICRO systems were also installed each with a set of triaxial accelerometers and angular rate sensors. A 12-volt deep-cycle gel cell battery powered the Electronic Control Box. The Databrick 3 with the optical switch had a power-related data loss so the impact speed had to be determined using an overhead camera rather than the optical switch.

Figure 9-3 Test 4-11 Vehicle Instrumentation

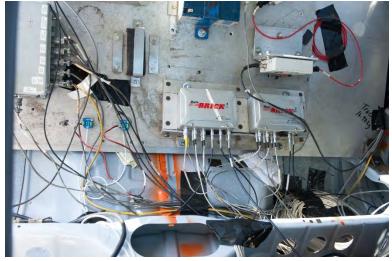


Figure 9-4 Test 4-11 Vehicle Instrumentation

Figure 9-5 Test 4-11 Accelerometers and Angular Rate Sensors

A 4800 kPA (700 psi) CO_2 system, actuated by a solenoid valve, controlled remote braking after the impact and emergency braking if necessary. Part of this system was a pneumatic ram which was attached to the brake pedal. The operating pressure for the ram was adjusted through a pressure regulator during a series of trial runs prior to the actual test. Adjustments were made to ensure the shortest stopping distance without locking up the wheels. When activated, the brakes could be applied in less than 100 milliseconds.

A speed control device was connected in-line with the with the engine ignition coil power circuits on the test vehicle. It was used to regulate the speed based on drive shaft rotation detected by an optical sensor. This device was calibrated prior to the test by conducting a series of trial runs through a speed trap comprised of two tape switches (set at a specific distance apart) and a digital timer.

9.1.3. Test 110MASH4S19-02

The vehicle used for this test was a 2013 International 4300 SBA. One pair of 12-volt wet cell batteries was mounted in the vehicle. The batteries powered two GMH DataBrick 3 transient data recorders that were mounted in the cab of the vehicle. Each DataBrick 3 was connected to a set of orthogonal accelerometers and angular rate sensors, and one with an optical switch to measure impact speed. Two DTS SLICE MICRO systems were also installed in the cargo box area. Each had a set of triaxial accelerometers and angular rate sensors. A 12-volt deep-cycle gel cell battery powered the Electronic Control Box. The Databrick 3 with the optical switch had a power-related data loss so the impact speed had to be determined using an overhead camera rather than the optical switch.

Figure 9-6 Test 4-12 Accelerometers and Angular Rate Sensors in Cab

Figure 9-7 Test 4-12 Accelerometers, Angular Rate Sensors, and other Instrumentation in Cargo Box

A 4800 kPA (700 psi) CO_2 system, actuated by a solenoid valve, controlled remote braking after the impact and emergency braking if necessary. Part of this system was a pneumatic ram which was attached to the brake pedal. The operating pressure for the ram was adjusted through a pressure regulator during a series of trial runs prior to the actual test. Adjustments were made to ensure the shortest stopping distance without locking up the wheels. When activated, the brakes could be applied in less than 100 milliseconds.

The test vehicle speed was controlled by an onboard speed limiter that is standard for this type vehicle. Before the test the vehicle's limiter was programed by a local service provider. To ensure that the limiter was set properly, a series of test runs were conducted using a GHM Engineering HFW80 Fifth Wheel Sensor.

The test vehicle was pushed by another vehicle so that the impact speed could be reached in the limited distance of roughly 640 m (2100 ft) available at the testing facility. A set push distance was established. Once the push vehicle had traveled this distance, it slowed down and allowed the test vehicle to continue accelerating until it reached the target speed. Onboard the push vehicle a speed control device was connected in-line with the engine ignition coil power circuits. It was used to regulate the speed based on

the signal from the vehicle transmission speed sensor. This device was calibrated prior to the test by conducting a series of trial runs through a speed trap comprised of two tape switches (set at a specific distance apart) and a digital timer.

9.2. Test Vehicle Guidance System

A rail guidance system directed the vehicle into the barrier. The guidance rail, anchored at approximately 3.8 m (12.5 ft) intervals along its length was used to guide a mechanical arm, which was attached to the hub of the front left wheel of the vehicle. A plate and lever were used to trigger the release pin on the guidance arm, thereby releasing the vehicle from the guidance system before impact.

Figure 9-8 Typical Guidance System Layout

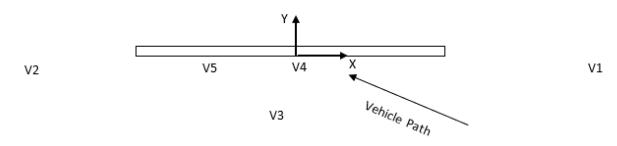

Figure 9-9 Guide Arm Releasing from Test Vehicle

Figure 9-10 Guide Arm Released from Vehicle

9.3. Photo - Instrumentation

Several high-speed video cameras recorded the impact during the test. The high-speed video frame rates were set to 500 frames per second. The types of cameras and their locations are shown in Figure 9-11 and Table 9-1 thru Table 9-3. The origin of the coordinates is at the intended point of impact.

Camera	Camera	Camera		Camera Camera		Lens	Соо	rdinates, ft. (m)
Location	Make/Model	Serial No.	Lens	Serial No.	x	у	z*		
V1 Upstream	Vision Research Miro 111	22361	35 mm	173792	88.6 (27.0)	0.2 0.06)	4 (1.2)		
V2 Downstream	Olympus iSpeed3	1400014	28-200 mm	402495	-278.2 (-84.8)	1.8 (0.55)	7 (2.1)		
V3 Across	Olympus iSpeed3	1400022	20 mm	182398	-0.6 (18)	-54.1 (-16.5)	5.5 (1.7)		
V4 Upstream Tower	Vision Research Miro 110	13235	20 mm	447169	2.4 (0.73)	-4.4 (-1.3)	25 (7.6)		
V5 Downstream Tower	Vision Research Miro 110	13234	14 mm	217706	-27.3 (-8.3)	-8.9 (-2.7)	35 (10.7)		

Table 9-1 110MASH4C19-01 Camera Types and Location Coordinates

Camera	Camera	Camera	Camera Lens		Соо	rdinates, ft. (m)
Location	Make/Model	Serial No.	Lens	Serial No.	x	У	z*
V1	Olympus	1400012	35 mm	173792	88.4	-0.3	5
Upstream	iSpeed3	1400012	35 11111	1/3/92	(26.9)	(-0.1)	(1.5)
V2	Olympus	1400014	28-200	402495	-277.7	3.3	7
Downstream	iSpeed3	1400014 mm	mm 4024	402493	(-84.6)	(1.0)	(2.1)
V3 Across	Olympus	1400022	20 mm	182398	-0.9	-54.0	5.0
V3 ACI 033	iSpeed3	1400022 20			(-0.3)	(-16.5)	(1.5)
V4	Vision	12225	20	447100	2.4	-4.4	25
Upstream Tower	Research Miro 110	13235	13235 20 mm	447169	(0.73)	(-1.3)	(7.6)
V5	Vision				-27.3	-8.7	35
Downstream Tower	Research Miro 110	13234	14 mm	217706	(-8.3)	(-2.7)	(10.7)

Table 9-2 110MASH4P18-02 Camera Types and Location Coordinates

Table 9-3 110MASH4S19-02 Camera Types and Location Coordinates

Camera	Camera	amera Camera		Lens Serial	Соо	rdinates, ft. (m)		
Location	Make/Model	Serial No.	Lens	No.	х	У	z*		
V1	Vision Research	22361	35 mm	173792	86.1	2.0	5		
Upstream	Miro 111	22301	55 1111	55 mm		1,3,32	(26.2)	(0.6)	(1.5)
V2	Olympus	1400014	28-200	402495	-323.4	1.1	10		
Downstream	iSpeed3	1400014	mm	402433	(-98.6)	(0.3)	(3)		
V3 Across	Olympus	1400022	20 mm	182398	0.9	-53.9	5.0		
V3 ACI 033	iSpeed3	1400022	1400022 20 11111		(0.3)	(-16.4)	(1.5)		
V4	Vision	12224	14	217706	0.9	-5.2	25		
Upstream Tower	Research Miro 110	13234	14 mm	13234 14 mm	217706	(0.3)	(-1.6)	(7.6)	
V5	Vision	12225	20	447400	-36.5	-7.6	25		
Downstream Tower	Research Miro 110	13235	20 mm	447169	(-11.1)	(-2.3)	(7.6)		

*Camera elevations were estimated.

The following are the pretest procedures that were required to enable video data reduction to be performed using the Research's video analysis software (Phantom Camera Control):

- 1. Butterfly targets were attached to the top and sides of the test vehicle. The targets were located on the vehicle at intervals of 500 mm (19.7 in) and 1000 mm (39.4 in). The targets established scale factors.
- 2. Flashbulbs, mounted on the test vehicle, were electronically triggered to establish initial vehicle-to-barrier contact and the time of the application of the vehicle brakes.
- 3. High-speed digital video cameras were all time-coded using a portable computer and were triggered as the test vehicle passed over a tape switch located on the vehicle path upstream of impact.
- 9.4. Electronic Instrumentation and Data

Transducer data were recorded at 10,000 samples/second on two separate GMH Engineering, Data Brick, Model III, digital transient data recorders (TDRs) and two separate Diversified Technical Systems, Inc. (DTS) SLICE Micro data acquisition systems that were mounted in the test vehicle. The DataBricks were each connected to a set of accelerometers and a set of angular rate sensors that were located at the center of gravity. The DTS SLICE units each contain a set of accelerometers and angular rate sensors and were mounted at the center of gravity. The TDR data were reduced using a desktop personal computer. DADiSP 6.7 version B02 was used for pre-processing. TRAP was used for the post-processing. Accelerometer and angular rate sensor specifications are shown in Table 9-4 thru Table 9-6.

Туре	Manufacturer	Model	Serial #	Location	Range	Orientation
Accelerometer	Endevco	7264M14- 200-2	J16416	CG	±200 g	Longitudinal
Accelerometer	Measurement Specialties	64CM32	MS13328	CG	±200 g	Lateral
Accelerometer	Measurement Specialties	64CM32	MS13366	CG	±200 g	Vertical
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	AR4018	CG	±1500 deg/s	Roll
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	AR4217	CG	±1500 deg/s	Pitch
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS3348	CG	±1500 deg/s	Yaw
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00200	CG	±500 g	
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00165	CG	±1500 deg/s	
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00223	CG	±500 g	
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00166	CG	±1500 deg/s	

Table 9-4 Test 110MASH4C19-01 Accelerometer	and Angular Rate Sensor Specifications
---	--

			1]
Туре	Manufacturer	Model	Serial #	Location	Range	Orientation
Accelerometer	Measurement Specialties	64CM32	MS13361	CG	±200 g	Longitudinal
Accelerometer	Measurement Specialties	64CM32	MS13329	CG	±200 g	Lateral
Accelerometer	Measurement Specialties	64CM32	MS13364	CG	±200 g	Vertical
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS3355	CG	±1500 deg/s	Roll
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS3336	CG	±1500 deg/s	Pitch
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS4019	CG	±1500 deg/s	Yaw
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00200	CG	±500 g	
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00165	CG	±1500 deg/s	
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00223	CG	±500 g	

Table 9-5 Test 110MASH4P18-02 Accelerometer and Angular Rate Sensor Specifications

Туре	Manufacturer	Model	Serial #	Location	Range	Orientation
Accelerometer	Measurement Specialties	64CM32	MS13361	CG	±200 g	Longitudinal
Accelerometer	Measurement Specialties	64CM32	MS13329	CG	±200 g	Lateral
Accelerometer	Measurement Specialties	64CM32	MS13364	CG	±200 g	Vertical
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS3355	CG	±1500 deg/s	Roll
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS3336	CG	±1500 deg/s	Pitch
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS4019	CG	±1500 deg/s	Yaw
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00200	CG	±500 g	
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00165	CG	±1500 deg/s	
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00223	CG	±500 g	
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00166	CG	±1500 deg/s	

Table 9-6 Test 110MASH4S19-02 Accelerometer and Angular Rate Sensor Specifications

A rigid stand with three retro-reflective 90° polarizing tape strips spaced 1000 mm (39.4 in) apart was placed on the ground near the test article and alongside the path of the test vehicle. The strips were measured immediately before the test to account for any thermal expansion. The test vehicle had an onboard optical sensor that produced sequential impulses or "event blips" as the vehicle passed the reflective tape strips. The event blips were recorded concurrently with the accelerometer signals on the TDR, serving as "event markers". The impact velocity of the vehicle could be determined from these sensor impulses, the data record time, and the known distance between the tape strips. A pressure sensitive tape switch on the front bumper of the vehicle closed at the instant of impact and triggered two events: 1) "event marker" was added to the recorded data, and 2) a flashbulb mounted on the top of the vehicle was activated. One set of pressure activated tape switches, connected to a speed trap, was placed 4 m apart just upstream of the test article to check the impact speed of the test vehicle (not a reported

measurement). The layout for all the pressure sensitive tape switches and reflective tape is shown in Figure 9-12.

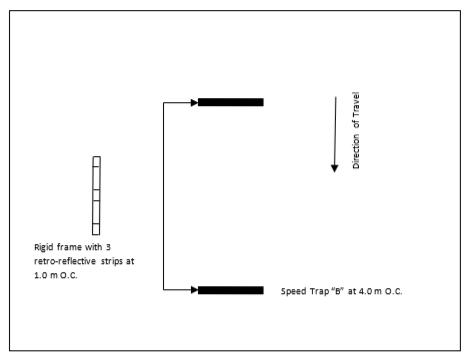
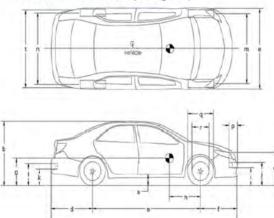


Figure 9-12 Speed Trap Tape Layout

9.5. Vehicle Measurements

9.5.1. Test 110MASH4C19-01


Table 9-7 Test 4-10 Exterior Vehicle Measurements

Policies and Procedures Manual	
Roadside Safety Research Group	

Revised :	10/17/2018
	Page 1

Attachment 5.4.5 --- 1100C and 1500A Small Car Parameters

Date:	ate: 2/14/2019			Number:	110MASH4	C19-01	Model:	Nissan	
Make: Versa			VIN:	3N1CN7APXHL832031					
Tire Size:	P185/65R15		Year:	2017			Odometer:	61526	
Tire Inflation Pressure: 33ps		33psi		Tape Measure	Tape Measure Used: 5M-CP0			DRISI 1901	
Measure by:	Dave Sawko	Staff:		CC, VH, SW	Scale Set	Used:	25	500 lbs	

All Measurements Refer to Impacting Side)					Vehicle Geometry - mm (inches)						
TT	TE			- 42	T a	1693	(66.5	57)	b	1498	(58.98)
F	T		T	141	c	4488	(176.	69)	d	1024	(40.31)
		Ģ		11 11	e	2599	(102.	32)	f	866	(34.09)
1 0		vehicle		m i	g	N/A	N//	A	h	1086	(42.76)
					-i*	420	(16.5	54)	j* .	567	(22.32)
110	TE	5-10			k	408	(16.0	06)	1	548	(21.57)
					m	148	(58.4	46)	n	1485	(58.46)
			-		0*	* 791	(31.1	14)	p	188	(7.4)
	1	T		+++ ++++	q	620	(24.4	11)	r	415	(16.34)
(FS)	1				s	310	(12.	2)	t	1672	(65.83)
K	-		-0		W	neel Cente	r Height F	ront:	-	292	(11.5)
172	7(2)		1/1		T o W	neel Cente	r Height R	lear:		303	(11.93)
	-W	/			Wł	neel Well	Clearance	(F)		120	(4.72)
		8-		-	W	neel Well	Clearance	(R)	<u> </u>	140	(5.51)
-	1	_	0			,	rame Heig	ght (F):		175	(6.89)
-			a	-		F	rame Heig	sht (R):	-	225	(8.86)
j taken from t	he func	tional bum	e per (may be	e inside bumpe	r cover)	I	rame Heig Engine		-		(8.86) gas
				e inside bumpe centerline of v		1	Engine			E	
taken from to	p of rad	iator suppo	ort bracket,		vehicle		Engine	e Type: e Size:		E	gas
taken from to CLE is the inve	p of rad	iator suppo	ort bracket,	centerline of v	vehicle	Tra	Engine	e Type: e Size: Type:		1	gas
taken from to CLE is the inve	p of rad	iator suppo	ort bracket,	centerline of v	vehicle	Tra	Engine Engin	e Type: e Size: Type: or Man	ual:	1	gas .6 L
taken from to CLE is the inve of the vehicle s Distribution	p of rad ntory nu	iator suppo umber and	ort bracket, should be l	centerline of v ocated on the o	vehicle door	Tra A F	Engine Engin Ismission utomatic o WD or RW	e Type: e Size: Type: or Man D or 4V	ual: WD:	1 1	gas .6 L Manual
taken from to CLE is the inve of the vehicle s Distribution Front:3	p of rad ntory nu 33.3	iator suppo umber and (734.79)	ort bracket, should be l Scale:	centerline of v ocated on the red	vehicle	Tra A F	Engine Engin Ismission utomatic c WD or RW 297.45	e Type: le Size: Type: or Man D or 4V (655.	ual: WD: 75):	E 1 N Scale:	gas .6 L Manual FWD green
taken from to CLE is the inve of the vehicle s Distribution Front:3	p of rad ntory nu	iator suppo umber and	ort bracket, should be l Scale:	centerline of v ocated on the o	vehicle door	Tra A F	Engine Engin Ismission utomatic o WD or RW	e Type: le Size: Type: or Man D or 4V (655.	ual: WD: 75):	1 1	gas .6 L Manual FWD
taken from to CLE is the inve of the vehicle s Distribution Front: <u>3</u> Rear: <u>2</u>	p of rad ntory nu 33.3	iator suppo umber and (734.79)	ort bracket, should be l Scale:	centerline of v ocated on the red	vehicle door 	Tra A F	Engine Engin Ismission utomatic c WD or RW 297.45	e Type: le Size: Type: or Man D or 4V (655.	ual: WD: 75):	E 1 N Scale:	gas .6 L Manual FWD green
taken from to CLE is the inve of the vehicle s Distribution Front: <u>3</u> Rear: <u>2</u> ghts	p of rad ntory nu 33.3 22.6	iator suppo umber and (734.79)	Scale:	centerline of v ocated on the red yellow	vehicle door Right Right	Tra A F Front: Rear:	Engine Engin Ismission utomatic c WD or RW 297.45	e Type: le Size: Type: or Man D or 4V (655.	ual: WD: 75):	E 1 N Scale:	gas .6 L Manual FWD green
taken from to CLE is the inve of the vehicle s Distribution Front: 3 Rear: 2 ghts (lbs)	p of rad ntory nu 23.3 22.6 Curb	iator suppo umber and (734.79) (490.74)	Scale: Scale: Scale: Test I	centerline of v ocated on the red yellow	ehicle door Right Gross	Tra A F Front: Rear:	Engine Engin Insmission Utomatic c WD or RW 297.45 230.3	e Type: le Size: Type: or Man D or 4V (655.	ual: WD: 75):	E 1 N Scale:	gas .6 L Manual FWD green
taken from to CLE is the inve of the vehicle s Distribution Front: 3 Rear: 2 ghts (lbs)	p of rad ntory nu 23.3 22.6 Curb	iator suppo umber and (734.79)	Scale: Scale: Scale: Test I	centerline of v ocated on the red yellow	vehicle door Right Right	Tra A F Front: Rear:	Engine Engin Insmission Utomatic c WD or RW 297.45 230.3	e Type: le Size: Type: or Man D or 4V (655.	ual: WD: 75):	E 1 N Scale:	gas .6 L Manual FWD green
taken from to CLE is the inve of the vehicle s Distribution Front: 3 Rear: 2 ghts (lbs) front 628.	p of rad ntory nu 33.3 22.6 Curb 4 (13	iator suppo umber and (734.79) (490.74)	Scale: Scale: Scale: Test I	centerline of v ocated on the red yellow	ehicle door Right Gross	Tra A F Front: Rear:	Engine Engin nsmission utomatic c WD or RW 297.45 230.3	e Type: le Size: Type: or Man D or 4V (655.	ual: WD: 75):	E 1 N Scale:	gas .6 L Manual FWD green
taken from to CLE is the inve of the vehicle s Distribution Front: <u>3</u> Rear: <u>2</u> ghts (lbs) front <u>628</u> . 'rear <u>434.5</u>	p of rad ntory nu 33.3 22.6 Curb 4 (13	iator suppo umber and (734.79) (490.74) 85.36) 58.88)	Scale: Scale: Scale: Test I 630.75	red yellow (1390.54)	ehicle door Right Gros: 672.85	Trai A F Front: Rear: s Static (1483.	Engine Engin Insmission utomatic c WD or RW 297.45 230.3 36) 36) 99)	e Type: le Size: Type: or Man D or 4V (655.	ual: WD: 75):	E 1 N Scale:	gas .6 L Manual FWD green
taken from to CLE is the inve of the vehicle s Distribution Front: <u>3</u> Rear: <u>2</u> ghts (lbs) front <u>628.</u> (rear <u>434.5</u> total <u>1063.</u>	p of rad ntory nu 33.3 22.6 Curb 4 (13 95 (95 35 (23	iator suppo umber and (734.79) (490.74) 85.36) 58.88)	Scale: Scale: Scale: Test I 630.75 452.9	red yellow nertial (1390.54) (998.46)	Right 1 Right 1 Right 1 Gross 672.85 492.15 1165	Trai A F Front: Rear: (1483. (1084. (2568.	Engine Engin Insmission utomatic c WD or RW 297.45 230.3 36) 36) 99)	e Type: le Size: Type: or Man D or 4V (655.	ual: WD: 75):	E 1 N Scale:	gas .6 L Manual FWD green
taken from to CLE is the inve o of the vehicle s Distribution Front: 3 Rear: 2 ghts (lbs) front 628. (rear 434.5 total 1063.	p of rad ntory nu 33.3 22.6 Curb 4 (13 95 (95 35 (23	(734.79) (490.74) (490.74) (85.36) (58.88) (44.25)	Scale: Scale: Scale: Test I 630.75 452.9 1083.65	red vellow nertial (1390.54) (998.46) (2389)	Right Right Right Gross 672.85 492.15 1165	Trai A F Front: Rear: (1483. (1084.) (2568.) ny Data	Engine Engin Insmission ¹ utomatic c WD or RW 297.45 230.3 36) 39) 34)	Type: rype: rype: or Man D or 4V (655. (507.	ual: WD: 75) 9 72)	Scale:	gas .6 L Manual FWD green
taken from to CLE is the investored for the vehicle as Distribution Front: <u>3</u> Rear: <u>2</u> ghts (lbs) / _{front} <u>628.</u> / _{rear} <u>434.</u>	p of rad ntory nu 33.3 22.6 Curb 4 (13 95 (95 35 (23	iator suppo umber and (734.79) (490.74) (490.74) (490.74) (58.88) (58.88) (58.88) (58.88) (58.88) (58.88) (58.88) (58.88) (58.88) (58.88) (58.88) (58.88) (58.88) (59.	Scale: Scale: Scale: Test I 630.75 452.9 1083.65	red yellow nertial (1390.54) (998.46)	Right l Gross 672.85 492.15 1165 Dumn	Trai A F Front: Rear: (1483. (1084. (2568.	Engine Engin ismission ⁻ utomatic c WD or RW <u>297.45</u> 230.3 36) <u>36)</u> 39) 34)	Type: e Size: Type: or Mann D or 4V (655. (507.	ual: WD: 75) : 72) :	E 1 N Scale:	gas .6 L Manual FWD green

Note any damage prior to test: Small scrape on back passenger panel.

Data Transferred to Electronic Copy By: Christopher Caldwell Date: 3/22/2019 Transfer Checked by: David Whitesel Date: 5/15/2019

Christopher Caldwell reviewed calculations on 8/20/2014

Policies and Procedures Manual Revised:8/17/2017 **Roadside Safety Research Group** Page 1 of 3 A2LA Certificate No. 3046.01 Last Revised by Chris Caldwell Attachment 5.4.2 --- CG Data Calculation Worksheet CG Calculation Worksheet #1: Curb Weight Make: Test Number: 110MASH4C19-01 Versa Model: Nissan Date: 2/14/2019 Year: 2017 Temperature: 70 °F 3N1CN7APXHL832031 VIN: Scale Set Used: 2500 lbs Fuel in Tank: 1/4 tank Fuel Removed: none M Measured By: Dave S. Steve W. Support Staff Vue H. W₁ W_2 W1 = Left Front (LF) = 329.95 kg red Scale Used: CG W2 = Right Front (RF) = 298.45 kg Scale Used: green E W3 = Left Rear (LR) = 211.75 kg Scale Used: vellow W4 = Right Rear (RR) = 223.2 kg Scale Used: blue Total Weight: W4 W₃ Wtotal (measured) = 1062.2 kg Wtotal (calculated) = 1063.35 kg N Distance between front wheels: M = 1485 mm $W_{Total} = W_1 + W_2 + W_3 + W_4$ $H = \frac{\left(W_3 + W_4\right)E}{W_{Total}}$ Distance between rear wheels: N = 1485 mm Distance from front to rear wheels: $R = \frac{(W_2 - W_1)M + (W_4 - W_3)N}{2 W_{Total}}$ E = 2599 mm Distance from front wheels back to CG: H = 1063 Data Transferred to Electronic Copy By: mm **Christopher Caldwell** Date: 2/26/2019 Distance from vehicle centerline to CG: Transfer Checked by: David Whitesel Date: 5/15/2019 R = -14mm

Table 9-8 Test 4-10 CG Calculation: Curb Weight

If R is negative the CG is left of center, if R is positive the CG is right of center

Curb Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.)

110MASH4C19-01 CG Data Calculation Worksheet.xlsx

Curb WorkSheet

Policies and Procedures M	Manual			Revised:8/17/201
Roadside Safety Research	Group			Page 2 of
A2LA Certificate No. 3046	5.01			Last Revised by Chris Caldwe
		ent 5.4.2 CG	Data Calculation Worksh	neet
		ulation Workshe	et #2: Test Inertial Weight	
Make:	Versa		Test Number:	110MASH4C19-01
Model:	Nissan		Date:	3/14/2019
Year:	2017		Temperature:	70 °F
VIN:	3N1CN7APXHL83		Scale Set Used:	2500 lbs
Fuel in Tank:	less than an 1/8 of	a tank		
Fuel Removed:	none		M	
Measured By:	Chris C			-
Furnant Staff	Vue H		4	<u> </u>
Support Staff				
			W1	W ₂
W1 = Left Front (LF) =	333.3	kg		
Scale Used:	red		\smile	
W2 = Right Front (RF) =	297.45	kg		Ge▲
Scale Used:	green			Ŷ
W3 = Left Rear (LR) =	222.6	kg	1	E
Scale Used:	yellow		Fuel	
	- 10 March 10		Tank	
W4 = Right Rear (RR) =	230.3	kg	+ +	
Scale Used:	blue			
			<u> </u>	\cap
Total Weight:			1	
Wtotal (measured) =	1083.9	kg	w ₃	w ₄
	1000 00		$r \rightarrow r$	⊢ ∪
Wtotal (calculated) =	1083.65	kg	The second second	· ·
Distance between front wh	a ale:		<	
M = 1485				N
WI- 1405	1001		$W_{r} = W_{r}$	$+W_2 + W_3 + W_4$
Distance between rear whe	els:			
N = 1485			W = (W)	$\frac{+W_{4}}{W_{\text{Total}}}$
			H =	W Total
Distance from front to rear	wheels:		12	
E = 2599	mm	D	$(W_2 - W_1)M$	$(W_4 - W_3)N$
		R =	2	$\frac{W}{W_{1}} + \left(\frac{W_{4}}{W} - \frac{W_{3}}{W}\right)N$
Distance from front wheels	back to CG:	de la come	7	· · · · · · · · · · · · · · · · · · ·
H = 1086	mm	Data Transfe	erred to Electronic Copy By:	
a share a strength of the	1000		Christopher Caldwell	Date: 3/14/2019
Distance from vehicle cente	erline to CG:	Transfer Ch	ecked by:	
R = -19	mm		David Whitesel	Date: 5/15/2019

Table 9-9 Test 4-10 CG Calculation: Test Inertial Weight

If R is negative the CG is left of center, if R is positive the CG is right of center

Test Inertial Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Two 8.33 lbs masses were attached to the passenger front seat with bolts.

110MASH4C19-01 CG Data Calculation Worksheet.xlsx

Test Inertial WorkSheet

Policies and Procedures M	anual			Revised:8/17/2017
Roadside Safety Research	Group			Page 3 of 3
A2LA Certificate No. 3046.	01			Last Revised by Chris Caldwell
	Attachme	ent 5.4.2	CG Data Calculation Works	sheet
	CG Calo	ulation Work	sheet #3: Gross Static Weigh	nt
Make:	Versa		Test Number:	110MASH4C19-01
Model:	Nissan		Date:	3/22/2019
Year:	2017		Temperature:	72 °F
VIN:	3N1CN7AXHL83		Scale Set Used:	2500 lbs
Fuel in Tank:	~1/8 of a tan	k		м
Fuel Removed:	none		- K	
Measured By:	Chris C		-	
C	Victor L		- Ċ	Ċ
Support Staff	David W			w ₂
W1 = Left Front (LF) =	345.35	kg	- Uî	
	red			н
W2 = Right Front (RF) =	327.5	kg	1	Ge <u>↓</u>
Scale Used:	green		1	1Ť
W3 = Left Rear (LR) =	235.05	kg		E
Scale Used:		28	Fuel Tank	
W4 = Right Rear (RR) =	257.1	kg	► ₹	
Scale Used:	blue			
Total Weight:			\bigcap	
Wtotal (measured) =	1164.9	kg	w ₃	w ₄
Wtotal (calculated) = _1	1165	kg	\bigcup $R \rightarrow$	
Distance between front whe	els:		*	N >>
M = 1485	mm		W _ H	and a state of the
Distance between rear whee	ls:			$W_1 + W_2 + W_3 + W_4$
N = 1485	mm		H = (W)	$\frac{3 + W_4}{W_{\text{Total}}}E$
Distance from front to rear w				
E = 2599	mm	R	$= \frac{(W_2 - W_1)N_2}{(W_2 - W_1)N_2}$	$\frac{M}{2W} + \left(\frac{W_4}{W_4} - \frac{W_3}{W_3}\right)N$
Distance from front wheels b	ack to CG:		2	2 W Total
H = 1098	mm	Data Tra	nsferred to Electronic Copy B	
Distance from vehicle center	line to CG:	Transfer	Christopher Caldwell Checked by:	Date: 3/22/2019
R = 3	mm		David Whitesel	Date: 5/15/2019

Table 9-10 Test 4-10 CG Calculation: Gross Static Weight

If R is negative the CG is left of center, if R is positive the CG is right of center

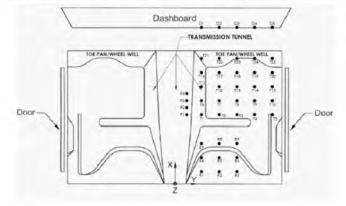
Gross Static Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Dummy added

110MASH4C19-01 CG Data Calculation Worksheet.xlsx

Gross Static WorkSheet

Table 9-11 Test 4-10 Interior Floor and Transmission Tunnel Pre, Post, and Deformation Measurements

Policies and Procedures Manual Roadside Safety Research Group Revised: 10/22/2018 1 of 4


Attachment 5.5 -- Interior Vehicle Measurement Report

Vehicle Type	1100C Small Car	Test Number	110MASH4C19-01
Make	Versa	Model	Nessan
Year	2017	Color	Black
VIN #	3N1CN7APXHL832031		

Point	1	Pre-Impact			Post-Impact		1	Difference		Mamiltude
Point	X	Y	Z	X	Y	Z	ΔΧ	ΔΥ	ΔZ	Magnitude
T1	1000 (39.4)	150 (5.9)	198 (7.8)	1009 (39.7)	176 (6.9)	194 (7.6)	9 (0.4)	26(1)	-4 (-0.2)	28 (1.1)
T2	1000 (39.4)	250 (9.8)	197 (7.8)	996 (39.2)	276 (10.9)	179 (7)	-4 (-0.2)	26(1)	-18 (-0.7)	32 (1.3)
T3	1000 (39.4)	350 (13.8)	215 (8.5)	972 (38.3)	336 (13.2)	217 (8.5)	-28 (-1.1)	-14 (-0.6)	2 (0.1)	31 (1.2)
T4	1000 (39.4)	450 (17.7)	213 (8.4)	976 (38.4)	431 (17)	208 (8.2)	-24 (-0.9)	-19 (-0.7)	-5 (-0.2)	31 (1.2)
T5	1000 (39.4)	550 (21.7)	199 (7.8)	984 (38.7)	540 (21.3)	196 (7.7)	-16 (-0.6)	-10 (-0.4)	-3 (-0.1)	19 (0.8)
T6	1150 (45.3)	150 (5.9)	197 (7.8)	1153 (45.4)	191 (7.5)	185 (7.3)	3 (0.1)	41 (1.6)	-12 (-0.5)	43 (1.7)
T7	1150 (45.3)	250 (9.8)	194 (7.6)	1146(45.1)	290 (11.4)	175 (6.9)	-4 (-0.2)	40 (1.6)	-19 (-0.7)	44 (1.8)
T8	1150 (45.3)	350 (13.8)	204 (8)	1126 (44.3)	327 (12.9)	191 (7.5)	-24 (-0.9)	-23 (-0.9)	-13 (-0.5)	36 (1.4)
T9	1150 (45.3)	450 (17.7)	202 (8)	1126 (44.3)	427 (16.8)	188 (7.4)	-24 (-0.9)	-23 (-0.9)	-14 (-0.6)	36 (1.4)
T10	1150 (45.3)	550 (21.7)	207 (8.1)	1135 (44.7)	534 (21)	204 (8)	-15 (-0.6)	-16 (-0.6)	-3 (-0.1)	22 (0.9)
T11	1300 (51.2)	150 (5.9)	198 (7.8)	1308 (51.5)	205 (8.1)	174 (6.9)	8 (0.3)	55 (2.2)	-24 (-0.9)	61 (2.4)
T12	1300 (51.2)	250 (9.8)	198 (7.8)	1290 (50.8)	285 (11.2)	180 (7.1)	-10 (-0.4)	35 (1.4)	-18 (-0.7)	41 (1.6)
T13	1300 (51.2)	350 (13.8)	197 (7.8)	1273 (50.1)	319 (12.6)	178 (7)	-27 (-1.1)	-31 (-1.2)	-19 (-0.7)	45 (1.8)
T14	1300 (51.2)	450 (17.7)	195 (7.7)	1278 (50.3)	420 (16.5)	176 (6.9)	-22 (-0.9)	-30 (-1.2)	-19 (-0.7)	42 (1.6)
T15	1300 (51.2)	550 (21.7)	194 (7.6)	1281 (50.4)	520 (20.5)	172 (6.8)	-19 (-0.7)	-30 (-1.2)	-22 (-0.9)	42 (1.6)
T16	1459 (57.4)	150 (5.9)	154 (6.1)	1465 (57.7)	185 (7.3)	132 (5.2)	6 (0.2)	35 (1.4)	-22 (-0.9)	42 (1.6)
T17	1476 (58.1)	250 (9.8)	154 (6.1)	1436 (56.5)	258 (10.2)	69 (2.7)	-40 (-1.6)	8 (0.3)	-85 (-3.3)	94 (3.7)
T18	1473 (58)	350 (13.8)	154 (6.1)	1443 (56.8)	310 (12.2)	126 (5)	-30 (-1.2)	-40 (-1.6)	-28 (-1.1)	57 (2.3)
T19	1473 (58)	450 (17.7)	154 (6.1)	1452 (57.2)	408 (16.1)	125 (4.9)	-21 (-0.8)	-42 (-1.7)	-29 (-1.1)	55 (2.2)
T20	1479 (58.2)	550 (21.7)	154 (6.1)	1440 (56.7)	487 (19.2)	105 (4.1)	-39 (-1.5)	-63 (-2.5)	-49 (-1.9)	89 (3.5)
T21	1627 (64.1)	150 (5.9)	0 (0)	1603 (63.1)	125 (4.9)	-30 (-1.2)	-24 (-0.9)	-25 (-1)	-30 (-1.2)	46 (1.8)
T22	1638 (64.5)	250 (9.8)	0 (0)	1585 (62.4)	213 (8.4)	-35 (-1.4)	-53 (-2.1)	-37 (-1.5)	-35 (-1.4)	74 (2.9)
T23	1629 (64.1)	350 (13.8)	0 (0)	1582 (62.3)	302 (11.9)	-40 (-1.6)	-47 (-1.9)	-48 (-1.9)	-40 (-1.6)	78 (3.1)
T24	1625 (64)	450 (17.7)	0 (0)	1582 (62.3)	404 (15.9)	-40 (-1.6)	-43 (-1.7)	-46 (-1.8)	-40 (-1.6)	75 (2.9)
T25	1555 (61.2)	550 (21.7)	0 (0)	1478 (58.2)	472 (18.6)	-60 (-2.4)	-77 (-3)	-78 (-3.1)	-60 (-2.4)	125 (4.9)

Floor Pan and Transmission Tunnel Area Measurements - Dimensions in mm (inches)

Point	Pre-Impact			2 L	Post-Impact			Difference			
	X	Y	Z	X	Y	Z	ΔΧ	ΔΥ	ΔZ	Magnitude	
F1	1000 (39.4)	70 (2.8)	48 (1.9)	1018 (40.1)	69 (2.7)	62 (2.4)	18 (0.7)	-1 (0)	14 (0.6)	23 (0.9)	
F2	1075 (42.3)	70 (2.8)	49 (1.9)	1093 (43)	69 (2.7)	62 (2.4)	18 (0.7)	-1 (0)	13 (0.5)	22 (0.9)	
F3	1150 (45.3)	70 (2.8)	47 (1.9)	1173 (46.2)	71 (2.8)	62 (2.4)	23 (0.9)	1(0)	15 (0.6)	27 (1.1)	
F4	1225 (48.2)	70 (2.8)	41 (1.6)	1242 (48.9)	69 (2.7)	56 (2.2)	17 (0.7)	-1 (0)	15 (0.6)	23 (0.9)	
F5	0 (0)	0(0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)	

Table 9-12 Test 4-10 Interior Side Front Panel and Roof Pre, Post, and Deformation Measurements

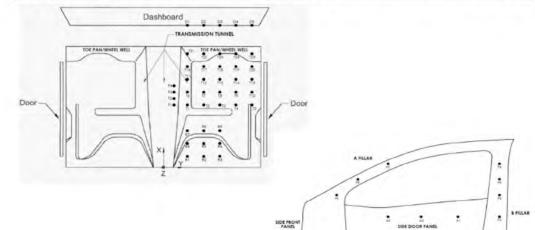
Policies and Procedures Manual Roadside Safety Research Group Revised: 10/22/2018 2 of 4

.

.

RONT SIDE DOOR

Attachment 5.5 --- Interior Vehicle Measurement Report


Vehicle Type	1100C Small Car	Test Number	110MASH4C19-01
Make	Versa	Model	Nessan
Year	2017	Color	Black
VIN #	3N1CN7APXHL832031		

san

Side Front Panal Measurements - Dimensions in mm (inches)

Delet	1961 - Carl Start 1961	Pre-Impact		1	Post-Impact			Difference		Magnitude
Point	X	Y	Z	Х	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
S1	1428 (56.2)	643 (25.3)	111 (4.4)	1395 (54.9)	579 (22.8)	52 (2)	-33 (-1.3)	-64 (-2.5)	-59 (-2.3)	93 (3.7)
S2	1426 (56.1)	644 (25.4)	0 (0)	1372 (54)	571 (22.5)	-58 (-2.3)	-54 (-2.1)	-73 (-2.9)	-58 (-2.3)	108 (4.2)
S3	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
S4	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
S5	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
S6	0 (0)	0(0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
S7	0 (0)	0(0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
S8	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
S9	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
S10	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)

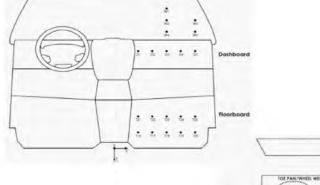
Point	Pre-Impact			Post-Impact				Difference	4	Magnitude
Point	X	Y	Z	X	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
R1	600 (23.6)	150 (5.9)	-1066 (-42)	599 (23.6)	148 (5.8)	-1077 (-42.4)	-1(0)	-2 (-0.1)	-11 (-0.4)	11 (0.4)
R2	600 (23.6)	250 (9.8)	-1068 (-42)	599 (23.6)	249 (9.8)	-1079 (-42.5)	-1(0)	-1 (0)	-11 (-0.4)	11 (0.4)
R3	600 (23.6)	350 (13.8)	-1062 (-41.8)	598 (23.5)	348 (13.7)	-1076 (-42.4)	-2 (-0.1)	-2 (-0.1)	-14 (-0.6)	14 (0.6)
R4	700 (27.6)	150 (5.9)	-1058 (-41.7)	699 (27.5)	148 (5.8)	-1066 (-42)	-1(0)	-2 (-0.1)	-8 (-0.3)	8 (0.3)
R5	700 (27.6)	250 (9.8)	-1055 (-41.5)	699 (27.5)	249 (9.8)	-1070 (-42.1)	-1 (0)	-1 (0)	-15 (-0.6)	15 (0.6)
R6	700 (27.6)	350 (13.8)	-1052 (-41.4)	696 (27.4)	347 (13.7)	-1068 (-42)	-4 (-0.2)	-3 (-0.1)	-16 (-0.6)	17 (0.7)
R7	800 (31.5)	150 (5.9)	-1040 (-40.9)	800 (31.5)	149 (5.9)	-1056 (-41.6)	0(0)	-1 (0)	-16 (-0.6)	16 (0.6)
R8	800 (31.5)	250 (9.8)	-1036 (-40.8)	799 (31.5)	250 (9.8)	-1056 (-41.6)	-1(0)	0(0)	-20 (-0.8)	20 (0.8)
R9	800 (31.5)	350 (13.8)	-1030 (-40.6)	800 (31.5)	351 (13.8)	-1054 (-41.5)	0(0)	1(0)	-24 (-0.9)	24 (0.9)
R10	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)

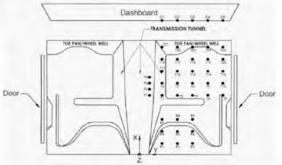
• ٠

Table 9-13 Test 4-10 Interior Windshield and Dashboard Pre, Post, and Deformation Measurements

Policies and Procedures Manual Roadside Safety Research Group Revised: 10/22/2018 3 of 4

Attachment 5.5 --- Interior Vehicle Measurement Report


Vehicle Type	1100C Small Car	Test Number	110MASH4C19-01
Make	Versa	Model	Nessan
Year	2017	Color	Black
VIN #	3N1CN7APXHL832031		


Doint	Pre-Impact			Post-Impact				Magnitude		
Point	X	Y	Z	X	Y	Z	ΔΧ	ΔΥ	ΔZ	Magnitude
W1	1171 (46.1)	350 (13.8)	-890 (-35)	1180 (46.5)	350 (13.8)	-925 (-36.4)	9 (0.4)	0(0)	-35 (-1.4)	36 (1.4)
W2	1362 (53.6)	350 (13.8)	-782 (-30.8)	1375 (54.1)	355 (14)	-822 (-32.4)	13 (0.5)	5 (0.2)	-40 (-1.6)	42 (1.7)
W3	1318 (51.9)	550 (21.7)	-782 (-30.8)	1341 (52.8)	555 (21.9)	-842 (-33.1)	23 (0.9)	5 (0.2)	-60 (-2.4)	64 (2.5)
W4	1530 (60.2)	350 (13.8)	-682 (-26.9)	1548 (60.9)	355 (14)	-725 (-28.5)	18 (0.7)	5 (0.2)	-43 (-1.7)	47 (1.8)
W5	1477 (58.1)	550 (21.7)	-682 (-26.9)	1497 (58.9)	560 (22)	-732 (-28.8)	20 (0.8)	10 (0.4)	-50 (-2)	55 (2.2)
W6	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
W7	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
W8	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
W9	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
W10	0(0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0(0)	0 (0)

Dashboard Measurements - Dimensions in mm (inches)

Point	Pre-Impact			Post-Impact				Magnitude		
	х	Y	Z	X	Y	Z	ΔΧ	ΔΥ	ΔZ	Magnitude
D1	1163 (45.8)	150 (5.9)	-498 (-19.6)	1164 (45.8)	105 (4.1)	-537 (-21.1)	1(0)	-45 (-1.8)	-39 (-1.5)	60 (2.3)
D2	1160 (45.7)	250 (9.8)	-498 (-19.6)	1156 (45.5)	205 (8.1)	-545 (-21.5)	-4 (-0.2)	-45 (-1.8)	-47 (-1.9)	65 (2.6)
D3	1163 (45.8)	350 (13.8)	-498 (-19.6)	1158 (45.6)	304 (12)	-548 (-21.6)	-5 (-0.2)	-46 (-1.8)	-50 (-2)	68 (2.7)
D4	1173 (46.2)	450 (17.7)	-498(-19.6)	1167 (45.9)	404 (15.9)	-557 (-21.9)	-6 (-0.2)	-46 (-1.8)	-59 (-2.3)	75 (3)
D5	1191 (46.9)	550 (21.7)	-498 (-19.6)	1188 (46.8)	504 (19.8)	-558 (-22)	-3 (-0.1)	-46 (-1.8)	-60 (-2.4)	76 (3)
D6	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
D7	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)

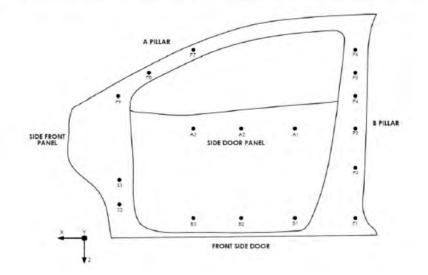
Windshield

Table 9-14 Test 4-10 Interior Side Pre, Post, and Deformation Measurements

Policies and Procedures Manual Roadside Safety Research Group Revised: 10/22/2018 4 of 4

Attachment 5.5 --- Interior Vehicle Measurement Report

Vehicle Type	1100C Small Car	Test Number	110MASH4C19-01	
Make	Versa	Model	Nessan	
Year	2017	Color	Black	
VIN #	3N1CN7APXHL832031			


A and B Pillar Measurements - Dimensions in mm (inches)

Daint	1	Pre-Impact		N	Post-Impact			Difference		Magnituda
Point	X	Y	Z	Х	Y	Z	ΔΧ	ΔΥ	ΔZ	Magnitude
P1	300 (11.8)	681 (26.8)	-75 (-3)	302 (11.9)	675 (26.6)	-75 (-3)	2 (0.1)	-6 (-0.2)	0 (0)	6 (0.2)
P2	300 (11.8)	677 (26.7)	-278 (-10.9)	302 (11.9)	661 (26)	-278 (-10.9)	2 (0.1)	-16 (-0.6)	0 (0)	16 (0.6)
P3	300 (11.8)	662 (26.1)	-498 (-19.6)	303 (11.9)	644 (25.4)	-497 (-19.6)	3 (0.1)	-18 (-0.7)	1 (0)	18 (0.7)
P4	300 (11.8)	637 (25.1)	-682 (-26.9)	303 (11.9)	618 (24.3)	-684 (-26.9)	3 (0.1)	-19 (-0.7)	-2 (-0.1)	19 (0.8)
P5	300 (11.8)	600 (23.6)	-782 (-30.8)	304 (12)	583 (23)	-794 (-31.3)	4 (0.2)	-17 (-0.7)	-12 (-0.5)	21 (0.8)
P6	300 (11.8)	558 (22)	-890 (-35)	304 (12)	544 (21.4)	-899 (-35.4)	4 (0.2)	-14 (-0.6)	-9 (-0.4)	17 (0.7)
P7	1000 (39.4)	566 (22.3)	-890 (-35)	1013 (39.9)	552 (21.7)	-928 (-36.5)	13 (0.5)	-14 (-0.6)	-38 (-1.5)	43 (1.7)
P8	1218 (48)	608 (23.9)	-782 (-30.8)	1226 (48.3)	591 (23.3)	-836 (-32.9)	8 (0.3)	-17 (-0.7)	-54 (-2.1)	57 (2.3)
P9	1359 (53.5)	637 (25.1)	-682 (-26.9)	1380 (54.3)	586 (23.1)	-737 (-29)	21 (0.8)	-51 (-2)	-55 (-2.2)	78 (3.1)
P10	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)

Point		Pre-Impact		1	Post-Impact			Difference			
Point	х	Y	Z	х	Y	Z	ΔΧ	ΔΥ	ΔZ	Magnitude	
A1	700 (27.6)	670 (26.4)	-498 (-19.6)	672 (26.5)	690 (27.2)	-531 (-20.9)	-28 (-1.1)	20 (0.8)	-33 (-1.3)	48 (1.9)	
A2	800 (31.5)	673 (26.5)	-498 (-19.6)	774 (30.5)	687 (27)	-538 (-21.2)	-26(-1)	14 (0.6)	-40 (-1.6)	50 (2)	
A3	1000 (39.4)	663 (26.1)	-498 (-19.6)	964 (38)	647 (25.5)	-535 (-21.1)	-36 (-1.4)	-16 (-0.6)	-37 (-1.5)	54 (2.1)	
A4	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)	
A5	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)	
A6	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)	

Below Seat Front Side Door Area Measurements - Dimensions in mm (inches)

Point		Pre-Impact			Post-Impact			Difference	1	Magnituda
Point	X	Y	Z	X	Y	Z	ΔΧ	ΔΥ	ΔZ	Magnitude
B1	700 (28.6)	657 (26.8)	-75(-3.1)	675 (27.6)	670 (27.3)	-114 (-4.7)	-25(-1)	13 (0.5)	-39 (-1.6)	48 (2)
B2	800 (32.7)	655 (26.7)	-75(-3.1)	775 (31.6)	676 (27.6)	-117 (-4.8)	-25(-1)	21 (0.9)	-42 (-1.7)	53 (2.2)
B3	1000 (40.8)	657 (26.8)	-75(-3.1)	970 (39.6)	638 (26)	-110 (-4.5)	-30 (-1.2)	-19 (-0.8)	-35 (-1.4)	50 (2)
B4	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
B5	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
B6	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)

9.5.2.Test 110MASH4P18-02

Total:	ings: 3085	CO INXIIIIINC								
	34	49		603.6)	_ Sea	t Position			N/A	
Back:		770		902.1)	_ Ma			N/A		
Front:		579		701.5)	Тур	_		N/A		
	ings - kg (lb			704 51	Dumm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L			
total _	2162.9	(4768.3)	2251.9	(4964.5)	2251.9	(4964.5)	-	51013		
/ rear		(2075.9)	1025.1	(2259.8)	1025.1	(2259.8)	tomm		C 7-10-18	
front		(2692.4)	1226.9	(2704.7)	1226.9	(2704.7)			es and co	
(lbs)									easureme 20-1. Mea	ent. Tape's
ghts (lbs)	Cur	h	Test	nertial	Gross	Static				
abte							*Head or	libro	ted 1008	steel tape
Rear:	527	(1162.6)	Scale:	yellow	Right R	lear:	497.7 (109	7.2)	Scale:	blue
Front:	619	(1365.5)		red	Right F				Scale:	green
						FW	/D or RWD or 4	WD:	KWD	
b of the	vehicle.						tomatic or Ma			tomatic
		number and	should be loo	cated on the do	oor		nission Type:			0.00
	ibution - kg						Engine Size	s	3	.6L
							Engine Type	-		/6
	\\ \\ \\ \\ \\ \\ \\	ont C		7.W _{mar}		Fr	ame Height (R)	:	360	(14.2)
1	-1-1	0-	1				ame Height (F)	_	330	(13)
	-	-h			Whe	eel Well Cl	earance (R)	_	215	(8.5)
1					Whe	eel Well Cl	earance (F)	1	160	(6.3)
1 #	-(0)		≡ [€)	Whe	eel Center	Height Rear:		385	(15.2)
	b h	39	10	> 1-	Whe	eel Center	Height Front:		385	(15.2)
p		1-1		6	s	380	(15)	t	1908	(75.1)
Diamotor	HIH		<u> </u>		Tq	790	(31.1)	r	470	(18.5)
Clameter	++-		/		0	1160	(45.7)	p	120	(4.7)
			>_ Test	Inertial C.M.	m	1736	(68.3)	n	1718	(67.6)
-			An			532	(20.9)	i	771	(30.4)
					-	340	(13.4)	1	655	(25.8)
m		2			n t g	748	(29.4)	h	1554	(61.2)
					e c*	3569	(140.5)	d f	1020	(40.2)
1-1					- T .+	1977 5823	(77.8) (229.3)	b -	1917 1233	(75.5)
Meas	urements H	Refer to Imp	acting Side	:)			netry - mm (i			
				-						
asured		Chris C	Staff:		ave S Sca	-		-	2500 lbs	
-	on Pressure		40 psi	alla manage	asure Used:		5m-CP02	CLE		RISI 1801
Size:		65/70R17	Yea		10	onnor or	Odor	neter	: 46	-
ke:		am 1500	VI				JS293929	er	L	ouge
e.	7	/10/2018	Ta	st Number:	11044	ASH4P18	-02 Mod			odge
e:										

Table 9-15 Test 4-11 Exterior Vehicle Measurements

Christopher Caldwell reviewed calculations 8/20/2014

Policies and Procedures M	anual			Revised:8/17/201
Roadside Safety Research	Group			Page 1 of
A2LA Certificate No. 3046.				Last Revised by Chris Caldwe
		nt 5 4 2	CG Data Calculation Workshe	
	Attacinit		co bata calculation workshe	et
	CG	Calculation W	orksheet #1: Curb Weight	
Make:	Ram 1500		Test Number:	110MASH4P18-02
Model:	Dodge		Date:	7/10/2018
Year:	2018		Temperature:	~70 F
VIN:	1C6RR6FG7JS293	3929	Scale Set Used:	2500 lbs
Fuel in Tank:	1/8 tank			
Fuel Removed:	none		M	N
Measured By:	Chris C			-
C	Dave S			_
Support Staff	Steve W			
	David W		- W1 A	W ₂
W1 = Left Front (LF) =	609.65	kg		
Scale Used:	red	K		н
Jeane O Seu.	icu			çg 🗸 🖌
W2 = Right Front (RF) =	611.6	kg		• — · I
	green		1	
	0.001			E
W3 = Left Rear (LR) =	483.65	kg		
Scale Used:	yellow	_	Fuel	
W4 = Right Rear (RR) =	458	kg		
Scale Used:	blue			
· · · · · · · · · · · · · · · · · · ·				
Total Weight:			W ₃	W4
Wtotal (measured) =	2163	kg	$R \rightarrow$	←
			-	
Wtotal (calculated) =	2162.9	kg	*	>
Contractor in the				N
Distance between front when				
M = 1736	mm		$W_{Total} = W_1 +$	$-W_2 + W_3 + W_4$
Distance between rear whee	le.			
N = 1718			$W = (W_3)$	$+ W_{4} E$
N- 1/10			$H = \frac{(W_3)}{W_3}$	V Total
Distance from front to rear w	heels:		,	r Total
E = 3569			$=\frac{(W_2 - W_1)M}{2W}$	$+ (W_{1} - W_{2})N$
		R	$=$ $\frac{1}{2}$	
Distance from front wheels b	ack to CG:		2 11	Total
H = 1554	mm	Data Tra	nsferred to Electronic Copy By:	
			Christopher Caldwell	Date: 7/11/2018
Distance from vehicle center	line to CG:	Transfer	Checked by:	
R = -9	mm		David Whitesel	Date: 10/19/2018

Table 9-16 Test 4-11 CG Calculation: Curb Weight

If R is negative the CG is left of center, if R is positive the CG is right of center

Curb Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) No damage, spare tire included.

110MASH4P18-02 --- CG Data Calculation Worksheet.xlsx

Curb WorkSheet

Roadside Safety Research Group Last Revised by A2LA Certificate No. 3046.01 Last Revised by Attachment 5.4.2 CG Data Calculation Worksheet CG Calculation Worksheet #2: Test Inertial Weight Make: Ram 1500 Test Number: 110MASH4P18-0 Model: Dodge Date: $7/31/2018$ Year: 2018 Temperature: $~75$ °F VIN: 1CGRR6FG7JS293929 Scale Set Used: 2500 lbs Fuel In Tank: none Fuel Removed: $~3 gallon$ Measured By: Chris C Scale Set Used: 2500 lbs W1 = Left Front (LF) = 619.4 kg Kg Scale Used: green W1 Left Rear (IR) = 527.35 kg W3 = Left Rear (IR) = 527.35 kg Fuel Fuel Fuel W4 = Right Rear (RR) = 497.7 kg Kg Kg Kg Kg Total Weight: blue blue Kg Kg Kg Kg Kg	ed: 8/17/2017
Attachment 5.4.2 CG Data Calculation WorksheetCG Calculation Worksheet #2: Test Inertial WeightMake:Ram 1500Test Number:110MASH4P18-0:Model:DodgeDate:7/31/2018Year:2018Temperature: $?75 \ ^{F}$ VIN:ICGRR6FG7JS293929Scale Set Used:2500 lbsFuel In Tank:noneScale Used:2500 lbsFuel Removed: $"3 \ gallon$ MW1 = Left Front (LF) =619.4kgScale Used:greenW3 = Left Rear (LR) =527.35kgScale Used:yellowW4 = Right Rear (RR) =497.7kgScale Used:blue	Page 2 of 3
CG Calculation Worksheet #2: Test Inertial WeightMake:Ram 1500Test Number:110MASH4P18-02Model:DodgeDate:7/31/2018Vear:2018Test number: $7/31/2018$ ViN:1CGRR6FG7JS293929Scale Set Used:2500 lbsFuel in Tank:noneScale Set Used:2500 lbsFuel Removed: $^{\sim}3$ gallonMMeasured By:Chris CMSupport StaffMW1 = Left Front (LF) =619.4 kgkgScale Used:greenkgW2 = Right Front (RF) =607.45 kgkgScale Used:greenkgW3 = Left Rear (LR) =527.35 kgkgScale Used:greenW4 = Right Rear (RR) =497.7 kgScale Used:blue	Chris Caldwel
Make:Ram 1500Test Number:110MASH4P18-0.Model:DodgeDate:7/31/2018Year:2018Temperature: $?75 \ ^{F}F$ VIN:1C6RR6FG7JS293929Scale Set Used:2500 lbsFuel in Tank:noneScale Set Used:2500 lbsFuel Removed: $?3 \ gallon$ MMeasured By:Chris CSteve WSupport Staff	
Model:DodgeDate: $7/31/2018$ Year:2018Temperature: $~75$ °FVIN:1C6RR6FG7JS293929Scale Set Used:2500 lbsFuel n Tank:none $~3$ gallonMMeasured By:Chris C $Steve W$ M Support Staff $W1$ = Left Front (LF) =619.4 kg W_1 W1 = Left Front (LF) =607.45 kg W_2 W_1 W2 = Right Front (RF) =607.45 kg $green$ W_1 W3 = Left Rear (LR) = 527.35 kg $green$ V_1 W4 = Right Rear (RR) = 497.7 kg M V_2 W4 = Right Rear (RR) = 497.7 kg M V_2 Scale Used: M V_2 V_1 W4 = Right Rear (RR) = M M W5 = M M W5	
Year: 2018 Temperature: $~75$ °F VIN: 1C6RR6FG7JS293929 Scale Set Used: 2500 lbs Fuel in Tank: none Scale Set Used: 2500 lbs Fuel Removed: $~3$ gallon M M Measured By: Chris C Steve W M Support Staff	2
VIN: 1C6RR6FG7JS293929 Scale Set Used: 2500 lbs Fuel in Tank: none "3 gallon M Fuel Removed: "3 gallon M Measured By: Chris C M Support Staff M W1 = Left Front (LF) = 619.4 kg W1 = Left Front (LF) = 619.4 kg W1 W2 Scale Used: red W2 W1 W2 = Right Front (RF) = 607.45 kg Kg Scale Used: green W2 W3 = Left Rear (LR) = 527.35 kg Scale Used: yellow Yellow W4 = Right Rear (RR) = 497.7 kg Scale Used: blue Here	
Fuel in Tank: none Fuel Removed: *3 gallon Measured By: Chris C Support Staff M W1 = Left Front (LF) = 619.4 kg Scale Used: red W1 W2 = Right Front (RF) = 607.45 kg Scale Used: green Kg W3 = Left Rear (LR) = 527.35 kg Scale Used: yellow Kg W4 = Right Rear (RR) = 497.7 kg Scale Used: blue blue	
Fuel Removed: $^{\sim}3$ gallon M Measured By: Chris C Support Staff	
Measured By: Chris C Support Staff Steve W Support Staff W_1 W1 = Left Front (LF) = 619.4 kg Scale Used: red W2 = Right Front (RF) = 607.45 kg Scale Used: green W3 = Left Rear (LR) = 527.35 kg Scale Used: yellow W4 = Right Rear (RR) = 497.7 kg Scale Used: blue	
Support Staff Steve W Support Staff W_1 W1 = Left Front (LF) = 619.4 kg Scale Used: red W2 = Right Front (RF) = 607.45 kg Scale Used: green W3 = Left Rear (LR) = 527.35 kg Scale Used: yellow W4 = Right Rear (RR) = 497.7 kg Scale Used: blue	
W1 = Left Front (LF) = 619.4 kg Scale Used: red $W2 = Right Front (RF) = 607.45 kg$ Scale Used: green $W3 = Left Rear (LR) = 527.35 kg$ Scale Used: yellow $W4 = Right Rear (RR) = 497.7 kg$ Scale Used: blue $W4 = Right Rear (RR) = 607.45 kg$	
$W1 = Left Front (LF) = \underline{619.4} kg$ Scale Used: red $W2 = Right Front (RF) = \underline{607.45} kg$ Scale Used: green $W3 = Left Rear (LR) = \underline{527.35} kg$ Scale Used: yellow $W4 = Right Rear (RR) = \underline{497.7} kg$ Scale Used: blue $Fuel Tank$	
Scale Used: red W2 = Right Front (RF) = 607.45 kg Scale Used: green W3 = Left Rear (LR) = 527.35 kg Scale Used: yellow W4 = Right Rear (RR) = 497.7 kg Scale Used: blue	1
W2 = Right Front (RF) = 607.45 kg Scale Used: green W3 = Left Rear (LR) = 527.35 kg Scale Used: yellow W4 = Right Rear (RR) = 497.7 kg Scale Used: blue	
Scale Used: green W3 = Left Rear (LR) = 527.35 kg Scale Used: yellow W4 = Right Rear (RR) = 497.7 kg Scale Used: blue	н
Scale Used: green W3 = Left Rear (LR) = 527.35 kg Scale Used: yellow W4 = Right Rear (RR) = 497.7 kg Scale Used: blue	<u>/</u>
$W3 = Left Rear (LR) = \underbrace{527.35}_{Yellow} kg$ Scale Used: $\underbrace{Yellow}_{Tank}$ $W4 = Right Rear (RR) = \underbrace{497.7}_{blue} kg$ Scale Used: \underbrace{blue}	
Scale Used: yellow Yellow Yellow Tank W4 = Right Rear (RR) = 497.7 kg Scale Used: blue	E
W4 = Right Rear (RR) = 497.7 kg Scale Used: blue +	
Scale Used: blue	
Total Weight:	
Wtotal (measured) =kg W_3 W_4 -	<u> </u>
Wtotal (calculated) = 2251.9 kg $R \rightarrow \leftarrow \bigcup$	
· · · · · · · · · · · · · · · · · · ·	
Distance between front wheels: N	
$M = 1736 mm W_{Total} = W_1 + W_2 + W_3 + W_4$	
Distance between rear wheels:	
N = <u>1718</u> mm $H = \frac{(W_3 + W_4)E}{W_3 + W_4}$	
$H = \frac{W}{W}$ Total	
Distance from front to rear wheels:	
$E = \frac{3569}{2W_{Total}} mm \qquad R = \frac{(W_2 - W_1)M + (W_4 - W_3)}{2W_{Total}}$)N
Distance from front wheels back to CG: 2 W Total	
H = 1625 mm Data Transferred to Electronic Copy By:	
Christopher Caldwell Date:	7/31/2018
Distance from vehicle centerline to CG: Transfer Checked by:	., 54/2010
R = -16 mm David Whitesel Date:	in line in a sec

Table 9-17 Test 4-11 CG Calculation: Test Inertial Weight

If R is negative the CG is left of center, if R is positive the CG is right of center

Test Inertial Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Ballest added, all equipment installed, no gas in tank, spare tire included, 3/4 full external gas tank (about 3 gallons) Ballest: 2 steel plates each weighing 16.5 kg (36.5 lbs)

110MASH4P18-02 --- CG Data Calculation Worksheet.xlsx

Test Inertial WorkSheet

Policies and Procedures Ma	anual			Revised: 8/17/2017
Roadside Safety Research (Group			Page 3 of 3
A2LA Certificate No. 3046.0	01			Last Revised by Chris Caldwel
		ent 5.4.2 C	G Data Calculation Worksh	discriminate divertion and the
	CG Cald	ulation Works	heet #3: Gross Static Weight	
Make:	Ram 1500		Test Number:	110MASH4P18-02
Model:	Dodge		Date:	7/21/2018
Year:	2018		Temperature:	~75 °F
VIN:	1C6RR6FG7JS29	3929	Scale Set Used:	2500 lbs
Fuel in Tank:	None		- N	
Fuel Removed:	~3 gallons		- K	>
Measured By:	Chris C		- 1	
Support Staff	Steve W		- –	\square
				w ₂
W1 = Left Front (LF) =	619.4	kg		
Scale Used:	red			н
W2 = Right Front (RF) =	607.45	kg		Ge →
Scale Used:	green		Ť.	
W3 = Left Rear (LR) =	527.35	kg		E
Scale Used:			Fuel	
W4 = Right Rear (RR) =	497.7	kg	★ →	
Scale Used:	blue			
Total Weight:			\square	
Wtotal (measured) =	2251.8	kg	w ₃	w ₄
Wtotal (calculated) = 2	251.9	kg	\bigcup $R \rightarrow$	ll← └
Distance between front whee	els:		<	N >
M = 1736	mm		W _ W	W IV IV
Distance between rear wheel	ls:			$+W_2 + W_3 + W_4$
N =1718	mm		$H = \frac{W}{W}$	$\frac{3}{W} + \frac{W}{4} E$
Distance from front to rear w	heels			ry rout
E = 3569		R	$= \frac{(W_2 - W_1)M}{(W_2 - W_1)M}$	$\frac{1}{W_{4} - W_{3}}N$
Distance from front wheels b	ack to CG:		2	W Total
H = 1625		Data Tran	sferred to Electronic Copy By:	
			Christopher Caldwell	
Distance from vehicle centerl	ine to CG:	Transfer (Checked by:	
	mm		David Whitesel	Date: 10/19/2018

Table 9-18 Test 4-11 CG Calculation: Gross Static Weight

If R is negative the CG is left of center, if R is positive the CG is right of center

Gross Static Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.)
Copy of Test Inertial Weght worksheet.

110MASH4P18-02 --- CG Data Calculation Worksheet.xlsx

Gross Static WorkSheet

Policies and Procedures M	anual			Revised: 8/17/2017
Roadside Safety Research	Group			Page 4 of 4
A2LA Certificate No. 3046.	01			Last Revised by Chris Caldwel
	Attachm	ent 5.4.2 (CG Data Calculation Works	heet
	CG Cal	culation Work	sheet #4: Vertical CG Weight	
Make:	Ram 1500		Test Number:	110MASH4P18-02
Model:	Dodge		Date:	8/7/2018
Year:	2018		Temperature:	65 F
VIN:	1C6RR6FG7JS29	3929	Scale Set Used:	2500 lbs
Fuel in Tank:	none			M
Fuel Removed:	none		- +	>
Measured By:	Steve W			
	Chris C			Ċ
Support Staff	Rachel K			
·	Dave S		- W1	W ₂
W1 = Left Front (LF) =	622.6	kg	\cup	
	red	0		н
W2 - Pight Front (PF) -	616.3	62	ġ.	₩ ₩
		kg		Ψ
Scale Used:	green	-		
W3 = Left Rear (LR) =	531.9	kg	and the second se	E
Scale Used:	yellow		Fuel	
W4 = Right Rear (RR) =	507.5	kg		
Scale Used:	blue			
			4	
Total Weight:				
Wtotal (measured) =	2278.3	kg	W ₃	W4
	New		$\left[\right] R \rightarrow$	
Wtotal (calculated) = 2	2278.3	kg	<u> </u>	
Distance between front whe	els:		<	N >
M = 1736	mm		117 117	. 117 . 117 . 117
Distance between rear whee	ls:			$+W_2 + W_3 + W_4$
N = 1718			(W	$_3 + W_{A})E$
			H = -	$\frac{3}{W} + \frac{W}{4} E$
Distance from front to rear w	vheels:			
E = 3569		D	$(W_2 - W_1)M$	$1 + (W_4 - W_3)N$
		R	=2	$\frac{M}{2} + \frac{W}{W} - \frac{W}{3} N$
Distance from front wheels b	back to CG:	10.000	and the second second	
H = 1628	mm	Data Trar	sferred to Electronic Copy By	
Diana francisco de la composición de la	1	Trade		Date: 8/8/2018
Distance from vehicle center		Transfer	Checked by:	D.4. 4/15/0000
R = -12	mm	-	David Whitesel	Date: 4/15/2020

Table 9-19 Test 4-11 CG Calculation: Vertical CG Weight

If R is negative the CG is left of center, if R is positive the CG is right of center

Gross Static Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Guide arm hub removed and vertical CG equipment added. Spare tire included.

110MASH4P18-02 --- CG Data Calculation Worksheet.xlsx

Vertical CG WorkSheet

California Department of Transportation Report No. FHWA/CA22-3033 FINAL 8/4/2022

		1621 4-11			eet	
Policies and Procedure	Manual				Revise	ed 6/27/2017
Roadside Safety Resea	rch Group					1 of 2
	Attachment	t 5.6 (a) \	/ehicle Center of G	aravity Workshe	et	
	RS	RG Vertical (Center of Gravity Wo	orksheet		
		Vel	nicle Information			
Year:	2018		Model: Do	odge		
Make:	Ram 1500		VIN: 10	6RR6FG7JS29392	29	
Curb or Inertial Measure	ment:	Inertial	Test #:	110N	MASH4P18-02	
Tape Measure Used:	5m-CP01 & 5	5m-CP02	Scale Set Used	:	2500 lbs	
	Ň	Vehicle and E	Equipment Measure	ments		
Vehicle Mass and Meas	urements (From C	G Worksheet	t):			
Hub to Hub Wheel Base:		mm	Vehicle Width (Av	e of Center of Tire	es) <u>1727</u>	mm
Cgy Offset (-Driver side,	+Pass. Side)	-16	mm Total \	/ehicle Mass:	2251.8	kg
Dvr. Front Tire Mass:	619.4	kg	Dvr. Rear Tire Mas	is:	527.35	kg
Scale Color:	red		Scale Color:	yellow		
Pass. Front Tire Mass:	607.45	kg	Pass. Rear Tire Ma		497.7	kg
Scale Color:	green		Scale Color:	blue		
Vehicle Height From the	Top of the Rim In	ner Lip to th	e Bottom of the Wh	eel Well:		
Driver Front:	306	mm	Driver Rear:		350	mm
Passenger Front:	301	mm	Passenger Rear:		351	mm
Height From Ground to	Center of Support:	:				
Driver Front:	450.5	mm	Driver Rear:		449	mm
Passenger Front:	446.5	mm	Passenger Rear:		452.5	mm
Shock Mass:						
Driver Front:	2.15	kg	Passenger Front:		2.15	kg
Scale Color:	red		Scale Color:		red	
Height From Ground to	Center of Wheel H	lub:				
Driver Front:	382	mm	Driver Rear:		382	mm
Passenger Front:	382	mm	Passenger Rear:		382	mm

Table 9-20 Test 4-11 Vertical CG Calculation: Worksheet

California Department of Transportation Report No. FHWA/CA22-3033 FINAL 8/4/2022

Table 9-20 Test 4-11 Vertical CG Calculation: Worksheet (continued)

Policies and Procedure Manual
Roadside Safety Research Group

Revised 6/27/2017 2 of 2

Attachment 5.6 (a) --- Vehicle Center of Gravity Worksheet

RSRG Vertical Center of Gravity Worksheet (Cont.)

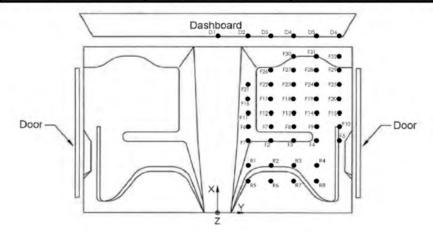
Vertical Center of Gravity Measurement

Number of Used Chain Links:

Vehicle Level:		a day and a second			
Front:	50	links	Rear:	60	links
Vehicle Front Up:			Angle: 16		degrees
Front:	45	links	Rear:	70	links
Vehicle Rear Up:			Angle: 18		degrees
Front:	60	links	Rear:	49	links
Driver Side CGz:			Passenger Side CG	iz:	
Maximum:	760	mm	Maximum:	775	mm
Middle:	750	mm	Middle:	754	mm
Minimum:	735	mm	Minimum:	728	mm
Width:	50	mm	Width:	70	mm
Conducted by:		Christopher (Caldwell	Date:	8/7/2018
Transferred to elec	tronic copy				
by:	· · · · · · · · · · · · · · · · · · ·	Chri	stopher Caldwell	Date:	8/8/2018
Checked by:		David Whi	tesel	Date:	10/22/2018

Policies and Procedure					Revise	ed: 3/28/20
Roadside Safety Resea						10
At	tachment 5.6 (b) Vehicle Cent	ter of Gravit	y Measure	ment and Re	port	
	Vehicle Center of Grav	vity Measure	ments			
	nent and Crash Testing of a Steel Pos 15, Test Level 4, for use in California			ng in Complian	ce with	
Vehicle Test Number:	110MASH4P18-02	Model:	Dodge			
Make:	Ram 1500	Year:	2018			
VIN:	1C6RR6FG7JS293929	_				
Vehicle Weights (Test Ir	nertail) kg (lbs):					
Left Front Tire: 619.4	(1365.5) Right Front Tire:	607.5 (133	9.2)	Front Axle:	1226.9	(2704.7)
Left Rear Tire: 527.4	(1162.6) Right Rear tire:	497.7 (109	7.2)	Rear Axle:	1025.1	(2259.8)
Ballast and Location:	33 kg (73 lbs) added to the front of	the truck bed	1	Total:	2251.9	(4964.5)
Vehicle Wheel Base Me	easurements:					
Vehicle length from cen	ter of front tires to center of back tir	es:	3569 m	m 140.5	inches	
Vehicle width from cent	ter of left front tire to center of right	front tire:	1736 m	m 68.3	inches	
Vehicle width from cent	ter of left rear tire to center of right r	ear tire:	1718 m	m <u>67.6</u>	inches	
Center of Gravity:						
X: <u>1625</u> mm	64inches Center of from	nt tire to CG.				
Y: <u>-16</u> mm	0.6 inches The CG will be	e left if negati	ive and righ	t if positive of	vehicle's ce	nter line.
Z: 748 mm	29.4 inches CG location al	bove ground	level			

Table 9-21 Test 4-11 Vertical CG Calculation: Measurement and Report


Table 9-22 Test 4-11 Interior Floor Pre, Post, and Deformation Measurements

Policies and Procedures Manual Roadside Safety Research Group Revised: 7/3/2018 Page 1

Attachment 5.5 --- Interior Vehicle Measurement Report

Vehicle Type	2270P	Test Number	110MASH4P18-02
Make	Ram 1500	Model	Dodge
Year	2018	Color	White
VIN #	1C6RR6FG7JS293929		

	1 . A. 11	Pre-Impact	1	Sec. 2. 19	Post-Impact		1	Difference	5 JUL 7	
Point	X	Y	Z	X	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
F1	1630 (64.2)	300 (11.8)	259 (10.2)	1621 (63.8)	285 (11.2)	242 (9.5)	-9 (-0.4)	-15 (-0.6)	-17 (-0.7)	24 (1)
F2	1630 (64.2)	400 (15.7)	259 (10.2)	1623 (63.9)	386 (15.2)	246 (9.7)	-7 (-0.3)	-14 (-0.6)	-13 (-0.5)	20 (0.8)
F3	1630 (64.2)	500 (19.7)	259 (10.2)	1625 (64)	488 (19.2)	253 (10)	-5 (-0.2)	-12 (-0.5)	-6 (-0.2)	14 (0.6)
F4	1630 (64.2)	600 (23.6)	260 (10.2)	1628 (64.1)	585 (23)	261 (10.3)	-2 (-0.1)	-15 (-0.6)	1 (0)	15 (0.6)
F5	1630 (64.2)	700 (27.6)	261 (10.3)	1630 (64.2)	685 (27)	266 (10.5)	0(0)	-15 (-0.6)	5 (0.2)	16 (0.6)
F6	1730 (68.1)	300 (11.8)	258(10.2)	1721 (67.8)	283 (11.1)	246 (9.7)	-9 (-0.4)	-17 (-0.7)	-12 (-0.5)	23 (0.9)
F7	1730 (68.1)	400 (15.7)	261 (10.3)	1724 (67.9)	384 (15.1)	251 (9.9)	-6 (-0.2)	-16 (-0.6)	-10 (-0.4)	20 (0.8)
F8	1730 (68.1)	500 (19.7)	261 (10.3)	1726 (68)	482 (19)	258 (10.2)	-4 (-0.2)	-18 (-0.7)	-3 (-0.1)	19 (0.7)
F9	1730 (68.1)	600 (23.6)	261 (10.3)	1728 (68)	582 (22.9)	269 (10.6)	-2 (-0.1)	-18 (-0.7)	8 (0.3)	20 (0.8)
F10	1730 (68.1)	700 (27.6)	262 (10.3)	1731 (68.1)	683 (26.9)	277 (10.9)	1(0)	-17 (-0.7)	15 (0.6)	23 (0.9)
F11	1830 (72)	300 (11.8)	240 (9.4)	1823 (71.8)	284 (11.2)	228 (9)	-7 (-0.3)	-16 (-0.6)	-12 (-0.5)	21 (0.8)
F12	1830 (72)	400 (15.7)	262 (10.3)	1823 (71.8)	381 (15)	256 (10.1)	-7 (-0.3)	-19 (-0.7)	-6 (-0.2)	21 (0,8)
F13	1830 (72)	500 (19.7)	263(10.4)	1826 (71.9)	481 (18.9)	263 (10.4)	-4 (-0.2)	-19 (-0.7)	0 (0)	19 (0.8)
F14	1830 (72)	600 (23.6)	263 (10.4)	1828 (72)	581 (22.9)	271 (10.7)	-2 (-0.1)	-19 (-0.7)	8 (0.3)	21 (0.8)
F15	1830 (72)	700 (27.6)	264 (10.4)	1832 (72.1)	681 (26.8)	280 (11)	2 (0.1)	-19 (-0.7)	16 (0.6)	25 (1)
F16	1930 (76)	300 (11.8)	126 (5)	1924 (75.7)	294 (11.6)	118 (4.6)	-6 (-0.2)	-6 (-0.2)	-8 (-0.3)	12 (0.5)
F17	1930 (76)	400 (15.7)	222 (8.7)	1924 (75.7)	378 (14.9)	231 (9.1)	-6 (-0.2)	-22 (-0.9)	9 (0.4)	25 (1)
F18	1930 (76)	500 (19.7)	264 (10.4)	1926 (75.8)	475 (18.7)	265 (10.4)	-4 (-0.2)	-25 (-1)	1 (0)	25 (1)
F19	1930 (76)	600 (23.6)	264 (10.4)	1927 (75.9)	574 (22.6)	270 (10.6)	-3 (-0.1)	-26 (-1)	6 (0.2)	27 (1.1)
F20	1930 (76)	700 (27.6)	265(10.4)	1929 (75.9)	678 (26.7)	278 (10.9)	-1(0)	-22 (-0.9)	13 (0.5)	26 (1)
F21	2030 (79.9)	300 (11.8)	57 (2.2)	2022 (79.6)	300 (11.8)	45 (1.8)	-8 (-0.3)	0(0)	-12 (-0.5)	14 (0.6)
F22	2030 (79.9)	400 (15.7)	131 (5.2)	2016 (79.4)	390 (15.4)	125 (4.9)	-14 (-0.6)	-10 (-0.4)	-6 (-0.2)	18 (0.7)
F23	2030 (79.9)	500 (19.7)	219 (8.6)	2024 (79.7)	475 (18.7)	220 (8.7)	-6 (-0.2)	-25 (-1)	1 (0)	26 (1)
F24	2030 (79.9)	600 (23.6)	221 (8.7)	2019 (79.5)	574 (22.6)	217 (8.5)	-11 (-0.4)	-26 (-1)	-4 (-0.2)	29 (1.1)
F25	2030 (79.9)	700 (27.6)	222 (8.7)	2012 (79.2)	670 (26.4)	210 (8.3)	-18 (-0.7)	-30 (-1.2)	-12 (-0.5)	37 (1.5)
F26	2130 (83.9)	400 (15.7)	68 (2.7)	2116 (83.3)	401 (15.8)	56 (2.2)	-14 (-0.6)	1(0)	-12 (-0.5)	18 (0.7)
F27	2130 (83.9)	500 (19.7)	167 (6.6)	2119 (83.4)	475 (18.7)	160 (6.3)	-11 (-0.4)	-25 (-1)	-7 (-0.3)	28 (1.1)
F28	2130 (83.9)	600 (23.6)	168 (6.6)	2100 (82.7)	574 (22.6)	150 (5.9)	-30 (-1.2)	-26 (-1)	-18 (-0.7)	44 (1.7)
F29	2130 (83.9)	700 (27.6)	168 (6.6)	2068 (81.4)	680 (26.8)	138 (5.4)	-62 (-2.4)	-20 (-0.8)	-30 (-1.2)	72 (2.8)
F30	2235 (88)	500 (19.7)	93 (3.7)	2226 (87.6)	488 (19.2)	81 (3,2)	-9 (-0.4)	-12 (-0.5)	-12 (-0.5)	19 (0.8)
F31	2243 (88.3)	600 (23.6)	93 (3.7)	2185 (86)	574 (22.6)	55 (2.2)	-58 (-2.3)	-26 (-1)	-38 (-1.5)	74 (2.9)
F32	2213 (87.1)	700 (27.6)	51 (2)	2131 (83.9)	659 (25.9)	10 (0.4)	-82 (-3.2)	-41 (-1.6)	-41 (-1.6)	100 (4)

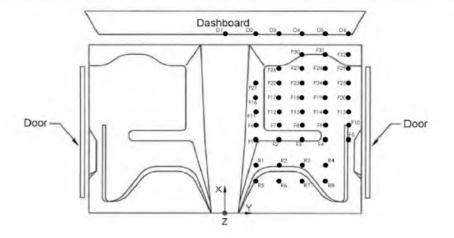
101

Table 9-23 Test 4-11 Interior Dash and Roof Pre, Post, and Deformation Measurements

Policies and Procedures Manual Roadside Safety Research Group Revised: 7/3/2018 Page 1

Attachment 5.5 --- Interior Vehicle Measurement Report

Vehicle Type	2270P	Test Number	
Make	Ram 1500	Model	
Year	2018	Color	
VIN #	1C6RR6FG7JS293929		


110MASH4P18	3-02	
Dodge		
White		

Dashboard Measurements - Dimensions in mm (inches)

Point	Pre-Impact			Post-Impact				C		
	X	Y	2	X	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
D1	1731 (68.1)	0 (0)	-515 (-20.3)	1734 (68.3)	0 (0)	-526 (-20.7)	3 (0.1)	0(0)	-11 (-0.4)	11 (0.4)
D2	1818 (71.6)	300 (11.8)	-515 (-20.3)	1816 (71.5)	301 (11.9)	-526 (-20.7)	-2 (-0.1)	1(0)	-11 (-0.4)	11 (0.4)
D3	1818 (71.6)	400 (15.7)	-515 (-20.3)	1818 (71.6)	400 (15.7)	-526 (-20.7)	0(0)	0(0)	-11 (-0.4)	11 (0.4)
D4	1825 (71.9)	500 (19.7)	-515 (-20.3)	1824 (71.8)	500 (19.7)	-526 (-20.7)	-1(0)	0(0)	-11 (-0.4)	11 (0.4)
D5	1836 (72.3)	600 (23.6)	-515 (-20.3)	1835 (72.2)	600 (23.6)	-526 (-20.7)	-1(0)	0(0)	-11 (-0.4)	11 (0.4)
D6	1848 (72.8)	700 (27.6)	-515 (-20.3)	1847 (72.7)	703 (27.7)	-526 (-20.7)	-1(0)	3 (0.1)	-11 (-0.4)	11 (0.5)

Roof Measurements - Dimensions in mm (inches)

1.00	1	Pre-Impact	1		Post-Impac	t		10.00		
Point	х	Ŷ	2	X	Ŷ	2	ΔX	ΔΥ	ΔZ	Magnitude
R1	1330 (52.4)	300 (11.8)	-1060 (-41.7)	1324 (52.1)	304 (12)	-1068 (-42)	-6 (-0.2)	4 (0.2)	-8 (-0.3)	11 (0.4)
R2	1330 (52.4)	400 (15.7)	-1055 (-41.5)	1325 (52.2)	401 (15.8)	-1063 (-41.9)	-5 (-0.2)	1(0)	-8 (-0.3)	9 (0.4)
R3	1330 (52.4)	500 (19.7)	-1048 (-41.3)	1325 (52.2)	502 (19.8)	-1057 (-41.6)	-5 (-0.2)	2 (0.1)	-9 (-0.4)	10 (0.4)
R4	1330 (52.4)	600 (23.6)	-1037 (-40.8)	1326 (52.2)	603 (23.7)	-1045 (-41.1)	-4 (-0.2)	3 (0.1)	-8 (-0.3)	9 (0.4)
R5	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
R6	1230 (48.4)	300 (11.8)	-1070 (-42.1)	1224 (48.2)	303 (11.9)	-1075 (-42.3)	-6 (-0.2)	3 (0.1)	-5 (-0.2)	8 (0.3)
R7	1230 (48.4)	400 (15.7)	-1065 (-41.9)	1224 (48.2)	404 (15.9)	-1072 (-42.2)	-6 (-0.2)	4 (0.2)	-7 (-0.3)	10 (0.4)
R8	1230 (48.4)	500 (19.7)	-1059 (-41.7)	1225 (48.2)	503 (19.8)	-1068 (-42)	-5 (-0.2)	3 (0.1)	-9 (-0.4)	11 (0.4)
R9	1230 (48.4)	600 (23.6)	-1048 (-41.3)	1229 (48.4)	604 (23.8)	-1056 (-41.6)	-1(0)	4 (0.2)	-8 (-0.3)	9 (0.4)
R10	0(0)	0(0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)

Table 9-24 Test 4-11 Interior Door Pre, Post, and Deformation Measurements

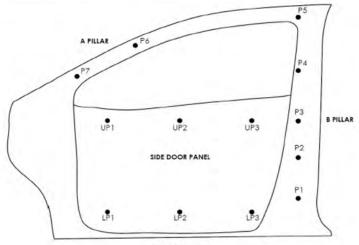
Policies and Procedures Manual Roadside Safety Research Group Revised: 7/3/2018 Page 1

Attachment 5.5 -- Interior Vehicle Measurement Report

Vehicle Type	2270P	Test Number
Make	Ram 1500	Model
Year	2018	Color
VIN #	1C6RR6FG7JS293929	

110MASH4P18-02	
Dodge	
White	

Door Pillar Measurements - Dimensions in mm (inches)


Point	Pre-Impact			Post-Impact				1		
	X	Y	Z	X	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
P1	950 (37.4)	840 (33.1)	-60(-2.4)	949 (37.4)	834 (32.8)	-68 (-2.7)	-1(0)	-6 (-0.2)	-8 (-0.3)	10 (0.4)
P2	950 (37.4)	840 (33.1)	-262 (-10.3)	950 (37.4)	834 (32.8)	-270 (-10.6)	0(0)	-6 (-0.2)	-8 (-0.3)	10 (0.4)
P3	950 (37.4)	818 (32.2)	-499 (-19.6)	950 (37.4)	813 (32)	-505 (-19.9)	0(0)	-5 (-0.2)	-6 (-0.2)	8 (0.3)
P4	950 (37.4)	792 (31.2)	-674 (-26.5)	950 (37.4)	791 (31.1)	-681 (-26.8)	0(0)	-1 (0)	-7 (-0.3)	7 (0.3)
P5	950 (37.4)	695 (27.4)	-950 (-37.4)	951 (37.4)	694 (27.3)	-964 (-38)	1(0)	-1 (0)	-14 (-0.6)	14 (0.6)
P6	1630 (64.2)	700 (27.6)	-811(-31.9)	1629 (64.1)	699 (27.5)	-826 (-32.5)	-1(0)	-1 (0)	-15 (-0.6)	15 (0.6)
P7	1790 (70.5)	735 (28.9)	-699 (-27.5)	1794 (70.6)	734 (28.9)	-712 (-28)	4 (0.2)	-1 (0)	-13 (-0.5)	14 (0.5)

Door Post Measurements - Dimensions in mm (inches)

	Pre-Impact			Post-Impact				1.2 1.2 1.2 1.1		
Point	X	Y	Z	X	Ŷ	Z	ΔX	ΔΥ	ΔZ	Magnitude
UP1	1630 (64.2)	848 (33.4)	-432 (-17)	1617 (63.7)	833 (32.8)	-442 (-17.4)	-13 (-0.5)	-15 (-0.6)	-10 (-0.4)	22 (0.9)
UP2	1450 (57.1)	853 (33.6)	-432 (-17)	1438 (56.6)	848 (33.4)	-442 (-17.4)	-12 (-0.5)	-5 (-0.2)	-10 (-0.4)	16 (0.6)
UP3	1230 (48.4)	862 (33.9)	-432 (-17)	1217 (47.9)	861 (33.9)	-442 (-17.4)	-13 (-0.5)	-1 (0)	-10 (-0.4)	16 (0.6)

Door Post Measurements - Dimensions in mm (inches)

100	Pre-Impact				Post-Impact			Difference			
Point	X	Y	Z	X	Y	Z	ΔX	ΔY	ΔZ	Magnitude	
LP1	1630 (64.2)	876 (34.5)	0(0)	1617 (63.7)	852 (33.5)	-14 (-0.6)	-13 (-0.5)	-24 (-0.9)	-14 (-0.6)	31 (1.2)	
LP2	1450 (57.1)	875 (34.4)	0(0)	1438 (56.6)	855 (33,7)	-14 (-0.6)	-12 (-0.5)	-20 (-0.8)	-14 (-0.6)	27 (1.1)	
LP3	1230 (48.4)	876 (34.5)	0(0)	1216(47.9)	862 (33.9)	-14 (-0.6)	-14 (-0.6)	-14 (-0.6)	-14 (-0.6)	24 (1)	

FRONT SIDE DOOR

9.5.3.Test 110MASH4S19-02

Table 9-25 Test 4-12 Exterior Vehicle Measurements

loadside Safety	cedures Mai Research G								Revised	:10/17/20 Page
		Attac	hment 5	5.4.7 1000	OS Single U	nit Truck Pa	arameters	5		
Date:	8-May-	-19	Tes	t Number:	110M	ASH4S19-02	M	odel:	Intern	ational
Tire Size Front:		R22.5		ometer:		05399	Ma	ake:	430	SBA
Tire Size Rear:	11	R22.5	VIN	1: 1	HTMMAAM	3DH104537	Ye	ar:	20	013
Tire Inflation Pres	ssure:	105	psi	Tape Mea	sure Used:	5m-CP03 &	100ft-00	01 CLE:*	DR	ISI1804
Aeasured by:	Chris C. & D		Staff:	-					0,000 lbs	
			b			_w	v-			Ŧ
ehicle Geometr	- m			sure Used:	5m-CP03 &	- 0 - 001	(<u> </u>		ł
2335		(91.93)	j)	900		(35.43)	s)	942	1.1111	(37.09)
3740	k-	(147.24)	k)	544		(21.42)	t)	2435		(95.87)
9611		(378.39)	I)	1245	p.	(49.02)	u)	2816		(110.87)
2491	((98.07)	m)	2010	1.0	(79.13)	v)	6717		(264.45)
6007		(236.5)	n)	1820	6	(71.65)	w)	78		(3.07)
1113		(43.82)	0)	1542		(60.71)	x)	2530		(99.61)
n/a		n/a	P)	133		(5.24)	y)	796		(31.34)
3776	Phone Inc.	(148.66)	(p	1065	P(1 =	(41.93)	z)	1190		(46.85)
517		(20.35)	r)	595		(23.43)	aa)	1861		(73.27)
/eights - kg (lbs)	Curb			nertial		s Static	Height	Center Front:	506	(19.92
V _{front axel} 317 V _{rear axel} 355			3719 6295	(8198.85) (13877.87)	3719 6295	(8198.85) (13877.87)		Center Rear:	520	(20.47
TOTAL 668	1 A A A A A A A A A A A A A A A A A A A		10014	(22076.72)	10014	(22076.72)	Wheel		1	
TOTAL 000	114100		10014	(220/0./2)	10014	(220/0./2)		ice (FR):	207	(8.15)
allast:	3186		(7023.81		10		Wheel	Well	135	(5.31)
allast CG Height	: 1587	A 1	(62.4	8)				nce (RR):	-	
- monthing has	twoon the	ntor line -	fthe fre	at tirar			-	Type:		esel
= measured be							Engine		7.6	L L 6
= edge of hood							Transmiss			
a= measured be		anter line o	n the du	ai rear dres.				tomatic ar Wheel I	Drive	
lass Distribution										
- Ci =	.815 (4	4001.32)	Scale:	red	Right Fron			(4197.53)	Scale:	green
eft Front 1	172 (6	6992.95)	Scale:	yellow	Right Rear	31	23	(6884.92)	Scale:	blue
			this states	one						
	prior to test	: No vis	iole dam	iage,						
eft Rear 3					topher Cald	well	D	ate:	6/18/2019	-

* CLE is the inventory number and should be located on the door jamb of the vehicle.

Policies and Procedures M	anual			Revised:8/17/2017
Roadside Safety Research	Group			Page 1 of 3
A2LA Certificate No. 3046.	01			Last Revised by Chris Caldwel
	Attachm	ent 5.4.2	CG Data Calculation Worksh	eet
	66	Calculation W	orksheet #1: Curb Weight	
Make:	Internationa		Test Number:	110MASH4S19-02
Model:	4300 SBA		Date:	3/26/2019
Year:	2013		Temperature:	65 °F
Contraction of the Contraction o	1HTMMAAM3DH		Scale Set Used:	10,000 Scale
Fuel in Tank:	50% Full			
Fuel Removed:	None		N	
Measured By:	Chris C		- K	
	Steve W			
Support Staff	Vue H			
	Victor L & Davi	dW	W1	W ₂
W1 = Left Front (LF) =	1582	kg		
Scale Used:	red			н
				Ge▲
W2 = Right Front (RF) =	1589	kg		ф — т
	green			
W3 = Left Rear (LR) =	1775	kg		E
Scale Used:	vellow	K	Fuel Tank	
Jour of Jour	yenen		Tank	
W4 = Right Rear (RR) =	1737	kg	< ≯	
Scale Used:	blue	_		-
Total Weight:			W ₃	
Wtotal (measured) =	6683	kg	$R \rightarrow$	← []
			-	$\Pi^{+} \rightarrow$
Wtotal (calculated) =	6683	kg	*	
Distance between front whe	els:			N
M = 2010			W = W	$+W_2 + W_3 + W_4$
Side and the second			Torus	
Distance between rear whee N = 1861			(W ,	$+ W_{4}$)E
N = 1861	mm		H = -	$+ W_{4} E$
Distance from front to rear w	heels:			
E = 6007			$(W_{2} - W_{1})M$	$+ (W_4 - W_3)N$
		R	=	W
Distance from front wheels b	ack to CG:		4	rr rolai
H = 3157	mm	Data Tra	nsferred to Electronic Copy By:	and the second
			Christopher Caldwell	Date: 5/8/2019
Distance from vehicle center		Transfer	Checked by:	
R = -4	mm		David Whitesel	Date: 10/1/2019

Table 9-26 Test 4-12 CG Calculation: Curb Weight

If R is negative the CG is left of center, if R is positive the CG is right of center

Curb Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) No visible damage, 105 psi in tires.

110MASH4S19-02 CG Data Calculation Worksheet.xlsx

Curb WorkSheet

Policies and Procedures M	anual			Revised: 8/17/2017
Roadside Safety Research	Group			Page 2 of 3
A2LA Certificate No. 3046.	01			Last Revised by Chris Caldwell
	Attachme	ent 5.4.2 (CG Data Calculation Wor	ksheet
	CG Calc	ulation Works	sheet #2: Test Inertial Wei	ght
Make:	Internationa		Test Number:	110MASH4S19-02
Model:	4300 SBA		Date:	6/17/2019
Year:	2013		Temperature:	84 °F
2 2 2 2 2 2 2 2 2	1HTMMAAM3DH1 25% Full	.04537	Scale Set Used:	10,000 Scale
Fuel in Tank: Fuel Removed:	None		-	
Measured By:	Chris C		- *	M
	Vue H		-	
Support Staff			-	\square
		1.000	- w ₁	w ₂
W1 = Left Front (LF) =	1815 red	kg	\bigcirc	
Scale Used:	red			CG H
W2 = Right Front (RF) =	1904	kg		€e <u> </u>
Scale Used:	(Link internet)		T I	
W3 = Left Rear (LR) =	3172	kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E
Scale Used:	yellow		Fuel Tank	
W4 = Right Rear (RR) =	3123	kg	* *	
Scale Used:	blue			
Total Weight:			\bigcap	
Wtotal (measured) =	10013	kg	w ₃	
Wtotal (calculated) = 1	10014	kg	С R-	→ ← └
Distance between front whe	els:		<	N >
M = 2010			W -	$W_1 + W_2 + W_3 + W_4$
Distance between rear whee	le.		Total	
N = 1861			и (и	$\frac{W_3 + W_4}{W_{\text{Total}}}$
			H = -	W Total
Distance from front to rear w			(
E = 6007	mm	R	$= \frac{(W_2 - W_1)}{(W_2 - W_1)}$	$\frac{M}{2W_{\text{total}}} + \left(W_4 - W_3\right)N$
Distance from front wheels b	ack to CG:			2 W Total
$H = \frac{3776}{2}$		Data Tran	sferred to Electronic Copy Christopher Caldw	
Distance from vehicle center	line to CG:	Transfer	Checked by:	0/1//2019
R = 4			David Whitesel	Date: 10/1/2019

Table 9-27 Test 4-12 CG Calculation: Test Inertial Weight

If R is negative the CG is left of center, if R is positive the CG is right of center

Test Inertial Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Ballast and instrumentation installed.

110MASH4S19-02 CG Data Calculation Worksheet.xlsx

Test Inertial WorkSheet

Policies and Procedures M				Revised: 8/17/201
Roadside Safety Research				Page 3 of
A2LA Certificate No. 3046.				Last Revised by Chris Caldwe
	Attachm	ent 5.4.2 C	G Data Calculation Works	sheet
	CG Cal	culation Works	heet #3: Gross Static Weigh	it
Make:	Internationa	d.	Test Number:	110MASH4S19-02
Nodel:	4300 SBA		Date:	6/17/2019
/ear:	2013		Temperature:	84 °F
IN:	1HTMMAAM3DH	104537	Scale Set Used:	10,000 Scale
uel in Tank:	25% Full		Contraction of the Contraction	
uel Removed:	None		_	M
feasured By:	Chris C			-
	Vue H			
upport Staff				
Charles and Charles			w ₁	W ₂
Landa and the second second	1.		- "' 1	
V1 = Left Front (LF) =	1815	kg	\cup	
cale Used:	red	2.8		н
		_	54j	€e — ↓
V2 = Right Front (RF) =	1904	kg		• ·
cale Used:	green		i i	
V3 = Left Rear (LR) =	3172	kg		E
cale Used:	yellow		Fuel	
an harren e			Tank	
V4 = Right Rear (RR) =	3123	kg	+ +	
cale Used:	blue			
C. C			4	
Total Weight:				
Wtotal (measured) =	10013	kg	W ₃	
2012.01.02.224	10.0			
Wtotal (calculated) = 1	0014	kg	\bigcup	
istance between front when	els:			N
M = 2010	mm			
			$W_{Total} = W$	$V_1 + W_2 + W_3 + W_4$
istance between rear whee				
N = 1861	mm		H = (W)	$\frac{3 + W_4}{W_{\text{Total}}}$
			<i>II</i> – –	W Total
istance from front to rear w			(· /··· · · · · ·
E = 6007	mm	R	$(W_2 - W_1)M$	$M + (W_4 - W_3)N$
and the second second	5.264	K	2	W Total
istance from front wheels b	back to CG:			
H = 3776	mm	Data Tran	sferred to Electronic Copy B	y:
			Christopher Caldwell	Date: 6/17/2019
istance from vehicle center	line to CG:	Transfer (Checked by:	
R = 4			David Whitesel	Date: 10/1/2019

Table 9-28 Test 4-12 CG Calculation: Gross Static Weight

If R is negative the CG is left of center, if R is positive the CG is right of center

Gross Static Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Same as test inertial.

110MASH4S19-02 CG Data Calculation Worksheet.xlsx

Gross Static WorkSheet

California Department of Transportation Report No. FHWA/CA22-3033 FINAL 8/4/2022

Table 9-29 Test 4-10 Interior Floor and Transmission Tunnel Pre, Post, and Deformation Measurements

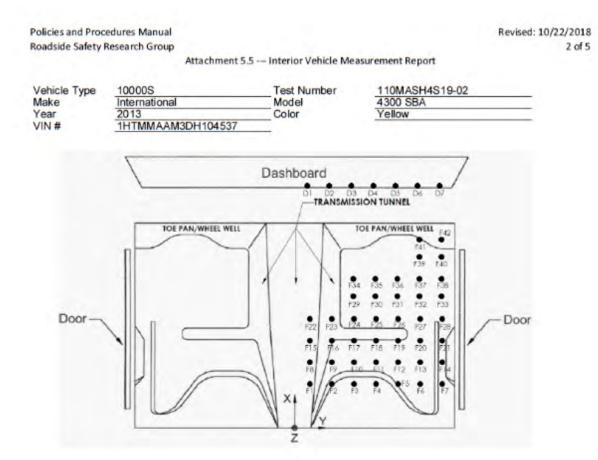
Policies and Procedures Manual

Roadside Safety Research Group

Revised: 10/22/2018 1 of 5

Attachment 5.5 --- Interior Vehicle Measurement Report

Vehicle Type	10000S	Test Number	110MASH4S19-02	
Make	International	Model	4300 SBA	
Year	2013	Color	Yellow	-
VIN #	1HTMMAAM3DH104537			_


Toe Pan and Wheel/Foot Well Area Measurements - Dimensions in mm (inch

Point		Pre-Impac		Post-Impact			Difference			Magnitude
Point	Х	Y	Z	Х	Y	Z	ΔΧ	ΔΥ	ΔZ	wagnitude
T1	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)

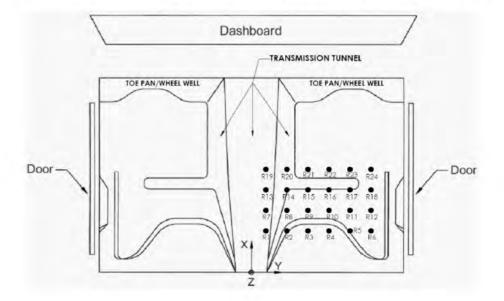
Floor Pan and Transmission Tunnel Area Measurements - Dimensions in mm (inches)

Point		Pre-Impact			Post-Impac	t		Difference		Magnitude
Point	X	Y	Z	Х	Y	Z	ΔΧ	ΔΥ	ΔZ	Magnitude
F1	550 (21.7)	300 (11.8)	84 (3.3)	550 (21.7)	300 (11.8)	83 (3.3)	0 (0)	0 (0)	-1 (0)	1 (0)
F2	550 (21.7)	400 (15.7)	84 (3.3)	550 (21.7)	400 (15.7)	79 (3.1)	0 (0)	0 (0)	-5 (-0.2)	5 (0.2)
F3	550 (21.7)	500 (19.7)	84 (3.3)	550 (21.7)	500 (19.7)	80 (3.1)	0 (0)	0 (0)	-4 (-0.2)	4 (0.2)
F4	550 (21.7)	600 (23.6)	85 (3.3)	550 (21.7)	600 (23.6)	80 (3.1)	0 (0)	0 (0)	-5 (-0.2)	5 (0.2)
F5	550 (21.7)	700 (27.6)	84 (3.3)	550 (21.7)	700 (27.6)	79 (3.1)	0 (0)	0 (0)	-5 (-0.2)	5 (0.2)
F6	550 (21.7)	800 (31.5)	84 (3.3)	550 (21.7)	800 (31.5)	77 (3)	0 (0)	0 (0)	-7 (-0.3)	7 (0.3)
F7	550 (21.7)	900 (35.4)	82 (3.2)	550 (21.7)	900 (35.4)	76 (3)	0 (0)	0 (0)	-6 (-0.2)	6 (0.2)
F8	700 (27.6)	300 (11.8)	79 (3.1)	701 (27.6)	300 (11.8)	77 (3)	1 (0)	0 (0)	-2 (-0.1)	2 (0.1)
F9	700 (27.6)	400 (15.7)	79 (3.1)	700 (27.6)	400 (15.7)	76 (3)	0 (0)	0 (0)	-3 (-0.1)	3 (0.1)
F10	700 (27.6)	500 (19.7)	84 (3.3)	700 (27.6)	500 (19.7)	80 (3.1)	0 (0)	0 (0)	-4 (-0.2)	4 (0.2)
F11	700 (27.6)	600 (23.6)	85 (3.3)	700 (27.6)	600 (23.6)	79 (3.1)	0 (0)	0 (0)	-6 (-0.2)	6 (0.2)
F12	700 (27.6)	700 (27.6)	84 (3.3)	701 (27.6)	700 (27.6)	77 (3)	1 (0)	0 (0)	-7 (-0.3)	7 (0.3)
F13	700 (27.6)	800 (31.5)	84 (3.3)	701 (27.6)	800 (31.5)	81 (3.2)	1 (0)	0 (0)	-3 (-0.1)	3 (0.1)
F14	700 (27.6)	900 (35.4)	84 (3.3)	701 (27.6)	897 (35.3)	78 (3.1)	1 (0)	-3 (-0.1)	-6 (-0.2)	7 (0.3)
F15	850 (33.5)	300 (11.8)	89 (3.5)	850 (33.5)	300 (11.8)	89 (3.5)	0 (0)	0 (0)	0 (0)	0 (0)
F16	850 (33.5)	400 (15.7)	89 (3.5)	850 (33.5)	400 (15.7)	81 (3.2)	0 (0)	0 (0)	-8 (-0.3)	8 (0.3)
F17	850 (33.5)	500 (19.7)	86 (3.4)	850 (33.5)	500 (19.7)	79 (3.1)	0 (0)	0 (0)	-7 (-0.3)	7 (0.3)
F18	850 (33.5)	600 (23.6)	87 (3.4)	850 (33.5)	600 (23.6)	81 (3.2)	0 (0)	0 (0)	-6 (-0.2)	6 (0.2)
F19	850 (33.5)	700 (27.6)	87 (3.4)	852 (33.5)	699 (27.5)	69 (2.7)	2 (0.1)	-1 (0)	-18 (-0.7)	18 (0.7)
F20	850 (33.5)	800 (31.5)	88 (3.5)	848 (33.4)	797 (31.4)	79 (3.1)	-2 (-0.1)	-3 (-0.1)	-9 (-0.4)	10 (0.4)
F21	850 (33.5)	900 (35.4)	85 (3.3)	847 (33.3)	896 (35.3)	74 (2.9)	-3 (-0.1)	-4 (-0.2)	-11 (-0.4)	12 (0.5)
F22	1000 (39.4)	300 (11.8)	88 (3.5)	1001 (39.4)	300 (11.8)	84 (3.3)	1 (0)	0 (0)	-4 (-0.2)	4 (0.2)
F23	1000 (39.4)	400 (15.7)	87 (3.4)	1000 (39.4)	400 (15.7)	84 (3.3)	0 (0)	0 (0)	-3 (-0.1)	3 (0.1)
F24	1000 (39.4)	500 (19.7)	86 (3.4)	1000 (39.4)	500 (19.7)	84 (3.3)	0 (0)	0 (0)	-2 (-0.1)	2 (0.1)
F25	1000 (39.4)	600 (23.6)	88 (3.5)	1000 (39.4)	600 (23.6)	81 (3.2)	0 (0)	0 (0)	-7 (-0.3)	7 (0.3)
F26	1000 (39.4)	700 (27.6)	91 (3.6)	1002 (39.4)	700 (27.6)	72 (2.8)	2 (0.1)	0 (0)	-19 (-0.7)	19 (0.8)
F27	1000 (39.4)	800 (31.5)	86 (3.4)	991 (39)	785 (30.9)	52 (2)	-9 (-0.4)	-15 (-0.6)	-34 (-1.3)	38 (1.5)
F28	1000 (39.4)	900 (35.4)	86 (3.4)	987 (38.9)	874 (34.4)	30 (1.2)	-13 (-0.5)	-26 (-1)	-56 (-2.2)	63 (2.5)
F29	1150 (45.3)	500 (19.7)	87 (3.4)	1150 (45.3)	500 (19.7)	84 (3.3)	0 (0)	0 (0)	-3 (-0.1)	3 (0.1)
F30	1150 (45.3)	600 (23.6)	89 (3.5)	1151 (45.3)	596 (23.5)	84 (3.3)	1 (0)	-4 (-0.2)	-5 (-0.2)	6 (0.3)
F31	1150 (45.3)	700 (27.6)	89 (3.5)	1138 (44.8)	684 (26.9)	50 (2)	-12 (-0.5)	-16 (-0.6)	-39 (-1.5)	44 (1.7)
F32	1150 (45.3)	800 (31.5)	88 (3.5)	1123 (44.2)	770 (30.3)	18 (0.7)	-27 (-1.1)	-30 (-1.2)	-70 (-2.8)	81 (3.2)
F33	1150 (45.3)	900 (35.4)	88 (3.5)	1132 (44.6)	870 (34.3)	47 (1.9)	-18 (-0.7)	-30 (-1.2)	-41 (-1.6)	54 (2.1)
F34	1251 (49.3)	500 (19.7)	60 (2.4)	1254 (49.4)	500 (19.7)	60 (2.4)	3 (0.1)	0 (0)	0 (0)	3 (0.1)
F35	1253 (49.3)	600 (23.6)	60 (2.4)	1256 (49.4)	596 (23.5)	59 (2.3)	3 (0.1)	-4 (-0.2)	-1 (0)	5 (0.2)
F36	1253 (49.3)	700 (27.6)	60 (2.4)	1237 (48.7)	680 (26.8)	12 (0.5)	-16 (-0.6)	-20 (-0.8)	-48 (-1.9)	54 (2.1)
F37	1255 (49.4)	800 (31.5)	37 (1.5)	1232 (48.5)	772 (30.4)	-25 (-1)	-23 (-0.9)	-28 (-1.1)	-62 (-2.4)	72 (2.8)
F38	1255 (49.4)	900 (35.4)	35 (1.4)	1236 (48.7)	880 (34.6)	0 (0)	-19 (-0.7)	-20 (-0.8)	-35 (-1.4)	45 (1.8)
F39	1306 (51.4)	800 (31.5)	0 (0)	1293 (50.9)	785 (30.9)	-43 (-1.7)	-13 (-0.5)	-15 (-0.6)	-43 (-1.7)	47 (1.9)
F40	1300 (51.2)	900 (35.4)	0 (0)	1285 (50.6)	885 (34.8)	-25 (-1)	-15 (-0.6)	-15 (-0.6)	-25 (-1)	33 (1.3)
F41	1398 (55)	800 (31.5)	-86 (-3.4)	1406 (55.4)	800 (31.5)	-80 (-3.1)	8 (0.3)	0 (0)	6 (0.2)	10 (0.4)
F42	1398 (55)	900 (35.4)	-86 (-3.4)	1399 (55.1)	900 (35.4)	-81 (-3.2)	1 (0)	0 (0)	5 (0.2)	5 (0.2)

Table 9-29 (continued)

Table 9-30 Test 4-10 Interior Roof Pre, Post, and Deformation Measurements

Policies and Procedures Manual Roadside Safety Research Group Revised: 10/22/2018


3 of 5

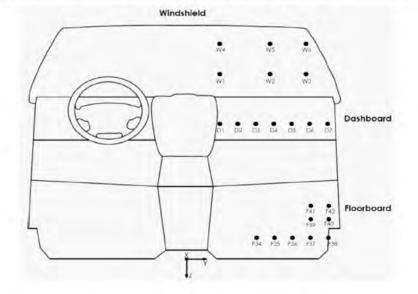
Accounter 5.5 - Interior Venicle Medsorement Report	Attachment 5.5	Interior	Vehicle	Measurement	Report
---	----------------	----------	---------	-------------	--------

Vehicle Type	10000S	Test Number	110MASH4S19-02	
Make	International	Model	4300 SBA	
Year	2013	Color	Yellow	
VIN #	1HTMMAAM3DH104537	10 N 10		

Roof Measurements - Dimensions in mm (inches)

Point		Pre-Impac	t		Post-Impac	t	Difference			Magnitude
Foint	X	Y	Z	X	Y	Z	ΔΧ	ΔΥ	ΔZ	Magnitude
R1	550 (21.7)	300 (11.8)	-1378 (-54.3)	554 (21.8)	301 (11.9)	-1385 (-54.5)	4 (0.2)	1 (0)	-7 (-0.3)	8 (0.3)
R2	550 (21.7)	400 (15.7)	-1375 (-54.1)	554 (21.8)	400 (15.7)	-1380 (-54.3)	4 (0.2)	0(0)	-5 (-0.2)	6 (0.3)
R3	550 (21.7)	500 (19.7)	-1369 (-53.9)	554 (21.8)	501 (19.7)	-1373 (-54.1)	4 (0.2)	1 (0)	-4 (-0.2)	6 (0.2)
R4	550 (21.7)	600 (23.6)	-1361 (-53.6)	556 (21.9)	600 (23.6)	-1366 (-53.8)	6 (0.2)	0 (0)	-5 (-0.2)	8 (0.3)
R5	550 (21.7)	700 (27.6)	-1358 (-53.5)	557 (21.9)	701 (27.6)	-1364 (-53.7)	7 (0.3)	1 (0)	-6 (-0.2)	9 (0.4)
R6	550 (21.7)	800 (31.5)	-1375 (-54.1)	557 (21.9)	798 (31.4)	-1375 (-54.1)	7 (0.3)	-2 (-0.1)	0(0)	7 (0.3)
R7	700 (27.6)	300 (11.8)	-1406 (-55.4)	704 (27.7)	300 (11.8)	-1414 (-55.7)	4 (0.2)	0(0)	-8 (-0.3)	9 (0.4)
R8	700 (27.6)	400 (15.7)	-1402 (-55.2)	704 (27.7)	400 (15.7)	-1409 (-55.5)	4 (0.2)	0 (0)	-7 (-0.3)	8 (0.3)
R9	700 (27.6)	500 (19.7)	-1399 (-55.1)	705 (27.8)	500 (19.7)	-1404 (-55.3)	5 (0.2)	0 (0)	-5 (-0.2)	7 (0.3)
R10	700 (27.6)	600 (23.6)	-1362 (-53.6)	705 (27.8)	598 (23.5)	-1366 (-53.8)	5 (0.2)	-2 (-0.1)	-4 (-0.2)	7 (0.3)
R11	700 (27.6)	700 (27.6)	-1375 (-54.1)	706 (27.8)	700 (27.6)	-1376 (-54.2)	6 (0.2)	0 (0)	-1 (0)	6 (0.2)
R12	700 (27.6)	800 (31.5)	-1369 (-53.9)	707 (27.8)	797 (31.4)	-1370 (-53.9)	7 (0.3)	-3 (-0.1)	-1 (0)	8 (0.3)
R13	850 (33.5)	300 (11.8)	-1400 (-55.1)	854 (33.6)	300 (11.8)	-1409 (-55.5)	4 (0.2)	0 (0)	-9 (-0.4)	10 (0.4)
R14	850 (33.5)	400 (15.7)	-1399 (-55.1)	854 (33.6)	400 (15.7)	-1404 (-55.3)	4 (0.2)	0 (0)	-5 (-0.2)	6 (0.3)
R15	850 (33.5)	500 (19.7)	-1390 (-54.7)	855 (33.7)	500 (19.7)	-1399 (-55.1)	5 (0.2)	0 (0)	-9 (-0.4)	10 (0.4)
R16	850 (33.5)	600 (23.6)	-1362 (-53.6)	855 (33.7)	600 (23.6)	-1366 (-53.8)	5 (0.2)	0 (0)	-4 (-0.2)	6 (0.3)
R17	850 (33.5)	700 (27.6)	-1364 (-53.7)	857 (33.7)	700 (27.6)	-1366 (-53.8)	7 (0.3)	0 (0)	-2 (-0.1)	7 (0.3)
R18	850 (33.5)	800 (31.5)	-1352 (-53.2)	862 (33.9)	796 (31.3)	-1355 (-53.3)	12 (0.5)	-4 (-0.2)	-3 (-0.1)	13 (0.5)
R19	1000 (39.4)	300 (11.8)	-1340 (-52.8)	982 (38.7)	304 (12)	-1348 (-53.1)	-18 (-0.7)	4 (0.2)	-8 (-0.3)	20 (0.8)
R20	1000 (39.4)	400 (15.7)	-1329 (-52.3)	976 (38.4)	403 (15.9)	-1338 (-52.7)	-24 (-0.9)	3 (0.1)	-9 (-0.4)	26 (1)
R21	1000 (39.4)	500 (19.7)	-1309 (-51.5)	976 (38.4)	508 (20)	-1320 (-52)	-24 (-0.9)	8 (0.3)	-11 (-0.4)	28 (1.1)
R22	1000 (39.4)	600 (23.6)	-1291 (-50.8)	964 (38)	606 (23.9)	-1301 (-51.2)	-36 (-1.4)	6 (0.2)	-10 (-0.4)	38 (1.5)
R23	1000 (39.4)	700 (27.6)	-1290 (-50.8)	961 (37.8)	707 (27.8)	-1293 (-50.9)	-39 (-1.5)	7 (0.3)	-3 (-0.1)	40 (1.6)
R24	1000 (39.4)	800 (31.5)	-1258 (-49.5)	955 (37.6)	806 (31.7)	-1260 (-49.6)	-45 (-1.8)	6 (0.2)	-2 (-0.1)	45 (1.8)

Table 9-31 Test 4-10 Interior Windshield and Dashboard Pre, Post, and Deformation Measurements


Policies and Proc	edures Manual			Revised: 10/22/2018
Roadside Safety	Research Group			4 of 5
	Attac	ment 5.5 Interior Vehicle Mea	surement Report	
Mahiala Truns	100000	Test Mushes	1101110010000	

Vehicle Type	10000S	Test Number	110MASH4S19-02	
Make	International	Model	4300 SBA	
Year	2013	Color	Yellow	
VIN #	1HTMMAAM3DH104537			_

Point	Pre-Impact			Post-Impact				Maanitude		
	X	Y	Z	X	Y	Z	ΔΧ	ΔΥ	ΔZ	Magnitude
W1	1374 (54.1)	300 (11.8)	-865 (-34.1)	1345 (53)	290 (11.4)	-862 (-33.9)	-29 (-1.1)	-10 (-0.4)	3 (0.1)	31 (1.2)
W2	1339 (52.7)	600 (23.6)	-865 (-34.1)	1300 (51.2)	595 (23.4)	-864 (-34)	-39 (-1.5)	-5 (-0.2)	1 (0)	39 (1.5)
W3	1282 (50.5)	800 (31.5)	-865 (-34.1)	1248 (49.1)	801 (31.5)	-863 (-34)	-34 (-1.3)	1 (0)	2 (0.1)	34 (1.3)
W4	1268 (49.9)	300 (11.8)	-1072 (-42.2)	1260 (49.6)	292 (11.5)	-1065 (-41.9)	-8 (-0.3)	-8 (-0.3)	7 (0.3)	13 (0.5)
W5	1233 (48.5)	600 (23.6)	-1072 (-42.2)	1233 (48.5)	595 (23.4)	-1066 (-42)	0 (0)	-5 (-0.2)	6 (0.2)	8 (0.3)
W6	1170 (46.1)	800 (31.5)	-1072 (-42.2)	1175 (46.3)	793 (31.2)	-1069 (-42.1)	5 (0.2)	-7 (-0.3)	3 (0.1)	9 (0.4)

Dashboard Measurements - Dimensions in mm (inches)

Point	Pre-Impact			Post-Impact				Magnitude		
Point	Х	Y	Z	X	Y	Z	ΔΧ	ΔY	ΔZ	Magnitude
D1	1102 (43.4)	300 (11.8)	-561 (-22.1)	1104 (43.5)	305 (12)	-554 (-21.8)	2 (0.1)	5 (0.2)	7 (0.3)	9 (0.3)
D2	1045 (41.1)	400 (15.7)	-561 (-22.1)	1049 (41.3)	403 (15.9)	-561 (-22.1)	4 (0.2)	3 (0.1)	0 (0)	5 (0.2)
D3	1037 (40.8)	500 (19.7)	-561 (-22.1)	1039 (40.9)	509 (20)	-559 (-22)	2 (0.1)	9 (0.4)	2 (0.1)	9 (0.4)
D4	1036 (40.8)	600 (23.6)	-561 (-22.1)	1038 (40.9)	608 (23.9)	-558 (-22)	2 (0.1)	8 (0.3)	3 (0.1)	9 (0.3)
D5	1046 (41.2)	700 (27.6)	-561 (-22.1)	1045 (41.1)	709 (27.9)	-557 (-21.9)	-1 (0)	9 (0.4)	4 (0.2)	10 (0.4)
D6	1071 (42.2)	800 (31.5)	-561 (-22.1)	1073 (42.2)	809 (31.9)	-556 (-21.9)	2 (0.1)	9 (0.4)	5 (0.2)	10 (0.4)
D7	1076 (42.4)	900 (35.4)	-561 (-22.1)	1078 (42.4)	907 (35.7)	-560 (-22)	2 (0.1)	7 (0.3)	1 (0)	7 (0.3)

Table 9-32 Test 4-10 Side Pre, Post, and Deformation Measurements

Policies and Procedures Manual Roadside Safety Research Group

Revised: 10/22/2018

5 of 5

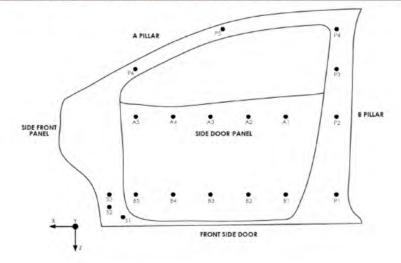
Attachment 5.5 --- Interior Vehicle Measurement Report

Vehicle Type	10000S	Test Number	110MASH4S19-02
Make	International	Model	4300 SBA
Year	2013	Color	Yellow
VIN #	1HTMMAAM3DH104537	7 * A	

Side Front Panel Measurements - Dimensions in mm (inches)

Point	Pre-Impact			Post-Impact			Difference			Magnituda
	Х	Y	Z	X	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
S1	1150 (45.3)	930 (36.6)	22 (0.9)	1143 (45)	920 (36.2)	20 (0.8)	-7 (-0.3)	-10 (-0.4)	-2 (-0.1)	12 (0.5)
S2	1210 (47.6)	930 (36.6)	0 (0)	1205 (47.4)	930 (36.6)	-10 (-0.4)	-5 (-0.2)	0 (0)	-10 (-0.4)	11 (0.4)
S3	1210 (47.6)	930 (36.6)	-86 (-3.4)	1207 (47.5)	925 (36.4)	-90 (-3.5)	-3 (-0.1)	-5 (-0.2)	-4 (-0.2)	7 (0.3)

A and B Pillar Measurements - Dimensions in mm (inches)


Point	Pre-Impact			Post-Impact			Difference			Magnitude
	Х	Y	Z	X	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
P1	190 (7.5)	944 (37.2)	-86 (-3.4)	190 (7.5)	949 (37.4)	-85 (-3.3)	0 (0)	5 (0.2)	1 (0)	5 (0.2)
P2	190 (7.5)	981 (38.6)	-561 (-22.1)	190 (7.5)	990 (39)	-559 (-22)	0 (0)	9 (0.4)	2 (0.1)	9 (0.4)
P3	190 (7.5)	934 (36.8)	-865 (-34.1)	191 (7.5)	937 (36.9)	-860 (-33.9)	1 (0)	3 (0.1)	5 (0.2)	6 (0.2)
P4	190 (7.5)	914 (36)	-1072 (-42.2)	192 (7.6)	916 (36.1)	-1067 (-42)	2 (0.1)	2 (0.1)	5 (0.2)	6 (0.2)
P5	1100 (43.3)	884 (34.8)	-865 (-34.1)	1110 (43.7)	877 (34.5)	-864 (-34)	10 (0.4)	-7 (-0.3)	1 (0)	12 (0.5)
P6	1000 (39.4)	866 (34.1)	-1072 (-42.2)	1009 (39.7)	860 (33.9)	-1072 (-42.2)	9 (0.4)	-6 (-0.2)	0 (0)	11 (0.4)

Above Seat Front Side Door Area Measurements - Dimensions in mm (inche

Point	Pre-Impact			Post-Impact			Difference			Magnitude
	X	Y	Z	X	Y	Z	ΔX	ΔΥ	ΔZ	wayntude
A1	400 (15.7)	897 (35.3)	-561 (-22.1)	402 (15.8)	901 (35.5)	-565 (-22.2)	2 (0.1)	4 (0.2)	-4 (-0.2)	6 (0.2)
A2	550 (21.7)	894 (35.2)	-561 (-22.1)	551 (21.7)	898 (35.4)	-563 (-22.2)	1 (0)	4 (0.2)	-2 (-0.1)	5 (0.2)
A3	700 (27.6)	893 (35.2)	-561 (-22.1)	703 (27.7)	896 (35.3)	-565 (-22.2)	3 (0.1)	3 (0.1)	-4 (-0.2)	6 (0.2)
A4	850 (33.5)	898 (35.4)	-561 (-22.1)	854 (33.6)	898 (35.4)	-565 (-22.2)	4 (0.2)	0 (0)	-4 (-0.2)	6 (0.2)
A5	1000 (39.4)	897 (35.3)	-561 (-22.1)	1004 (39.5)	898 (35.4)	-562 (-22.1)	4 (0.2)	1 (0)	-1 (0)	4 (0.2)

Below Seat Front Side Door Area Measurements - Dimensions in mm (inche:

Point	Pre-Impact			Post-Impact			Difference			Magnitude
	X	Y	Z	X	Y	Z	ΔΧ	ΔΥ	ΔZ	Magnitude
B1	400 (16.3)	908 (37.1)	-86 (-3.5)	400 (16.3)	915 (37.3)	-88 (-3.6)	0(0)	7 (0.3)	-2 (-0.1)	7 (0.3)
B2	550 (22.4)	940 (38.4)	-86 (-3.5)	550 (22.4)	946 (38.6)	-89 (-3.6)	0 (0)	6 (0.2)	-3 (-0.1)	7 (0.3)
B3	700 (28.6)	940 (38.4)	-86 (-3.5)	700 (28.6)	950 (38.8)	-90 (-3.7)	0(0)	10 (0.4)	-4 (-0.2)	11 (0.4)
B4	850 (34.7)	938 (38.3)	-86 (-3.5)	854 (34.9)	940 (38.4)	-90 (-3.7)	4 (0.2)	2 (0.1)	-4 (-0.2)	6 (0.2)
B5	1000 (40.8)	923 (37.7)	-86 (-3.5)	1000 (40.8)	921 (37.6)	-90 (-3.7)	0(0)	-2 (-0.1)	-4 (-0.2)	4 (0.2)

9.6. Data Plots

The TRAP data plots and summary sheets are shown in Figure 9-13 through Figure 9-62 The plots included are the accelerations, angular rate sensor rates, angular rate sensor degrees, Acceleration Severity Index (ASI), and TRAP test summary sheets. All data were analyzed using TRAP.

9.6.1. Data Plots - Test 110MASH4C19-01 (Test 4-10)

As mentioned previously, data was lost from one of the GMH Engineering DataBrick 3's. The data from the remaining DataBrick 3 and both SLICE systems were analyzed using TRAP. The TRAP results sheets and data plots are shown below.

California Department of Transportation Report No. FHWA/CA22-3033 FINAL 8/4/2022

Databrick 3 Plots (DB327)

Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

General Information Test Agency: California Department of Transportation Test Number: 110MASH4C19-01 Test Date: 4/11/2019 Test Article: ST-75 Steel Post Bridge Rail 1100C Small Car GMH DataBrick III Test Vehicle Description: 2017 Nissan Versa Test Inertial Mass: 1084 kg Gross Static Mass: 1165 kg Impact Conditions Speed: 63.4 mph Angle: 25.6 degrees Occupant Risk Factors Impact Velocity (m/s) at 0.0679 seconds on right side of interior x-direction 6.5 10.1 y-direction THIV (km/hr): 43.4 at 0.0666 seconds on right side of interior THIV (m/s): 12.1 Ridedown Accelerations (g's) -3.4 (0.0707 - 0.0807 seconds) x-direction y-direction -9.9 (0.1714 - 0.1814 seconds) PHD (g's): 10.0 (0.1714 - 0.1814 seconds) ASI: 2.83 (0.0407 - 0.0907 seconds) Max. 50msec Moving Avg. Accelerations (g's) x-direction -12.9 (0.0135 - 0.0635 seconds) v-direction -20.1 (0.0106 - 0.0606 seconds) z-direction -4.2 (0.0032 - 0.0532 seconds) Max Roll, Pitch, and Yaw Angles (degrees) Roll 5.7 (0.1150 seconds) Pitch -4.4 (0.0548 seconds) Yaw -38.3 (0.4703 seconds)

Figure 9-13 Test 4-10 TRAP Summary Sheet (DataBrick 3)

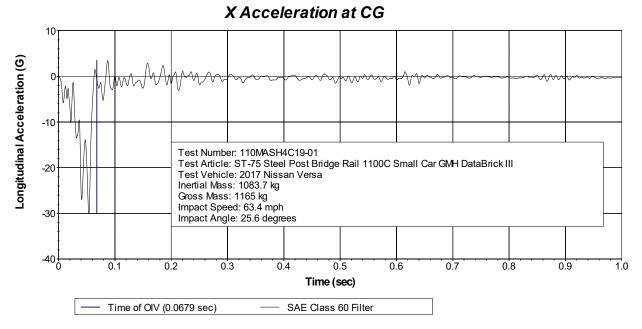
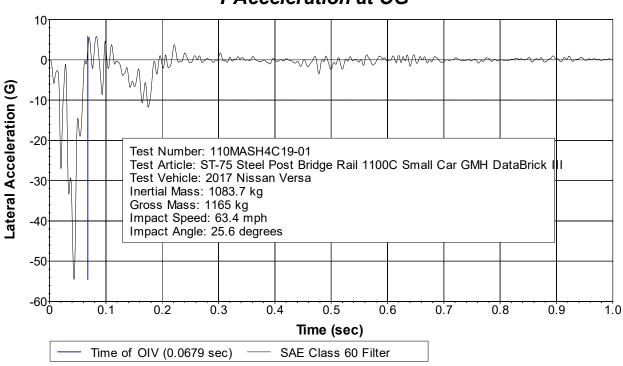
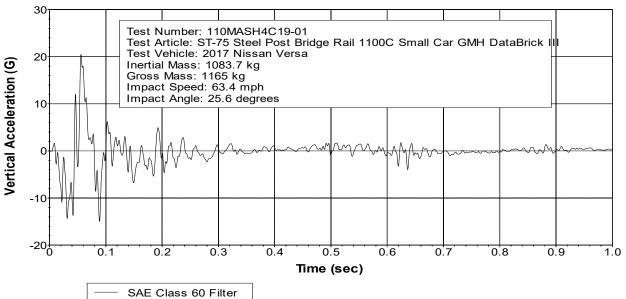
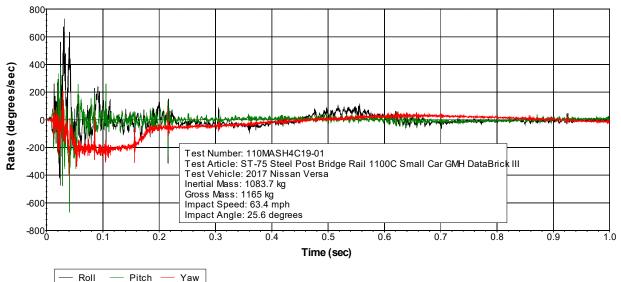



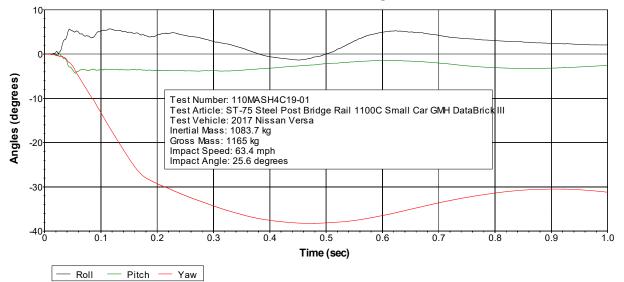
Figure 9-14 Test 4-10 Longitudinal Acceleration (Databrick 3)

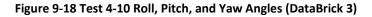


Y Acceleration at CG


Figure 9-15 Test 4-10 Lateral Acceleration (Databrick 3)

California Department of Transportation Report No. FHWA/CA22-3033 FINAL 8/4/2022





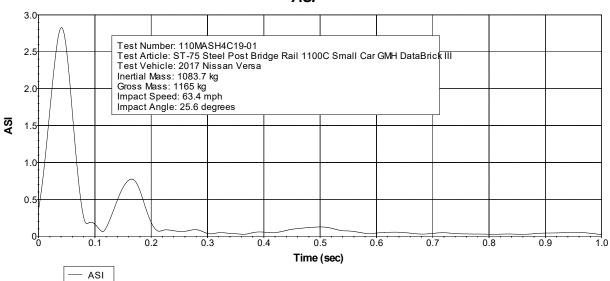
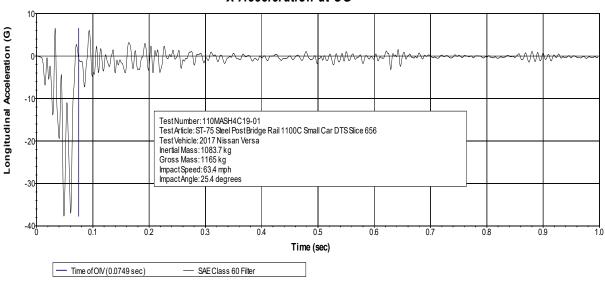

Roll, Pitch and Yaw Rates

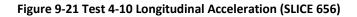
Figure 9-17 Test 4-10 Roll, Pitch, and Yaw Rates (DataBrick 3)

Roll, Pitch and Yaw Angles

ASI


Figure 9-19 Test 4-10 Acceleration Severity Index (DataBrick 3)

SLICE BASE 656 Plots


Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

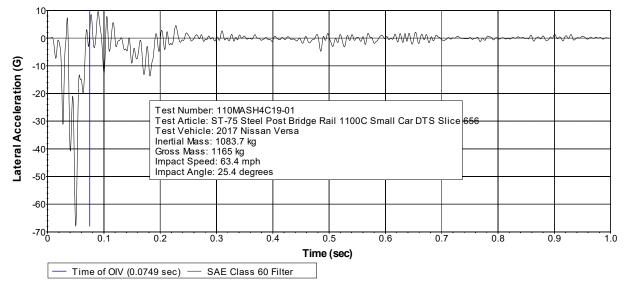
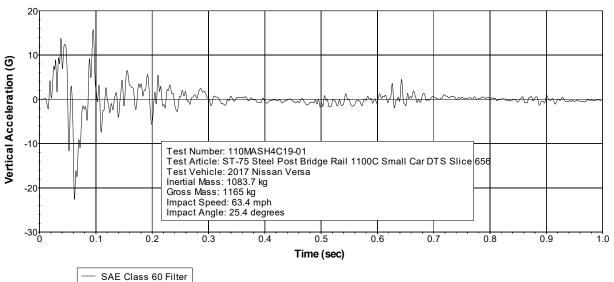

General Information Test Agency: California Department of Transportation Test Number: 110MASH4C19-01 Test Date: 4/11/2019 Test Article: ST-75 Steel Post Bridge Rail 1100C Small Car DTS Slice 656 **Test Vehicle** Description: 2017 Nissan Versa Test Inertial Mass: 1084 kg Gross Static Mass: 1165 kg Impact Conditions Speed: 63.4 mph Angle: 25.4 degrees Occupant Risk Factors at 0.0749 seconds on right side of interior Impact Velocity (m/s) x-direction 7.1 y-direction 10.3 THIV (km/hr): 44.9 at 0.0735 seconds on right side of interior THIV (m/s): 12.5 Ridedown Accelerations (g's) -3.9 (0.0774 - 0.0874 seconds) x-direction y-direction -10.4 (0.1788 - 0.1888 seconds) PHD (g's): 10.5 (0.1787 - 0.1887 seconds) ASI: 2.92 (0.0481 - 0.0981 seconds) Max. 50msec Moving Avg. Accelerations (g's) x-direction -14.3 (0.0193 - 0.0693 seconds) y-direction -20.3 (0.0178 - 0.0678 seconds) z-direction 4.9 (0.0005 - 0.0505 seconds) Max Roll, Pitch, and Yaw Angles (degrees) 5.5 (0.1229 seconds) Roll Pitch -4.5 (0.3228 seconds) Yaw -39.7 (0.4756 seconds)

Figure 9-20 Test 4-10 TRAP Summary Sheet (SLICE 656)


X Acceleration at CG

Y Acceleration at CG

Figure 9-22 Test 4-10 Lateral Acceleration (SLICE 656)

Z Acceleration at CG

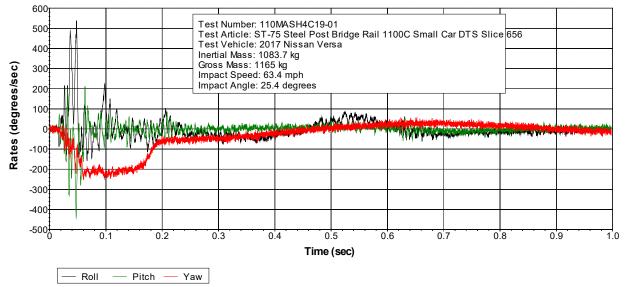
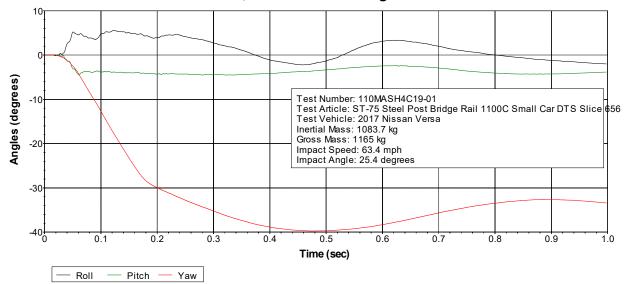
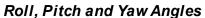




Figure 9-24 Test 4-10 Roll, Pitch, and Yaw Rates (SLICE 656)

ASI

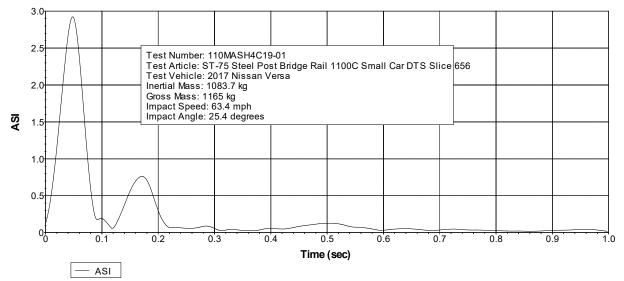
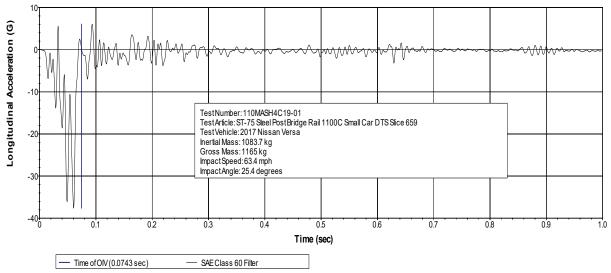
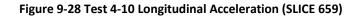


Figure 9-26 Test 4-10 Acceleration Severity Index (SLICE 656)

California Department of Transportation Report No. FHWA/CA22-3033 FINAL 8/4/2022


SLICE BASE 659 Plots


Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

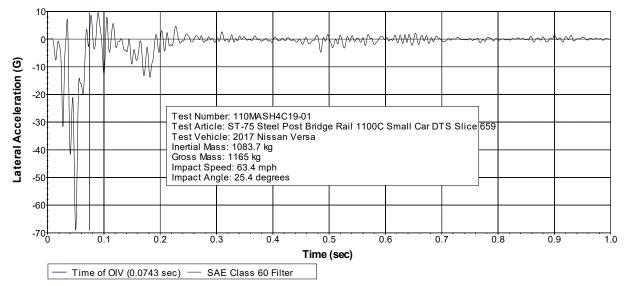
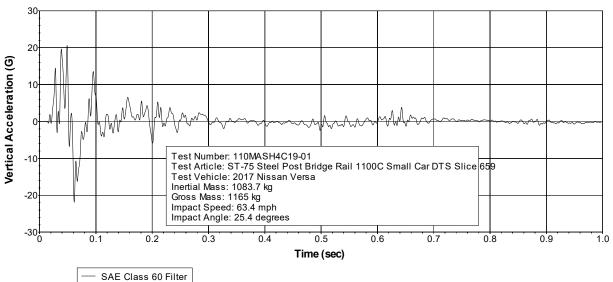

General Information Test Agency: California Department of Transportation Test Number: 110MASH4C19-01 Test Date: 4/11/2019 Test Article: ST-75 Steel Post Bridge Rail 1100C Small Car DTS Slice 659 Test Vehicle Description: 2017 Nissan Versa Test Inertial Mass: 1084 kg Gross Static Mass: 1165 kg Impact Conditions Speed: 63.4 mph Angle: 25.4 degrees Occupant Risk Factors Impact Velocity (m/s) at 0.0722 seconds on right side of interior x-direction 7.2 10.5 y-direction THIV (km/hr): 45.4 at 0.0708 seconds on right side of interior THIV (m/s): 12.6 Ridedown Accelerations (g's) -3.8 (0.0753 - 0.0853 seconds) x-direction -10.4 (0.1768 - 0.1868 seconds) y-direction PHD (g's): 10.5 (0.1767 - 0.1867 seconds) ASI: 2.98 (0.0459 - 0.0959 seconds) Max. 50msec Moving Avg. Accelerations (g's) x-direction -14.3 (0.0171 - 0.0671 seconds) -20.7 (0.0158 - 0.0658 seconds) y-direction 5.3 (-0.0001 - 0.0499 seconds) z-direction Max Roll, Pitch, and Yaw Angles (degrees) Roll 6.3 (0.1211 seconds) Pitch -4.6 (0.0592 seconds) -39.7 (0.4703 seconds) Yaw

Figure 9-27 Test 4-10 TRAP Summary Sheet (SLICE 659)



Y Acceleration at CG

Figure 9-29 Test 4-10 Lateral Acceleration (SLICE 659)

Z Acceleration at CG

Roll, Pitch and Yaw Rates

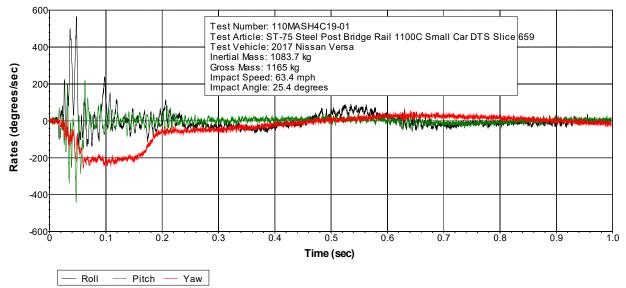
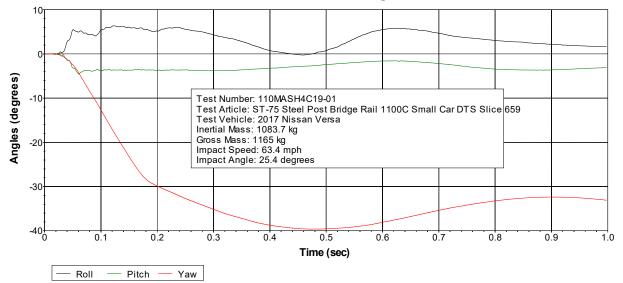



Figure 9-31 Test 4-10 Roll, Pitch, and Yaw Rates (SLICE 659)

Roll, Pitch and Yaw Angles

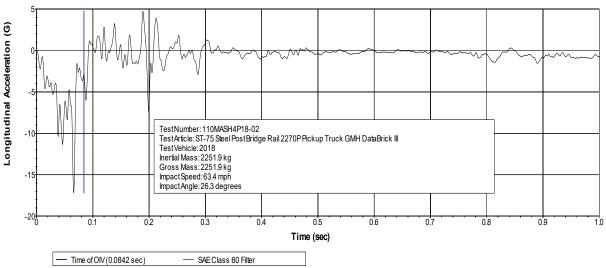
3.0 Test Number: 110MASH4C19-01 2.5 Test Article: ST-75 Steel Post Bridge Rail 1100C Small Car DTS Slice 659 Test Vehicle: 2017 Nissan Versa Inertial Mass: 1083.7 kg Gross Mass: 1165 kg Impact Speed: 63.4 mph Impact Angle: 25.4 degrees 2.0 ASI 1.5 1.0 0.5 0 0.3 0.4 0.6 0.1 0.2 0.5 0.7 0.8 0.9 1.0 Time (sec) ASI _

ASI

Figure 9-33 Test 4-10 Acceleration Severity Index (SLICE 659)

9.6.2.Data Plots - Test 110MASH4P18-02 (Test 4-11)

Data from one GMH Engineering DataBrick 3 and one SLICE system were analyzed with TRAP. The test summary sheets and data plots are shown below.


Databrick 3 (DB328)

Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

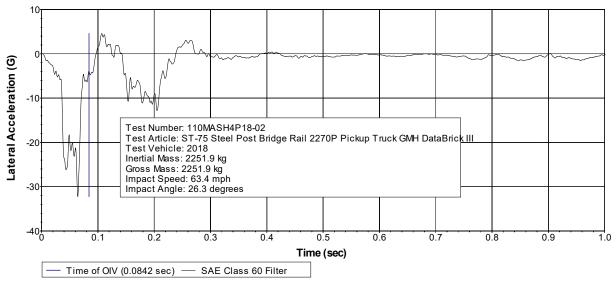
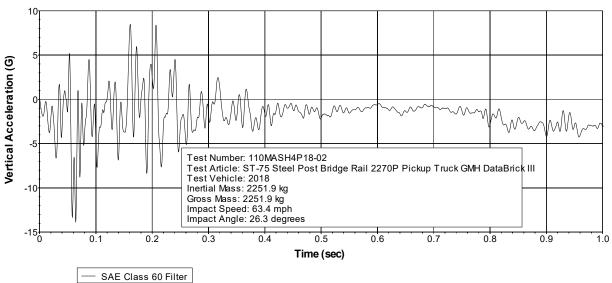

General Information Test Agency: California Department of Transportation Test Number: 110MASH4P18-02 Test Date: 9/12/2018 Test Article: ST-75 Steel Post Bridge Rail 2270P Pickup Truck GMH DataBrick III Test Vehicle Description: 2018 Test Inertial Mass: 2252 kg Gross Static Mass: 2252 kg Impact Conditions Speed: 63.4 mph Angle: 26.3 degrees Occupant Risk Factors Impact Velocity (m/s) at 0.0842 seconds on right side of interior x-direction 4.4 y-direction 9.4 THIV (km/hr): 38.1 at 0.0830 seconds on right side of interior 10.6 THIV (m/s): Ridedown Accelerations (g's) -4.1 (0.1962 - 0.2062 seconds) x-direction y-direction -11.0 (0.1956 - 0.2056 seconds) PHD (g's): 11.7 (0.1958 - 0.2058 seconds) 2.29 (0.0544 - 0.1044 seconds) ASI: Max. 50msec Moving Avg. Accelerations (g's) x-direction -7.4 (0.0205 - 0.0705 seconds) y-direction -17.4 (0.0320 - 0.0820 seconds) z-direction -4.2 (0.0551 - 0.1051 seconds) Max Roll, Pitch, and Yaw Angles (degrees) 21.6 (0.4094 seconds) Roll Pitch 2.1 (0.1899 seconds) Yaw -40.3 (0.9716 seconds)

Figure 9-34 Test 4-11 TRAP Summary Sheet (DataBrick 3)



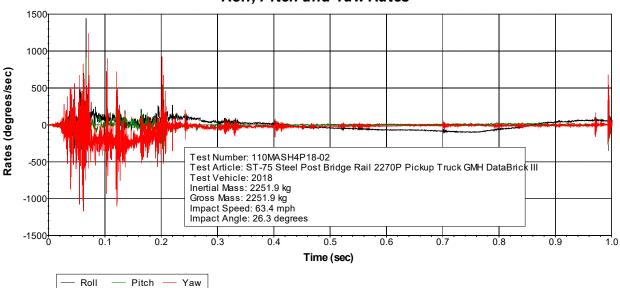
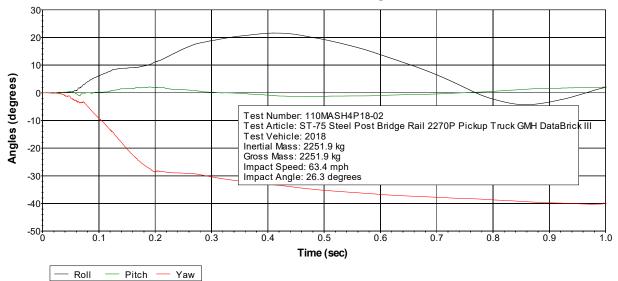
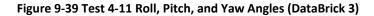

Y Acceleration at CG

Figure 9-36 Test 4-11 Lateral Acceleration (DataBrick 3)


Z Acceleration at CG



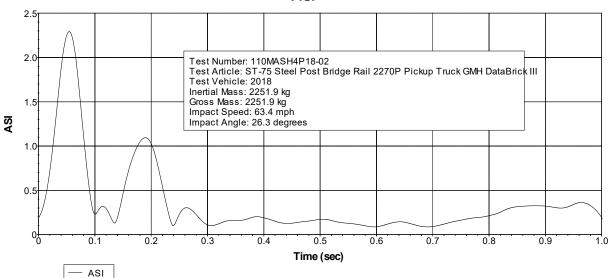
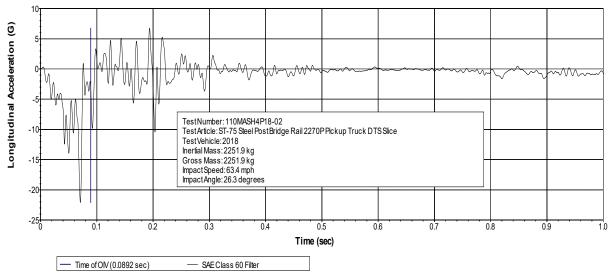

Roll, Pitch and Yaw Rates

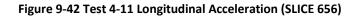
Figure 9-38 Test 4-11 Roll, Pitch, and Yaw Rates (DataBrick 3)

Roll, Pitch and Yaw Angles

ASI

Figure 9-40 Test 4-11 Acceleration Severity Index (DataBrick 3)


SLICE 656 Data Plots


Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

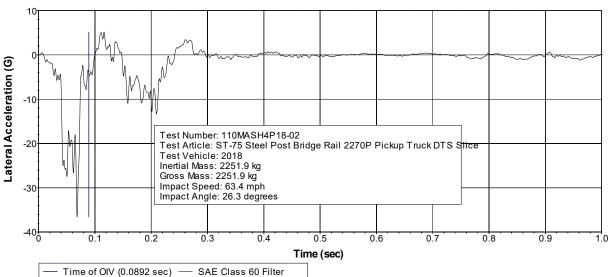
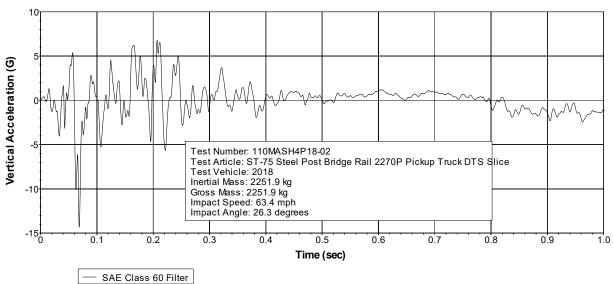

General Information Test Agency: California Department of Transportation Test Number: 110MASH4P18-02 Test Date: 9/12/2018 Test Article: ST-75 Steel Post Bridge Rail 2270P Pickup Truck DTS Slice Test Vehicle Description: 2018 Test Inertial Mass: 2252 kg Gross Static Mass: 2252 kg **Impact Conditions** Speed: 63.4 mph Angle: 26.3 degrees Occupant Risk Factors Impact Velocity (m/s) at 0.0892 seconds on right side of interior x-direction 5.0 y-direction 9.3 THIV (km/hr): 38.3 at 0.0871 seconds on right side of interior THIV (m/s): 10.6 Ridedown Accelerations (g's) x-direction -5.6 (0.2022 - 0.2122 seconds) y-direction -11.5 (0.2000 - 0.2100 seconds) PHD (g's): 12.6 (0.2001 - 0.2101 seconds) 2.31 (0.0584 - 0.1084 seconds) ASI: Max. 50msec Moving Avg. Accelerations (g's) -8.9 (0.0242 - 0.0742 seconds) x-direction y-direction -17.5 (0.0359 - 0.0859 seconds) z-direction -2.9 (0.0610 - 0.1110 seconds) Max Roll, Pitch, and Yaw Angles (degrees) Roll 19.4 (0.4162 seconds) Pitch -4.0 (2.7792 seconds) Yaw -40.0 (0.9679 seconds)

Figure 9-41 Test 4-11 TRAP Summary Sheet (SLICE 656)



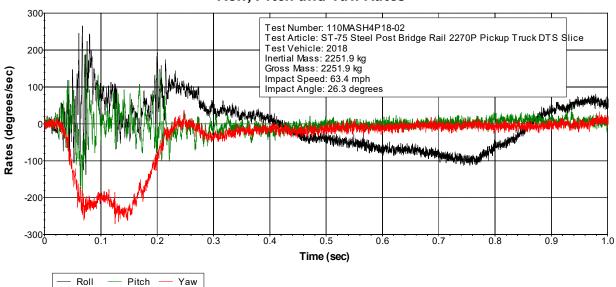

Y Acceleration at CG

Figure 9-43 Test 4-11 Lateral Acceleration (SLICE 656)


Z Acceleration at CG

Roll, Pitch and Yaw Rates

Figure 9-45 Test 4-11 Roll, Pitch, and Yaw Rates (SLICE 656)

Roll, Pitch and Yaw Angles

ASI

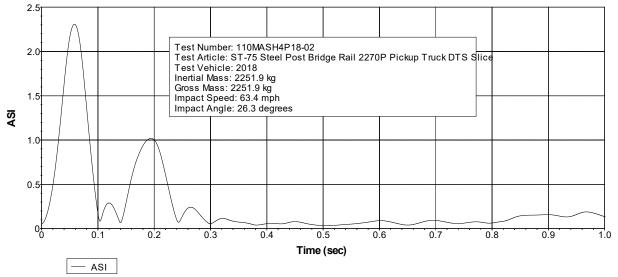
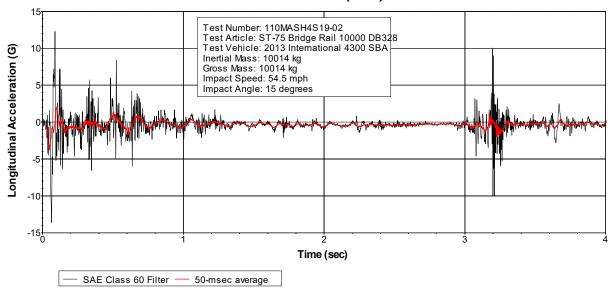
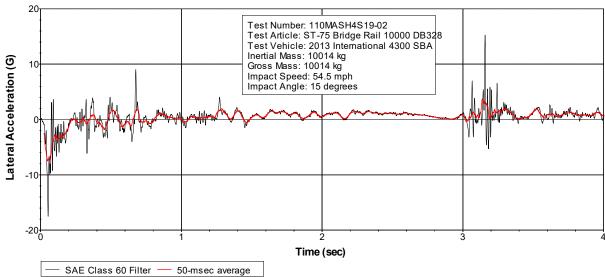
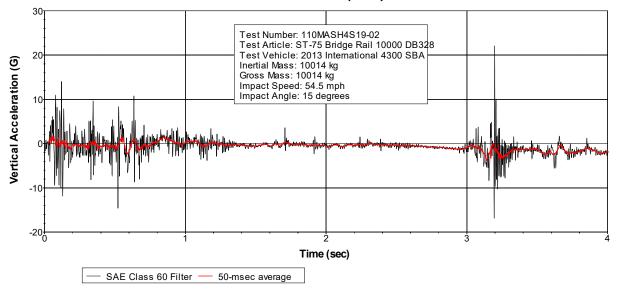



Figure 9-47 Test 4-11 Acceleration Severity Index (SLICE 656)

9.6.3.Data Plots - Test 110MASH4S19-02 (Test 4-12)


Two sets of accelerometers and angular rate sensors were installed in both the cab and cargo box area. One set of instrumentation in the cab was lost before it could be downloaded. The data plots for the three functional sets of instrumentation are shown below.

Databrick 328 Data Plots (Inside Cab)



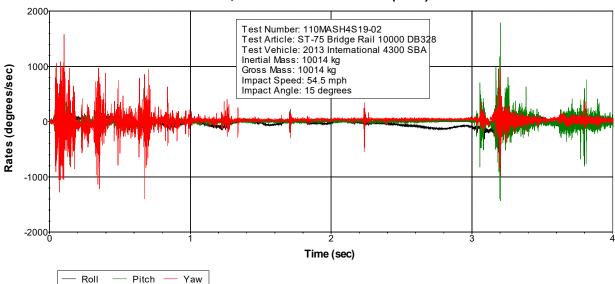
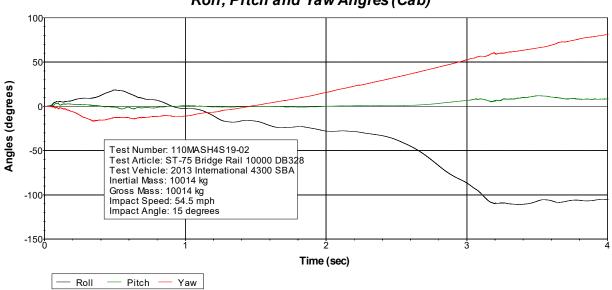

Y Acceleration (Cab)

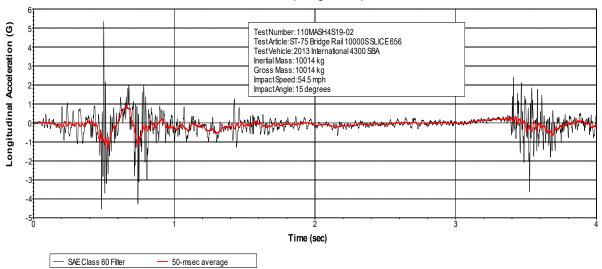
Figure 9-49 Test 4-12 Lateral Acceleration Inside Cab (Databrick 3)

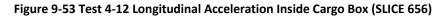
Z Acceleration (Cab)

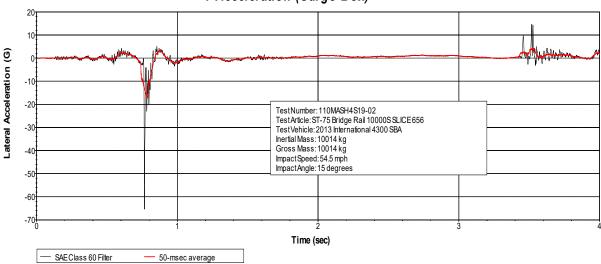


Roll, Pitch and Yaw Rates (Cab)

Figure 9-51 Test 4-12 Roll, Pitch, and Yaw Rates Inside Cab (Databrick 3)

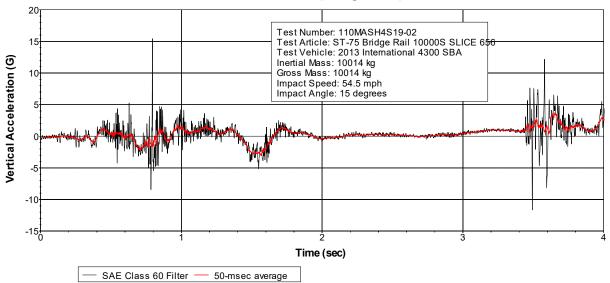



Roll, Pitch and Yaw Angles (Cab)


Figure 9-52 Test 4-12 Roll, Pitch, and Yaw Angles Inside Cab (Databrick 3)

SLICE BASE 656 Data Plots (Inside Cargo Box)

X Acceleration (Cargo Box)



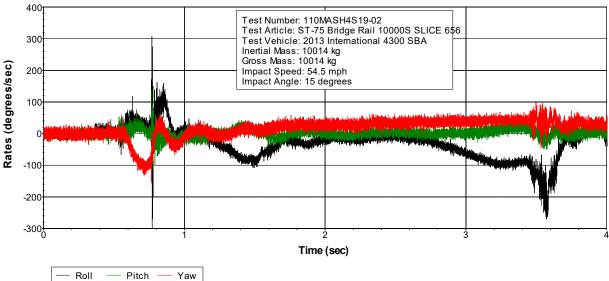
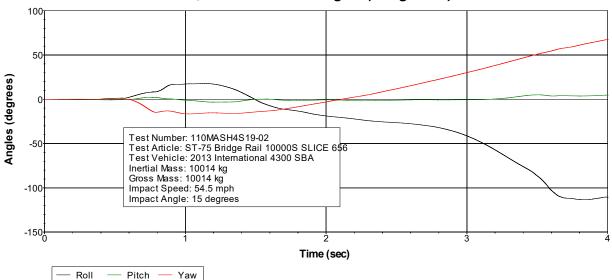
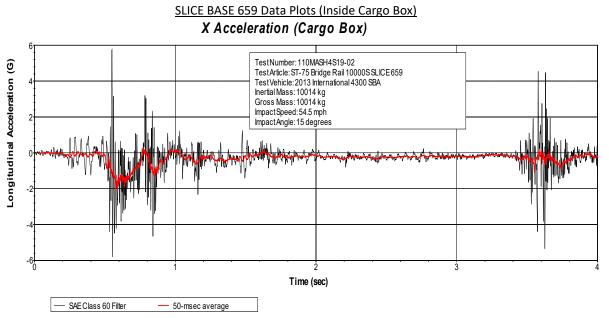
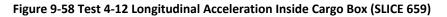
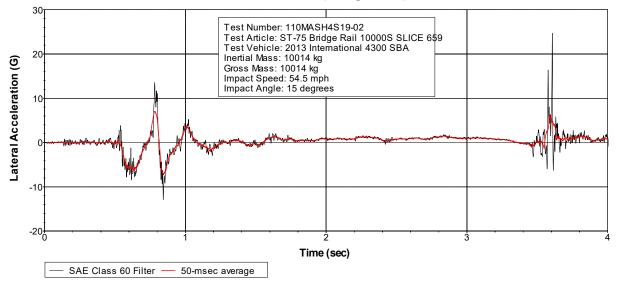

Y Acceleration (Cargo Box)

Figure 9-54 Test 4-12 Longitudinal Acceleration Inside Cargo Box (SLICE 656)


Z Acceleration (Cargo Box)

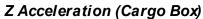

Roll, Pitch and Yaw Rates (Cargo Box)

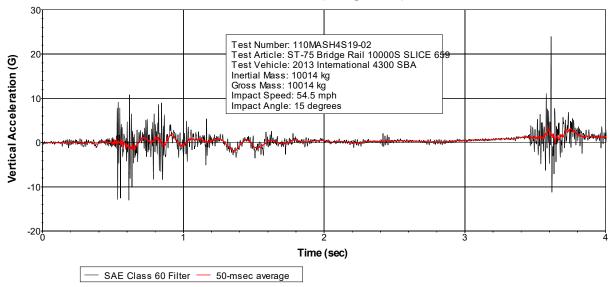

Figure 9-56 Test 4-12 Roll, Pitch, and Yaw Rates Inside Cargo Box (SLICE 656)



Roll, Pitch and Yaw Angles (Cargo Box)

Figure 9-57 Test 4-12 Roll, Pitch, and Yaw Angles Inside Cargo Box (SLICE 656)





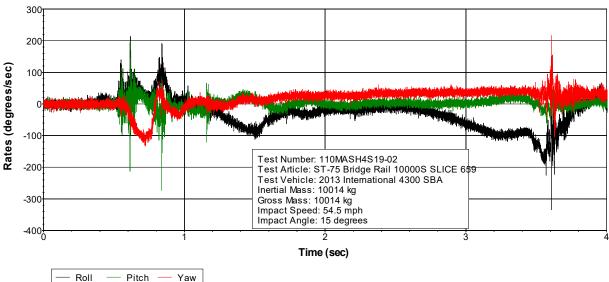
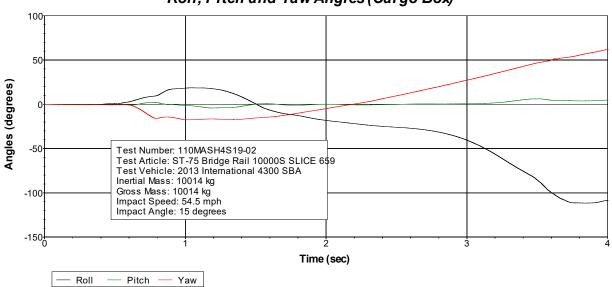

Y Acceleration (Cargo Box)

Figure 9-59 Test 4-12 Longitudinal Acceleration Inside Cargo Box (SLICE 659)



Roll, Pitch and Yaw Rates (Cargo Box)

Figure 9-61 Test 4-12 Roll, Pitch, and Yaw Rates Inside Cargo Box (SLICE 659)

Roll, Pitch and Yaw Angles (Cargo Box)

Figure 9-62 Test 4-12 Roll, Pitch, and Yaw Angles Inside Cargo Box (SLICE 659)

10. Appendix B: Detail Drawings

The following details in Figure 10-1 through Figure 10-5 were used for the construction of the ST-75 Bridge Rail test article.

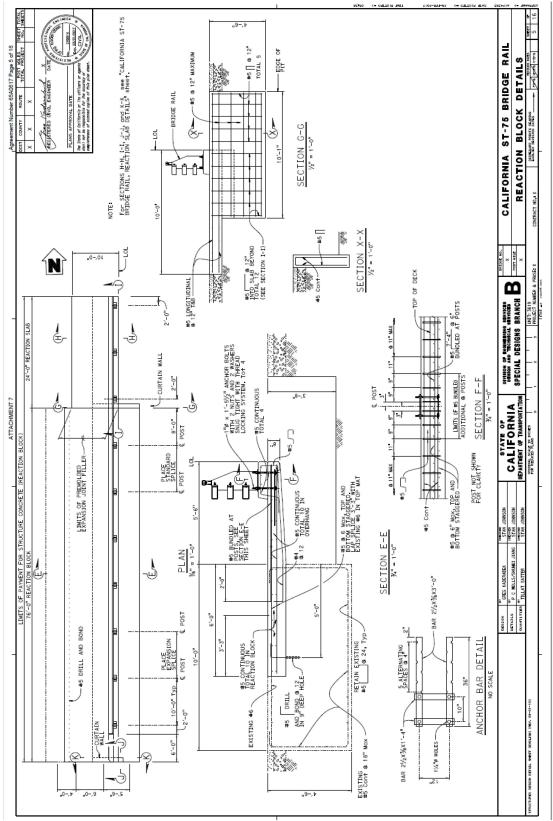


Figure 10-1 ST-75 Test Article Reaction Block Details

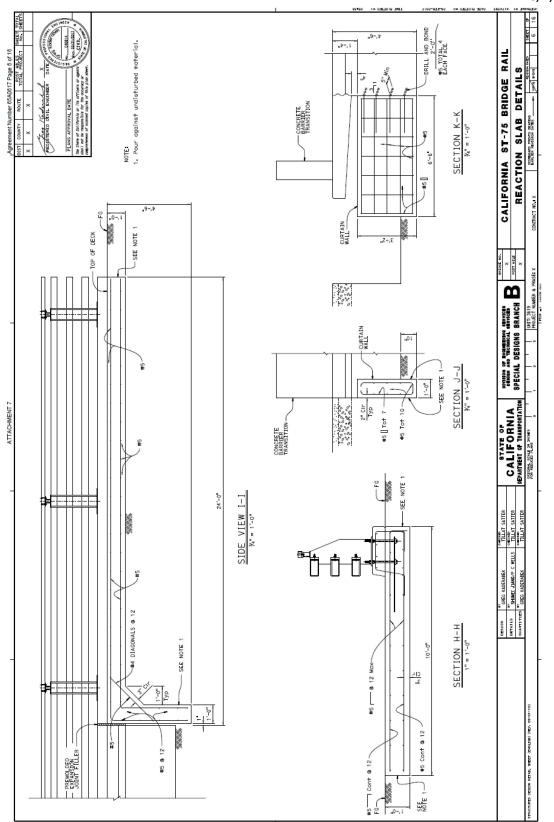


Figure 10-2 ST-75 Test Article Reaction Slab Details

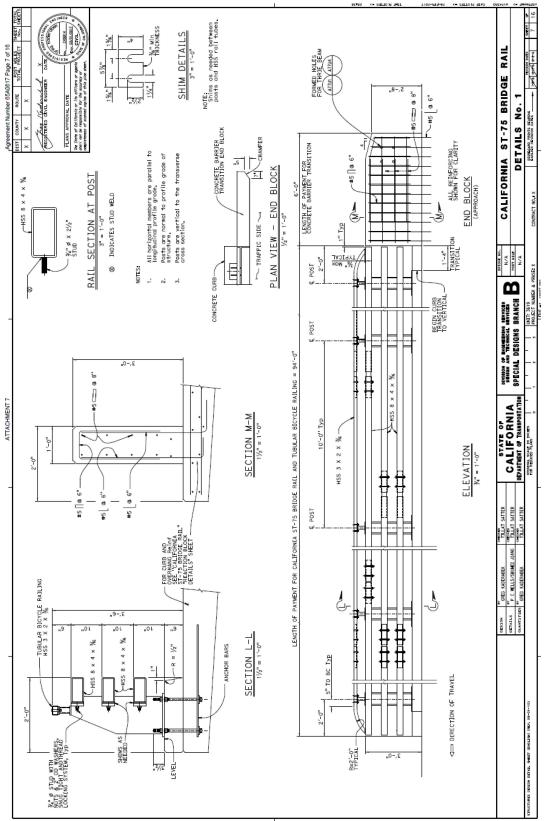
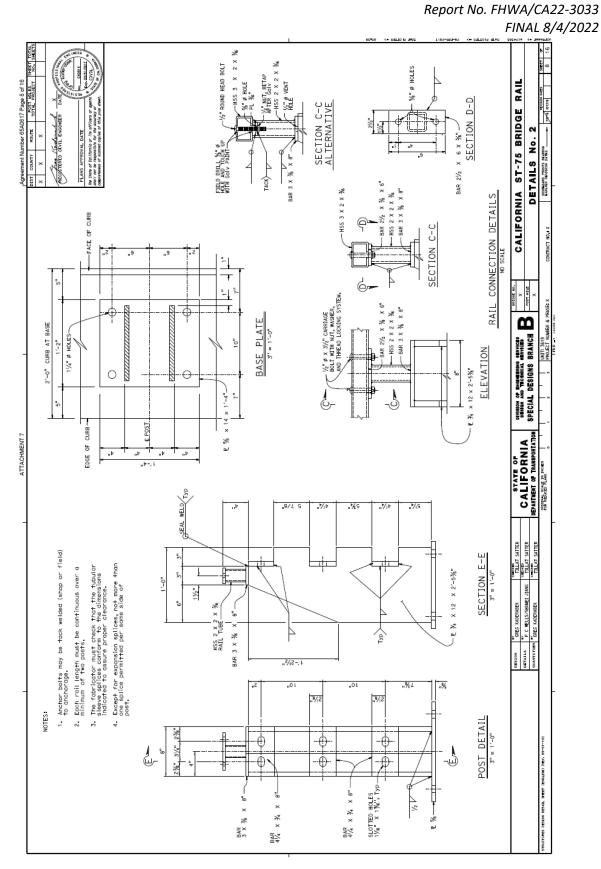
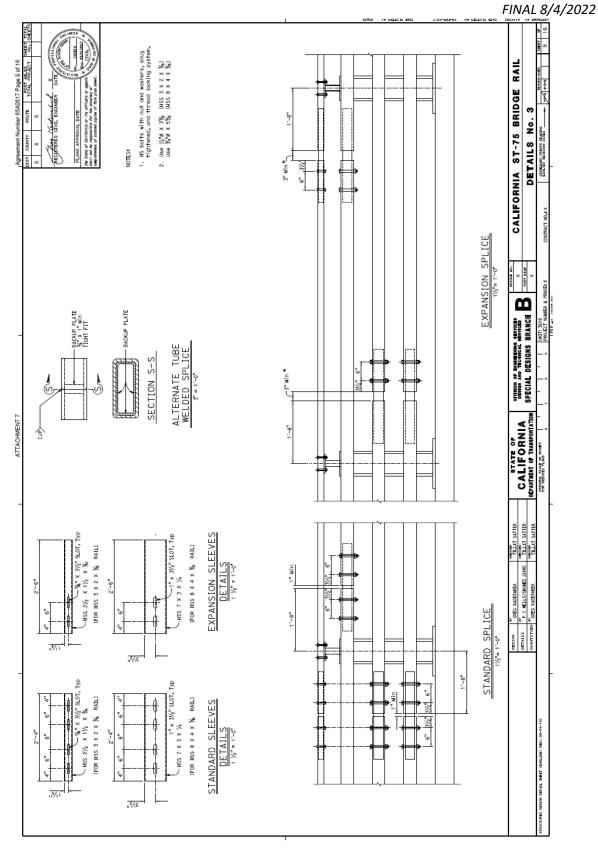




Figure 10-3 ST-75 Test Article Details 1

California Department of Transportation

Figure 10-4 ST-75 Test Article Details 2

California Department of Transportation

Report No. FHWA/CA22-3033

Figure 10-5 ST-75 Test Article Details 3

11. Appendix C: Quasi-static Push Test and Anchor Bolt Tensile Testing

The results of the push test and tensile testing are outside the scope of the Lab's accreditation.

11.1. Quasi-static Push Test

To better understand barrier lateral strength and to measure the force-deflection curve a quasi-static push test was performed on a section of the barrier that was undamaged from the three full-scale crash tests. A load frame was modified to provide the desired load height and attached to the simulated bridge deck using threaded anchor rods. The anchor rods were installed in holes cored through the simulated bridge deck and restrained with nuts and washers above the load frame and also under the deck. A hydraulic ram was attached to the load frame and a horizontal load was applied 813 mm (32 in) above the deck surface at the centerline of Post 6. The barrier was loaded at a fairly constant displacement rate of about 60 mm/min (2.4 in/min). The load gradually increased until the upstream traffic-side anchor bolt failed at a post deflection of 97 mm (3.8 in) and load of 390 kN (110,000 lbf). Deflections were measured with string potentiometers. See Figure 11-1 for the test results and test setup.

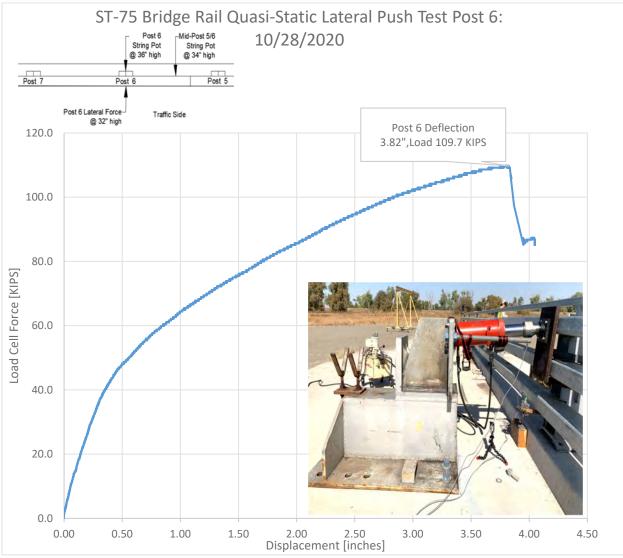


Figure 11-1 Load vs Displacement Test Setup and Curve for Quasi-static Push Test at Post 6

11.2. Anchor Bolt Tensile Testing

During barrier demolition, the traffic-side anchor bolts at posts 3 and 4 as well as the deformed but still intact downstream traffic-face anchor bolt at post 6 were saved for tensile testing according to ASTM A449. The anchor bolts were straightened to during removal of the bridge rail posts and to prepare them for tensile testing. Photos of the anchor bolts at posts 3 and 4 during barrier demolition are shown in Figure 11-2 and Figure 11-3. The anchor bolts at Post 6 after the pushover test and after straightening are shown in Figure 11-4 Post 6 Anchor Bolts with Post Removed. The purpose of the tensile testing was to determine how much residual capacity (strength) was in each anchor bolt and evaluate the level of strain in each bolt. It was thought that straightening the bolts as part of a repair after an impact would cause additional plastic deformation in the bolts so this additional testing would potentially provide some very useful information about repairs after an impact. As seen in Figure 7-12 and Figure 7-13, the bolts at Post 4 had undergone more deformation than those at Post 3 so it would be expected that they would have less residual strain capacity. Because the post was tested until failure, it would be expected that the anchor bolt would have even less residual strain capacity than those at Post 4. Looking at the results shown in Figure 11-6, the approximate yield stress (Stress at Offset) was less than the Tensile Strength for both Posts 3 and 4, but the difference was greater at Post 3. The Post 6 anchor bolt Stress at Offset and Tensile Strength were essentially the same. This shows that the bolts at Posts 3 and 4 were slightly in the plastic range (Post 3 less than Post 4) and the Post 6 bolt had residual strength despite being far in the plastic range. As a side note about Figure 11-5, the results were printed in Metric Units but the technician also recorded all results in English units and handwrote them on the printed results.

Figure 11-2 Post 3 Anchor Bolts with Post Removed

Figure 11-3 Post 4 Anchor Bolts with Post Removed



Figure 11-4 Post 6 Anchor Bolts with Post Removed

ST-75 Bridge Rail Post Anchor Bolt testing performed by the Caltrans Structural Materials Lab The fasteners were from the ST-75 Bridge Rail after full scale dynamic crash testing and a quasi-static post push test performed in 2020. The purpose of these tensile tests was to check for residual capacity after crash testing and the push test.

Thursday, November 19, 2020 11:09:40 AM

P3U = Post 3 Upstream Traffic Side Post Anchor Bolt P3D = Post 3 downstream Traffic Side Post Anchor Bolt

Procedure Nan	ne				DIM	E TM3 A449 Fastener	r Tensile Proced	ure			
DIME Sample	D				65A	0617					
User											
UTM						400kip PC59WXDHQ80465					
Workstation					1.000						
Sample name						C:\Users\Public\Documents\Instron\Bluehill Universal\Output\Bolts\65A0617.is_tens DIME TM3 A449 Fastener Tensile Procedure.001.007					
Method name	only				DIM	E TM3 A449 Fastener	r Tensile Proced	ure.001.007			
	Heat Number	Sample	Size	Area [mm^2]	Peak Load [kN]	Peak Load in kN [kN]	Tensile Strength [MPa]	Stress at Offset [MPa]	Load at Offset [kN]	Comments	
		2 P3D	UNC 1	390.97	390	390	997	666	260		
2		1 P3U	UNC 1	390.97	355	355	908	674	264		
		3 P4U	UNC 1	390.97	332	332	850	796	311		
4	1	4 P4D	UNC 1	390.97	353	353	904	845	330		
5		5 P6U	UNC 1	8760		324 Tev	829 Asile st PSI	828 rength	324		
				79 77	5		144546				
				74674	4		131641				
				79 419			131055				
				72899			120295				

Bent anchor bolts were straightened to be able to remove the posts during the demolition.

These test results weren't included in DIME.

```
Page 1 of 1
```

However, for comparison with construction compliance testing performed 10/26/2017 on similar bolts see: https://dime.dot.ca.gov/index.php?r=test/viewDetail&test_id=35166 RJM 1/27/2021

Figure 11-5 Tensile Test (ASTM A449) Results for Anchor Bolts at Posts 3 and 4 (Post Crash Test), and Post 6 (Post Quasistatic Push Test)

Sample	Peak Load (lbf)	Tensile Strength (psi)	Stress at Offset (psi)
1 P3U (Post 3 Upstream)	79,775	131,641	97,800
2 P3D (Post 3 downstream)	87,604	144,546	96,600
3 P4U (Post 4 Upstream)	74,624	123,224	115,000
4 P4D (Post 4 Downstream)	79,419	131,055	123,000
5 P6U (Post 6 Downstream, mislabeled)	72,899	120,295	120,000

Figure 11-6 Summary of Tensile Test Results in English Units
--

12. Appendix D: Material Properties and Certifications

<u>The concrete cylinder breaks and material certifications in Appendix C are not within</u> <u>the Lab's Scope of Accreditation.</u>

ST-75 Bridge Rail Concrete Cylinder Break Results (Average of Two Cylinders)

	Mix Z5685210 (Deck Pour)	Mix Z5605210 (Curb Pour)
Age (Days)	Compressive Strength (psi)	Compressive Strength (psi)
7	4210	4000
14	5360 (15-day break)	4820
21	5480	5300
28	5700	5500

This material was manufactured according to the latest revision of the plant quality manual and meets the "buy america" requirements of 23 CFR 635.410 DLVRY LBS / HEAT: 12266.000 LB DLVRY PCS / HEAT: 196 EA We hereby certify that the test results presented here are accurate and conform to the reported grade specification CUST PO#: HSRCP1AZ Delivery#: 82017879 BOL#: 71951855 Coality Assurance Manager Incoh Selzer - CMC Steel N2 Characteristic Value CUST P/N: THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THEUSA, WITH NO WELD REPAIR OR MERCURY CONTAMINATION IN THE PROCESS. Camblin Steel HSR #1 4175 Cincinnati Ave Rocklin CA US 95765-1402 0.039IN 9166441300 9169261502 1.875IN 0.402IN 0.134IN assed 9.8% ក្ត 15% N CERTIFIED MILL TEST REPORT . For additional copies call Characteristic Value Elongation test 1 Elongation Gage Lath test 1 Bend Test Diameter Rebar Deformation Max. Gap <u>`</u>) Rebar Deformation Avg. Spaci Rebar Deformation Avg. Heigh Tensile to Yield ratio test1 Uniform Elongation Bend Test 1 830-372-8771 нo . Camblin Steel HSR #1 4175 Cinclenati Ave Rocklin CA US 95765-1402 9166441300 9169251502 ,11444 E. GERMANN RD. MESA AZ 86212-9700 CMC STEEL ARIZONA 0.0106% 0.14% 0.11% 0.024% 0.000% 0.011% 0.011% 71.6ksl 494MPa 639MPa 0.011% 0.026% 0.19% 0.29% 92.6ksi 0.48%1.20% 0.25% 5010 F O Value GRADE: ASTM A706-16 Grade 420 SECTION: REBAR 16MM (#6) 60'0" c Characteristic Yield Strength test 1 5 Carbon Eq A706 Yield Strength test 1 (metri Tensile Strength test 1 Tensile Strength 1 (metric) ROLL DATE: 02/21/2017 MELT DATE: 02/21/2017 1 HEAT NO.:4064009 ۰. je D REMARKS : GMC A706 (60)

Grade 60 #5 Rebar (1 of 1)

02/27/2017 13:27:29 Page 1 OF 1

154

Page 1

½" Diam. x 3.5" Bolt Assembly (1 of 5)

SLSB, LLC dba ST. LOUIS SCREW & BOLT PO BOX 260 MADISON, IL 62060-0260

Phone: 800-237-7059 Fax: 314-389-7510 E-Mail: sales@stiouisscrewbolt.com

ROTATIONAL CAPACITY TEST RESULTS

UIS INC PO BOX 699 PLEASANT	GROVE, UT 8	4062	PO Project SO No Invoice	U55	-		
Test No	TT0093088	Test Date	09/18/17	Manufacturer		Lot No	
Bolt Nut Washer Washer 2	3/4(10)X 5-1/2 A3 3/4(10) HVY HEX 3/4 F436-1 STRU	(NUT A563-DH	HDG	SLSB UNYTITE INC PRESTIGE S	Tamping inc		6214369502
	Actual Installation Tension	Torgue FT/LB At Installation Tension	Max. Torque FT/LB At Installation Tension <= .25	Final Rotation Degrees	Tension At Final Rotation LBS.	Final Status	
Test 1 Test 2 Test 3 Test 4 Test 5	28,000 28,000	254 261	438 438	360 360	40,000 40,000	Passed Passed	
Test No (TT0093089	Test Date	09/18/17	Manufacturer		Lot No	1
Bolt Nut Washer Washer 2	1/2(13)X 3-1/2 A 1/2(13) HVY HE 1/2 F436-1 STR	X NUT A563-DH	HDG	NUCOR BRIGHTON-I PRESTIGE S	BEST INTERN STAMPING IN	G8806 ATION 38223 C. D3736	5B
	Actual Installation Tension	Torgue FT/LB At Installation Tension	Max. Torque FT/LB At Installation Tension <= .25	Final Rotation Degrees	Tension At Final Rotation LBS.	Final Status	
Test 1 Test 2 Test 3 Test 4 Test 5	12,000 12,000	98 89	125 125	360 360	18,000 18,000	Passed Passed	

We certify that these tests where conducted in accordance with the latest revision of ASTM F3125/F3125M supplementary requirements of FHA stan

ndards.	SIGN	ROBBI MEIER				
		LAB TECH				
	The	in continente in advisory only at	nd is not a warranty.	This material	is warranted	as set forth

This certificate is advisory only and is in the Manufacturer's Standard Warranty.

½" Diam. x 3.5" Bolt Assembly (2 of 5)

Scro	1887	
SLSB COATING CERTI		CE
SLSB PART #	AAAG050350	
DESCRIPTION:	/1/2 X 3-1/2" A325-1 HDG	
QUANITY:	750	
ORIGINAL MANUFACTURER'S LOT#:	376767A	
OUTSIDE PROCESSING PO#	SL73730	
LOT/JOB#	G8806 /	
THE ABOVE PARTS WERE PURCHASED OR MADE OUT TO BE COATED TO MEET THE MOST CURREN	BY SLSE, AND HAVE BEEN SENT T OF THE FOLLOWING ASTM SPECIFICATION:	
OUT TO BE COATED TO MEET THE MOST CURREN	T OF THE FOLLOWING ASTM SPECIFICATION:	
OUT TO BE COATED TO MEET THE MOST CURREN	T OF THE FOLLOWING ASTM SPECIFICATION: ECK ONE)	
OUT TO BE COATED TO MEET THE MOST CURREN (CHE HOT DIP GALVANIZING F2329/A153	T OF THE FOLLOWING ASTM SPECIFICATION:	
OUT TO BE COATED TO MEET THE MOST CURREN (CHE HOT DIP GALVANIZING F2329/A153 MECHANICAL GALVANIZING B695		
OUT TO BE COATED TO MEET THE MOST CURREN (CHE HOT DIP GALVANIZING F2329/A153 MECHANICAL GALVANIZING B695 DACROMET COATING F1136		······································
OUT TO BE COATED TO MEET THE MOST CURREN (CHE HOT DIP GALVANIZING F2329/A153 MECHANICAL GALVANIZING B695		
OUT TO BE COATED TO MEET THE MOST CURREN (CHE HOT DIP GALVANIZING F2329/A153 MECHANICAL GALVANIZING B695 DACROMET COATING F1136 ZINC PLATING B633		
 OUT TO BE COATED TO MEET THE MOST CURREN (CHE HOT DIP GALVANIZING F2329/A153 MECHANICAL GALVANIZING B695 DACROMET COATING F1136 ZINC PLATING B633	T OF THE FOLLOWING ASTM SPECIFICATION: ECK ONE) X CONE C	
OUT TO BE COATED TO MEET THE MOST CURREN (CHE HOT DIP GALVANIZING F2329/A153 MECHANICAL GALVANIZING B695 DACROMET COATING F1136 ZINC PLATING B633	T OF THE FOLLOWING ASTM SPECIFICATION: ECK ONE) T DECK	AMPLE 3 19640
 OUT TO BE COATED TO MEET THE MOST CURREN (CHE HOT DIP GALVANIZING F2329/A153 MECHANICAL GALVANIZING B695 DACROMET COATING F1136 ZINC PLATING B633	T OF THE FOLLOWING ASTM SPECIFICATION: ECK ONE) TOF THE FOLLOWING ASTM SPECIFICATION: ECK ONE) TIES PER HOT DIP GALVANIZING ACCORDANCE WITH F606-14 REQUIRED SAMPLE 1 SAMPLE 2 SA DI 17050 19270 20130	AMPLE 3

Kachelones

SLSB QC LAB, CERTIFICATIONS

½" Diam. x 3.5" Bolt Assembly (3 of 5)

FASTENER DI			
	IVISION		Telephone 260/337-1600
CUSTOMER NO/NAME	NUCOR ORDER #	975294	
1554 BRIGHTON-BEST/CA TEST REPORT SERIAL# F1	8498350 CUST PART #	503032	
TEST REPORT ISSUE DATE	6/16/16		/ A325 \
DATE OF LAD CANDIED. 11	7/12/16 CUSTOMER P.O. # ISA EDGAR, LAB TECHNICIAN	005009	
************************	D MATERIAL TEST REPORTANNANANA	N.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X	¥/
NUCOR PART NO QUANTII	TY LOT NO DESURIFIION	E HVY HY	
160130 675 HANUFACTURE DATE 6/08/16			
CHEMISTRY	HATEDIAL CRADE -1038		
NATERIAL HEAT	**CHEMISTRY COMPOSITION (WT% HEA	T ANALYSIS) BY MATERIA	NUCOR STEEL - SOUTH CAROL
NUMBER NUMBER RM030609 DL16100462	C HN P S SI .35 .79 .006 .019 .22		
RM030609 DL16100462			
MECHANICAL PROPERTIES IN	N ACCORDANCE WITH ASTM F3125-15a		
SURFACE CORE	PROOF LDAD TENSILE	G-WEDGE	
HARDNESS HARDNESS	12100 LBS 10 DE (LBS)	G-WEDGE STRESS (PSI)	
(R30N) (RC) N/A 30.7	PASS 19800	139437	
N/A 29.5	PASS 20210	142324 143873	
N/A 27.2	PASS 20430	149913	· · · ·
N/A 30.2 AVERAGE VALUES FROM TESTS	a la		
29.4	20147	141878	
PRODUCTION LOT SIZE	20283 PCS		
VISUAL INSPECTION IN AC	CORDANCE WITH ASTM F3125-15a TIZED, DIL QUENCHED & TEMPERED (NI		PCS. SAMPLED LOT PASSED
			4
DIMENSIONS PER ASME B18 CHARACTERISTIC #	8.2.6-2010 #SAMPLES TESTED MINIHUM HA	XIHUM	
Width Across Corners	e 8 0.987	0.995	
Grip Longth		2.49	
Head Height	8 0.308 8 PASS	PASS	
Threads		_	
			·
ALL TESTS ARE IN ACCORD	ANCE WITH THE LATEST REVISIONS OF	THE METHODS PRESCRIBE	ED IN THE APPLICABLE SAE AND ASTH S/LISTED ABOVE AND MERE MANUFACTURED
ALL TESTS ARE IN ACCORD SPECIFICATIONS, THE SA FREE OF MERCURY CONTAMI	ANCE WITH THE LATEST REVISIONS OF MPLES TESTED CONFORM TO THE SPECI NATION. NO HEATS TO WHICH BISHUT	THE METHODS PRESCRIBE Fications as described H, Seleniuk, Telluriuk	ED IN THE APPLICABLE SAE AND ASTM S/LISTED ABOVE AND WERE MANUFACTURED 4, DR LEAD WAS INTENTIONALLY
ALL TESTS ARE IN ACCORD SPECIFICATIONS. THE SA FREE OF HERCURY CONTANT ADDED HAVE BEEN USED TO THE STEEL WAS HELTED AN	ANCE WITH THE LATEST REVISIONS OF MPLES TESTED CONFORM TO THE SPECI NATION. NO HEATS TO WHICH BISMUT PRODUCE THE BOLTS. D MANUFACTURED IN THE U.S.A. AND.	THE METHODS PRESCRIBE FICATIONS AS DESCRIBED N, SELENIUN, TELLUR THE PRODUCT WAS NANUF.	ED IN THE APPLICABLE SAE AND ASTM D/LISTED ABOVE AND WERE MANUFACTURED MAS INTENTIONALLY ACTURED AND TESTED IN THE U.S.A. E DEPERSIMATION OF INFORMATION
ALL TESTS ARE IN ACCORD SPECIFICATIONS. THE SA FREE OF MERCURY CONTANT ADDED HAVE BEEN USED TO PRODUCT DORPLIES WITTO JO PRODUCT DORPLIES WITTO JO	ANCE WITH THE LATEST REVISIONS OF MFLES TESTED CONFORM TO THE SPECT NATION. NO HEATS TO WHICH BISHOT PRANUFACTURED IN THE U.S.A. AND PRAS 252,225-7014. WE CERTIFY TH SUPPLEE AND QUE TESTING LABORA	THE METHODS PRESCRIBE Fications as described N, Seleniuk, Telluriu The Product Mas Manuf, Iat This data is a true Jory. This certified	ED IN THE APPLICABLE SAE AND ASTM JLISTED ABOVE AND WERE MANUFACTURED 4, OR LEAD WAS INTENTIONALLY ACTURED AND TESTED IN THE U.S.A. E REPRESENTATION OF INFORMATION MATERIAL TEST REPORT RELATES ONLY
ALL TESTS ARE IN ACCORD SPECIFICATIONS. THE SA PREE OF MERCURY CONTANT. ADDED HAVE SEEN USED TO FRONDIC COMPLIES WITH D PROVIDED BY THE MATERIA TO THE ITEMS LISTED ON	ANCE WITH THE LATEST REVISIONS OF MPLES TESTED CONFORM TO THE SPECI NATION. NO HEATS TO WHICH BISMUT PRODUCE THE BOLTS. D NANUFACTURED IN THE U.S.A. AND MANUFACTURED IN THE U.S.A. AND MEARS 252-25-7014. WE CERTIFUE MISS DOCUMENT AND HAY NOT BE REPF THIS DOCUMENT AND HAY NOT BE REPF	THE METHODS PRESCRIBE FILATIONS AS DESCRIBE N, SELENIUN, TELLURIUN THE PRODUCT WAS MANUF INT THIS DATA IS A TRU INTRY. THIS CERTIFIED COUCED EXCEPT IN FULL	ED IN THE APPLICABLE SAE AND ASTM X/LISTED ABOVE AND WERE WANUFACTURED 4, OR LEAD WAS INTENTIONALLY ACTURED AND TESTED IN THE U.S.A. E REPRESENTATION OF INFORMATION MATERIAL TEST REPORT RELATES ONLY
ALL TESTS ARE IN ACCORD SPECIFICATIONS, THE SA FREE OF MERCURY UNERATION ADDED HEL NAS NELTED AN PRODUCT COMPLEX WITH D PROVIDED BY THE MATERIA TO THE ITEMS LISTED ON	10000 540	TEVED	ED IN THE APPLICABLE SAE AND ASTM XLISTED ABOVE AND WERE MANUFACTURED 4, OR LEAD WAS INTENTIONALLY ACTURED AND TESTED FIN THE U.S.A. E REPRESENTATION OF INFORMATION MATERIAL TEST REPORT RELATES ONLY
ALL TESTS ARE IN ACCORD SPECIFICATIONS. THE SA FREE OF HERCURY CONTAMI THE STEEL MAS MELTED AN PRODUCT COMPLIES WITH D PROVIDED BY THE MATERIA TO THE ITEMS LISTED ON	10000 540	TEVED	
	10000 540	TENER N OF NUCOR CORPORATION	
ALL TESTS ARE IN ACCORD SPECIFICATIONS. THE SA FREE OF HERCURY CONTANT. ADDED HAVE SEEN USED TO FRONZICE CORPLES WITH D PROVIDED SY THE MATERIA TO THE ITEMS LISTED ON ACCREDITED	10000 540	TENER N OF NUCOR CORPORATION	
	A DIVISIO	N OF NUCOR CORPORATION	
	A DIVISIO	N OF NUCOR CORPORATION	
ACCREDITED	A DIVISIO	TENER N OF NUCOR CORPORATION	
	A DIVISIO	N OF NUCOR CORPORATION	
	A DIVISIO	TENER N OF NUCOR CORPORATION W W 7. Terruson Issurance supervisor	
	NUCOR FAS A DIVISIO JOHN N. F JOHN N. F QUALITY A	TENER N OF NUCOR CORPORATION W W 7. Terruson Issurance supervisor	
	NUCOR FAS A DIVISIO JOHN N. F JOHN N. F QUALITY A	TENER N OF NUCOR CORPORATION W W 7. Terruson Issurance supervisor	
	NUCOR FAS A DIVISIO JUNI W. F JUNI W. F QUALITY A Page 1 of	TENER N OF NUCOR CORPORATION W W 7. Terruson Issurance supervisor	

.

.

.

½" Diam. x 3.5" Bolt Assembly (4 of 5)

	COR	LDT ND. 3822358		Post Office Box 6100 Saint Joe, Indiana 46785	
				Telephone 260/337-1600	
CUSTOHER NO/NAME	IER DIVISION		990885		
1554 BRIGHTON- TEST REPORT SERI	BEST/CA AL# FB511942		175060		
TEST REPORT ISSU	E DATE 11/14/16		1170000	DU	
DATE SHIPPED NAME OF LAB SAMP	12/07/16 LER: RYAN UNGER, LAB	CUSTOMER P.O. # TECHNICIAN			
 NAME OF LAD SAM	CERTIFIED NATERIAL TEST	REPORT*********	****	(_(())_))	
NUCOR PART NO	QUANTITY (LOT NO 52200 (3822358)	DESCRIPTION 1/2-13 GR DH HV HX	NUT H.D.G.		
 MANUFACTURE DATE 		HEX NUT H.D.G.			
CHEMISTRY	HATERIAL	GRADE -1026L			
MATERIAL HEAT		MPOSITION (WT% HEAT P S SI	ANALYSIS) BY MATERIAL	NUCOR STEEL - NEBRASKA	
NUMBER NUMB RH030631 NF16	ER C HN 5100548 .24 .69	.005 .012 .24			
MECHANICAL PRO	PERTIES IN ACCORDANCE WI	TH ASTM A563-07a			
SURFACE CORE	PROOF LOAD	IENSILE	STRENGTH WEDGE		
HARDNESS HARDN (R30N)	(ESS 21200 LBS	(LBS)	STRESS (PSI)		
N/A 2	29.9 PASS	N/A	N/A N/A		
	25.6 PASS 31.6 PASS	N/A N/A	N/A		
N/A 7	28.9 PASS	N/A N/A	N/A N/A		
N/A AVERAGE VALUES F	29.1 PASS FROM TESTS	N/A	ine et		
1	29.0				
PRODUCTION LOT S	SIZE 164000 PCS				
VISUAL INSPECT	TION IN ACCORDANCE WITH A	ASTM A563-07a	130	PCS. SAMPLED LOT PASSED	
	DIP GALVANIZED TO ASTM	F2329-13 - GALVANIZ	ING PERFORMED IN THE U	.S.A.	
1. 0.00439	2. 0.00491 3. 0.0	0285 4. 0.00498	5. 0.00455 01	0.00437 7. 0.00318 0.00484 14. 0.00530	
8. 0.00587 15. 0.00469	9. 0.00484 10. 0.0	U522 11. 0.000010			
second se	SS FROM 15 TESTS .0046 - AUSTENITIZED, OIL QUEN	6 OUED & TENDEDED (MT)	N 800 DEG F)		
HEAT TREATMENT	- AUSTENITIZED, ULL QUEN	UNED & LENFERED CHA			
	R ASHE B18.2.6-2010	HINIHUM MA	XINUM		
CHARACTERI Width Acro		0.977	0.983		
Thickness	32	0.481	0.487		
ALL TESTS ARE	IN ACCORDANCE WITH THE	ATEST REVISIONS OF	THE METHODS PRESCRIBE	D IN THE APPLICABLE SAE AND ASTH /LISTED ABOVE AND WERE MANUFACTURED TELLURIUM, OR LEAD WERE USED IN THE	
SPECIFICATIONS	. THE SAMPLES TESTED CONTANINATION, NO IN	DNFORM TO THE SPECIE TENTIONAL ADDITIONS	OF BISHUTH, SELENIUM,	TELLURIUM, OR LEAD WERE USED IN THE	
STEEL USED TO	PRODUCE THIS PRODUCT.	IN THE U.S.A. AND	THE PRODUCT WAS MANUFA	CTURED AND TESTED IN THE U.S.A. REPRESENTATION OF INFORMATION	
THE STEEL WAS	IES WITH DEARS 252.225-7			REPRESENTATION OF INFORMATION NATERIAL TEST REPORT RELATES ONLY	
PROVIDED BY THE THEMS	HE MATERIAL SUPPLIER AND LISTED ON THIS DOCUMENT	AND MAY NOT BE REPR	DUCED EXCEPT IN FULL.		
		NUCOR FAST A DIVISION	OF NUCOR CORPORATION		
ACCRED	UTED	A 1	1		
 ACCRED		Hentan	1 117. 1-	ender	
HECHANICAL FA	STENER	JOHN W. FE	REUSON	egueen	
CERTIFICATE N EXPIRATION DA	0. A2LA 0139.01 TE 12/31/17	QUALITY AS	SURANCE SUPERVISOR		
		Page 1 of	1		

½" Diam. x 3.5" Bolt Assembly (5 of 5)

Presti Stampin In		23513 Grossback Highway Warren, Michigan 48089 (586)773-2700 * Far (586) WWW. PrestigeStamping.com	773-2298	PRODUCT CERTIFICATIO CERTIFICATION NUMBER 166684
THIS IS TO ORDER AS	CERTIFY THE	PRODUCT-STATED-BELC	W WAS FABBICATED AI	ND PROCESSED TO THE IONS AND STANDARDS.
	Customer:	SLSB LLC DEA ST LOUIS SCREW 2003 ACCESS BLVD MADISON, IL 62060	& BOLT	
Pr Pur S	stomer Part: astige Part: Part Name: chase Order: hipment BOL: Shipment ID: Quantity: ers Marking:	P1088HP300 1/2°F436 H/DIP SL82339 B200435 A0214896 63768	Grade: C Lot: D Heat: B Carbon: - Manganese: - Phosphorous: - Sulfur: -	ARATHON METALS, LLC E436 GRADE STEEL 3736 4U177 52 (.2255) 73 (.6 - 1.6) 015 (.04 Max.) 001 (.05 Max.) 22 (.15 Min.)
SPECIF	ICATIONS		TEST RESULTS	
HRC	SS: TEST MET 38 - 45 KED TO ASTM KED AFTER GA		HARDNESS: ERC 40 - 41	
HOT	G: TESI METH DIP GALV TO ASIM A153 CI	NOD: ASTM B499 ASTM F-2329, ASS C	PLATING: 0.0020" - 0.0	
			· ·	
			•	
*	•,•	4	-	
			. *	•
Chemistry is an apport This product was pro- ISOTS 18846 Carifi Material was melted This product conform Sampling Plan per P. The tast results only When the second product prior	ted from raw material cert ducation No: GO62953. and manufactured in the U nuffectured in Warren. Alice is to all requirements for V SI W41, 5 5,4:80.015. apply to the items tested. not be reproduced except nuffecture these produces a uplient.	equinements of ASTM F844 specification Rection and does not fall under Preading 5 948 Quality Assurance System. .S.A. higen U.S.A. eshers as produced according to A.O.T.M In full without prior written approval. In full without prior written approval.	. F-436-13.	FRAM SCHUBERT Quality Assurance Manager

¾" Diam. x 5.5" Bolt Assembly (1 of 6)

SLSB, LLC dba ST. LOUIS SCREW & BOLT PO BOX 260 MADISON, IL 62060-0260

Phone: 800-237-7059 Fax: 314-389-7510 E-Mail: sales@stiouisscrewbolt.com Page 1

ROTATIONAL CAPACITY TEST RESULTS

SINC			PO	1874	5				
DOV 699	ROVE, UT 8	4062	Project SO No Invoice	U553 No	329				
Test No C	T0093088)	Test Date	09/18/17	Manufacturer			.ot No		
Bolt	3/4(10)X 5-1/2 A	325-1 BOLT HD X NUT A563-DH JCTURAL WASI	HDG	SLSB UNYTITE INC PRESTIGE ST	Famping INC.	2	3G0743 / 25982-6214369502 / 03578 /		
	Actual Installation Tension	Torgue FT/LB At Installation Tension	Max. Torque FT/LB At instaliation Tension <= .25	Final Rotation Degrees	Tension At Final Rotation LBS.	Final Statu	15		
Test 1 Test 2 Test 3 Test 4 Test 5	28,000 28,000	254 261	438 438	360 360	40,000 40,000	Passed Passed			
Test No	TT0093089	Test Date	09/18/17	Manufacturer			Lot No		
Bolt Nut Washer Washer 2	4/2(12) HV/Y H	A325-1 BOLT HI EX NUT A563-DI RUCTURAL WAS	H HDG	NUCOR BRIGHTON-I PRESTIGE S	BEST INTERN STAMPING INC	IATION C.	G8806 N 382235B D3736		
	Actual Installation Tension	Torgue FT/LB At Installation Tension	Max. Torque FT/LB At installation Tension <= .25	Final Rotation Degrees	Tension At Final Rotation LBS.	Final Sta	tus		
Test 1 Test 2	12,000 12,000	98 89	125 125	360 360	18,000 18,000	Passe Passe			
Test 3 Test 4 Test 5									

We certify that these tests where conducted in accordance with the latest revision of ASTM F3126/F3125M

supplementary requirements of FHA standards.

ROBBI MEIER SIGN

This certificate is advisory only and is not a warranty. This material is warranted as set forth in the Manufacturer's Standard Warranty.

3/2" Diam. x 5.5" Bolt Assembly (2 of 6)

MECHANICAL PROPERTIES TESTING AFTER HOT DIP GALVANIZING TESTED IN ACCORDANCE WITH F606

THESE PARTS HAVE BEEN HOT DIP GALVANIZED TO MEET ASTM F2329/A153

LOT NUMBER:	BG	0743		
DESCRIPTION:	¾ X 5-1/2" /	A325-1_H	DG	
DATE TESTED:	01/2	24/17		
	PROTUDED SAN		SAMPLE 2	

	REQUIRED	SAMPLE 1	SAMPLE 2	SAMPLE 3
TENSILE LOAD	40100	47870	47110	46770
PROOFLOAD	28400	.0002	.0000	.0001
HARDNESS (HRC)	25-34	26.4	30.6	28.8

adultones

SLSB QC LAB, CERTIFICATIONS

SLSB, LLC · 2000 Access Boulevard · Madison · IL · 62060 · Phone: 800.237.7059

3/2" Diam. x 5.5" Bolt Assembly (3 of 6)

SPECIFICATION AMEND Site Units ASTM F3125 15a ASTM F1470 1 ASTM F3125 14 ASTM F066 1 ASTM A325-1 14 ASTM F066 1 ASME B18.2.6 14 ASTM F788 1 ASME B1.0x0 2A 14 ASTM F2329 1 RAW MATERIAL INFORMATION* STEEL SUPPLIERS TEST REPORT ATTACHED WITH CHEMISTRY INFORMATION STEEL SUPPLIER GRADE HEAT INFO/NUMBER ASTM SPEC KREHER/CHARTER 10B30 KNF16103029 ASTM A29 MECHANICAL PROPERTIES QTY ISSUE SAMPLED TESTED HEAT TREAT VIS INSPECTION LC SAMPLED DATE BY: PO#: VIS INSPECTION LC S 1/18/2017 RC RC 1450623-05 PASS	END				
PART NO: AAAG075550 SIZE: 3/4"(10) X 5-1/2" DESCRIPTION: HVY HEX STRUC. BOLT - HDG MANUFACTURING QTY: 2,890 ASTM/ASME SPECIFICATIONS SPECIFICATION AMEND SPECIFICATIONS SPECIFICATION AMEND SPECIFICATION AME ASTM F3125 15a ASTM F1470 1 ASTM F1785 11 ASTM F3125 15a ASTM F1470 1 ASTM F1820 1 ASTM F1820 1 ASTM F3125 15a ASTM F1470 1 ASTM F3125 15a ASTM F	END				
PART NO: AAAG075550 SIZE: 3/4"(10) X 5-1/2" DESCRIPTION: HVY HEX STRUC. BOLT - HDG MANUFACTURING QTY: 2,890 ASTM/ASME SPECIFICATIONS SPECIFICATION AMEND SPECIFICATIONS SPECIFICATION AMEND SPECIFICATION AME ASTM F3125 15a ASTM F1470 1 ASTM F1785 11 ASTM F3125 15a ASTM F1470 1 ASTM F1820 1 ASTM F1820 1 ASTM F3125 15a ASTM F1470 1 ASTM F3125 15a ASTM F	END				
SIZE: 3/4"(10) X 5-1/2" DESCRIPTION: HVY HEX STRUC. BOLT - HDG MANUFACTURING QTY: 2,890 ASTM/ASME SPECIFICATIONS SPECIFICATION AMEND SPECIFICATION AME ASTM F3125 15a ASTM F1470 1 ASTM A325-1 14 ASTM F606 1 ASTM F3126 14 ASTM F786 1 ASTM F3126 14 ASTM F786 1 ASTM F818.2.6 14 ASTM F786 1 ASTM F18.2.6 14 ASTM F788 1 ASTM F18.2.6 1 ASTM F2329					
MANUFACTURING QTY: 2,890 ASTM/ASME SPECIFICATIONS SPECIFICATION AMEND SPECIFICATION AME SPECIFICATION AME ASTM F3125 15a ASTM F1470 1 ASTM F3125 15a ASTM F1470 1 ASTM A325-1 14 ASTM F606 1 ASIME B18.2.6 14 ASTM F788 1 ASIME B1.1 UNC 2A 14 ASTM F788 1 STEEL SUPPLIERS TEST REPORT ATTACHED WITH CHEMISTRY INFORMATION STEEL SUPPLIER GRADE HEAT INFO/NUMBER ASTM SPEC STEEL SUPPLIER GRADE HEAT INFO/NUMBER ASTM A29 KREHER/CHARTER 10B30 ¥ NF16103029 ASTM A29 MECCHANICAL PROPERTIES QTY ISSUE SAMPLED TESTED HEAT TREAT VIS INSPECTION LCC SAMPLED DATE BY: PO#: VIS INSPECTION LCC SAMPLED BY: PO#: VIS INSPECTION LCC					
MANUFACTURING QTY: 2,890 ASTM/ASME SPECIFICATIONS SPECIFICATION AMEND SPECIFICATION AMEND SPECIFICATION AMEND ASTM F3125 15a ASTM F1470 1 ASTM F3125 15a ASTM F1470 1 ASTM F325-1 14 ASTM F066 1 ASTM F325 14 ASTM F788 1 ASTM F18.2 14 ASTM F788 1 ASTM F18.2 14 ASTM F2329 1 STEEL SUPPLIERS TEST REPORT ATTACHED WITH CHEMISTRY INFORMATION STEEL SUPPLIER GRADE HEAT INFO/NUMBER ASTM SPEC KREHER/CHARTER 10B30 ¥ NF16103029 ASTM A29 OTY ISSUE MECHANICAL PROPERTIES SAMPLED DATE BY: PO#: VIS INSPECTION<					
SPECIFICATION AMEND SPECIFICATION AME ASTM F3125 15a ASTM F1470 1 ASTM F3125 14 ASTM F1470 1 ASTM F3125 14 ASTM F1470 1 ASTM F3125 14 ASTM F606 1 ASME B18.2.6 14 ASTM F788 1 ASME B1.1 UNC 2A 14 ASTM F788 1 RAW MATERIAL INFORMATION* STEEL SUPPLIERS TEST REPORT ATTACHED WITH CHEMISTRY INFORMATION STEEL SUPPLIER GRADE HEAT INFO/NUMBER ASTM SPEC KREHER/CHARTER 10B30 -K NF16103029 ASTM A29 MECHANICAL PROPERTIES MECHANICAL PROPERTIES SAMPLED DATE BY: PO#: VIS INSPECTION LC SAMPLED DATE BY: BY: PO#: VIS INSPECTION LC 5 1/18/2017 RC RC 1450623-05 PASS C					
SPECIFICATION AMEND SPECIFICATION AME ASTM F3125 15a ASTM F1470 1 ASTM F3125 14 ASTM F1470 1 ASTM F3125 14 ASTM F1470 1 ASTM F3125 14 ASTM F606 1 ASME B18.2.6 14 ASTM F788 1 ASME B1.1 UNC 2A 14 ASTM F788 1 RAW MATERIAL INFORMATION* STEEL SUPPLIERS TEST REPORT ATTACHED WITH CHEMISTRY INFORMATION STEEL SUPPLIER GRADE HEAT INFO/NUMBER ASTM SPEC KREHER/CHARTER 10B30 -K NF16103029 ASTM A29 MECHANICAL PROPERTIES MECHANICAL PROPERTIES SAMPLED DATE BY: PO#: VIS INSPECTION LC SAMPLED DATE BY: BY: PO#: VIS INSPECTION LC 5 1/18/2017 RC RC 1450623-05 PASS C					
ST LOTM F3125 15a ASTM F1470 1 ASTM A325-1 14 ASTM F066 1 ASME B18.2.6 14 ASTM F788 1 ASME B18.2.6 14 ASTM F788 1 ASME B1.1 UNC 2A 14 ASTM F788 1 ASME B1.1 UNC 2A 14 ASTM F788 1 STEEL SUPPLIERS TEST REPORT ATTACHED WITH CHEMISTRY INFORMATION STEEL SUPPLIER GRADE HEAT INFO/NUMBER ASTM SPEC KREHER/CHARTER 10B30 -K NF16103029 ASTM A29 1 MECCHANICAL PROPERTIES QTY ISSUE SAMPLED TESTED HEAT TREAT VIS INSPECTION LC SAMPLED DATE BY: BY: PO#: VIS INSPECTION LC 5 1/18/2017 RC RC 1450623-05 PASS 1					
ASTM A325-1 14 ASTM F005 1 ASME B18.2.6 14 ASTM F788 1 ASME B1.1 UNC 2A 14 ASTM F788 1 ASME B1.1 UNC 2A 14 ASTM F7829 1 RAW MATERIAL INFORMATION* STEEL SUPPLIERS TEST REPORT ATTACHED WITH CHEMISTRY INFORMATION STEEL SUPPLIER GRADE HEAT INFO/NUMBER ASTM SPEC KREHER/CHARTER 10B30 - KNF16103029 ASTM A29 1 KREHER/CHARTER 10B30 - KNF16103029 ASTM A29 1 KREHER/CHARTER 10B30 - KNF16103029 ASTM A29 1 CONTRACT OF CONTRACT	12				
ASME B18.2.6 14 ASTM F2329 1 ASME B1.1 UNC 2A 14 ASTM F2329 1 RAW MATERIAL INFORMATION* STEEL SUPPLIERS TEST REPORT ATTACHED WITH CHEMISTRY INFORMATION STEEL SUPPLIER GRADE HEAT INFO/NUMBER ASTM SPEC KREHER/CHARTER 10B30 & NF16103029 ASTM A29 MECHANICAL PROPERTIES CTY ISSUE SAMPLED TESTED HEAT TREAT VIS INSPECTION LCC SAMPLED DATE BY: BY: PO#: VIS INSPECTION LCC 5 1/18/2017 RC RC 1450623-05 PASS	13				
RAW MATERIAL INFORMATION* STEEL SUPPLIERS TEST REPORT ATTACHED WITH CHEMISTRY INFORMATION STEEL SUPPLIER GRADE HEAT INFO/NUMBER ASTM SPEC KREHER/CHARTER 10B30 ¥ NF16103029 ASTM A29 MECHANICAL PROPERTIES MECHANICAL PROPERTIES QTY ISSUE SAMPLED TESTED HEAT TREAT VIS INSPECTION LCC SAMPLED DATE BY: BY: PO#: VIS INSPECTION LCC 5 1/18/2017 RC RC 1450623-05 PASS COMMENT	3				
QTY ISSUE SAMPLED TESTED HEAT TREAT VIS INSPECTION LCC SAMPLED DATE BY: BY: PO#: VIS INSPECTION LCC 5 1/18/2017 RC RC 1450623-05 PASS COMPANY	AMEND 12e1				
QTY ISSUE SAMPLED TESTED HEAT TREAT VIS INSPECTION LCC SAMPLED DATE BY: BY: PO#: VIS INSPECTION LCC 5 1/18/2017 RC RC 1450623-05 PASS DATE					
SAMPLED DATE BY: PO#: 5 1/18/2017 RC RC 1450623-05 PASS	T RESULT				
5 1/18/2017 RC RC 145525-55	PASS				
TENSILE STRENGTH FROM EVALUATION SUBFACE	CORE				
WEDGE LBP 25000 +0.0005" N/A 25	-34 HRC				
10 DEGREES 40100 28400 20,0000 1000 1000 1000 1000 1000 1000	_				
4 2 3 4 5 6 7 8 AVG					
TENSILE LOAD 47450 47800 47580 47440 47840 4762 4762	2				
PROOF LOAD 0.0002 0.0001 0.0001 0.0000 0.0004 0.0000	12				
	-				

AMENDED Fritz INITIAL: DATE: DATE: 1/18/2017 SIGNED:

*Heats of steel used have not had the following materials intentionally added: bismuth, selenium tellurium, or lead **Indicates the amended item, when and by whom.

¾" Diam. x 5.5" Bolt Assembly (4 of 6)

PAULO

ST LOUIS SCREW & BOLT 2000 ACCESS BLVD P O BOX 260 MADISON, IL 62060-0260

PART NAME: 3/4 X 5 1/2 / PART #: AAAG075550 BO QUANTITY: 2890 PCS MATERIAL: 10B30

> INSPECTION RESULTS: REQUIRED Final mid-radius hardness 28-32 HRC Qty inspected: 8 28 29 28 30 30 30 30 31 HRC

5711 WEST PARK AVENUE ST. LOUIS, MO 63110-1890

:

P (314)647-7500 F (314)647-7518 www.paulo.com

CERTIFIED INSPECTION REPORT

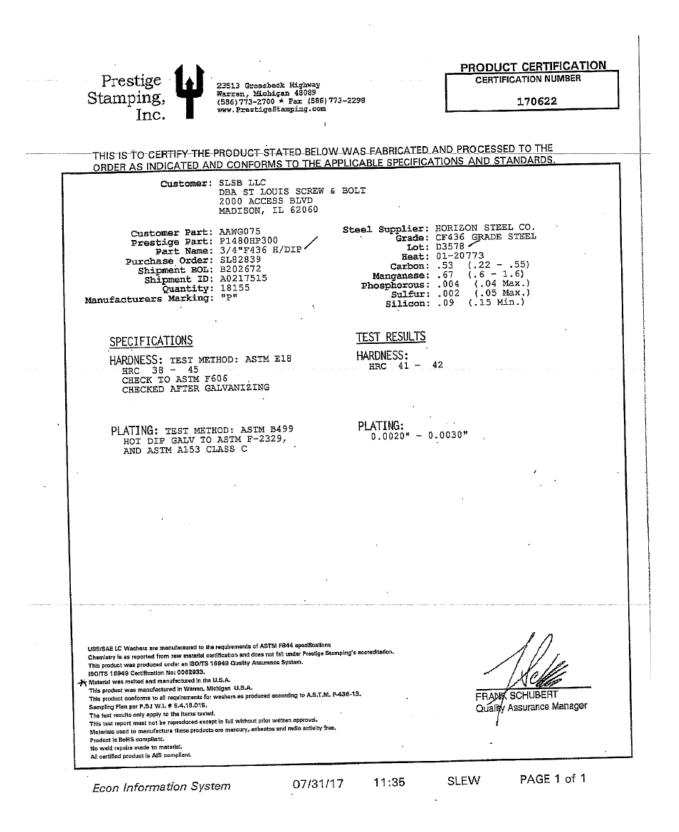
PAULO #: 1450623-05 DATE: 01/13/2017 DATE REC'D: 01/10/2017 SHIP TO CODE:

CUSTOMER PO: SL61366 CUSTOMER DRAY:

CUSTOMER JOB: NF16103029 LOT #: BG0743 / OTHER #:

Requirements: Heat Treat Certification Final mid-radius hardness 28-32 HRC DRY FINISH. Process per ASTM spec F3125 rev 15. Process per ASTM spec A 325M rev 14. Registered to ISO/TS 16949 Heat Treated in the USA.

Req info: DRY FINISH

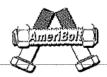

CERTIFY THAT APPLICABLE MATERIAL PROCESSES HAVE BEEN PERFORMED IN ACCORDANCE WITH THE SPECIFICATION SHOWN ABOVE. HAVE INSPECTED THE WORK AND THE SAMPLING AND RESULTS ARE AS INDICATED. Show bound the sampling and results are as indicated. Show bound the sampling and results are as indicated. Inspector Signature

Page 1 of 1

<u>¾" Diam. x 5.5" Bolt Assembly (5 of 6)</u>

	1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	No: SL817 er: 25982-6		V & BOL	r co.							
	Lot Numb	er: 25982-6				Ship To: ST. LOUIS						
	Lot Numb	er: 25982-6							Shippe	ed Qty:	87,685	
1	1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		214369502	/								
	<u> </u>	문화 문화 문화	ر بر ایند (۲۰۰۰) ا	العقر في ا	Part Info	rmation	Na Cristin			3.5.5 M		
	Part I Descripti	ASTM	\563 Heavy		N HDG BLUE Grade DH, H		/				Ø	
Manufactur	red Quant	ity: 107,342	2				- A MARK AND A PROPERTY OF	term of the second of	and a country of	s econati	1922 2 19 18	
8 Y W 2	1200				Applicable S	pecifications						
	<u> </u>	del Maria Mallana Alfantion	<u>in an chaire</u>	C. A. and Second	Amend	an ann a' feithe an		ification		F	mend	
ASME B1.1	Spe	cification		2003		ASME B18			2015			
ASME B18.2	.6			2010)	ASTM A56				2015		
ASTM F2329				2013	3	ASTM F60	6/606M		2014			
ASTM F812/	F812M			2012	2			- version and the second				
est Results		DO DU Masha										
Test No: 1528	3 Test: At		aleal Properti	a <i>c</i>		فبمواصل فأنفأ فمتركي	Carlo antina ant a Carl	S.MALAR	ar Calaire - She i	وليستبدد لكرار	120 Contractores	
Description	Hardness	Tar	nical Properti npering Tem	p (800	Proof (Pass/Fail)			Dimension B18.2.2	Thread Pr ASME B		Visual ASTM F812	
Description	Hardness	(HRC) Ter	npering Tem degree F N	p (800	(Pass/Fail)	(ASTM Min)	ASME			18.1.1		
Description Sample Inspection	Hardness 28.	(HRC) Ter	npering Tem degree F M 1,184	np (800 lin}	(Pass/Fail) 50,	(ASTM Min) 100	ASME	B18.2.2	ASME B	18.1.1 ss	F812 Pass	
Sample Inspection		(HRC) Ter	npering Tem degree F N	np (800 lin}	(Pass/Fail) 50,	(ASTM Min)	ASME P SIS	B18.2.2 ass (a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b)	ASME B Pas Cr	18.1.1 ss Ni	F812 Pass Cu	
Sample Inspection Heat No 6214369502	28. Grade 1045	55 Manufacturer Gerdau Ameristeel	npering Tem degree F M 1,184 Origin USA	(800 lin) C 0.4500	(Pass/Fail) 50, Certified Che 0.7300	(ASTM Min) 100 mical Analys	ASME P SIS 0.0270	B18.2.2 ass Si 0.2100	ASME B Pas Cr 0.1900	18.1.1 ss	F812 Pass	

<u>¾" Diam. x 5.5" Bolt Assembly (6 of 6)</u>


https://dime.dot.ca.gov/index.php?r=sample/printsmtheport&sample_id=12803 11/1/2017 11:36 AM avid.whitesel@dot.ca.gov;bob.m offne@dot.ca.gov;john.jewelf@dot.ca.gov;jlanz@altavistasolutions.com;ken Joe Lanz DATE NEEDED STATE OF CALFORNIA & DEPARTMENT OF TRANSPORTATION SAMPLE IDENTIFICATION CARD T. OTOI (TEEV. 2017) DIME SAMPLE IDENTIFICATION CARD SAMPLES REPRESENTING (TONS, GALS, BBLS, STA, ETC.). P.O. OR REQ. NO. DIST LAB NO. FIELD NO. -SAMPLE-FROM: Fabricator LOT ND. š F1554 Grade 105 HDG Anchor Bolts TEST RESULTS DESIRED NORMAL DRINGITY FED. NO. eth.f.varela@dot.ca.gov;LA.METS.Reports@dot.ca.gov AUTHORIZATION NO. OF A GROUP AND IS ONE GA (7072085241) SHIPMENT NO. TEST TYPE: 10/18/2017 ЧÖ SIN 52 OW NER OR MANUFACTURER: 40 Bolts 80 CONT. NO.: DEA: 65A0617 OCATION OF SOURCE: DIST. CO. RTE. PM: SAMPLE SENT TO: HIS SAMPLE IS FIBRANCH LAB HIPPED IN(NO. HDORS. LAB CONTRACTOR: OF TRANS, LAB ATE SAMPLE: RECIPIENT(S): CONTAINERS) r] DIST, LAB FOR USE IN: AMPLE OF: QUANTITY **WAILABLE** REMARKS: DEPTH JMITS: OTAL. **TITLE:** ACCURDITED ref: ASTM F1554, A563, F436, A153/F2329, TM03. Bolt Heat #3068105, Lot #68956/M3273; Nut Lot #23746-6214036104; Washer Lot #D3476. Note: Results relate only to the items lested. Test reparts shall only be reproduced for Califrans administered projects -Paul-Isukkarila Date Sampled: 10/18/2017 SMTL Quality Manager Sampler: Joe Lanz Sample(s) submitted comply with material specifications. 1*x 17.5" F1554 Grade 105 HDG Headed Bolt Assemblies Approved by: TEST REPORT Remarks Results State of Catifornia Department of Transportation Structural Materials Testing Laboratory 5900 Folsom Boulevard, Sacramento,CA 95819 Glen Weldon 65A0617 0/30/2017 Inspector Lot No: L106-008-07 10/24/2017 220 Sample No: 2017-10-18-6 Lab Manager DIME - Printsmtheport Sample SIN Contract/Permit No: TL-101/SIC No: N/A Reviewed by: Date Received: Date Reported: Manufacturer: Material: 1 of 1

1" Diam. x 17.5" Concrete Anchor Bolt Assembly (1 of 5)

California Department of Transportation Report No. FHWA/CA22-3033 FINAL 8/4/2022

1" Diam. x 17.5" Concrete Anchor Bolt Assembly (2 of 5)

DOC ID 7.5.3.1F Rev 8/16 Date created 10/6/17

A Division of Lonestar Fasteners

MATERIAL TEST REPORT

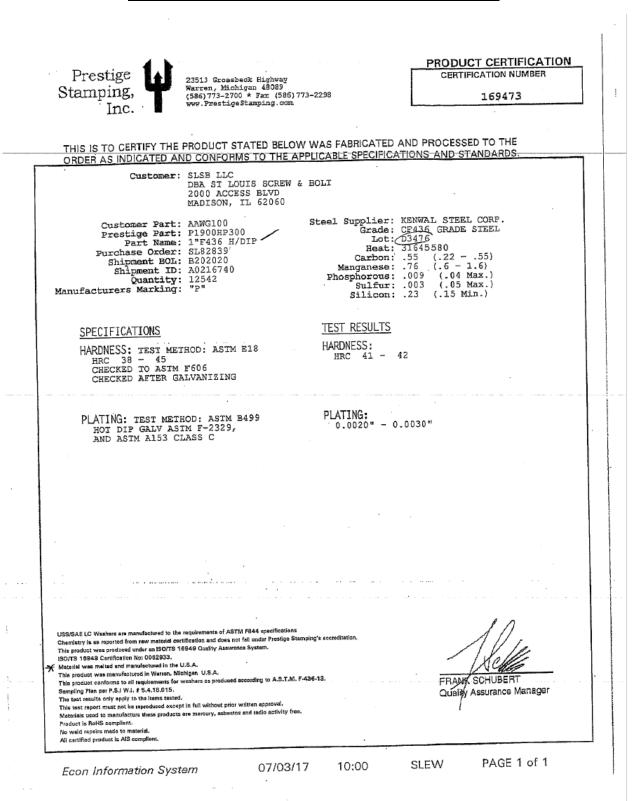
LSF AMB>

PO# 187	46	SO# 2574	22				
Item: 1-8	X 17-1/2 / HEAV	Y HEX BOLT					
Material Specification: AST	FM F1554 GR.105	HDG					
LOT#: C	68956 / W3273						
Heat Number:	3068105		-				
Tensile Strength PSI:	146700	Yield Strength PSI:	136600				
Elongation:	19	Reduction of Area:	55				
Hardness:	30 HRC	Wedge Tensile PSI:	148800				
Macro Etch:	\$1/R1/C2	Tempering Temp.:	NA				
Quenched and Tempered		Decarburization: Carburization:	0.000				

Carbon (C):	0.400	Chromium (CR):	0.850
Manganese (MN):	0.760	Molybdenum (MO):	0,205
Phosphorus (P):	0.015	Copper (CU):	NA
Sulfur (S):	0.019	Nitrogen (N):	NA
Silicon (SI):	0.210	Nickel (NI):	NA
Cobait (CO):	NA	Aluminum (AL):	NA
Vanadium (V):	NA	Tin (SN):	NA
Tungsten (W):	NA	Titanium (Ti):	NA
Columbium/Niobium (NB/CB):	NA	Boron (B):	NA
Calcium (CA):	NA		

We hereby certify that the material was manufactured, sampled, tasted and inspected per the most recent revision of the product or material specification. The foregoing data was furnished to us by our supplier or resulting from a test performed in a recognized laboratory and is on file in the records of the corporation. Name: Lori Walker

18060 Highway 21 Sycamore, AL 35149. Phone (256) 249-6979. Fax (256) 249-8011


CERT	1 STEEL MILL DRIVE For additional copies call SEGUIN TX 78155-7510 830-372-8771 D. D. U. W. M.	Ameribolt Inc S Ameribolt Inc Cultity Assurant	H na Hwy 21 1 P	U State U State U U S5149-0000 US S5149-0000 US S5149-0000 T Z562496979 T Z562496979 C S552496979 O Z562498011 O Z562498011 C S552498011	Value Characteristic Value Characteristic Value	0.40% Macro Core Rating 2	Reduction Ratio	0.015%	0.019%	0.21%	0.85%	0.08%	0.027%	0.000%	The Foll	%	4.7IN CT00% meted and rolled in the USA +.7IN • ENTO204:2004 3.1 completent	302BHN		ASTM E381 of the plant quality manual	A" Mosts the "Buy America" requirements of 23 CFR63E.410		
CMC ST		HEAT NOC30681057	SECTION: ROUND 1 x 20'0" 4140 GRADE: AISI 4140 DOLL DATE: 014 000017	MELT DATE: 17/19/2019 MELT DATE: 12/26/2016 Cert. No.: 82126961 / 068105A790	Characteristic	J	Mn	e	ŝ	Ø 3	3	Z		8	Sn	A	Ideal Diameter	BHN @ Surface test 1	Grain Size	Macro Etch Method Macro Surface Rating	Macro Random Rating	REMARKS :	

1" Diam. x 17.5" Concrete Anchor Bolt Assembly (3 of 5)

1" Diam. x 17.5" Concrete Anchor Bolt Assembly (4 of 5)

	Job N	o: 23746			Job In	formation		Certifie	d Date: 8/5	/16	
	Custom	er: UNIVE			SALES			SHIP TO	D: UNIVERS		STRIAL
			NOAL IND	001104	LOALLO			orm ry			
	omer PO N								Sub	ped Qty:	20,250
	Lot Numbe	er: 23746-	621403610)4							
	· · · · · ·		1			nformation		· .	1		·
	Part N	lo: A563 1	-8 +0.024	DH HHN	HDG BLUE	DYE			-		
	Nam	ie: ASTM . Galv, B	A563 Heav lue Dye	vy Hex N	ut, Grade DH	, Hot Dipped	1		(0)		•
Manufactur	ed Quantil	ty: 59,200							- CH		
•	· * .	:			Applicable	Specificati	ons	a gina i			
			- , 		Amend			11-04-0	· · ·		
	Specification					ASME B18		ification		2015	mend
ASME B1.1 2003 ASME B18.2.6 2010						ASME B18	second second a reaction of the second			2015	
						ASTM F23	the set where the statements	AND DESCRIPTION AND ADDRESS OF		2012	
							2/F812M			2012	
				12014		MOTIVITO 12	01 0 12 14			EUTE	
Fest Results Fest No: 12157	Test: A563	DH Mechani	al Propertie	S			· · ·				-
Description	Hardnes (HRC)	s Temp	ering Temp egree F Mir	0 (800	Proof Load ((ASTM		Shape & D ASME B		Thread Precision ASME B18.1.1		Visual ASTM F812
Sample Inspection	27.50		1,193		90,90	00	Pas	3.5	Pas	5	Pass
					Certified Ch	PROPERTY AND ADDRESS OF TAXABLE PROPERTY.	and the spectrum set of the second se	 			
and the second state of th			CONTRACTOR OF THE OWNER OWNE	and an an an an and the							
6214036104	1045	Ameristor	USA	0.4500			0,0240	0,1900	0.1400		0.2100
	Grade , 1 1045	Manufacturer Gerdau Ameristed /Ith the latest	1,193 Origin USA revisions of	C 0.4500 the meth	90,90 Certified Ch Mn 0.7500 N ods prescribed	nemical Ana P 0.009 Notes In the applica were manufac	Pas lysis 0,0240 ble SAE and A clured free of r	ss a. 1900 STM Specifi nercury conta	Cr 0.1400 cations.	S NI 0,0900	Pass Cu 0.210
roducts, The steel was m	elted and m	anufactured	in the U.S.A	, and the	product was ma	anufactured a	nd tested in th	e U.S.A.			
We certify that the the the the second se	nis data is tri ne items liste	ue represent d on this doo	ation of info sument and	mation pr may not b	e reproduced e	nateriai suppli except in full.	er and our tes	ung taborator	y. This certified	i material (et	stahott
§	FFICIAL SE		~~								
	N MARCH		- {····					10			
NOTARY P	UBLIC - STAT	E OF KLINOIS	§ .					12 and			
5 MY COM	ISSION EXPL	RES:10/18/17	2				Net	aug			8/5/16
5		*****				1		0			
~~~~~								Dan - Supervis			Date

#### 1" Diam. x 17.5" Concrete Anchor Bolt Assembly (5 of 5)



# <u>Tubular Rail (1 of 16)</u>

Appendix 14 Approved	
Daily Report of Welding Inspection	
Job # 65841 Contract # 65A 0617	
Inspector_ VOUN HUNTER Date 10-28-17	
Project: CA - BRID UG RANL	
<ol> <li>WPS (s) applicable codes and specifications available.</li> <li>WPS NO. <u>F1~156</u> Yes: <u>No</u></li> </ol>	
WPS NO WPS NO 2. Verified fit-up: Bevel degree <u>N/A</u> Land <u>N/A</u> Root Opening <u>N/A</u> Cleanliness	
3. Filler metal description 980/L-61 E71T-1 ER70S-6	
4. Filler metal storage / control: Satisfactory Unsatisfactory	
5.Piece No.WeldNo. of PassesWelderF5PIUETINVF5PIUETINV	
6. All welds identified by welder: Yes No	
7. Verified WPS requirements: Preheat <u>N/4</u> Interpass <u>N/14</u> Position Amps/WFS Volts	
8. Verified weld interpass cleanliness and quality: Satisfactory Unsatisfactory	
9. Final visual / NDT (VP-MT) as applicable: Satisfactory Unsatisfactory	
10. Comments	
11. Work performed in accordance with project specifications: YesNo	

QCM Rev 1

11/13/08

# Tubular Rail (2 of 16)

	Appendix 14	Approved
	Daily Report of Welding Inspection	on
	0 # <u>65841</u> Contract # <u>65A061</u>	
	Dector_ 1011N HUNTER_ Date 10-30-12	7
Proj	ject: <u>CA - BALIDEE RAIL</u>	
1.	WPS (s) applicable codes and specifications available.	
	WPS NO. <u>F1 - L57</u> Yes: <u>V</u> N WPS NO.	0
2.	WPS NO. Verified fit-up: Bevel degree <u>N/A</u> Land <u>N/A</u>	/
2.	Root Opening N/A Cleanliness	
3.	Filler metal description 980/L-61 E71T-1 ER70S-6	J
	Filler metal storage / control: Satisfactory	nsatisfactory
4.		nsatisfactory
5.	Piece No.     Weld     No. of Passes       W6E     LINL     1	Welder
5.	Piece No. Weld No. of Passes	Welder
5.	Piece No. Weld No. of Passes	Welder
5. 	Piece No.     Weld     No. of Passes       W6E     Mail     F1UxT     I	Welder 
5.	Piece No.       Weld       No. of Passes         W6E       MnL       P1UAT       I	Welder 
5. 	Piece No.       Weld       No. of Passes         WSE       PIULET       I	Welder 
5. <u>11</u>  6. 7.	Piece No.       Weld       No. of Passes         W6E       MnL       P1UAT       I	Welder W
5. <u>11</u>  6. 7.	Piece No.       Weld       No. of Passes         Mathematical Structure       No. of Passes         All welds identified by welder:       Yes       No         All welds identified by welder:       Yes       No         Verified WPS requirements:       Preheat       M/4       In         Position       Amps/WFS       Volts       Volts         Verified weld interpass cleanliness and quality:       Satisfactory       Unsatisfactory         Final visual / NDT (VD-MT) as applicable:       Satisfactory       Satisfactory	Welder W
5. <u>11</u>  6. 7.	Piece No.       Weld       No. of Passes         WHE       PIULET       I         MALE       PIULET       I         All welds identified by welder:       Yes       No         All welds identified by welder:       Yes       No         Verified WPS requirements:       Preheat       M/A       In         Position       Amps/WFS       Volts       Volts         Verified weld interpass cleanliness and quality:       Satisfactory       Unsatisfactory	Welder W
5. <u>71</u>  6. 7. 8.	Piece No.       Weld       No. of Passes         Mathematical Structure       No. of Passes         All welds identified by welder:       Yes       No         All welds identified by welder:       Yes       No         Verified WPS requirements:       Preheat       M/A       In         Position       Amps/WFS       Volts       Volts         Verified weld interpass cleanliness and quality:       Unsatisfactory       Unsatisfactory         Final visual / NDT       Op-MT) as applicable:       Unsatisfactory	Welder W

# Tubular Rail (3 of 16)

	ersal Industrial Sales, Inc. on, Utah 84062	Quality Control Manual
·	Appendix 14	Approved
	<u>Daily Report of W</u> #Contract	# 65A0617
*	ect: CA - BRIOST UMIL	10-30-17
1.	WPS (s) applicable codes and specification: WPS NO. <u>/-/-/5/</u> Yes: WPS NO. <u>////-/5/</u>	
2.	WPS NO. Verified fit-up: Bevel degree Root Opening	Land Cleanliness
3.	Filler metal description <u>980/L-61</u> E71	
4. 5. 	Filler metal storage / control: Satisfactory _         Piece No.       Weld         #1       1057         PTP, PULET	Unsatisfactory       No. of Passes     Welder       MULTIPLE     FV
6.	All welds identified by welder: Yes _	No
7.	Verified WPS requirements: Preheat Position Amps/WFS	Volts
	Verified weld interpass cleanliness and qua Satisfactory	lity: Unsatisfactory
9.	Final visual / NDT (VT-MT) as applicable: Satisfactory	Unsatisfactory
10.	Comments	
11.	Work performed in accordance with projec Yes	t specifications: No

QCM Rev 1

11/13/08

# Tubular Rail (4 of 16)

	rsal Industrial Sales, Inc. n, Utah 84062	Qualit	y Control Manual
Aj	opendix 14		Approved
 Job #	Daily Report of Weldin <u> <u> </u> <u> </u> <u> </u> <u> </u> Contract # tor <u> </u> <u> </u> JOHN HUNTER Date</u>		
	tor John Hunter Date	10.31-17	
-	WPS (s) applicable codes and specifications avail WPS NO. <u>F1- V56</u> Yes: <u>Ves</u> WPS NO. <u>P5P-U56</u>	ableNo	
2.	WPS NO. Verified fit-up: Bevel degree Land Root Opening Clear	aliness	
3.	Filler metal description 980/L-61 E71T-1	ER70S-6	
 4.	Filler metal storage / control: Satisfactory	Unsatisfactory_	
5. 	Piece No. Weld No VI PILT PTP, FILLET M	of Passes Wel	
6.	All welds identified by welder: Yes	No	 
7.	Verified WPS requirements: Preheat W/A Position Amps/WFS	Volts	<u>1</u>
8.	Verified weld interpass cleanliness and quality: Satisfactory Unst	itisfactory	
9.	Final visual / NDT VDMT) as applicable: Satisfactory Unst	tisfactory	
10.	Comments		_,
11.	Work performed in accordance with project speci Yes No	fications:	

QCM Rev 1

11/13/08

Tubular Rail (5 of 16)



www.universalindustrialsales.com

November 1, 2017

Project: ST-75 Tubular Handrail – Crash Test Construction Contract: 65A0617 Owner: Caltrans Contractor: Rupert Supply UIS Project #: 65841

Stud Weld Testing per AWS D1.1 Section 7.7.1.4 Threaded Studs torque tested per AWS table 7.3.

Stud Size	Quantity Tested	Min. Torque	Actual Torque	Results
3⁄4" x 2-1/2" Thd	5	184.1 per table	190 ft/lbs	Acceptable

Testing Conducted by John Hunter, UIS QC Dept.

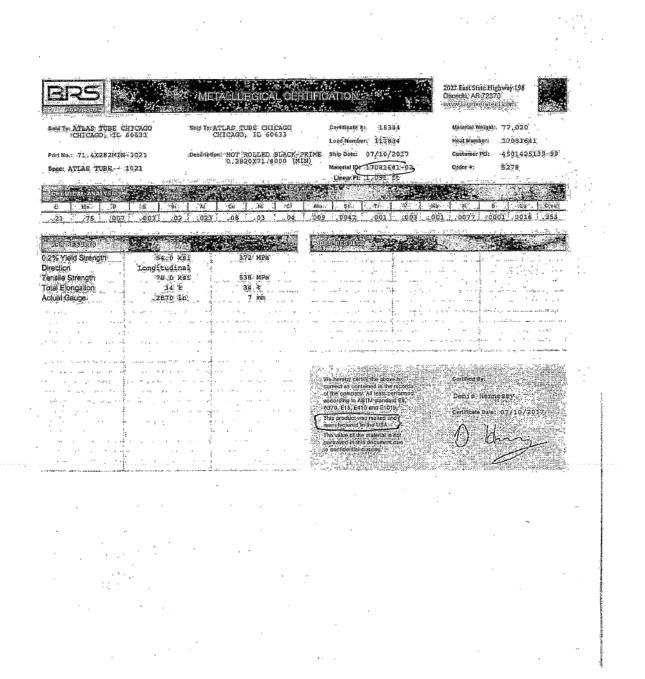
John Amt

Torque Wrench KD Tools serial #4051058682 Calibrated 01/10/2017 by Calibration Solutions

GUARDRAIL, GUARDRAIL COMPONENTS, SIGN STRUCTURES, BRIDGE RAIL, STEEL FABRICATION, ANCHOR BOLTS, GALVANIZING, HIGHWAY CONSTRUCTION PRODUCTS

<u>Tubular Rail (6 of 16)</u>

	Tel 773-646-4500 Fax 773-646-6128	Sector de la compañía Carologica de la compañía de la comp				
		MATERIAL	TEST REPORT			
	Sold to Brown-Strauss Steel Accounts Payable - Steel 2495 Uravan Street AURORA CO 80011-353 USA	9			n Strauss UP (R. k #730, Zone 15 Uravan Street DALE CO 80011	ALL)
	Material: 1 0x1 0x125x24'0'0(10x10)RAL	Materie	No: 10010125		Hade In: USA Kellad In: USA	
:	Sales order: 1143670	MINESS BOTH STORES	se Order: 22474 DEC16 CHI	nder oge stelleterere	- PCD-part state and Autor State States	11240194.544 v 1441431387467
i Jani	and the second second second second	fensile Ein.21n	26 0 150 0 000 0 020 Contificat		V TI E 0 001 0 001 0 0 CE: 0:30	8 N 100 0 010
	M600227640 100 080920 Psi i Maturtai Nota: Sales Or.Nota:	599770 Pol 23%	ASTMAS	CO-13 GRADE BBC		
	Material: 7 0:3 0:250x40'0'0(8x1)PB	Material	No: 70030250		Made In: USA	
÷	Sales order: 1171337	Purchae	e Order: 25206-MC CHIC	. · · · · · · · · · · · · · · · · · · ·	<u> </u>	
1.1	Hoat No. C Mn P	S SI AI	فتبليل والمنها التبريب فكالمتعاد فترقيه	Ni Cr	V 11 1	······································
	V1174 0 190 0 670 0 01 Bundle No PCs Yield 1	0.008.0020.002	29 0.140 0.009 0.010 Certificet	0 059 0 060	0.002 0.002 0.0 CE; 0,33	00 0 009
		76423 Pal 29 %		00-13 GRADE B&C		
	Metarial Note: Bales Or Note:	CENE-OTTERISE Lister e crescio	itatio di <del>COL</del>		LECERCULTON MUSIC PLANE	
ĥ	Katerial: 10 0x8 0x375x48'0'0(1x1)FAL	Material	No: 100080375	······································	Aade in: USA	
s	Sales order: 1143806	Purchas	e Order: 22474 DEC16 CHK		Asited In: Canada	
H	leat No C Mn P	B SI AI	Cu Cb Me	NI Cr	·V. 11 E	N
· ·	1544C4 0.200 0.770 0.011			0010 0.010		CO 0 000
		enclie Ein.Zin 84311 Pal 32 %	Cortificati ASTM A51	OR-13 GRADE B&C	CE: 0,34	
N	Jatérial Noto:					
8	lales Or.Noto:					
	. Rotoreal and the		95335775050			
		katika naku?				a Çûlêr
	Jason Richard		k georgij			
<ul> <li>.()</li> </ul>	Authorized by Quality Assurance:					
1	The results reported on this report ro specification and contract requirement	105.	m or me meteries turnished	and Indicate full com		ca010
	CE calculated using the AWS D1.1 me	thed				


# Tubular Rail (7 of 16)

Atlas Tu 1855 Ea Chicado		i Street			)0 <b>0</b> )00	A	tla	lS	Tul	be	Date	B/L: e: tomer:	807865 10.11.2 2538		
60633 Tel:	773-646 773-646	-4500		C	00	A DIVIS				DUSTRI		comer.	2000		
				N	IATE	RIAL	TEST	REF	PORT						
Sold t	<u>o</u>										Ship	pped to			
Univer PO Bo PLEA: USA	rsal Ind 5x 699 SANT (	lustrial Sa GROVE L	iles Inc. JT 840	62							Univ 435 LINE USA	North 1 DON UT	dustrial 200 Wes 84042	Sales st	Inc.
aterial: 8,0x4	4.0x313x	(30'0"0(2x5)	DUS 🖊	/		aterial No							in: USA		
ales order:			_			irchase C								_	
eat No	c	Mn	P	\$ 	Si	AI	Cu	Ch	Mo	Ni	Cr	V	Ti	B	N
7081641	0.210	0.750	0.007	0.003	0.020	0.023	0.080		0.009	0.030	0.040	0.003	0.001	0.000	0.008
undle No 800735264	PCs 2	Yield 063480 Ps		nsile 383 Psi	Ein.2in  33 %				ertificatio	0-13 GRAI			CE: 0.36		
ales Or Note															
Aaterial: 8.0x4	4.0x313x	(31'0"0(1x2)	DUS		Ma	aterial No	: 800403	313				Made in Melted i	:: USA in: USA		
			DUS		•	aterial No Irchase C			, nestic						
ales order:			P	S	•				nestic Mo	Ni	Cr			в	N
ales order: eat No	1217347 C 0.210	Mn 0.750	P 0.007	0.003	Pu Si 0.020	irchase C	order: 19	030 Don Cb 0.001	Mo 0.009	0.030	Cr 0.040	Melted i V 0.003	in: USA Ti 0.001	B 0.000	
ales order: eat No 7081641 undle No	1217347 C 0.210 PCs	Mn 0.750 Yield	P 0.007 Te:	0.003 nsile	Pu Si 0.020 Ein.2in	Irchase C Al	order: 19 Cu	030 Don Cb 0.001	Mo 0.009 ertificatio	0.030 on	0.040	Melted i V 0.003	in: USA Ti		
ales order: eat No 7081641 undle No	1217347 C 0.210	Mn 0.750	P 0.007 Te:	0.003	Pu Si 0.020	Irchase C Al	order: 19 Cu	030 Don Cb 0.001	Mo 0.009 ertificatio	0.030	0.040	Melted i V 0.003	in: USA Ti 0.001		
ales order: leat No 7081641 undle No 1800735263 faterial Note:	1217347 C 0.210 PCs 2	Mn 0.750 Yield	P 0.007 Te:	0.003 nsile	Pu Si 0.020 Ein.2in	Irchase C Al	order: 19 Cu	030 Don Cb 0.001	Mo 0.009 ertificatio	0.030 on	0.040	Melted i V 0.003	in: USA Ti 0.001		
ales ordér: leat No 7081641 lundle Nó 1800735263 1aterial Note: ales Or.Note	1217347 C 0.210 PCs 2	Mn 0.750 Yield 063480 Ps	P 0.007 Ter i 079	0.003 nsile	Pu Si 0.020 Ein.2in 33 %	Irchase C Al	order: 19 Cu 0.080	030 Don Cb 0.001 C	Mo 0.009 ertificatio	0.030 on	0.040	Melted i V 0.003 	in: USA Ti 0.001 CE: 0.36		
ales ordér: leat No 7081641 fundle No 1800735263 faterial Note: ales Or.Note faterial: 8.0x- ales order:	1217347 C 0.210 PCs 2 4.0x3182 1217347	Mn 0.750 Yield 063480 Ps (32'0"0(1x2)	P 0.007 Tei i 079	0.003 nsile 9383 Psi	Pu Si 0.020 Ein.2in 33 % Ma	AI 0.023 aterial No	0rder: 19 Cu 0.080 : 800403 0rder: 19	030 Don Cb 0.001 C A 313 030 Don	Mo 0.009 ertificatio STM A50	0.030 on 0-13 GRAI	0.040 DE B&C	Melted i V 0.003  Made in Melted i	in: USA Ti 0.001 CE: 0.36 I: USA in: USA	0.000	0.008
ales ordér: eat No 7081641 undle No 1800735263 laterial Note: ales Or.Note laterial: 8.0x- ales order: ales order: ales No	1217347 C 0.210 PCs 2 4.0x3182 1217347 C	Mn 0.750 Yield 063480 Ps (32'0"0(1x2) Mn	P 0.007 Ter 0.075 DUS	0.003 nsile 9383 Psi	Pu Si 0.020 Ein.2in 33 % Ma Si	aterial No Al	0rder: 19 Cu 0.080 : 800403 0rder: 19 Cu	030 Don Cb 0.001 C 313 030 Don Cb	Mo 0.009 sertificatio STM A50 nestic Mo	0.030 on 0-13 GRAI Ni	0.040 DE B&C Cr	Metted i V 0.003  Made in Meted i	in: USA Ti 0.001 CE: 0.36 II: USA III: USA Ti	0.000 B	0.008
ales ordér: eat No 7081641 undle No 1800735263 laterial Note: ales Or.Note laterial: 8.0x- ales order: ieat No 7081641	1217347 C 0.210 PCs 2 4.0x3189 1217347 C 0.210	Mn 0.750 Yield 063480 Ps (32'0"0(1x2) Mn 0.750	P 0.007 Ter ii 079 DUS P 0.007	0.003 nsile 3383 Psi 3383 Psi 5 0.003	Pu Si 0.020 Ein.2In 33 % Ma Si 0.020	AI 0.023 aterial No	0rder: 19 Cu 0.080 : 800403 0rder: 19	030 Don Cb 0.001 C A 313 030 Don Cb 0.001	Mo 0.009 ertificatio STM A50 nestic Mo 0.009	0.030 pn 0-13 GRAI Ni 0.030	0.040 DE B&C	Metted i V 0.003 Made in Metted i V 0.003	in: USA Ti 0.001 CE: 0.36 I: USA II: USA Ti 0.001	0.000	0.008
laterial: 8.0x4 ales ordér: leat No 7081641 bundle No 1800735263 faterial Note: ales Or.Note laterial: 8.0x4 sales order: leat No 7081641 Bundle No 4800735262	1217347 C 0.210 PCs 2 4.0x3182 1217347 C	Mn 0.750 Yield 063480 Ps (32'0"0(1x2) Mn	P 0.007 Tei 079 DUS P 0.007 Tei	0.003 nsile 9383 Psi	Pu Si 0.020 Ein.2in 33 % Ma Si	aterial No Al	0rder: 19 Cu 0.080 : 800403 0rder: 19 Cu	030 Don Cb 0.001 C A 313 030 Don Cb 0.001 Cb	Mo 0.009 ertificatio STM A50 nestic Mo 0.009 ertificatio	0.030 pn 0-13 GRAI Ni 0.030	0.040 DE B&C Cr 0.040	Metted i V 0.003 Made in Metted i V 0.003	in: USA Ti 0.001 CE: 0.36 II: USA III: USA Ti	0.000 B	0.008

Authorized by Quality Assurance: The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements. Steel Tube D1.1 method. Page : 2 Of 4



#### Tubular Rail (8 of 16)



# <u>Tubular Rail (9 of 16)</u>

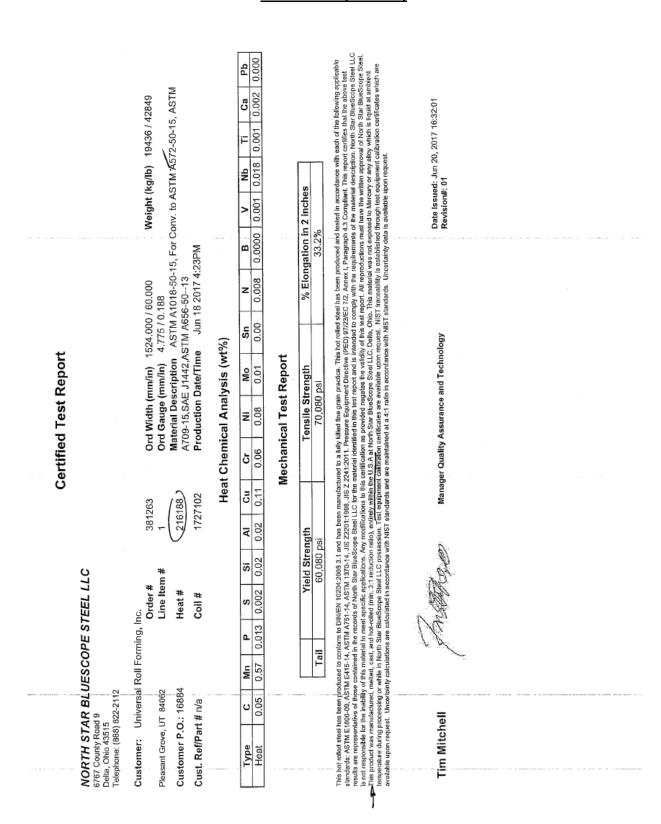
				· IVI.			FEST	NEP(							
Sold to												oed to			
PO Box	699	ustrial Sale ROVE UT		:							Unive 435 M LIND USA	ersal Ind Iorth, 12 ON UT	dustrial \$ 200 Wes 84042	Sales I t	nc.
ñaterial; 8.0x4.	0x313x4	41'0"0(1x2)DI	US		Mat	erial No	8004031	3				Made in Melted i			
ales order: 12	17347				Pu	chase O	rder: 190	30 Dome	estic						
leat No	с	Mn	Р	s	Si	Al	Cu	Cb	Мо	Ni	Cr	v	Ti	в	N
17081641	0.210	0.750	0.007	0.003	0.020	0.023	0.080	0.001 0	.009.	0.030	0.040	0.003	0.001	0.000	0.008
Bundle No	PCs	Yield	Tens	ile	Ein.2in			Ce	rtification				CE: 0.36		
1800735256	2	063480 Psi	0793	83 Psi	33 %			AS	TM A500-	13 GRADE	B&C				
Material Note:															
Sales Or.Note:											~ ~ ~	_			
Material: 8.0x4.	0x313x	48'0''0(1x2)D	ius 🖊	,	Ma	terial No	: 800403	13 .			(		USA		
					P.	rchase (	Order: 19	130 Domi	estic			Melted	in: USA		
Sales order: 1		M-	P	s	Si	Al	Cu	Cb	Mo	Ni	Cr	v	Ti	в	N
Heat No	C	Mn 0.720	0.007	0.003	0.020	0.032	0.090	0.000		0.030	0.040	0.003	0.000	0.000	0.009
17068521	0.220 PCs		Tens		Ein.2in	0.002	0.000		rtification				CE: 0.36		
Bundle No M800730364	2 2	Yield 064799 Psi	-	02 Psi	31 %					13 GRAD	EB&C				
							PY Test	Result	s		Shear	Shear	Avg	,	
Test Ft_lbs Temp	San Size	nple Direct ion	Abso Ener FT-L	gy1 BS	Absor Energy FT-LE	/2 IS F	Absorbe Energy3 T-LBS	Fi	-LBS %	Area1 %	Area2 %	Area3	%		
15 OF	10x5 n	ım L	36		25		22			50	50	50			
Material Note: Sales Or.Note:				:											
Material: 8.0x4	.0x313x	(40'0"0(3x2)E	ous		Ma	ateriai No	o: 800403	13					n: UŚA in: USA		
Sales order: 1	217347	,			Pt	Irchase (	Order: 19	030 Dom	estic						
Heat No	с	Mn	P	s	Si	AI	Cu	Cb	Мо	Ni	Cr	v	Ti	в	N
17081601	0.210	0,790	0.007	0.002	0.030	0.035	0.080	0.002	0.010	0.030	0.030	0.004	0.001	0.000	0.007
	PCs	Yield	Tens	sile	Ein.2in			C	ertification	'n			CE: 0.36	i	
Bundie No	-	005594 Del	i 0792	21 Psi	32 %			A	STM A500	-13 GRAD	EB&C				
Bundle No M800732280	6	065584 Psi													
		065584 PSI													

# <u> Tubular Rail (10 of 16)</u>

NLCO PLATE MILL	n J	Ľ	P.O.Box 279 Winton, NC 2 (252) 356-370	P.O.Box 279 Winton, NC 27986 (252) 356-3700	986			M	Mill Test Report Page 3	est R Page 3	sepc	t			Coll	Cofield, NC 27922 (252) 356-3700		ź		
Issuing Date : Vehicle No: Specification: Marking :		07/01/2017 TTPX 82248 0.6250" x 96 ASTM A36-1 16790	8 96.000" -14/AST	B/L N. x 350,000 M A709 6	B/L. No. : 476434 50.000" 4709 Grade 36-1	134 1-16a/ASI	07/01/2017 B/L No. : 476434 Load No. : 48680 TPX 82248 Sold To: 0.5250" x 96.000" x 360.000" ASTM A36-14/ASTM A709 Grade 36-16a/ASME SA36 2013/2015 SI .15-25 15790	Load 2013/201	Load No. : 485809 Sold To: 3/2015 SI , 15.25	g	OUI IGER STI STON, TJ	Our Order No. : 147673/2 RANGER STEEL SERVICES LP 1226 NORTH LOOP W STE 660 HOUSTON, TX 77008	o. : 1476 VICES LF STE 650	13/2	Š	Cust. Order No. : 14093 Ship To: UNIVERSAL II UP TRACK ER ACCOUNT OF SALES GENEVAUT 8	Er No. : 1 UNIVERS UP TRAC ACCOUN SALES SENEVA	er No. : 14093 UNIVERSAL INDUSTR UNIVERSAL INDUSTR UP TRACK 750 YARD ACCOUNT OF: UNIVE SALES GENEVA, UT 84058 (2)	IEr No. : 14093 UNIVERSAL INDUSTRIAL SALES CO PIONEER PIPE & TUBE CORP UP TRACK 750 YARD 1 PIPE MILL ACCOUNT OF: UNIVERSAL INDUSTRIAL ACCOUNT OF: UNIVERSAL INDUSTRIAL SALES GENEVA,UT 84058 (2)	es drp IILL DUSTRIAL
		WIN	d according	s	Si	Cu	N S	Cr.	Mo No	Al(tot)	N 100	4N POOD	<b>⊭</b>	z	Ca D 0041	B 1000	sn 0000	Ceq 0.37	Pcm 0.26	
Plate Serial No	Pieces	33		(psi) Yield	(pai) (pai) Tensile	s	2° u	Elongation % in 8"	70.0	0000	2	2								
7504189-01	2	6.12		47,300 47,300	72,600 72,600	000000000000000000000000000000000000000		24.7 24.7												
Plate Serial No	Pieces	Tons	ă.	(It-Ibs)	sorbed Er (ft-lbs) 2	-Absorbed Ernergy (Ft-Ibs)- (It-Ibs) (It-Ibs) (It- 2 3 A	-tbs)(ff-lbs) Ave	-UM	(in.) (in.)	C (in.) (ir 2	Charpy Impacts -Lateral Expansion (in.) (in.) (in.) (ii.) (in.) (ii.) (ii.)	npacts	-%	38	Shear (%)- (%) 3	(%) Ave	Min 1	Temp S	azis	
7504189-01	2	6.12	ĪŦ	115.4	103,8	118.0	112.4										52	40	10mm	1
											,					· · · · · · · · · · · · · · · · · · ·				
FOR CONVERSION TO A252 GRADE	N TO A25	2 GRADE	2					-												
Manufactured to fully killed line grain practice by Electric Ato Furnisoe. Welding or weld repair was not performed on this material. We hereby sertify that the Mercury has not been used in the direct marviacuming of this material. Produced as continuous cast discrete plate as-rolled, unless otherwise moted in Specification. For Mercos shipments:mbc.25886MX@Nuccoc.com otherwise mode of no Specification. For Mercos relimination (CH-Mo-V)/554 ((CH-Mo-V)/554 (CL-Mi)/15) Port = C+(Str09+(MurCo)+(CAI20)+(MarC0)+(CIC20)+(MarC)+((CH-M0-V)/554 (CL-Mi)/15) Port = C+(Str09+(FAIRC0)+(CIC20)+(MarC0)+(CIC20)+(MarC)+(CIC20)+(MarC)+(CIC20)+(MarC)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(MarC0)+(CIC20)+(CIC20)+(MarC0)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC20)+(CIC2	Illy killed in sen used in Specificati ethod unde Mn/20)+(C N 10204 3	n the dire on. For I iss otherw 2u/20)+(N the USA.	practice to the month fise speci- (N60)+(Cn (SO 9001)	by Electric Aits Furnation. Welding fracturing of this material. Produces instruments into SalastiX(g) Nucort official. Ceq. C-4(Ahr/6)+f(C+M0) official. Ceq. C-4(Ahr/6)+f(C+M0) official. Ceq. C-1(Ahr/6)+f(C+M0) rst201, rst201, arcs201, pp. 558	vic Furnac his materi oc-SalesM. = C+(Mn/6 5)+(V/10)+ fied (#010)	26. Welding 281. Produc 1X@ Nucor. 5)+{(Cr+Mc +5B 1940) by St 1940) by St moliant. Fe	g or weld reg ed as contin com >+V)/5)+((Cu RI Quality S) or ABS grad	bair was no uous cast I+NiJ/15) rstem Reg es only. O	k performed discrete pla istrar (#098	t on this mu te as-rolled 5-09). PEC ance certifi	1, unless 97/23/EC cate 14-MI	V of 7/2 Annex MP.QA-723	fe hereby c perations p pecification 1, Para, 4,	sertify that erformed s, includin 3 Complia	the content by the mate ig oustomer int.	We hereby cardity that the contents of this report are accurate operations performed by the meletel manufacturer are in co specifications, including customer specifications.	ort are act	n complian	We hereby derify that the contents of this report are accurate and correct. At test results and operations performed by the material manufacturer are in compliance with the applicable specifications, including customer specifications.	est results and applicable 7/5/2017 9.50:48 AM

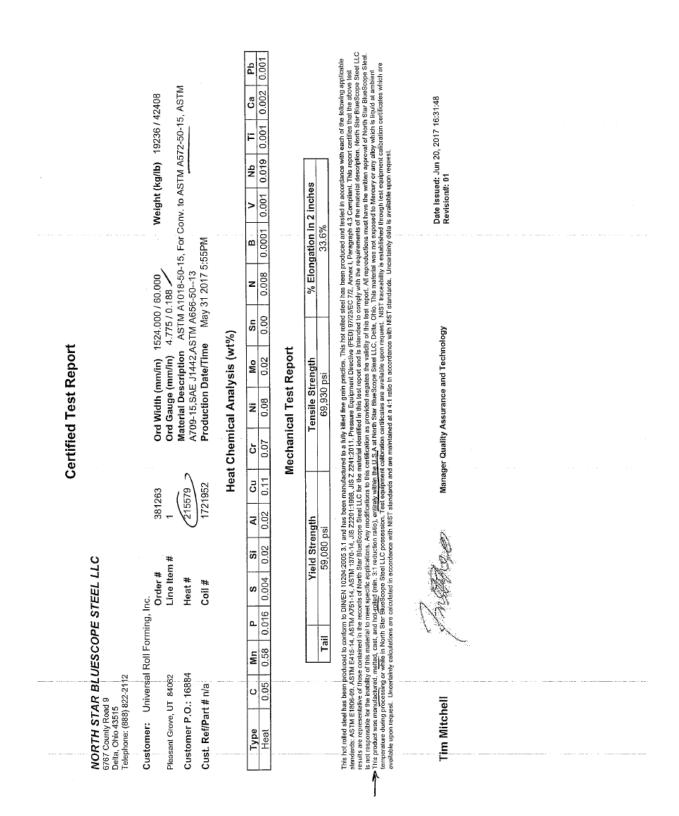
Issuind Date :	: 01	01/11/2017	*	B/L No. :	.: 461339	39			Load No. : 469707	10766	5	Jur Orde	Our Order No. : 143232/1	3232/1		Cust. (	Cust. Order No. : 13906	: 13906			
Vehicle No: Specification:	1	TTPX 806589 0.3750" x 72. ASTM A36-14	Sold To: 0.3750* x 72.000* x 480.000* ASTM A36-14/ASTM A709 Grade 36-16a/ASME SA36 2013/2015 SI .1525	480.000" A A709 G	rade 36	-16a/AS	ME SA36	2013/20	Sold To: 15 SI .1526		RANGER STEEL SEF 1225 NORTH LOOP V HOUSTON,TX 77008	STEEL S TH LOOF I,TX 7700	RANGER STEEL SERVICES LP 1225 NORTH LOOP W STE 650 HOUSTON,TX 77008	650		Ship To:	UNIVE C/O PI ACCO SALES	RSAL IN ONEER I ACK 750 UNT OF:	UNIVERSAL INDUSTRIAL SALES C/O PIONEER PIPE & TUBE CORP UP TRACK 750 YARD 1 PIPE MILL AGCOUNT OF: UNIVERSAL INDUSTRIAL SALES	. SALES BE CORP IPE MILL AL INDUS	TRIAL
Mart	Marking: 15	15592															GENE	GENEVA,UI 84098 (z)	(7) 900		
Heat No	0	'n	۵	s	s	υ	ī	ö	No	Al(tot)	>	qN	F	z	Ca	в	Sn	Ceq	Pcm		
7500081	0.17	0.84	0.009 0.		0.17	0.23	0.10	60.0	0.03	0.037	0.005	0.001	0.002		0.0030	0.0001	0.009	0.36	0.24		
Plate Serial	Pieces		Tensile Test Tons	Test (psi)	(psi) TENSII E		Elongation	Elongation % to a"	u -	į	(sql-l)	(%) (%)	(II-Ibs)	(%) shear	Charp (fi-lbs)	Charpy Impacts (I-lbs) (%) 3 shear	(fi-ibs) Ave.	(%) shear	Size	Temp (°F)	Min Ave.
7500081-02		5	9.18 T T	44	1			57	20.9	로로	75.9	5	78.4 75.8		80.5 85.3		78.3 78.0		10mm 7.5mm	49	25 25
7500081-03		цо 10	9.18 T T	47,400 48,700	0 74,100 0 73,700	88		22	24.5	분분	75.9 73.0		78.4 75.8		80.5 85.3		78.3 78.0		10mm 7.5mm	40	25 25
7500081-05		ю г	5.51 T T	47,400 48,700	0 74,100 0 73,700	88		55	20.9 24.5	포포	75.9 73.0		78.4 75.8		80.5 85.3		78.3 78.0		10mm 7.5mm	40 40	25 25
7500081-06			9.18 T T	47,400 48,700	0 74,100 0 73,700	88		5	20.9	ŦŦ	75.9 73.0		78.4 75.8		80.5 85.3		78.3 78.0		10mm 7.5mm	40	25 25
7500081-07		22	9.18 T T	47,400 48,700	0 74,100 0 73,700	88		58	20.9 24.5	구구	75.9 73.0		78.4 75.8		80.5 85.3		78.3 78.0		10mm 7.5mm	40	25 25
7500081-08		ю 0	9.18 T T	47,400 48,700	0 74,100 0 73,700	00		ъй	24.5	보보	75.9 73.0		78.4 75.8		80.5 85.3		78.3 78.0		10mm 7.5mm	40	25 25
FOR CONVERSION TO A252 GRADE	ION TO A2	52 GRAD	E 2																		

# <u>Tubular Rail (11 of 16)</u>


California Department of Transportation Report No. FHWA/CA22-3033 FINAL 8/4/2022

# <u>Tubular Rail (12 of 16)</u>

								_				
		l VISH WISCON	SIN, INC.		Mill Cert 7/17/20			•		MT OAK C	R #: E1-137 7200 S 68 REEK, WI 53 (414) 784-0 (414) 764-2	438 h St 154 220
Sold To:										Fax	(414) 764-2	073
00.0 10.	1900 MITC PO BOX 1 SCHAUME (847) 301-	IORGENSEN CO HELL BLVD 900 BURG, IL 60194 2346 891-2203				190 190 (84) (84)	0 MITCHELI HAUMBURG 7) 301-6118 c (847) 891-2	SENSEN CO L BLVD 3, IL 60194 2203				
	Fax: (847)	891-2203					- ()	0	2.6	098	3	
Cu	stomer P.O.	P810408-423						Sales O	rder 646	966,1		
Pro	nduct Group	Cold Finish Bar						Part Nun		310		
	Grade	1018 ASTM A10								81153		
	Size	Square 1.3750 (						Hea		100886530		_
	Product	SQ 1.3750" 101 CF Grade 1018	8 12-R CD					B.L. Num		237930		-
Cuel	omer Spec	C1018						Load Num Customer Pa		137438	-	-
		i described herein has	boon manufactu	red in accordance	e with the specific	ations and stands	ards listed above					
		1018 12-R Cold D							in and in the second second	101105		
Melt Date:												
C	Mn	Р	s	Si	Cu	Cr	Ni	Мо	Sn	v	СЬ	
0.18%	0.82%	D.013%	0.023%	0.29%	0.31%	0.15%	0.16%	0.040%	0.017%	0.0030%	0.002%	
A1	Pb											
0.000%	0.000%											
Melting Mi	II: Nucor Bar	NE		Country	of Melting: Ut	A		Grai	n Practice:	COARSE		_
Reduction												
	Ratio 21.2 :1	č.		Country	of Rolling: US	iA	,	Rolli	ng Mill: Nu	cor Bar NE		_
Specificati	on Comment	s: I are weld free, has not been use	d in the pro		: Isling of this n	naterial.	S De		ng Milt Nu	cor Bar NE		
Specificati	on Comment		d in the pro		: Isling of this n	naterial.	Shul		ng Milt Nu	cor Bar NE		
Specificati	on Comment		d in the pro		isting of this n	naterial.	Ehul		ng Mill: Nu	cor Bar NE		
Specificati	on Comment		d in the pro		i isting of this n Neil	naterial.			ng Milt Nu	cor Bar NE	5 of 8	
Specificati 1. Ali prod 2. Mercury	on Comment		d in the pro		i isting of this n Neil	iaterial.			ng Milt Nu		5 of 8	
Specificati 1. Ali prod 2. Mercury	on Comment uats produced , in any form,		d in the pro		i isting of this n Neil	iaterial.			ng Milt Nu		5 of 8	
Specificati 1. Ali prod 2. Mercury	on Comment uats produced , in any form,		d in the pro		i isting of this n Neil	iaterial.			ng Mill: Nu		5 of 8	
Specificati 1. Ali prod 2. Mercury	on Comment uats produced , in any form,		d in the pro		i isting of this n Neil	iaterial.			ng Milt Nu		5 of 8	
Specificati 1. Ali prod 2. Mercury	on Comment uats produced , in any form,		d in the pro		i isting of this n Neil	iaterial.			ng Mill: Nu		5 of 8	
Specificati 1. Ali prod 2. Mercury	on Comment uats produced , in any form,		d in the pro		i isting of this n Neil	iaterial.			ng Mill: Nu		5 of 8	
Specificati 1. Ali prod 2. Mercury	on Comment uats produced , in any form,		d in the pro		i isting of this n Neil	iaterial.			ng Mill Nu		5 of 8	, 
Specificati 1. Ali prod 2. Mercury	on Comment uats produced , in any form,		d in the pro		i isting of this n Neil	iaterial.		6	ng Mill Nu		5 of 8	
Specificati 1. Ali prod 2. Mercury	on Comment uats produced , in any form,		d in the pro		i isting of this n Neil	iaterial.			ng Milit No		5 of 8	
Specificati 1. Ali prod 2. Mercury	on Comment uats produced , in any form,		d in the pro		i isting of this n Neil	iaterial.		6	ng Milit No		5 of 8	
Specificati 1. Ali prod 2. Mercury	on Comment uats produced , in any form,		d in the pro		i isting of this n Neil	iaterial.		6	ng Milit No		5 of 8	
Specificati 1. Ali prod 2. Mercury	on Comment uats produced , in any form,			duction or te	i isting of this n Neil	iaterial.	er	6		Page	5 of 8	
Specificati 1. Ali prod 2. Mercury	on Comment uats produced , in any form,			duction or te	i Isting of this n Nil S	iaterial.	er	6		Page		, 
Specificati 1. Ali prod 2. Mercury	on Comment uats produced , in any form,			duction or te	i Isting of this n Nil S	iaterial.	er	6		Page		
Specificati 1. Ali prod 2. Mercury	on Comment uats produced , in any form,			duction or te	i Isting of this n Nil S	iaterial.	er	6		Page		


	۲ ۵	4, ≥ <u>53</u>	P.O.Box 279 Winton, NC 27 (252) 356-3700	P.O.Box 279 Winton, NC 27986 (252) 356-3700			Σ	III T	est R Page 2	Mill Test Report Page 2	рос			U	1505 River Rd Cofield, NC 27922 (252) 356-3700	iver Rd 27922 6-3700	Ī			a
Issuing Date : Vehicle No: Specification: Marking :	\ \	01/27/2017 01/27/2017 0.7500" × 96.00 ASTM A36-14/0 ASTM A36-14/1	01/27/2017 BJL No NOKL 725080 0.7500" x 96.000" x 480.000" ASTM A36-14/ASTM A709 G	B/L No. : . 80.000" 4709 Grac	462570 de 36-16a	01/27/2017 B/L.No.: 462570 Load No.: 4708 NOKL 725080 Sold To. 0.7500" x 96.000" x 480.000" ASTM A36-14/ASTM A709 Grade 36-16a/ASME SA36 2013/2015 SI.15.25	Lc 36 2013/2	Load No. : 470871 Sold To: 3/2015 SI ,1525	12	Our Order I RANGER STEEL SEF 1225 NORTH LOOP V HOUSTON,TX 77005	Our Ord STEEL S STH LOO N,TX 770	Our Order No. : 142923/2 RANGER STEEL SERVICES LP 1225 NORTH LOOP W STE 650 HOUSTON,TX 77008	42923/2 S LP 650		Cust. O Ship To:	Cust. Order No. : 13886 ip To: UNIVERSAL IN CO PIONEER UP TRACK 75R ACCOUNT OF SALES SALES GENEVA,UT 8	er No. : 13886 UNVERSAL INDUSTR CIO PIONERAL INDUSTR CIO PIONEER PIPE & COO PIONEER PIPE & COO PIONEER PIPE & ACCOUNT OF: UNIVE SALES GENEVA, UT 84058 (2)	Jer No. : 13886 UNIVERSAL INDUSTRIAL SALES UNIVERSAL INDUSTRIAL SALES CIOPONEER PIPE & TUBE CORP UP TRACK 750 YARD 1 PIPE MILL ACCOUNT OF: UNIVERSAL INDUSTRIAL SALES GENEVA,UT 84058 (2)	SALES E CORP IPE MILL AL INDUS	IRIAL
Heat No C	ЧW	a.	s	si	ß	ï	ð	Wo	AI(tot)	>	ЧŅ	F	z	Ca	B	Sn	Ceq	Pcm		
7500553 0.18	18 0.86	0.009	0.000	0.22	2 0.28	0.09	60.0	0.02	0.029	0.005	0.001	0.003		0.0031	0.0001	0.010	0.37	0.25		
Plate Serial No	Pieces	Tons	Tensile Test is Dir.	t (psi) Yield	(psi) TENSILE	Elongation % in 2"	Elongation % in 8"	ation 8"	Dir.	(fl-fbs) 1	(%) shear	(ft-lbs) 2	(%) shear	Charpy (ft-tbs) 3	Charpy Impacts (ft-lbs) (%) 3 shear	(ft-lbs) Ave.	(%) shear	Size	Temp (*F)	Min Ave.
7500553-04	4	19.60		45,600 46,500	72,500 71,800			22.9 20.8	로로로	82.2 104.2 67.6		79.7 107.6 78.1		97.7 109.5 54.8		86.5 107.1 66.8		10mm 10mm 10mm	40 40 40	25 25 25
7500553-05         2         9.80         T         46,500         71,800         20.8         H-L         82.2         73.7         91           76.7         10         1         46,500         71,800         20.8         H-L         67.6         70.1         5           76.7         10         10         2         73.1         5         73.1         5           76.7         10         10         2         73.1         5         73.1         5           76.7         10         10         2         10         6         7         5         73.1         5           76.7         10         10         10         10         10         10         5         73.1         5         73.1         5         73.1         5         73.1         5         73.1         5         73.1         5         73.1         5         73.1         5         73.1         5         73.1         5         73.1         5         73.1         5         73.1         73.1         5         73.1         5         73.1         73.1         73.1         73.1         73.1         73.1         73.1         73.7         73.1	2 ITO A252 GR ITO A252 GR an used in the gr an used in the gr thod unless or 1 10204 3.16().	9.80 9.80 ADE 2 freet mediates hervices 5 hervices 5 19.60 Stat. 2015 2015 2015 2015 2015 2015	T T T T T T T T T T T T T T T T T T T	45,500 46,500 and the Fr and the Arc Fr and the Arc Fr ants: nhc Sr ants: nhc Sr (Mod 13,1120) 8 er (frid 3,3,1120)	72,500 71,800 anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos Anatos An	71,500 22.9 H-L 82.2 71,500 20.8 H-L 67.6 7.5 7.5 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	I repair was firepair was filtoucus ca fi(Cu+Ni)/15 y System F	22.9 20.8 s not perior as i discrete fiscrete 5 f	H-L H-L H-L H-L H-L H-L H-L H-L H-L H-L	82.2 104.2 67.6 67.6 cls material. rolled. unled.	IS INTEC 72 AI	79.7 78.1 78.1 78.1 78.1 78.1 78.1 78.1 8 9 6 1 6 1 5 9 6 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	uby certify if the former in the form of t	97.7 54.8 54.8 the containts of the contained of the multing outstood	79.7 97.7 97.7 87.109.5 107.6 54.8 54.8 54.8 54.8 107 78.1 54.6 54.8 54.8 107 78.1 hereby certify that the contents of this report operations performed by the material manufactur specifications, including customer specifications.	86.5 107.1 66.8 66.8 1001 are accurate ital manufacturer are in cont specifications.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	78.7         97.7         86.5         10mm         40         2           78.1         54.8         107.1         10mm         40         2           78.1         54.8         66.8         10mm         40         2           78.1         54.8         66.8         10mm         40         2           78.1         54.8         66.8         10mm         40         2           78.1         56.8         10mm         40         2           74.0         56.8         10mm         40         2           75.1         10mm         40         1         41         42         45           74.0         56.8         66.8         10mm         40         2         40         2           74.0         46.8         56.6         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8         46.8	40 40 10 Itest result ne applicabilit	40 25 40 25 40 25 est results and applicable applicable 1/27/2017 1:68:65 PM

# <u>Tubular Rail (13 of 16)</u>



#### Tubular Rail (14 of 16)

185



#### Tubular Rail (15 of 16)

.

# Tubular Rail (16 of 16)

	TEST	CERTIFICA	re n	o: Mar	5335
้ เววเร พั 7.4 ๆ	THE TUBE CORPORATION TH STREET 60638 96-0380 Fax: 708-563-	Rel S/O No MAR 1950 B/L No MAR	321398-001 187457-007	Shp 03 Inv	Feb1
Sold To: UIS, INC PO BOX 699 PLEASANT GH		Ship To: UNIVERSAL C/O PIONEE UP AREA 06 PIPE MILL,	INDUSTRIES SA R STEEL & TUB 3 YARD 01 TRA	LES, IN E CK 750	ſĊ
Tel: 801-78	5-0505 Fax: 801 785-	1710			
· · · /	CERTIFICATE of ANALY		- Cert No		3358 Febl
Part No TUBING A500 GRAI 2-1/2" X 1-1/2"	DE B(C) X 3/16" X 40'			Pcs 4	Wg 69:
Heat Number 122765	Tag No 642468 YLD=67320/TEN=8:	2750/ELG=25		Pcs 4	Wg1 69:
Heat Number T22765	*** Chemical A C=0.2000 Mn=0.8000 J Cu=0.0200 Cr=0.0300 Cb=0.0010 Sn=0.0010 MELTED AND MANUFACT	P=0.0070 S=0.0090 S Mo=0.0070 V=0.0010 N=0.0060 B=0.0001	Ni=0.0100 Nb	).0520 =0.001(	)
*					
WE PROUDLY MANU INDEFENDENCE TU AND INSPECTED II MATERIAL IDENTI	FACTURE ALL OUR PROD BE PRODUCT IS MANUFA N ACCORDANCE WITH AS FIED AS A500 GRADE B B AND A500 GRADE C	CTURED, TESTED, IM STÀNDARDS. (C) MEETS BOTH	•		

Page: 1 .... Last

.

.

Hand Rail (1 of 3)



1000 BURLINGTON STREET, NORTH KANSAS CITY, MO 64116 1-816-474-5210 TOLL FREE 1-800-892-TUBE

#### STEEL VENTURES, LLC dba EXLTUBE

۰.

# **Certified Test Report**

Customer:	Size:	Customer Order No:	Date:	
Universal Industrial Sales, Inc.	02.00X02.00	18555	07/31/2017	
435 N 1200 West	Gauge:	Delivery No:82998554		
LINDON UT 84042-1126	3/16	Load No:3913002		
	Specification:			
	ASTM A500-13 Gr.	B/C		
Heat No Yield Ten	sile Elongation			
KSI KSI B707585 60.1 69.		· · ·		
Heat No C MN P	S SI	CU NI	CR MO V	
	.0110 0.0020 0.0	0.0300 0.0300	0.0500 0.0100 0.0040	0
This material was melted & manufactured in the	U.S.A.			
Coil Producing Mill: STEEL DYNAMICS COLUMBU	IS, COLUMBUS, MS			
We hereby certify that all test results shown in t manufacturing is in accordance to A.S.T.M. para grade tiles above. This product was manufactur	meters encompassed with	in the scope of the specificati	ons denoted in the specification a	ind
This material has not come into direct contact w process, testing, or inspections.				uring
This material is in compliance with EN 10204 Se	ection 4.1 Inspection Cert	ificate Type 3.1		
Tensile test completed using test specimen with	3/4" reduced area.			
		STEEL VENTURES, I	LLC dba EXLTUBE	
		foratherlad		
		prosterio	P	

Jonathan Wolfe Quality Assurance Manager

LLC DBA EXLTUBE Ship To: STERL VENTURES LLC, DBA EXI 56505-1688 KANSAS CITY, MO 64116 C(eq) 215 Ship Date: 05/29/2017 0022 Ca Metallurgical Certification Hot Mill Metallurgical Engineer 1000 m Keegan Wrigl ï qN 90 > 004 .oad #: S721892 1700 z 05/29/2017 A MANHATTAN, KS 66505-1688 Mo ບັ Certificate Date: Sold To: STEEL VENTURES Certified by: ž Customer PO #: 4500287723-10 ۶ 20 We hereby certify the above is correct as contained in the records of the company. All tests performed according to ASTM standard E8, A370, E18, E415, E1019, E646, E517 and E23 (yield strength determined using 0.2% offset method) or JIS Columbus, MS 39701 Phone: 662-245-4200 THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE USA ŝ 1945 Airport Road Fax: 662-245-4297 C. 310 MPa 438 MPa шш PRIME HOT ROLLED BAND ~ PRIME o/o Metric Z2241 or DIN EN10325. All heats are Al-killed and Ca treated. ۵ 4.39 474 34 353083 0.1690X61.5000 (in) (MIN) EXL-2 Mn Steel Dynamics[®] 44.9 ksi 63.6 ksi Reported Not Reported Longitudinal 1,554 ft .1728 in ,840 34 % 7416961500F2 English Weight: 57 Flat Roll Group Columbus Division B707585 Not Heat Mechanical Properties: Order Dimensions: Chemical Analysis: Ordered Product: Hardness - HRBW Tensile Strength Order Number: Linear Footage Yield Strength Part Number: Actual Gauge Coil Number: 17B762617 Elongation Direction Alt Part#: N-Value

#### Handrail (2 of 3)

#### California Department of Transportation Report No. FHWA/CA22-3033 FINAL 8/4/2022

189

Handrail (3 of 3)

11Jul17 23:42	TEST CER	TIFICATÈ	No: MAR 591170
ערוזאיקומישרוואיד		B/O No 17722	002 001. Shp 11Jul17
UIS, INC PO BOX 69	( 2106) 9 GROVE, UT 84062	Ship To: (3) UNIVERSAL INDUSTRI C/O PIONEER STEEL 0 UP AREA 068 YARD 0 PIPE MILL, UT 840	ES SALES, INC TUBE L TRACK 750 58
	785-0505 Fax: 801 785-1710		
Part No	CERTIFICATE of ANALYSIS at	nd TESTS Cert	. No: MAR 591170 11Jul17
TUBING A500 GR. 3" X 2" X 3/16	ADE B(C) " X 40'	•	Pcs Wgt 100 22,360
Heat Number 811V11360	Tag No 137173 YLD=68170/TEN=75430/EI	(C-20 E	Pcs Wgt 25 5,590
811V11360 811V11360 811V11360	137174 137175 137176	······································	25 5,590 25 5,590 25 5,590
	*** Chemical Analysi C=0.2100 Mn=0.8100 P=0.01 Cu=0.0220 Cr=0.0300 Mo=0.0 N=0.0050 B=0.0002 Ti=0.00 MELTED AND MANUFACTURED IN	20	Al=0.0450 00 Cb=0.0020
INDEPENDENCE T AND INSPECTED MATERIAL IDENT	UFACTURE ALL OUR PRODUCT IN UBE PRODUCT IS MANUFACTURED IN ACCORDANCE WITH ASTM STAN IFIED AS A500 GRADE B{C}/MEN E B AND A500 GRADE C SPECIF.	; TESTED, NDARDS ETS BOTH	
CURRENT STANDA A252-10 A500/A500M-13 A513-13 ASTM A53/A53M- A847/A847M-14	RDS: 12   ASME SA-53/SA-53M-13	······································	•
A1085/A1085M-1	5 '		•
	• •	in the second	
	· ·		•
Page: 1	Last	· · · ·	
			at a state of the

#### 13. References

- 1. *Manual for Assessing Safety Hardware, Second Edition 2016 (MASH 2016).* American Association of State Highway and Transportation Officials. Washington, DC. 2016.
- 2. John Jewell. VEHICULAR CRASH TESTS OF THE CALIFORNIA ST-20 BRIDGE RAIL. California Department of Transportation. Sacramento. 2004.
- 3. *Vehicle Damage Scale for Traffic Crash Investigators.* Texas Department of Public Safety. Austin. 2006.
- 4. *Collision Deformation Classification SAE Recommended Practice J224 MAR80.* Society of Automotive Engineers. New York, NY. 1980
- 5. Test Risk Assessment Program. Texas Transportation Institute. Austin. 2014.
- Recommended Procedures for the Safety Performance Evaluation of Highway Features, Transportation Research Board, National Cooperative Highway Research Program Report 350, 1993.

### 14. Appendix E: Finite Element Modeling Report

### 14.1. Objective

Finite element (FE) analyses were performed using Livermore Software Technology Corporation's (LSTC) LS-Dyna, which is a commercial finite element program commonly used for crash testing simulations which can provide an idea of how a real-world test article may perform during crash testing. The purpose of the modeling was to build a finite element model of the ST-75 bridge rail, run the crash test simulations, and compare the results of the simulations with that of their real-world crash tests.

## 14.2. ST-75 Bridge Rail Model

The ST-75 Bridge Rail is a MASH Test Level 4 Bridge Rail. The height of the barrier is 1067 mm (42 in) which includes a 152 mm (6 in) pedestrian hand/bicycle rail at the top. The profile of the barrier consists of three 203 mm x 102 mm (8 in x 4 in) steel rail tubes and a 152 mm (6 in) reinforced concrete curb. The steel tubes are spaced evenly over 762 mm (30 in) and steel posts are spaced 3 m (10 ft) apart. The test article and finite element model are both 30.5 m (100 ft) long. A finite element model was developed that consisted of a fully constrained shell model of the three 203 mm x 102 mm (8 in x 4 in) steel rail tubes and the 152 mm (6 in) curb. Fully constrained means that all the nodes that make up the mesh in the model are constrained so that they cannot translate or rotate in any direction or axis. The model used didn't include the pedestrian hand/bicycle rail as it wasn't considered a structural component of the design at the time. However, including it in future simulations may provide information on 2270P hood snag potential and interaction of the 10000S front fender and cargo box.



Figure 14-1 ST-75 Bridge Rail CAD Model Front

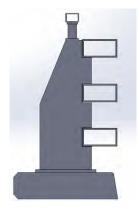



Figure 14-2 – ST-75 Bridge Rail CAD Model Profile

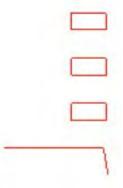



Figure 14-3 – ST-75 Bridge Rail FE Shell Model Profile

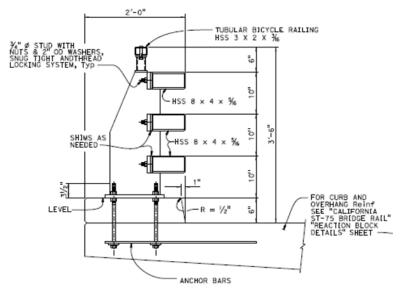



Figure 14-4 – Typical Section and Dimension for the ST-75 Bridge Rail

#### 14.3. Vehicle Models

The pickup truck and the small car models were provided by the Center for Collision Safety and Analysis (CCSA) Finite Element Models webpage, <u>https://www.ccsa.gmu.edu/models/</u>. This section describes which models were used and how they were modified.

#### 14.3.1. 2270P Truck

The truck model used for MASH 2270P truck test simulations was the 2270-kg 2007 Chevy Silverado coarse version 3a that was posted December 2016. The only change to the vehicle model was to increase the velocity of the vehicle model to match the required speed for MASH Test Level 4 Longitudinal Barriers. For the simulation, the 2270P truck impacted the test article at a speed of 100.0 kph (62.2 mph) and an angle of 25 degrees whereas in the real-world test the impact speed and angle were 102.0 kph (63.4 mph) and 26.3 degrees, respectively.

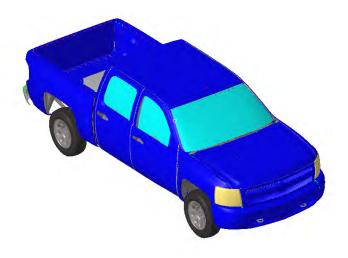



Figure 14-5 2270P Truck

#### 14.3.2. 1100C Car

The car model used for MASH 1100C car test simulations was the 1100-kg 2010 Toyota Yaris coarse version 1I that was posted December 2016. The only change to the vehicle model was to increase the velocity of the vehicle model to match the required speed for MASH Test Level 4 Longitudinal Barriers. For the simulation, the 1100C truck impacted the test article at a speed of 100.0 kph (62.2 mph) and an angle of 25 degrees whereas in the real-world test the impact speed and angle were 102.1 kph (63.4 mph) and 25.0 degrees, respectively.

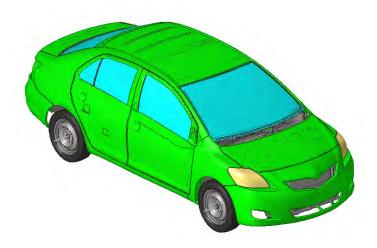



Figure 14-6 1100C Car

#### 14.3.3. 10000S Single-Unit Van Truck

The single-unit van truck model used for MASH 10000S single-unit van truck test simulations was the Ford Single Unit Truck that was posted November 3, 2008 on the National Crash Analysis Center (NCAC) website. Unfortunately, the link to this model no longer exists on the NCAC website but the same model can be found on the National Highway Traffic Safety Administration (NHTSA) website at https://www.nhtsa.gov/crash-simulation-vehicle-models#crash-simulation-vehicle-models. The model is of a 1996 Ford 8,150 kg (18,000 lbs) van body truck which was designed to meet the properties of the NCHRP Report 350 8000S single-unit van truck. A MASH 10000S model is unavailable at the time this report was written. Therefore, the Ford Single Unit Truck was modified in the following ways. The shape of the ballast in the bed of the truck was changed so that the ballast's center of gravity was 1,600 mm (63 in) above the ground. The density of the ballast was increased so that the total mass of the truck was 10,000 kg (22,050 lbs). The wheelbase and overall length of the truck were not changed. Therefore, the wheelbase is short 750 mm (29.5 in) and the overall length is short 1,300 mm (51.2 in) of the properties given in MASH for a 10000S truck. The velocity of the vehicle model was increased to match the required speed for MASH Test level 4 test Longitudinal Barriers. For the simulation, the 10000S truck impacted the test article at a speed of 90.0 kph (55.9 mph) and an angle of 15 degrees whereas in the real-world test the impact speed and angle were 87.6 kph (54.4 mph ) and of 15.3 degrees, respectively.



Figure 14-7 10000S Single-Unit Van Truck

#### 14.4. Comparing Modeling Data to Real World Data

14.4.1. 2270P Truck

This section compares the results of test 110MASH4P18-02 and the results of the 2270P finite element model. Table 14-1 compares the center of gravity, mass, and wheel base between the 2018 Dodge Ram 1500 used in the crash test and the 2007 Chevrolet Silverado used in the finite element modeling. Section 14.4.2 compares the TRAP results and section 14.4.3 compares the impact sequence of test 110MASH4P18-02 to the FE simulation.

Table 11 1 Center of Granty for 227 of Track rest vehicle and 20 Byna Timte Element model						
	Vehicle Type	Х*	Y**	Z	Mass	Wheel Base
Test 110MASH4P18-02	2018 Dodge Ram 1500	64.0"	-0.6″	29.4″	4964.5 lb	140.5″
		(1625 mm)	(-16 mm)	(748 mm)	(2251.9 kg)	(3569 mm)
2270P Vehicle Model	2007 Chevrolet Silverado	65.7"	0.0″	28.8″	5005.6 lb	144.0"
		(1670 mm)	(0.0 mm)	(731.5 mm)	(2270.5 kg)	(3660 mm)

Table 14-1 Center of Gravity for 2270P Truck Test Vehicle and LS-Dyna Finite Element Model

* Behind centerline of front tire

** Negative means CG is on the driver side of the vehicle's centerline

#### 14.4.2. TRAP Data Comparison

Both the 2270P simulation and test 110MASH4P18-02 met the criteria provided in MASH for testing longitudinal barriers at Test Level 4. Most of the results were at or below the preferred range. When the data are compared to each other, the occupant impact velocities in the test were almost twice those in the simulation while the ridedown accelerations for the simulation were lower than those in the test. The maximum roll, pitch, and yaw angles in the test and the simulation were similar in maximum magnitude but the crash test values occur slightly later than in the simulations. Perhaps this is due to the barrier being modeled as fully restrained and unable to move (causing redirection to occur sooner) or the model vehicle being more rigid than the actual vehicle, or a combination thereof. Table 14-2 shows the results of the TRAP analysis and Figure 14-8 through Figure 14-18 are graphs of the TRAP analysis for test 110MASH4P18-02 and the finite element model.

Table 14-2         TRAP Results Data Comparison for Full Scale and FE Models for 2270P Truck (Absolute
Values)

		Test 110MASH4P18-02	LS-Dyna Truck Simulation 2007 Chevrolet Silverado	
Data Results	MASH Criteria	2018 Dodge Ram 1500		
Longitudinal Occupant	Preferred = 30 ft/s (9.1 m/s)	14.4 ft/s	5.9 ft/s	
Impact Velocity	Max = 40 ft/s (12.2 m/s)	(4.4 m/s)	(1.8 m/s)	
Longitudinal Ridedown Acceleration	Preferred = 15.0 G			
10 msec Average	Max = 20.49 G	4.1 G	13.4 G	
Lateral Occupant	Preferred = 30 ft/s (9.1 m/s)	30.8 ft/s	15.7 ft/s	
Impact Velocity	Max = 40 ft/s (12.2 m/s)	(9.4 m/s)	(4.8 m/s)	
Lateral Ridedown Acceleration	Preferred = 15.0 G			
10 msec Average	Max = 20.49 G	11 G	18.2 G	
PHD	n/a	11.7 G	18.2	
ASI	n/a	2.29	1.98	
Max Roll	<75 Degrees	21.6 degrees	27.8 degrees	
Max Pitch	<75 Degrees	2.1 degrees	7.6 degrees	
Max Yaw	n/a	40.3 degrees	30.0 degrees	

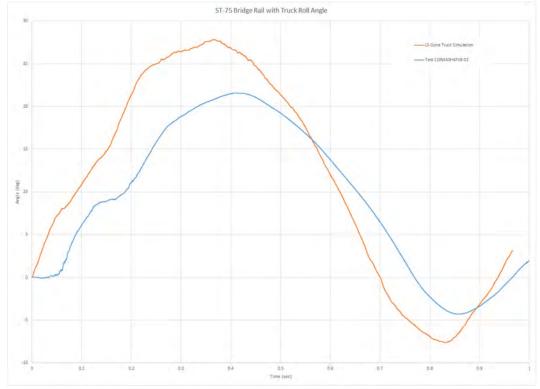



Figure 14-8 Graph of Roll Angles for Full Scale and FE Model TRAP Results for 2270P Truck

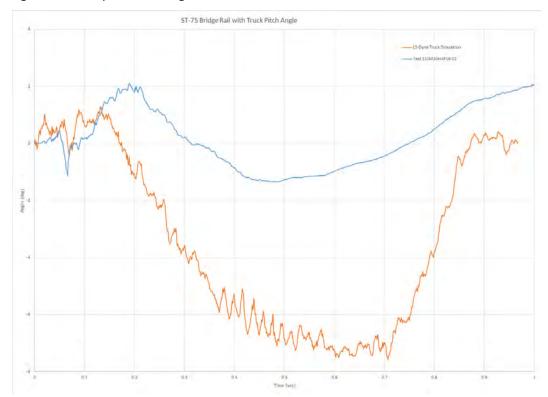



Figure 14-9 Graph of Pitch Angles for Full Scale and FE Model TRAP Results for 2270P Truck

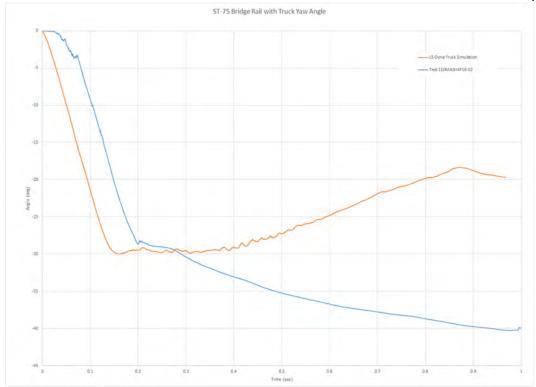



Figure 14-10 Graph of Yaw Angles for Full Scale and FE Model TRAP Results for 2270P Truck

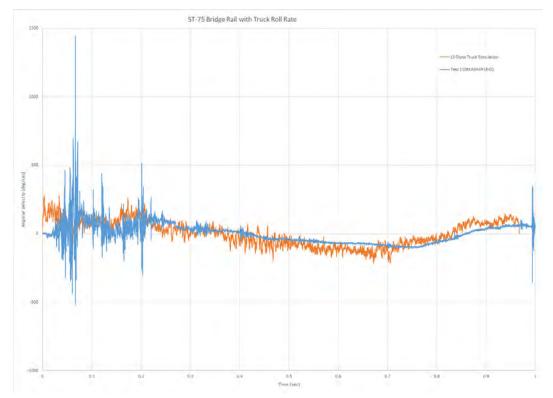



Figure 14-11 Graph of Roll Rates for Full Scale and FE Model TRAP Results for 2270P Truck

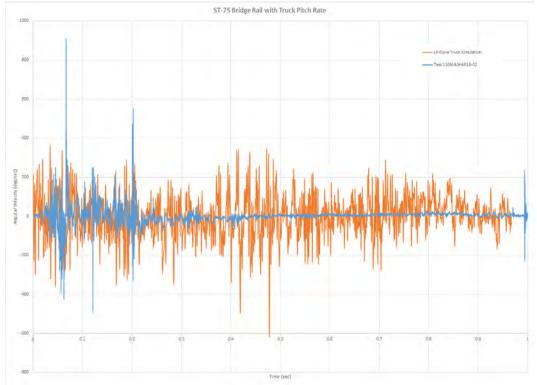



Figure 14-12 Graph of Pitch Rates for Full Scale and FE Model TRAP Results for 2270P Truck

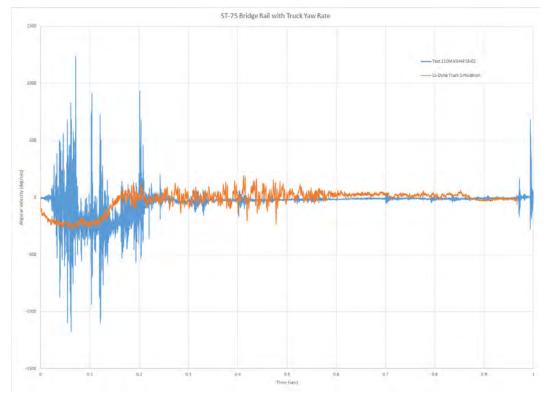



Figure 14-13 Graph of Yaw Rates for Full Scale and FE Model TRAP Results for 2270P Truck

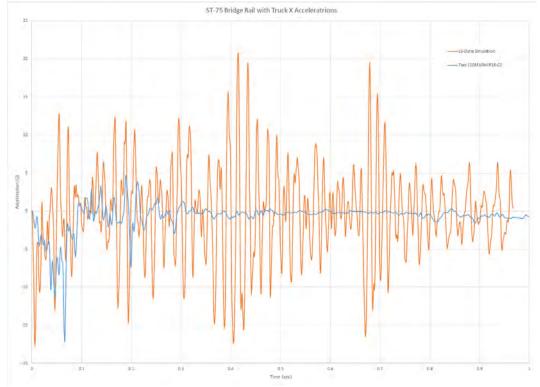



Figure 14-14 Graph of Longitudinal Accelerations for Full Scale and FE Model TRAP Results for 2270P Truck

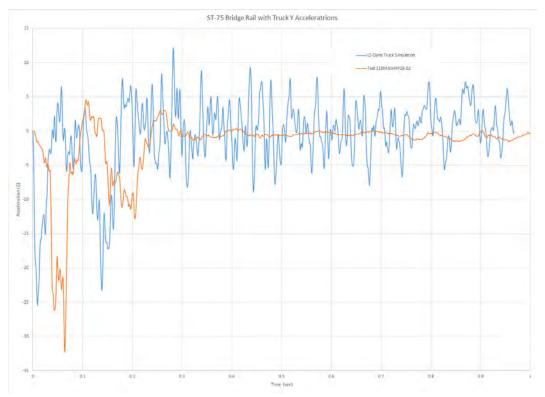



Figure 14-15 Graph of Lateral Accelerations for Full Scale and FE Model TRAP Results for 2270P Truck

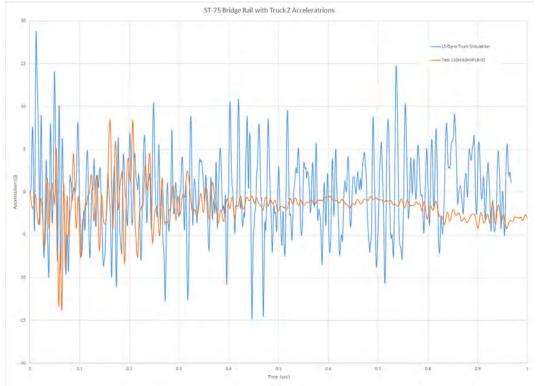



Figure 14-16 Graph of Vertical Accelerations for Full Scale and FE Model TRAP Results for 2270P Truck

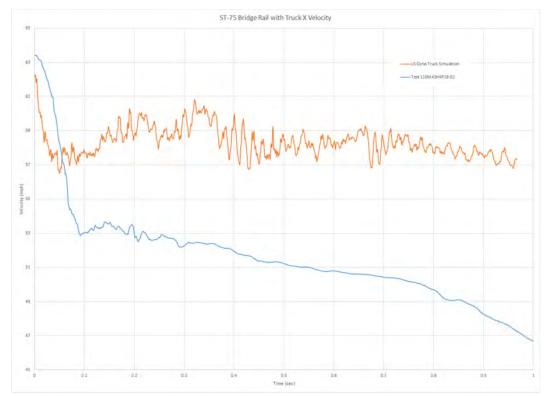



Figure 14-17 Graph of Longitudinal Velocities for Full Scale and FE Model TRAP Results for 2270P Truck

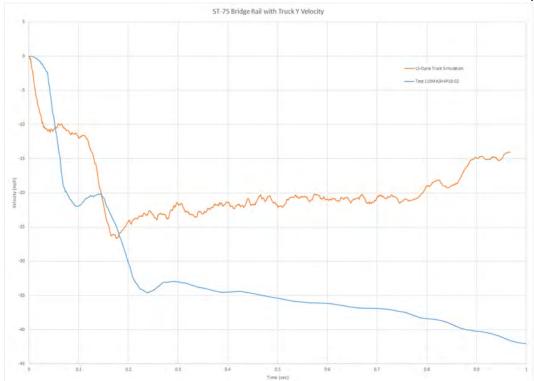



Figure 14-18 Graph of Lateral Velocities for Full Scale and FE Model TRAP Results for 2270P Truck

#### 14.4.3. Visual Comparison

A visual comparison of test 110MASH4P18-02 and the 2270P simulation shows that the vehicles' interaction with the barrier to be similar. They appear to diverge from each other once the vehicle loses contact with the barrier. Figure 14-19 is a sequence of pictures showing the vehicles' interaction with the test article for both the full-scale test and the finite element model.

		FINAL 8/4/2022
Test 110MASH4P18-02: 2018 Dodge Ram 1500	Time	LS-Dyna Truck Simulation: 2007 Chevrolet Silverado
	0.00 sec	
	0.06 sec	
	0.12 sec	
	0.18 sec	
	0.24 sec	
	0.36 sec	
	0.60 sec	

Figure 14-19 Visual Comparison of Actual Crash Test and Simulations for 2270P Truck

#### 14.5. 1100C Small Car

This section compares the results of test 110MASH4C19-01 and the results of the 1100C finite element model. Table 14-3 compares the center of gravity, mass, and wheel base between the 2017 Nissan Versa used in the crash test and the 2010 Toyota Yaris used in the finite element modeling. Section 14.5.1 compares the TRAP results and section 14.5.2 compares the impact sequence of test 110MASH4C19-01 to the FE simulation.

	Vehicle Type	X*	Y**	Z	Mass	Wheel Base
	2017 Nissen Verse	42.8″	-1.9″	NI / A	2389 lb	102.3″
Test 110MASH4C19-01	2017 Nissan Versa	(1086 mm)	(-19 mm)	N/A	(1083.7 kg)	(2599 mm)
		40.4"	-0.1″	21.9″	2427.3 lb	99.9″
1100C Vehicle Model	2010 Toyota Yaris	(1025 mm)	(-3.0 mm)	(557 mm)	(1101 kg)	(2538 mm)

* Behind centerline of front tire

** Negative means CG is on the driver side of the centerline

#### 14.5.1. TRAP Data Comparison

The TRAP data for test 110MASH4C19-01 met the criteria in MASH for a Test Level 4 longitudinal barrier but the 1100C finite element model's longitudinal and lateral ridedown accelerations did not meet the criteria. The higher accelerations might be caused by the simulation barrier being fully constrained. The posts and beams in the full-scale test article move and deform. The post can slide within the limit of the holes for the anchor bolts and the posts and beam will bend and flex during the impact. This will absorb some of the energy of the impact. In the simulation this movement is not allowed and more of the energy of the impact is felt by the vehicle. Additionally, the FE model does not deform as much as the test vehicle meaning that the model does not lose as much energy as the test vehicle during the impact. Table 14-4 shows the results of the TRAP analysis and Figure 14-20 through Figure 14-30 are graphs of the TRAP analysis for test 110MASH4C19-01 and the finite element model.

Table 14-4 TRAP Data Comparison for Full Scale and FE Model TRAP Results for 1100C Car (Absolute

Val	
va	lues)

		Test 110MASH4C19-01	LS-Dyna Car Simulation
Data Results	MASH Criteria	2017 Nissan Versa	2010 Toyota Yaris
Longitudinal Occupant Impact Velocity	Preferred = 30 ft/s (9.1 m/s)	21.3 ft/s	13.5 ft/s
Longitudinal Occupant impact velocity	Max = 40 ft/s (12.2 m/s)	(6.5 m/s)	(4.1 m/s)
Longitudinal Ridedown Acceleration	Preferred = 15.0 G	3.4 G	22.2 G
10 msec Average	Max = 20.49 G	3.4 0	22.2 0
Lateral Occupant Impact Velocity	Preferred = 30 ft/s (9.1 m/s)	33.1 ft/s	21.3 ft/s
	Max = 40 ft/s (12.2 m/s)	(10.1 m/s)	(6.5 m/s)

			1 11 11 12 07 47 202
Lateral Ridedown Acceleration	Preferred = 15.0 G	9.9 G	22.0 G
10 msec Average	Max = 20.49 G		
PHD	n/a	10.0 G	30.9 G
ASI	n/a	2.83	2.63
Max Roll	<75 Degrees	5.7 degrees	8.3 degrees
Max Pitch	<75 Degrees	4.4 degrees	4.4 degrees
Max Yaw	n/a	38.3 degrees	56.8 degrees

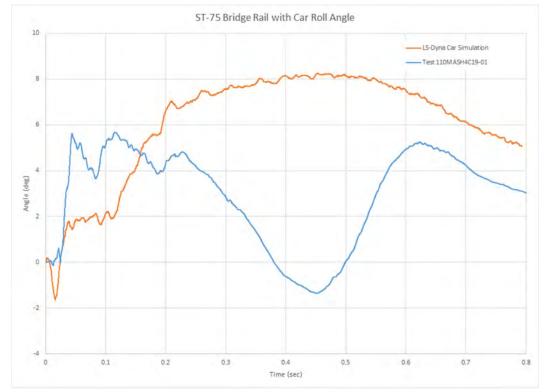



Figure 14-20 Graph of Roll Angles for Full Scale and FE Model TRAP Results for 1100C Car



Figure 14-21 Graph of Pitch Angles for Full Scale and FE Model TRAP Results for 1100C Car

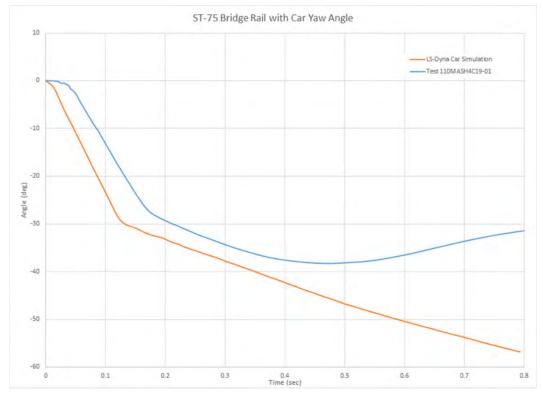



Figure 14-22 Graph of Yaw Angles for Full Scale and FE Model TRAP Results for 1100C Car

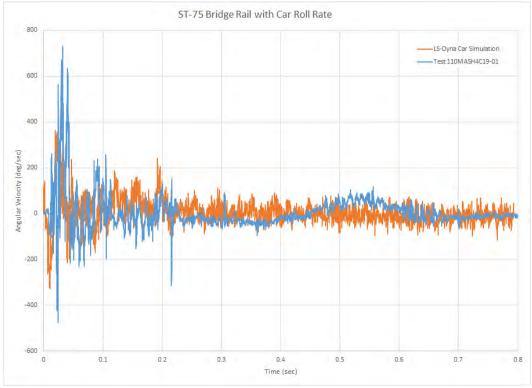



Figure 14-23 Graph of Roll Rates for Full Scale and FE Model TRAP Results for 1100C Car

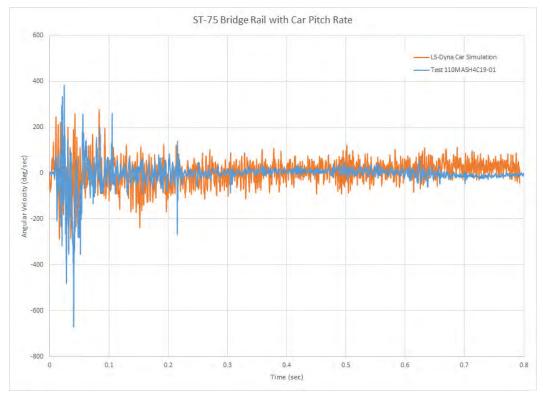



Figure 14-24 Graph of Pitch Rates for Full Scale and FE Model TRAP Results for 1100C Car

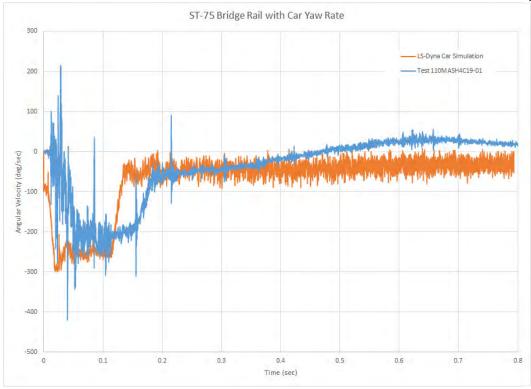



Figure 14-25 Graph of Yaw Rates for Full Scale and FE Model TRAP Results for 1100C Car

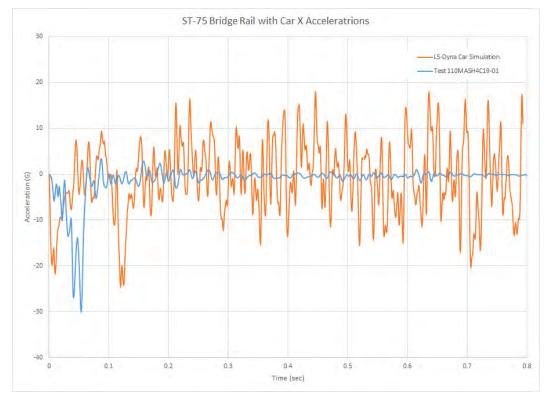



Figure 14-26 Graph of Longitudinal Accelerations for Full Scale and FE Model TRAP Results for 1100C Car

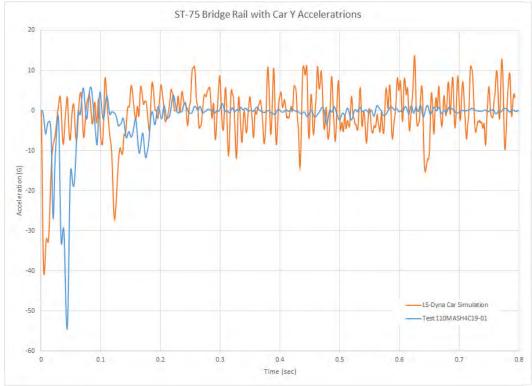



Figure 14-27 Graph of Lateral Accelerations for Full Scale and FE Model TRAP Results for 1100C Car

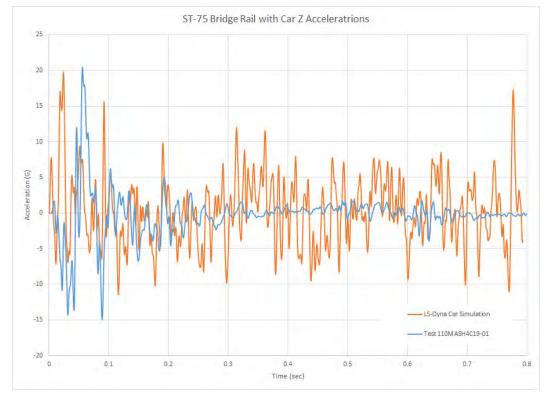



Figure 14-28 Graph of Vertical Accelerations for Full Scale and FE Model TRAP Results for 1100C Car



Figure 14-29 Graph of Longitudinal Velocity for Full Scale and FE Model TRAP Results for 1100C Car

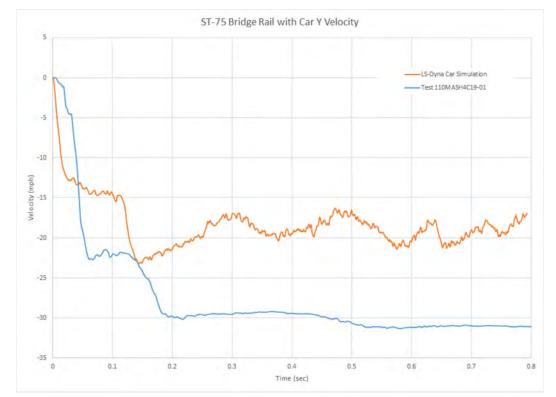



Figure 14-30 Graph of Lateral Velocity for Full Scale and FE Model TRAP Results for 1100C Car

# 14.5.2. Visual Comparison

A visual comparison of test 110MASH4C19-01 and the 1100C simulation shows that the vehicles' interaction with the barrier were similar. Figure 14-31 is a sequence of pictures showing the vehicles' interaction with the test article for both the full-scale test and the finite element model.

Test 110MASH4C19-01: 2017 Nissan Versa	Time	LS-Dyna Car Simulation: 2010 Toyota Yaris
	0.00 sec	
	0.06 sec	
	0.12 sec	
	0.18 sec	
	0.24 sec	
	0.30 sec	
	0.36 sec	

Figure 14-31 Visual Comparison of Actual Crash Test and Simulations for 1100C Small Car

#### 14.6. 10000S Single Unit Truck

This section compares the results of test 110MASH4S19-02 and the results of the 10000S finite element model. Table 14-5 compares the center of gravity, mass, and wheel base between the 2013 4300 SBA International used in the crash test and the 1996 Ford F800 used in the finite element modeling. Section 14.6.1 compares the TRAP results and section 14.6.2 compares the impact sequence of test 110MASH4S19-02 to the FE simulation.

	Vehicle Type	X*	Y**	Z	Mass	Wheel Base
Test 110MASH4S19-02	2013 4300 SBA	148.7″	0.2″	NI/A	22077 lb	236.5″
Test 110MA5H4519-02	International	(3776 mm)	(4 mm)	N/A	(10014 kg)	(6007 mm)
	1000 5 1 5000	126.2″	-0.4"		22046 lb	208.7"
10000S Vehicle Model	1996 Ford F800	(3206 mm)	(-9 mm)	N/A	(10000 kg)	(5300 mm)

* Behind centerline of front tire

** Negative means CG is on the driver side of the centerline

## 14.6.1. TRAP Data Comparison

MASH does not provide criteria for TRAP data. The TRAP results for test 110MASH4S19-02 and the 10000S simulation were similar to each other with two exceptions. The lateral occupant impact velocity for the test was over twice that in the simulation. The maximum roll angle for the simulation was about twice the roll in the test. As in the pickup test, it seems the real-world test roll, pitch, and yaw angles lag behind those in the simulation. Again, perhaps this is due to the barrier being fully constrained as well as the simulation vehicle's wheelbase being 750 mm (29.5 in) shorter than the test vehicle. Damage to the post plates was observed in the real-world test, which shows the barrier does not perform as fully constrained when impacted with the 10000S vehicle. Table 14-6 shows the results of the TRAP analysis and Figure 14-32 through Figure 14-42 are graphs of the TRAP analysis for test 110MASH4S19-02 and the finite element model.

 Table 14-6 TRAP Data Comparison for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck (Absolute Values)

Data Results	MASH Criteria	Test 110MASH4S19-02 2013 4300 SBA International	Finite Element Model 1996 Ford F800		
Longitudinal Occupant Impact Velocity	n/a	3.6 ft/s (1.1 m/s)	3.3 ft/s (1.0 m/s)		
Longitudinal Ridedown Acceleration 10 msec Average	n/a	2.2 G	1.5 G		
Lateral Occupant Impact Velocity	n/a	25.3 ft/s (7.7 m/s)	10.5 ft/s (3.2 m/s)		
Lateral Ridedown Acceleration 10 msec Average	n/a	3.7 G	5.2 G		
PHD	n/a	4.1	5.2		
ASI	n/a	1.89	0.44		
Max Roll	n/a	19.6	36.8 degrees		
Max Pitch	n/a	3.2	4.0 degrees		
Max Yaw	n/a	16.6	14.8 degrees		

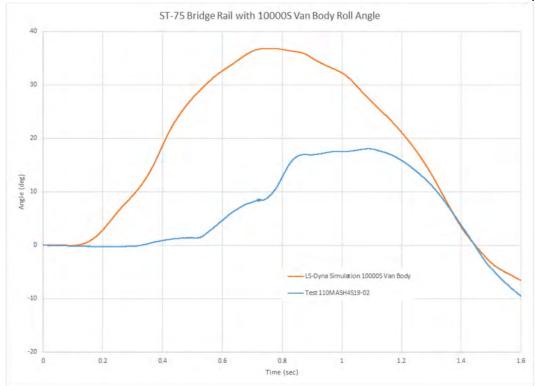



Figure 14-32 Graph of Roll Angles for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

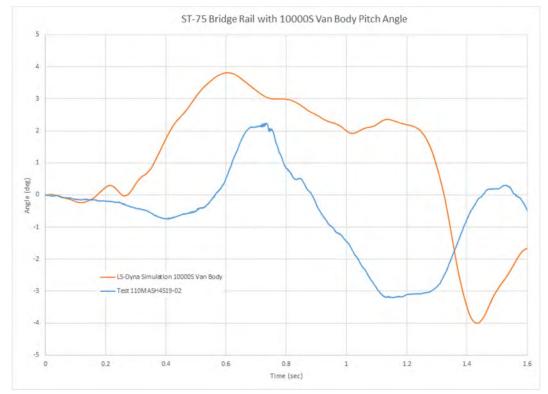



Figure 14-33 Graph of Pitch Angles for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

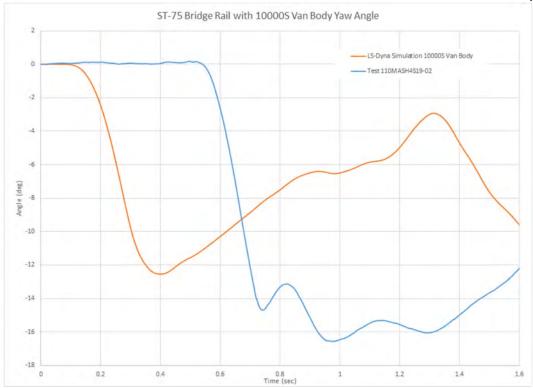



Figure 14-34 Graph of Yaw Angles for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

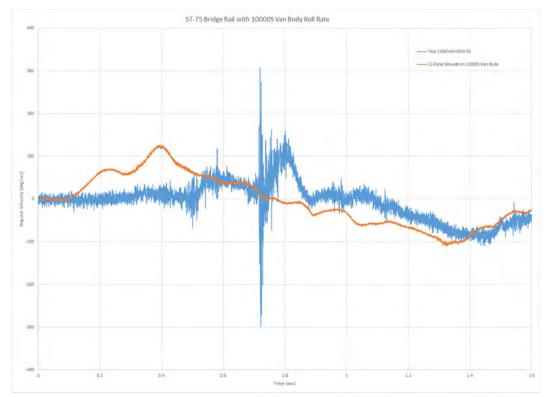



Figure 14-35 Graph of Roll Rates for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

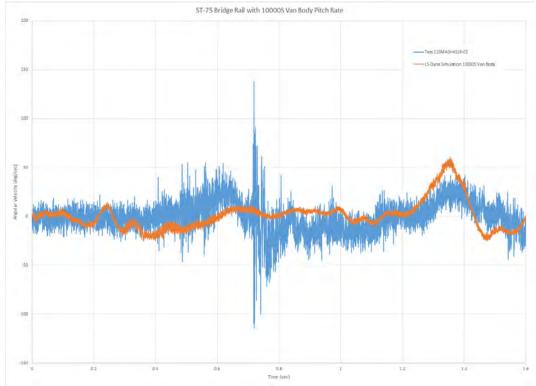



Figure 14-36 Graph of Pitch Rates for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

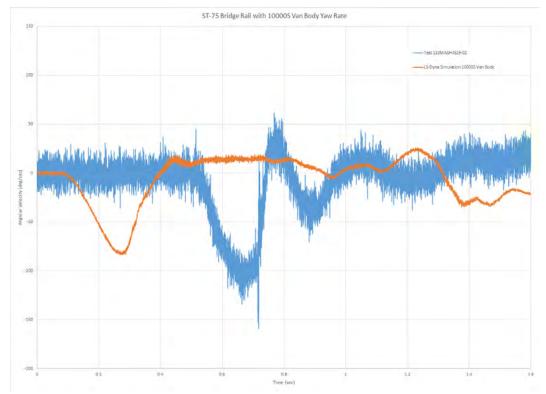



Figure 14-37 Graph of Yaw Rates for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

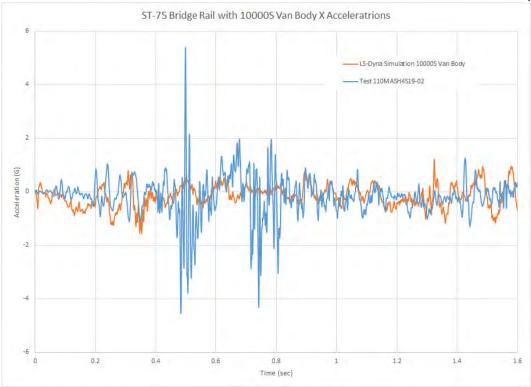



Figure 14-38 Graph of Longitudinal Accelerations for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

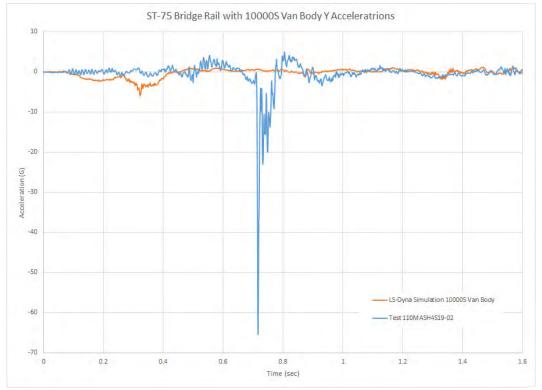



Figure 14-39 Graph of Lateral Accelerations for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

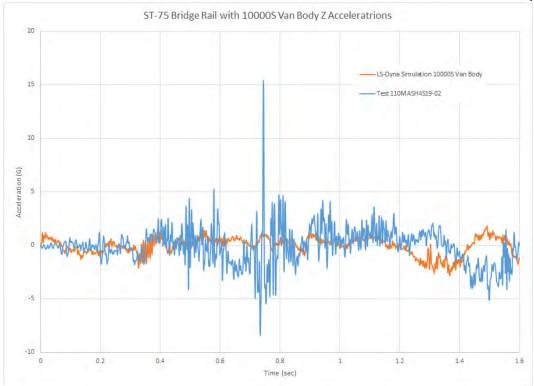



Figure 14-40 Graph of Vertical Accelerations for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck



Figure 14-41 Graph of Longitudinal Velocity for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

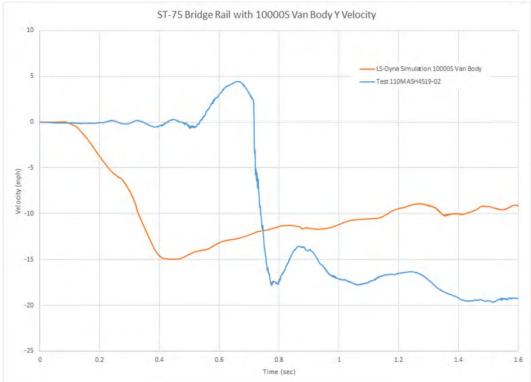



Figure 14-42 Graph of Lateral Velocity for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

#### 14.6.2. Visual Comparison

Visually comparing test 110MASH4S19-02 to the FE simulation shows that the vehicles' interaction with the test article were similar for about 0.5 seconds. From the initial impact, the vehicle's cargo box in the simulation overrode the top of the barrier. From about 0.5 seconds and on the simulation continued to rotate over and override the barrier while the full-scale test vehicle began to recover and rotate back onto its wheels. The photos are not shown in the figure below, but the simulation vehicle will eventually rotate away from the barrier and back onto its wheels. Figure 14-43 is a sequence of pictures showing the vehicles' interaction with the test article for both the full-scale test and the finite element model.

Test 110MASH4S19-02: 2013 4300 SBA International	Time	FINAL 8/4/2022 Finite Element Model: 1996 Ford F800
	0.00 sec	
	0.09 sec	
	0.18 sec	
	0.27 sec	
	0.36 sec	
	0.54 sec	
	0.72 sec	

Figure 14-43 Visual Comparison of Actual Crash Test and Simulations for 10000S Single Unit Truck

#### 14.7. Conclusions

A fully constrained finite element shell model of the ST-75 steel bridge was developed, ran, and compared to full-scale crash test results. Comparing the TRAP results showed that the simulations tended to predict lower velocities and higher accelerations. While the 2270P truck model predicted the full-scale test would pass MASH Test Level 4 criteria, the 1100C car model predicted a failure due to high accelerations. The higher acceleration may be due to the barrier model being full constrained and the vehicle models deforming less than their real-world counter parts. Comparing the simulations to the full-scale crash tests showed that the interaction of the vehicles with the barrier were similar except for the 10000S single-unit van truck. The cargo box in the simulation overrode the top of the barrier which allowed the vehicle to roll further over the barrier compared to its real-world counterpart. Even with the additional roll the simulation vehicle eventually rolled back onto its wheels and was redirected as designed by the barrier.

Improvements to future finite element models will include the pedestrian hand/bicycle rail if the realworld test article includes the rail to see its effect on hood snag with the 2270P test and effect on the 10000S test. In the case of the ST-75, the physical crash testing of the test article built with a handrail did not show any potential for hood snag in the 2270P test but the handrail may have reduced cargo box override in the 10000S test. Other test articles may be different. Instead of fully constraining the rails in the barrier model the rails can be fully constrained every 3 m (10 ft) to represent posts and better match the full-scale test article. This might lower the accelerations in the 1100C car simulation since the rails will be allowed to translate and rotate. This would also likely improve the 10000S simulation as the barrier did not perform as fully constrained in the real-world test, as evidenced by damage to the post plates.

# 15. Document Revision History

Date	Description