1.	REPORT NO.	2. GOVERNMENT ACCESSION NO.	3.	RECIPIENT'S CATALOG NO.
	FHWA/CA22-3033			
4.	TITLE AND SUBTITLE		5.	REPORT DATE
	DEVELOPMENT AND CRASH TESTING OF A STEEL POST-AND-BEAM BRIDGE RAILING, CALIFORNIA ST-75			August 2022
		6.	PERFORMING ORGANIZATION CODE	
7.	AUTHOR(S)		8.	PERFORMING ORGANIZATION REPORT NO.
	David Whitesel, Robert Meline, Christopher Caldwell			VA/CA22-3033
9.	9. PERFORMING ORGANIZATION NAME AND ADDRESS		10.	WORK UNIT NO.
	Roadside Safety Research Group			
	California Department of Transportation 5900 Folsom Blvd.,			
	Sacramento, CA. 95819		11.	CONTRACT OR GRANT NO.
	,			FHWA/CA22-3033
12.	SPONSORING AGENCY NAME AND ADDRESS		13.	TYPE OF REPORT & PERIOD COVERED
	California Department of Transportation 5900 Folsom Blvd.,		FINA	AL
	Sacramento, CA. 95819		14.	SPONSORING AGENCY CODE
15.	SUPPLEMENTARY NOTES			

This project was performed in cooperation with the US Department of Transportation, Federal Highway Administration, under the research project titled "DEVLEOPMENT AND CRASH TESTING OF A STEEL POST-AND-BEAM BRIDGE RAILING IN COMPLIANCE WITH MASH 2016, TEST LEVEL 4, FOR USE IN CALIFORNIA". This work was performed at the request of Caltrans Division of Engineering Services, Structures and Engineering Services.

16. ABSTRACT

Three full-scale crash tests of the California ST-75 Bridge Rail (ST-75) were completed to meet the Implementation Agreement for Manual for Assessing Safety Hardware (MASH) 2016. California Department of Transportation (Caltrans) needed a MASH 2016 compliant steel post and beam bridge rail to replace existing NCHRP Report 350 (Report 350) rails. The July 2019 Caltrans "MASH Implementation for California Bridge Railings" identified the ST-75 as a design intended to replace existing Caltrans bridge rails: the ST-10, ST-20S, ST-30 and the ST-70.

The ST-75 is a 914 mm (36 in) vehicular and a 1067 mm (42 in) high combination (vehicular and bicycle) bridge rail. The rail elements are ASTM A500/A500M, Grade B, hollow structural 203 mm x 102 mm x 8 mm (8 in x 4 in x 5/16 in) sections bolted to A709 Grade 36 steel posts. The post spacing is 3m (10 feet) and are anchored using ASTM F1554, Grade 105, bolts to a 6-inch-high concrete curb. The tested ST-75 rail was 28.7 m (94 feet) long and constructed and tested at the Caltrans Dynamic Test Facility in West Sacramento, CA. The first 21.3 m (70 feet) of the rail was mounted to a simulated bridge deck overhang which connected to a concrete anchor block with last 7.3 m (24 feet) of the downstream rail mounted to a reaction slab.

The full suite of MASH 2016 Test Level 4 (TL-4) crash tests were conducted; Test 4-10 (1100C), 4-11 (2270P) and 4-12 (10000S) (test designations 110MASH4C19-01, 110MASH4P18-02, 110MASH4S19-02 respectively). All three tests met MASH 2016 evaluation criteria for TL-4 longitudinal barriers. The results of all three tests were within the limits of MASH 2016 guidelines.

17. KEY WORDS	18. DISTRIBUTION STATEMENT			
Barriers, Crash Test, Bridge rail, Vehicle Impact T beam	No Restrictions. This document is available through the National Technical Information Service, Springfield, VA 22161			
19. SECURITY CLASSIF. (OF THIS REPORT)	20. SECURITY CLASSIF. (OF THIS	S PAGE)	21. NO. OF PAGES	22. PRICE
Unclassified	Unclassified		242	

DEVELOPMENT AND CRASH TESTING OF A STEEL POST-AND-BEAM BRIDGE RAILING, CALIFORNIA ST-75

STATE OF CALIFORNIA

DEPARTMENT OF TRANSPORTATION

DIVISION OF RESEARCH, INNOVATION AND SYSTEM INFORMATION
OFFICE OF SAFETY INNOVATION AND COOPERATIVE RESEARCH
ROADSIDE SAFETY RESEARCH GROUP

Supervised by	Robert Meline, P.E.
Principal Investigator	John Jewell, P.E.
Report Prepared by	David Whitesel, P.E.
Research Performed by	Roadside Safety Research Group

STATE OF CALIFORNIA

DEPARTMENT OF TRANSPORTATION

DIVISION OF RESEARCH, INNOVATION AND SYSTEM INFORMATION
OFFICE OF SAFETY INNOVATION AND COOPERATIVE RESEARCH
ROADSIDE SAFETY RESEARCH BRANCH

DEVELOPMENT AND CRASH TESTING OF A STEEL POST-AND-BEAM BRIDGE RAILING, CALIFORNIA ST-75

Supervised by	Robert Meline, P.E
Principal Investigator	John Jewell, P.E.
Report Prepared by	David Whitesel, P.E
Research Performed by	Roadside Safety Research Group
lo sept W Hoton	Talut of Me li
Joseph W. Horton, P.E.	Robert Meline, P.E.
Office Chief	Branch Chief
Office of Safety Innovation and	Roadside Safety Research Branch
Cooperative Research	Roadside Safety Research Group

John Jewell, P.E.

Senior Engineer Specialist Roadside Safety Research Group Transportation Engineer Roadside Safety Research Group

David Whitesel, P.E.

DISCLAIMER STATEMENT

This document is disseminated in the interest of information exchange. The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the Federal Highway Administration. This publication does not constitute a standard, specification or regulation. This report does not constitute an endorsement by the Department of any product described herein.

For individuals with sensory disabilities, this document is available in alternate formats. For information, call (916) 654-8899, TTY 711, or write to California Department of Transportation, Division of Research, Innovation and System Information, MS-83, P.O. Box 942873, Sacramento, CA 94273-0001.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Caltrans Roadside Safety Research Group (RSRG) has determined the uncertainty of measurements in the testing of roadside safety hardware as well as in standard full-scale crash testing of roadside safety features. The results contained in this report are only for the tested article(s) and not any other articles based on the same design. Information regarding the uncertainty of measurements for critical parameters is available upon request by the California Department of Transportation Roadside Safety Research Group.

ACKNOWLEDGEMENTS

This work was accomplished in cooperation with the United States Department of Transportation, Federal Highway administration.

Special appreciation is due to the following staff members of the Materials Engineering and Testing Services, Structures Construction and Division of Research, Innovation, and Systems Information for their enthusiastic and competent help on this project:

Thanks to Robert Meline, John Jewell, Vue Her, Christopher Caldwell, John Williams, Dave Sawko, Steve Wake, Rachel Kwong, Jean Vedenoff, Victor Lopez, Samira Zalekian, Ed Ung, Eric Jacobson, Karim Mirza, Arvern Lofton, and Larry Baumeister for test preparation, data reduction, vehicle preparation, video processing, and assistance during tests. Thanks to Christopher Caldwell for Finite Element Modeling and the FEM report included at the end of this document. Thanks to Dave Bengal, Independent Camera Operator. Thanks to Martin Zanotti, Charles Gill, James Olivo, and Michael Pieruccini for their support in the machine shop. Thanks to Larry McCrum for his support in the concrete lab. Thanks to John Milne and Scott Lorenzo in the Photography Unit for their support with still photos. Also thanks to John Lammers and Rusty D'Anna for test article constructability and construction support.

The bridge rail design and load evaluation were performed by Greg Kaderabek, Tillat Satter, Tony Yoon, Don Lee, Ashraf Ahmed, and Jim Gutierrez, Caltrans Division of Engineering Services, Structures and Engineering Services.

Thanks to:

ROADSIDE SAFETY RESEARCH GROUP

Bob Meline, P.E., Branch Chief

John Jewell, P.E., *Principal Investigator*

David Whitesel, P.E., Transportation Engineer, Project Manager

Vue Her, M.S., P.E., Senior Transportation Engineer

Christopher Caldwell, Transportation Engineer

Victor Lopez, P.E., Transportation Engineer

Jean Vedenoff, P.E., Transportation Engineer

Dave Sawko, Lab Manager

Steve Wake, Lab Manager

Rachel Kwong, Audio Visual Manager

Table of Contents

1.	Intro	oduct	ion	1
	1.1.	Prob	olem	1
	1.2.	Obje	ective	1
	1.3.	Back	ground	1
	1.4.	Liter	rature Search	3
	1.5.	Scop	oe	3
2.	Test	Artio	cle Details	3
	2.1.	Barr	ier Design	3
	2.2.	Con	struction	4
3.	Test	Requ	uirements and Evaluation Criteria	10
	3.1.	Cras	h Test Matrix	10
	3.2.	Eval	uation Criteria	10
4.	Test	Con	ditions	10
	4.1.	Test	Facilities	10
	4.2.	Test	Vehicles	10
	4.2.	1.	Test 4-10	10
	4.2.	2.	Test 4-11	14
	4.2.	3.	Test 4-12	18
	4.3.	Test	Documentation	24
5.	Test	110	MASH4C19-01 (4-10)	25
	5.1.	Imp	act Description and Results	25
	5.2.	Test	Description	25
	5.3.	Barr	ier Damage	28
	5.4.	Veh	icle Damage	30
	5.5.	Disc	ussion of Test Results	36
	5.5.	1.	General Evaluation Methods	36
	5.5.	2.	Structural Adequacy	36
	5.5.	3.	Occupant Risk	36
	5.5.	4.	Vehicle Trajectory	36
6.	Test	110	MASH4P18-02 (4-11)	38
	6.1.	Imp	act Description and Results	38
	6.2	Tost	Description	39

	6.3.	Barı	rier Damage	41
	6.4.	Veh	icle Damage	43
	6.5.	Disc	cussion of Test Results	49
	6.5.	1.	General Evaluation Methods	49
	6.5.	2.	Structural Adequacy	49
	6.5.	3.	Occupant Risk	49
	6.5.	4.	Vehicle Trajectory	49
7.	Test	110	MASH4S19-02 (4-12)	51
	7.1.	Imp	act Description and Results	51
	7.2.	Test	Description	53
	7.3.	Barı	rier Damage	55
	7.4.	Veh	icle Damage	59
	7.5.	Disc	cussion of Test Results	68
	7.5.	1.	General Evaluation Methods	68
	7.5.	2.	Structural Adequacy	68
	7.5.	3.	Occupant Risk	68
	7.5.	4.	Vehicle Trajectory	68
8.			ons and Recommendations	
9.	Арр	endi	x A: Vehicle Equipment and Test Data	71
	9.1.	Test	t Vehicle Equipment	71
	9.1.	1.	Test 110MASH4C19-01	71
	9.1.	2.	Test 110MASH4P18-02	
	9.1.		Test 110MASH4S19-02	
	9.2.		t Vehicle Guidance System	
	9.3.		to - Instrumentation	
	9.4.		tronic Instrumentation and Data	
	9.5.		icle Measurements	
	9.5.		Test 110MASH4C19-01	
	9.5.		Test 110MASH4P18-02	
	9.5.	_	Test 110MASH4S19-02	
	9.6.		a Plots	
	9.6.		Data Plots - Test 110MASH4C19-01 (Test 4-10)	
	9.6.	2.	Data Plots - Test 110MASH4P18-02 (Test 4-11)	126

	9.6.3.	Data Plots - Test 110MASH4S19-02 (Test 4-12)	134
10.	Арр	endix B: Detail Drawings	143
11.	Арр	endix C: Quasi-static Push Test and Anchor Bolt Tensile Testing	149
11	.1.	Quasi-static Push Test	149
11	.2.	Anchor Bolt Tensile Testing	150
12.	Арр	endix D: Material Properties and Certifications	153
13.	Refe	erences	191
14.	App	endix E: Finite Element Modeling Report	192
14	.1.	Objective	192
14	.2.	ST-75 Bridge Rail Model	192
14	.3.	Vehicle Models	193
	14.3.1.	2270P Truck	193
	14.3.2.	1100C Car	194
	14.3.3.	10000S Single-Unit Van Truck	194
14	.4.	Comparing Modeling Data to Real World Data	195
	14.4.1.	2270P Truck	195
	14.4.2.	TRAP Data Comparison	195
	14.4.3.	Visual Comparison	202
14	.5.	1100C Small Car	204
	14.5.1.	TRAP Data Comparison	204
	14.5.2.	Visual Comparison	211
14	.6.	10000S Single Unit Truck	212
	14.6.1.	TRAP Data Comparison	212
	14.6.2.	Visual Comparison	218
14	.7.	Conclusions	220
15.	Doci	ument Revision History	221

List of Figures Figure 2-1 ST-75 Cross-Section4 Figure 2-2 Top 12 Inches of Concrete Being Removed from Anchor Block5 Figure 2-3 Rebar and Strain Gauges in Place for Anchor Block Concrete Replacement and Deck Overhang5 Figure 2-8 Formwork and Rebar in Place for Simulated Deck Concrete Pour8 Figure 2-10 Bridge Rail Curb Concrete Pour9 Figure 2-11 Completed Bridge Rail9 Figure 4-11 MASH 4-11 Test Vehicle Rear16

Figure 4-19 MASH 4-12 Test Vehicle at Impact Point	21
Figure 4-20 MASH 4-12 Test Vehicle Ballast in Cargo Box	22
Figure 4-21 MASH 4-12 Test Vehicle Instrumentation Equipment in Cargo Box	22
Figure 4-22 MASH 4-12 Test Vehicle Front Shear Plate	23
Figure 4-23 MASH 4-12 Test Vehicle Ballast Mounting Plate	23
Figure 4-24 MASH 4-12 Test Vehicle Rear Shear Plate	24
Figure 5-1 Test Article Impact Area Pre-Test 4-10	25
Figure 5-2 Test Article Downstream of Impact Area Pre-Test 4-10	25
Figure 5-3 Test 4-10 Downstream Camera Impact View	27
Figure 5-4 Test 4-10 Upstream Camera Impact View	27
Figure 5-5 Test 4-10 Pan Camera Impact View	28
Figure 5-6 Test 4-10 Overview of Barrier Post-Test	28
Figure 5-7 Test 4-10 Vehicle Marks on ST-75 Impact Point Post-Test	29
Figure 5-8 Test 4-10 Post 4 Post-Test	29
Figure 5-9 Test 4-10 Downstream of Post 4 Post-Test	30
Figure 5-10 Test 4-10 Test Vehicle Damage (Right Side)	31
Figure 5-11 Test 4-10 Test Vehicle Damage (Rear Right)	31
Figure 5-12 Test 4-10 Test Vehicle Damage (Front Left)	32
Figure 5-13 Test 4-10 Test Vehicle Damage (Front Right)	32
Figure 5-14 Test 4-10 Test Vehicle Occupant Compartment Floorboard Deformation	33
Figure 5-15 Test 4-10 Test Vehicle Occupant Compartment Deformation (Front Seat Area)	33
Figure 5-16 Test 4-10 Test Vehicle Windshield Separation	34
Figure 5-17 Test 4-10 Test Vehicle Front Right Bumper and Bumper Support Member Deformation	34
Figure 5-18 Exit Box for Longitudinal Barriers (AASHTO, 2016)	36
Figure 6-1 Test 4-11 Critical Impact Point Pre-Test	38
Figure 6-2 Bridge Railing Downstream of Critical Impact Point Pre-Test	38
Figure 6-3 Test 4-11 Pan Camera Impact View	40
Figure 6-4 Test 4-11 Downstream Camera Impact View	40
Figure 6-5 Test 4-11 Upstream Impact View	41
Figure 6-6 Test 4-11 Vehicle Marks on ST-75 at Impact Point Post-Test	42
Figure 6-7 Test 4-11 Minor Concrete Spalling of Concrete Curb Post-Test	42
Figure 6-8 Test 4-11 ST-75 Bridge Rail Post-Test Downstream of Impact Post-Test	43

Figure 6-9 Test 4-11 Test Vehicle Damage (Rear Right)	44
Figure 6-10 Test 4-11 Test Vehicle Damage (Front Right)	44
Figure 6-11 Test 4-11 Test Vehicle Damage (Left Side)	45
Figure 6-12 Test 4-11 Test Vehicle Damage (Front)	45
Figure 6-13 Test 4-11 Test Vehicle Damage Front Passenger Floorpan (Occupant Compartment	
Deformation)	46
Figure 6-14 Test 4-11 Test Vehicle Front Right Wheel Deformation	46
Figure 6-15 Test 4-11 Test Vehicle Front Right Suspension (with wheel removed)	47
Figure 6-16 Test 4-11 Test Vehicle Front Right Suspension Lower Control Arm Connector Fracture.	47
Figure 6-17 Exit Box for Longitudinal Barriers (AASHTO, 2016)	49
Figure 7-1 Test 4-12 ST-75 Impact Area with Checkered Tape at Impact Point Pre-Test	51
Figure 7-2 Test 4-12 ST-75 Post 5 Downstream of Impact Point Pre-Test	51
Figure 7-3 Test 4-12 ST-75 Post 5 Downstream of Impact Point Pre-Test	52
Figure 7-4 Test 4-12 ST-75 Post 6 Downstream of Impact Point Pre-Test	52
Figure 7-5 Test 4-12 Across Camera Impact View	54
Figure 7-6 Test 4-12 Downstream Camera Impact View	54
Figure 7-7 Test 4-12 Upstream Camera Impact View	55
Figure 7-8 Test 4-12 Vehicle Marks on ST-75 Impact Point Between Posts 3 and 4 Post-Test	56
Figure 7-9 Test 4-12 Vehicle Marks on ST-75 at Post 4 Downstream of Impact Point Post-Test	57
Figure 7-10 Test 4-12 ST-75 Post 5 Downstream of Impact Point Post-Test	57
Figure 7-11 Test 4-12 ST-75 Post 3 Post-Test	58
Figure 7-12 Test 4-12 Post 3 Bent Bottom Plate Close Up Post-Test	58
Figure 7-13 Test 4-12 Post 4 Bent Bottom Plate Close Up Post-Test	59
Figure 7-14 Test 4-12 Test Vehicle Top Post-Test	60
Figure 7-15 MASH 4-12 Test Vehicle Undercarriage After Impact	60
Figure 7-16 MASH 4-12 Test Vehicle Ballast After Impact	61
Figure 7-17 MASH 4-12 Test Vehicle Front Undercarriage and Suspension After Impact	61
Figure 7-18 MASH 4-12 Test Vehicle Undercarriage and Suspension After Impact	62
Figure 7-19 Test 4-12 Test Vehicle (Impact, Right Side) Post-Test (righted)	62
Figure 7-20 Test 4-12 Test Vehicle (Front Right) Post-Test (righted)	63
Figure 7-21 Test 4-12 Test Vehicle (Front) Post-Test (righted)	63
Figure 7-22 Test 4-12 Test Vehicle (Left Side) Post-Test (righted)	64

Figure 7-23 Test 4-12 Test Vehicle (Front Left Side) Post-Test (righted)	64
Figure 7-24 Test 4-12 Test Vehicle (Rear Left) Post-Test (righted)	65
Figure 7-25 Test 4-12 Test Vehicle (Rear) Post-Test (righted)	65
Figure 7-26 Test 4-12 Test Vehicle (Front Right) Post-Test (righted)	66
Figure 7-27 Test 4-12 Test Vehicle Occupant Compartment Deformation Post-Test	66
Figure 7-28 Exit Box for Longitudinal Barriers (AASHTO, 2016)	68
Figure 9-1 Data Brick III's installed for Test 4-10	71
Figure 9-2 Test 4-10 Vehicle Dummy and Instrumentation	72
Figure 9-3 Test 4-11 Vehicle Instrumentation	73
Figure 9-4 Test 4-11 Vehicle Instrumentation	73
Figure 9-5 Test 4-11 Accelerometers and Angular Rate Sensors	74
Figure 9-6 Test 4-12 Accelerometers and Angular Rate Sensors in Cab	75
Figure 9-7 Test 4-12 Accelerometers, Angular Rate Sensors, and other Instrumentation	in Cargo Box 75
Figure 9-8 Typical Guidance System Layout	76
Figure 9-9 Guide Arm Releasing from Test Vehicle	77
Figure 9-10 Guide Arm Released from Vehicle	77
Figure 9-11 High-Speed Video Camera Locations (Not to Scale)	78
Figure 9-12 Speed Trap Tape Layout	84
Figure 9-13 Test 4-10 TRAP Summary Sheet (DataBrick 3)	114
Figure 9-14 Test 4-10 Longitudinal Acceleration (Databrick 3)	115
Figure 9-15 Test 4-10 Lateral Acceleration (Databrick 3)	115
Figure 9-16 Test 4-10 Vertical Acceleration (Databrick 3)	116
Figure 9-17 Test 4-10 Roll, Pitch, and Yaw Rates (DataBrick 3)	116
Figure 9-18 Test 4-10 Roll, Pitch, and Yaw Angles (DataBrick 3)	117
Figure 9-19 Test 4-10 Acceleration Severity Index (DataBrick 3)	117
Figure 9-20 Test 4-10 TRAP Summary Sheet (SLICE 656)	118
Figure 9-21 Test 4-10 Longitudinal Acceleration (SLICE 656)	119
Figure 9-22 Test 4-10 Lateral Acceleration (SLICE 656)	119
Figure 9-23 Test 4-10 Vertical Acceleration (SLICE 656)	120
Figure 9-24 Test 4-10 Roll, Pitch, and Yaw Rates (SLICE 656)	120
Figure 9-25 Test 4-10 Roll, Pitch, and Yaw Angles (SLICE 656)	121
Figure 9-26 Test 4-10 Acceleration Severity Index (SLICE 656)	121

Figure 9-27 Test 4-10 TRAP Summary Sheet (SLICE 659)	122
Figure 9-28 Test 4-10 Longitudinal Acceleration (SLICE 659)	123
Figure 9-29 Test 4-10 Lateral Acceleration (SLICE 659)	123
Figure 9-30 Test 4-10 Vertical Acceleration (SLICE 659)	124
Figure 9-31 Test 4-10 Roll, Pitch, and Yaw Rates (SLICE 659)	124
Figure 9-32 Test 4-10 Roll, Pitch, and Yaw Angles (SLICE 659)	125
Figure 9-33 Test 4-10 Acceleration Severity Index (SLICE 659)	125
Figure 9-34 Test 4-11 TRAP Summary Sheet (DataBrick 3)	126
Figure 9-35 Test 4-11 Longitudinal Acceleration (DataBrick 3)	127
Figure 9-36 Test 4-11 Lateral Acceleration (DataBrick 3)	127
Figure 9-37 Test 4-11 Vertical Acceleration (DataBrick 3)	128
Figure 9-38 Test 4-11 Roll, Pitch, and Yaw Rates (DataBrick 3)	128
Figure 9-39 Test 4-11 Roll, Pitch, and Yaw Angles (DataBrick 3)	129
Figure 9-40 Test 4-11 Acceleration Severity Index (DataBrick 3)	129
Figure 9-41 Test 4-11 TRAP Summary Sheet (SLICE 656)	130
Figure 9-42 Test 4-11 Longitudinal Acceleration (SLICE 656)	131
Figure 9-43 Test 4-11 Lateral Acceleration (SLICE 656)	131
Figure 9-44 Test 4-11 Vertical Acceleration (SLICE 656)	132
Figure 9-45 Test 4-11 Roll, Pitch, and Yaw Rates (SLICE 656)	132
Figure 9-46 Test 4-11 Roll, Pitch, and Yaw Angles (SLICE 656)	133
Figure 9-47 Test 4-11 Acceleration Severity Index (SLICE 656)	133
Figure 9-48 Test 4-12 Longitudinal Acceleration Inside Cab (Databrick 3)	134
Figure 9-49 Test 4-12 Lateral Acceleration Inside Cab (Databrick 3)	134
Figure 9-50 Test 4-12 Vertical Acceleration Inside Cab (Databrick 3)	135
Figure 9-51 Test 4-12 Roll, Pitch, and Yaw Rates Inside Cab (Databrick 3)	135
Figure 9-52 Test 4-12 Roll, Pitch, and Yaw Angles Inside Cab (Databrick 3)	136
Figure 9-53 Test 4-12 Longitudinal Acceleration Inside Cargo Box (SLICE 656)	137
Figure 9-54 Test 4-12 Longitudinal Acceleration Inside Cargo Box (SLICE 656)	137
Figure 9-55 Test 4-12 Vertical Acceleration Inside Cargo Box (SLICE 656)	138
Figure 9-56 Test 4-12 Roll, Pitch, and Yaw Rates Inside Cargo Box (SLICE 656)	138
Figure 9-57 Test 4-12 Roll, Pitch, and Yaw Angles Inside Cargo Box (SLICE 656)	139
Figure 9-58 Test 4-12 Longitudinal Acceleration Inside Cargo Box (SLICE 659)	140

Figure 9-59 Test 4-12 Longitudinal Acceleration Inside Cargo Box (SLICE 659)	140
Figure 9-60 Test 4-12 Vertical Acceleration Inside Cargo Box (SLICE 659)	141
Figure 9-61 Test 4-12 Roll, Pitch, and Yaw Rates Inside Cargo Box (SLICE 659)	141
Figure 9-62 Test 4-12 Roll, Pitch, and Yaw Angles Inside Cargo Box (SLICE 659)	142
Figure 10-1 ST-75 Test Article Reaction Block Details	144
Figure 10-2 ST-75 Test Article Reaction Slab Details	145
Figure 10-3 ST-75 Test Article Details 1	146
Figure 10-4 ST-75 Test Article Details 2	147
Figure 10-5 ST-75 Test Article Details 3	148
Figure 11-1 Load vs Displacement Test Setup and Curve for Quasi-static Push Test at Post 6	149
Figure 11-2 Post 3 Anchor Bolts with Post Removed	150
Figure 11-3 Post 4 Anchor Bolts with Post Removed	151
Figure 11-4 Post 6 Anchor Bolts with Post Removed	151
Figure 11-5 Tensile Test (ASTM A449) Results for Anchor Bolts at Posts 3 and 4 (Post Crash Test), a	and
Post 6 (Post Quasistatic Push Test)	152
Figure 11-6 Summary of Tensile Test Results in English Units	152
Figure 14-1 ST-75 Bridge Rail CAD Model Front	192
Figure 14-2 – ST-75 Bridge Rail CAD Model Profile	192
Figure 14-3 – ST-75 Bridge Rail FE Shell Model Profile	192
Figure 14-4 – Typical Section and Dimension for the ST-75 Bridge Rail	193
Figure 14-5 2270P Truck	193
Figure 14-6 1100C Car	194
Figure 14-7 10000S Single-Unit Van Truck	195
Figure 14-8 Graph of Roll Angles for Full Scale and FE Model TRAP Results for 2270P Truck	197
Figure 14-9 Graph of Pitch Angles for Full Scale and FE Model TRAP Results for 2270P Truck	197
Figure 14-10 Graph of Yaw Angles for Full Scale and FE Model TRAP Results for 2270P Truck	198
Figure 14-11 Graph of Roll Rates for Full Scale and FE Model TRAP Results for 2270P Truck	198
Figure 14-12 Graph of Pitch Rates for Full Scale and FE Model TRAP Results for 2270P Truck	199
Figure 14-13 Graph of Yaw Rates for Full Scale and FE Model TRAP Results for 2270P Truck	199
Figure 14-14 Graph of Longitudinal Accelerations for Full Scale and FE Model TRAP Results for 22	70P
Truck	200

Figure 14-15	Graph of Lateral Accelerations for Full Scale and FE Model TRAP Results for 2270P Truck
	200
Figure 14-16	Graph of Vertical Accelerations for Full Scale and FE Model TRAP Results for 2270P Truck
	202
Figure 14-17	Graph of Longitudinal Velocities for Full Scale and FE Model TRAP Results for 2270P Truck
	202
Figure 14-18	Graph of Lateral Velocities for Full Scale and FE Model TRAP Results for 2270P Truck 202
Figure 14-19	Visual Comparison of Actual Crash Test and Simulations for 2270P Truck203
Figure 14-20	Graph of Roll Angles for Full Scale and FE Model TRAP Results for 1100C Car205
Figure 14-21	Graph of Pitch Angles for Full Scale and FE Model TRAP Results for 1100C Car206
Figure 14-22	Graph of Yaw Angles for Full Scale and FE Model TRAP Results for 1100C Car206
Figure 14-23	Graph of Roll Rates for Full Scale and FE Model TRAP Results for 1100C Car207
Figure 14-24	Graph of Pitch Rates for Full Scale and FE Model TRAP Results for 1100C Car207
Figure 14-25	Graph of Yaw Rates for Full Scale and FE Model TRAP Results for 1100C Car208
Figure 14-26	Graph of Longitudinal Accelerations for Full Scale and FE Model TRAP Results for 1100C Ca
Figure 14-27	Graph of Lateral Accelerations for Full Scale and FE Model TRAP Results for 1100C Car 209
Figure 14-28	Graph of Vertical Accelerations for Full Scale and FE Model TRAP Results for 1100C Car. 200
Figure 14-29	Graph of Longitudinal Velocity for Full Scale and FE Model TRAP Results for 1100C Car 210
Figure 14-30	Graph of Lateral Velocity for Full Scale and FE Model TRAP Results for 1100C Car210
Figure 14-31	Visual Comparison of Actual Crash Test and Simulations for 1100C Small Car21
Figure 14-32	Graph of Roll Angles for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck
	213
	Graph of Pitch Angles for Full Scale and FE Model TRAP Results for 10000S Single Unit
Truck	213
Figure 14-34	Graph of Yaw Angles for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck
	214
Figure 14-35	Graph of Roll Rates for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck
	214
Figure 14-36	Graph of Pitch Rates for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck
	215

Figure 14-37 Graph of Yaw Rates for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck
215
Figure 14-38 Graph of Longitudinal Accelerations for Full Scale and FE Model TRAP Results for 10000S
Single Unit Truck
Figure 14-39 Graph of Lateral Accelerations for Full Scale and FE Model TRAP Results for 10000S Single
Unit Truck
Figure 14-40 Graph of Vertical Accelerations for Full Scale and FE Model TRAP Results for 10000S Single
Unit Truck
Figure 14-41 Graph of Longitudinal Velocity for Full Scale and FE Model TRAP Results for 10000S Single
Unit Truck
Figure 14-42 Graph of Lateral Velocity for Full Scale and FE Model TRAP Results for 10000S Single Unit
Truck
Figure 14-43 Visual Comparison of Actual Crash Test and Simulations for 10000S Single Unit Truck 219

List of Tables Table 6-3 110MASH4P18-02 Assessment Summary......50 Table 7-1 Test 110MASH4S19-02 Test Sequence of Events53 Table 9-1 110MASH4C19-01 Camera Types and Location Coordinates78 Table 9-3 110MASH4S19-02 Camera Types and Location Coordinates79 Table 9-6 Test 110MASH4S19-02 Accelerometer and Angular Rate Sensor Specifications83 Table 9-8 Test 4-10 CG Calculation: Curb Weight86 Table 9-11 Test 4-10 Interior Floor and Transmission Tunnel Pre, Post, and Deformation Measurements89 Table 9-12 Test 4-10 Interior Side Front Panel and Roof Pre, Post, and Deformation Measurements90 Table 9-13 Test 4-10 Interior Windshield and Dashboard Pre, Post, and Deformation Measurements....91 Table 9-14 Test 4-10 Interior Side Pre, Post, and Deformation Measurements92 Table 9-16 Test 4-11 CG Calculation: Curb Weight.......94

Table 9-22 Test 4-11 Interior Floor Pre, Post, and Deformation Measurements	101
Table 9-23 Test 4-11 Interior Dash and Roof Pre, Post, and Deformation Measurements	102
Table 9-24 Test 4-11 Interior Door Pre, Post, and Deformation Measurements	103
Table 9-25 Test 4-12 Exterior Vehicle Measurements	104
Table 9-26 Test 4-12 CG Calculation: Curb Weight	105
Table 9-27 Test 4-12 CG Calculation: Test Inertial Weight	106
Table 9-28 Test 4-12 CG Calculation: Gross Static Weight	107
Table 9-29 Test 4-10 Interior Floor and Transmission Tunnel Pre, Post, and Deformation Measurement	ents
	108
Table 9-30 Test 4-10 Interior Roof Pre, Post, and Deformation Measurements	110
Table 9-31 Test 4-10 Interior Windshield and Dashboard Pre, Post, and Deformation Measurements	111
Table 9-32 Test 4-10 Side Pre, Post, and Deformation Measurements	112
Table 14-1 Center of Gravity for 2270P Truck Test Vehicle and LS-Dyna Finite Element Model	195
Table 14-2 TRAP Results Data Comparison for Full Scale and FE Models for 2270P Truck (Absolute	
Values)	196
Table 14-3 Center of Gravity for 1100C Car Test Vehicle and LS-Dyna Finite Element Model	204
Table 14-4 TRAP Data Comparison for Full Scale and FE Model TRAP Results for 1100C Car (Absolute	9
Values)	204
Table 14-5 Center of Gravity for 10000S Single Unit Truck and LS-Dyna Finite Element Model	212
Table 14-6 TRAP Data Comparison for Full Scale and FE Model TRAP Results for 10000S Single Unit	Truck
(Absolute Values)	212

California Department of Transportation Report No. FHWA/CA22-3033 FINAL 8/4/2022

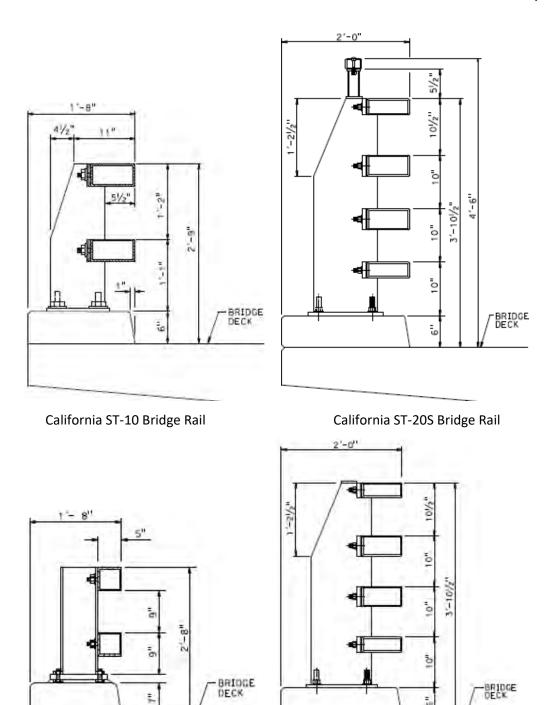
THIS PAGE WAS LEFT INTENTIONALLY BLANK

1. Introduction

1.1. Problem

In 2016, the California Department of Transportation (Caltrans) established a timeline for the implementation of the Manual for Assessing Safety Hardware (MASH) (AASHTO, 2016). MASH is a testing standard for evaluating the safety of roadside hardware. The Caltrans timeline was consistent with the 2015 American Association of State Highway Transportation Officials (AASHTO) and Federal Highway Administration (FHWA) Joint Implementation Agreement. The agreement specifies that new installations of roadside safety hardware comply with MASH 2016 for Federal Aid Eligibility. Caltrans adopted that all bridge rail projects that include permanent and full bridge rail replacements advertised on or after October 31, 2019 meet MASH criteria. Caltrans currently has no MASH-compliant top mounted bridge rails.

1.2. Objective


The objective of this research project is to construct a test section of the CA ST-75 and then conduct the required crash tests for MASH 2016 Test Level 4 (TL-4) for longitudinal barriers.

1.3. Background

Due to the recent adoption of MASH, few steel post and beam bridge rails have been tested for MASH compliance. Caltrans has used the ST-20S and ST-70 since the mid-2000s as steel post-and-beam bridge railings. The ST-70 Bridge Rail has the same details as California ST-20S, except the CA ST-70 does not have the bicycle railing mounted on the top. The ST-20 was tested in 2003 by Caltrans and meets TL-4 crash test requirements of National Cooperative Highway Research Committee Report 350 guidelines (Report 350) (NCHRP, 1993). Crash testing for the CA ST-20 showed that there was no vehicular contact with the railing or post for the top bicycle railing. To improve performance, the tested version of the ST-20 was modified to lessen the level of snagging demonstrated in Test 651 (4-11) by extending the rail element further away from the post by increasing the rail width an additional 50 mm (2 in) and increasing the curb width by the same amount. The tested version of the ST-20 was modified to improve performance and renamed the ST-20S. This modified version was renamed the ST-20S. The July 2019 Caltrans "MASH Implementation for California Bridge Railings" identified the ST-75 bridge rail as design meant to replace both the ST-20S and the ST-70.

Two additional steel post and beam bridge rails, the California ST-10 and ST-30, were also identified to be replaced by the ST-75. In 2013 Caltrans tested the 838 mm (33 in) high ST-10 for MASH compliance. Test 3-11, the 2270P pickup test, resulted in the test vehicle rolling onto its side, exceeding the maximum roll angle of 75 degrees and failing the test. This rolling behavior and resulting failure was possibly an anomaly or outlier based on other 3-11 tests on similar height and configuration bridge rails (Roger Bligh, 2017).

During the ST-75 project, a taller steel post and beam bridge rail was developed, the ST-76. The ST-76 is identical to the ST-75 except the curb is 12 in tall instead of 6 in, resulting in a vehicular rail height of 42 in and overall height of 48 rather than 36 in and 42 in, respectively. Due to similarities of the two rails and crash test performance of the ST-75, no crash testing is currently planned for the ST-76. Although not covered in this project report, the ST-76 is being evaluated for MASH compliance by using the results of the ST-75 testing.

California ST-30 Bridge Rail

California ST-70 Bridge Rail

Figure 1-1 Existing Caltrans Steel Post and Beam Bridge Rails (Caltrans, 2019)

1.4. Literature Search

A literature and product search were conducted prior to project initiation related to MASH TL-4 steel post and beam bridge rails. The results of the search concluded that MASH testing had not been conducted by the roadside safety community on a bridge rail similar enough to the ST-75 that would eliminate the need for all crash testing.

1.5. Scope

The full MASH 2016 TL-4 test matrix for longitudinal barriers requires three full-scale crash tests: a small car impacting at 100 kph (62 mph) and 25°, a pickup impacting also at 100 kph (62 mph) and 25°, and a single-unit truck impacting at 90 kph (56 mph) and 15°. All three tests were planned to be performed and evaluated in accordance with MASH 2016 TL- 4 evaluation criteria for longitudinal barriers. For this testing, the ST-75 Bridge Rail was constructed at the Caltrans crash testing facility following Caltrans construction standards.

2. Test Article Details

2.1. Barrier Design

The ST-75 bridge rail was designed to be a MASH compliant replacement for two similar Caltrans steel post and beam bridge rails: the ST-20S and ST-70. The design and load evaluation were completed by Caltrans Division of Engineering Services, Structures and Engineering Services. The design of the ST-75 focused on the structural integrity of the barriers subject to MASH TL-4 loading in compliance with 2012, Sixth Edition, AASHTO LRFD Bridge Design Specification with California Amendments. The three barrier components (Rail, Post, & Curb) and the deck overhang were separately evaluated against flexural, shear, and torsional demands under different limit states in accordance with AASHTO LRFD with California Amendments. In addition to the hand calculations, a finite element analysis study was conducted using the software CSiBridge in order to determine the demands on each component. Strengths and demands of the rail, post, and curb were then assessed under Extreme II Limit State, and the overhang under Extreme II and Strength I Limit State. For comparison and informational reasons, LS-Dyna simulations for the MASH TL-4 tests for longitudinal barriers are compared to the real-world crash tests. The results are shown in a separate report included in Appendix E: Finite Element Modeling Report of this report.

The design consists of a steel railing and posts mounted on a concrete curb that is 914 mm (36 in) high to the top of the traffic railing and 1067 mm (42 in) high to the top of the bicycle rail. The ST-75 posts are spaced 3 m (10 ft) apart. Each post is anchored to the bridge deck using anchor bolts and anchor bars (see cross-section below). The detail sheets, which were used to construct the test article, are shown in the Appendix (Figure 10-1 through Figure 10-5). The material design strengths are as follows (C = Compressive Strength, T = Tensile Strength): Concrete, 24.8 Mpa (3.6 ksi) (C), reinforcing bars 413.7 Mpa (60 ksi) (T), structural steel posts 248.2 Mpa (36 ksi) (T), and structural steel rails 317.2 Mpa (46 ksi) (T).

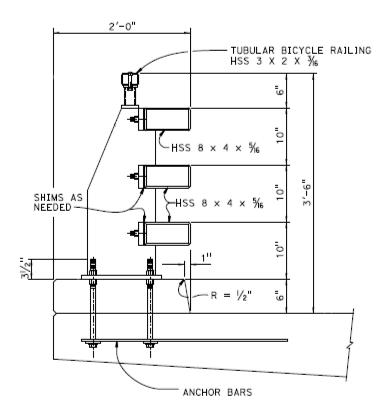


Figure 2-1 ST-75 Cross-Section

2.2. Construction

A section of the ST-75 bridge rail, 29 m (94 ft) in length, was constructed in 2018 at the Caltrans Dynamic Test Facility. The upstream 21 m (70 ft) was installed on a simulated bridge deck. To reduce cost, the remaining 7 m (24 ft) was installed on a newly constructed slab foundation on the downstream side where vehicle impact loading would not occur or would be minimal. The new simulated bridge deck consisted of an overhang rigidly attached to a Portland Cement Concrete anchor block that was constructed for a previous project. To ensure the new overhang (bridge deck) was adequately secured to the anchor block, the top 305 mm (12 in) of anchor block were removed to allow for the addition of new deck reinforcing steel (rebar). During construction, strain gauges were installed at strategic locations in the deck, curb and post anchor bolts so that loading during impact could be determined.

Construction was completed in different stages. First, the existing simulated bridge deck and top 305 mm (12 in) of concrete of the existing anchor block were removed. The concrete slab foundation for the downstream end was then constructed, leaving rebar and anchor bolts exposed for future construction of the concrete curb and installation of the ST-75 steel bridge rail. Then, after addition of new rebar for the ST-75 bridge rail, the next concrete pour was to repair the top 305 mm (12 in) of the anchor block and construct the new bridge deck, again leaving rebar and anchor bolts exposed for future construction of the concrete curb and installation of the ST-75 steel bridge rail. Each concrete pour was sampled and cast into standard 152 mm x 305 mm (6 in x 12 in) cylinders for testing. The minimum 28-day concrete for any of the three concrete pours was 38 MPa (5,500 psi). A615 Grade 60 rebar with a tested yield strength of approximately 63 ksi (434 MPa) minimum was used for reinforcement. The ST-75 posts were A709 Grade

36 steel and the rails were A500 Grade B steel. Construction details can be found in the Appendix, Figure 10-1 through Figure 10-5. Concrete strength test results and material certifications can be found in the Appendix, Section 11.

Once adequate concrete strength was obtained, the ST-75 steel posts were mounted to the exposed anchor bolts. The tubular rail elements and bicycle rail were then added and connection adjustments were made to level and straighten barrier alignment. Construction photos are shown below.

Figure 2-2 Top 12 Inches of Concrete Being Removed from Anchor Block

Figure 2-3 Rebar and Strain Gauges in Place for Anchor Block Concrete Replacement and Deck Overhang



Figure 2-4 Uniaxial Strain Gauges and Cable Prior to Deck Pour

Figure 2-5 Rebar in Slab Footing for Downstream Section

Figure 2-6 Downstream Section on Slab Complete

Figure 2-7 Reaction Block and Deck Rebar in Place for Concrete Pour

Figure 2-8 Formwork and Rebar in Place for Simulated Deck Concrete Pour

Figure 2-9 Simulated Deck Concrete Pour Complete

Figure 2-10 Bridge Rail Curb Concrete Pour

Figure 2-11 Completed Bridge Rail

3. Test Requirements and Evaluation Criteria

3.1. Crash Test Matrix

MASH Test Level 4 for longitudinal barriers consists of three crash tests as follows:

- 1. A 1,100 kg (2,420 lbs.) small car at 100 kph (62 mph) and a 25° impact angle (MASH 2016 Test No. 4-10).
- 2. A 2,270 kg (5,000 lbs.) pickup truck at 100 kph (62 mph) and a 25° impact angle (MASH 2016 Test No. 4-11).
- 3. A 10,000 kg (22,000 lbs) single-unit truck at 90 kph (56 mph) and a 15° impact angle (MASH 2016 Test No. 4-12).

The objective of this project is to verify that the ST-75 Bridge Rail meets the evaluation criteria of MASH Test 4-10, 4-11, and 4-12.

3.2. Evaluation Criteria

The evaluation criteria for longitudinal barriers are those set forth in MASH 2016 Table 2-2. For Test 4-10 and 4-11 they are A, D, F, H, and I. For Test 4-12 they are: A, D, and G. Evaluation Criteria are explained later in Table 5-3.

4. Test Conditions

4.1. Test Facilities

Crash testing was conducted at the Caltrans Dynamic Test Facility in West Sacramento, California. The test area is a large, flat, asphalt concrete surface. At the time of testing, there were no obstructions nearby.

4.2. Test Vehicles

4.2.1.Test 4-10

The vehicle for Test 4-10 was a 2017 Nissan Versa S in good condition. The MASH 2016 1100C test vehicle for the ST-75 Bridge Rail was assigned test identification number 110MASH4C19-01. The vehicle was free of major body damage and not missing any structural parts. It was not modified in any way and had no standard equipment missing. The test inertial mass of 1084 kg (2389 lb) was within the recommended mass limits of MASH 2016. Test vehicle measurement sheets are shown in the appendix, Table 9-7 through Table 9-10. To achieve the desired impact speed, the vehicle was towed with a 2:1 mechanical advantage. A speed control device was installed in the tow vehicle, which limited the acceleration of the vehicle once the target impact speed was reached. The steering was accomplished by means of a guidance rail anchored to the ground and a guide arm attached to the vehicle wheel hub. Remote braking was possible at any time during the test via radio control. The vehicle was released from the guidance rail a short distance before impact. Photos of the test vehicle are shown in Figure 4-1 through Figure 4-6. See Appendix Figure 9-1 and Figure 9-2 for more information on vehicle equipment and instrumentation.

Figure 4-1 MASH 4-10 Test Vehicle Front Right

Figure 4-2 MASH 4-10 Test Vehicle Passenger Side

Figure 4-3 MASH 4-10 Test Vehicle Front

Figure 4-4 MASH 4-10 Test Vehicle Driver Side

Figure 4-5 MASH 4-10 Test Vehicle Rear

Figure 4-6 MASH 4-10 Test Vehicle at Impact Point

4.2.2. Test 4-11

The test vehicle for Test 4-11 was a 2018 Dodge RAM 1500 Quad Cab pickup. The MASH 2016 2270P test for the ST-75 Bridge Rail was assigned test identification number 110MASH4P18-02. The vehicle was free of major body damage and not missing any structural parts. It was not modified in any way and had no standard equipment missing. The test inertial mass of 2252 kg (4965 lb) was within the recommended mass limits of MASH 2016. The height of the vehicle center of gravity was 748 mm (29.4 inches) and was above the minimum recommended in MASH of 710 mm (28 inches). Test vehicle measurement sheets are shown in the appendix, Table 9-15 through Table 9-21. To achieve the desired impact speed, the vehicle was self-powered. A speed control device was installed in the vehicle to limit the acceleration of the vehicle once the target impact speed was reached. The steering was accomplished by means of a guidance rail anchored to the ground and a guide arm attached to the vehicle wheel hub. The electric power steering system was de-energized prior to testing to reduce steering harmonics and improve lateral impact point accuracy. Remote braking was possible at any time during the test via radio control. The vehicle was released from the guidance rail and power to the engine was killed a short distance before impact. Photos of the test vehicle are shown in Figure 4-7 through Figure 4-13. See Appendix Figure 9-3 through Figure 9-5 for more information on vehicle equipment and instrumentation.

Figure 4-7 MASH 4-11 Test Vehicle Front Right

Figure 4-8 MASH 4-11 Test Vehicle Passenger Side

Figure 4-9 MASH 4-11 Test Vehicle Front

Figure 4-10 MASH 4-11 Test Vehicle Driver Side

Figure 4-11 MASH 4-11 Test Vehicle Rear

Figure 4-12 MASH 4-11 Test Vehicle Ballast

Figure 4-13 MASH 4-11 Test Vehicle at Impact Point

4.2.3. Test 4-12

The test vehicle for Test 4-12 was a 2013 International 4300 SBA. The test vehicle complied with all MASH 2016 requirements for 10000S vehicles. The MASH 2016 10000S test for the ST-75 bridge rail was assigned test identification number 110MASH4S19-02. The vehicle was in good condition and not missing any standard equipment. The cargo box was strengthened according to Ford's 2005 Body Builder Layout Book to reduce the chance of it separating from the frame and reducing loading on the barrier during the test, Figure 4-22 and Figure 4-24. The curb weight of the vehicle was 6683 kg (14733 lb). With instrumentation, other equipment, and ballast installed, the test inertial mass was 10014 kg (22077 lb), which was within the recommended mass limits of MASH 2016. See Figure 4-20 for ballast in the cargo box. The ballast consisted of three 1.5 m by 1.5 m by 51 mm (5 ft by 5 ft by 2 in) steel plates placed on top of wood posts laying on the cargo bed. Each plate weighed approximately 907 kg (2000 lbs). They were mounted uniformly across the length and width of the cargo bed using 8 threaded rods through the bed to c-channel brackets under the bed. The wood posts were spliced to each other with steel plates and wood screws, and secured to the cargo bed with wood screws and angle brackets. The center of mass of the ballast was 1588 mm (62.5 in) from the ground, which was within MASH recommended limits of 1600 mm +/- 50 mm (63 in +/- 2 in). Test vehicle measurement sheets are shown in the appendix, Table 9-25 through Table 9-28. To achieve the desired impact speed, it was necessary to push the test vehicle with a Ford F-350 Dually in addition to its own self-power to get up to the target impact speed. The Ford F-350 Dually backed off the test vehicle about 213.4 m (700 ft) prior to impact. A speed control device was installed in the push vehicle, which limited the acceleration of the push vehicle once the target impact speed was reached. The speed governor of the test vehicle was reprogrammed to limit speed the maximum speed to 90.1 kph (56 mph). The steering was accomplished by means of a guidance rail anchored to the ground and a guide arm attached to the vehicle wheel hub. Remote braking was possible at any time during the test via radio control. The vehicle was released from the guidance rail and power to the engine was killed a short distance before impact. Photos of the test vehicle are shown in Figure 4-14 through Figure 4-24. See Appendix Figure 9-6 and Figure 9-7 for more information on vehicle equipment and instrumentation.

Figure 4-14 MASH 4-12 Test Vehicle Front Right

Figure 4-15 MASH 4-12 Test Vehicle Passenger Side

Figure 4-16 MASH 4-12 Test Vehicle Front

Figure 4-17 MASH 4-12 Test Vehicle Driver Side

Figure 4-18 MASH 4-12 Test Vehicle Rear

Figure 4-19 MASH 4-12 Test Vehicle at Impact Point

Figure 4-20 MASH 4-12 Test Vehicle Ballast in Cargo Box

Figure 4-21 MASH 4-12 Test Vehicle Instrumentation Equipment in Cargo Box

Figure 4-22 MASH 4-12 Test Vehicle Front Shear Plate

Figure 4-23 MASH 4-12 Test Vehicle Ballast Mounting Plate

Figure 4-24 MASH 4-12 Test Vehicle Rear Shear Plate

4.3. Test Documentation

The tests were documented through the use of still cameras, video cameras, high-definition high-speed digital video cameras, and both GMH Engineering Data Brick III and DTS SLICE data acquisition systems to record accelerations and angular rate changes. The impact phase of each crash test was recorded with five high-definition high-speed digital video cameras, a normal-speed DVC format video camera, digital SLR cameras and action cameras mounted inside and outside the test vehicle set to record video. The test vehicle and barrier were photographed before and after impact with the DVC format camera and a digital SLR camera.

For Tests 4-10 and 4-11, four sets of orthogonal accelerometers and angular rate sensors were mounted at the center of gravity of the test vehicles (as per MASH 2016 specifications) to measure lateral, longitudinal, and vertical accelerations, and roll, pitch, and yaw rates, respectively. The data was analyzed in Test Risk Assessment Program version 2.3.11 (TRAP) to determine the occupant impact velocities, ridedown accelerations, and maximum vehicle rotation. For test 4-12, two sets of accelerometers and angular rate sensors were mounted in the vehicle cab and two sets were mounted in the vehicle cargo box. TRAP was also used to determine 50 ms average accelerations and maximum vehicle rotation at the locations where the instruments were mounted (inside the cab and inside the cargo box). See Appendix Figure 9-1 through Figure 9-7 for more information on vehicle instrumentation and test documentation.

5. Test 110MASH4C19-01 (4-10)

5.1. Impact Description and Results

The Critical Impact Point selected was 3.6 ft (1.1 meters) upstream from the centerline of post 4, as recommended in Table 2-7 of MASH 2016 (AASHTO, 2016). The impact angle of 25° was set with a Total Station. The intended impact speed was 100 kph (62 mph).

Figure 5-1 Test Article Impact Area Pre-Test 4-10

Figure 5-2 Test Article Downstream of Impact Area Pre-Test 4-10

5.2. Test Description

The crash was performed in the late morning of April 11, 2019. According to the Sacramento Executive Station, weather conditions were as follows: cloudy, temperature approximately 63 deg F, and wind of

approximately 13 mph from the west-northwest (WNW). The vehicle was traveling approximately north-northeast (NNE).

The 1100C vehicle impacted the barrier at 102.1 kph (63.4 mph) and 25.0°. The vehicle impact point on the ST-75 bridge rail was approximately 1.3 m (4.2 ft) upstream of the centerline of post 4, which was about 180 mm (7 in) upstream of the Critical Impact Point. The vehicle was contained and smoothly redirected at an exit speed and angle of 79.8 kph (49.6 mph) and 7.7°, respectively. There was evidence that the passenger-side of the front bumper had snagged slightly on the edge of post 4 but it was not severe enough to cause excessively high ridedown accelerations, occupant impact velocities, or occupant compartment deformations. After exiting the bridge rail, the remote brakes were applied. The car came to a stop about 65 m (213 feet) downstream of and 17 m (56 feet) on the traffic side of the impact point. Still photos of the vehicle during the test are shown in Figure 5-3 through Figure 5-5. A detailed description of the sequential events is shown in the table below.

Table 5-1 Test 110MASH4C19-01 Test Sequence of Events

Time (s)	EVENT
0.000	Vehicle front-right bumper impacted the lower rail
0.002	Vehicle bumper begins to deform
0.012	Vehicle hood begins to deform
0.016	Vehicle grill begins to contact upper rail
~0.034	Vehicle passenger door contacts rails
~0.050	Vehicle begins to noticeably yaw and redirect, windshield begins to spider-crack
0.086	Surrogate Occupant head contacts passenger window
0.098	Passenger window shatters from door distortion
0.152	Vehicle is approximately parallel to rail face
0.160	Rear passenger taillight contacts top rail
0.168	Rear passenger taillight begins to shatter
~0.294	Vehicle exits test article with exit angle and speed of 7.7° and 79.8 kph (49.6 mph)

Figure 5-3 Test 4-10 Downstream Camera Impact View

Figure 5-4 Test 4-10 Upstream Camera Impact View

Figure 5-5 Test 4-10 Pan Camera Impact View

5.3. Barrier Damage

There was no significant damage to the barrier. The only damage was extremely minor surface scrapes and gouges of the steel rail. Barrier damage is shown in Figure 5-6 through Figure 5-9. The orange contact marks are from the front right tire. The green contact marks are from the rear right tire. Dynamic deflection of the bridge rail measured from overhead video was 15 mm (0.6 in). There was no permanent deflection. String potentiometer and strain gage data were collected during the test. They do not fall under the Scope of Accreditation but are available upon request.

Figure 5-6 Test 4-10 Overview of Barrier Post-Test

Figure 5-7 Test 4-10 Vehicle Marks on ST-75 Impact Point Post-Test

Figure 5-8 Test 4-10 Post 4 Post-Test

Figure 5-9 Test 4-10 Downstream of Post 4 Post-Test

5.4. Vehicle Damage

The 1100C front right corner, passenger's side, and front end of the test vehicle sustained damage during the impact. The entire length of the passenger side of the vehicle made contact with the barrier. The front passenger wheel was pushed back and partially torn off. The entire front bumper cover separated from the vehicle along with both headlights. The windshield spider-cracked and was pushed sideways about two inches, creating a separation at the driver's side "A" pillar. The passenger side front window was shattered and broken out due to door deformation. The remaining window glass was undamaged. The interior metal bumper, it's support bracket and connecting frame member were deformed, possibly from snagging slightly on the upstream vertical member of post 4. The hood and front right door and front fender were severely damaged. The airbags did not deploy because the vehicle was towed and there was no power to the airbag system. The maximum amount of passenger compartment deformation measured by known points was 125 mm (4.9 in), which occurred at the toe pan/wheel well area of the floorboard. All interior deformation measurements are shown in Table 9-11 through Table 9-14.

Figure 5-10 Test 4-10 Test Vehicle Damage (Right Side)

Figure 5-11 Test 4-10 Test Vehicle Damage (Rear Right)

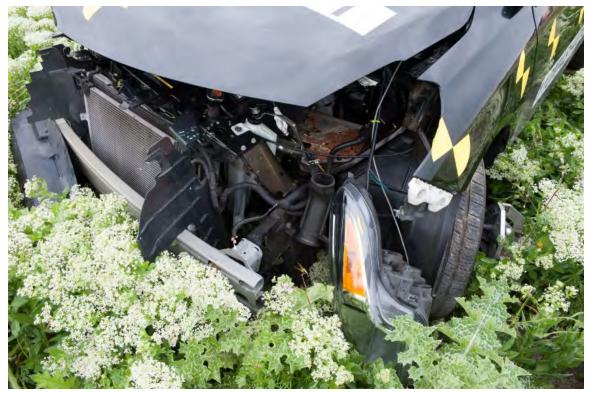


Figure 5-12 Test 4-10 Test Vehicle Damage (Front Left)

Figure 5-13 Test 4-10 Test Vehicle Damage (Front Right)

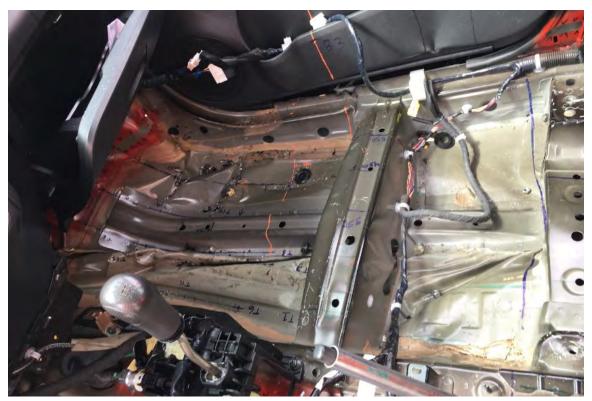


Figure 5-14 Test 4-10 Test Vehicle Occupant Compartment Floorboard Deformation

Figure 5-15 Test 4-10 Test Vehicle Occupant Compartment Deformation (Front Seat Area)

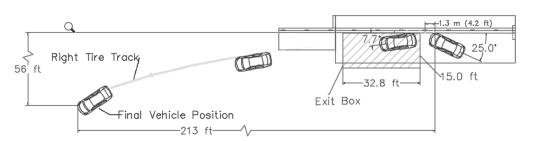
Figure 5-16 Test 4-10 Test Vehicle Windshield Separation

Figure 5-17 Test 4-10 Test Vehicle Front Right Bumper and Bumper Support Member Deformation

Table 5-2 Test 110MASH4C19-01 Test Data Summary Sheet

0.042 sec. [Frame 295] 0.084 sec. [Frame 316]

0.168 sec. [Frame 358] 0.210 sec. [Frame 379] 0.252 sec. [Frame 400] 0.294 sec. [Frame 421]



0.126 sec. [Frame 337]

36"
١

Test Agency	California, Department of	
	Transportation	
Test Number	110MASH4C19-01	
Test Designation		
Date	4/11/2019	
Test Article		
Total Length	_100 ft (30.5 m)	
Key Elements – Barrier		
 Description 	CA ST-75 Bridge Rail	
Base Width	24 in (610 mm)	

•	Base Width	24 in (610 mm)
•	Height	36 in (910 mm)
Test Veh	iicle	

•	Designation/Make/Model	1100C / 2017 Nissan Versa
•	Curb	2344 lb (1063 kg)
•	Test Inertial	2389 lb (1084 kg)
•	Gross Static	2568 lb (1165 kg)

Impact Conditions

•	Speed	63.4 mph (102.1 kph)
_	AI -	2F 0°

•	Angle	25.0°

Location/Orientation 4.2 ft (1.3 m) upstream of middle of post 4

Impact Severity_____58 kip-ft (78 kJ)

Exit Conditions

•	Speed	49.6 mph (79.8 kph)
	A 1	¬ ¬ o

• Angle 7.7

Exit Box Criterion Pass

Post-impact Trajectory

Vehicle Stability______Satisfactory

Stopping Distance (from point of impact) Approx. 213 ft (64.9 m) downstream and 56 ft (17.0 m) laterally in front

Test Article Damage Minor scrapes

Test Article Deflections

•	Permanent Set	0.0 in (0 mm)
•	Dynamic	_0.6 in (15 mm)

Working Width 24.0 in (610 mm) at barrier base

Vehicle Damage

Moderate to Heavy VDS³ 01-RFQ-7, 01-RD-4, 03-RP-4,

		04-RBQ-3
•	CDC ⁴	01RRAK5, 03RDAS2
•	Maximum Deformation	Approx. 4.9 in (125 mm) at
		Floorboard/wheel well
•	Vehicle Snagging	Minor snagging of right side of
		front bumper on post 4
•	Vehicle Pocketing	None

Transducer Data

		1			
Evaluation Criteria		Transducer			MASH
		DataBrick	SLICE-	SLICE-	Limit
		327	656	659	Liiiii
		21.3	23.3	23.6	±40
OIV E+/c	Long.	(6.5)	(7.1)	(7.2)	(12.2)
Ft/s (m/s)		33.1	33.8	34.4	±40
(111/3)	Lat.	(10.1)	(10.3)	(10.5)	(12.2)
ORA	Long.	-3.4	-3.9	-3.8	±20.49
g's	Lat.	-9.9	-10.4	-10.4	±20.49
	Roll	5.7	5.5	6.3	±75
Max Angle Deg.	Pitch	-4.4	-4.5	-4.6	±75
DCB.	Yaw	-38.3	-39.7	-39.7	N/A
THIV – ft/s (m/s)		39.7	41.0	41.3	N/A
		(12.1)	(12.5)	(12.6)	14,71
PHD – g's		10.0	10.5	10.5	N/A
ASI		2.83	2.92	2.98	N/A

5.5. Discussion of Test Results

5.5.1. General Evaluation Methods

MASH 2016 recommends that crash test performance be assessed according to three evaluation factors: (1) structural adequacy, (2) occupant risk, and (3) post-impact vehicular response.

The structural adequacy and occupant risk associated with the ST-75 Bridge Rail were evaluated using evaluation criteria found in Tables 2.2A (Recommended Test Matrices for Longitudinal Barriers), 5.1A (Safety Evaluation Guidelines for Structural Adequacy), and 5.1B (Safety Evaluation Guidelines for Occupant Risk) of MASH 2016. The post-impact vehicular response was evaluated using Section 5.2.3 of MASH 2016.

5.5.2. Structural Adequacy

The structural adequacy of the ST-75 Bridge Rail was acceptable during Test 4-10.

Refer to Table 5-3 for the assessment summary of the safety evaluation criteria for the ST-75 Bridge Rail.

5.5.3. Occupant Risk

The occupant risk was acceptable. As mentioned previously, all interior deformation measurements were below the maximum MASH 2016 limits. All interior deformation measurements are shown in Table 9-11 through Table 9-14.

There was no occupant compartment penetration or potential for it. The occupant compartment was not compromised. The dummy head protruded slightly beyond the plane of the passenger side window when it was broken but did not show potential for striking any portion of the barrier. Occupant impact velocities and ridedown accelerations were below MASH 2016 limits. The yaw, pitch, and roll of the vehicle were within acceptable limits.

Refer to Table 5-3 for the assessment summary of the safety evaluation criteria for the ST-75 Bridge Rail.

5.5.4. Vehicle Trajectory

The vehicle trajectory was acceptable. The exit trajectory was within the exit box.

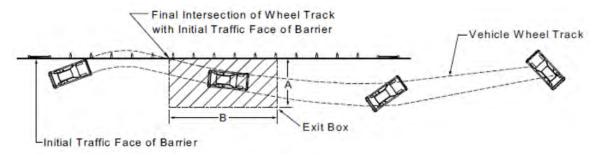


Figure 5-18 Exit Box for Longitudinal Barriers (AASHTO, 2016)

Refer to Table 5-3 for the assessment summary of the safety evaluation criteria for the ST-75 Bridge Rail.

Table 5-3 110MASH4C19-01 Assessment Summary

Evaluation Criteria			Test Results	Assessment	
Stru	ctural Adequacy				
A. Test article should contain and redirect the vehicle; the vehicle should not penetrate, underride, or override the installation, although controlled lateral deflection of the test article is acceptable.				The vehicle was contained and redirected smoothly.	PASS
	upant Risk				
D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or personnel in a work zone. Deformations of, or intrusions into, the occupant				The barrier did not detach any elements, fragments, and/or other debris. Deformations of, or intrusions into, the occupant compartment	PASS
	partment should no	ot exceed limits set	t forth in Section	were within MASH 2016 limits.	
	2 and Appendix E.				
F. T colli	upant Risk he vehicle should ro sion. The maximun eed 75 degrees.		_	The vehicle remained upright during and after the collision.	PASS
Occupant Risk H. Occupant Impact Velocities (OIV) (see Appendix A, Section A5.2.2 for calculation procedure) should satisfy the following limits:			DAS Long. ft/sec (m/s) DB 327: 21.3 (6.5) SLICE 656: 23.3 (7.1) SLICE 659: 23.6 (7.2)	PASS	
	Occupant Impact	Velocity Limits, ft/s	s (m/s)	DAS Lat. ft/sec (m/s)	
	Component	Preferred	Maximum	DB 327: 33.1 (10.1)	
	Longitudinal and Lateral	30 ft/s	40 ft/s	SLICE 656: 33.8 (10.3) SLICE 659: 34.4 (10.5)	
Occupant Risk I. The occupant ridedown acceleration (see Appendix A, Section A5.3 for calculation procedure) should satisfy the following limits: Occupant Ridedown Acceleration Limits (G) Component Preferred Maximum Longitudinal and Lateral 15.0 G 20.49 G			DAS Long. G Lat. G DB 327: -3.4 -9.9 SLICE 656: -3.9 -10.4 SLICE 659: -3.8 -10.4	PASS	
Veh	icle Trajectory				
It is preferable that the vehicle be smoothly redirected, and this is typically indicated when the vehicle leaves the barrier within the "exit box". The concept of the exit box is defined by the initial traffic face of the barrier and a line parallel to the initial traffic face of the barrier, at a distance A plus the width of the vehicle plus 16 percent of the length of the vehicle, starting at the final intersection (break) of the wheel track with the initial traffic face of the barrier for a distance of B. All wheel tracks of the vehicle should not cross the parallel line within the distance B.			A = 15.0 ft (4.57 m) B = 32.8 ft (10 m)	PASS	

6. Test 110MASH4P18-02 (4-11)

6.1. Impact Description and Results

The Critical Impact Point selected was 1.3 meters (4.3 ft) from the centerline of post 5, as recommended in Table 2-7 of MASH 2016 (AASHTO, 2016). The impact angle of 25° was set with a Total Station. The intended impact speed was 100 kph (62 mph).

Figure 6-1 Test 4-11 Critical Impact Point Pre-Test

Figure 6-2 Bridge Railing Downstream of Critical Impact Point Pre-Test

6.2. Test Description

The crash was performed the afternoon of September 12, 2018. According to the Sacramento Executive Station, weather conditions were as follows: cloudy, temperature approximately 74 deg F, and wind of approximately 5 mph from the southwest (SW). The vehicle was traveling approximately north-northeast (NNE).

The 2270P vehicle impacted the barrier at 102.0 kph (63.4 mph) and angle of 26.3°. The vehicle impact point on the ST-75 Bridge Rail was approximately 1.6 meters (5.3 ft) upstream from the centerline of post 5, which was 0.3 m (12 inches) upstream of the Critical Impact Point. The vehicle was contained and smoothly redirected with an exit speed and angle of 86 kph (54 mph) and 6°, respectively. After exiting the bridge rail, the remote brakes were applied. The vehicle came to a stop about 66.8 m (219 ft) downstream and 12.5 m (41 ft) on the traffic side of the impact point. Still photos of the vehicle during the test are shown in Figure 6-3 through Figure 6-5. A detailed description of the sequential events is shown in the table below.

Table 6-1 Test 110MASH4P18-02 Test Sequence of Events

Time (s)	EVENT
0.000	Vehicle front-right bumper impacted the middle rail
0.002	Vehicle bumper begins to deform
0.004	Vehicle hood begins to override top rail
0.030	Vehicle hood contacts handrail
~0.036	Vehicle hood begins to deform
0.038	Front passenger door impacts rail
0.046	Vehicle begins to redirect
0.048	Top of front passenger door begins to deform and bend outward
0.058	Passenger side airbag begins to deploy
0.060	Front grill begins to detach from vehicle
0.068	Vehicle hood is at maximum override
0.158	Vehicle is approximately parallel to rail face
0.168	Rear passenger taillight contacts top rail and begins to shatter
0.300	Vehicle exits test article with exit angle and speed of 6° and 86 kph (54 mph)

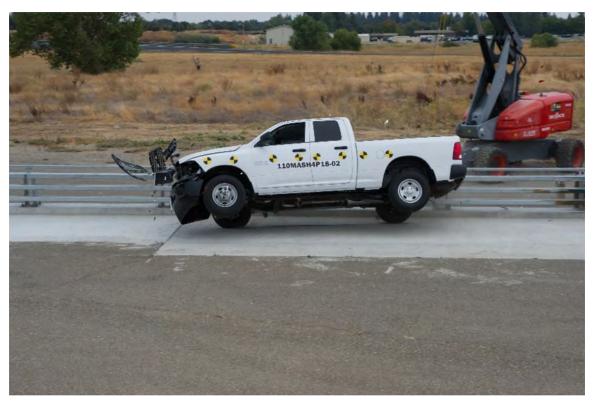


Figure 6-3 Test 4-11 Pan Camera Impact View

Figure 6-4 Test 4-11 Downstream Camera Impact View

Figure 6-5 Test 4-11 Upstream Impact View

6.3. Barrier Damage

There was no significant damage to the barrier. The only damage was extremely minor surface scrapes and gouges of the steel rail, and minor spalling of the concrete curb. Barrier damage is shown in Figure 6-6 through Figure 6-8. The orange contact marks are from the front right tire. The green contact marks are from the rear right tire. Dynamic deflection of the bridge rail measured from overhead video was 30 mm (1.2 in). There was no permanent deflection. String potentiometer and strain gage data were collected during the test. They do not fall under the Scope of Accreditation but are available upon request.

Figure 6-6 Test 4-11 Vehicle Marks on ST-75 at Impact Point Post-Test

Figure 6-7 Test 4-11 Minor Concrete Spalling of Concrete Curb Post-Test

Figure 6-8 Test 4-11 ST-75 Bridge Rail Post-Test Downstream of Impact Post-Test

6.4. Vehicle Damage

The 2270P front right corner and right side of the test vehicle sustained most of the damage from the impact. The front bumper was damaged, mainly the front right portion during initial impact with the barrier. The right headlight was shattered and detached from the vehicle. The front passenger wheel was pushed back significantly but the suspension system remained attached except for the aluminum lower control arm front connection to the frame. The entire length of the passenger side of the vehicle made contact with the barrier including the right front fender, right doors, and the right side of the bed. All of the test vehicle doors remained closed and latched during impact except the window frame of the front passenger door deformed outward, creating an opening. The windshield had minor cracking and the remaining window glass was undamaged. The front grill and left headlight were also detached during the impact. The maximum amount of passenger compartment deformation measured by known points was 100 mm (4.0 in), which occurred at the footwell. All interior deformations were below the maximum MASH 2016 limits and are shown in Figure 9-22 through Figure 9-24.

Figure 6-9 Test 4-11 Test Vehicle Damage (Rear Right)

Figure 6-10 Test 4-11 Test Vehicle Damage (Front Right)

Figure 6-11 Test 4-11 Test Vehicle Damage (Left Side)

Figure 6-12 Test 4-11 Test Vehicle Damage (Front)

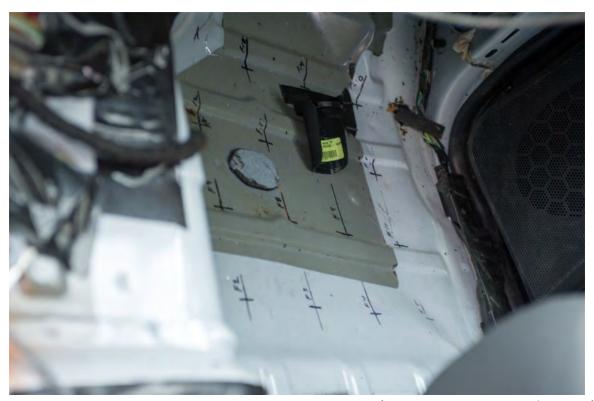


Figure 6-13 Test 4-11 Test Vehicle Damage Front Passenger Floorpan (Occupant Compartment Deformation)

Figure 6-14 Test 4-11 Test Vehicle Front Right Wheel Deformation

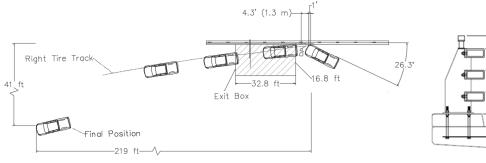
Figure 6-15 Test 4-11 Test Vehicle Front Right Suspension (with wheel removed)

Figure 6-16 Test 4-11 Test Vehicle Front Right Suspension Lower Control Arm Connector Fracture

Table 6-2 Test 110MASH4P18-02 Test Data Summary Sheet

0.120 sec. [Frame 226]

0.180 sec. [Frame 256]



0.240 sec. [Frame 286] 0.300 sec. [Frame 316] 0.360 sec. [Frame 346] 0.420 sec. [Frame 376]

Test Age	ency	California, Department of		
		Transportation		
Test Nur	mber	110MASH4P18-02		
Test Des	signation	MASH16 Test 4-11		
Test Arti	icle	CA ST-75 Bridge Rail		
Total Lei	ngth	100 ft (30.5 m)		
Key Elen	nents – Barrier			
•	Description	CA ST-75 Bridge Rail		
•	Base Width			
•	Height			
Test Veh		,		
•	Designation/Make/Model_	2270P/ 2018 Dodge RAM		
	<u></u>	1500 Quad Cab		
•	Curb	4768 lb (2163 kg)		
•	Test Inertial			
•	Gross Static			
Impact (Conditions			
•	Speed	63.4 mph (102.0 kph)		
•	Angle			
•	Location/Orientation			
		of middle of post		
•	Impact Severity	•		
Exit Con				
•	Speed	54 mnh (86 knh)		
	Angle			
Exit Box	Criterion			
Post-impact 1				
	• •	Satisfactory		
	 Vehicle Stability Satisfactory Stopping Distance (from point of impact) Approx., 219 ft 			
	downstream and 41 ft laterally in front			
	Test Article Damage Minor scrapes			
	Test Article Daniage			

Permanent Set______0.0 in (0 mm)

•	Dynamic	1.2 in (30 mm)
•	Working Width	
Vehicle Damage		Moderate
•	VDS ³	01-RFQ-5, 01-RD-3,
		03-RP-3, 04-RBQ-3
•	CDC ⁴	01RRMK2, 03RDMS2
•	Maximum Deformation	Approx. 4 in (100 mm) at
		Floorboard/wheel well
•	Vehicle Snagging	None
•	Vehicle Pocketing	

Transducer Data

		Transducer			
Evaluation Criteria		DataBrick 328	SLICE- 656	MASH Limit	
OIV E+/c	Long.	14.4 (4.4)	16.4 (5.0)	±40 (12.2)	
Ft/s (m/s)	Lat.	30.8 (9.4)	30.5 (9.3)	±40 (12.2)	
ORA	Long.	-4.1	-5.6	±20.49	
g's	Lat.	-11.0	-11.5	±20.49	
	Roll	21.6	19.4	±75	
Max Angle Deg.	Pitch	2.1	-4.0	±75	
Deg.	Yaw	-40.3	-40.0	N/A	
THIV – ft/s (m/s)		34.8 (10.6)	34.8 (10.6)	N/A	
PHD – g's		11.7	12.6	N/A	
ASI		2.29	2.31	N/A	

6.5. Discussion of Test Results

6.5.1.General Evaluation Methods

MASH 2016 recommends that crash test performance be assessed according to three evaluation factors: (1) structural adequacy, (2) occupant risk, and (3) post-impact vehicular response.

The structural adequacy and occupant risk associated with the ST-75 Bridge Rail were evaluated using evaluation criteria found in Tables 2.2A (Recommended Test Matrices for longitudinal barriers), 5.1A (Safety Evaluation Guidelines for Structural Adequacy), and 5.1B (Safety Evaluation Guidelines for Occupant Risk) of MASH 2016. The post-impact vehicular response was evaluated using section 5.2.3 of MASH 2016.

6.5.2.Structural Adequacy

The structural adequacy of the ST-75 Bridge Rail was acceptable during Test 4-11.

Refer to Table 6-3 for the assessment summary of the safety evaluation criteria for the ST-75 Bridge Rail for Test 4-11.

6.5.3.Occupant Risk

The occupant risk was acceptable. As mentioned previously, the interior deformations were below MASH 2016 limits. All interior deformation measurements are shown in Table 9-22 through Table 9-24. There was no occupant compartment penetration or potential for it. The occupant compartment was not compromised. Occupant impact velocities and ridedown accelerations were below MASH 2016 limits. The yaw, pitch, and roll of the vehicle were within acceptable limits.

Refer to Table 6-3 for the assessment summary of the safety evaluation criteria for the ST-75 Bridge Rail for Test 4-11.

6.5.4. Vehicle Trajectory

The vehicle trajectory was acceptable. The exit trajectory was within the exit box. The yaw, pitch, and roll of the vehicle were below the maximum limits.

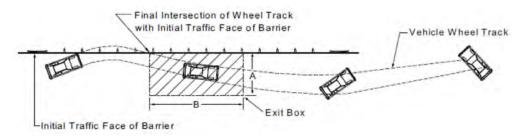


Figure 6-17 Exit Box for Longitudinal Barriers (AASHTO, 2016)

Refer to Table 6-3 for the assessment summary of the safety evaluation criteria for the ST-75 Bridge Rail for Test 4-11.

Table 6-3 110MASH4P18-02 Assessment Summary

Evaluation Criteria				Test Results	Assessment
Stru	ctural Adequacy				
A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.				The vehicle was contained and redirected smoothly.	PASS
Occ	upant Risk				
D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E.				The barrier did not detach any elements, fragments, and/or other debris	PASS
Occupant Risk F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			The vehicle remained upright during and after the collision.	PASS	
H. (Sect	Occupant Risk H. Occupant Impact Velocities (OIV) (see Appendix A, Section A5.3 for calculation procedure) should satisfy the following limits: Occupant Impact Velocity Limits, ft/s (m/s) Component Preferred Maximum Longitudinal 30 ft/s 40 ft/s and Lateral (9.1 m/s) (12.2 m/s)		DB3 Long.= 14.4 ft/s (4.4 m/s) Lat.= 30.8 ft/s (9.4 m/s) SLICE Long.= 16.4 ft/s (5.0 m/s) Lat.= 30.5 ft/s (9.3 m/s)	PASS	
	upant Risk				
I. The occupant ridedown acceleration (see Appendix A, Section A5.3 for calculation procedure) should satisfy the following limits: Occupant Ridedown Acceleration Limits (G) Component Preferred Maximum Longitudinal and Lateral 15.0 G 20.49 G			DB3 Long4.1 G Lateral -11.0 G SLICE Long5.6 G Lateral -11.5 G	PASS	
It is this barr defi para A pl of the a dis	Vehicle Trajectory It is preferable that the vehicle be smoothly redirected, and this is typically indicated when the vehicle leaves the barrier within the "exit box". The concept of the exit box is defined by the initial traffic face of the barrier and a line parallel to the initial traffic face of the barrier, at a distance A plus the width of the vehicle plus 16 percent of the length of the vehicle, starting at the final intersection (break) of the wheel track with the initial traffic face of the barrier for a distance of B. All wheel tracks of the vehicle should not cross the parallel line within the distance B.			A = 16.8ft (5.11 m) B = 32.8 ft (10 m)	PASS

7. Test 110MASH4S19-02 (4-12)

7.1. Impact Description and Results

The Critical Impact Point selected was 1.5 meters (5.0 ft) from the centerline of post 5, as recommended in Table 2-7 of MASH 2016 (AASHTO, 2016). The impact angle of 15° was set with a Total Station. The intended impact speed was 90 kph (56 mph).

Figure 7-1 Test 4-12 ST-75 Impact Area with Checkered Tape at Impact Point Pre-Test

Figure 7-2 Test 4-12 ST-75 Post 5 Downstream of Impact Point Pre-Test

Figure 7-3 Test 4-12 ST-75 Post 5 Downstream of Impact Point Pre-Test

Figure 7-4 Test 4-12 ST-75 Post 6 Downstream of Impact Point Pre-Test

7.2. Test Description

The crash was performed just before noon on June 19, 2019. According to the Sacramento Executive Station, weather conditions were as follows: fair, temperature approximately 82 deg F, and wind of approximately 3 mph from the south. The vehicle was traveling approximately north-northeast (NNE).

The 10000S vehicle impacted the barrier at a speed of 87.6 kph (54.4 mph) and angle of 15.3°. The vehicle impacted the ST-75 Bridge Rail at approximately 1.4 meters (4.9 ft) upstream from the centerline of post 4, which was approximately 75 mm (3 in) downstream of the Critical Impact Point. The vehicle was contained and smoothly redirected at an exit speed and angle of 79.8 kph (49.6 mph) and 8°, respectively. During the impact, the cargo box leaned over the bridge rail approximately 21 inches (not within the Lab's Scope of Accreditation) for a Working Width of about 45 inches at a height of approximately 11.5-12 ft. After exiting the bridge rail, the remote brakes were applied. The vehicle came to a stop, after rolling onto the driver side of the vehicle, about 73.5 ft (241 feet) downstream of and 15.5 m (51 feet) on the non-traffic side of the impact point. Still photos of the vehicle during the test are shown in Figure 7-5 through Figure 7-7. A detailed description of the sequential events is shown in the table below.

Table 7-1 Test 110MASH4S19-02 Test Sequence of Events

Time (s)	EVENT
0.000	Vehicle front-right bumper impacted the top rail
0.006	Vehicle bumper begins to deform
0.010	Vehicle hood begins to override top rail
0.040	Vehicle passenger side front wheel well contacts handrail and begins to deform
~0.078	Vehicle begins to redirect
~0.088	Front passenger door impacts rail
~0.164	Vehicle passenger side front wheel well is at maximum override
0.280	Rear right corner of vehicle contacts steel rails, vehicle is approximately parallel to bridge rail
~0.760	Vehicle exits test article with exit angle and speed of 8° and 79.8 kph (49.6 mph)

Figure 7-5 Test 4-12 Across Camera Impact View

Figure 7-6 Test 4-12 Downstream Camera Impact View

Figure 7-7 Test 4-12 Upstream Camera Impact View

7.3. Barrier Damage

There was minor to moderate damage to the barrier. The traffic side of the base plates at Posts 3, 4, and 5 were permanently deformed from the moment created during impact, see Figure 7-11 through Figure 7-13. The deformation left a gap between the middle portion of the plate and concrete curb. Base plate deformation at Posts 3, 4, and 5 were approximately 8 mm (5/16 in), 6 mm (1/4 in), less than 2 mm (1/16 in), respectively. As a result of the base plate deformation, the anchor bolts bent outward. The anchor bolt bending and after impact straightening, as part of barrier repairs, was thought to be a concern due to the high levels of plastic deformation. To better understand the condition of the bolts, bolt material properties were investigated. A barrier quasi-static (push) test and bolt tensile tests were performed to determine remaining bolt strength and roughly how far the bolts had elongated or otherwise progressed into yield. These tests are not within the Lab's Scope of Accreditation. The results showed that the bolts at Posts 3 and 4 (which were impacted during the crash test) were slightly in the plastic range and the Post 6 bolt (which was deformed during the push test) had high residual strength but was far into the plastic range. The tensile tests for Posts 3 and 4 concluded that after the TL-4 impact, the bolts were still above design tensile strength requirements and still had some ductility. However, the bending caused by the base plate deformed the threads enough to potentially complicate repairs if a post needed to be removed. A brief summary of the quasi-static push test and tensile load tests are shown in 11 Appendix C: Quasi-static Push Test and Anchor Bolt Tensile Testing. Photos of the anchor bolts at posts 3 and 4 with the posts removed are also included in Appendix C.

Other damage to the barrier included minor surface scrapes and gouges. See Figure 7-8 through Figure 7-13 for photos of barrier damage. The orange contact marks are from the front right tire. The green contact marks are from the rear right tire. String potentiometer and strain gage data were collected

during the test. They do not fall under the Scope of Accreditation but are available upon request. The dynamic and permanent deflections could not be determined from overhead video. They were, however, able to be measured from string potentiometers using a data acquisition system collecting measurements at 10,000 sample/sec. The dynamic and permanent deflections from string potentiometers (not within the Scope of Accreditation) were 83 mm (3.25 in) and 38 mm (1.5 in), respectively.

Figure 7-8 Test 4-12 Vehicle Marks on ST-75 Impact Point Between Posts 3 and 4 Post-Test

Figure 7-9 Test 4-12 Vehicle Marks on ST-75 at Post 4 Downstream of Impact Point Post-Test

Figure 7-10 Test 4-12 ST-75 Post 5 Downstream of Impact Point Post-Test

Figure 7-11 Test 4-12 ST-75 Post 3 Post-Test

Figure 7-12 Test 4-12 Post 3 Bent Bottom Plate Close Up Post-Test

Figure 7-13 Test 4-12 Post 4 Bent Bottom Plate Close Up Post-Test

7.4. Vehicle Damage

The 10000S front right corner and passenger's side of the test vehicle sustained most of the damage from the initial impact with the steel rail and post system. The entire length of the passenger side of the vehicle made contact with the bridge rail. The driver's side of the front bumper was deformed, the headlight was torn loose, and part of the right front fender was broken off. The right front wheel and suspension remained intact with the exception that the ends of the leaf springs fractured near their mounts at both forward and rear connection points. The left front and rear suspension remained attached as well as all the vehicle wheels and tires. All tires remained inflated. The steps on the passenger side were deformed from making contact with the steel rail. The driver's side door, A-pillar, fender, and cab roof were deformed when the vehicle rolled onto its side, including cracking the windshield. All the window glass was undamaged during interaction with the test article. Nearly all the damage to the cargo box also occurred when the vehicle rolled onto its side. The shear plates on the frame were slightly bent but otherwise remained intact. The bed shifted a minor amount. The threaded rods to secure the ballast were undamaged and helped to keep motion of the ballast to a minimum. Photos of the vehicle postimpact can be found in Figure 7-14 through Figure 7-24. The maximum amount of passenger compartment deformation measured by known points was 81 mm (3.2 in), which occurred at the floorboard. All interior deformations were below the maximum MASH 2016 limits. All interior deformation measurements are shown in Table 9-29 through Table 9-32.

Figure 7-14 Test 4-12 Test Vehicle Top Post-Test

Figure 7-15 MASH 4-12 Test Vehicle Undercarriage After Impact

Figure 7-16 MASH 4-12 Test Vehicle Ballast After Impact

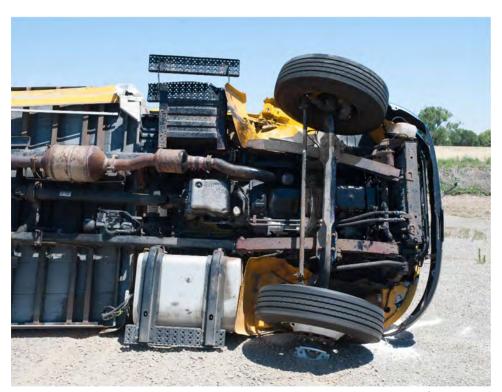


Figure 7-17 MASH 4-12 Test Vehicle Front Undercarriage and Suspension After Impact

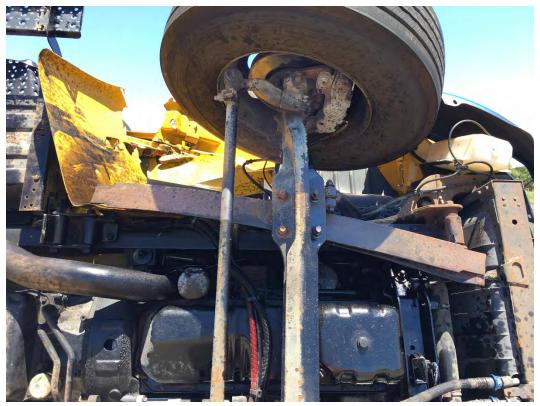


Figure 7-18 MASH 4-12 Test Vehicle Undercarriage and Suspension After Impact

Figure 7-19 Test 4-12 Test Vehicle (Impact, Right Side) Post-Test (righted)

Figure 7-20 Test 4-12 Test Vehicle (Front Right) Post-Test (righted)

Figure 7-21 Test 4-12 Test Vehicle (Front) Post-Test (righted)

Figure 7-22 Test 4-12 Test Vehicle (Left Side) Post-Test (righted)

Figure 7-23 Test 4-12 Test Vehicle (Front Left Side) Post-Test (righted)

Figure 7-24 Test 4-12 Test Vehicle (Rear Left) Post-Test (righted)

Figure 7-25 Test 4-12 Test Vehicle (Rear) Post-Test (righted)

Figure 7-26 Test 4-12 Test Vehicle (Front Right) Post-Test (righted)

Figure 7-27 Test 4-12 Test Vehicle Occupant Compartment Deformation Post-Test

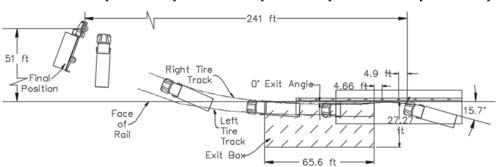
Table 7-2 Test 110MASH4S19-02 Test Data Summary Sheet

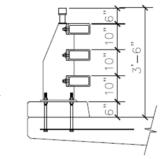
0.640 sec. [Frame 608]

0.160 sec. [Frame 368]

0.800 sec. [Frame 688]

0.320 sec. [Frame 448]


0.480 sec. [Frame 528]



0.960 sec. [Frame 768]

1.120 sec. [Frame 848]

	•
Test Agency	California, Department of
	Transportation
Test Number	110MASH4S19-02
Test Designation	
Date	6/19/2019
Test Article	
Total Length	
Key Elements – Barrier	
 Description 	CA ST-75 Bridge Rail

•	Description	CA ST-75 Bridge F		
•	Base Width	24 in /610 mm		
•	Height	36 in (910 mm)		

Test Vehicle

•	Designation/Make/Model	10000S/ 2013 International		
		4300 SBA		

•	Curb	14733 lb (6683 kg)
•	Test Inertial	22077 lb (10014 kg)

Gross Static 22077 lb (10014 kg)

Impact Conditions

•	Speed	54.4 mph (87.5 kph)
	_	

Angle 15.3°

Location/Orientation 4.7 ft (1.4 m) upstream of middle of post

Impact Severity 151 kip-ft (205 kJ)

Exit Conditions

•	Speed	49.6 mph (79.8 kph

Angle_____8

Exit Box Criterion Pass

Post-impact Trajectory

- Vehicle Stability_____Not applicable
- Stopping Distance (from point of impact) Approx. 241 ft
- (73.5 m) downstream and 51 ft (15.5 m)

Test Article Damage______Deformed post plates, permanent deflection in rail

Test Article Deflections

•	Permanent Set*	1.5 in (38 mm)
•	reilliallelli Sei	T.2 III (20 IIIIII)

Dynamic* 3.25 in (83 mm)

Working Width** ~45 in (1140 mm), at a height of approximately 11.5-12 ft above ground

Vehicle Damage Moderate

•	VDS ³	01-RFQ-2, 01-RD-2,
		03-RBQ-2, 03-RP-2, 09-L&T-2

CDC⁴_____01RREK2, 03RDES2, 09LDGW3

Maximum Deformation Approx. 3.2 in (81 mm) at Floorboard/wheel well

Vehicle Snagging_____None

Vehicle Pocketing None

Transducer Data

Transducer Data					
Measured Value		Transducer			
		DataBrick 328 (cab)	SLICE-656 (cargo box)	SLICE-659 (cargo box)	
	Long.	-3.7	-1.4	-2.0	
50 ms Average (g)	Lat.	-7.6	-17.2	-7.2	
	Roll	-110.8	-113.6	-112.4	
Max Angle	Pitch	11.9	7.1	6.1	
Deg.	Yaw	82.3	96.0	90.5	
Max Angle During Impact Deg.	Roll	18.5	17.9	18.6	

^{*} Measured with string potentiometers, not within Scope of Accreditation

^{**} Estimated from upstream high-speed video, not within Scope of Accreditation

7.5. Discussion of Test Results

7.5.1.General Evaluation Methods

MASH 2016 recommends that crash test performance be assessed according to three evaluation factors: (1) structural adequacy, (2) occupant risk, and (3) post-impact vehicular response.

The structural adequacy and occupant risk associated with the ST-75 Bridge Rail were evaluated using evaluation criteria found in Tables 2.2A (Recommended Test Matrices for longitudinal barriers), 5.1A (Safety Evaluation Guidelines for Structural Adequacy), and 5.1B (Safety Evaluation Guidelines for Occupant Risk) of MASH 2016. The post-impact vehicular response was evaluated using Section 5.2.3 of MASH 2016.

7.5.2.Structural Adequacy

The structural adequacy of the ST-75 Bridge Rail was acceptable in MASH Test 4-12.

Refer to Table 7-3 for the assessment summary of the safety evaluation criteria for Test 4-12 of the ST-75 Bridge Rail.

7.5.3.Occupant Risk

The occupant risk was acceptable. The maximum amount of passenger compartment deformation measured by known points was 81 mm (3.2 in), which occurred at the floorboard. All interior deformations were below the maximum MASH 2016 limits. All interior deformation measurements are shown in Table 9-29 through Table 9-32. There was no occupant compartment penetration or potential for it. The occupant compartment was not compromised. The vehicle rolled onto its side after it lost contact with the bridge rail. However, it is preferable but not a requirement of MASH Test 4-12 that the vehicle remain upright during and after impact.

Refer to Table 7-3 for the assessment summary of the safety evaluation criteria for Test 4-12 of the ST-75 Bridge Rail.

7.5.4. Vehicle Trajectory

The vehicle trajectory was acceptable. The exit trajectory was within the exit box.

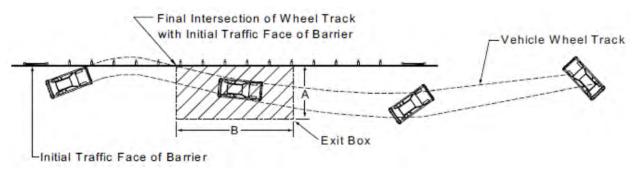


Figure 7-28 Exit Box for Longitudinal Barriers (AASHTO, 2016)

Refer to Table 7-3 for the assessment summary of the safety evaluation criteria for Test 4-12 of the ST-75 Bridge Rail.

Table 7-3 110MASH4S19-02 Assessment Summary

Evaluation Criteria	Test Results	Assessment
Structural Adequacy A. Test article should contain and redirect the vehicle; the vehicle should not penetrate, underride, or override the installation, although controlled lateral deflection of the test article is acceptable.	The vehicle was contained and redirected smoothly.	PASS
Occupant Risk D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E.	The barrier did not detach any elements, fragments, and/or other debris	PASS
Occupant Risk E. It is preferable, although not essential, that the vehicle remain upright during and after the collision.	The vehicle rolled onto the driver's side and skidded until it came to rest.	PASS
Vehicle Trajectory It is preferable that the vehicle be smoothly redirected, and this is typically indicated when the vehicle leaves the barrier within the "exit box". The concept of the exit box is defined by the initial traffic face of the barrier and a line parallel to the initial traffic face of the barrier, at a distance A plus the width of the vehicle plus 16 percent of the length of the vehicle, starting at the final intersection (break) of the wheel track with the initial traffic face of the barrier for a distance of B. All wheel tracks of the vehicle should not cross the parallel line within the distance B.	A = 27.27 ft (8.31 m) B = 65.6 ft (20 m)	PASS

8. Conclusions and Recommendations

Based on the physical crash testing involved in this project, the following conclusions can be drawn:

- 1. The ST-75 Bridge Rail can successfully redirect an 1100-kg (2420 lbs) small car impacting at 100 kph (62 mph) and 25°.
- 2. The ST-75 Bridge Rail can successfully redirect a 2270-kg (5000 lbs) pickup car impacting at 100 kph (62 mph) and 25°.
- 3. The ST-75 Bridge Rail can successfully redirect a 10000-kg (22000 lbs) single-unit truck impacting at 90 kph (56 mph) and 15°.

As tested, The ST-75 Bridge Rail meets the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware 2016* (MASH 2016) criteria for Test 4-10, Test 4-11, and Test 4-12 for longitudinal barriers. Based on the successful completion of these tests the ST-75 Bridge Rail meets the MASH 2016 safety criteria for a Test Level 4 (TL-4) longitudinal barrier.

For reduced maintenance after more severe hits such as Test 4-12 in this report, it is recommended to stiffen the post base plates in order to reduce or eliminate the type of deformation observed in Test 4-12. The ST-75 demonstrated it has significant remaining capacity to contain and redirect the 10000S test vehicle and stiffening the base plate would likely not compromise this capacity. Also, this base plate change should have no adverse effect on the results of Tests 4-10 and 4-11 since the post base plates were already rigid enough to withstand those impacts without permanent deformation. The statements in this paragraph are outside the Lab's Scope of Accreditation.

Implementation will be carried out by Caltrans Division of Engineering Services, Structures and Engineering Services. They will be responsible for the preparation of Standard Plans (if required) and specifications for the California ST-75 Bridge Rail, with technical support from the Division of Research, Innovation and System Information.

9. Appendix A: Vehicle Equipment and Test Data

9.1. Test Vehicle Equipment

9.1.1. Test 110MASH4C19-01

The vehicle used for this test was a 2017 Nissan Versa Sedan. Since the vehicle was towed and not self-powered, the fuel in the gas tank was pumped out and gaseous CO_2 added to purge the gas vapors and eliminate oxygen. One pair of 12-volt wet cell batteries was mounted in the vehicle. The batteries powered two GMH DataBrick 3 transient data recorders. Each DataBrick 3 was connected to a set of orthogonal accelerometers and angular rate sensors, and one with an optical switch to measure impact speed. Two DTS SLICE MICRO systems were also installed each with a set of triaxial accelerometers and angular rate sensors. A 12-volt deep-cycle gel cell battery powered the Electronic Control Box. The Databrick 3 with the optical switch had a power-related data loss so the impact speed had to be determined using an overhead camera rather than the optical switch.

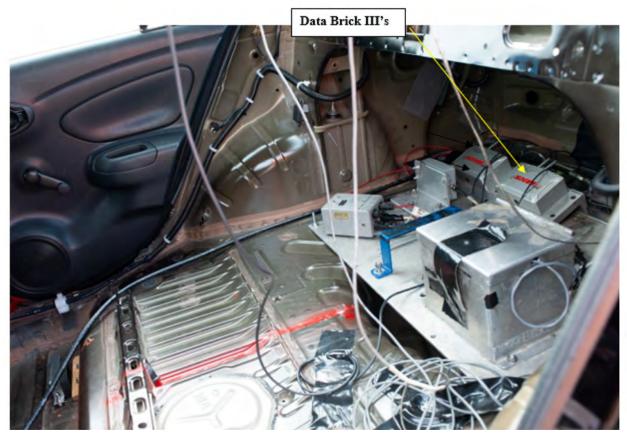


Figure 9-1 Data Brick III's installed for Test 4-10

Figure 9-2 Test 4-10 Vehicle Dummy and Instrumentation

A 4800 kPA (700 psi) CO₂ system, actuated by a solenoid valve, controlled remote braking after the impact and emergency braking if necessary. Part of this system was a pneumatic ram which was attached to the brake pedal. The operating pressure for the ram was adjusted through a pressure regulator during a series of trial runs prior to the actual test. Adjustments were made to ensure the shortest stopping distance without locking up the wheels. When activated, the brakes could be applied in less than 100 milliseconds.

A speed control device was connected in-line with the engine ignition coil power circuits on the tow vehicle. It was used to regulate the speed based on the signal from the tow vehicle transmission speed sensor. This device was calibrated prior to the test by conducting a series of trial runs through a speed trap comprised of two tape switches (set at a specific distance apart) and a digital timer.

9.1.2. Test 110MASH4P18-02

The vehicle used for this test was a 2018 Dodge RAM 1500 Quad Cab. One pair of 12-volt wet cell batteries was mounted in the vehicle. The batteries powered two GMH DataBrick 3 transient data recorders. Each DataBrick 3 was connected to a set of orthogonal accelerometers and angular rate sensors, and one with an optical switch to measure impact speed. Two DTS SLICE MICRO systems were also installed each with a set of triaxial accelerometers and angular rate sensors. A 12-volt deep-cycle gel cell battery powered the Electronic Control Box. The Databrick 3 with the optical switch had a power-related data loss so the impact speed had to be determined using an overhead camera rather than the optical switch.

Figure 9-3 Test 4-11 Vehicle Instrumentation

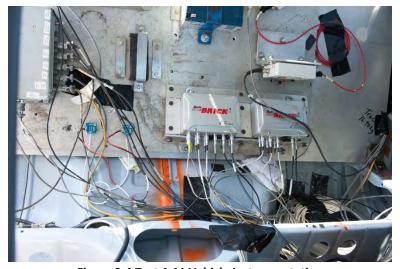


Figure 9-4 Test 4-11 Vehicle Instrumentation

Figure 9-5 Test 4-11 Accelerometers and Angular Rate Sensors

A 4800 kPA (700 psi) CO₂ system, actuated by a solenoid valve, controlled remote braking after the impact and emergency braking if necessary. Part of this system was a pneumatic ram which was attached to the brake pedal. The operating pressure for the ram was adjusted through a pressure regulator during a series of trial runs prior to the actual test. Adjustments were made to ensure the shortest stopping distance without locking up the wheels. When activated, the brakes could be applied in less than 100 milliseconds.

A speed control device was connected in-line with the with the engine ignition coil power circuits on the test vehicle. It was used to regulate the speed based on drive shaft rotation detected by an optical sensor. This device was calibrated prior to the test by conducting a series of trial runs through a speed trap comprised of two tape switches (set at a specific distance apart) and a digital timer.

9.1.3. Test 110MASH4S19-02

The vehicle used for this test was a 2013 International 4300 SBA. One pair of 12-volt wet cell batteries was mounted in the vehicle. The batteries powered two GMH DataBrick 3 transient data recorders that were mounted in the cab of the vehicle. Each DataBrick 3 was connected to a set of orthogonal accelerometers and angular rate sensors, and one with an optical switch to measure impact speed. Two DTS SLICE MICRO systems were also installed in the cargo box area. Each had a set of triaxial accelerometers and angular rate sensors. A 12-volt deep-cycle gel cell battery powered the Electronic Control Box. The Databrick 3 with the optical switch had a power-related data loss so the impact speed had to be determined using an overhead camera rather than the optical switch.

Figure 9-6 Test 4-12 Accelerometers and Angular Rate Sensors in Cab

Figure 9-7 Test 4-12 Accelerometers, Angular Rate Sensors, and other Instrumentation in Cargo Box

A 4800 kPA (700 psi) CO_2 system, actuated by a solenoid valve, controlled remote braking after the impact and emergency braking if necessary. Part of this system was a pneumatic ram which was attached to the brake pedal. The operating pressure for the ram was adjusted through a pressure regulator during a series of trial runs prior to the actual test. Adjustments were made to ensure the shortest stopping distance without locking up the wheels. When activated, the brakes could be applied in less than 100 milliseconds.

The test vehicle speed was controlled by an onboard speed limiter that is standard for this type vehicle. Before the test the vehicle's limiter was programed by a local service provider. To ensure that the limiter was set properly, a series of test runs were conducted using a GHM Engineering HFW80 Fifth Wheel Sensor.

The test vehicle was pushed by another vehicle so that the impact speed could be reached in the limited distance of roughly 640 m (2100 ft) available at the testing facility. A set push distance was established. Once the push vehicle had traveled this distance, it slowed down and allowed the test vehicle to continue accelerating until it reached the target speed. Onboard the push vehicle a speed control device was connected in-line with the engine ignition coil power circuits. It was used to regulate the speed based on

the signal from the vehicle transmission speed sensor. This device was calibrated prior to the test by conducting a series of trial runs through a speed trap comprised of two tape switches (set at a specific distance apart) and a digital timer.

9.2. Test Vehicle Guidance System

A rail guidance system directed the vehicle into the barrier. The guidance rail, anchored at approximately 3.8 m (12.5 ft) intervals along its length was used to guide a mechanical arm, which was attached to the hub of the front left wheel of the vehicle. A plate and lever were used to trigger the release pin on the guidance arm, thereby releasing the vehicle from the guidance system before impact.

Figure 9-8 Typical Guidance System Layout

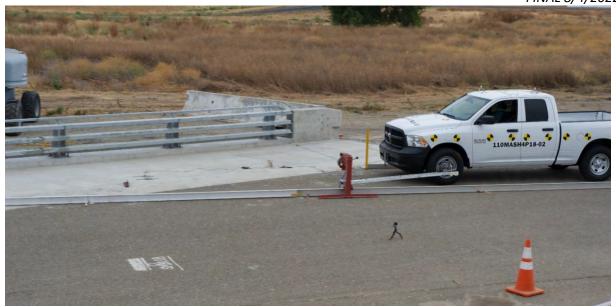


Figure 9-9 Guide Arm Releasing from Test Vehicle

Figure 9-10 Guide Arm Released from Vehicle

9.3. Photo - Instrumentation

Several high-speed video cameras recorded the impact during the test. The high-speed video frame rates were set to 500 frames per second. The types of cameras and their locations are shown in Figure 9-11 and Table 9-1 thru Table 9-3. The origin of the coordinates is at the intended point of impact.

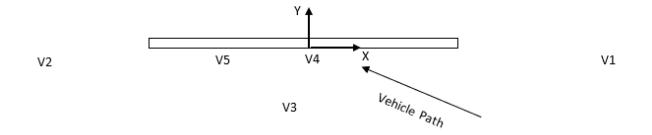


Figure 9-11 High-Speed Video Camera Locations (Not to Scale)

Table 9-1 110MASH4C19-01 Camera Types and Location Coordinates

Camera	Camera Camera	Lens		ens Coordinates, ft. (m)			
Location	Make/Model	Serial No.	Lens	Lens Serial No.	x	у	z*
V1 Upstream	Vision Research Miro 111	22361	35 mm	173792	88.6 (27.0)	0.2 0.06)	4 (1.2)
V2 Downstream	Olympus iSpeed3	1400014	28-200 mm	402495	-278.2 (-84.8)	1.8 (0.55)	7 (2.1)
V3 Across	Olympus iSpeed3	1400022	20 mm	182398	-0.6 (18)	-54.1 (-16.5)	5.5 (1.7)
V4 Upstream Tower	Vision Research Miro 110	13235	20 mm	447169	2.4 (0.73)	-4.4 (-1.3)	25 (7.6)
V5 Downstream Tower	Vision Research Miro 110	13234	14 mm	217706	-27.3 (-8.3)	-8.9 (-2.7)	35 (10.7)

Table 9-2 110MASH4P18-02 Camera Types and Location Coordinates

Camera	Camera	Camera	Lens	Lens Serial	Coo	m)	
Location	Make/Model	Serial No.	Lens	No.	х	у	z*
V1	Olympus	1400012	35 mm	173792	88.4	-0.3	5
Upstream	iSpeed3	1400012	33 111111	173732	(26.9)	(-0.1)	(1.5)
V2	Olympus	1400014	28-200	402495	-277.7	3.3	7
Downstream	iSpeed3	1400014	mm	402433	(-84.6)	(1.0)	(2.1)
V3 Across	Olympus	1400022	20 mm	182398	-0.9	-54.0	5.0
V3 ACI 033	iSpeed3	1400022	20 111111	102330	(-0.3)	(-16.5)	(1.5)
V4	Vision	12225	20	447160	2.4	-4.4	25
Upstream Tower	Research Miro 110	13235	20 mm	447169	(0.73)	(-1.3)	(7.6)
V5	Vision	42224	4.4	24.7706	-27.3	-8.7	35
Downstream Tower	Research Miro 110	13234	14 mm	217706	(-8.3)	(-2.7)	(10.7)

Table 9-3 110MASH4S19-02 Camera Types and Location Coordinates

Camera	Camera	Camera	Lens	Lens Serial	Coo	rdinates, ft. (m)
Location	Make/Model	Serial No.	Lens	No.	х	у	z*
V1	Vision Research	22361	35 mm	173792	86.1	2.0	5
Upstream	Miro 111	22301	55	1,0,32	(26.2)	(0.6)	(1.5)
V2	Olympus	1400014	28-200	402495	-323.4	1.1	10
Downstream	iSpeed3	1100011	mm	102 133	(-98.6)	(0.3)	(3)
V3 Across	Olympus	1400022	20 mm	182398	0.9	-53.9	5.0
737101033	iSpeed3	1100011	20 11111	101030	(0.3)	(-16.4)	(1.5)
V4 Upstream	Vision Research	13234	14 mm	217706	0.9	-5.2	25
Tower	Miro 110	13234	14 111111	217700	(0.3)	(-1.6)	(7.6)
V5	Vision	42225	20	447460	-36.5	-7.6	25
Downstream Tower	Research Miro 110	13235	20 mm	447169	(-11.1)	(-2.3)	(7.6)

^{*}Camera elevations were estimated.

California Department of Transportation Report No. FHWA/CA22-3033 FINAL 8/4/2022

The following are the pretest procedures that were required to enable video data reduction to be performed using the Research's video analysis software (Phantom Camera Control):

- 1. Butterfly targets were attached to the top and sides of the test vehicle. The targets were located on the vehicle at intervals of 500 mm (19.7 in) and 1000 mm (39.4 in). The targets established scale factors.
- 2. Flashbulbs, mounted on the test vehicle, were electronically triggered to establish initial vehicle-to-barrier contact and the time of the application of the vehicle brakes.
- 3. High-speed digital video cameras were all time-coded using a portable computer and were triggered as the test vehicle passed over a tape switch located on the vehicle path upstream of impact.

9.4. Electronic Instrumentation and Data

Transducer data were recorded at 10,000 samples/second on two separate GMH Engineering, Data Brick, Model III, digital transient data recorders (TDRs) and two separate Diversified Technical Systems, Inc. (DTS) SLICE Micro data acquisition systems that were mounted in the test vehicle. The DataBricks were each connected to a set of accelerometers and a set of angular rate sensors that were located at the center of gravity. The DTS SLICE units each contain a set of accelerometers and angular rate sensors and were mounted at the center of gravity. The TDR data were reduced using a desktop personal computer. DADiSP 6.7 version B02 was used for pre-processing. TRAP was used for the post-processing. Accelerometer and angular rate sensor specifications are shown in Table 9-4 thru Table 9-6.

Table 9-4 Test 110MASH4C19-01 Accelerometer and Angular Rate Sensor Specifications

Туре	Manufacturer	Model	Serial #	Location	Range	Orientation
Accelerometer	Endevco	7264M14- 200-2	J16416	CG	±200 g	Longitudinal
Accelerometer	Measurement Specialties	64CM32	MS13328	CG	±200 g	Lateral
Accelerometer	Measurement Specialties	64CM32	MS13366	CG	±200 g	Vertical
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	AR4018	CG	±1500 deg/s	Roll
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	AR4217	CG	±1500 deg/s	Pitch
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS3348	CG	±1500 deg/s	Yaw
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00200	CG	±500 g	
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00165	CG	±1500 deg/s	
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00223	CG	±500 g	
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00166	CG	±1500 deg/s	

Table 9-5 Test 110MASH4P18-02 Accelerometer and Angular Rate Sensor Specifications

Туре	Manufacturer	Model	Serial #	Location	Range	Orientation
Accelerometer	Measurement Specialties	64CM32	MS13361	CG	±200 g	Longitudinal
Accelerometer	Measurement Specialties	64CM32	MS13329	CG	±200 g	Lateral
Accelerometer	Measurement Specialties	64CM32	MS13364	CG	±200 g	Vertical
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS3355	CG	±1500 deg/s	Roll
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS3336	CG	±1500 deg/s	Pitch
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS4019	CG	±1500 deg/s	Yaw
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00200	CG	±500 g	
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00165	CG	±1500 deg/s	
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00223	CG	±500 g	

Table 9-6 Test 110MASH4S19-02 Accelerometer and Angular Rate Sensor Specifications

Туре	Manufacturer	Model	Serial #	Location	Range	Orientation
Accelerometer	Measurement Specialties	64CM32	MS13361	CG	±200 g	Longitudinal
Accelerometer	Measurement Specialties	64CM32	MS13329	CG	±200 g	Lateral
Accelerometer	Measurement Specialties	64CM32	MS13364	CG	±200 g	Vertical
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS3355	CG	±1500 deg/s	Roll
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS3336	CG	±1500 deg/s	Pitch
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS4019	CG	±1500 deg/s	Yaw
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00200	CG	±500 g	
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00165	CG	±1500 deg/s	
Triaxial Accelerometer	Diversified Technical Systems	SLICE MICRO 500 g	AC00223	CG	±500 g	
Triaxial Angular Rate Sensors	Diversified Technical Systems	SLICE MICRO 1500 degree/sec	AR00166	CG	±1500 deg/s	

A rigid stand with three retro-reflective 90° polarizing tape strips spaced 1000 mm (39.4 in) apart was placed on the ground near the test article and alongside the path of the test vehicle. The strips were measured immediately before the test to account for any thermal expansion. The test vehicle had an onboard optical sensor that produced sequential impulses or "event blips" as the vehicle passed the reflective tape strips. The event blips were recorded concurrently with the accelerometer signals on the TDR, serving as "event markers". The impact velocity of the vehicle could be determined from these sensor impulses, the data record time, and the known distance between the tape strips. A pressure sensitive tape switch on the front bumper of the vehicle closed at the instant of impact and triggered two events: 1) "event marker" was added to the recorded data, and 2) a flashbulb mounted on the top of the vehicle was activated. One set of pressure activated tape switches, connected to a speed trap, was placed 4 m apart just upstream of the test article to check the impact speed of the test vehicle (not a reported

measurement). The layout for all the pressure sensitive tape switches and reflective tape is shown in Figure 9-12.

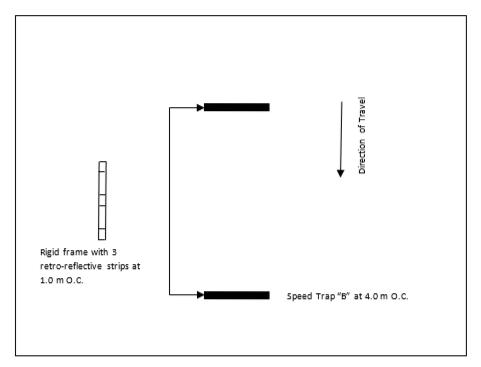


Figure 9-12 Speed Trap Tape Layout

9.5. Vehicle Measurements

9.5.1. Test 110MASH4C19-01

Table 9-7 Test 4-10 Exterior Vehicle Measurements

oadside S	Safety Research Group		re limit			2				ed: 10/17/2 Pa
	A	tachment 5	4.5 1100C a	nd 1500A S	mall Car	Parame	eters			
ate:	2/14/2019	Te	st Number:	110MASH4C19-01 Model			el:	Nissan		
ake:	Versa	VI	N:	3N1	CN7APX	HL8320	31			
e Size:	P185/65R15	Ye	ar: 2017					neter: 6	51526	
e Inflat	ion Pressure:	33psi	Tape Meas	sure Used:	5	M-CP01	CI	LE:***	D	RISI 1901
easure l	by: Dave Sawko	Staff:	CC, VH, SW	Scale	e Set Use	ed:		25	00 lbs	
Meas	urements Refer to Im	acting Side		Vehi	cle Geor	netry - I	mm (in	ches)		
rivicus	arements herer to mi	oucening stace		т а	1691	(66.5	100	100	498	(58.98)
11			147	c -	4488	(176.	-	_	024	(40.31)
			11 11	e -	2599	(102.		-	66	(34.09)
t n	- Ç	. 0	m		N/A	N//		_	086	(42.76)
	100		11 11 1	g i*	420	(16.5			67	(22.32)
			4/	k -	408	-	-	-	48	
1 1		- 71		1 -	1485	(58.4		-		(21.57)
				m o**			-	-	485	(58.46)
			9	-	791	(31.:		-	88	(7.4)
			-1-	q _	620	(24.4		_	15	(16.34)
	D C	- 39		S _	310	(12.		-	672	(65.83)
1 -	(1)	0		-	el Center			29	_	(11.5)
9 17			TI I	1	el Center			30		(11.93
1 1		5			el Well Cl		3.6	120		(4.72)
		- h		Whe	el Well Cl			14		(5.51)
	3 7		7			ame Heig		17	_	(6.89)
		-		Ores.	Fra	me Heig		22	5	(8.86)
	n from the functional bu						Type:			as
	from top of radiator sup				2	Arra Strategic	e Size:		1.	6 L
	the inventory number a	nd should be	ocated on the do	oor		mission				
b of the	e vehicle.					omatic				Manual
0:	-9				FW	D or RW	D or 4V	VD:		FWD
	ribution	N. Carles	22.3	Distant.		207 45	1000	75) 6 - 1		0
t Front		9) Scale:	red	Right Fr	_	297.45		75) Scale	_	green
t Rear:	222.6 (490.7	4) Scale:	yellow	Right Re	ear:	230.3	(507.	72) Scale	e:	blue
ights	Cont									
(lbs)	Curb		nertial	Gross S						
V _{front}	628.4 (1385.36)	630.75	(1390.54)	672.85	(1483.36	0)				
N _{rear}	434.95 (958.88)	452.9	(998.46)	492.15	(1084.99	9)				
V _{total}	1063.35 (2344.25)	1083.65	(2389)	1165	(2568.34	1)				
WR&	GVWR I			Dummy	Data					
Front:		(3	858.02)	Туре			Hybrid	III Dum	my	
Back:	1708		765.43)	Mass:		81.3 kg (179.2 lbs)				
Total:	3389		471.34)		Position			senger		ront
	damage prior to test:	T. a. a. a.	ape on back pas			_				
	ferred to Electronic Cop	-		pher Caldwe			Date:	3/	22/201	19
	necked by:	-		id Whitesel			Date:			L.
HOIEL CL	recked by:		Dav	iu wnitesel			Date;	5/	15/201	13

Table 9-8 Test 4-10 CG Calculation: Curb Weight

Policies and Procedures Manual Roadside Safety Research Group A2LA Certificate No. 3046.01 Revised:8/17/2017 Page 1 of 3 Last Revised by Chris Caldwell

Attachment 5.4.2 --- CG Data Calculation Worksheet CG Calculation Worksheet #1: Curb Weight Make: Test Number: 110MASH4C19-01 Versa Model: Nissan Date: 2/14/2019 Year: 2017 Temperature: 70 °F 3N1CN7APXHL832031 VIN: Scale Set Used: 2500 lbs Fuel in Tank: 1/4 tank Fuel Removed: none Measured By: Dave S. Steve W. Support Staff Vue H. W1 = Left Front (LF) = 329.95 Scale Used: W2 = Right Front (RF) = 298.45 Scale Used: green W3 = Left Rear (LR) = Scale Used: vellow W4 = Right Rear (RR) = Scale Used: Total Weight: Wtotal (measured) = Wtotal (calculated) = 1063.35 Distance between front wheels: M = 1485 mm $W_{Total} = W_1 + W_2 + W_3 + W_4$ $H = \frac{(W_3 + W_4)E}{W_{Total}}$ Distance between rear wheels: N = 1485 Distance from front to rear wheels: $R = \frac{(W_2 - W_1)M + (W_4 - W_3)N}{2 W_{Total}}$ E = 2599 mm Distance from front wheels back to CG: H = 1063 Data Transferred to Electronic Copy By: Christopher Caldwell Date: 2/26/2019 Distance from vehicle centerline to CG: Transfer Checked by: **David Whitesel** Date: 5/15/2019 R = -14

If R is negative the CG is left of center, if R is positive the CG is right of center

Curb Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.)

110MASH4C19-01 CG Data Calculation Worksheet.xlsx

Curb WorkSheet

Table 9-9 Test 4-10 CG Calculation: Test Inertial Weight

Policies and Procedures Manual Roadside Safety Research Group A2LA Certificate No. 3046.01 Revised:8/17/2017 Page 2 of 3 Last Revised by Chris Caldwell

Attachment 5.4.2 --- CG Data Calculation Worksheet CG Calculation Worksheet #2: Test Inertial Weight Make: Versa Test Number: 110MASH4C19-01 Model: Nissan Date: 3/14/2019 2017 70 °F Year: Temperature: VIN: 3N1CN7APXHL832031 2500 lbs Scale Set Used: Fuel in Tank: less than an 1/8 of a tank Fuel Removed: none Measured By: Chris C Vue H Support Staff W1 = Left Front (LF) = 333.3 Scale Used: 297.45 W2 = Right Front (RF) = Scale Used: green W3 = Left Rear (LR) = 222.6 Scale Used: yellow 230.3 W4 = Right Rear (RR) = blue Scale Used: Total Weight: Wtotal (measured) = Wtotal (calculated) = 1083.65 Distance between front wheels: 1485 M = mm $W_{Total} = W_1 + W_2 + W_3 + W_4$ Distance between rear wheels: $H = \frac{(W_3 + W_4)E}{W_{Total}}$ 1485 Distance from front to rear wheels: $(W_2 - W_1)M + (W_4 - W_3)N$ 2 W Total 2599 Distance from front wheels back to CG: H = 1086Data Transferred to Electronic Copy By: Date: 3/14/2019 Christopher Caldwell Distance from vehicle centerline to CG: Transfer Checked by:

If R is negative the CG is left of center, if R is positive the CG is right of center

Test Inertial Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.)
Two 8.33 lbs masses were attached to the passenger front seat with bolts.

110MASH4C19-01 CG Data Calculation Worksheet.xlsx

R = -19

Test Inertial WorkSheet

5/15/2019

Date:

David Whitesel

Table 9-10 Test 4-10 CG Calculation: Gross Static Weight

Policies and Procedures Manual Roadside Safety Research Group A2LA Certificate No. 3046.01

Revised:8/17/2017 Page 3 of 3 Last Revised by Chris Caldwell

Attachment 5.4.2 --- CG Data Calculation Worksheet

	CG Cal	culation Works	heet #3: Gross Static We	eight
Make:	Versa		Test Number:	110MASH4C19-01
Model:	Nissan		Date:	3/22/2019
Year:	2017		Temperature:	72 °F
VIN:	3N1CN7AXHL83	2031	Scale Set Used:	2500 lbs
Fuel in Tank:	~1/8 of a tan	ık	E higgs and	
Fuel Removed:	none			M
Measured By:	Chris C		_ [`	
Andrews S	Victor L		- 📥	
Support Staff	David W		_ w,	w ₂
W1 = Left Front (LF) =	345.35	kg	1	
Scale Used:	red			Н
W2 = Right Front (RF) =	327.5	kg		⊕ — →
Scale Used:	green			
W3 = Left Rear (LR) =	235.05	kg		E
Scale Used:	yellow		Fuel Tank	
W4 = Right Rear (RR) =	257.1	kg	⊬ ≠	NIII I
Scale Used:	blue	Y4		
Total Weight:			\Box	
Wtotal (measured) = _	1164.9	kg	w ₃	W ₄
Wtotal (calculated) = 1	165	kg	Q R	→ -
Distance between front when			(N >
M = 1485	mm		W- =	$=W_1+W_2+W_3+W_4$
Distance between rear whee				
N = 1485	mm		$H = \frac{Q}{2}$	$\frac{W_3 + W_4)E}{W_{3}}$
Distance from front to rear w			(w w	M (W W)M
E = 2599	mm	R	$=\frac{(w_2-w_1)}{2}$	$\frac{M + (W_4 - W_3)N}{2W_{Total}}$
Distance from front wheels b	ack to CG:			3 5 5 5 5
H = 1098	mm	Data Tran	sferred to Electronic Cop Christopher Cald	
Distance from vehicle center	line to CG:	Transfer (Checked by:	3/24/2013

If R is negative the CG is left of center, if R is positive the CG is right of center

Gross Static Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Dummy added

David Whitesel

110MASH4C19-01 CG Data Calculation Worksheet.xlsx

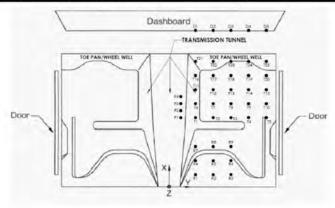
Gross Static WorkSheet

Date: 5/15/2019

Table 9-11 Test 4-10 Interior Floor and Transmission Tunnel Pre, Post, and Deformation Measurements

Policies and Procedures Manual Revised: 10/22/2018
Roadside Safety Research Group 1 of 4

Attachment 5.5 -- Interior Vehicle Measurement Report


1100C Small Car	Test Number	110MASH4C19-01	
Versa	Model	Nessan	
2017	Color	Black	
3N1CN7APXHL832031		-	
	Versa 2017	Versa Model 2017 Color	Versa Model Nessan 2017 Color Black

Toe Pan and Wheel/Foot Well Area Measurements - Dimensions in mm (inches)

Doint		Pre-Impact			Post-Impact			Difference		Magnitude
Point	X	Υ	Z	X	Υ	Z	ΔΧ	ΔΥ	ΔZ	Magnitude
T1	1000 (39.4)	150 (5.9)	198 (7.8)	1009 (39.7)	176 (6.9)	194 (7.6)	9 (0.4)	26(1)	-4 (-0.2)	28 (1.1)
T2	1000 (39.4)	250 (9.8)	197 (7.8)	996 (39.2)	276 (10.9)	179 (7)	-4 (-0.2)	26(1)	-18 (-0.7)	32 (1.3)
T3	1000 (39.4)	350 (13.8)	215 (8.5)	972 (38.3)	336 (13.2)	217 (8.5)	-28 (-1.1)	-14 (-0.6)	2 (0.1)	31 (1.2)
T4	1000 (39.4)	450 (17.7)	213 (8.4)	976 (38.4)	431 (17)	208 (8.2)	-24 (-0.9)	-19 (-0.7)	-5 (-0.2)	31 (1.2)
T5	1000 (39.4)	550 (21.7)	199 (7.8)	984 (38.7)	540 (21.3)	196 (7.7)	-16 (-0.6)	-10 (-0.4)	-3 (-0.1)	19 (0.8)
T6	1150 (45.3)	150 (5.9)	197 (7.8)	1153 (45.4)	191 (7.5)	185 (7.3)	3 (0.1)	41 (1.6)	-12 (-0.5)	43 (1.7)
T7	1150 (45.3)	250 (9.8)	194 (7.6)	1146 (45.1)	290 (11.4)	175 (6.9)	-4 (-0.2)	40 (1.6)	-19 (-0.7)	44 (1.8)
T8	1150 (45.3)	350 (13.8)	204 (8)	1126 (44.3)	327 (12.9)	191 (7.5)	-24 (-0.9)	-23 (-0.9)	-13 (-0.5)	36 (1.4)
T9	1150 (45.3)	450 (17.7)	202 (8)	1126 (44.3)	427 (16.8)	188 (7.4)	-24 (-0.9)	-23 (-0.9)	-14 (-0.6)	36 (1.4)
T10	1150 (45.3)	550 (21.7)	207 (8.1)	1135 (44.7)	534 (21)	204 (8)	-15 (-0.6)	-16 (-0.6)	-3 (-0.1)	22 (0.9)
T11	1300 (51.2)	150 (5.9)	198 (7.8)	1308 (51.5)	205 (8.1)	174 (6.9)	8 (0.3)	55 (2.2)	-24 (-0.9)	61 (2.4)
T12	1300 (51.2)	250 (9.8)	198 (7.8)	1290 (50.8)	285 (11.2)	180 (7.1)	-10 (-0.4)	35 (1.4)	-18 (-0.7)	41 (1.6)
T13	1300 (51.2)	350 (13.8)	197 (7.8)	1273 (50.1)	319 (12.6)	178 (7)	-27 (-1.1)	-31 (-1.2)	-19 (-0.7)	45 (1.8)
T14	1300 (51.2)	450 (17.7)	195 (7.7)	1278 (50.3)	420 (16.5)	176 (6.9)	-22 (-0.9)	-30 (-1.2)	-19 (-0.7)	42 (1.6)
T15	1300 (51.2)	550 (21.7)	194 (7.6)	1281 (50.4)	520 (20.5)	172 (6.8)	-19 (-0.7)	-30 (-1.2)	-22 (-0.9)	42 (1.6)
T16	1459 (57.4)	150 (5.9)	154 (6.1)	1465 (57.7)	185 (7.3)	132 (5.2)	6 (0.2)	35 (1.4)	-22 (-0.9)	42 (1.6)
T17	1476 (58.1)	250 (9.8)	154 (6.1)	1436 (56.5)	258 (10.2)	69 (2.7)	-40 (-1.6)	8 (0.3)	-85 (-3.3)	94 (3.7)
T18	1473 (58)	350 (13.8)	154 (6.1)	1443 (56.8)	310 (12.2)	126 (5)	-30 (-1.2)	-40 (-1.6)	-28 (-1.1)	57 (2.3)
T19	1473 (58)	450 (17.7)	154 (6.1)	1452 (57.2)	408 (16.1)	125 (4.9)	-21 (-0.8)	-42 (-1.7)	-29 (-1.1)	55 (2.2)
T20	1479 (58.2)	550 (21.7)	154 (6.1)	1440 (56.7)	487 (19.2)	105 (4.1)	-39 (-1.5)	-63 (-2.5)	-49 (-1.9)	89 (3.5)
T21	1627 (64.1)	150 (5.9)	0 (0)	1603 (63.1)	125 (4.9)	-30 (-1.2)	-24 (-0.9)	-25 (-1)	-30 (-1.2)	46 (1.8)
T22	1638 (64.5)	250 (9.8)	0 (0)	1585 (62.4)	213 (8.4)	-35 (-1.4)	-53 (-2.1)	-37 (-1.5)	-35 (-1.4)	74 (2.9)
T23	1629 (64.1)	350 (13.8)	0 (0)	1582 (62.3)	302 (11.9)	-40 (-1.6)	-47 (-1.9)	-48 (-1.9)	-40 (-1.6)	78 (3.1)
T24	1625 (64)	450 (17.7)	0 (0)	1582 (62.3)	404 (15.9)	-40 (-1.6)	-43 (-1.7)	-46 (-1.8)	-40 (-1.6)	75 (2.9)
T25	1555 (61.2)	550 (21.7)	0 (0)	1478 (58.2)	472 (18.6)	-60 (-2.4)	-77 (-3)	-78 (-3.1)	-60 (-2.4)	125 (4.9)

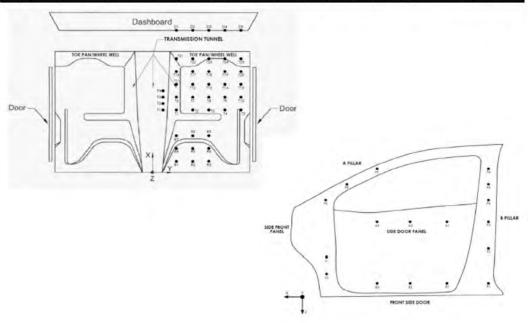
Floor Pan and Transmission Tunnel Area Measurements - Dimensions in mm (inches)

D-I-A	Pre-Impact				Post-Impact			Difference			
Point	X	Υ	Z	X	Υ	Z	ΔX	ΔΥ	ΔZ	Magnitude	
F1	1000 (39.4)	70 (2.8)	48 (1.9)	1018 (40.1)	69 (2.7)	62 (2.4)	18 (0.7)	-1 (0)	14 (0.6)	23 (0.9)	
F2	1075 (42.3)	70 (2.8)	49 (1.9)	1093 (43)	69 (2.7)	62 (2.4)	18 (0.7)	-1 (0)	13 (0.5)	22 (0.9)	
F3	1150 (45.3)	70 (2.8)	47 (1.9)	1173 (46.2)	71 (2.8)	62 (2.4)	23 (0.9)	1(0)	15 (0.6)	27 (1.1)	
F4	1225 (48.2)	70 (2.8)	41 (1.6)	1242 (48.9)	69 (2.7)	56 (2.2)	17 (0.7)	-1 (0)	15 (0.6)	23 (0.9)	
F5	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)	

Table 9-12 Test 4-10 Interior Side Front Panel and Roof Pre, Post, and Deformation Measurements

Policies and Procedures Manual
Roadside Safety Research Group
2 of 4

Attachment 5.5 -- Interior Vehicle Measurement Report


Vehicle Type	1100C Small Car	Test Number	110MASH4C19-01	
Make	Versa	Model	Nessan	
Year	2017	Color	Black	
VIN #	3N1CN7ADYHI 832031			

Side Front Panal Measurements - Dimensions in mm (inches)

Doint		Pre-Impact			Post-Impact			Difference		Magnitude
Point	X	Y	Z	X	Υ	Z	ΔX	ΔΥ	ΔZ	Magnitude
S1	1428 (56.2)	643 (25.3)	111 (4.4)	1395 (54.9)	579 (22.8)	52 (2)	-33 (-1.3)	-64 (-2.5)	-59 (-2.3)	93 (3.7)
S2	1426 (56.1)	644 (25.4)	0 (0)	1372 (54)	571 (22.5)	-58 (-2.3)	-54 (-2.1)	-73 (-2.9)	-58 (-2.3)	108 (4.2)
53	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
S4	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)
S5	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)
56	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
57	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
58	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)
59	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
510	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)

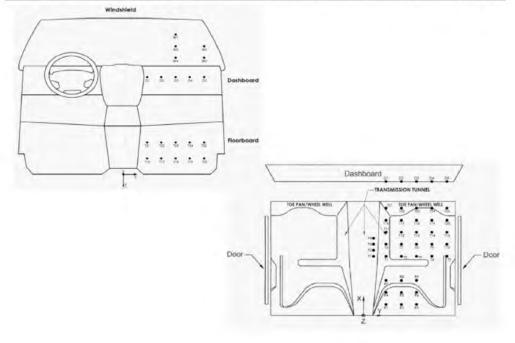
Roof Measurements - Dimensions in mm (inches)

Point		Pre-Impact		Post-Impact				Difference	4	Manufacida
Point	X	Y	Z	X	Υ	Z	ΔX	ΔΥ	ΔZ	Magnitude
R1	600 (23.6)	150 (5.9)	-1066 (-42)	599 (23.6)	148 (5.8)	-1077 (-42.4)	-1(0)	-2 (-0.1)	-11 (-0.4)	11 (0.4)
R2	600 (23.6)	250 (9.8)	-1068 (-42)	599 (23.6)	249 (9.8)	-1079 (-42.5)	-1(0)	-1 (0)	-11 (-0.4)	11 (0.4)
R3	600 (23.6)	350 (13.8)	-1062 (-41.8)	598 (23.5)	348 (13.7)	-1076 (-42.4)	-2 (-0.1)	-2 (-0.1)	-14 (-0.6)	14 (0.6)
R4	700 (27.6)	150 (5.9)	-1058 (-41.7)	699 (27.5)	148 (5.8)	-1066 (-42)	-1(0)	-2 (-0.1)	-8 (-0.3)	8 (0.3)
R5	700 (27.6)	250 (9.8)	-1055 (-41.5)	699 (27.5)	249 (9.8)	-1070 (-42.1)	-1(0)	-1 (0)	-15 (-0.6)	15 (0.6)
R6	700 (27.6)	350 (13.8)	-1052 (-41.4)	696 (27.4)	347 (13.7)	-1068 (-42)	-4 (-0.2)	-3 (-0.1)	-16 (-0.6)	17 (0.7)
R7	800 (31.5)	150 (5.9)	-1040 (-40.9)	800 (31.5)	149 (5.9)	-1056 (-41.6)	0(0)	-1 (0)	-16 (-0.6)	16 (0.6)
R8	800 (31.5)	250 (9.8)	-1036 (-40.8)	799 (31.5)	250 (9.8)	-1056 (-41.6)	-1(0)	0(0)	-20 (-0.8)	20 (0.8)
R9	800 (31.5)	350 (13.8)	-1030 (-40.6)	800 (31.5)	351 (13.8)	-1054 (-41.5)	0(0)	1(0)	-24 (-0.9)	24 (0.9)
R10	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)

Table 9-13 Test 4-10 Interior Windshield and Dashboard Pre, Post, and Deformation Measurements

Policies and Procedures Manual
Roadside Safety Research Group
3 of 4

Attachment 5.5 --- Interior Vehicle Measurement Report


Vehicle Type	1100C Small Car	Test Number	110MASH4C19-01	
Make	Versa	Model	Nessan	
Year	2017	Color	Black	
VIN #	3N1CN7APXH1832031			

Windshield Measurements - Dimensions in mm (inches)

Doint		Pre-Impact			Post-Impact	7		Difference		Magnitudo
Point	X	Υ	Z	X	Υ	Z	ΔΧ	ΔΥ	ΔZ	Magnitude
W1	1171 (46.1)	350 (13.8)	-890 (-35)	1180 (46.5)	350 (13.8)	-925 (-36.4)	9 (0.4)	0(0)	-35 (-1.4)	36 (1.4)
W2	1362 (53.6)	350 (13.8)	-782 (-30.8)	1375 (54.1)	355 (14)	-822 (-32.4)	13 (0.5)	5 (0.2)	-40 (-1.6)	42 (1.7)
W3	1318 (51.9)	550 (21.7)	-782 (-30.8)	1341 (52.8)	555 (21.9)	-842 (-33.1)	23 (0.9)	5 (0.2)	-60 (-2.4)	64 (2.5)
W4	1530 (60.2)	350 (13.8)	-682 (-26.9)	1548 (60.9)	355 (14)	-725 (-28.5)	18 (0.7)	5 (0.2)	-43 (-1.7)	47 (1.8)
W5	1477 (58.1)	550 (21.7)	-682 (-26.9)	1497 (58.9)	560 (22)	-732 (-28.8)	20 (0.8)	10 (0.4)	-50 (-2)	55 (2.2)
W6	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
W7	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
W8	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)
W9	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
W10	0.(0)	0.(0)	0.001	0 (0)	0 (0)	0.(0)	0.(0)	0(0)	0 (0)	0 (0)

Dashboard Measurements - Dimensions in mm (inches)

Point		Pre-Impact			Post-Impact	t		Difference		Magnitudo
Point	X	Υ	Z	X	Υ	Z	ΔΧ	ΔΥ	ΔZ	Magnitude
D1	1163 (45.8)	150 (5.9)	-498 (-19.6)	1164 (45.8)	105 (4.1)	-537 (-21.1)	1(0)	-45 (-1.8)	-39 (-1.5)	60 (2.3)
D2	1160 (45.7)	250 (9.8)	-498 (-19.6)	1156 (45.5)	205 (8.1)	-545 (-21.5)	-4 (-0.2)	-45 (-1.8)	-47 (-1.9)	65 (2.6)
D3	1163 (45.8)	350 (13.8)	-498 (-19.6)	1158 (45.6)	304 (12)	-548 (-21.6)	-5 (-0.2)	-46 (-1.8)	-50 (-2)	68 (2.7)
D4	1173 (46.2)	450 (17.7)	-498 (-19.6)	1167 (45.9)	404 (15.9)	-557 (-21.9)	-6 (-0.2)	-46 (-1.8)	-59 (-2.3)	75 (3)
D5	1191 (46.9)	550 (21.7)	-498 (-19.6)	1188 (46.8)	504 (19.8)	-558 (-22)	-3 (-0.1)	-46 (-1.8)	-60 (-2.4)	76 (3)
D6	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
D7	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)

Revised: 10/22/2018

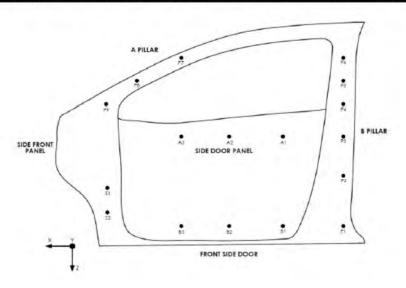
Table 9-14 Test 4-10 Interior Side Pre, Post, and Deformation Measurements

Policies and Procedures Manual Roadside Safety Research Group

4 of 4

Attachment 5.5 -- Interior Vehicle Measurement Report

Vehicle Type	1100C Small Car	Test Number	110MASH4C19-01	
Make	Versa	Model	Nessan	
Year	2017	Color	Black	
VIN #	3N1CN7APXHI832031	17.7		


A and B Pillar Measurements - Dimensions in mm (inches)

Doint		Pre-Impact			Post-Impact			Difference		Magnitudo
Point	X	Y	Z	X	Υ	Z	ΔΧ	ΔΥ	ΔZ	Magnitude
P1	300 (11.8)	681 (26.8)	-75 (-3)	302 (11.9)	675 (26.6)	-75 (-3)	2 (0.1)	-6 (-0.2)	0 (0)	6 (0.2)
P2	300 (11.8)	677 (26.7)	-278 (-10.9)	302 (11.9)	661 (26)	-278 (-10.9)	2 (0.1)	-16 (-0.6)	0 (0)	16 (0.6)
P3	300 (11.8)	662 (26.1)	-498 (-19.6)	303 (11.9)	644 (25.4)	-497 (-19.6)	3 (0.1)	-18 (-0.7)	1 (0)	18 (0.7)
P4	300 (11.8)	637 (25.1)	-682 (-26.9)	303 (11.9)	618 (24.3)	-684 (-26.9)	3 (0.1)	-19 (-0.7)	-2 (-0.1)	19 (0.8)
P5	300 (11.8)	600 (23.6)	-782 (-30.8)	304 (12)	583 (23)	-794 (-31.3)	4 (0.2)	-17 (-0.7)	-12 (-0.5)	21 (0.8)
P6	300 (11.8)	558 (22)	-890 (-35)	304 (12)	544 (21.4)	-899 (-35.4)	4 (0.2)	-14 (-0.6)	-9 (-0.4)	17 (0.7)
P7	1000 (39.4)	566 (22.3)	-890 (-35)	1013 (39.9)	552 (21.7)	-928 (-36.5)	13 (0.5)	-14 (-0.6)	-38 (-1.5)	43 (1.7)
P8	1218 (48)	608 (23.9)	-782 (-30.8)	1226 (48.3)	591 (23.3)	-836 (-32.9)	8 (0.3)	-17 (-0.7)	-54 (-2.1)	57 (2.3)
P9	1359 (53.5)	637 (25.1)	-682 (-26.9)	1380 (54.3)	586 (23.1)	-737 (-29)	21 (0.8)	-51 (-2)	-55 (-2.2)	78 (3.1)
P10	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)

Point	Pre-Impact				Post-Impact		Difference			Magnitude
Point	X	Y	Z	X	Υ	Z	ΔΧ	ΔΥ	ΔZ	iviagnitude
A1	700 (27.6)	670 (26.4)	498 (-19.6)	672 (26.5)	690 (27.2)	-531 (-20.9)	-28 (-1.1)	20 (0.8)	-33 (-1.3)	48 (1.9)
A2	800 (31.5)	673 (26.5)	-498 (-19.6)	774 (30.5)	687 (27)	-538 (-21.2)	-26 (-1)	14 (0.6)	-40 (-1.6)	50 (2)
A3	1000 (39.4)	663 (26.1)	498 (-19.6)	964 (38)	647 (25.5)	-535 (-21.1)	-36 (-1.4)	-16 (-0.6)	-37 (-1.5)	54 (2.1)
A4	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
A5	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
A6	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	0 (0)

Below Seat Front Side Door Area Measurements - Dimensions in mm (inches)

Point	Pre-Impact				Post-Impact			Difference	Difference		
	X	Y	Z	X	Υ	Z	ΔΧ	ΔΥ	ΔZ	Magnitude	
B1	700 (28.6)	657 (26.8)	-75 (-3.1)	675 (27.6)	670 (27.3)	-114 (-4.7)	-25 (-1)	13 (0.5)	-39 (-1.6)	48 (2)	
B2	800 (32.7)	655 (26.7)	-75 (-3.1)	775 (31.6)	676 (27.6)	-117 (-4.8)	-25 (-1)	21 (0.9)	-42 (-1.7)	53 (2.2)	
B3	1000 (40.8)	657 (26.8)	-75 (-3.1)	970 (39.6)	638 (26)	-110 (-4.5)	-30 (-1.2)	-19 (-0.8)	-35 (-1.4)	50 (2)	
B4	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	
B5	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	
B6	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)	

9.5.2.Test 110MASH4P18-02

Table 9-15 Test 4-11 Exterior Vehicle Measurements

Policies and Procedures Manual Revised: 8/17/2017 Roadside Safety Research Group Page 1 Attachment 5.4.6 --- 2270P Truck Parameters Date: 7/10/2018 Test Number: 110MASH4P18-02 Model: Dodge Ram 1500 1C6RR6FG7JS293929 Make: VIN: P265/70R17 Tire Size: Year: 2018 Odometer: Tire Inflation Pressure: Tape Measure Used: 5m-CP02 CLE:** **DRISI 1801** 40 psi Measured by: Chris C Staff: Steve W, Dave S Scale Set Used: 2500 lbs *(All Measurements Refer to Impacting Side) Vehicle Geometry - mm (inches) 1977 (77.8)1917 (75.5)5823 (229.3)d 1233 (48.5)3569 (140.5)1020 (40.2)e 748 (29.4)1554 (61.2)g h 340 (13.4)655 (25.8)532 (20.9)771 (30.4)Test Inertial C.M. 1736 (68.3)1718 (67.6)(4.7)1160 (45.7)120 790 (31.1)470 (18.5)q 380 1908 (75.1)5 (15)Wheel Center Height Front: 385 (15.2)Wheel Center Height Rear: 385 (15.2)Wheel Well Clearance (F) 160 (6.3)Wheel Well Clearance (R) 215 (8.5)Frame Height (F): 330 (13)Frame Height (R): (14.2)Engine Type: V6 Mass Distribution - kg (lbs) 3.6L **Engine Size:** ** CLE is the inventory number and should be located on the door Transmission Type: Automatic jamb of the vehicle. Automatic or Manual: FWD or RWD or 4WD: RWD Right Front: Left Front: 619 (1365.5) Scale: 607.5 (1339.2) Scale: red green Left Rear: 527 (1162.6) Scale: yellow Right Rear: 497.7 (1097.2) Scale: Weights *Used calibrated 100ft steel tape kg (lbs) Curb Test Inertial **Gross Static** to take this measurement. Tape's SO# 1-B6E6F-20-1. Measure as Wfront 1221.3 (2692.4)1226.9 (2704.7)1226.9 (2704.7)19ft-1.25 inches and converted 1025.1 (2259.8)941.7 (2075.9)1025.1 (2259.8)Wrear to mm. Chris C 7-10-18. 2162.9 (4768.3)2251.9 (4964.5)2251.9 (4964.5)W_{total} GVWA Ratings - kg (lbs) **Dummy Data** Front: 1679 (3701.5)N/A Type: 1770 N/A Back: (3902.1)Mass: 3449 N/A Total: (7603.6)Seat Position: GVWR Ratings: 3085 kg (6800 lbs) Note any damage prior to test: No damage to vehicle Data Transferred to Electronic Copy By: Christopher Caldwell Date: 8/29/2018 Transfer Checked by: David Whitesel 10/19/2018 Date:

93

Christopher Caldwell reviewed calculations 8/20/2014

Table 9-16 Test 4-11 CG Calculation: Curb Weight

Policies and Procedures Manual Roadside Safety Research Group A2LA Certificate No. 3046.01 Revised:8/17/2017 Page 1 of 3 Last Revised by Chris Caldwell

Attachment 5.4.2 --- CG Data Calculation Worksheet

CG Calculation Worksheet #1: Curb Weight

Make:	Ram 1500		Test Number:	110MASH4P18-02
Model:	Dodge		Date:	7/10/2018
Year:	2018		Temperature:	~70 F
VIN:	1C6RR6FG7JS29	3929	Scale Set Used:	2500 lbs
Fuel in Tank:	1/8 tank			
Fuel Removed:	none			И
Measured By:	Chris C		•	
	Dave S			
Support Staff	Steve W			
	David W		_ w ₁	W ₂
W1 = Left Front (LF) =	609.65	kg		
Scale Used:	red		74-24	H H
W2 = Right Front (RF) =	611.6	kg		⊕ — →
Scale Used:	green			
W3 = Left Rear (LR) =	483.65	kg	↓	E
Scale Used:	yellow		Fuel Tank	
W4 = Right Rear (RR) =	458	kg	← →	
Scale Used:	blue		$\overline{\Box}$	
Total Weight:			W ₃	W ₄
Wtotal (measured) =	2163	kg	$R \rightarrow$	- □
Wtotal (calculated) =	2162.9	kg	←	>
Distance between front whee	els:			N
M =1736	mm		$W_{Total} = W_1$	$+W_2+W_3+W_4$
Distance between rear wheel	s:		(w	+ W)F
N = 1718	mm		$H = \frac{C}{C}$	$\frac{1}{W} + \frac{W}{4} = \frac{1}{E}$
Distance from front to rear w				11
E = 3569	mm	R	$=\frac{(W_2-W_1)M}{2}$	$\frac{U + (W_4 - W_3)N}{W_{Total}}$
Distance from front wheels b		_		
H = 1554	mm	Data Tran	sferred to Electronic Copy By Christopher Caldwell	
Distance from vehicle centerl		Transfer C	hecked by:	
R = -9	mm		David Whitesel	Date: 10/19/2018

If R is negative the CG is left of center, if R is positive the CG is right of center

Curb Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.)

No damage, spare tire included.

110MASH4P18-02 --- CG Data Calculation Worksheet.xlsx

Curb WorkSheet

Table 9-17 Test 4-11 CG Calculation: Test Inertial Weight

Policies and Procedures Manual Roadside Safety Research Group AZLA Certificate No. 3046.01 Revised: 8/17/2017 Page 2 of 3 Last Revised by Chris Caldwell

Attachment 5.4.2 --- CG Data Calculation Worksheet

CG Calculation Worksheet #2: Test Inertial Weight Make: Test Number: 110MASH4P18-02 Ram 1500 Model: Dodge Date: 7/31/2018 Year: 2018 Temperature: ~75 °F VIN: 1C6RR6FG7JS293929 Scale Set Used: 2500 lbs Fuel in Tank: none Fuel Removed: 3 gallon Measured By: Chris C Steve W Support Staff

 W1 = Left Front (LF) =
 619.4
 kg

 Scale Used:
 red

 W2 = Right Front (RF) =
 607.45
 kg

 Scale Used:
 green

 W3 = Left Rear (LR) =
 527.35
 kg

 Scale Used:
 yellow

W4 = Right Rear (RR) = 497.7 kg
Scale Used: blue

Distance between front wheels:

M = 1736 mm

Distance between rear wheels:

N = 1718

Distance from front to rear wheels: E = 3569 mr

Distance from front wheels back to CG: H = 1625 mm

Distance from vehicle centerline to CG: R = -16 mm W₁

Fuel Tank

W₃

R

W₄

W₄

 $W_{Total} = W_1 + W_2 + W_3 + W_4$ $H = \frac{(W_3 + W_4)E}{W_{Total}}$

 $R = \frac{(W_2 - W_1)M + (W_4 - W_3)N}{2 W_{Total}}$

Data Transferred to Electronic Copy By:

Christopher Caldwell

Transfer Checked by:

David Whitesel

Date: 7/31/2018

Date: 10/19/2018

If R is negative the CG is left of center, if R is positive the CG is right of center

Test Inertial Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.)

Ballest added, all equipment installed, no gas in tank, spare tire included, 3/4 full external gas tank (about 3 gallons)

Ballest: 2 steel plates each weighing 16.5 kg (36.5 lbs)

110MASH4P18-02 --- CG Data Calculation Worksheet.xlsx

Test Inertial WorkSheet

Table 9-18 Test 4-11 CG Calculation: Gross Static Weight

Policies and Procedures Manual Roadside Safety Research Group A2LA Certificate No. 3046.01 Revised: 8/17/2017 Page 3 of 3 Last Revised by Chris Caldwell

Attachment 5.4.2 -- CG Data Calculation Worksheet CG Calculation Worksheet #3: Gross Static Weight Make: Ram 1500 Test Number: 110MASH4P18-02 Model: Dodge Date: 7/21/2018 ~75 °F Year: 2018 Temperature: VIN: 1C6RR6FG7JS293929 2500 lbs Scale Set Used: Fuel in Tank: None M Fuel Removed: 3 gallons Chris C Measured By: Steve W Support Staff W1 = Left Front (LF) = 619.4 kg Scale Used: W2 = Right Front (RF) = 607.45 Scale Used: green W3 = Left Rear (LR) = 527.35 Scale Used: yellow W4 = Right Rear (RR) = Scale Used: Total Weight: Wtotal (measured) = 2251.8 W_3 Wtotal (calculated) = 2251.9 Distance between front wheels: M = 1736 $W_{Total} = W_1 + W_2 + W_3 + W_4$ Distance between rear wheels: $H = \frac{(W_3 + W_4)E}{W_{Total}}$ N = 1718 Distance from front to rear wheels: $R = \frac{(W_2 - W_1)M + (W_4 - W_3)N}{2 W_{Total}}$ E = 3569 mm Distance from front wheels back to CG: H = 1625Data Transferred to Electronic Copy By: Christopher Caldwell Date: 8/29/2018 Transfer Checked by: Distance from vehicle centerline to CG: R = -16 **David Whitesel** Date: 10/19/2018

If R is negative the CG is left of center, if R is positive the CG is right of center

Gross Static Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.)

Copy of Test Inertial Weight worksheet.

110MASH4P18-02 --- CG Data Calculation Worksheet.xlsx

Gross Static WorkSheet

Table 9-19 Test 4-11 CG Calculation: Vertical CG Weight

Policies and Procedures Manual Roadside Safety Research Group A2LA Certificate No. 3046.01 Revised: 8/17/2017 Page 4 of 4 Last Revised by Chris Caldwell

Attachment 5.4.2 --- CG Data Calculation Worksheet

CG Calculation Worksheet #4: Vertical CG Weight 110MASH4P18-02 Make: Ram 1500 Test Number: Dodge 8/7/2018 Model: Date: Year: 2018 Temperature: 65 F 1C6RR6FG7JS293929 2500 lbs Scale Set Used: Fuel in Tank: none M Fuel Removed: none Steve W Measured By: Chris C Support Staff Rachel K Dave S W1 = Left Front (LF) = 622.6 Scale Used: red W2 = Right Front (RF) = 616.3 Scale Used: green W3 = Left Rear (LR) = 531.9 Scale Used: yellow W4 = Right Rear (RR) = 507.5 kg Scale Used: blue Total Weight: Wtotal (measured) = Wtotal (calculated) = 2278.3 Distance between front wheels: M = 1736 mm $W_{Total} = W_1 + W_2 + W_3 + W_4$ Distance between rear wheels: $H = \frac{(W_3 + W_4)E}{W_{Total}}$ 1718 mm Distance from front to rear wheels: $\frac{-W_1}{2W_{Total}}M + \left(W_4 - W_3\right)N$ 3569 Distance from front wheels back to CG: Data Transferred to Electronic Copy By: H = 1628 Christopher Caldwell Date: 8/8/2018 Distance from vehicle centerline to CG: Transfer Checked by: **David Whitesel** 4/15/2020 R = -12Date: If R is negative the CG is left of center, if R is positive the CG is right of center

110MASH4P18-02 --- CG Data Calculation Worksheet.xlsx

Vertical CG WorkSheet

Guide arm hub removed and vertical CG equipment added. Spare tire included.

Gross Static Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.)

382

Table 9-20 Test 4-11 Vertical CG Calculation: Worksheet

Policies and Procedure Manual Roadside Safety Research Group

Passenger Front: 382

Revised 6/27/2017 1 of 2

Attachment 5.6 (a) --- Vehicle Center of Gravity Worksheet RSRG Vertical Center of Gravity Worksheet

Vehicle Information 2018 Model: Dodge Ram 1500 VIN: 1C6RR6FG7JS293929 Make: Inertial Curb or Inertial Measurement: Test #: 110MASH4P18-02 Tape Measure Used: 5m-CP01 & 5m-CP02 Scale Set Used: 2500 lbs Vehicle and Equipment Measurements Vehicle Mass and Measurements (From CG Worksheet): Vehicle Width (Ave of Center of Tires) 1727 mm Hub to Hub Wheel Base: 3569 mm Cgy Offset (-Driver side, +Pass. Side) -16 mm Total Vehicle Mass: 2251.8 619.4 Dvr. Front Tire Mass: kg Dvr. Rear Tire Mass: 527.35 Scale Color: red Scale Color: yellow Pass. Front Tire Mass: 607.45 Pass. Rear Tire Mass: 497.7 Scale Color: green Scale Color: blue Vehicle Height From the Top of the Rim Inner Lip to the Bottom of the Wheel Well: Driver Front: Driver Rear: 350 Passenger Front: 301 351 mm Passenger Rear: Height From Ground to Center of Support: Driver Front: 450.5 mm Driver Rear: 449 mm Passenger Front: 446.5 452.5 mm Passenger Rear: mm Shock Mass: Driver Front: Passenger Front: 2.15 2.15 kg Scale Color: red Scale Color: red Height From Ground to Center of Wheel Hub: Driver Front: Driver Rear: 382

Passenger Rear:

mm

Date:

10/22/2018

Table 9-20 Test 4-11 Vertical CG Calculation: Worksheet (continued)

Policies and Procedure Manual Roadside Safety Research Group

Checked by:

Revised 6/27/2017

2 of 2

Attachment 5.6 (a) --- Vehicle Center of Gravity Worksheet

RSRG Vertical Center of Gravity Worksheet (Cont.)

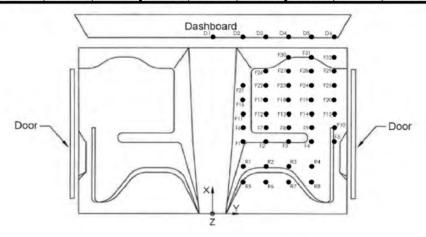
Vertical Center of Gravity Measurement

Number of Used Chain Links: Vehicle Level: 50 links links Front: Rear: Vehicle Front Up: degrees 45 links Front: Rear: links Vehicle Rear Up: Angle: 18 degrees 60 links links Front: Rear: Driver Side CGz: Passenger Side CGz: Maximum: 760 Maximum: 775 mm mm Middle: 750 mm Middle: 754 mm Minimum: 735 mm Minimum: 728 mm 50 70 Width: mm Width: mm Christopher Caldwell 8/7/2018 Conducted by: Date: Transferred to electronic copy **Christopher Caldwell** Date: 8/8/2018 David Whitesel

Table 9-21 Test 4-11 Vertical CG Calculation: Measurement and Report

Policies and Procedure Manual Revised: 3/28/2017 Roadside Safety Research Group 1 of 1 Attachment 5.6 (b) --- Vehicle Center of Gravity Measurement and Report Vehicle Center of Gravity Measurements Project Title: Development and Crash Testing of a Steel Post-and-Beam Bridge Railing in Compliance with MASH 2015, Test Level 4, for use in California ST-75 Bridge Rail] Vehicle Test Number: 110MASH4P18-02 Model: Dodge Make: Ram 1500 Year: 2018 VIN: 1C6RR6FG7JS293929 Vehicle Weights (Test Inertail) kg (lbs): Left Front Tire: 619.4 (1365.5) Right Front Tire: 607.5 (1339.2) Front Axle: 1226.9 (2704.7) Left Rear Tire: 527.4 (1162.6) Right Rear tire: 497.7 (1097.2) Rear Axle: 1025.1 (2259.8) 33 kg (73 lbs) added to the front of the truck bed Ballast and Location: Total: 2251.9 (4964.5) Vehicle Wheel Base Measurements: Vehicle length from center of front tires to center of back tires: 3569 mm 140.5 inches Vehicle width from center of left front tire to center of right front tire: 1736 mm 68.3 inches Vehicle width from center of left rear tire to center of right rear tire: 1718 mm 67.6 inches Center of Gravity: X: 1625 mm 64 inches Center of front tire to CG. The CG will be left if negative and right if positive of vehicle's center line. -16 mm -0.6 inches 748 mm 29.4 inches CG location above ground level

Table 9-22 Test 4-11 Interior Floor Pre, Post, and Deformation Measurements


Policies and Procedures Manual
Roadside Safety Research Group
Page 1

Attachment 5.5 -- Interior Vehicle Measurement Report

Vehicle Type	2270P	Test Number	110MASH4P18-02	
Make	Ram 1500	Model	Dodge	
Year	2018	Color	White	
VIN #	1C6RR6FG7JS293929			

Floorboard Measurements - Dimensions in mm (inches)

		Pre-Impact		7	Post-Impact			Difference	9 C	
Point	X	Y	Z	X	Y	2	ΔΧ	ΔΥ	ΔΖ	Magnitude
F1	1630 (64.2)	300 (11.8)	259 (10.2)	1621 (63.8)	285 (11.2)	242 (9.5)	-9 (-0.4)	-15 (-0.6)	-17 (-0.7)	24 (1)
F2	1630 (64.2)	400 (15.7)	259 (10.2)	1623 (63.9)	386 (15.2)	246 (9.7)	-7 (-0.3)	-14 (-0.6)	-13 (-0.5)	20 (0.8)
F3	1630 (64.2)	500 (19.7)	259 (10.2)	1625 (64)	488 (19.2)	253 (10)	-5 (-0.2)	-12 (-0.5)	-6 (-0.2)	14 (0.6)
F4	1630 (64.2)	600 (23.6)	260 (10.2)	1628 (64.1)	585 (23)	261 (10.3)	-2 (-0.1)	-15 (-0.6)	1(0)	15 (0.6)
F5	1630 (64.2)	700 (27.6)	261 (10.3)	1630 (64.2)	685 (27)	266 (10.5)	0(0)	-15 (-0.6)	5 (0.2)	16 (0.6)
F6	1730 (68.1)	300 (11.8)	258 (10.2)	1721 (67.8)	283 (11.1)	246 (9.7)	-9 (-0.4)	-17 (-0.7)	-12 (-0.5)	23 (0.9)
F7	1730 (68.1)	400 (15.7)	261 (10.3)	1724 (67.9)	384 (15.1)	251 (9.9)	-6 (-0.2)	-16 (-0.6)	-10 (-0.4)	20 (0.8)
F8	1730 (68.1)	500 (19.7)	261 (10.3)	1726 (68)	482 (19)	258 (10.2)	-4 (-0.2)	-18 (-0.7)	-3 (-0.1)	19 (0.7)
F9	1730 (68.1)	600 (23.6)	261 (10.3)	1728 (68)	582 (22.9)	269 (10.6)	-2 (-0.1)	-18 (-0.7)	8 (0.3)	20 (0.8)
F10	1730 (68.1)	700 (27.6)	262 (10.3)	1731 (68.1)	683 (26.9)	277 (10.9)	1(0)	-17 (-0.7)	15 (0.6)	23 (0.9)
F11	1830 (72)	300 (11.8)	240 (9.4)	1823 (71.8)	284 (11.2)	228 (9)	-7 (-0.3)	-16 (-0.6)	-12 (-0.5)	21 (0.8)
F12	1830 (72)	400 (15.7)	262 (10.3)	1823 (71.8)	381 (15)	256 (10.1)	-7 (-0.3)	-19 (-0.7)	-6 (-0.2)	21 (0,8)
F13	1830 (72)	500 (19.7)	263 (10.4)	1826 (71.9)	481 (18.9)	263 (10.4)	-4 (-0.2)	-19 (-0.7)	0 (0)	19 (0.8)
F14	1830 (72)	600 (23.6)	263 (10.4)	1828 (72)	581 (22.9)	271 (10.7)	-2 (-0.1)	-19 (-0.7)	8 (0.3)	21 (0.8)
F15	1830 (72)	700 (27.6)	264 (10.4)	1832 (72.1)	681 (26.8)	280 (11)	2 (0.1)	-19 (-0.7)	16 (0.6)	25 (1)
F16	1930 (76)	300 (11.8)	126 (5)	1924 (75.7)	294 (11.6)	118 (4.6)	-6 (-0.2)	-6 (-0.2)	-8 (-0.3)	12 (0.5)
F17	1930 (76)	400 (15.7)	222 (8.7)	1924 (75.7)	378 (14.9)	231 (9.1)	-6 (-0.2)	-22 (-0.9)	9 (0.4)	25 (1)
F18	1930 (76)	500 (19.7)	264 (10.4)	1926 (75.8)	475 (18.7)	265 (10.4)	-4 (-0.2)	-25 (-1)	1(0)	25 (1)
F19	1930 (76)	600 (23.6)	264 (10.4)	1927 (75.9)	574 (22.6)	270 (10.6)	-3 (-0.1)	-26 (-1)	6 (0.2)	27 (1.1)
F20	1930 (76)	700 (27.6)	265 (10.4)	1929 (75.9)	678 (26.7)	278 (10.9)	-1(0)	-22 (-0.9)	13 (0.5)	26 (1)
F21	2030 (79.9)	300 (11.8)	57 (2.2)	2022 (79.6)	300 (11.8)	45 (1.8)	-8 (-0.3)	0 (0)	-12 (-0.5)	14 (0.6)
F22	2030 (79.9)	400 (15.7)	131 (5.2)	2016 (79.4)	390 (15.4)	125 (4.9)	-14 (-0.6)	-10 (-0.4)	-6 (-0.2)	18 (0.7)
F23	2030 (79.9)	500 (19.7)	219 (8.6)	2024 (79.7)	475 (18.7)	220 (8.7)	-6 (-0.2)	-25 (-1)	1(0)	26 (1)
F24	2030 (79.9)	600 (23.6)	221 (8.7)	2019 (79.5)	574 (22.6)	217 (8.5)	-11 (-0.4)	-26 (-1)	-4 (-0.2)	29 (1.1)
F25	2030 (79.9)	700 (27.6)	222 (8.7)	2012 (79.2)	670 (26.4)	210 (8.3)	-18 (-0.7)	-30 (-1.2)	-12 (-0.5)	37 (1.5)
F26	2130 (83.9)	400 (15.7)	68 (2.7)	2116 (83.3)	401 (15.8)	56 (2.2)	-14 (-0.6)	1(0)	-12 (-0.5)	18 (0.7)
F27	2130 (83.9)	500 (19.7)	167 (6.6)	2119 (83.4)	475 (18.7)	160 (6.3)	-11 (-0.4)	-25 (-1)	-7 (-0.3)	28 (1.1)
F28	2130 (83.9)	600 (23.6)	168 (6.6)	2100 (82.7)	574 (22.6)	150 (5.9)	-30 (-1.2)	-26 (-1)	-18 (-0.7)	44 (1.7)
F29	2130 (83.9)	700 (27.6)	168 (6.6)	2068 (81.4)	680 (26.8)	138 (5.4)	-62 (-2.4)	-20 (-0.8)	-30 (-1.2)	72 (2.8)
F30	2235 (88)	500 (19.7)	93 (3.7)	2226 (87.6)	488 (19.2)	81 (3.2)	-9 (-0.4)	-12 (-0.5)	-12 (-0.5)	19 (0.8)
F31	2243 (88.3)	600 (23.6)	93 (3.7)	2185 (86)	574 (22.6)	55 (2.2)	-58 (-2.3)	-26 (-1)	-38 (-1.5)	74 (2.9)
F32	2213 (87.1)	700 (27.6)	51 (2)	2131 (83.9)	659 (25.9)	10 (0.4)	-82 (-3.2)	-41 (-1.6)	-41 (-1.6)	100 (4)

Table 9-23 Test 4-11 Interior Dash and Roof Pre, Post, and Deformation Measurements

Policies and Procedures Manual
Roadside Safety Research Group
Page 1

Attachment 5.5 --- Interior Vehicle Measurement Report


Vehicle Type	2270P	Test Number	110MASH4P18-02	
Make	Ram 1500	Model	Dodge	
Year	2018	Color	White	
VIN#	1C6RR6FG7JS293929			

Dashboard Measurements - Dimensions in mm (inches)

	Pre-Impact				Post-Impact			Difference		
Point	X	Y	2	X	Υ	Z	ΔX	ΔΥ	ΔZ	Magnitude
D1	1731 (68.1)	0 (0)	-515 (-20.3)	1734 (68.3)	0 (0)	-526 (-20.7)	3 (0.1)	0(0)	-11 (-0.4)	11 (0.4)
D2	1818 (71.6)	300 (11.8)	-515 (-20.3)	1816 (71.5)	301 (11.9)	-526 (-20.7)	-2 (-0.1)	1(0)	-11 (-0.4)	11 (0.4)
D3	1818 (71.6)	400 (15.7)	-515 (-20.3)	1818 (71.6)	400 (15.7)	-526 (-20.7)	0(0)	0 (0)	-11 (-0.4)	11 (0.4)
D4	1825 (71.9)	500 (19.7)	-515 (-20.3)	1824 (71.8)	500 (19.7)	-526 (-20.7)	-1(0)	0(0)	-11 (-0.4)	11 (0.4)
D5	1836 (72.3)	600 (23.6)	-515 (-20.3)	1835 (72.2)	600 (23.6)	-526 (-20.7)	-1(0)	0 (0)	-11 (-0.4)	11 (0.4)
D6	1848 (72.8)	700 (27.6)	-515 (-20.3)	1847 (72.7)	703 (27.7)	-526 (-20.7)	-1(0)	3 (0.1)	-11 (-0.4)	11 (0.5)

Roof Measurements - Dimensions in mm (inches)

		Pre-Impact			Post-Impac	t		Difference		
Point	X	Y		X	Y	2	ΔΧ	ΔΥ	ΔZ	Magnitude
R1	1330 (52.4)	300 (11.8)	-1060 (-41.7)	1324 (52.1)	304 (12)	-1068 (-42)	-6 (-0.2)	4 (0.2)	-8 (-0.3)	11 (0.4)
R2	1330 (52.4)	400 (15.7)	-1055 (-41.5)	1325 (52.2)	401 (15.8)	-1063 (-41.9)	-5 (-0.2)	1(0)	-8 (-0.3)	9 (0.4)
R3	1330 (52.4)	500 (19.7)	-1048 (-41.3)	1325 (52.2)	502 (19.8)	-1057 (-41.6)	-5 (-0.2)	2 (0.1)	-9 (-0.4)	10 (0.4)
R4	1330 (52.4)	600 (23.6)	-1037 (-40.8)	1326 (52.2)	603 (23.7)	-1045 (-41.1)	-4 (-0.2)	3 (0.1)	-8 (-0.3)	9 (0.4)
R5	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	0 (0)
R6	1230 (48.4)	300 (11.8)	-1070 (-42.1)	1224 (48.2)	303 (11.9)	-1075 (-42.3)	-6 (-0.2)	3 (0.1)	-5 (-0.2)	8 (0.3)
R7	1230 (48.4)	400 (15.7)	-1065 (-41.9)	1224 (48.2)	404 (15.9)	-1072 (-42.2)	-6 (-0.2)	4 (0.2)	-7 (-0.3)	10 (0.4)
R8	1230 (48.4)	500 (19.7)	-1059 (-41.7)	1225 (48.2)	503 (19.8)	-1068 (-42)	-5 (-0.2)	3 (0.1)	-9 (-0.4)	11 (0.4)
R9	1230 (48.4)	600 (23.6)	-1048 (-41.3)	1229 (48.4)	604 (23.8)	-1056 (-41.6)	-1(0)	4 (0.2)	-8 (-0.3)	9 (0.4)
R10	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0 (0)	0 (0)

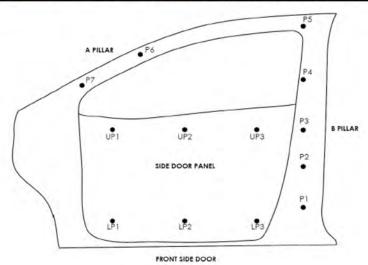
Table 9-24 Test 4-11 Interior Door Pre, Post, and Deformation Measurements

Policies and Procedures Manual
Roadside Safety Research Group
Page 1

Attachment 5.5 -- Interior Vehicle Measurement Report

Vehicle Type	2270P	Test Number	110MASH4P18-02	
Make	Ram 1500	Model	Dodge	
Year	2018	Color	White	
VIN #	1C6RR6EG7IS293929		-	

Door Pillar Measurements - Dimensions in mm (inches)


		Pre-Impact			Post-Impact			Difference		3
Point	X	Υ	Z	X	Υ	Z	ΔX	ΔΥ	ΔZ	Magnitude
P1	950 (37.4)	840 (33.1)	-60 (-2.4)	949 (37.4)	834 (32.8)	-68 (-2.7)	-1(0)	-6 (-0.2)	-8 (-0.3)	10 (0.4)
P2	950 (37.4)	840 (33.1)	-262 (-10.3)	950 (37.4)	834 (32.8)	-270 (-10.6)	0(0)	-6 (-0.2)	-8 (-0.3)	10 (0.4)
P3	950 (37.4)	818 (32.2)	-499 (-19.6)	950 (37.4)	813 (32)	-505 (-19.9)	0(0)	-5 (-0.2)	-6 (-0.2)	8 (0.3)
P4	950 (37.4)	792 (31.2)	-674 (-26.5)	950 (37.4)	791 (31.1)	-681 (-26.8)	0(0)	-1 (0)	-7 (-0.3)	7 (0.3)
P5	950 (37.4)	695 (27.4)	-950 (-37.4)	951 (37.4)	694 (27.3)	-964 (-38)	1(0)	-1 (0)	-14 (-0.6)	14 (0.6)
P6	1630 (64.2)	700 (27.6)	-811 (-31.9)	1629 (64.1)	699 (27.5)	-826 (-32.5)	-1(0)	-1 (0)	-15 (-0.6)	15 (0.6)
P7	1790 (70.5)	735 (28.9)	-699 (-27.5)	1794 (70.6)	734 (28.9)	-712 (-28)	4 (0.2)	-1 (0)	-13 (-0.5)	14 (0.5)

Door Post Measurements - Dimensions in mm (inches)

	Pre-Impact				Post-Impact		Difference			10 - 10
Point	X	Y	Z	X	Y	Z	ΔΧ	ΔΥ	ΔZ	Magnitude
UP1	1630 (64.2)	848 (33.4)	-432 (-17)	1617 (63.7)	833 (32.8)	-442 (-17.4)	-13 (-0.5)	-15 (-0.6)	-10 (-0.4)	22 (0.9)
UP2	1450 (57.1)	853 (33.6)	-432 (-17)	1438 (56.6)	848 (33.4)	-442 (-17.4)	-12 (-0.5)	-5 (-0.2)	-10 (-0.4)	16 (0.6)
UP3	1230 (48.4)	862 (33.9)	-432 (-17)	1217 (47.9)	861 (33.9)	-442 (-17.4)	-13 (-0.5)	-1 (0)	-10 (-0.4)	16 (0.6)

Door Post Measurements - Dimensions in mm (inches)

	Pre-Impact				Post-Impact		Difference			
Point	X	Y	Z	X	Y	Z	ΔΧ	ΔΥ	ΔΖ	Magnitude
LP1	1630 (64.2)	876 (34.5)	0 (0)	1617 (63.7)	852 (33.5)	-14 (-0.6)	-13 (-0.5)	-24 (-0.9)	-14 (-0.6)	31 (1.2)
LP2	1450 (57.1)	875 (34.4)	0 (0)	1438 (56.6)	855 (33,7)	-14 (-0.6)	-12 (-0.5)	-20 (-0.8)	-14 (-0.6)	27 (1.1)
LP3	1230 (48.4)	876 (34.5)	0 (0)	1216 (47.9)	862 (33.9)	-14 (-0.6)	-14 (-0.6)	-14 (-0.6)	-14 (-0.6)	24 (1)

Revised:10/17/2018

Page 1

9.5.3.Test 110MASH4S19-02

Policies and Procedures Manual

Roadside Safety Research Group

Table 9-25 Test 4-12 Exterior Vehicle Measurements

Attachment 5.4.7 --- 10000S Single Unit Truck Parameters Test Number: _ Date: 8-May-19 110MASH4S19-02 International Tire Size Front: 11R22.5 Odometer: 205399 Make: 4300 SBA 1HTMMAAM3DH104537 Tire Size Rear: 11R22.5 2013 Year: Tire Inflation Pressure: Tape Measure Used: 5m-CP03 & 100ft-QD01 DRISI1804 Chris C. & David S. Staff: Victor L & Steve Wake Scale Set Used: 10,000 lbs

Vehicle	Geometry - mm	(inches) Tape	Measure	Used:	5m-CP03 & 100ft-QD01			
a)	2335	(91.93)	j)	900	(35.43)	s)	942	(37.09)
)	3740	(147.24)	k)	544	(21,42)	t)	2435	(95.87)
)	9611	(378.39)	1)	1245	(49.02)	u)	2816	(110.87)
1)	2491	(98.07)	m)	2010	(79.13)	v)	6717	(264.45)
e)	6007	(236.5)	n)	1820	(71.65)	w)	78	(3.07)
	1113	(43.82)	0)	1542	(60.71)	x)	2530	(99.61)
)	n/a	n/a	p)	133	(5.24)	y)	796	(31.34)
)	3776	(148,66)	q)	1065	(41.93)	z)	1190	(46.85)
	517	(20.35)	r)	595	(23.43)	aa)	1861	(73.27)

Weights - k	kg (lbs)						Wheel Center	506	(19,92)
	(Curb	Test	Inertial	Gro	ss Static	Height Front:	500	(15,52)
W _{front axel}	3171	(6990.74)	3719	(8198.85)	3719	(8198.85)	Wheel Center	520	(20.47)
Wrear axel	3512	(7742.5)	6295	(13877.87)	6295	(13877,87)	Height Rear:	520	(20.47)
W _{TOTAL}	6683	(14733.25)	10014	(22076.72	10014	(22076.72)	Wheel Well	207	(8.15)
7.7							Clearance (FR):	- (52h-	(/
Ballast:	3	186	(7023.8	Sca. Sca.	le: 10		Wheel Well	135	(5.31)
Ballast CG	Height:	1587	(62.	48)			Clearance (RR):	133	(3.31)
							Engine Type:	Dies	sel
m = measu	red betwe	en the center li	ne of the fr	ont tires.			Engine Size:	7.6L	L6
v - adge of	Fhood nos	r wind shield ale	ong center	line			Transmission Type:		

y = edge of hood near wind shield along center line.

aa= measured between the center line of the dual rear tires.

Mass Distribu	ution								
Left Front	1815	(4001.32)	Scale:	red	Right Front	1904	(4197.53)	Scale:	green
Left Rear	3172	(6992.95)	Scale:	yellow	Right Rear	3123	(6884.92)	Scale:	blue

Automatic Rear Wheel Drive

Note any damage prior to test: No visible damage.

Data Transferred to Electronic Copy By: Christopher Caldwell Date: 6/18/2019

Transfer Checked by: David Whitesel Date: 10/1/2019

^{*} CLE is the inventory number and should be located on the door jamb of the vehicle.

Table 9-26 Test 4-12 CG Calculation: Curb Weight

Policies and Procedures Manual Roadside Safety Research Group A2LA Certificate No. 3046.01 Revised:8/17/2017 Page 1 of 3 Last Revised by Chris Caldwell

Attachment 5.4.2 --- CG Data Calculation Worksheet

CG Calculation Worksheet #1: Curb Weight

	CG	Calculation W	orksheet #1: Curb Weight	it	
Make:	Internation	al	Test Number:	110MASH4S19-02	
Model:	4300 SBA		Date:	3/26/2019	
Year:	2013		Temperature:	65 °F	
VIN:	1HTMMAAM3DH	104537	Scale Set Used:	10,000 Scale	
Fuel in Tank:	50% Full			7,	
Fuel Removed:	None			M	
Measured By:	Chris C		· ·		
	Steve W				
Support Staff	Vue H				
	Victor L & Dav	id W	w ₁	W ₂	•
W1 = Left Front (LF) =	1582	kg			
Scale Used:	red			CG H	
W2 = Right Front (RF) =	1589	kg		♣ — →	
Scale Used:			1		
W3 = Left Rear (LR) =	1775	kg	↓—		E
Scale Used:	yellow		Fuel Tank		
W4 = Right Rear (RR) =	1737	kg	← →		
Scale Used:	blue		$\overline{\Box}$		
Total Weight:			W ₃	W ₄	_
Wtotal (measured) =	6683	kg	["3] R	→ ← (")	
Wtotal (calculated) =	6683	kg		—————————————————————————————————————	
Distance between front wh	eels:		13	N .	
M = 2010	mm		$W_{Total} =$	$=W_1+W_2+W_3+W_4$	
Distance between rear whe			0	W + W)F	
N = 1861	mm		$H = \frac{Q}{2}$	$\frac{W_3 + W_4)E}{W_{Total}}$	
Distance from front to rear	111111111111111111111111111111111111111				
E = 6007	mm	R	$=\frac{(W_2 - W_1)}{(W_2 - W_1)}$	$\frac{M + (W_4 - W_3)N}{2W_{Total}}$	
Distance from front wheels	back to CG:	_			
H = 3157	mm	Data Tra	nsferred to Electronic Cop		
			Christopher Caldy	well Date: 5/8/20	19
Distance from vehicle cente		Transfer	Checked by:		
R = -4	mm		David Whitese	Date: 10/1/20	019

If R is negative the CG is left of center, if R is positive the CG is right of center

Curb Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.)

No visible damage, 105 psi in tires.

110MASH4S19-02 CG Data Calculation Worksheet.xlsx

Curb WorkSheet

Table 9-27 Test 4-12 CG Calculation: Test Inertial Weight

Policies and Procedures Manual Roadside Safety Research Group A2LA Certificate No. 3046.01

Revised: 8/17/2017 Page 2 of 3 Last Revised by Chris Caldwell

Attachment 5.4.2 --- CG Data Calculation Worksheet

CG Calculation Worksheet #2: Test Inertial Weight Make: International Test Number: 110MASH4S19-02 Model: 4300 SBA Date: 6/17/2019 Year: 2013 Temperature: 84 °F 1HTMMAAM3DH104537 10,000 Scale VIN: Scale Set Used: Fuel in Tank: 25% Full Fuel Removed: None Measured By: Chris C Vue H Support Staff W1 = Left Front (LF) = 1815 Scale Used: W2 = Right Front (RF) = Scale Used: green W3 = Left Rear (LR) = yellow Scale Used: W4 = Right Rear (RR) = Scale Used: blue Total Weight: 10013 Wtotal (measured) = Wtotal (calculated) = 10014 Distance between front wheels: M = 2010 $W_{Total} = W_1 + W_2 + W_3 + W_4$ Distance between rear wheels: $H = \frac{(W_3 + W_4)E}{W_{Total}}$ N = 1861 mm Distance from front to rear wheels: $R = \frac{(W_2 - W_1)M + (W_4 - W_3)N}{2 W_{Total}}$ E = 6007 Distance from front wheels back to CG: Data Transferred to Electronic Copy By: H = 3776Christopher Caldwell Date: 6/17/2019 Distance from vehicle centerline to CG: Transfer Checked by:

If R is negative the CG is left of center, if R is positive the CG is right of center

Test Inertial Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Ballast and instrumentation installed.

110MASH4S19-02 CG Data Calculation Worksheet.xlsx

Test Inertial WorkSheet

10/1/2019

Date:

David Whitesel

Table 9-28 Test 4-12 CG Calculation: Gross Static Weight

Policies and Procedures Manual Roadside Safety Research Group A2LA Certificate No. 3046.01 Revised: 8/17/2017 Page 3 of 3 Last Revised by Chris Caldwell

Attachment 5.4.2 --- CG Data Calculation Worksheet

CG Calculation Worksheet #3: Gross Static Weight

Make:	Internation		eet #3: Gross Static Wei Test Number:	110MASH4S19	-02
Model:	4300 SBA		Date:	6/17/2019	
Year:	2013		Temperature:	84 °F	
VIN:	1HTMMAAM3DH	104537	Scale Set Used:	10,000 Scale	1
Fuel in Tank:	25% Full				
Fuel Removed:	None			м.	
Measured By:	Chris C			-	
	Vue H				
Support Staff			[]		
W1 = Left Front (LF) =	1815	kg	w ₁	w ₂	1 1
Scale Used:	red				н
scare osea.	icu			CG	
W2 = Right Front (RF) =	1904	kg		ee ———	<u>v</u>
Scale Used:	green		i	1	
-					
W3 = Left Rear (LR) =	3172	kg	<u></u>		Ε
Scale Used:	yellow		Fuel		
-			Tank		
W4 = Right Rear (RR) =	3123	kg	+ +		
Scale Used:					
					- 1
Total Weight:					J
Wtotal (measured) =	10013	kg	W ₃	W ₄	
			R -	→ ←	
Wtotal (calculated) = 1	10014	kg	<u> </u>	γ	
			←	→	
Distance between front whe				N	
M = 2010	mm		127	m . m . m . m	
Anna Anna Anna Anna			$W_{Total} = I$	$W_1 + W_2 + W_3 + W_4$	
Distance between rear whee			(n	, w)r	
N = 1861	mm		$H = \frac{W}{W}$	$W_{3} + W_{4} E$	
	rest.			W Total	
Distance from front to rear v			(w - w)	M + (W - W)	W
E = 6007	mm	R =	$\frac{(n_2 - n_1)}{2}$	$\frac{M}{2W} + \frac{W_4 - W_3}{2W}$	3 114
Distance from front of tools	analyta CC:			2 W Total	
Distance from front wheels I		Data Tarant	awad ta Clasterale Carry	D	
H = 3776	mm	Data Transfe	erred to Electronic Copy		C/12/2024
Distance from vehicle center	dinata CC:	Transfer Ch		ell Date:	6/1//2019
		Transfer Ch		D-1	10/1/201/
R = 4	mm		David Whitesel	Date:	10/1/2019

If R is negative the CG is left of center, if R is positive the CG is right of center

Gross Static Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.)

Same as test inertial.

110MASH4S19-02 CG Data Calculation Worksheet.xlsx

Gross Static WorkSheet

Table 9-29 Test 4-10 Interior Floor and Transmission Tunnel Pre, Post, and Deformation Measurements

Policies and Procedures Manual
Roadside Safety Research Group

1 of 5

Attachment 5.5 --- Interior Vehicle Measurement Report

Vehicle Type	10000S	Test Number	110MASH4S19-02	
Make	International	Model	4300 SBA	
Year	2013	Color	Yellow	
VIN#	1HTMMAAM3DH104537			

Toe Pan and Wheel/Foot Well Area Measurements - Dimensions in mm (inch

Point		Pre-Impact			Post-Impact			Difference		
Politic	X	Y	Z	X	Υ	Z	ΔX	ΔY	ΔZ	- Magnitude
T1	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)

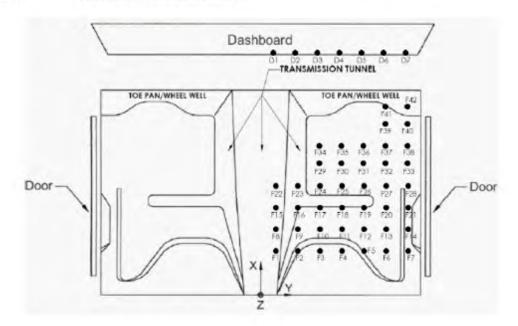
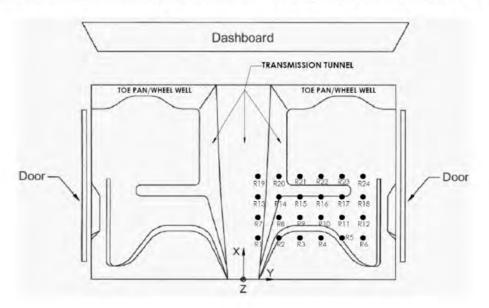

Floor Pan and Transmission Tunnel Area Measurements - Dimensions in mm (inches) Pre-Impact Post-Impact Difference Point Magnitude ΔX ΔZ 550 (21.7) 300 (11.8) 84 (3.3) 550 (21.7) 300 (11.8) 83 (3.3) 0(0)1(0) F1 0(0)-1(0)550 (21.7) 400 (15.7) 84 (3.3) 550 (21.7) 400 (15.7) 79 (3.1) 0 (0) 0(0) -5 (-0.2) 5 (0.2) F3 550 (21.7) 500 (19.7) 550 (21.7) 0(0) 4 (-0.2) 4 (0.2) 84 (3.3) 500 (19.7) 80 (3.1) 0(0) F4 550 (21.7) 0(0) -5 (-0.2) 550 (21.7) | 600 (23.6) 85 (3.3) 600 (23.6) 80 (3.1) 0(0)5 (0.2) F5 550 (21.7) 700 (27.6) 84 (3.3) 550 (21.7) 700 (27.6) 79 (3.1) 0 (0) 0(0) -5 (-0.2) 5 (0.2) F6 550 (21.7) 800 (31.5) 84 (3.3) 550 (21.7) 800 (31.5) 77 (3) 0(0) 0(0) -7 (-0.3) 7 (0.3) F7 550 (21.7) 900 (35.4) 82 (3.2) 550 (21.7) 900 (35.4) 76 (3) 0(0)0(0)-6 (-0.2) 6 (0.2) F8 700 (27.6) 300 (11.8) 79 (3.1) 701 (27.6) 300 (11.8) 77 (3) 1 (0) 0(0) -2 (-0.1) 2 (0.1) F9 700 (27.6) 400 (15.7) 79 (3.1) 700 (27.6) 400 (15.7) 76 (3) 0(0) 0(0)-3 (-0.1) 3 (0.1) 500 (19.7) 0(0) F10 700 (27.6) 84 (3.3) 700 (27.6) 500 (19.7) 80 (3.1) 0(0)4 (-0.2) 4(0.2)700 (27.6) 600 (23.6) 85 (3.3) 700 (27.6) 600 (23.6) 79 (3.1) 0(0) 0(0) -6 (-0.2) 6 (0.2) F12 701 (27.6) 77 (3) -7 (-0.3) 7 (0.3) 700 (27.6) 700 (27.6) 0(0) 700 (27.6) 84 (3.3) 1(0) F13 700 (27.6) 800 (31.5) 84 (3.3) 701 (27.6) 800 (31.5) 81 (3.2) 1 (0) 0(0) -3 (-0.1) 3 (0.1) F14 700 (27.6) 900 (35.4) 84 (3.3) 701 (27.6) 897 (35.3) 78 (3.1) 1(0) -3 (-0.1) -6 (-0.2) 7 (0.3) F15 850 (33.5) 300 (11,8) 89 (3.5) 850 (33.5) 300 (11.8) 89 (3.5) 0 (0) 0(0) 0(0) 0(0) F16 850 (33.5) 400 (15.7) 89 (3.5) 850 (33.5) 81 (3.2) 0 (0) 0(0)-8 (-0.3) 8 (0.3) 400 (15.7) 0(0) F17 850 (33.5) 500 (19.7) 86 (3.4) 850 (33.5) 500 (19.7) 79 (3.1) 0(0) -7 (-0.3) 7 (0.3) 850 (33.5) F18 -6 (-0.2) 600 (23.6) 87 (3.4) 850 (33.5) 600 (23.6) 81 (3.2) 0(0)0(0)6(0.2)F19 850 (33.5) 700 (27.6) 87 (3.4) 852 (33.5) 699 (27.5) 69 (2.7) 2 (0.1) -1(0)-18 (-0.7) 18 (0.7) F20 850 (33.5) 800 (31.5) 88 (3.5) 848 (33.4) 797 (31.4) 79 (3.1) -2 (-0.1) -3 (-0.1) -9 (-0.4) 10 (0.4) F21 850 (33.5) 900 (35.4) 85 (3.3) 847 (33.3) 896 (35.3) 74 (2.9) -3(-0.1)-4(-0.2)-11 (-0.4) 12 (0.5) F22 1000 (39.4) 300 (11.8) 88 (3.5) 1001 (39.4) 300 (11.8) 84 (3.3) 1 (0) 0(0) -4 (-0.2) 4 (0.2) F23 1000 (39.4) 400 (15.7) 87 (3.4) 1000 (39.4) 400 (15.7) 84 (3.3) 0(0) 0(0) -3 (-0.1) 3 (0.1) 84 (3.3) 1000 (39.4) 0(0) F24 500 (19.7) 86 (3.4) 1000 (39.4) 500 (19.7) 0(0) 2 (0.1) -2(-0.1)1000 (39.4) 0(0) 0(0)F25 600 (23.6) 88 (3.5) 1000 (39.4) 600 (23.6) 81 (3.2) -7(-0.3)7 (0.3) 2 (0.1) 0(0) -19 (-0.7) F26 1000 (39.4) 700 (27.6) 91 (3.6) 1002 (39.4) 700 (27.6) 72 (2.8) 19 (0.8) F27 1000 (39.4) 800 (31.5) 86 (3.4) 991 (39) 785 (30.9) 52 (2) -9 (-0.4) 15 (-0.6) -34 (-1.3) 38 (1.5) F28 1000 (39.4) 900 (35.4) 86 (3.4) 987 (38.9) 874 (34.4) 30 (1.2) -13 (-0.5) -26 (-1) -56 (-2.2) 63 (2.5) F29 1150 (45.3) 500 (19.7) 87 (3.4) 1150 (45.3) 500 (19.7) 84 (3.3) 0(0) 0(0) -3 (-0.1) 3 (0.1) F30 1150 (45.3) 600 (23.6) 89 (3.5) 1151 (45.3) 596 (23.5) 84 (3.3) 1 (0) 4 (-0.2) -5 (-0.2) 6 (0.3) F31 1150 (45.3) 700 (27.6) 89 (3.5) 1138 (44.8) 684 (26.9) 50(2) -12 (-0.5) -16 (-0.6) -39 (-1.5) 44 (1.7) F32 1150 (45.3) 800 (31.5) 88 (3.5) 1123 (44.2) 770 (30.3) 18 (0.7) -27 (-1.1) -30 (-1.2) -70 (-2.8) 81 (3.2) F33 1150 (45.3) 900 (35.4) 870 (34.3) 54 (2.1) 88 (3.5) 1132 (44.6) 47 (1.9) -18 (-0.7) -30 (-1.2) -41 (-1.6) F34 1251 (49.3) 500 (19.7) 60 (2.4) 1254 (49.4) 500 (19.7) 60 (2.4) 3 (0.1) 0(0) 0 (0) 3 (0.1) F35 1253 (49.3) 600 (23.6) 60 (2.4) 1256 (49.4) 596 (23.5) 59 (2.3) 3 (0.1) -4 (-0.2) -1(0)5 (0.2) F36 1253 (49.3) 700 (27.6) 60 (2.4) 1237 (48.7) 680 (26.8) 12 (0.5) -16 (-0.6) -20 (-0.8) -48 (-1.9) 54 (2.1) F37 1255 (49.4) 800 (31.5) 37 (1.5) 1232 (48.5) 772 (30.4) -25 (-1) -23 (-0.9) -28 (-1.1) -62 (-2.4) 72 (2.8) 35 (1.4) 1236 (48.7) 0(0) -20 (-0.8) -35 (-1.4) F38 900 (35.4) -19 (-0.7) 1255 (49.4) 880 (34.6) 45 (1.8) F39 1306 (51.4) 800 (31.5) 1293 (50.9) 785 (30.9) -43 (-1.7) -13 (-0.5) -15 (-0.6) -43 (-1.7) 47 (1.9) 0 (0) F40 885 (34.8) 1300 (51.2) 900 (35.4) 0 (0) 1285 (50.6) -25 (-1) -15 (-0.6) -15 (-0.6) -25 (-1) 33 (1.3) F41 1398 (55) 800 (31.5) -86 (-3.4) 1406 (55.4) 800 (31.5) -80 (-3.1) 8 (0.3) 0(0) 6 (0.2) 10 (0.4) F42 1398 (55) 900 (35.4) -86 (-3.4) 1399 (55.1) 900 (35.4) -81 (-3.2) 1(0) 0(0) 5 (0.2) 5 (0.2)

Table 9-29 (continued)

Policies and Procedures Manual Revised: 10/22/2018
Roadside Safety Research Group 2 of 5

Attachment 5.5 -- Interior Vehicle Measurement Report

10000S	Test Number	110MASH4S19-02	
International	Model	4300 SBA	
2013	Color	Yellow	
1HTMMAAM3DH104537			
	International 2013	International Model 2013 Color	International Model 4300 SBA 2013 Color Yellow


Table 9-30 Test 4-10 Interior Roof Pre, Post, and Deformation Measurements

Policies and Procedures Manual
Roadside Safety Research Group
3 of 5

Attachment 5.5 --- Interior Vehicle Measurement Report

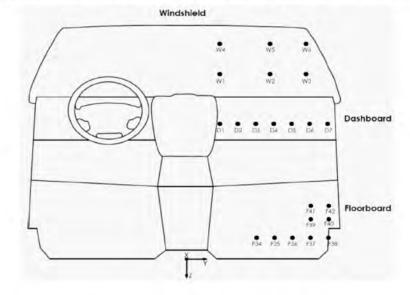
Vehicle Type	10000S	Test Number	110MASH4S19-02	
Make	International	Model	4300 SBA	
Year	2013	Color	Yellow	
V/INI #	1HTMMAAAM2DH104E27			

Point		Pre-Impac	t		Post-Impa	et		Difference		Magnitude
Foint	X	Y	Z	X	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
R1	550 (21.7)	300 (11.8)	-1378 (-54.3)	554 (21.8)	301 (11.9)	-1385 (-54.5)	4 (0.2)	1 (0)	-7 (-0.3)	8 (0.3)
R2	550 (21.7)	400 (15.7)	-1375 (-54.1)	554 (21.8)	400 (15.7)	-1380 (-54.3)	4 (0.2)	0 (0)	-5 (-0.2)	6 (0.3)
R3	550 (21.7)	500 (19.7)	-1369 (-53.9)	554 (21.8)	501 (19.7)	-1373 (-54.1)	4 (0.2)	1 (0)	-4 (-0.2)	6 (0.2)
R4	550 (21.7)	600 (23.6)	-1361 (-53.6)	556 (21.9)	600 (23.6)	-1366 (-53.8)	6 (0.2)	0 (0)	-5 (-0.2)	8 (0.3)
R5	550 (21.7)	700 (27.6)	-1358 (-53.5)	557 (21.9)	701 (27.6)	-1364 (-53.7)	7 (0.3)	1 (0)	-6 (-0.2)	9 (0.4)
R6	550 (21.7)	800 (31.5)	-1375 (-54.1)	557 (21.9)	798 (31.4)	-1375 (-54.1)	7 (0.3)	-2 (-0.1)	0 (0)	7 (0.3)
R7	700 (27.6)	300 (11.8)	-1406 (-55.4)	704 (27.7)	300 (11.8)	-1414 (-55.7)	4 (0.2)	0 (0)	-8 (-0.3)	9 (0.4)
R8	700 (27.6)	400 (15.7)	-1402 (-55.2)	704 (27.7)	400 (15.7)	-1409 (-55.5)	4 (0.2)	0 (0)	-7 (-0.3)	8 (0.3)
R9	700 (27.6)	500 (19.7)	-1399 (-55.1)	705 (27.8)	500 (19.7)	-1404 (-55.3)	5 (0.2)	0 (0)	-5 (-0.2)	7 (0.3)
R10	700 (27.6)	600 (23.6)	-1362 (-53.6)	705 (27.8)	598 (23.5)	-1366 (-53.8)	5 (0.2)	-2 (-0.1)	-4 (-0.2)	7 (0.3)
R11	700 (27.6)	700 (27.6)	-1375 (-54.1)	706 (27.8)	700 (27.6)	-1376 (-54.2)	6 (0.2)	0(0)	-1 (0)	6 (0.2)
R12	700 (27.6)	800 (31.5)	-1369 (-53.9)	707 (27.8)	797 (31.4)	-1370 (-53.9)	7 (0.3)	-3 (-0.1)	-1 (0)	8 (0.3)
R13	850 (33.5)	300 (11.8)	-1400 (-55.1)	854 (33.6)	300 (11.8)	-1409 (-55.5)	4 (0.2)	0 (0)	-9 (-0.4)	10 (0.4)
R14	850 (33.5)	400 (15.7)	-1399 (-55.1)	854 (33.6)	400 (15.7)	-1404 (-55.3)	4 (0.2)	0 (0)	-5 (-0.2)	6 (0.3)
R15	850 (33.5)	500 (19.7)	-1390 (-54.7)	855 (33.7)	500 (19.7)	-1399 (-55.1)	5 (0.2)	0 (0)	-9 (-0.4)	10 (0.4)
R16	850 (33.5)	600 (23.6)	-1362 (-53.6)	855 (33.7)	600 (23.6)	-1366 (-53.8)	5 (0.2)	0 (0)	-4 (-0.2)	6 (0.3)
R17	850 (33.5)	700 (27.6)	-1364 (-53.7)	857 (33.7)	700 (27.6)	-1366 (-53.8)	7 (0.3)	0 (0)	-2 (-0.1)	7 (0.3)
R18	850 (33.5)	800 (31.5)	-1352 (-53.2)	862 (33.9)	796 (31.3)	-1355 (-53.3)	12 (0.5)	-4 (-0.2)	-3 (-0.1)	13 (0.5)
R19	1000 (39.4)	300 (11.8)	-1340 (-52.8)	982 (38.7)	304 (12)	-1348 (-53.1)	-18 (-0.7)	4 (0.2)	-8 (-0.3)	20 (0.8)
R20	1000 (39.4)	400 (15.7)	-1329 (-52.3)	976 (38.4)	403 (15.9)	-1338 (-52.7)	-24 (-0.9)	3 (0.1)	-9 (-0.4)	26 (1)
R21	1000 (39.4)	500 (19.7)	-1309 (-51.5)	976 (38.4)	508 (20)	-1320 (-52)	-24 (-0.9)	8 (0.3)	-11 (-0.4)	28 (1.1)
R22	1000 (39.4)	600 (23.6)	-1291 (-50.8)	964 (38)	606 (23.9)	-1301 (-51.2)	-36 (-1.4)	6 (0.2)	-10 (-0.4)	38 (1.5)
R23	1000 (39.4)	700 (27.6)	-1290 (-50.8)	961 (37.8)	707 (27.8)	-1293 (-50.9)	-39 (-1.5)	7 (0.3)	-3 (-0.1)	40 (1.6)
R24	1000 (39.4)	800 (31.5)	-1258 (-49.5)	955 (37.6)	806 (31.7)	-1260 (-49.6)	-45 (-1.8)	6 (0.2)	-2 (-0.1)	45 (1.8)

Table 9-31 Test 4-10 Interior Windshield and Dashboard Pre, Post, and Deformation Measurements

Policies and Procedures Manual
Roadside Safety Research Group
4 of 5

Attachment 5.5 -- Interior Vehicle Measurement Report


Vehicle Type	10000S	Test Number	110MASH4S19-02	
Make	International	Model	4300 SBA	
Year	2013	Color	Yellow	
VIN#	1HTMMAAM3DH104537			

Windshield Measurements - Dimensions in mm (inches)

Doint	Pre-Impact				ost-Impac	t	Difference			Magnitude
Point	X	Υ	Z	X	Y	Z	ΔX	ΔΥ	ΔZ	Wagnitude
W1	1374 (54.1)	300 (11.8)	-865 (-34.1)	1345 (53)	290 (11.4)	-862 (-33.9)	-29 (-1.1)	-10 (-0.4)	3 (0.1)	31 (1.2)
W2	1339 (52.7)	600 (23.6)	-865 (-34.1)	1300 (51.2)	595 (23.4)	-864 (-34)	-39 (-1.5)	-5 (-0.2)	1(0)	39 (1.5)
W3	1282 (50.5)	800 (31.5)	-865 (-34.1)	1248 (49.1)	801 (31.5)	-863 (-34)	-34 (-1.3)	1 (0)	2 (0.1)	34 (1.3)
W4	1268 (49.9)	300 (11.8)	-1072 (-42.2)	1260 (49.6)	292 (11.5)	-1065 (-41.9)	-8 (-0.3)	-8 (-0.3)	7 (0.3)	13 (0.5)
W5	1233 (48.5)	600 (23.6)	-1072 (-42.2)	1233 (48.5)	595 (23.4)	-1066 (-42)	0 (0)	-5 (-0.2)	6 (0.2)	8 (0.3)
W6	1170 (46.1)	800 (31.5)	-1072 (-42.2)	1175 (46.3)	793 (31.2)	-1069 (-42.1)	5 (0.2)	-7 (-0.3)	3 (0.1)	9 (0.4)

Dashboard Measurements - Dimensions in mm (inches)

Point		Pre-Impact			Post-Impact			Difference		
FOIL	X	Y	Z	X	Υ	Z	ΔX	ΔY	ΔZ	Magnitude
D1	1102 (43.4)	300 (11.8)	-561 (-22.1)	1104 (43.5)	305 (12)	-554 (-21.8)	2 (0.1)	5 (0.2)	7 (0.3)	9 (0.3)
D2	1045 (41.1)	400 (15.7)	-561 (-22.1)	1049 (41.3)	403 (15.9)	-561 (-22.1)	4 (0.2)	3 (0.1)	0 (0)	5 (0.2)
D3	1037 (40.8)	500 (19.7)	-561 (-22.1)	1039 (40.9)	509 (20)	-559 (-22)	2 (0.1)	9 (0.4)	2 (0.1)	9 (0.4)
D4	1036 (40.8)	600 (23.6)	-561 (-22.1)	1038 (40.9)	608 (23.9)	-558 (-22)	2 (0.1)	8 (0.3)	3 (0.1)	9 (0.3)
D5	1046 (41.2)	700 (27.6)	-561 (-22.1)	1045 (41.1)	709 (27.9)	-557 (-21.9)	-1 (0)	9 (0.4)	4 (0.2)	10 (0.4)
D6	1071 (42.2)	800 (31.5)	-561 (-22.1)	1073 (42.2)	809 (31.9)	-556 (-21.9)	2 (0.1)	9 (0.4)	5 (0.2)	10 (0.4)
D7	1076 (42.4)	900 (35.4)	-561 (-22.1)	1078 (42.4)	907 (35.7)	-560 (-22)	2 (0.1)	7 (0.3)	1(0)	7 (0.3)

Table 9-32 Test 4-10 Side Pre, Post, and Deformation Measurements

Policies and Procedures Manual
Roadside Safety Research Group
5 of 5

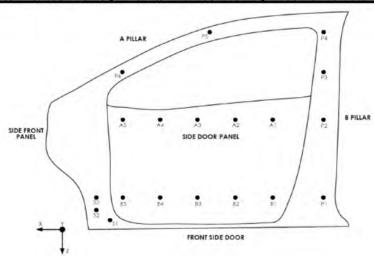
Attachment 5.5 -- Interior Vehicle Measurement Report

Vehicle Type	10000S	Test Number	110MASH4S19-02	
Make	International	Model	4300 SBA	
Year	2013	Color	Yellow	
VIN#	1HTMMAAM3DH104537			

Side Front Panel Measurements - Dimensions in mm (inches)

Point	Pre-Impact			Post-Impact			Difference			Manakuda
	X	Y	Z	X	Y	Z	ΔX	ΔΥ	ΛZ	Magnitude
S1	1150 (45.3)	930 (36.6)	22 (0.9)	1143 (45)	920 (36.2)	20 (0.8)	-7 (-0.3)	-10 (-0.4)	-2 (-0.1)	12 (0.5)
S2	1210 (47.6)	930 (36.6)	0 (0)	1205 (47.4)	930 (36.6)	-10 (-0.4)	-5 (-0.2)	0 (0)	-10 (-0.4)	11 (0.4)
S3	1210 (47.6)	930 (36.6)	-86 (-3.4)	1207 (47.5)	925 (36.4)	-90 (-3.5)	-3 (-0.1)	-5 (-0.2)	-4 (-0.2)	7 (0.3)

A and B Pillar Measurements - Dimensions in mm (inches)


Point		Pre-Impac	t		Post-Impac	t	Difference			Magnitudo
	X	Y	Z	X	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude
P1	190 (7.5)	944 (37.2)	-86 (-3.4)	190 (7.5)	949 (37.4)	-85 (-3.3)	0 (0)	5 (0.2)	1 (0)	5 (0.2)
P2	190 (7.5)	981 (38.6)	-561 (-22.1)	190 (7.5)	990 (39)	-559 (-22)	0 (0)	9 (0.4)	2 (0.1)	9 (0.4)
P3	190 (7.5)	934 (36.8)	-865 (-34.1)	191 (7.5)	937 (36.9)	-860 (-33.9)	1 (0)	3 (0.1)	5 (0.2)	6 (0.2)
P4	190 (7.5)	914 (36)	-1072 (-42.2)	192 (7.6)	916 (36.1)	-1067 (-42)	2 (0.1)	2 (0.1)	5 (0.2)	6 (0.2)
P5	1100 (43.3)	884 (34.8)	-865 (-34.1)	1110 (43.7)	877 (34.5)	-864 (-34)	10 (0.4)	-7 (-0.3)	1 (0)	12 (0.5)
P6	1000 (39.4)	866 (34.1)	-1072 (-42.2)	1009 (39.7)	860 (33.9)	-1072 (-42.2)	9 (0.4)	-6 (-0.2)	0 (0)	11 (0.4)

Above Seat Front Side Door Area Measurements - Dimensions in mm (inche

Point		Pre-Impac	t	Post-Impact			Difference			Magnitude		
	X	Y	Z	X	Y	Z	ΔX	ΔΥ	ΔZ	Magnitude		
A1	400 (15.7)	897 (35.3)	-561 (-22.1)	402 (15.8)	901 (35.5)	-565 (-22.2)	2 (0.1)	4 (0.2)	-4 (-0.2)	6 (0.2)		
A2	550 (21.7)	894 (35.2)	-561 (-22.1)	551 (21.7)	898 (35.4)	-563 (-22.2)	1 (0)	4 (0.2)	-2 (-0.1)	5 (0.2)		
A3	700 (27.6)	893 (35.2)	-561 (-22.1)	703 (27.7)	896 (35.3)	-565 (-22.2)	3 (0.1)	3 (0.1)	-4 (-0.2)	6 (0.2)		
A4	850 (33.5)	898 (35.4)	-561 (-22.1)	854 (33.6)	898 (35.4)	-565 (-22.2)	4 (0.2)	0 (0)	-4 (-0.2)	6 (0.2)		
A5	1000 (39.4)	897 (35.3)	-561 (-22.1)	1004 (39.5)	898 (35.4)	-562 (-22.1)	4 (0.2)	1 (0)	-1 (0)	4 (0.2)		

Below Seat Front Side Door Area Measurements - Dimensions in mm (inches

Point	Pre-Impact			Post-Impact			Difference			Magnitude
	X	Y	Z	X	Υ	Z	ΔX	ΔΥ	ΔZ	Magnitude
B1	400 (16.3)	908 (37.1)	-86 (-3.5)	400 (16.3)	915 (37.3)	-88 (-3.6)	0 (0)	7 (0.3)	-2 (-0.1)	7 (0.3)
B2	550 (22.4)	940 (38.4)	-86 (-3.5)	550 (22.4)	946 (38.6)	-89 (-3.6)	0 (0)	6 (0.2)	-3 (-0.1)	7 (0.3)
B3	700 (28.6)	940 (38.4)	-86 (-3.5)	700 (28.6)	950 (38.8)	-90 (-3.7)	0 (0)	10 (0.4)	-4 (-0.2)	11 (0.4)
B4	850 (34.7)	938 (38.3)	-86 (-3.5)	854 (34.9)	940 (38.4)	-90 (-3.7)	4 (0.2)	2 (0.1)	-4 (-0.2)	6 (0.2)
B5	1000 (40.8)	923 (37.7)	-86 (-3.5)	1000 (40.8)	921 (37.6)	-90 (-3.7)	0 (0)	-2 (-0.1)	-4 (-0.2)	4 (0.2)

9.6. Data Plots

The TRAP data plots and summary sheets are shown in Figure 9-13 through Figure 9-62. The plots included are the accelerations, angular rate sensor rates, angular rate sensor degrees, Acceleration Severity Index (ASI), and TRAP test summary sheets. All data were analyzed using TRAP.

9.6.1. Data Plots - Test 110MASH4C19-01 (Test 4-10)

As mentioned previously, data was lost from one of the GMH Engineering DataBrick 3's. The data from the remaining DataBrick 3 and both SLICE systems were analyzed using TRAP. The TRAP results sheets and data plots are shown below.

Databrick 3 Plots (DB327)

Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

General Information

Test Agency: California Department of Transportation

Test Number: 110MASH4C19-01

Test Date: 4/11/2019

Test Article: ST-75 Steel Post Bridge Rail 1100C Small Car GMH DataBrick III

Test Vehicle

Description: 2017 Nissan Versa

Test Inertial Mass: 1084 kg Gross Static Mass: 1165 kg

Impact Conditions

Speed: 63.4 mph Angle: 25.6 degrees

Occupant Risk Factors

Impact Velocity (m/s) at 0.0679 seconds on right side of interior

x-direction 6.5 y-direction 10.1

THIV (km/hr): 43.4 at 0.0666 seconds on right side of interior

THIV (m/s): 12.1

Ridedown Accelerations (g's)

x-direction -3.4 (0.0707 - 0.0807 seconds) y-direction -9.9 (0.1714 - 0.1814 seconds)

PHD (g's): 10.0 (0.1714 - 0.1814 seconds)

ASI: 2.83 (0.0407 - 0.0907 seconds)

Max. 50msec Moving Avg. Accelerations (g's)

x-direction -12.9 (0.0135 - 0.0635 seconds) y-direction -20.1 (0.0106 - 0.0606 seconds) z-direction -4.2 (0.0032 - 0.0532 seconds)

Max Roll, Pitch, and Yaw Angles (degrees)

Roll 5.7 (0.1150 seconds) Pitch -4.4 (0.0548 seconds) Yaw -38.3 (0.4703 seconds)

Figure 9-13 Test 4-10 TRAP Summary Sheet (DataBrick 3)

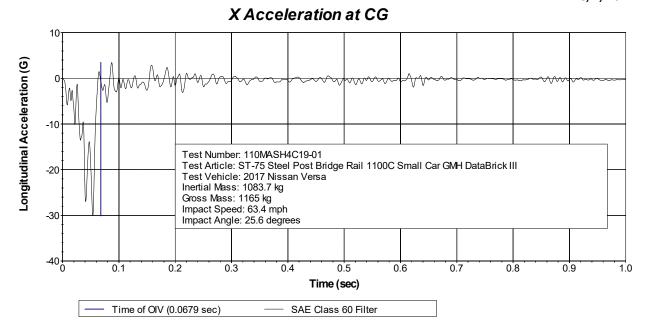


Figure 9-14 Test 4-10 Longitudinal Acceleration (Databrick 3)

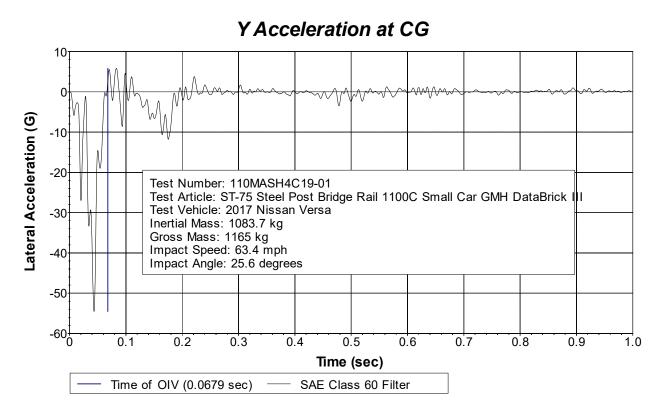


Figure 9-15 Test 4-10 Lateral Acceleration (Databrick 3)

Z Acceleration at CG

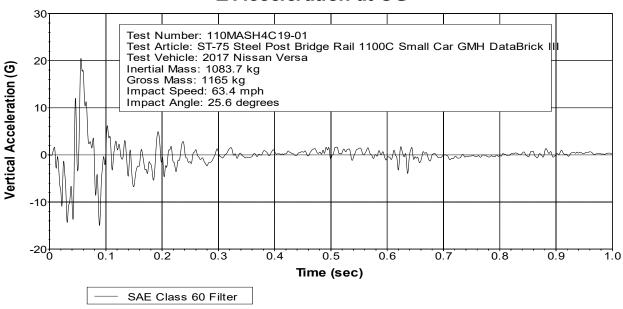


Figure 9-16 Test 4-10 Vertical Acceleration (Databrick 3)

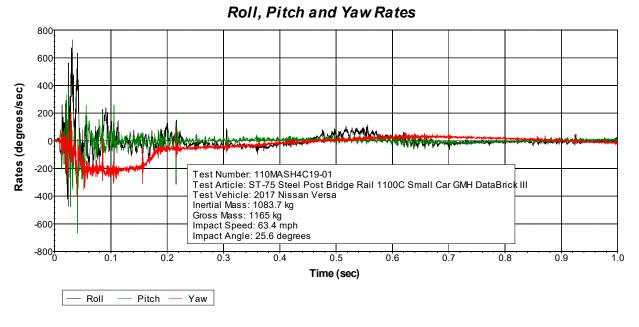


Figure 9-17 Test 4-10 Roll, Pitch, and Yaw Rates (DataBrick 3)

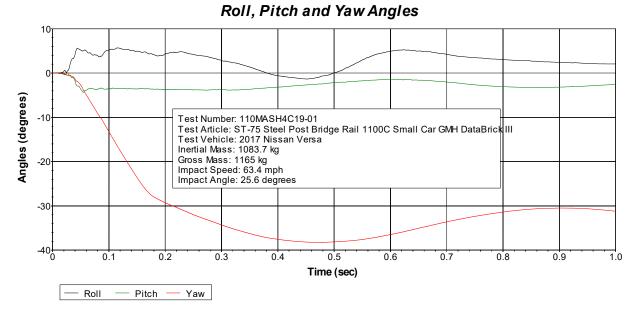


Figure 9-18 Test 4-10 Roll, Pitch, and Yaw Angles (DataBrick 3)

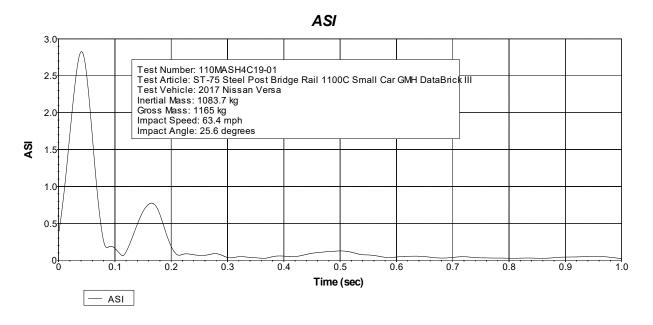


Figure 9-19 Test 4-10 Acceleration Severity Index (DataBrick 3)

SLICE BASE 656 Plots

Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

General Information

Test Agency: California Department of Transportation

Test Number: 110MASH4C19-01 Test Date: 4/11/2019

Test Article: ST-75 Steel Post Bridge Rail 1100C Small Car DTS Slice 656

Test Vehicle

Description: 2017 Nissan Versa

Test Inertial Mass: 1084 kg Gross Static Mass: 1165 kg

Impact Conditions

Speed: 63.4 mph Angle: 25.4 degrees

Occupant Risk Factors

Impact Velocity (m/s) at 0.0749 seconds on right side of interior

x-direction 7.1 y-direction 10.3

THIV (km/hr): 44.9 at 0.0735 seconds on right side of interior

THIV (m/s): 12.5

Ridedown Accelerations (g's)

x-direction -3.9 (0.0774 - 0.0874 seconds) y-direction -10.4 (0.1788 - 0.1888 seconds)

PHD (g's): 10.5 (0.1787 - 0.1887 seconds)

ASI: 2.92 (0.0481 - 0.0981 seconds)

Max. 50msec Moving Avg. Accelerations (g's)

Max Roll, Pitch, and Yaw Angles (degrees)

Roll 5.5 (0.1229 seconds)
Pitch -4.5 (0.3228 seconds)
Yaw -39.7 (0.4756 seconds)

Figure 9-20 Test 4-10 TRAP Summary Sheet (SLICE 656)

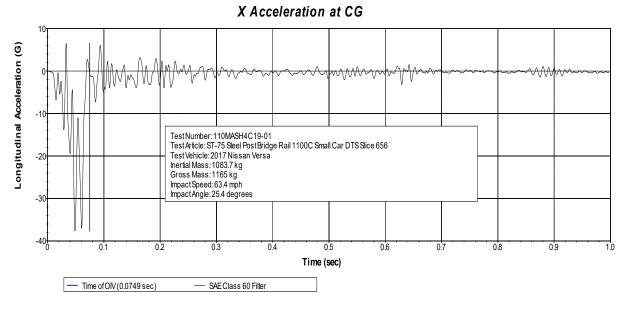


Figure 9-21 Test 4-10 Longitudinal Acceleration (SLICE 656)

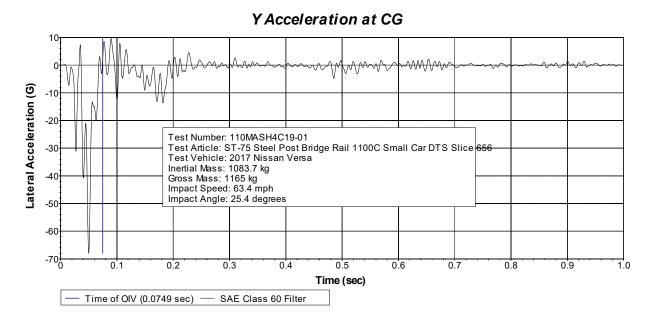


Figure 9-22 Test 4-10 Lateral Acceleration (SLICE 656)

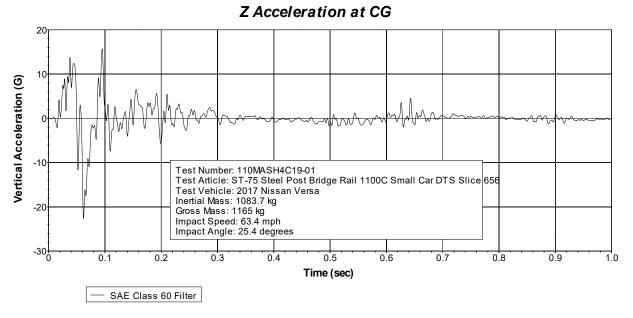


Figure 9-23 Test 4-10 Vertical Acceleration (SLICE 656)

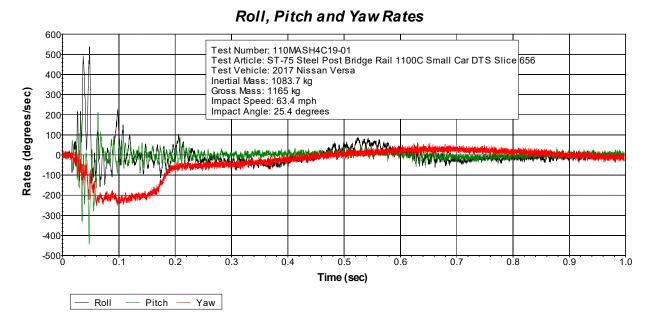


Figure 9-24 Test 4-10 Roll, Pitch, and Yaw Rates (SLICE 656)

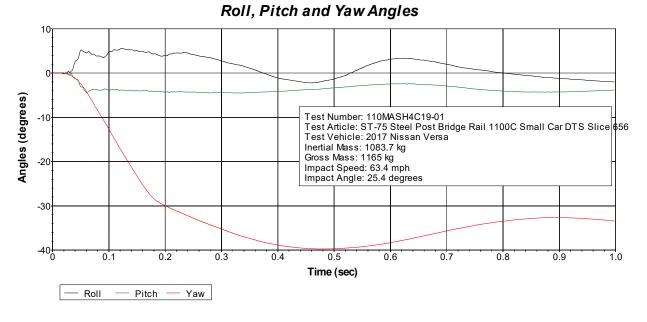


Figure 9-25 Test 4-10 Roll, Pitch, and Yaw Angles (SLICE 656)

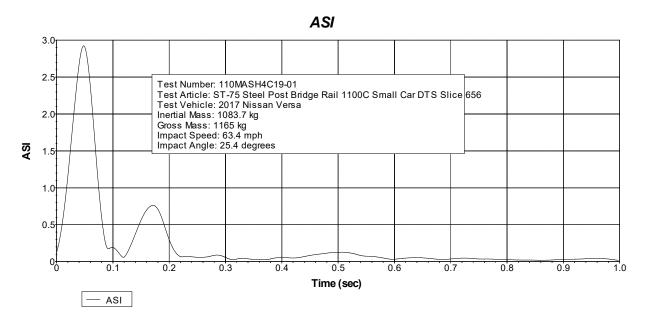


Figure 9-26 Test 4-10 Acceleration Severity Index (SLICE 656)

SLICE BASE 659 Plots

Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

General Information

Test Agency: California Department of Transportation

Test Number: 110MASH4C19-01 Test Date: 4/11/2019

Test Article: ST-75 Steel Post Bridge Rail 1100C Small Car DTS Slice 659

Test Vehicle

Description: 2017 Nissan Versa

Test Inertial Mass: 1084 kg Gross Static Mass: 1165 kg

Impact Conditions

Speed: 63.4 mph Angle: 25.4 degrees

Occupant Risk Factors

Impact Velocity (m/s) at 0.0722 seconds on right side of interior

x-direction 7.2 y-direction 10.5

THIV (km/hr): 45.4 at 0.0708 seconds on right side of interior

THIV (m/s): 12.6

Ridedown Accelerations (g's)

x-direction -3.8 (0.0753 - 0.0853 seconds) y-direction -10.4 (0.1768 - 0.1868 seconds)

PHD (g's): 10.5 (0.1767 - 0.1867 seconds)

ASI: 2.98 (0.0459 - 0.0959 seconds)

Max. 50msec Moving Avg. Accelerations (g's)

Max Roll, Pitch, and Yaw Angles (degrees)

Roll 6.3 (0.1211 seconds)
Pitch -4.6 (0.0592 seconds)
Yaw -39.7 (0.4703 seconds)

Figure 9-27 Test 4-10 TRAP Summary Sheet (SLICE 659)

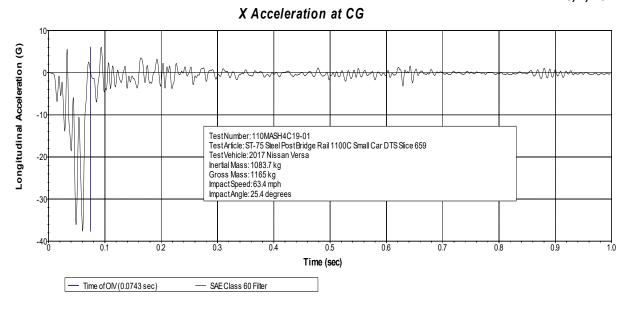


Figure 9-28 Test 4-10 Longitudinal Acceleration (SLICE 659)

Figure 9-29 Test 4-10 Lateral Acceleration (SLICE 659)

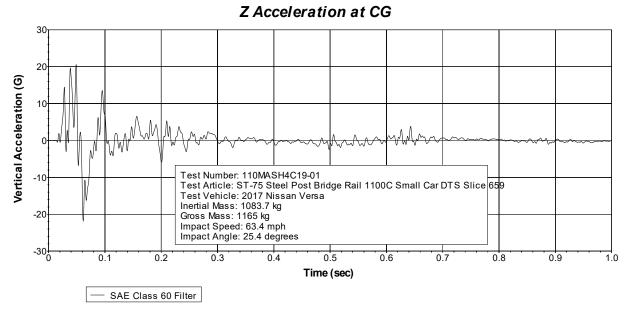


Figure 9-30 Test 4-10 Vertical Acceleration (SLICE 659)

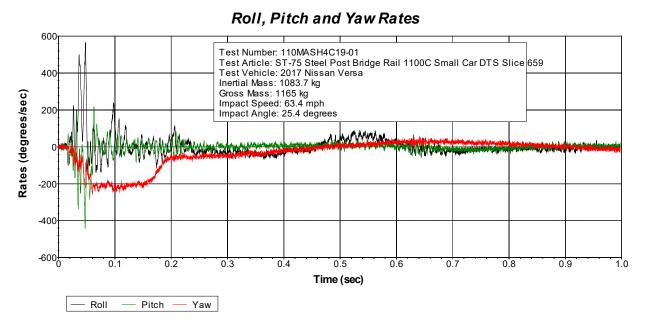


Figure 9-31 Test 4-10 Roll, Pitch, and Yaw Rates (SLICE 659)

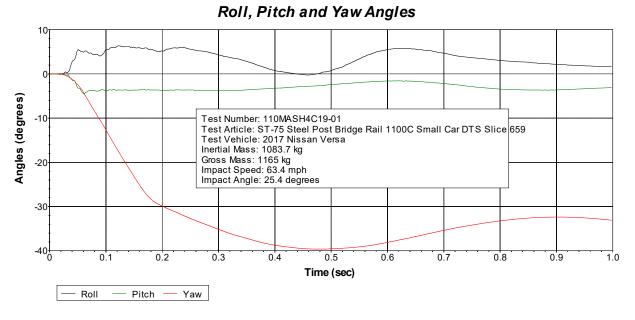


Figure 9-32 Test 4-10 Roll, Pitch, and Yaw Angles (SLICE 659)

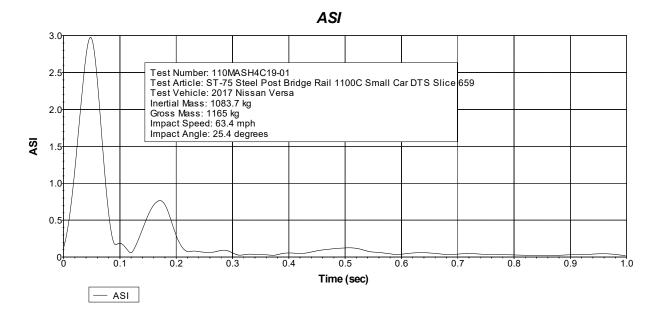


Figure 9-33 Test 4-10 Acceleration Severity Index (SLICE 659)

9.6.2.Data Plots - Test 110MASH4P18-02 (Test 4-11)

Data from one GMH Engineering DataBrick 3 and one SLICE system were analyzed with TRAP. The test summary sheets and data plots are shown below.

Databrick 3 (DB328)

Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

```
General Information
   Test Agency: California Department of Transportation
   Test Number: 110MASH4P18-02
   Test Date:
                9/12/2018
   Test Article: ST-75 Steel Post Bridge Rail 2270P Pickup Truck GMH DataBrick III
Test Vehicle
   Description:
                       2018
   Test Inertial Mass:
                       2252 kg
   Gross Static Mass: 2252 kg
Impact Conditions
   Speed: 63.4 mph
   Angle: 26.3 degrees
Occupant Risk Factors
   Impact Velocity (m/s)
                          at 0.0842 seconds on right side of interior
      x-direction
                   4.4
      y-direction
                   9.4
   THIV (km/hr):
                    38.1 at 0.0830 seconds on right side of interior
                       10.6
   THIV (m/s):
   Ridedown Accelerations (g's)
                  -4.1 (0.1962 - 0.2062 seconds)
      x-direction
      y-direction
                  -11.0 (0.1956 - 0.2056 seconds)
   PHD (g's): 11.7 (0.1958 - 0.2058 seconds)
                   2.29 (0.0544 - 0.1044 seconds)
   ASI:
Max. 50msec Moving Avg. Accelerations (g's)
   x-direction -7.4 (0.0205 - 0.0705 seconds)
   y-direction
                   -17.4 (0.0320 - 0.0820 seconds)
   z-direction
                   -4.2 (0.0551 - 0.1051 seconds)
Max Roll, Pitch, and Yaw Angles (degrees)
                    21.6 (0.4094 seconds)
   Roll
   Pitch
                    2.1
                          (0.1899 seconds)
   Yaw
                    -40.3 (0.9716 seconds)
```

Figure 9-34 Test 4-11 TRAP Summary Sheet (DataBrick 3)

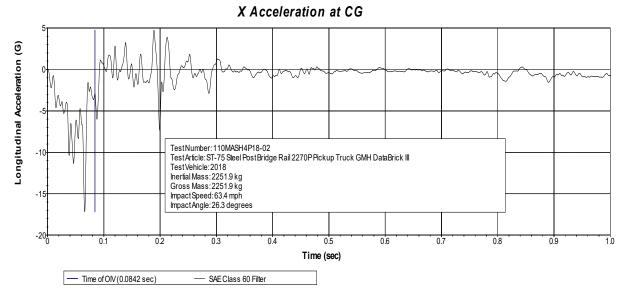


Figure 9-35 Test 4-11 Longitudinal Acceleration (DataBrick 3)

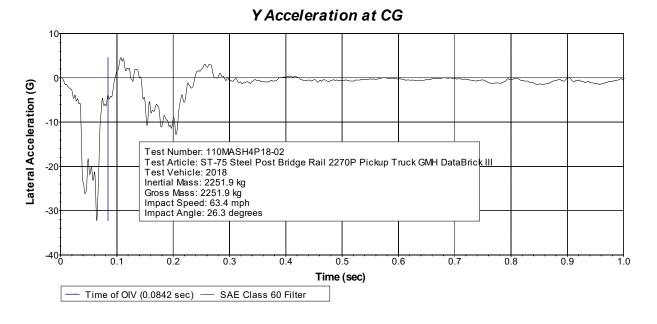


Figure 9-36 Test 4-11 Lateral Acceleration (DataBrick 3)

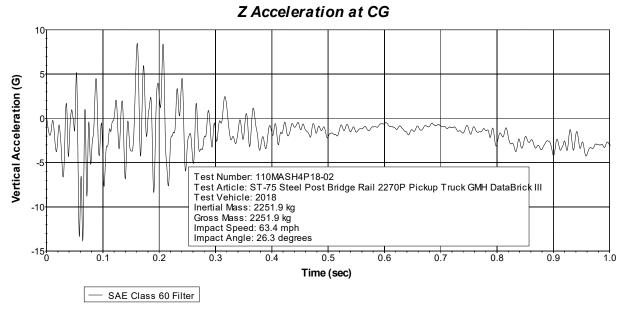


Figure 9-37 Test 4-11 Vertical Acceleration (DataBrick 3)

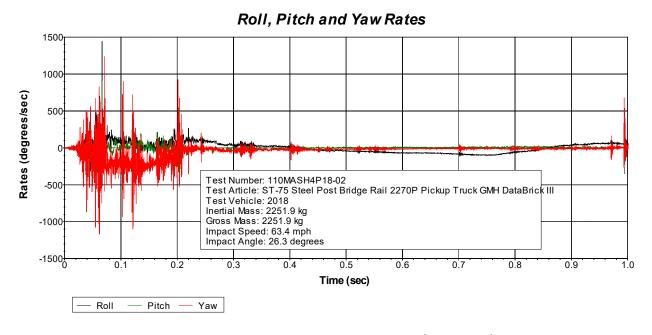


Figure 9-38 Test 4-11 Roll, Pitch, and Yaw Rates (DataBrick 3)

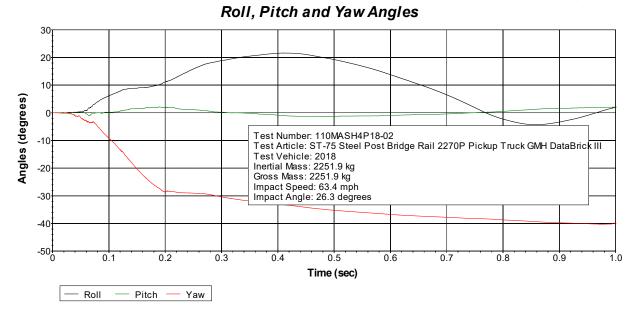


Figure 9-39 Test 4-11 Roll, Pitch, and Yaw Angles (DataBrick 3)

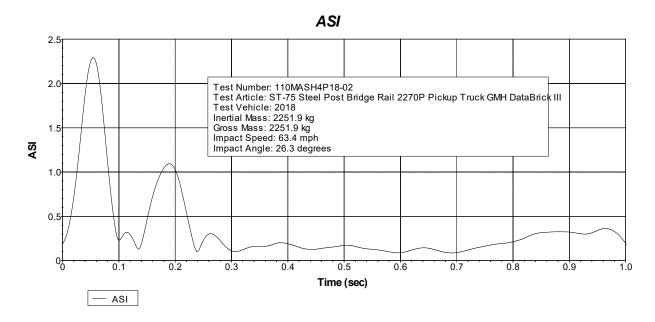


Figure 9-40 Test 4-11 Acceleration Severity Index (DataBrick 3)

SLICE 656 Data Plots

Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displacement Data)

```
General Information
   Test Agency: California Department of Transportation
   Test Number: 110MASH4P18-02
   Test Date:
                9/12/2018
   Test Article: ST-75 Steel Post Bridge Rail 2270P Pickup Truck DTS Slice
Test Vehicle
   Description:
                       2018
   Test Inertial Mass:
                       2252 kg
   Gross Static Mass:
                       2252 kg
Impact Conditions
   Speed: 63.4 mph
   Angle: 26.3 degrees
Occupant Risk Factors
   Impact Velocity (m/s)
                          at 0.0892 seconds on right side of interior
      x-direction
                    5.0
      y-direction
                    9.3
   THIV (km/hr):
                    38.3 at 0.0871 seconds on right side of interior
   THIV (m/s):
                       10.6
   Ridedown Accelerations (g's)
      x-direction
                  -5.6 (0.2022 - 0.2122 seconds)
      y-direction
                    -11.5 (0.2000 - 0.2100 seconds)
   PHD (g's):
                  12.6 (0.2001 - 0.2101 seconds)
                    2.31 (0.0584 - 0.1084 seconds)
   ASI:
Max. 50msec Moving Avg. Accelerations (g's)
               -8.9 (0.0242 - 0.0742 seconds)
   x-direction
   y-direction
                    -17.5 (0.0359 - 0.0859 seconds)
   z-direction
                    -2.9 (0.0610 - 0.1110 seconds)
Max Roll, Pitch, and Yaw Angles (degrees)
   Roll
                    19.4 (0.4162 seconds)
   Pitch
                    -4.0
                          (2.7792 seconds)
   Yaw
                    -40.0 (0.9679 seconds)
```

Figure 9-41 Test 4-11 TRAP Summary Sheet (SLICE 656)

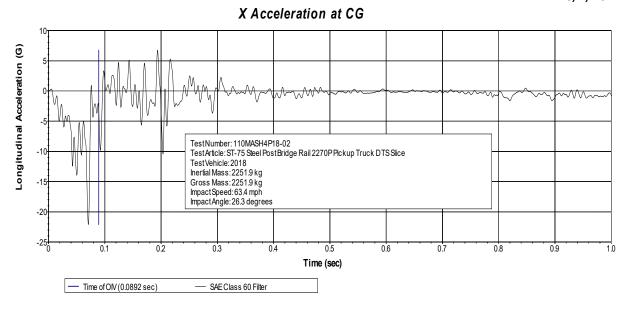


Figure 9-42 Test 4-11 Longitudinal Acceleration (SLICE 656)

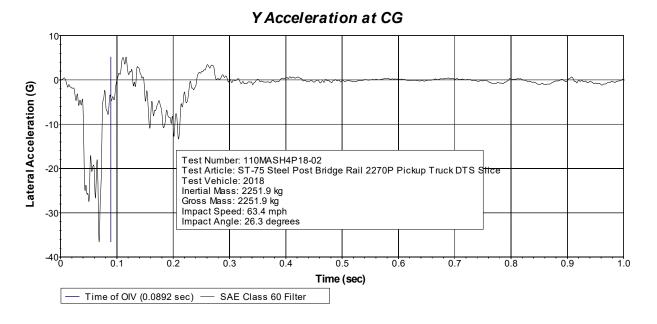


Figure 9-43 Test 4-11 Lateral Acceleration (SLICE 656)

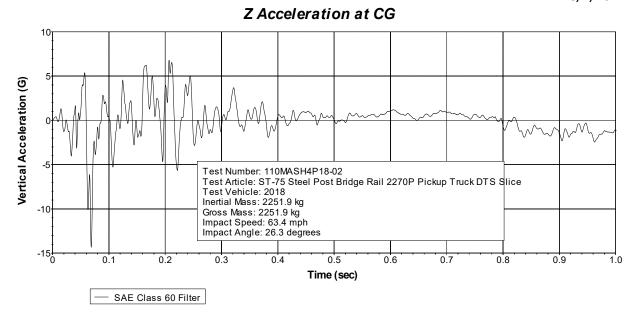


Figure 9-44 Test 4-11 Vertical Acceleration (SLICE 656)

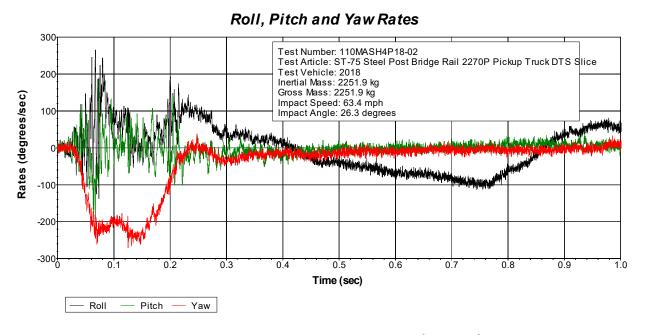


Figure 9-45 Test 4-11 Roll, Pitch, and Yaw Rates (SLICE 656)

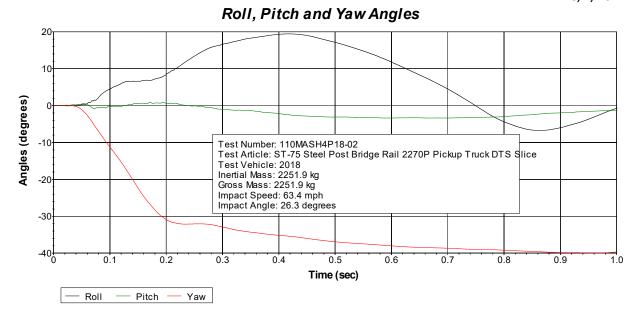


Figure 9-46 Test 4-11 Roll, Pitch, and Yaw Angles (SLICE 656)

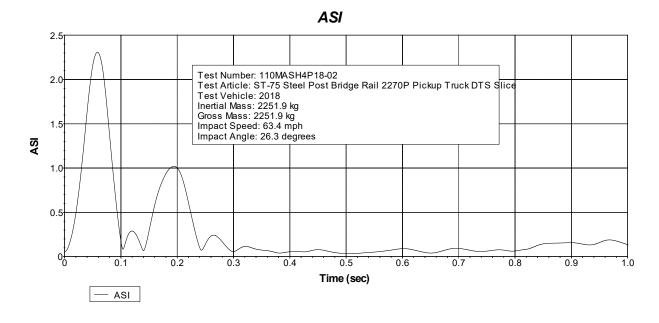


Figure 9-47 Test 4-11 Acceleration Severity Index (SLICE 656)

9.6.3.Data Plots - Test 110MASH4S19-02 (Test 4-12)

Two sets of accelerometers and angular rate sensors were installed in both the cab and cargo box area. One set of instrumentation in the cab was lost before it could be downloaded. The data plots for the three functional sets of instrumentation are shown below.

Databrick 328 Data Plots (Inside Cab)

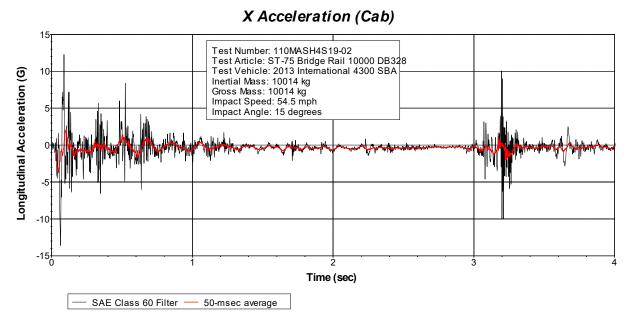


Figure 9-48 Test 4-12 Longitudinal Acceleration Inside Cab (Databrick 3)

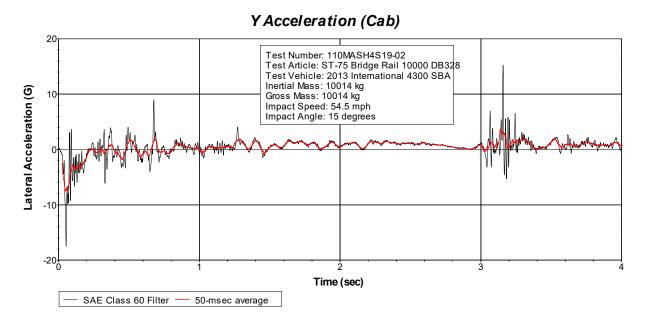


Figure 9-49 Test 4-12 Lateral Acceleration Inside Cab (Databrick 3)

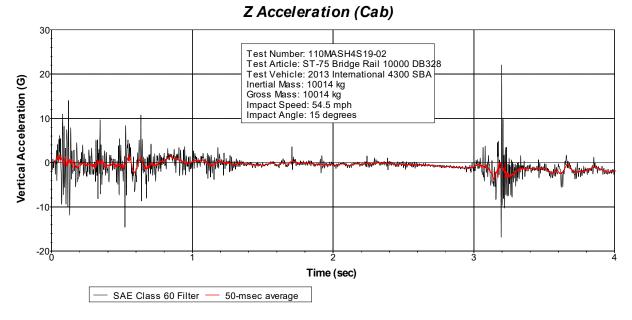


Figure 9-50 Test 4-12 Vertical Acceleration Inside Cab (Databrick 3)

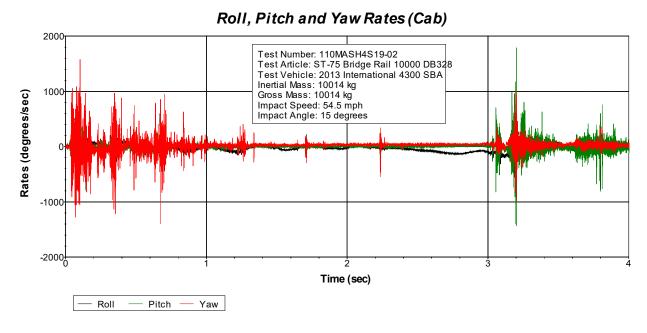


Figure 9-51 Test 4-12 Roll, Pitch, and Yaw Rates Inside Cab (Databrick 3)

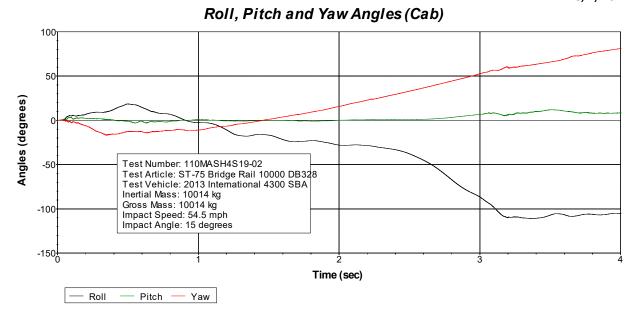


Figure 9-52 Test 4-12 Roll, Pitch, and Yaw Angles Inside Cab (Databrick 3)

SLICE BASE 656 Data Plots (Inside Cargo Box)

X Acceleration (Cargo Box)

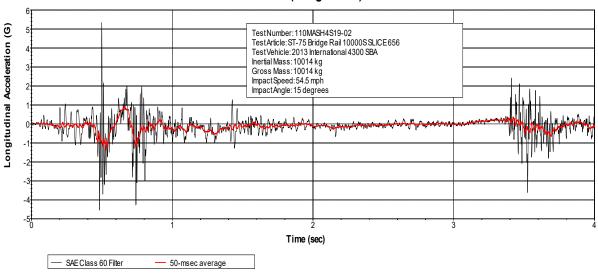


Figure 9-53 Test 4-12 Longitudinal Acceleration Inside Cargo Box (SLICE 656)

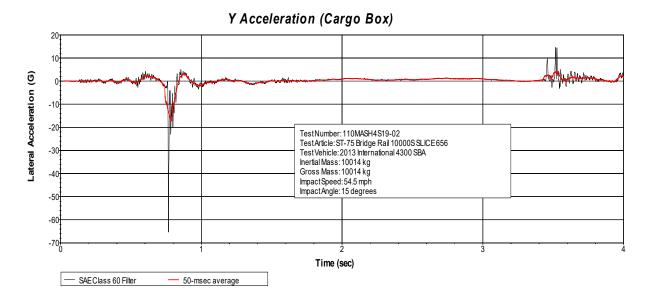


Figure 9-54 Test 4-12 Longitudinal Acceleration Inside Cargo Box (SLICE 656)

Test Number: 110MASH4S19-02 Test Article: ST-75 Bridge Rail 10000S SLICE 656 Test Vehicle: 2013 International 4300 SBA Inertial Mass: 10014 kg Gross Mass: 10014 kg Impact Speed: 54.5 mph Impact Angle: 15 degrees

Figure 9-55 Test 4-12 Vertical Acceleration Inside Cargo Box (SLICE 656)

50-msec average

SAE Class 60 Filter -

Time (sec)

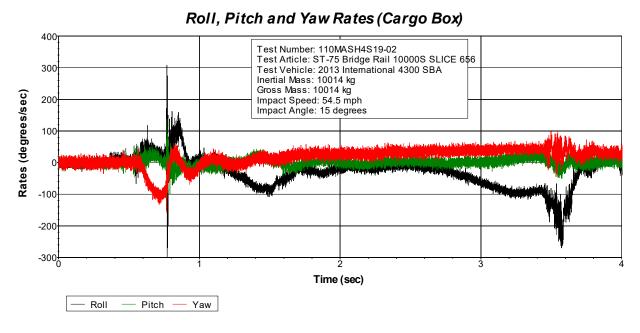


Figure 9-56 Test 4-12 Roll, Pitch, and Yaw Rates Inside Cargo Box (SLICE 656)

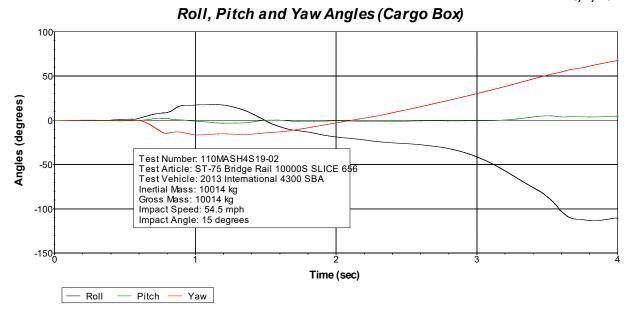


Figure 9-57 Test 4-12 Roll, Pitch, and Yaw Angles Inside Cargo Box (SLICE 656)

SLICE BASE 659 Data Plots (Inside Cargo Box)

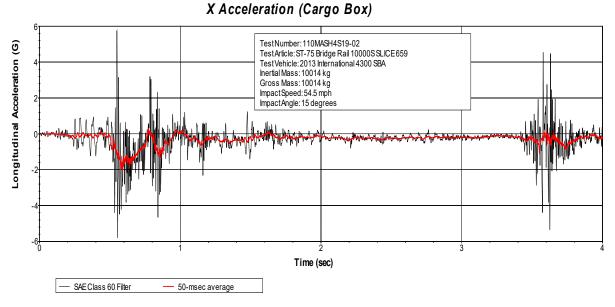


Figure 9-58 Test 4-12 Longitudinal Acceleration Inside Cargo Box (SLICE 659)

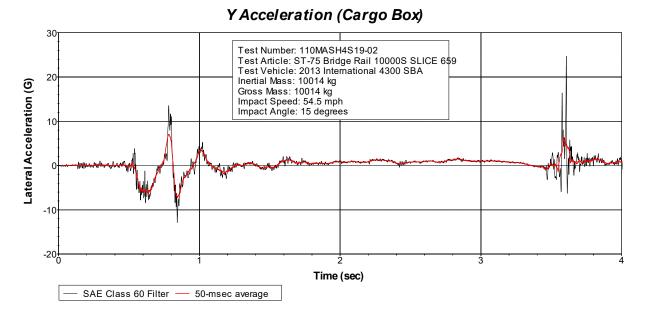


Figure 9-59 Test 4-12 Longitudinal Acceleration Inside Cargo Box (SLICE 659)

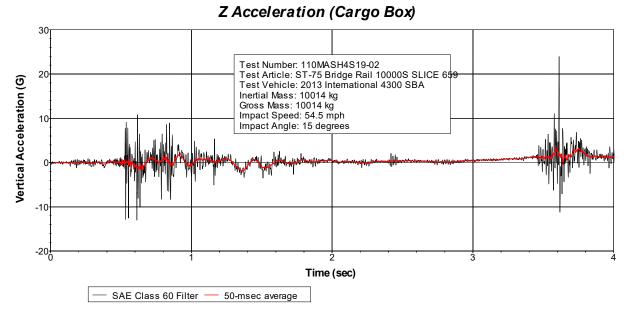


Figure 9-60 Test 4-12 Vertical Acceleration Inside Cargo Box (SLICE 659)

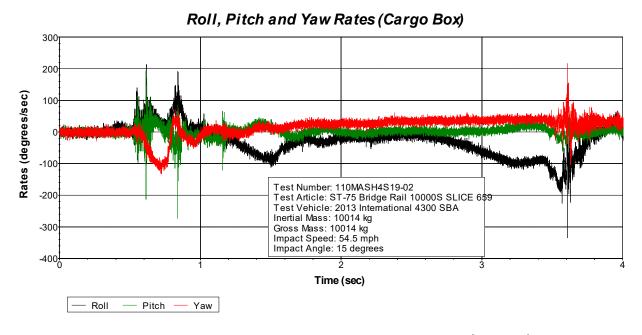


Figure 9-61 Test 4-12 Roll, Pitch, and Yaw Rates Inside Cargo Box (SLICE 659)

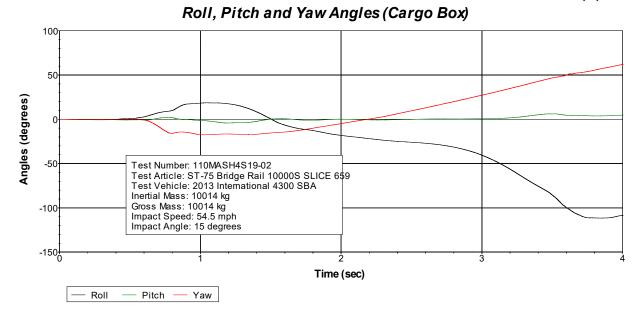


Figure 9-62 Test 4-12 Roll, Pitch, and Yaw Angles Inside Cargo Box (SLICE 659)

California Department of Transportation Report No. FHWA/CA22-3033 FINAL 8/4/2022

10. Appendix B: Detail Drawings

The following details in Figure 10-1 through Figure 10-5 were used for the construction of the ST-75 Bridge Rail test article.

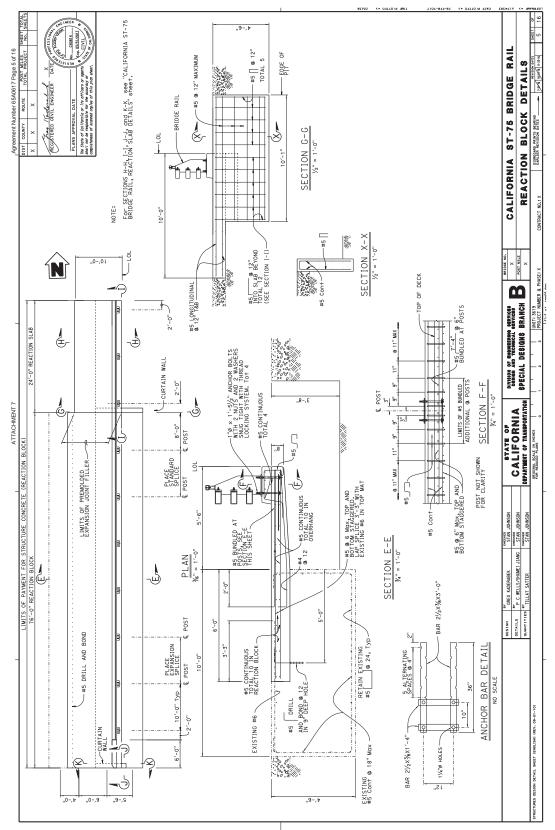


Figure 10-1 ST-75 Test Article Reaction Block Details

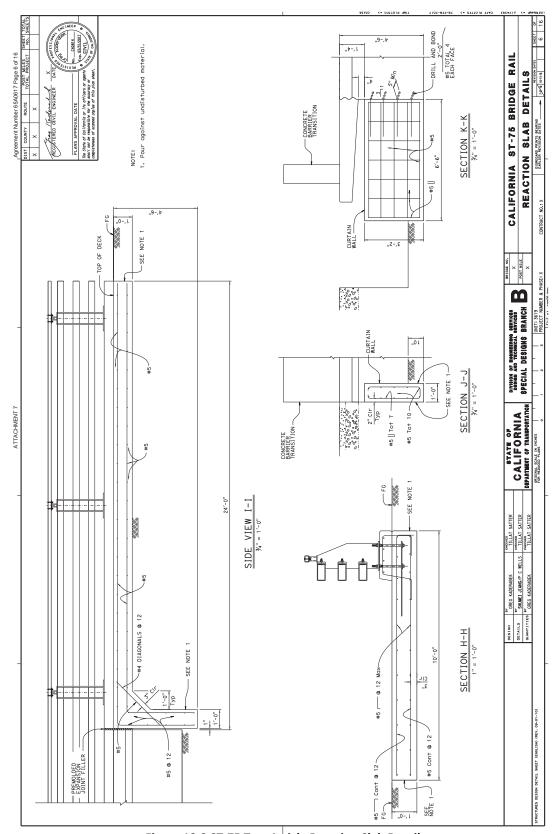


Figure 10-2 ST-75 Test Article Reaction Slab Details

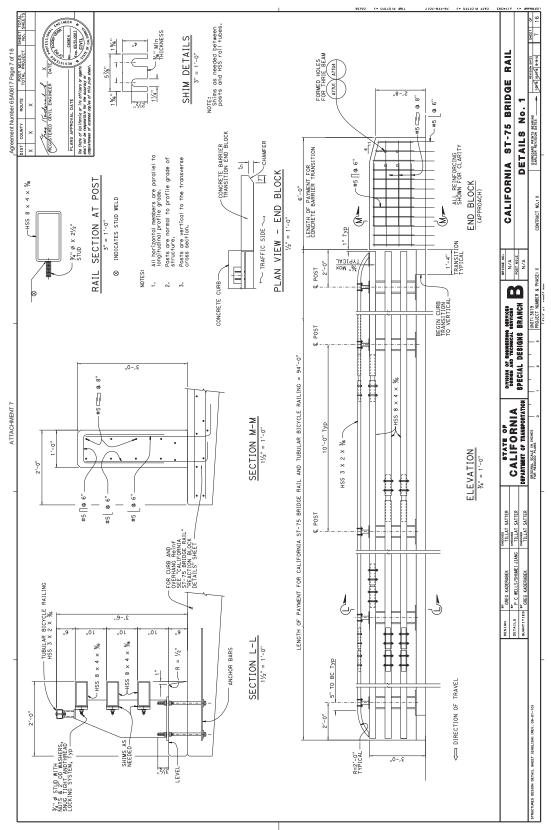


Figure 10-3 ST-75 Test Article Details 1

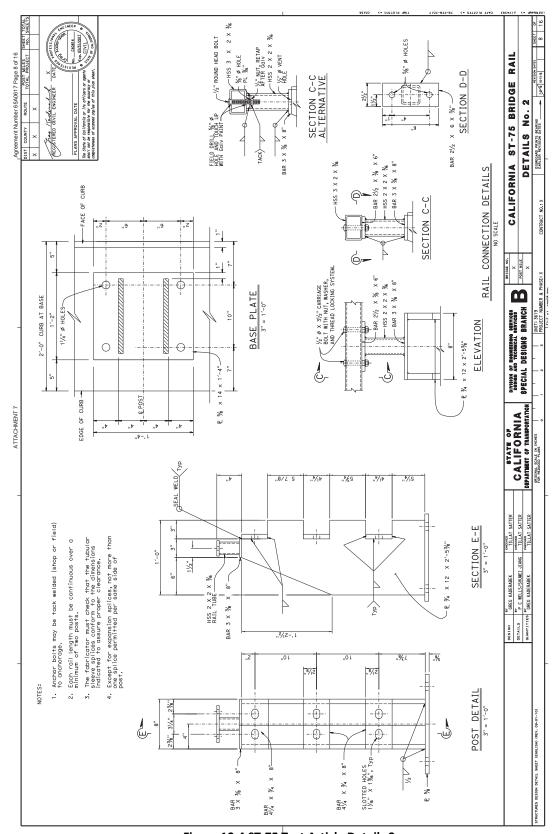


Figure 10-4 ST-75 Test Article Details 2

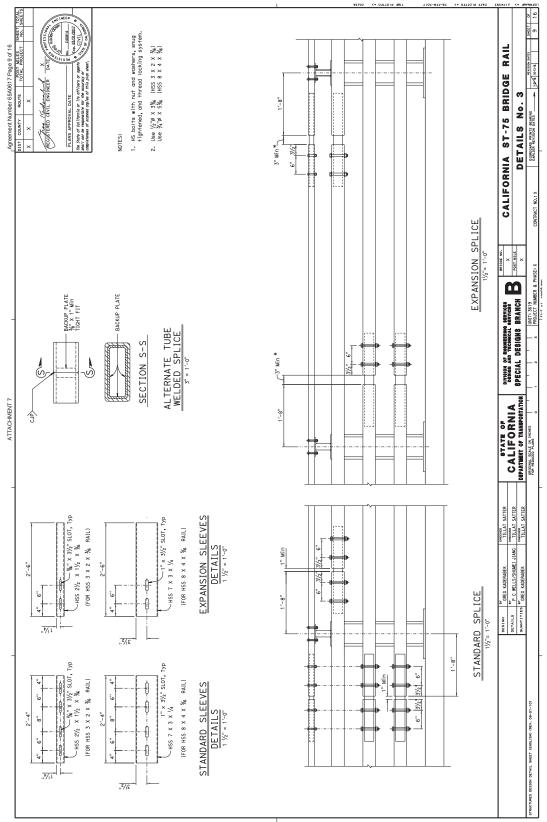


Figure 10-5 ST-75 Test Article Details 3

11. Appendix C: Quasi-static Push Test and Anchor Bolt Tensile Testing

The results of the push test and tensile testing are outside the scope of the Lab's accreditation.

11.1. Quasi-static Push Test

To better understand barrier lateral strength and to measure the force-deflection curve a quasi-static push test was performed on a section of the barrier that was undamaged from the three full-scale crash tests. A load frame was modified to provide the desired load height and attached to the simulated bridge deck using threaded anchor rods. The anchor rods were installed in holes cored through the simulated bridge deck and restrained with nuts and washers above the load frame and also under the deck. A hydraulic ram was attached to the load frame and a horizontal load was applied 813 mm (32 in) above the deck surface at the centerline of Post 6. The barrier was loaded at a fairly constant displacement rate of about 60 mm/min (2.4 in/min). The load gradually increased until the upstream traffic-side anchor bolt failed at a post deflection of 97 mm (3.8 in) and load of 390 kN (110,000 lbf). Deflections were measured with string potentiometers. See Figure 11-1 for the test results and test setup.

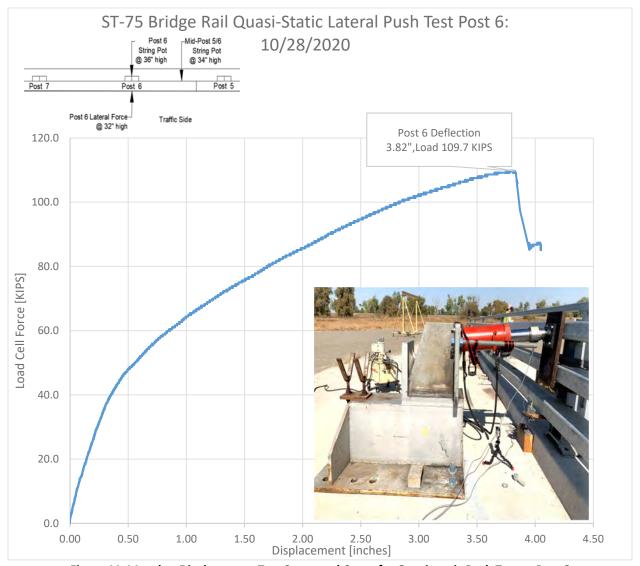


Figure 11-1 Load vs Displacement Test Setup and Curve for Quasi-static Push Test at Post 6

11.2. Anchor Bolt Tensile Testing

During barrier demolition, the traffic-side anchor bolts at posts 3 and 4 as well as the deformed but still intact downstream traffic-face anchor bolt at post 6 were saved for tensile testing according to ASTM A449. The anchor bolts were straightened to during removal of the bridge rail posts and to prepare them for tensile testing. Photos of the anchor bolts at posts 3 and 4 during barrier demolition are shown in Figure 11-2 and Figure 11-3. The anchor bolts at Post 6 after the pushover test and after straightening are shown in Figure 11-4 Post 6 Anchor Bolts with Post Removed. The purpose of the tensile testing was to determine how much residual capacity (strength) was in each anchor bolt and evaluate the level of strain in each bolt. It was thought that straightening the bolts as part of a repair after an impact would cause additional plastic deformation in the bolts so this additional testing would potentially provide some very useful information about repairs after an impact. As seen in Figure 7-12 and Figure 7-13, the bolts at Post 4 had undergone more deformation than those at Post 3 so it would be expected that they would have less residual strain capacity. Because the post was tested until failure, it would be expected that the anchor bolt would have even less residual strain capacity than those at Post 4. Looking at the results shown in Figure 11-6, the approximate yield stress (Stress at Offset) was less than the Tensile Strength for both Posts 3 and 4, but the difference was greater at Post 3. The Post 6 anchor bolt Stress at Offset and Tensile Strength were essentially the same. This shows that the bolts at Posts 3 and 4 were slightly in the plastic range (Post 3 less than Post 4) and the Post 6 bolt had residual strength despite being far in the plastic range. As a side note about Figure 11-5, the results were printed in Metric Units but the technician also recorded all results in English units and handwrote them on the printed results.

Figure 11-2 Post 3 Anchor Bolts with Post Removed

Post 4 Traffic-Side Upstream (Sample 3P4U

Figure 11-3 Post 4 Anchor Bolts with Post Removed

Figure 11-4 Post 6 Anchor Bolts with Post Removed

ST-75 Bridge Rail Post Anchor Bolt testing performed by the Caltrans Structural Materials Lab

The fasteners were from the ST-75 Bridge Rail after full scale dynamic crash testing and a quasi-static post push test performed in 2020.

The purpose of these tensile tests was to check for residual capacity after crash testing and the push test.

P3U = Post 3 Upstream Traffic Side Post Anchor Bolt

P3D = Post 3 downstream Traffic Side Post Anchor Bolt

Thursday, November 19, 2020 11 09 40 AM

Procedure Name	DIME TM3 A449 Fastener Tensile Procedure
DIME Sample ID	65A0617
User	
UTM	400kip
Workstation	PC59WXDHQ80465
Sample name	C:\Users\Public\Documents\Instron\Bluehill Universal\Output\Bolts\65A0617.is_tens
Method name only	DIME TM3 A449 Fastener Tensile Procedure.001.007

	Heat Number	Sample	Size	Area [mm^2]	Peak Load [kN]	Peak Load in kN [kN]	Tensile Strength [MPa]	Stress at Offset [MPa]	Load at Offset [kN]	Comments
		2 P3D	UNC 1	390.97	390	390	997	666	260	
2		1 P3U	UNC 1	390.97	355	355	908	674	264	
		3 P4U	UNC 1	390.97	332	332	850	796	311	
4		4 P4D	UNC 1	390.97	353	353	904	845	330	
5		5 P6U	UNC 1	390.97 Peak 8760	Load 169	Tensile stre		828 rength	324	
				7977	15		144546			
				74674		131641				
				79 419			12322 4			
				72899			120295			

Bent anchor bolts were straightened to be able to remove the posts during the demolition.

These test results weren't included in DIME.

 $However, for comparison with construction compliance testing performed 10/26/2017 on similar bolts see: \\ https://dime.dot.ca.gov/index.php?r=test/viewDetail&test_id=35166 \\ RJM 1/27/2021$

Page 1 of 1

Figure 11-5 Tensile Test (ASTM A449) Results for Anchor Bolts at Posts 3 and 4 (Post Crash Test), and Post 6 (Post Quasistatic Push Test)

Sample	Peak Load (lbf)	Tensile Strength (psi)	Stress at Offset (psi)
1 P3U (Post 3 Upstream)	79,775	131,641	97,800
2 P3D (Post 3 downstream)	87,604	144,546	96,600
3 P4U (Post 4 Upstream)	74,624	123,224	115,000
4 P4D (Post 4 Downstream)	79,419	131,055	123,000
5 P6U (Post 6 Downstream, mislabeled)	72,899	120,295	120,000

Figure 11-6 Summary of Tensile Test Results in English Units

12. Appendix D: Material Properties and Certifications

<u>The concrete cylinder breaks and material certifications in Appendix C are not within the Lab's Scope of Accreditation.</u>

ST-75 Bridge Rail Concrete Cylinder Break Results (Average of Two Cylinders)

Mix Z5685210 (Deck Pour) Mix Z5605210 (Curb Pour)

Age (Days)	Compressive Strength (psi)	Compressive Strength (psi)
7	4210	4000
14	5360 (15-day break)	4820
21	5480	5300
28	5700	5500

Grade 60 #5 Rebar (1 of 1)

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Quality Assurance Manager Jacob Selzer - CMC Steel AZ

•	
11:11	the Alex
,	ď
•	
or additional copies call	830-372-8771

CERTIFIED WILL IEST KETORS	. For additional copies call	830-372-8771	

CMC STEEL ARIZONA ,11444 E. GERMANN RD. MESA AZ 86212-9700

HEAT NO.:4064009 SECTION: REBAR 16NM (#6) 60'0" A706 GRADE: ASTM A706-16 Grado 420 (60) ROLL DATE: 02/21/2017 MELT DATE: 02/21/2017	S Camblin Steel HSR #71 L 4175 Cincimati Ave D Rocklin GA US 95855-1402 T 9169251502	«π- φ ⊢ O	Cemblin Steel HSR #1 4175 Cincinnati Ave Rocklin CA US 95765-1402 9188441300 9168251502	Delivary#: 82017879 BDL#: 71981855 CUST PO#: HSRCP1AZ CUST P/N: DLVRY LBS / HEAT: 12286.000 LB
Characteristic	Value	Characteristic Value		Cimanteristic Value
O	0.25%	Elongation test 1	15%	•
	1.20%	Elongation Gage Lgth test 1	SIN	•
,	0.011%	Bend Test Diameter	1.875IN	
vs.	0.026%	Bend Test 1	Passed	•
S	0.19%	Rebar Deformation Avg. Space	0.402IN	
	0.29%	Rebar Deformation Avg. Heigh	0.039IN	
ប៉	0.14%	Rebar Deformation Max. Gap	0.134IN	
Z //	0.11%	Tensile to Yield ratio test1	1,29	
oga ·	0,024%	Uniform Flongation	%6.6	
	0.002%			
8	0.000%			
es:	0.011%			
a	%0000			
2	0.0108%			
Carbon Eq A706	0.48%			
Vield Strangth tost	71 6kgl			
t real committee of the control of t	200000			
Yield Strength test 1 (metri	484MF8			
Townsto Seconds 1 (motion)	630MPs			
Company o mendin i dinamo	5 711000			

THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THEUSA, WITH NO WELD REPAIR OR MERCURY CONTAMINATION IN THE PROCESS. REMARKS:

THIS MATERIAL WAS MANUFACTURED ACCORDING TO THE LATEST REVISION OF THE PLANT QUALITY MANUAL AND MEETS THE "BUY AMERICA" REQUIREMENTS OF 23 CFR 635.410

02/27/2017 13:27:29 Page 1 OF 1

½" Diam. x 3.5" Bolt Assembly (1 of 5)

SLSB, LLC dba ST, LOUIS SCREW & BOLT

PO BOX 260

MADISON, IL 62060-0260

Phone: 800-237-7059 314-389-7510 Fax:

E-Mail: sales@stlouisscrewbolt.com

Page 1

ROTATIONAL CAPACITY TEST RESULTS

UIS INC

PO BOX 699

Test No

Bolt

Nut

PLEASANT GROVE, UT 84062

Project SO No

18745 U55329

Invoice No

TT0093088

3/4(10)X 5-1/2 A325-1 BOLT HDG

Test Date 09/18/17

3/4(10) HVY HEX NUT A563-DH HDG 3/4 F436-1 STRUCTURAL WASHER HDG Manufacturer

SLSB UNYTITE INC. BG0743

25982-6214369502 D3578

PRESTIGE STAMPING INC.

Washer Washer 2

Washer 2

	Actual Installation Tension	Torgue FT/LB At Installation Tension	Max. Torque FT/LB At Installation Tension <= .25	Final Rotation Degrees	Tension At Final Rotation LBS.	Final Status
Test 1 Test 2 Test 3 Test 4 Test 5	28,000 28,000	254 261	438 438	360 360	40,000 40,000	Passed Passed

Test No (TT0093089	Test Date	09/18/17
Bolt Nut Washer	1/2(13)X 3-1/2 A32 1/2(13) HVY HEX 1/2 F436-1 STRU	NUT A563-DI	H HDG

Manufacturer NUCOR BRIGHTON-BEST INTERNATION PRESTIGE STAMPING INC.

Lot No G8806 382235B D3736 /

	Actual Installation Tension	Torgue FT/LB At Installation Tension	Max. Torque FT/LB At Installation Tension <= ,25	Final Rotation Degrees	Tension At Final Rotation LBS.	Final Status
Test 1 Test 2	12,000 12,000	98 89	125 125	360 360	18,000 18,000	Passed Passed
Test 3 Test 4 Test 5						

We certify that these tests where conducted in accordance with the latest revision of ASTM F3125/F3125M supplementary requirements of FHA standards.

ROBBI MEIER SIGN

LAB TECH TITLE

This certificate is advisory only and is not a warranty. This material is warranted as set forth in the Manufacturer's Standard Warranty.

½" Diam. x 3.5" Bolt Assembly (2 of 5)

	-	τ		-		
	~ ``` `	LOU	•			
	$\sim_{\scriptscriptstyle 2}$	σ σ	,			
) L_				
	Sc	1887	7			
	*e _v	v & \(\nabla\)				
	SLSB COATING CERTIF	ICATIO	OF COM	NFORMA	NCE	
ç	SLSB PART#		AAAG05	0350		
	DESCRIPTION:	11:	2 X 3-1/2" A	325-1 HDG		
	DUANITY:		750			
,	ORIGINAL MANUFACTURER'S LOT#:		37676	7A /		
	OUTSIDE PROCESSING PO#		SL737	'30		
			G88	06		
1	_OT/JOB#					
	THE ABOVE PARTS WERE PURCHASED OR MADE B' OUT TO BE COATED TO MEET THE MOST CURRENT	OF THE FOL	HAVE BEEN S LOWING ASTM	ENT SPECIFICAT	ION:	
	, (CHE	CK ONE)				
	HOT DIP GALVANIZING F2329/A153	X				
	MECHANICAL GALVANIZING B695					
	DACROMET COATING F1136					
	ZINC PLATING B633					
	· · · · · · · · · · · · · · · · · · ·				10	
	MECHANICAL PROPER TESTED IN A	CCORDANCE V	HOT DIP GA VITH F606-14	ALVANIZIN	iG .	
	_	REQUIRED	SAMPLE 1	SAMPLE 2	SAMPLE 3	
•	TENSILE LOAD(LBF)	17050 12050	19270 0,0001	0.0001	19640 0.0002	
	PROOFLOAD (INCHES) HARDNESS (HRC)	25-34	29.7	29.3	30.4	
	MARDNESS (FIRO)					
	**Attached is a coating certification from vendor as well as original bolt cert	lification	DATE: [5/8/	17	
			DATE:	3/0/	17	
	Kachelones					

156

SLSB QC LAB, CERTIFICATIONS

1/2" Diam. x 3.5" Bolt Assembly (3 of 5)

MUCOR -

Post Office Box 6100 Saint Joe, Indiana 46765 Telephone 260/337-1600

CUSTOMER NO/NAME
1554 BRIGHTON-BEST/CA
1554 BRIGHTON-BEST/CA
1554 BRIGHTON-BEST/CA
1551 REPORT SERIAL FB498350
1551 REPORT ISSUE DATE 6/16/16
1561 CUSTOMER P.O. # U35385
1561 CHINICIAN
160130
160130
160130
160130
160130
172-13 X 3 1/2 A325 HVY HX
160130
160180
172-13 X 3 1/2 A325 HVY HX
160180
160180
172-13 X 3 1/2 A325 HVY HX

MATERIAL GRADE -1038 **CHEMISTRY COMPOSITION (WT% HEAT ANALYSIS) BY MATERIAL SUPPLIER --CHEMISTRY HEAT NUCGR STEEL - SOUTH CAROL NUMBER C MN P S SI DL16100462 .35 .79 .006 .019 .22 NUMBER RM030609

	RÉ	PROOF	LDAD		5a ILE STRENGTH DEG-WEDGE	
HARDNESS HA	RDNESS	12100	LBS	10		
CR30N)	(RC)			(LBS)	STRESS	(IZG)
	30.7	PA	22	19800	1394	37
N/A				20210	1423	124
N/A	29.5	PΛ				
N/A	27.2	PA	22	20430	1438	113
N/A	30.2					
AVERAGE VALUE	S FROM TESTS					
	29.4			20147	1418	370
PRODUCTION 1.0	T SIZE	20283 P	CS			

LOT PASSED --VISUAL INSPECTION IN ACCORDANCE WITH ASTM F3125-15a HEAT TREATMENT - AUSTENITIZED, DIL QUENCHED & TEMPERED (MIN 808 DEG F)

DIMENSIONS PER ASME B18.2.6-20 CHARACTERISTIC #SAKPLES Width Across Corners Grip Length Head Height Threads	TESTED 8	0.987 2.46 0.308 PASS	0.995 2.49 0.315 PASS
--	-------------	--------------------------------	--------------------------------

ALL TESTS ARE IN ACCORDANCE WITH THE LATEST REVISIONS OF THE METHODS PRESCRIBED IN THE APPLICABLE SAE AND ASTH SPECIFICATIONS. THE SAMPLES TESTED COMPORM TO THE SPECIFICATIONS AS DESCRIBED/LISTED ABOVE AND WERE MANUFACTURED FREE OF MERCURY CONTAMINATION. NO HEATS TO WHICH BISMUTH, SELENIUM, TELLURIUM, OR LEAD WAS INTENTIONALLY ADDED HAVE BEEN USED TO PRODUCE THE SOLTS. ALSO THE PRODUCT HAS MANUFACTURED AND TESTED IN THE U.S.A. THE PRODUCT COMPLIES WITH DFARS 252.225-7014. ME CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND DUR TESTING LABORATORY. THIS CERTIFIED MATERIAL STREET REPORT RELATES ONLY TO THE ITEMS LISTED ON THIS DOCUMENT AND MAY NOT BE REPRODUCED EXCEPT IN FULL.

ACCREDITED

MECHANICAL FASTENER CERTIFICATE NO. AZLA 8139.01 EXPIRATION DATE 12/31/17

NUCOR FASTENER A DIVISION OF NUCOR CORPORATION

JOHN W. FERGUSON QUALITY ASSURANCE SUPERVISOR

Page 1 of 1

½" Diam. x 3.5" Bolt Assembly (4 of 5)

-	HUCO		LOT NO. 382235B			Post Office Box 6100 Saint Joe, Indiana 46785 Telephone 260/337-1600		
	TEST REPORT ISSUE DATE 1: DATE SHIPPED 1: NAME OF LAB SAMPLER: R'	BE11942 (714/16 (707/16 (AN UNGER, LAB TEI (MATERIAL TEST RI	CUST PART & CUSTOHER P.O. # CHNICIAN EPORT***********		DH)		
	NUCOR PART NO QUANTI 175597 5220 MANUFACTURE DATE 9/28/16	00 (3822353/1/	ESCRIPTION 2-13 GR DH HV HX EX NUT H.D.G.	NUT H.D.G.	n	r		
	CHEMISTRY MATERIAL HEAT NUMBER NUMBER RH030631 NF16100548	**CHEMISTRY COMP	RADE -1026L OSITION (WT% HEAT S SI 05 .012 .24	T ANALYSIS) BY MAT	ERIAL SUPPLIER NUCOR STEE	L - NEBRASKA		
	HECHANICAL PROPERTIES I SURFACE CORE HARDNESS HARDNESS (R30N) (RC)	N ACCORDANCE WITH PROOF LOAD 21300 LBS PASS	TENSILE	STRENGTH G-WEDGE STRESS (PSI) N/A				
	N/A 25.6 N/A 31.6 N/A 28.9 N/A 29.1	PASS PASS PASS PASS	H/A H/A H/A H/A	H/A H/A H/A				
	AVERAGE VALUES FROM TESTS 29.0	164080 PCS						
	VISUAL INSPECTION IN AC				IJO PCS. SAMPLED	LOT PASSED	,	
	CCATING - HOT DIP GALVA 1. 0.00439 2. 0.004 8. 0.00587 9. 0.004 15. 0.00469 AVERAGE THICKNESS FROM 15 HEAT TREATHENT - AUSTENIT	91 3. 0.0028 84 10. 0.0052	22 11. 0.00470	12. 0.00496		7. 0.00318 4. 0.00530		
	DIMENSIONS PER ASME 318 CHARACTERISTIC 6 Width Across Corners Thickness	SAMPLES TESTED	HINIHUM MA 0.977 0.481	0.983 0.487				

ALL TESTS ARE IN ACCORDANCE WITH THE LATEST REVISIONS OF THE METHODS PRESCRIBED IN THE APPLICABLE SAE AND ASTM SPECIFICATIONS. THE SAMPLES TESTED CONFORM TO THE SPECIFICATIONS AS DESCRIBED/LISTED ABOVE AND WERE MANUFACTURED FREE OF MERCURY CONTANIMATION. NO INTENTIONAL ADDITIONS OF BISMUTH, SELENIUM, TELLURIUM, OR LEAD WERE USED IN THE STEEL USED TO PRODUCE THIS PRODUCT.

THIS STEEL WAS MELTED AND HANDFACTURED IN THE U.S.A. AND THE PRODUCT WAS MANUFACTURED AND TESTED IN THE U.S.A. PRODUCT COMPLIES WITH DEARS 252.228-7014. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. THIS CERTIFIED MATERIAL SET REPORT RELATES ONLY TO THE ITEMS LISTED ON THIS DOCUMENT AND MAY MOT BE REPRODUCED EXCEPT IN FULL.

ACCREDITED

HECHANICAL FASTENER CERTIFICATE NO. A2LA 0139.01 NUCOR FASTENER

JOHN W. FERGUSON
QUALITY ASSURANCE SUPERVISOR

Page 1 of 1

1/2" Diam. x 3.5" Bolt Assembly (5 of 5)

23513 Grossback Highway Warron, Michigan 48089 (586)773-2700 * Fax (586)773-2298 www.PrestigeStamping.com

PRODUCT CERTIFICATION

CERTIFICATION NUMBER

166684

THIS IS TO CERTIFY THE PRODUCT STATED BELOW WAS FABRICATED AND PROCESSED TO THE ORDER AS INDICATED AND CONFORMS TO THE APPLICABLE SPECIFICATIONS AND STANDARDS.

Customer: SLSB LLC DBA ST LOUIS SCREW & BOLT 2000 ACCESS BLVD

MADISON, IL 62060

Customer Part: AAWG050

Prestige Part: P1088HP300
Part Name: 1/2"F436 H/DIP
Purchase Order: SL82339

Shipment BOL: B200435 Shipment ID: A0214896 Quantity: 63768 Manufacturers Marking: "P"

Steel Supplier: MARATHON METALS, LLC
Grade: CF436 GRADE STEEL
Lot D3736
Heat: B4U177

41

Manganese: .73 (.6 - 1.6)

Manganese: .73 (.6 - 1.6)

Phosphorous: .015 (.04 Max.)

Sulfur: .001 (.05 Max.)

Silicon: .22 (.15 Min.)

SPECIFICATIONS

HARDNESS: TEST METHOD: ASIM E18

HRC 38 - 45 CHECKED TO ASTM F606

CHECKED AFTER GALVANIZING

PLATING: TESI METHOD: ASTM B499 HOT DIP GALV TO ASTM F-2329, AND ASTM A153 CLASS C

TEST RESULTS

HRC 40 -

HARDNESS:

PLATING: 0.0020" - 0.0030"

USB/SAE LC Weshers are manufactured to the requirements of ASTM F844 specifications. Chemistry is as reported from raw meterial certification and does not full under Prestige Stamping's and This product was produced under an ISO/TS 16948 Quality Assurance System.

ISO/TS 16949 Certification No: 0063953.

Material was malted and manufactured in the U.S.A.

This product outs manufactured in the U.S.A.
This product outs manufactured in Warren. Alichigen U.S.A.
This product confirms to all requirements for Washers as produced according to A.S.T.M. F.436-13.
Sampling Plan par P.S.I.W.I. # 5.4.18.015.

sumpning man per r.o. 1944 to 2.44 courts.
This test results only apply to the items tested.
This test report must not be reproduced except in full without print written approval.
Meterials used to monufacture these products are mercury, subsatics and entire activity free.

Product is RoHS compliant. No wold repairs made to material All certified product is AIS compliant.

04/28/17

15:04

SLEW

PAGE 1 of 1

FRANK SCHUBERT Quality Assurance Manager

3/4" Diam. x 5.5" Bolt Assembly (1 of 6)

SLSB, LLC dba ST. LOUIS SCREW & BOLT PO BOX 260

MADISON, IL 62060-0260

Phone: 800-237-7059 Fax: 314-389-7510

E-Mail: sales@stlouisscrewbolt.com

Page

ROTATIONAL CAPACITY TEST RESULTS

UIS INC

PO BOX 699 PLEASANT GROVE, UT 84062

Test No (TT0093088)

PO Project SO No

18745 U55329

Manufacturer

SLSB

Invoice No

Lot No BG0743 /

Bolt Nut

3/4(10)X 5-1/2 A325-1 BOLT HDG 3/4(10) HVY HEX NUT A563-DH HDG 3/4 F436-1 STRUCTURAL WASHER HDG

Test Date 09/18/17

UNYTITE INC. PRESTIGE STAMPING INC. 25982-6214369502 < D3578~

Washer Washer 2

Test 5

	Test 1 Test 2 Test 3 Test 4	Actual Installation Tension 28,000 28,000	Torgue FT/LB At Installation Tension 254 261	Max. Torque FT/LB At Installation Tension <= .25 438 438	Final Rotation Degrees 360 360	Tension At Final Rotation LBS. 40,000 40,000	Final Statu Passed Passed	
_	Test 5		T 1 D-11	00/19/17	Manufacturer			Lot No
	Test No	TT0093089	Test Date	09/10/17				G8806
	Bolt Nut Washer Washer 2	1/2(13)X 3-1/2 A 1/2(13) HVY HE 1/2 F436-1 STR	X NUT A563-D	H HDG	NUCOR BRIGHTON- PRESTIGE	BEST INTERNATION STAMPING INC.		382235B D3736
		Actual Installation Tension	Torgue FT/LB At Installation Tension	Max. Torque FT/LB At installation Tension <= .25	Final Rotation Degrees	Tension At Final Rotation LBS.	Final Sta	
	Test 1 Test 2 Test 3 Test 4	12,000 12,000	98 89	125 125	360 360	18,000 18,000	Passe Passe	

We certify that these tests where conducted in accordance with the latest revision of ASTM F3125/F3125M supplementary requirements of FHA standards

SIGN

ROBBI MEIER

TITLE LAB TECH

This certificate is advisory only and is not a warranty. This material is warranted as set forth in the Manufacturer's Standard Warranty.

3/4" Diam. x 5.5" Bolt Assembly (2 of 6)

MECHANICAL PROPERTIES TESTING AFTER HOT DIP GALVANIZING TESTED IN ACCORDANCE WITH F606

THESE PARTS HAVE BEEN HOT DIP GALVANIZED TO MEET ASTM F2329/A153

LOT NUMBER:	BG0743
DESCRIPTION:	% X 5-1/2" A325-1 HDG
DATE TESTED:	01/24/17

	REQUIRED	SAMPLE 1	SAMPLE 2	SAMPLE 3
TENSILE LOAD	40100	47870	47110	46770
PROOFLOAD	28400	.0002	.0000	.0001
HARDNESS (HRC)	25-34	26.4	30.6	28.8

SLSB QC LAB, CERTIFICATIONS

SLSB, LLC · 2000 Access Boulevard · Madison · IL · 62060 · Phone: 800.237.7059

3/4" Diam. x 5.5" Bolt Assembly (3 of 6)

PRODUCTION INFORMATION												
PH 314-389-7510		20	000 ACCES			TI	=5	ГБ	RFP	OR	T?	
PRODUCTION INFORMATION	10 mm	1000				1 1			\ <u></u> ;	O .	• •	- 1
PRODUCTION INFORMATION		F.	AX 314-38	9-7510								
PART NO: AAAG075550 SIZE: 3/4"(10) X 5-1/2" DESCRIPTION: HVY HEX STRUC. BOLT - HDG MANUFACTURING QTY: 2,890	Lot No:	B	G0743		MAN	IUFACT	URING	DATE		1/10/:	2017	
SIZE: 3/4"(10) X 5-1/2"			PF	RODI	JCTIC	N IN	FORM	ΙΤΑΝ	ON			
DESCRIPTION: HVY HEX STRUC. BOLT - HDG MANUFACTURING QTY: 2,890 ASTM/ASME SPECIFICATIONS SPECIFICATION AMEND SPECIFICATION AMEND ASTM F3125 158 ASTM F470 12 ASTM F3125 158 ASTM F606 14 ASTM F325-1 44 ASTM F606 14 ASTM F325-1 14 ASTM F608 13 ASME B18.2.6 14 ASTM F788 13 ASME B1.1 UNC 2A 14 ASTM F2329 13 RAW MATERIAL INFORMATION* STEEL SUPPLIERS TEST REPORT ATTACHED WITH CHEMISTRY INFORMATION STEEL SUPPLIER GRADE HEAT INFO/NUMBER ASTM SPEC AMEND KREHER/CHARTER 10B30 K NF16103029 ASTM A29 12e1 WECHANICAL PROPERTIES OTY ISSUE SAMPLED TEST HEAT TREAT VISINSPECTION LOT RESULT SAMPLED DATE BY: BY: POM: TO SURFACE CORE 1/18/2017 RC RC 1450623-05 PASS PASS TENSILE STRENGTH PROOF LOAD TEST HARDNESS TENSILE STRENGTH PROOF LOAD TEST HARDNESS WEDGE LBF LBF ELONGATION SURFACE CORE 10 DEGREES 40100 28400 ±0.0005" N/A 25-34 HRC SAMPLES TENSILE LOAD 47450 47800 47580 47440 47840 47840 47822 PROOF LOAD 10.0002 0.0001 0.0001 0.0000 0.0004 0.00002								1 7	MANUFACTU		AD MARK	
ASTM/ASME SPECIFICATIONS SPECIFICATION AMEND SPECIFICATION AMEND ASTM F3125 15a ASTM F4170 12 ASTM A325-1 14 ASTM F606 14 ASTM F788 13 ASME B18.2.8 14 ASTM F788 13 ASME B18.2.8 14 ASTM F788 13 ASME B18.2.8 ASME B1.1 UNC 2A 14 ASTM F2829 13 ASME B1.1 UNC 2A STEEL SUPPLIERS TEST REPORT ATTACHED WITH CHEMISTRY INFORMATION STEEL SUPPLIER GRADE HEAT INFO/NUMBER ASTM SPEC AMEND KREHER/CHARTER 10B30 X NF16103029 ASTM A29 12e1		SI	ZE: 3/4	"(10) X	5-1/2"			1	/	P352 /	\	1
ASTM/ASME SPECIFICATIONS	DES	CRIPTIC	VH :NC	Y HEX S	STRUC. E	BOLT - I	HDG		\	50 C	/	Ì
SPECIFICATION	MANUFACTU	JRING C	TY: 2,8	90						كست		
SPECIFICATION					ASME	SPE	CIFIC	ATIO	ONS			
ASTM F3125 158	SDEC1	FICATIO					SPE	CIFIC	ATION		,	D
ASTM A325-1												
RAW MATERIAL INFORMATION* STEEL SUPPLIERS TEST REPORT ATTACHED WITH CHEMISTRY INFORMATION	AST	M A325-1										
RAW MATERIAL INFORMATION* STEEL SUPPLIERS TEST REPORT ATTACHED WITH CHEMISTRY INFORMATION STEEL SUPPLIER GRADE HEAT INFO/NUMBER ASTM SPEC AMEND KREHER/CHARTER 10B30												
CTY		UPPLIE	EL SUPPL	IERS TES	T REPORT	ATTACHE T INFO	NUMB	HEMIST	ASTM	SPEC		
QTY SAMPLED DATE SAMPLED BY: BY: BY: PO#: PO#: PO#: PO#: PO#: PO#: PO#: PO#	KREHER/	CHARTE			1 77							21.51
SAMPLED DATE BY: BY: PO#: VISITIOF LOTION			N	NECH	HANIC	AL P	ROP	ERT	ES		11/2 / 15	Jyt
SAMPLED DATE BT. ST. ST. SAMPLED TENSILE STRENGTH PROOF LOAD TEST HARDNESS	QTY		-						VIS INS	PECTION	LOT R	ESULT
TENSILE STRENGTH PROOF LOAD TEST HARDNESS WEDGE LBF LBF ELONGATION SURFACE CORE 10 DEGREES 40100 28400 ±0.0005" N/A 25-34 HRC SAMPLES TENSILE LOAD 47450 47800 47580 47440 47840 PROOF LOAD PROOF LOAD 0.0002 0.0001 0.0001 0.0000 0.0004 0.0002									P	ASS	P/	ASS
TENSILE STRENGTH							AD TEST			HARD	NESS	
TENSILE LOAD		ILE STRE				ROOF LO	ELONGA	TION	SURF			RΕ
SAMPLES Tensile Load 47450 47800 47580 47440 478	7.1			-+			±0.000	05"	N/	Α	25-34	HRC
1 2 3 4 5 6 7 8 AVG. TENSILE LOAD 47450 47800 47580 47440 47840 47840 PROOF LOAD 0.0002 0.0001 0.0001 0.0000 0.0004 0.0002	10 DEGREES						SAMPLES		- F (3)		7 II 3	
TENSILE LOAD 47450 47800 47580 47440 47840 47840 47622 PROOF LOAD ELONGATION 0.0002 0.0001 0.0001 0.0000 0.0004 0.0002			1	2	3	4						
PROOF LOAD ELONGATION 0.0002 0.0001 0.0001 0.0000 0.0004 0.0002	TENGII	FLOAD		47800	47580	47440	47840		10年1年	PER PER	47622	
	PROO	F LOAD	0.0002	0.0001	0.0001	0.0000	0.0004				0.0002	
				1515(640		完全	2018				Lakerra R	

1/18/2017

DATE: _

SIGNED:

AMENDED

DATE:

INITIAL:

^{*}Heats of steel used have not had the following materials intentionally added: bismuth, selenium tellurium, or lead **Indicates the amended item, when and by whom.

3/4" Diam. x 5.5" Bolt Assembly (4 of 6)

ST LOUIS SCREW & BOLT 2000 ACCESS BLVD

MADISON, IL 62060-0260

P O BOX 260

5711 WEST PARK AVENUE ST. LOUIS, MO 63110-1890

P (314)647-7500 F (314)647-7518 www.paulo.com

CERTIFIED INSPECTION REPORT

PAULO #: 1450623-05 DATE: 01/13/2017 DATE REC'D: 01/10/2017 SHIP TO CODE:

CUSTOMER PO: SL61366 CUSTOMER DRAY:

CUSTOMER JOB: NF16103029 LOT #: BG0743 / OTHER #:

Requirements:

Heat Treat Certification Final mid-radius hardness 28-32 HRC DKY FINISH.
Process per ASTM spec F3125 rev 15.
Process per ASTM spec A 325M rev 14.
Registered to ISO/TS 16949
Heat Treated in the USA. DRY FINISH.

PART NAME: 3/4 X 5 1/2 / PART #: AAAG075550 BO QUANTITY: 2890 PCS MATERIAL: 10B30

> INSPECTION RESULTS: REQUIRED Final mid-radius hardness 28-32 HRC City Inspected: 8 28 29 28 30 30 30 30 31 HRC

> > Req info: DRY FINISH

I CERTIFY THAT APPLICABLE MATERIAL PROCESSES HAVE BEEN PERFORMED IN ACCORDANCE WITH THE SPECIFICATION SHOWN ABOVE. I HAVE INSPECTED THE WORK AND THE SAMPLING AND RESULTS ARE AS INDICATED.

Ynaw Goedest

Inspector Signature

Page 1 of 1

3/4" Diam. x 5.5" Bolt Assembly (5 of 6)

Fax 815-224-3434

INSPECTION CERTIFICATE

Job No: 25982

Job Information

Certified Date: 7/5/17

Customer: ST. LOUIS SCREW & BOLT CO.

Ship To: ST. LOUIS

Customer PO No: SL81737

Lot Number: 25982-6214369502 /

Shipped Qty: 87,685

Part Information

Part No: A563 3/4-10 +0.020 DH HHN HDG BLUE DYE

Description: ASTM A563 Heavy Hex Nut, Grade DH, Hot Dipped Galv, Blue Dye

Manufactured Quantity: 107,342

Applicable Specifications

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Contract Chille And Someont at Child All and I seemed	S	Amend
Specification	Amend	Specification	
	2003	ASME B18.2.2	2015
ASME B1.1		ASTM A563	2015
ASME B18.2.6	2010		2014
ASTM F2329	2013	ASTM F606/606M	2017
ASTM E812/E812M	2012		

Test Results

Description	1	ТТ	empering Tem	p (800	Proof L (Pass/Fail) (Dimension B18.2.2	Thread F		Visual ASTM F812
Sample	28.	55	1,184		50,1			ass	Pa	iss	Pass
	-	-1, 2, 789		を作り付	Certified Chen	nical Analy	SIS	141.178 GAZE	~	Mi	Gu
Heat No 1	Grade	Manufacture	r Origin	С	Mn	P	S	51	Cr		
6214369502	1045	Gerdau Ameristeel	USA	0.4500	0.7300	0,008	0.0270	0.2100	0.1900	0.0700	0.1300
		Milesiador		7.7	No	ton die	41 477 121 75 1	公司工程。安全	14年20日本の日本		

All tests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications. Notes

The samples tested conform the specifications as described/listed above and were manufactured free of mercury contamination and there is no welding performed in the production of the products. No heats to which Bismuth, Selenium, Tellurium, or Lead was intentionally added have been used to produce

The steel was melted and manufactured in the U.S.A. and the product was manufactured and tested in the U.S.A.

We certify that this data is true representation of information provided by the material supplier and our testing laboratory. This certified material test report elates only to the items listed on this document and may not be reproduced except in full.

OFFICIAL SEAL
JEAN MARCHERIO
NOTARY PUBLIC - STATE OF ILLINOIS
MY COMMISSION EXPIRES: 10/18/17

7/5/17

Plex 7/5/17 9:57 AM dsavage Page 1

34" Diam. x 5.5" Bolt Assembly (6 of 6)

23513 Groesbeck Highway Warren, Michigan 48089 (586)773-2700 * Fax (586)773-2298 www.PrestigsStamping.com

PRODUCT CERTIFICATION

CERTIFICATION NUMBER

170622

THIS IS TO CERTIFY THE PRODUCT STATED BELOW WAS FABRICATED AND PROCESSED TO THE ORDER AS INDICATED AND CONFORMS TO THE APPLICABLE SPECIFICATIONS AND STANDARDS

Customer: SLSB LLC
DBA ST LOUIS SCREW & BOLT
2000 ACCESS BLVD

MADISON, IL 62060

Customer Part: AAWG075

Prestige Part: P1480HP300 Part Name: 3/4"F436 H/DIP

Purchase Order: SL82839

Shipment BOL: B202672
Shipment ID: A0217515
Quantity: 18155
Manufacturers Marking: "P"

Steel Supplier: HORIZON STEEL CO.

Grade: CF436 GRADE STEEL

Lot: D3578

Heat: 01-20773

Carbon: 53 (.22 - .55)

Manganese: 67 (.6 - 1.6)

Phosphorous: .004 (.04 Max.)

Sulfur: .002 (.05 Max.)

Silicon: .09 (.15 Min.)

SPECIFICATIONS

HARDNESS: TEST METHOD: ASTM E18 HRC 3B - 45 CHECK TO ASTM F606

CHECKED AFTER GALVANIZING

TEST RESULTS

HARDNESS: 41 42 HRC

PLATING: TEST METHOD: ASTM B499 HOT DIP GALV TO ASTM F-2329, AND ASTM A153 CLASS C

PLATING:

0.0020" - 0.0030"

USS/SAE LC Washers are manufactured to the requirements of ASTM F844 specifications.

Chamistry is as reported from raw material certification and does not fell under Prestige Stemping's accreditation. This produced under an ISO/TS 16949 Quality Assurance System.

ISO/TS 16949 Certification No: 0062939.

ISOTE 16849 Certification No: 0062933.

Notariel was matted and manufactured in the U.S.A.

This product was manufactured in Warren, Michigan U.S.A.

This product conforms to all requirements for weshers as produced according to A.S.T.M. II-436-13.

Sampling Plan per P.S.I. W.I. # 5.4.18.015.

The test results only apply to the items tested.

This test report must not be reproduced except in full without pilor written approved.

Materials used to manufacture these products are mercury, esbestos and radio activity free. Product is ReHS compilant.

No weld repairs made to material. All certified product is AIS compliant.

FRANK SCHUBERT Quality Assurance Manager

Econ Information System

07/31/17

11:35

SLEW

PAGE 1 of 1

1" Diam. x 17.5" Concrete Anchor Bolt Assembly (1 of 5)

			STATE OF CALIFORNIA » DEPARTMENT OF TRANSPORTATION SAMPIO ID:2017-10-18-6 [TL-0101 (FEX '090717)]	Sample ID:2017-10-18-6
Structural Materials Teşting Laboratory 5900 Folsom Boulevard, Sacramento,CA 95819	SECTION TESTING CENT # 2354.01		TEST TYPE:	FIELD NO.
TEST REPORT		BRANCH LAB	SHIPMENT NO.	DIST LAB NO.
Remarks		TDIST, LAB	AUTHORIZATION NO.	LOT NO.
ref. ASTM F1554, A563, F486, A153/F2229, TM03. Bolt Heat #3068105, Lot #68956/W3273; Nut Lot #23746-6214036104; Washer Lot #D3476.	Heat #3068105, Lot ot #D3476.	-		P.O. OR REQ. NO.
		SAMPLE OF:	F1554 Grade 105 HDG Anchor Bolts	
		FOR USE N: DEPTH:	SAMPLE-FROM: Fabricator	/i-Fabricator
		LOCATION OF SOURCE:	NIS	0
Sample No: 2017-10-18-6		THIS SAMPLE IS SHIPPED IN(NO.	OF A GROUP	REPRESENTING FLONS, GALS,
Date Received: 10/24/2017 Date Sampled: 10/18/2017	0/18/2017	CONTAINERS	OF	BBLS, STA, ETC.)
		OWNER OR MANUFACTURER		
Date Reported: 10/30/2017 Sampler: Joe Lanz	zur	QUANTITY 40 Bolts 80	TEST RESULTS DESIRED 30 FT NORMAL FT PRIORITY	DATE NEEDED
Inspector Lot No: L106-008-07		AWAIL/ABLE	mility (p. 1 description of the control of the cont	
TL-101/SIC No: N/A		TEMPING.		
Contract/Permit No: 65A0617				
Material: 1'x 17.5" F1554 Grade 105 HDG Headed Bolt Assemblies				
Manufacturer: UIS		DATE SAMPLE:	10/18/2017	BY: Joe Lanz
Note: Results relate only to the items tested. Test reports shall only be reproduced for Califans	eproduced for Calirans	TITLE:	GA (7072085241)	
deministered projects.				
Results		CONT. NO.: DEA: 6540617 LIMITS:	7 FED, NO.:	
Sample(s) submitted comply with material specifications.		RECIPIENT(S):		
		david.whilesel@dot.ca.gov;t	lavid whitesel@dot.ca.gov/bob.meline@dot.ca.gov.john.jewell@dot.ca.gov.jlanz@altavistasokulions.com.jken	a.govjlanz@altavistasolutions.c
		neth.f.varela@dot.ca.gov;LA	reth.f.varela@dot.ca.gov;LA.METS.Reports@dot.ca.gov	
Reviewed by: Glgn Weldon Approved by:		CONTRACTOR:		
Sept 1	Paul-lukkerila			
Lab Manager SMTL Quality Manager	anager			

1" Diam. x 17.5" Concrete Anchor Bolt Assembly (2 of 5)

DOC ID 7.5.3.1F Rev 8/16 Date created 10/6/17

A Division of Lonestar Fasteners

MATERIAL TEST REPORT

PO# 18746 SO# 257422

Item: 1	-8 X 17-1/2 / HEAV	Y HEX BOLT		
Material Specification: A	STM F1554 GR.105 /	HDG	;	
LOT#:	68956 / W3273 S			
Heat Number:	3068105			
Tensile Strength PSI:	146700	Yield Strength PSI:	136600	
Elongation:	19	Reduction of Area:	55	
Hardness:	30 HRC	Wedge Tensile PSI:	148800	
Macro Etch:	S1/R1/C2	Tempering Temp.:	NA	
Quenched and Tempered		Decarburization: Carburization:	0.000 0.000	

Carbon (C):	0.400	Chromium (CR):	0.850	
Manganese (MN):	0.760	Molybdenum (MO):	0,205	
Phosphorus (P):	0.015	Copper (CU):	NA	
Sulfur (S):	0.019	Nitrogen (N):	NA	
Silicon (SI):	0.210	Nickel (NI):	NA	
Cobalt (CO):	NA	Aluminum (AL):	NA	
Vanadium (V):	NA	Tin (SN):	NA	
Tungsten (W):	NA	Titanium (Ti);	NA	
Columbium/Niobium (NB/CB):	NA NA	Boron (B);	NA .	
Calcium (CA):	NA			

We hereby certify that the material was manufactured, sampled, tested and inspected per the most recent revision of the product or material specification. The foregoing data was furnished to us by our supplier or resulting from a test performed in a recognized laboratory and is on file in the records of the corporation.

Name: Lori Walker

18060 Highway 21 Sycamore, AL 35149. Phone (256) 249-6979. Fax (256) 249-8011

1" Diam. x 17.5" Concrete Anchor Bolt Assembly (3 of 5)

				0.1	
s presented here ade specificatio	LIGHT	: 4486.000 LB		nted by this MTH:	
We hereby certify that the test results presented here are accurate and conform to the reported grade specification	Delivery#: 82126961 BOL#: 72111715 CUST PO#: 69968 CUST P/N:	DLVRY LBS / HEAT: 4486.000 LB DLVRY PCS / HEAT: 84 EA	Characteristic Value	The Following is true of the material represented by this MTR: *Material is fully killed <700% melted and rolled in the USA *ENTOZO4:2004 3.1 compleint *Contains no weld repair *Manufactured in accordance with the latest version of the plant quality manual **Mosts the "Buy America" requirements of 23 CFRG35, 410	
We hereby cerrourate and conf			Chara	The Following is "Marcinic Tions." "ENTO2 "Contain" "Manuf. of the p	
	Ameribolt Inc 18060 Alabama Hwy 21 Sycamore AL	US 35149-0000 2562496979 2562498011			
REPORT 38 call 1	S Ameribolt Inc H 1 18060 Alaban P Sycamore AL	US 35149-00 T 2562496979 O 2562498011	alue	atio 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00:5
CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771 [ABUKU-/WX 2020]			Characteristic Value	Reduction Ratio	07/05/2017 13:15:00 Pege 1 OF 1
I	Ameribolt Inc 18060 Alabama Hwy 21 Sycamore AL	3000 79 11	5		07/0 Page
0		US 35149-0000 2562496979 2562498011			
	0 - D	-0	Value	0.40% 0.76% 0.015% 0.019% 0.21% 0.21% 0.08% 0.08% 0.00% 0.000% 0.010% 0.010% 302BHN 1	
CMC STEEL TEXAS 1 STEEL MILL DRIVE SEGUIN TX 78165-	20.0" 4140	16 068105A790	Characteristic		
CMC	HEAT NOG3068105) SECTION: ROUND 1 x 20'0" 4140 GRADE: AISI 4140 ROLL DATE: 01/19/2017	MELT DATE: 12/26/2016 Cert. No.: 82126961 / 068105A790	Char	C Mn Mn S Si S	5 -

1" Diam. x 17.5" Concrete Anchor Bolt Assembly (4 of 5)

Unyfite, Inc. One Unytite Drive Peru, IL 61354 Tel 815-224-2221 Fax 815-224-3434

INSPECTION CERTIFICATE

Job No: 23746

Customer PO No: 14682

Job Information

Certified Date: 8/5/16

Customer: UNIVERSAL INDUSTRIAL SALES

SHIP TO: UNIVERSALE INDUSTRIAL

Shipped Qty: 20,250

Lot Number: 23746-6214036104

Part Information

Part No: A563 1-8 +0.024 DH HHN HDG BLUE DYE

Name: ASTM A563 Heavy Hex Nut, Grade DH, Hot Dipped Galv, Blue Dye

Manufactured Quantity: 59,200

Applicable Specifications

Specification	Amend	Specification	Amend
ASME B1.1	2003	ASME B18.2.2	2015
	2010	ASME B18.2.6M	2012
ASTM A563	2015	ASTM F2329	2013
	2014	ASTM F812/F812M	2012

Test Results

Test No: 12157 Test: A563 DH Mechanical Properties.

Description	Hardne (HRC		pering Temp degree F Min	1	roof Load (Pa (ASTM MI		Shape & Dir ASME B1		Thread Precis B18.1		Visual ASTM F812
Sample Inspection	27.5	0	1,193		90,900		Pass		Pas	Pass	
			1.5	C	ertified Cher	nical Ana	lysis			11.57	* '-
Heat No	Grade ,	Manufacturer	Origin	C.	Mn	Р	S	SI	Cr	NI	Cu
6214035104	1045	Gerdau Ameristool	USA	0.4500	0.7500	0.009	0,0240	0.1900	0.1400	0,0900	0.2100

Notes

All tests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications.

The samples tested conform the specifications as described/listed above and were manufactured free of mercury contamination and there is no welding performed in the production of the products. No heats to which Bismuth, Selenium, Tellurium, or Lead was intentionally added have been used to produce products.

The steel was melted and manufactured in the U.S.A., and the product was manufactured and tested in the U.S.A.

We certify that this data is true representation of information provided by the material supplier and our testing laboratory. This certified material test report elates only to the items listed on this document and may not be reproduced except in full

OFFICIAL SEAL JEAN MARGHERIO NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES: 10/18/17

Savage, Dan - Supervisor, Quality

Plex 8/5/16 9:33 AM dsavage Page 1

1" Diam. x 17.5" Concrete Anchor Bolt Assembly (5 of 5)

23513 Groesbeck Highway Warren, Michigan 48089 (586)773-2700 * Fax (586)773-2298 www.PrestigeStamping.com

PRODUCT CERTIFICATION CERTIFICATION NUMBER

169473

THIS IS TO CERTIFY THE PRODUCT STATED BELOW WAS FABRICATED AND PROCESSED TO THE

ORDER AS INDICATED AND CONFORMS TO THE APPLICABLE SPECIFICATIONS AND STANDARDS.

Customer: SLSB LLC
DBA ST LOUIS SCREW & BOLT
2000 ACCESS BLVD
MADISON, IL 62060

Customer Part: AAWG100
Prestige Part: P1900RP300
Part Name: 1"F436 H/DIP
Purchase Order: SL82839

Shipment BOL: B202020 Shipment ID: A0216740 Quantity: 12542 Manufacturers Marking: "p"

Steel Supplier: KENWAL STEEL CORP.
Grade: CF436 GRADE STEEL
Lot: D3476
Heat: 31645580
Carbon: .55 (.22 - .55)
Manganese: .76 (.6 - 1.6)
Phosphorous: .009 (.04 Max.)
Sulfur: .003 (.05 Max.)
Silicon: .23 (.15 Min.)

SPECIFICATIONS

HARDNESS: TEST METHOD: ASTM E18

HRC 38 - 45 CHECKED TO ASIM F606 CHECKED AFTER GALVANIZING

TEST RESULTS

HARDNESS:

HRC 41 - 42

PLATING: TEST METHOD: ASTM B499 HOT DIP GALV ASTM F-2329, AND ASTM A153 CLASS C

PLATING: 0.0020" - 0.0030"

USS/SAE LC Washers are manufactured to the requirements of ASTM F844 specifications
Chemistry is as reported from raw material certification and does not fell under Prostige Stamping's accreditation
This product was produced under an ISO/TS 16949 Quality Assurance System.

ISO/TS 16949 Certification No: 0062933.

Matchild was malter and manufactured in the U.S.A.
This product was manufactured in Warren. Milchigen. U.S.A.
This product conforms to all requirements for weathers as produced according to A.S.T.M. F-436-13.

Sampling Plan per P.S.I W.I. £ 5.4.18.015.
The test results only apply to the items tested.

This test report must not be reproduced except in full without prior written approval.

Materials used to measurfacture these products are mercury, asbestos and radio activity free.

Product is RoHS compliant.

No weld repairs made to material.

All certified product is AIS compliant.

07/03/17

10:00

SLEW

PAGE 1 of 1

FRANK SCHUBERT

Quality Assurance Manager

Econ Information System

11/13/08

Tubular Rail (1 of 16)

Universal Industrial Sales, Inc. Lindon, Utah 84062	Quality Control Manual
Appendix 14	Approved
Daily Report of Welding Ins	pection
Job # 65241 Contract # 65A	
Inspector VOUN HUNTER Date 10-2	
Project: CA - BRID 66 RAIL	,
WPS (s) applicable codes and specifications available. WPS NO.	No
WPS NO. 2. Verified fit-up: Bevel degree N/A Land N/A Cleanlines	a s
3. Filler metal description 980/L-61 E71T-1 ER	708-6
4. Filler metal storage / control: Satisfactory	Unsatisfactory
5. Piece No. Weld No. of P. F5 FILLET / F1LLET /	asses Welder NV NV
6. All welds identified by welder: Yes No	·
7. Verified WPS requirements: Preheat Vo	Interpass
8. Verified weld interpass cleanliness and quality: Satisfactory Unsatisfac	otory
9. Final visual / NDT (VTMT) as applicable: Satisfactory Unsatisfac	etory
10. Comments	
Work performed in accordance with project specification Yes NoNo	

171

QCM Rev 1

11/13/08

Tubular Rail (2 of 16)

	Appendix 14	Approved
	Daily Report of Welding Insp	ection
Tob	# 65841 Contract # 65 A	
	ector /UNN HUNTER Date 10-30	
	ject: <u>CA - BALOUE RAIL</u>	· · · · · · · · · · · · · · · · · · ·
1.	WPS (s) applicable codes and specifications available. WPS NO. F1 - L57 Yes:	No
	WPS NO.	
2.	Verified fit-up: Bevel degree //A Land //A Root Opening //A Cleanliness	
3.	Filler metal description 980/L-61 E71T-1 ER7	
		Unsatisfactory
4.		Olisadistactory
	w	377-1.1
	Piece No. Weld No. of Pa	sses Welder W
	NOTE RATE /	
6.	All welds identified by welder: Yes No	
6.	All welds identified by welder: Yes No Verified WPS requirements: Preheat N/A	
	All welds identified by welder: Yes No Verified WPS requirements: Preheat No Position Amps/WFS Volume Verified weld interpass cleanliness and quality:	Interpass N/A
6.	All welds identified by welder: Yes No Verified WPS requirements: Preheat No Position Amps/WFS Volume Verified weld interpass cleanliness and quality: Satisfactory Unsatisfact	Interpass N/A
6.	All welds identified by welder: Yes No Verified WPS requirements: Preheat No Position Amps/WFS Volume Verified weld interpass cleanliness and quality: Satisfactory Unsatisfact	Interpass N/A
6.	All welds identified by welder: Yes No Verified WPS requirements: Preheat No Verified weld interpass cleanliness and quality: Satisfactory Unsatisfact Final visual / NDT (VD-MT) as applicable:	Interpass N/A

QCM Rev 1

Tubular Rail (3 of 16)

Lindon, Utah 84062	Quality	Control Manual
Appendix 14	· · · · · · · · · · · · · · · · · · ·	Approved
Daily Report of Weld	ing Inspection	
Job #	65A0617	
Inspector JOHN HIMTOR Date	10-30-17	
Project: CA - BRIOST LAIL		
1. WPS (s) applicable codes and specifications av WPS NO. F1-151 Yes: WPS NO. f1r-151	ailable.	
	ndeanliness	
3. Filler metal description 980/L-61 E71T-1	ER70S-6	
4. Filler metal storage / control: Satisfactory	Unsatisfactory_	
	No. of Passes Weld	<u>ler</u>
	•	
6. All welds identified by welder: Yes	No	
All welds identified by welder: Verified WPS requirements: Preheat Amps/WFS		_
7. Verified WPS requirements: Preheat Position Amps/WFS 8. Verified weld interpass cleanliness and quality Satisfactory U	Volts	
7. Verified WPS requirements: Preheat Position Amps/WFS 8. Verified weld interpass cleanliness and quality Satisfactory U 9. Final visual / NDT (VT-MT) as applicable:	Interpass N/A Volts	
7. Verified WPS requirements: Preheat Position Amps/WFS 8. Verified weld interpass cleanliness and quality Satisfactory U 9. Final visual / NDT (VT-MT) as applicable:	Voltsnsatisfactory	

11/13/08

Tubular Rail (4 of 16)

Universal Industrial Sales, Inc. Lindon, Utah 84062	Quality Control Manual
Appendix 14	Approved
Daily Report of Welding Inspe	ction
Job#	1-17
Project:	
1. WPS (s) applicable codes and specifications available. WPS NO. PI-V56 WPS NO. PIP-V56	_No
WPS NO. 2. Verified fit-up: Bevel degree Land Cleanliness Cleanliness	
3. Filler metal description 980/L-61 E71T-1 ER705	<u>s-6, </u>
4. Filler metal storage / control: Satisfactory	Unsatisfactory
5. Piece No. Weld No. of Pass AI PIST PSP, FILLET MILLTIN	wes Welder
6. All welds identified by welder: Yes No	
7. Verified WPS requirements: Preheat W/A Position Amps/WFS Volts	Interpass _N/4
8. Verified weld interpass cleanliness and quality: Satisfactory Unsatisfactor	ту
9. Final visual / NDT (VTMT) as applicable: Satisfactory Unsatisfactor	ту
10. Comments	,
Work performed in accordance with project specifications Yes No	

11/13/08

Tubular Rail (5 of 16)

P.O. BOX 669 – PLEASANT GROVE, UTAH 84062 – Phone: (801) 785-0505 – FAX: (801) 785-1710 <u>www.universalindustrialsales.com</u>

November 1, 2017

Project: ST-75 Tubular Handrail - Crash Test Construction

Contract: 65A0617 Owner: Caltrans

Contractor: Rupert Supply UIS Project #: 65841

Stud Weld Testing per AWS D1.1 Section 7.7.1.4 Threaded Studs torque tested per AWS table 7.3.

Stud Size	Quantity Tested	Min. Torque	Actual Torque	Results
3/4" x 2-1/2" Thd	5	184.1 per table	190 ft/lbs	Acceptable

John Amil

Testing Conducted by John Hunter, UIS QC Dept.

Torque Wrench KD Tools serial #4051058682 Calibrated 01/10/2017 by Calibration Solutions

Tubular Rail (6 of 16)

Adds Tube Corp (Chicago) 1655 East 122nd Street Chicago, Illinois, USA 60833 Tel 773-646-4500 Fez 773-646-6128

Ref.B/L: 80760120 Date: 04 11 2017 Customer: 763

MATERIAL TEST REPORT

Shipped to

Material: 1 Ox1 Ox1	25x24'0'0(10x	10)RAL	M	itarial No	: 100101	25					n: USA In: USA		
Sales order: 1143	70		Pi	irchase (Order: 22	474 DEC	216 CHIC						
Heat No	Mn	P 8	SI	Al	Cu	СВ	Mo	i Ni	Cr	V	n	В	N
C80267 0 1	70 0.530	0 008 0 0	02 0.020	0 028	0.150	0 000	Q 020	0.080	0 090	0 001	0.001	0 000 0	010
Bundio No - PC:	Yield	Tensile	Ein.27n			C	ortificatio	Madici			CE: 0.30		
M608227640 100	080920 Pr	089770 (23 %			Ā	STM ASC	0-13 GRAI	DE BAC				M
Matorial Note: Sales Or Note:													
Material: 7 0x3 0x2	50x40*0*0(8x1)	РВ	Mi	teria! No	; 700302	250			(n: USA in: USA	N	J.XII
Bales order: 1171	37		Pu	rchase C	Irder: 25	205-MC	CHIC						
loat No.	Mn	P	SI .	Ai	Cu	Cb	Mo	Ni	Cr	٧	11	В	N
V1174 01	0 670	0.010 0.0	08 0 020	0 029	0.140	0 009	0.010	. 0 050	-0.060	0.002	0 002	0.000.0	009
Bundle No PC	Yield	Tonsile	Eln.2in			c	ertificatio	m in it			CE; 0,33		
4800E95845 8	062289 Ps	076423 F	al 29 %			A	STIM AGO	0-13 GRA	EBEC				
Asterial Note: Bales Or Note:					-Carabr Hothesh								
laterial: 10 0x8 0x	375x48'0'0(1x1)RAL	Me	teriel No	: 100080	375				Made h	n: USA		
ales order: 11438	DS		Pu	rchzse C	nder: 22	474 DEC	16 CHIC			Helted	in: Cana	đa	
sat No C	Mn	. Р 8	SI	A)	Cu	СЬ	Me	NI	Cr	. V .	π	8	N
544C4 0.20	0 770	0 011 0 00	5 0 020	0 033	0 010	0 000	0 000	0.010	0 010	0 000	0 OD1	0 000 0	000
undle No. PCs	Yleid	Tensile	Eln.2in			C	rtificatio	n			CE: 0.34		
900804953 1	066509 Ps	084311 P	sl 32 %			Ā	TM A50	13 GRAD	E B&C				00

Authorized by Quality Assurance:
The results reported on this report represent the actual attributes of the meterial furnished and indicate full compliance with all applicate specification and contract requirements.

Q S S E

Steel Tube

Page: 1 Of 9

Matrials Service Center Institute

O NORTH AMERICA

Tubular Rail (7 of 16)

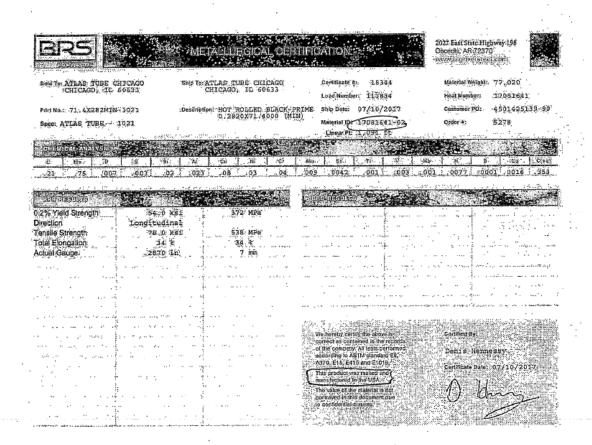
Atlas Tube Corporation 1855 East 122nd Street Chicago, Illinois, USA 60633 773-646-4500 Tel:

DDD A DIVISION OF ZEKELMAN INDUSTRIES

Ref.B/L: 80786547 Date: 10.11.2017 Customer: 2538

MATERIAL TEST REPORT

Sold to Shipped to Universal Industrial Sales Inc. PO Box 699 PLEASANT GROVE UT 84062 USA Universal Industrial Sales Inc. 435 North, 1200 West LINDON UT 84042 USA Material: 8,0x4.0x313x30'0"0(2x5)DUS Material No: 80040313 Made in: USA Melted in: USA Sales order: 1217347 Purchase Order: 19030 Domestic c P Heat No Mn s Si ΔI Cu Ch Ni Cr Τì В N 17081641 0.210 0.750 0.007 0.003 0.020 0.080 0.001 0.009 0.030 0.040 0.003 0.001 0.000 0.008 0.023 Bundle No PC_s Yield Tensile Eln.2in Certification CE: 0.36 M800735264 2 063480 Psi 079383 Pši 33 % ASTM A500-13 GRADE B&C Material Note: Sales Or. Note: Made in: USA Material: 8.0x4.0x313x31'0"0(1x2)DUS Material No: 80040313 Melted in: USA Sales order: 1217347 Purchase Order: 19030 Domestic c Ni Τi Heat No. Mn 2 Si ΔI Cu Ch Cr 17081641 0.210 0.750 0.007 0.003 0.020 0.023 0.080 0.001 0.009 0.030 0.040 0.003 0.001 800.0 000.0 Bundle No PCs Yield Tensile Eln.2in Certification CE: 0.36 M800735263 2 063480 Psi 079383 Psi 33 % ASTM A500-13 GRADE B&C Material Note: Sales Or.Note: Made in: USA Material: 8.0x4.0x313x32'0"0(1x2)DUS Material No: 80040313 Melted in: USA Purchase Order: 19030 Domestic Sales order: 1217347 Heat No C Mn P S Si Αľ Cu Cb Mi Cr Τi В 17081641 0.210 0.750 0.007 0.003 0.020 0.023 0.001 0.009 0.030 0.040 0.003 0.001 800.0 000.0 CF: 0.36 Bundle No PCs Yield Tensile Eln.2in Certification M800735262 063480 Psi 079383 Psi 33 % ASTM A500-13 GRADE B&C 2 Material Note: Sales Or Note:


Authorized by Quality Assurance:
The results reported on this remains repetitions and the second sec The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements.

Steel Tube

Page: 2 Of 5

Metals Service Center Institute

Tubular Rail (8 of 16)

Tubular Rail (9 of 16)

Atlas Tube Corporation 1855 East 122nd Street Chicago, Illinois, USA 60633 773-646-4500 Tel:

A DIVISION OF ZEKELMÁN INDUSTRIES

MATERIAL TEST REPORT

Shipped to Sold to Universal Industrial Sales Inc. PO Box 699 PLEASANT GROVE UT 84062 USA Universal Industrial Sales Inc. 435 North,1200 West LINDON UT 84042 USA Made in: USA Material No: 80040313 Material: 8.0x4.0x313x41'0"0(1x2)DUS Melted in: USA Purchase Order: 19030 Domestic Sales order: 1217347 Cr Τi Cu Cb С Μn Þ s Si Αį Heat No 800.0 000.0 0.030 0.040 0.003 0.001 0.750 0.007 0.003 0.020 0.023 0.080 0.001 0.009 17081641 0.210 Certification CE: 0.36 Tensile Eln.2in **Bundle No** ASTM A500-13 GRADE B&C 079383 Psi 33 % M800735256 2 063480 Psi Material Note: Sales Or.Note: Made in: USA Material: 8.0x4.0x313x48'0"0(1x2)DUS -Material No: 80040313 Melted in: USA Purchase Order: 19030 Domestic Sales order: 1217347 Cr Ti Ni Si Heat No c Mn 0.000 0.009 0.030 0,040 0.003 0.000 0.090 0.000 0.009 0.020 0.032 17068521 0.730 0.007 0.003 CE: 0.36 Certification Tensile Eln.2in Bundle No PCs Yield ASTM A500-13 GRADE B&C M800730364 064799 Psi 078802 Psi CHARPY Test Results
rbed Absorbed Avg
ty2 Energy3 FT-L
BS FT-LBS Shear Shear Avg Area2 Area3 % Avg FT-LBS Absorbed Test Ft_lbs Temp Direct ion Energy1 FT-LBS Energy2 FT-LBS 50 50 36 25 22 15 0F 10x5 mm L Material Note: Sales Or. Note: Made in: USA Material: 8.0x4.0x313x40'0"0(3x2)DUS Material No: 80040313 Melted in: USA Purchase Order: 19030 Domestic Sales order: 1217347 Ti Cb Mo Ni Cr C Si Heat No Mn 0.000 0.007 0.030 0.030 0.004 0.001 0.080 0.002 0.010 17081601 0.210 0.790 0.007 0.002 0.030 0.035 CE: 0.36 Tensile Ein.2in Certification PCs. Yield **Bundle No** 32 % ASTM A500-13 GRADE B&C 079221 Psi M800732280 065584 Psi Material Note: Sales Or.Note: Authorized by Quality Assurance:
The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements.

Steel Tube
D1.1 method.

Institute

Page: 4 Of 5

Metals Service Center institute

Tubular Rail (10 of 16)

arking:		Page 3		(252) 356-3700		
C Mn P	07(01/2017 B/L No.: 476434 Load No.: 48680 Typex 82240 Sold To: 0.6250" x 96.000" x 360.000" ASTM A36.14/ASTM A709 Grade 36.16a/ASME SA36 2013/2015 SI .15.25	RANGER 1226 NOR HOUSTOI	Our Order No.: 147673/2 STEEL SERVICES LP TH LOOP W STE 660 V, TX 77008	Cust. Order No.: 14093 Ship To: UNIVERSAL II C/O PIONEER UP TRACK 75 ACCOUNT OF SALES GENEVAUT 8	er No.: 14093 UNIVERSAL INDUSTRIAL SALES GO PIONEER PIPE & TUBE CORP TRACK 750 YARD 1 PIPE MILL ACCOUNT OF: UNIVERSAL INDUSTRIAL SALES GENEVA,UT 84058 (2)	L SALES IBE CORP IPPE MILL SAL INDUSTRIAL
C Mn P						
rial Pieces Tons Dir. 2 6.12 T T T 2 6.12 T 2 6.12 H-L	S Si Cu Ni 0.004 0.18 0.24 0.10	Cr Mo Al(tot) V Nb 0.08 0.02 0.030 0.005 0.001	Ti N	Ca B S	Sn Geq Pcm 0.009 0.37 0.2	0.26
2 6.12 T T T T T T T T T T T T T T T T T T T	(psi) (psi) Elongalion Elon Yield Tensile % in 2" %	Elongation % in 8"		-		
Pieces Torns Dir.	47,300 72,600 47,300 72,600	24.7				
17 Pieces Torns Dir. 2 6.12 H-L.	Absorbed Energy (Ft-lbs)	Charpy Impact Expansion (in.)		(%)		
2 6.12	(ft-lbs) (ft-lbs) (ft-lbs) (ft-lbs)	Min 1 2 3 Ave N	(in.) (%) (%) (%) (%) Mfin 1 2	(%) (%) Min 3 Ave	Temp Size (°F)	
FOR CONVERSION TO A2\$2 GRADE 2	115.4 103.8 118.0 112.4			x	dominion of the control of the contr	
Maintactured to fully killed fine grain practice by Electric Arc Furnace. Welding or weld repair was not performed on this malerial Mercury has not been used in the direct manufacturing of this malerial. Produced as continuous cast discrete plate as-rolled, unle otherwise reporting for Mexico altimates have Salesting Nuovoco and according to the Charlest Charlest and Manufactured in the Using Soft (2006 certified (#101040) by SRI Quality System Register (#10985-09). PED 9772 Melide and Manufactured in the Using Soft (2006) confired (#101040) by SRI Quality Assurance certificate. DNI 5004 3.0 14 17024 3. 162001, DNI H 17024 3. 162003 compilar. For ASS grades calv, Quality Assurance certificate.	by Electric Ato Furnace. Welding or weld repair was not performed on this material. Infacturing of this material. Produced as continuous cast discrete plate as-rolled, unless shipments nine. SalesMXR Monor.com. Singled. Ceq. of C+MRNF+(IC+MR-YI/R)+(ICu+Ni)/15). C7201+(MN-15)+(Y/10y-15 D1 7200+(MN-15)+(Y/10y-15 D1 7200-(MN-15)+(Y/10y-15) D2 7200-(MN-15)+(Y/10y-15) D3 7200-(MN-15)+(Y/10y-15) D4 7200-(MN-15)+(Y/10y-15) D4 7200-(MN-15)+(Y/10y-15) D5 7200-(MN-15)+(Y/10y-15) D5 7200-(MN-15)+(Y/10y-15) D6 7200-(MN-15)+(Y/10y-15) D7 7200-(MN-15)+(Y/10y	Manutactured to fully killed tine grain practice by Electric Airo Furnace. Welding or weld repair was not performed on this mailerial. We hereby oarfily that the direct manufacturing of this mailerial. Produced as continuous cast discrete plate as-rolled, unless operations performed by the produced as continuous cast discrete plate as-rolled, unless operations performed by the public of the public by the	We hereby certify that the contents of this report are accurate and correct. All test results and operations performed by the meterial manufacturer are in compliance with the applicable specifications, including customer specifications. The part of the part	contents of this report are accural to medical in manufacturer are in constituent specifications. 7 Manufacturer are in constituent are in constituent and a constituent are in constituent and a constituent are accounted in the constituent and a constituent are accounted in the constituent are accounted in the constituent and a constituent are accounted in the	accurate and correct. are in compliance with for the compliance with and compliance with and constant in the correct.	All fest results and the applicable 7/5/2017 9:50:48 AM

California Department of Transportation Report No. FHWA/CA22-3033 FINAL 8/4/2022

Tubular Rail (11 of 16)

ZCU PLATE WILL	ZCOD PLATE WILL		Winton, NC 27 (252) 356-3700	Winton, NC 27966 (252) 356-3700	ış.			MIII lest Report Page 2	Page 2	6 2 e	5	_			(252) 356-3700	(252) 356-3700		It's Our Nature.	It's Oper.	Zanne.
Issuing Date : Vehicle No:	: 01/11/2017 TTPX 806589	17		B/L No.	lo. : 461339			Load No	Load No. : 469707 Sold To:	RANGE	Our Or R STEEL	Our Order No.: 143232/1 RANGER STEEL SERVICES LP	143232/1 SS LP		Cust. Ship To:	Ord	.: 13906 ERSAL IN	er No. : 13906 UNIVERSAL INDUSTRIAL SALES	LSALES	
Specification:	,	× 72.	000"×	ASTM A36-14/ASTM A709 Gn	ade 36-1	6a/ASME	: SA36 2(0.3750" x 72.000" x 480.000" ASTM A36-14/ASTM A709 Grade 36-16a/ASME SA36 2013/2015 SI .1525 15592	1.15-25	1225 N HOUST	1225 NORTH LOOP V	1225 NORTH LOOP W STE 650 HOUSTON,TX 77008	650			C/O PIC UP TRA ACCOL SALES GENEV	CIO PIONEER PIPE & UP TRACK 750 YARD ACCOUNT OF: UNIVE SALES GENEVA,UT 84058 (2)	CIO PIONEER PIPE & TUBE CORP UP TRACK 750 YARD 1 PIPE MILL ACCOUNT OF: UNIVERSAL INDUSTRIAL SALES GENEVA,UT 84058 (2)	BE CORF	STRIAL
Heat No	G Mn	•		S	no Cm	Z	ö	Mo	Al(tot)	>	g.	F	z	S	8	Sn	Ced	Pcm		
7500081	0.17 0.84	0.009		0.005 0.	0.17 0.	0.23 0.	0.10 0.	0.09 0.03	3 0.037	0.005	0.001	0.002		0.0030	0.0001	0.009	0.36	0.24		
Plate Serial	Pieces	Tons	Tensile Test	est (psi)	(isd)	ı		ongation		(sql-tu)	(%)	(fi-lbs)	(%)	Charp (fl-lbs)	Charpy Impacts (I-lbs) (%)		(%)		Temp	ų.
No			ij	Yield	TENSILE	E %11.2°	- 1	% in 8.	Dir.	-		2	shear	9		Ave.	shear	Size	(£)	Ave.
7500081-02	S	9.18	⊢ ⊢ ~~	47,400 48,700	74,100			20.9	포포	75.9		78.4		85.3		78.3 78.0		10mm 7.5mm	40	25
7500081-03	9	9.18	⊢ ⊢	47,400 48,700	74,100			20.9	포포	75.9 73.0		78.4		80.5 85.3		78.3 78.0		10mm 7.5mm	40	25 25
7500081-05	б	5.51	⊢ ⊢	47,400 48,700	74,100 73,700			20.9	로로	75.9		78.4		85.3		78.3 78.0		10mm 7.5mm	9 4	25
7500081-06	9	9.18		47,400 48,700	74,100 73,700			20.9	로로	75.9 73.0		78.4		85.3		78.3 78.0		10mm 7.5mm	40	25
7500081-07	5	9.18	⊢ ⊢ ~	47,400 48,700	74,100 73,700			20.9	포포.	75.9 73.0		78.4		85.3		78.3 78.0		10mm 7.5mm	4 4	25
7500081-08	S.	9.18	⊢ ⊢	47,400 48,700	74,100 73,700			20.9	로로	75.9 73.0		78.4		80.5 85.3		78.3 78.0		10mm 7.5mm	94	25
FOR CONVERS	FOR CONVERSION TO A252 GRADE	DE 2																		
Manufactured to Mercury has not otherwise noted Yield by 0.5EUL Pcm = C+(Si330	Manufactured to fully killed fine grain practice by Electric Arc Furnaca. Welding or weld repair was not performed on this material. Mercury has not been used in the direct manufacturing of this material. Produced as confinuous cast discrete plate as-folled, unless operations performed by otherwise noted in Specification. For Mexico shipments into-SaleskIX@Nucor.com Vield by 0.EEUL method unless otherwise specified. Ceq = C-4(Mari6)+((Cr+Mo+V/JS)+((Cu+Mo+V/JS)+((Cu+Mo+V/JS)+(Mo+M)/TS) Porn = C+(SZOB)+(MarZOB)+(CuZOB)+(RAVISOB)+(CAPID)+(MoYIS)+((Cr+Mo+V/JS)+((Cu+M)/TS)	in praining	ctice by nanufaci dco ship specifie	Electric Arc uring of this ments: nhc ed. Ceq = C	Arc Furnace. Welding or weld repair was r liths material. Produced as confinuous case the SaleskiX @Nucor.com = C-{Man(S)+((Co+Nl)/15) S)+((NO+Nl)/16)+((Co+Nl)/15)	Welding or Produced a gNucor.coi (Cr+Mo+V)	weld repa as continu m)/5)+((Cu+	Arc Furnace. Welding or weld repair was not performed on this material. This material. Produced as confinuous cast discrete plate as-rolled, unless the SalestAX@Nucor.com = C-4(MenSyl-(Gr+Mo+VyIS)+((Cr+Mo+VYS)+((Cr+Mo+VS)+((Cr+Mo+VYS)+((Cr+Mo+VS)+((Cr+Mo+VS)+((Cr+Mo+VS)+((Cr+Mo+VS)+	rformed on I rete plate as	his mater rolled, ur	al. less	We her operation specific	eby certify ons perforn ations, incl	that the co ned by the uding cust	We hereby certify that the contents of this report operations performed by the material manufacture specifications, including customer specifications.	I this report are I manufacturer eclications.	are in comp	We hereby certify that the contents of this report are accurate and correct. All feet results and operations performed by the material manufacturer are in compliance with the applicable specifications, including customer specifications.	All test resu the applicat	est results and applicable

182

Tubular Rail (12 of 16)

NI 1000	3		Mill Certifica	fion		MT	R#: E1-13743
NUCOR COLD FIL	VISH WISCONSIN	, INC.	7/17/2017	ALOH		OAK CF	R#: E1-13743 7200 S 8ih S REEK, WI 5315 (414) 784-022 (414) 764-207
						Fax:	(414) 764-207
Sold To: EARLE M	JORGENSEN CO CHELL BLVD 900 BURG, IL 60194 2346 891-2203		Ship To	: EARLE M JORG	ENSEN CO		
PO BOX 1 SCHAUME	900 BURG, IL 60194			EARLE M JORG 1900 MITCHELL SCHAUMBURG (847) 301-6118 Fax: (847) 891-2	, IL 60194		
(847) 301- Fax: (847)	2346 891-2203			Fax: (847).891-2	2203 L A	1 00	Q
					سك	.6098	0
Customer P.O.	P810408-423				Sales Order	646966.1	
Product Group	Cold Finish Bar				Part Number		
Grade Size	1018 ASTM A108 -				Lot#	E1181153	
Product	Square 1,3750 (.0030 SQ 1,3750" 1018 12-				Heat #C	NF100886630 E1-237930	
Description	CF Grade 1018	1105			Load Number	E1-137438	
Customer Spec	C1018				Customer Part #	50233B	
	al described herein has been a		ce with the specifications ar	nd standards listed above	and that it satisfies those i	rėguiraments.	
Part Detail: SQ 1.3750* Process; Cold Drawn	1018 12-R Cold Drawn	n					
Melt Date: 5/5/2017							
C Mn	P S		Cu C			§n V	Cb
0.18% 0.82%	0.013% 0.02	3% 0.29%	0.31% 0.1	5% 0.16%	0.040% 0.0	17% 0.0030%	0.002%
Al Pb 0.000% 0.000%							
Melting Mill: Nucor Bar	NE	Country	of Melting: USA		'Grain Pro	aptice: COARSE	
Melting Mill: Nucor Bar	NE	Country	of Melting: USA	-	Grain Pro	actice: COARSE	
Reduction Ratio 21,2 :1	s;	Country	of Rolling: USA			aptice: COARSE	
Reduction Ratio 21,2 :1	s;	Country	of Rolling; USA		Relling M		
Reduction Ratio 21.2 :1 Specification Comment 1. All products produce 2. Mercury, in any form	s;	Country	of Rolling; USA	Shul	Relling M		
Reduction Ratio 21.2 :1 Specification Comment 1. All products produce 2. Mercury, in any form	s;	Country	of Rolling; USA	. Shul	Relling M		
Reduction Ratio 21.2:1 Specification Comment 1. All products produce 2. Mercury, in any form	s;	Country	of Rolling: USA	. Shul	Relling M		5 of 8
Reduction Ratio 21.2 :1 Specification Comment 1. All products produce 2. Mercury, in any form	s: d are wold free. . has not been used in	Country	of Rolling: USA	. Shuli	Relling M	ill: Nucor Bar NE	5 of 8
Reduction Ratio 21.2:1 Specification Comment 1. All products produce 2. Mercury, in any form,	s: d are wold free. . has not been used in	Country	of Rolling: USA	. Shuli	Relling M	ill: Nucor Bar NE	5 of 8
Reduction Ratio 21.2:1 Specification Comment 1. All products produce 2. Mercury, in any form,	s: d are wold free. . has not been used in	Country	of Rolling: USA	. Shuli	Relling M	ill: Nucor Bar NE	5 of 8
Reduction Ratio 21.2:1 Specification Comment 1. All products produce 2. Mercury, in any form,	s: d are wold free. . has not been used in	Country	of Rolling: USA	. Shuli	Relling M	ill: Nucor Bar NE	5 of 8
Reduction Ratio 21.2:1 Specification Comment 1. All products produce 2. Mercury, in any form,	s: d are wold free. . has not been used in	Country	of Rolling: USA	. Shuli	Relling M	ill: Nucor Bar NE	5 of 8
Reduction Ratio 21.2:1 Specification Comment 1. All products produce 2. Mercury, in any form,	s: d are wold free. . has not been used in	Country	of Rolling: USA	. Shuli	Relling M	ill: Nucor Bar NE	5 of 8
Reduction Ratio 21.2:1 Specification Comment 1. All products produce 2. Mercury, in any form,	s: d are wold free. . has not been used in	Country	of Rolling: USA	. Shuli	Relling M	ill: Nucor Bar NE	5 of 8
Reduction Ratio 21.2:1 Specification Comment 1. All products produce 2. Mercury, in any form,	s: d are wold free. . has not been used in	Country	of Rolling: USA	. Shuli	Relling M	ill: Nucor Bar NE	5 of 8
Reduction Ratio 21.2:1 Specification Comment 1. All products produce 2. Mercury, in any form,	s: d are wold free. . has not been used in	Country	of Rolling: USA	shultz Manager	Relling M	ill: Nucor Bar NE	5 of 8
Reduction Ratio 21.2:1 Specification Comment 1. All products produce 2. Mercury, in any form,	s: d are wold free. . has not been used in	Country	of Rolling: USA	shultz Manager	Rolling M	ill: Nucor Bar NE	5 of 8
Reduction Ratio 21.2:1 Specification Comment 1. All products produce 2. Mercury, in any form,	s: d are wold free. . has not been used in	Country	of Rolling: USA	shultz Manager	Rolling M	ill: Nucor Bar NE	5 of 8
Reduction Ratio 21.2:1 Specification Comment 1. All products produce 2. Mercury, in any form,	s: d are wold free. . has not been used in	the production or te	of Rolling: USA is asting of this material Nick So Sales M	Sululi hultz fanager	Rolling M	Page	
Reduction Ratio 21.2:1 Specification Comment 1. All products produce 2. Mercury, in any form,	s: d are wold free. . has not been used in	the production or te	of Rolling: USA	Sululi hultz fanager	Rolling M	Page	
•	s: d are wold free. . has not been used in	the production or te	of Rolling: USA is asting of this material Nick So Sales M	Sululi hultz fanager	Rolling M	Page	

Tubular Rail (13 of 16)

n s	RIAL		Min Ave.	25 25 25	255 255 255 3nd 3nd 368:55 PM
I D III I S Our Name.	GENO.: 13886 UNIVERSAL INDUSTRIAL SALES UNIVERSAL INDUSTRIAL SALES (CO PIONEER PIPE & TUBE CORP UP TRACK 750 YARD 1 PIPE MILL ACCOUNT OF: UNIVERSAL INDUSTRIAL SALES GENEVA,UT 84058 (2)		Temp (*F)	444	78.7 97.7 109.5 10mm 40 25 78.1 Para 43 Compliant
4	BENO.: 13886 UNIVERSAL INDUSTRIAL SALES CIO PIONEER PIPE & TUBE CORP UP TRACK 750 YARD 1 PIPE MILL ACCOUNT OF: UNIVERSAL INDUS SALES GENEVA,UT 84068 (2)	Pcm	0.25 Size	10mm 10mm 10mm	10mm 10mm 10mm 10mm 10mm 10mm
Z	er No.: 13886 UNIVERSAL INDUSTR CO PIONEER PIPE & UP TRACK 750 YARD ACCOUNT OF: UNIVE SALES GENEVA,UT 84058 (2)	Ceq	0.37 (%)		8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
ver Rd 27922 6-3700	Cust. Order No.: 13886 ip To: UNIVERSAL IN C/O PIONEER UP TRACK 75 ACCOUNT OF SALES GENEVA,UT 8	Sn	0.010 (fi-lbs) Ave.	86.5 107.1 66.8	86.5 107.1 66.8 to Office report are accurate specifications.
1505 River Rd Coffeld, NC 27922 (252) 356-3700	Cust. O Ship To:	m	Charpy Impacts (ft-lbs) (%)		onts of this defined man
ŏ		Ca	Charpy (ff-lbs)	97.7 109.5 54.8	79.7 97.7 87.7 109.5 107.6 78.1 64.8 66.8 66.8 66.8 66.8 66.8 66.8 66.8
	42923/2 5 LP 650	z	(%) Shear		by certify the second control of the second
	Our Order No. : 142923/2 RANGER STEEL SERVICES LP 1225 NORTH LOOP W STE 650 HOUSTON,TX 77008	F	0.003 (ft-lbs)	79.7 107.6 78.1	79.7 107.6 78.1 We here operation specifical specifical mass 1. Par
port	Our Ord STEEL S RTH LOO N,TX 770	S.	0.001 (%)		ss syec 772 A
Re	RANGER 1225 NOI HOUSTO	>	0.005 (fl-fbs)	82.2 104.2 67.6	82.2 104.2 67.6 67.6 is material
est R	F	Al(tot)	0.029	로로로	H-L H-L H-L H-L H-L H-L H-L H-L H-L H-L
Mill Test Report	Load No.: 470871 Sold To: 3/2015 SI.15.25	Мо	0.09 0.02 Elongation %, in 8"	22.9	22.9 20.8 as not period cast discret (15)
2	1 A36 2013	ŏ		1	ald repair w confinuous)+((Cu+Ni)
	/ASME S	Z	Elongation	1	elding or we solution; on we selling or we solution; com r+Mo+V///5
	462570 de 36-16a	22	(psi)	72,500	72,500 22.9 H-L 104.2 71,800 20.8 H-L 104.2 H-L 104.2 H-L 67.6 Fundace. Welding or weld repair was not performed on this material. manaerial you'coutced as confinuous cast discrete plate as-rolled, unless salestat/@Nucor.com 7(10)4-6([CH-Mo-V/J6]+((Cu-Mo-V/J6)+((U-Mo-V/J6)+((U-Mo-V/J6)+((U-Mo-V/J6)+(U-Mo-V/J6)+((U-Mo-V/J6)+(U-
P.O.Box 279 Winton, NC 27986 (252) 356-3700	B/L No. : 80.000" A709 Gra	SS	(pst)	100	45,500 46,500 46,500 fectific Arc F fing of this s find of this s find of this s find of this s
P.O.Box 279 Winton, NC 27/ (252) 356-3700	01/27/2017 B/L No. : 462570 Load No. : 4708 NOKL 725080 Sold To: 07/500" × 96.000" × 480.000" ASTM A36-14/ASTM A709 Grade 36-16a/ASME SA36 2013/2015 SI .1525		0.009 0.000 Tensile Test		.80 T T T T See T See T S S S S S S S S S S S S S S S S S S S
Œ	01/27/2017 NOKL 725080 0.7500" x 96.0 ASTM A36-14,	11	<u></u>	4 19.60	2 9.8 2 GRADE 2 2 GRADE 2 1 on the drawn prints are of the drawn prints are of the drawn prints are of the drawn are of the d
0 77	\	-	0.18 0.3 Pieces		ON TO A25 Luly killed it is been contined in seen contined unlie (MAZO)+(Cicktred in sectived in sections of in sections of instance in s
ALCOA PLATE MILL	Issuing Date : Vehicle No: Specification: Marking :		7500553 Plate Serial	7500553-04	7500553-05 2 9.80 T 45,600 72,500 2 9.8 H-L 104.2 107.6 109. H-L 104.2 107.6 109. 107.6 109. H-L 104.2 107.6 109. 107.6 109. H-L 104.2 107.6 109. H-L 104.2 107.6 109. H-L 104.2 107.6 109. T 46,500 77,900 77,900 20.8 H-L 104.2 107.6 109. T 46,500 77,9

Tubular Rail (14 of 16)

		524.000 / 60.000 Weight (kg/lb) 19436 / 42849 4.775 / 0.188 ASTM A1018-50-15, For Conv. to ASTM A572-50-15, ASTM STM A656-5013 Jun 18 2017 4:23PM		B V Nb Ti Ca Pb 0.0000 0.001 0.018 0.001 0.002 0.000		% Elongation in 2 inches	55.276	agraph. Compared describition. North Star Blue Scope Steel LLC fore must law the widthin approval of North Star Blue Scope Steel. LLC and exposed to Mercuny or any alloy which is liquid at ambient blishered through lest equipment calibration certificates which are hyd data is available upon request. Date Issued: Jun 20, 2017 16:32:01 Revision#: 01	
Certified Test Report		381263 Ord Width (mm/in) 1524.000 / 60.000 Ord Gauge (mm/in) 4.775 / 0.188 Material Description ASTM A1018-50-15, Fo A709-15, SAE J1442.ASTM A656-50-13 Production Date/Time Jun 18 2017 4:23PM	Heat Chemical Analysis (wt%)	Al Cu Cr Ni Mo Sn N 0.02 0.11 0.06 0.08 0.01 0.00 0.008 0	Mechanical Test Report	Tensile Strength	/U,080 psi	annual are represented to contained in the records of the first of the material description. North Star BlueScope Steel LLC in the material description are represented to comply with the report and is inhabited to comply with the records of the material description. Any more final material description are confidential in the records of the centifications are material description for the serious serious and the serious of the serious of the serious of the serious ser	
	NORTH STAR BLUESCOPE STEEL LLC 6767 County Road 9 Della, Ohio 43515 Telephone: (888) 822-2112	Customer: Universal Roll Forming, Inc. Order # Pleasant Grove, UT 84062 Line Item # Customer P.O.: 16884 Heat # Cust. Ref/Part # n/a Coll #		Type C Mn P S Si Heat 0.05 0.57 0.013 0.002 0.02		ķ	Iail 60,080 psi	aginoceas AS In Extra Value Lat. A SIN IN A VOI 14, AS IN A VOI 14 as a ginnoceas AS In Extra Voi 14, AS IN A VOI 14, AS IN A VOI 14 as the results are representative of those contained in the records of North Star BlueSes is not responsed for the installing of this material to meet appearing any processing or while in North Star BlueScope Steel LLC pross exhalps upon request. Uncertainty calculations are calculated in accordance while in North Star BlueScope Steel LLC pross exhalps upon request. Uncertainty calculations are calculated in accordance with the Mitchell in accordance with the content of the Content o	

Tubular Rail (15 of 16)

Certified Test Report	STAR BLUESCOPE STEEL LLC Road 9 13515 13516	Heat Chemical Analysis (wt%)	C Mn P S Si Al Cu Cr Ni Mo Sn N B V Nb Ti Ca 0.05 0.05 0.016 0.002 0.002 0.002 0.002 0.002 0.000 0.000 0.001	Yield Strength Tensile Strength % Elongation in 2 inches Tail 59,080 psi 69,930 psi	This product was manufactured, method, cost, and holocrilled (min. 3'1 reduction rates), entropy within the U.S.A at North Star Bue-Scope Steel LLC, Delta, Orlo. This material was not exposed to Mencey or any alloy which is liquid at amb temperature during processing or while in North Star Bue-Scope Steel LLC possession. Test equipment calibration certificates are available upon request. Mist taceability is established through test equipment calibration certificates with visit attendance are calculated in accordance with NIST standands and are maintained at a 4.1 ratio in accordance with NIST standands. Uncertainty data is available upon request. Tim Mitchell Revision#: Date Issued: Jun 20, 2017 16:31:48 Revision#: 01	
	NORTH STAR BLUE 6767 County Road 9 Delta, Ohio 43515 Telephone: (888) 822-2112 Customer: Universal Rc Pleasant Grove, UT 84062 Customer P.O.: 16884 Cust. Ref/Part # n/a		H		Titis product was manufactured, ment temperature during processing or with overliche upon request. Uncertainly Tim Mitchell	

Tubular Rail (16 of 16)

03Feb17 21: 4 TEST CERTIFICATE No: MAR 533589 P/O No 15490 INDEPENDENCE TUBE CORPORATION 6226 W. 74TH STREET Rel
CHICAGO, IL 60638 S/O No MAR 321398-001
Tel: 708-496-0380 Fax: 708-563-1950 B/L No MAR 187457-007 Shp 03Feb17 Inv No Inv Sold To: (2106) UIS, INC Ship To: (3) UNIVERSAL INDUSTRIBS SALES, INC PO BOX 699 C/O PIONEER STEEL & TUBE UP AREA 068 YARD 01 TRACK 750 PLEASANT GROVE, UT 84062 PIPE MILL, UT 84058 Tel: 801-785-0505 Fax: 801 785-1710 CERTIFICATE of ANALYSIS and TESTS - Cert. No. MAR 533589 Part No TUBING A500 GRADE B(C) 2-1/2" X 1-1/2" X 3/16" X 40' Wat Pcs 691 4 Tag No 642468 Wat Pcs Heat_Number T22765 691 YLD=67320/TEN=82750/ELG=25 *** Chemical Analysis *** Heat Number C=0.2000 Mn=0.8000 P=0.0070 S=0.0090 Si=0.0130 Al=0.0520 Cu=0.0200 Cr=0.0300 Mo=0.0070 V=0.0010 Ni=0.0100 Nb=0.0010 Cb=0.0010 Sn=0.0010 N=0.0060 B=0.0001 Ti=0.0010 Mb=0.0010 MELTED AND MANUFACTURED IN THE USA T22765 WE PROUDLY MANUFACTURE ALL OUR PRODUCT IN THE USA. INDEPENDENCE TUBE PRODUCT IS MANUFACTURED, TESTED, AND INSPECTED IN ACCORDANCE WITH ASTM STANDARDS.
MATERIAL IDENTIFIED AS A500 GRADE B(C) MEETS BOTH ASTM A500 GRADE B AND A500 GRADE C SPECIFICATIONS. CURRENT STANDARDS: A252-10 wheels I am a community a six of south a salary a s A500/A500M-13--A513-13 ASTM A53/A53M-12 | ASME SA-53/SA-53M-13 A847/A847M-14 A1085/A1085M-15

Page: 1 Last

Hand Rail (1 of 3)

1000 BURLINGTON STREET, NORTH KANSAS CITY, MO 64116 1-816-474-5210 TOLL FREE 1-800-892-TUBE

STEEL VENTURES, LLC dba EXLTUBE

Certified Test Report

Customer:	Size:	Customer Order No:	Date:
Universal Industrial Sales, Inc. 435 N 1200 West LINDON UT 84042-1126	02.00X02.00	18555	07/31/2017
	Gauge: 3/16	Delivery No:82998554 Load No:3913002	
	Specification: ASTM A500-13 Gr.	3/C	

Heat No	Yield	. Tensile	Elongation
	KSI	KSI	% 2 inch
B707585	60.1	69.9	23.50

Heat No	C	MN	P	S	SI	CU	N	CR	MO	V
B707585	0.0600	0.7500	0.0110	0.0020	0.0200	0.0900	0.0300	0.0500	0.0100	0.0040

This material was melted & manufactured in the U.S.A.
Coil Producing Mill: STEEL DYNAMICS COLUMBUS, COLUMBUS, MS

We hereby certify that all test results shown in this report are correct as contained in the records of our company. All testing and manufacturing is in accordance to A.S.T.M. parameters encompassed within the scope of the specifications denoted in the specification and grade tiles above. This product was manufactured in accordance with your purchase order requirements.

This material has not come into direct contact with mercury, any of its compounds, or any mercury bearing devices during our manufacturing process, testing, or inspections.

This material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

Tensile test completed using test specimen with 3/4" reduced area.

STEEL VENTURES, LLC dba EXLTUBE

Jonathan Wolfe Quality Assurance Manager

Order Number:

Columbus, MS 39701 Phone: 662-245-4200 1945 Airport Road Fax: 662-245-4297

Metallurgical Certification

LLC DBA EXLTUBE Ship To: STEEL VENTURES LLC, DBA EXI 56505-1688 KANSAS CITY, MO 64116 MANHATTAN, KS 66505-1688 Sold To: STEEL VENTURES 353083 0.1690X61.5000 (in) (MIN) EXL-2 Order Dimensions: Ordered Product:

Ship Date: 05/29/2017

.oad #: S721892

Customer PO #: 4500287723-10 PRIME HOT ROLLED BAND / PRIME 7416961500F2 Part Number: Alt Part#:

0022 Ca Sn $\ddot{\circ}$ ŝ Mn Weight: 57 B707585 Chemical Analysis: Coil Number: 17B762617

310 MPa 438 MPa m m 4.39 44.9 ksi 63.6 ksi Reported Not Reported Longitudinal 1,554 ft. 34 % Mechanical Properties: Hardness - HRBW Tensile Strength Linear Footage Yield Strength Actual Gauge Elongation Direction

Hot Mill Metallurgical Engineer Keegan Wrigl Certificate Date: Certified by:

05/29/2017

THIS PRODUCT WAS MELIED AND MANUFACTURED IN THE USA

We hereby certify the above is correct as contained in the records of the company. All tests performed according to ASTM standard E8, A370, E18, E415, E1019, E646, E517 and E23 (yield strength determined using 0.2% offset method) or JIS

Z2241 or DIN EN10325. All heats are Al-killed and Ca treated.

Handrail (3 of 3)

11Jul17 23:42	TEST CER	TIFICATE	No: MAR 591170
INDEPENDENCE TUBE 6226 W. 74TH STREE CHICAGO, IL 60638 Tel: 708-496-0380	T ·	P/O No 17323 Rel S/O No MAR 331342 B/L No MAR 192834 Inv No	-002 -001 Shp 11Jul17 .Inv
Sold To: (2106 UIS, INC PO BOX 699 PLEASANT GROVE, UI		Ship To: (3) UNIVERSAL INDUSTR C/O PIONEER STEEL UP AREA 068 YARD PIPE MILL, UT 84	TES SALES THE
Tel: 801-785-0505			
CERTIFI Part No	CATE of ANALYSIS a	nd TESTS Ce	rt. No: MAR 591170 11Jul17
TUBING A500 GRADE B(C) 3" X 2" X 3/16" X 40'		•	Pcs Wgt 100 22,360
Heat Number Tag No 137173		T.C30 E	Pcs Wgt 25 5,590
811V11360 137174 811V11360 137175 811V11360 137176			25 5,590 25 5,590 25 5,590
Cu=0.02 N=0.005	0 Mn=0.8100 P=0.01	20 S=0.0040 Si=0.009 0070 V=0.0010 Ni=0.0 20	
WE PROUDLY MANUFACTURE INDEPENDENCE TUBE PRODU AND INSPECTED IN ACCORD MATERIAL IDENTIFIED AS ASTM A500 GRADE B AND A	CT IS MANUFACTURED ANCE WITH ASTM STA A500 GRADE B(C)/ME	THE USA. , TESTED, NDARDS. ETS BOTH	
CURRENT STANDARDS: A252-10 A500/A500M-13 A513-13 ASTM A53/A53M-12 ASME A847/A847M-14 A1085/A1085M-15			

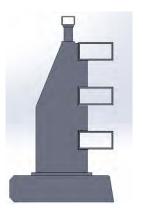
Page: 1 Last

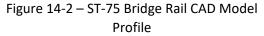
13. References

- 1. *Manual for Assessing Safety Hardware, Second Edition 2016 (MASH 2016)*. American Association of State Highway and Transportation Officials. Washington, DC. 2016.
- John Jewell. VEHICULAR CRASH TESTS OF THE CALIFORNIA ST-20 BRIDGE RAIL. California Department of Transportation. Sacramento. 2004.
- 3. *Vehicle Damage Scale for Traffic Crash Investigators.* Texas Department of Public Safety. Austin. 2006.
- 4. Collision Deformation Classification SAE Recommended Practice J224 MAR80. Society of Automotive Engineers. New York, NY. 1980
- 5. Test Risk Assessment Program. Texas Transportation Institute. Austin. 2014.
- Recommended Procedures for the Safety Performance Evaluation of Highway Features,
 Transportation Research Board, National Cooperative Highway Research Program Report 350,
 1993.

14. Appendix E: Finite Element Modeling Report

14.1. Objective


Finite element (FE) analyses were performed using Livermore Software Technology Corporation's (LSTC) LS-Dyna, which is a commercial finite element program commonly used for crash testing simulations which can provide an idea of how a real-world test article may perform during crash testing. The purpose of the modeling was to build a finite element model of the ST-75 bridge rail, run the crash test simulations, and compare the results of the simulations with that of their real-world crash tests.


14.2. ST-75 Bridge Rail Model

The ST-75 Bridge Rail is a MASH Test Level 4 Bridge Rail. The height of the barrier is 1067 mm (42 in) which includes a 152 mm (6 in) pedestrian hand/bicycle rail at the top. The profile of the barrier consists of three 203 mm x 102 mm (8 in x 4 in) steel rail tubes and a 152 mm (6 in) reinforced concrete curb. The steel tubes are spaced evenly over 762 mm (30 in) and steel posts are spaced 3 m (10 ft) apart. The test article and finite element model are both 30.5 m (100 ft) long. A finite element model was developed that consisted of a fully constrained shell model of the three 203 mm x 102 mm (8 in x 4 in) steel rail tubes and the 152 mm (6 in) curb. Fully constrained means that all the nodes that make up the mesh in the model are constrained so that they cannot translate or rotate in any direction or axis. The model used didn't include the pedestrian hand/bicycle rail as it wasn't considered a structural component of the design at the time. However, including it in future simulations may provide information on 2270P hood snag potential and interaction of the 10000S front fender and cargo box.

Figure 14-1 ST-75 Bridge Rail CAD Model Front

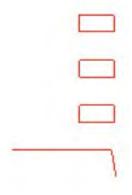


Figure 14-3 – ST-75 Bridge Rail FE Shell Model Profile

Figure 14-4 – Typical Section and Dimension for the ST-75 Bridge Rail

14.3. Vehicle Models

The pickup truck and the small car models were provided by the Center for Collision Safety and Analysis (CCSA) Finite Element Models webpage, https://www.ccsa.gmu.edu/models/. This section describes which models were used and how they were modified.

14.3.1, 2270P Truck

The truck model used for MASH 2270P truck test simulations was the 2270-kg 2007 Chevy Silverado coarse version 3a that was posted December 2016. The only change to the vehicle model was to increase the velocity of the vehicle model to match the required speed for MASH Test Level 4 Longitudinal Barriers. For the simulation, the 2270P truck impacted the test article at a speed of 100.0 kph (62.2 mph) and an angle of 25 degrees whereas in the real-world test the impact speed and angle were 102.0 kph (63.4 mph) and 26.3 degrees, respectively.

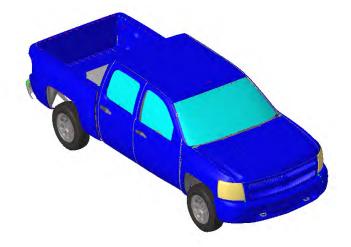


Figure 14-5 2270P Truck

14.3.2. 1100C Car

The car model used for MASH 1100C car test simulations was the 1100-kg 2010 Toyota Yaris coarse version 1l that was posted December 2016. The only change to the vehicle model was to increase the velocity of the vehicle model to match the required speed for MASH Test Level 4 Longitudinal Barriers. For the simulation, the 1100C truck impacted the test article at a speed of 100.0 kph (62.2 mph) and an angle of 25 degrees whereas in the real-world test the impact speed and angle were 102.1 kph (63.4 mph) and 25.0 degrees, respectively.

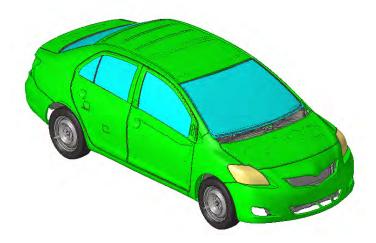


Figure 14-6 1100C Car

14.3.3. 10000S Single-Unit Van Truck

The single-unit van truck model used for MASH 10000S single-unit van truck test simulations was the Ford Single Unit Truck that was posted November 3, 2008 on the National Crash Analysis Center (NCAC) website. Unfortunately, the link to this model no longer exists on the NCAC website but the same model can be found on the National Highway Traffic Safety Administration (NHTSA) website at https://www.nhtsa.gov/crash-simulation-vehicle-models#crash-simulation-vehicle-models. The model is of a 1996 Ford 8,150 kg (18,000 lbs) van body truck which was designed to meet the properties of the NCHRP Report 350 8000S single-unit van truck. A MASH 10000S model is unavailable at the time this report was written. Therefore, the Ford Single Unit Truck was modified in the following ways. The shape of the ballast in the bed of the truck was changed so that the ballast's center of gravity was 1,600 mm (63 in) above the ground. The density of the ballast was increased so that the total mass of the truck was 10,000 kg (22,050 lbs). The wheelbase and overall length of the truck were not changed. Therefore, the wheelbase is short 750 mm (29.5 in) and the overall length is short 1,300 mm (51.2 in) of the properties given in MASH for a 10000S truck. The velocity of the vehicle model was increased to match the required speed for MASH Test level 4 test Longitudinal Barriers. For the simulation, the 10000S truck impacted the test article at a speed of 90.0 kph (55.9 mph) and an angle of 15 degrees whereas in the real-world test the impact speed and angle were 87.6 kph (54.4 mph) and of 15.3 degrees, respectively.



Figure 14-7 10000S Single-Unit Van Truck

14.4. Comparing Modeling Data to Real World Data

14.4.1. 2270P Truck

This section compares the results of test 110MASH4P18-02 and the results of the 2270P finite element model. Table 14-1 compares the center of gravity, mass, and wheel base between the 2018 Dodge Ram 1500 used in the crash test and the 2007 Chevrolet Silverado used in the finite element modeling. Section 14.4.2 compares the TRAP results and section 14.4.3 compares the impact sequence of test 110MASH4P18-02 to the FE simulation.

Table 14-1 Center of Gravity for 2270P Truck Test Vehicle and LS-Dyna Finite Element Model

	Vehicle Type	X*	γ**	Z	Mass	Wheel Base
Test 110MASH4P18-02	2018 Dodge Ram 1500	64.0"	-0.6"	29.4"	4964.5 lb	140.5"
		(1625 mm)	(-16 mm)	(748 mm)	(2251.9 kg)	(3569 mm)
2270P Vehicle Model		65.7"	0.0"	28.8"	5005.6 lb	144.0"
	2007 Chevrolet Silverado	(1670 mm)	(0.0 mm)	(731.5 mm)	(2270.5 kg)	(3660 mm)

^{*} Behind centerline of front tire

14.4.2. TRAP Data Comparison

Both the 2270P simulation and test 110MASH4P18-02 met the criteria provided in MASH for testing longitudinal barriers at Test Level 4. Most of the results were at or below the preferred range. When the data are compared to each other, the occupant impact velocities in the test were almost twice those in the simulation while the ridedown accelerations for the simulation were lower than those in the test. The maximum roll, pitch, and yaw angles in the test and the simulation were similar in maximum magnitude but the crash test values occur slightly later than in the simulations. Perhaps this is due to the barrier being modeled as fully restrained and unable to move (causing redirection to occur sooner) or the model vehicle being more rigid than the actual vehicle, or a combination thereof. Table 14-2 shows the results of the TRAP analysis and Figure 14-8 through Figure 14-18 are graphs of the TRAP analysis for test 110MASH4P18-02 and the finite element model.

^{**} Negative means CG is on the driver side of the vehicle's centerline

Table 14-2 TRAP Results Data Comparison for Full Scale and FE Models for 2270P Truck (Absolute Values)

	Test 110MASH4P18-02	LS-Dyna Truck Simulation	
MASH Criteria	2018 Dodge Ram 1500	2007 Chevrolet Silverado	
Preferred = 30 ft/s (9.1 m/s)	14.4 ft/s	5.9 ft/s	
Max = 40 ft/s (12.2 m/s)	(4.4 m/s)	(1.8 m/s)	
Preferred = 15.0 G	416	13.4 G	
Max = 20.49 G	4.10	13.40	
Preferred = 30 ft/s (9.1 m/s)	30.8 ft/s	15.7 ft/s	
Max = 40 ft/s (12.2 m/s)	(9.4 m/s)	(4.8 m/s)	
Preferred = 15.0 G	11.6	18.2 G	
Max = 20.49 G	11 G	18.2 G	
n/a	11.7 G	18.2	
n/a	2.29	1.98	
<75 Degrees	21.6 degrees	27.8 degrees	
<75 Degrees	2.1 degrees	7.6 degrees	
n/a	40.3 degrees	30.0 degrees	
	Max = 40 ft/s (12.2 m/s) Preferred = 15.0 G Max = 20.49 G Preferred = 30 ft/s (9.1 m/s) Max = 40 ft/s (12.2 m/s) Preferred = 15.0 G Max = 20.49 G n/a n/a <75 Degrees <75 Degrees	Preferred = 30 ft/s (9.1 m/s) Max = 40 ft/s (12.2 m/s) Preferred = 15.0 G Max = 20.49 G Preferred = 30 ft/s (9.1 m/s) Max = 40 ft/s (12.2 m/s) Preferred = 15.0 G Max = 40 ft/s (12.2 m/s) Preferred = 15.0 G Max = 20.49 G 11 G 11.7 G n/a 2.29 <75 Degrees 21.6 degrees <75 Degrees 2.1 degrees	

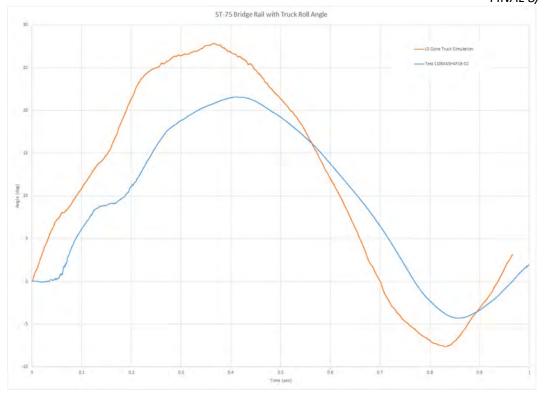


Figure 14-8 Graph of Roll Angles for Full Scale and FE Model TRAP Results for 2270P Truck

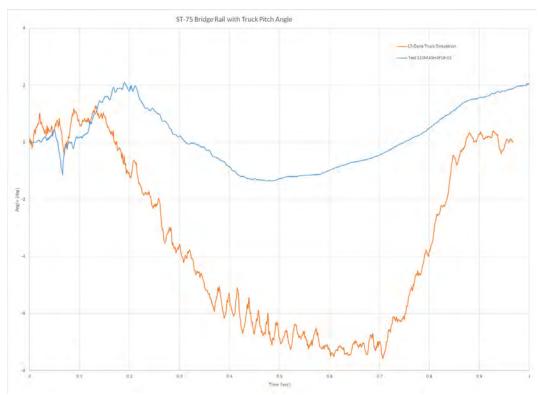


Figure 14-9 Graph of Pitch Angles for Full Scale and FE Model TRAP Results for 2270P Truck

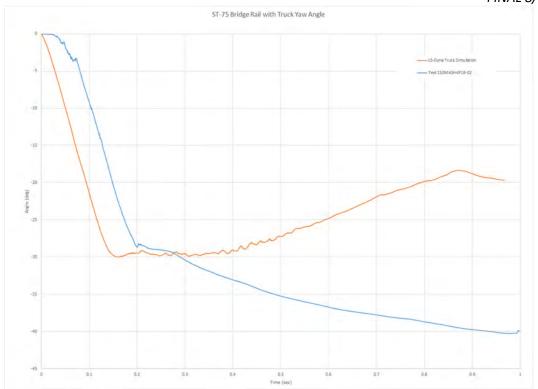


Figure 14-10 Graph of Yaw Angles for Full Scale and FE Model TRAP Results for 2270P Truck

Figure 14-11 Graph of Roll Rates for Full Scale and FE Model TRAP Results for 2270P Truck

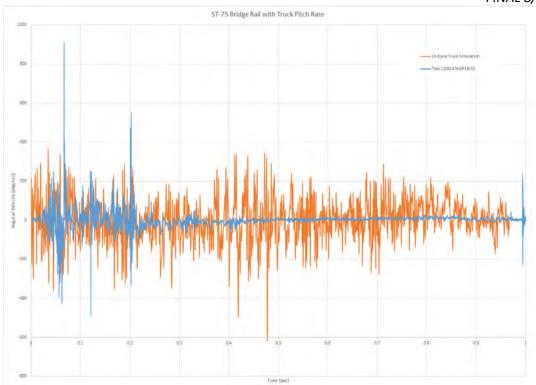


Figure 14-12 Graph of Pitch Rates for Full Scale and FE Model TRAP Results for 2270P Truck

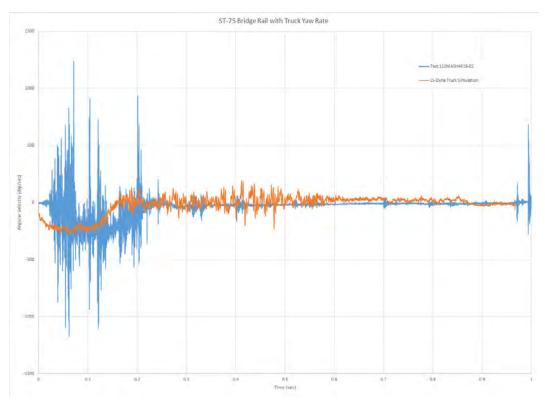


Figure 14-13 Graph of Yaw Rates for Full Scale and FE Model TRAP Results for 2270P Truck

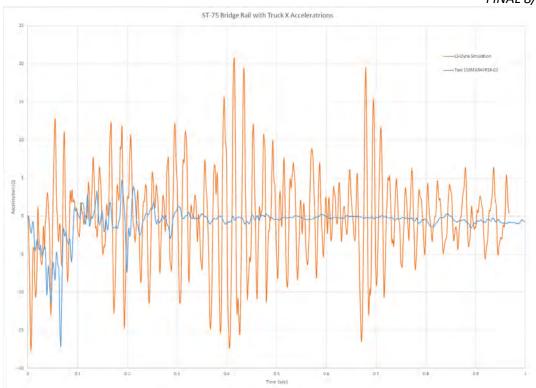


Figure 14-14 Graph of Longitudinal Accelerations for Full Scale and FE Model TRAP Results for 2270P

Truck

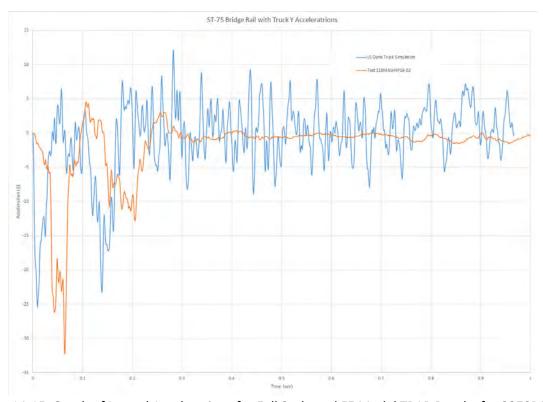


Figure 14-15 Graph of Lateral Accelerations for Full Scale and FE Model TRAP Results for 2270P Truck

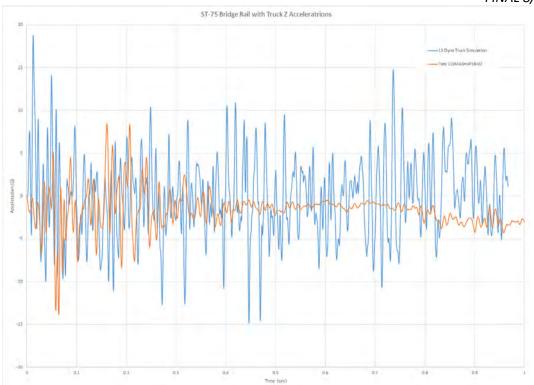


Figure 14-16 Graph of Vertical Accelerations for Full Scale and FE Model TRAP Results for 2270P Truck

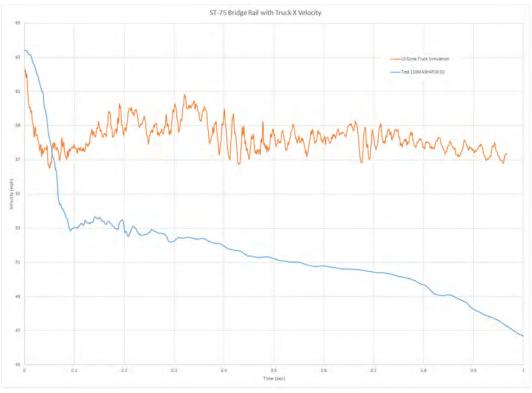


Figure 14-17 Graph of Longitudinal Velocities for Full Scale and FE Model TRAP Results for 2270P Truck

Figure 14-18 Graph of Lateral Velocities for Full Scale and FE Model TRAP Results for 2270P Truck

14.4.3. Visual Comparison

A visual comparison of test 110MASH4P18-02 and the 2270P simulation shows that the vehicles' interaction with the barrier to be similar. They appear to diverge from each other once the vehicle loses contact with the barrier. Figure 14-19 is a sequence of pictures showing the vehicles' interaction with the test article for both the full-scale test and the finite element model.

Test 110MASH4P18-02: 2018 Dodge Ram 1500	Time	LS-Dyna Truck Simulation: 2007 Chevrolet Silverado
	0.00 sec	Ay or t.
	0.06 sec	
	0.12 sec	
	0.18 sec	
	0.24 sec	
	0.36 sec	
	0.60 sec	

Figure 14-19 Visual Comparison of Actual Crash Test and Simulations for 2270P Truck

14.5. 1100C Small Car

This section compares the results of test 110MASH4C19-01 and the results of the 1100C finite element model. Table 14-3 compares the center of gravity, mass, and wheel base between the 2017 Nissan Versa used in the crash test and the 2010 Toyota Yaris used in the finite element modeling. Section 14.5.1 compares the TRAP results and section 14.5.2 compares the impact sequence of test 110MASH4C19-01 to the FE simulation.

Table 14-3 Center of Gravity for 1100C Car Test Vehicle and LS-Dyna Finite Element Model

	Vehicle Type	X*	γ**	Z	Mass	Wheel Base
T+ 110040CU4C10 01	2017 Nissan Varia	42.8"	-1.9"	N1/A	2389 lb	102.3"
Test 110MASH4C19-01	2017 Nissan Versa	(1086 mm)	(-19 mm)	N/A	(1083.7 kg)	(2599 mm)
44000 Waltala Mandal	2040 To 1010 Voids	40.4"	-0.1"	21.9"	2427.3 lb	99.9"
1100C Vehicle Model	2010 Toyota Yaris	(1025 mm)	(-3.0 mm)	(557 mm)	(1101 kg)	(2538 mm)

^{*} Behind centerline of front tire

14.5.1. TRAP Data Comparison

The TRAP data for test 110MASH4C19-01 met the criteria in MASH for a Test Level 4 longitudinal barrier but the 1100C finite element model's longitudinal and lateral ridedown accelerations did not meet the criteria. The higher accelerations might be caused by the simulation barrier being fully constrained. The posts and beams in the full-scale test article move and deform. The post can slide within the limit of the holes for the anchor bolts and the posts and beam will bend and flex during the impact. This will absorb some of the energy of the impact. In the simulation this movement is not allowed and more of the energy of the impact is felt by the vehicle. Additionally, the FE model does not deform as much as the test vehicle meaning that the model does not lose as much energy as the test vehicle during the impact. The maximum roll, pitch, and yaw angles in the 1100C simulation and test 110MASH4C19-01 were similar. Table 14-4 shows the results of the TRAP analysis and Figure 14-20 through Figure 14-30 are graphs of the TRAP analysis for test 110MASH4C19-01 and the finite element model.

Table 14-4 TRAP Data Comparison for Full Scale and FE Model TRAP Results for 1100C Car (Absolute Values)

Data Results	MASH Criteria	Test 110MASH4C19-01	LS-Dyna Car Simulation
Data Results	MASH CITETIA	2017 Nissan Versa	2010 Toyota Yaris
	Preferred = 30 ft/s (9.1 m/s)	21.3 ft/s	13.5 ft/s
Longitudinal Occupant Impact Velocity	Max = 40 ft/s (12.2 m/s)	(6.5 m/s)	(4.1 m/s)
Longitudinal Ridedown Acceleration	Preferred = 15.0 G	2.4.2	22.2.6
10 msec Average	Max = 20.49 G	3.4 G	22.2 G
Lateral Comment Imment Valentin	Preferred = 30 ft/s (9.1 m/s)	33.1 ft/s	21.3 ft/s
Lateral Occupant Impact Velocity	Max = 40 ft/s (12.2 m/s)	(10.1 m/s)	(6.5 m/s)

^{**} Negative means CG is on the driver side of the centerline

Lateral Ridedown Acceleration	Preferred = 15.0 G	9.9 G	22.0 G
10 msec Average	Max = 20.49 G		
PHD	n/a	10.0 G	30.9 G
ASI	n/a	2.83	2.63
Max Roll	<75 Degrees	5.7 degrees	8.3 degrees
Max Pitch	<75 Degrees	4.4 degrees	4.4 degrees
Max Yaw	n/a	38.3 degrees	56.8 degrees

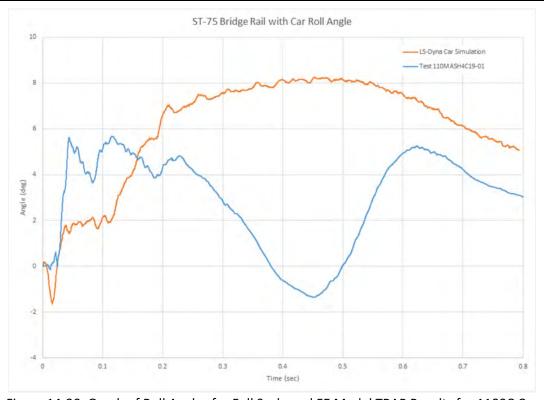


Figure 14-20 Graph of Roll Angles for Full Scale and FE Model TRAP Results for 1100C Car

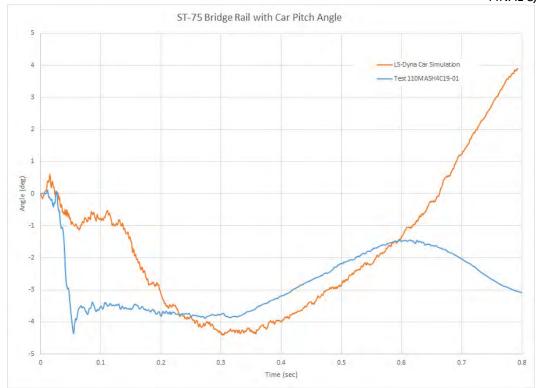


Figure 14-21 Graph of Pitch Angles for Full Scale and FE Model TRAP Results for 1100C Car

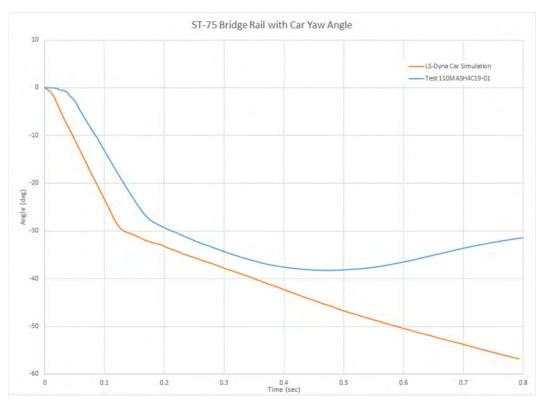


Figure 14-22 Graph of Yaw Angles for Full Scale and FE Model TRAP Results for 1100C Car

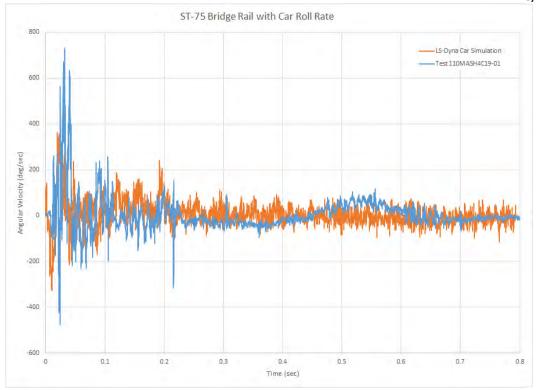


Figure 14-23 Graph of Roll Rates for Full Scale and FE Model TRAP Results for 1100C Car

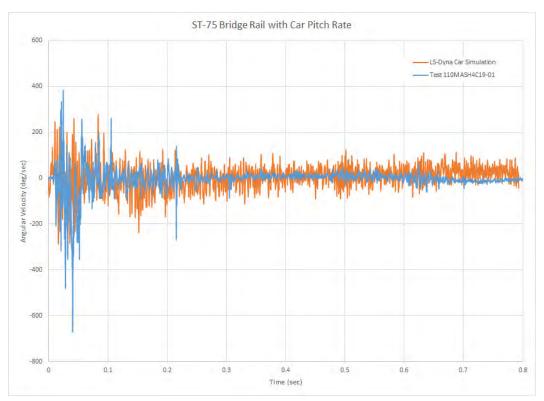


Figure 14-24 Graph of Pitch Rates for Full Scale and FE Model TRAP Results for 1100C Car

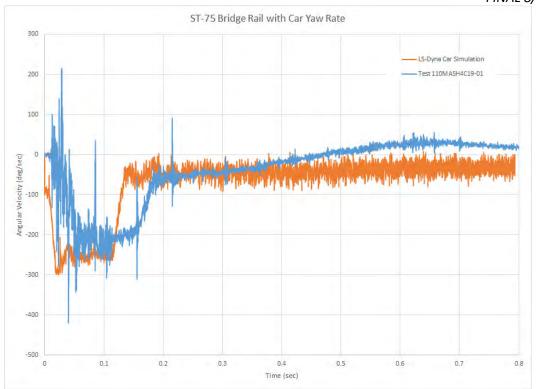


Figure 14-25 Graph of Yaw Rates for Full Scale and FE Model TRAP Results for 1100C Car

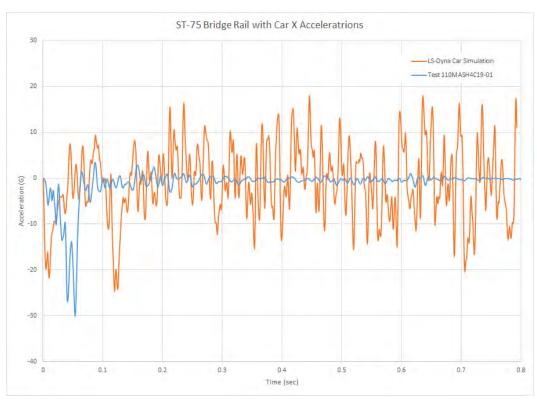


Figure 14-26 Graph of Longitudinal Accelerations for Full Scale and FE Model TRAP Results for 1100C Car

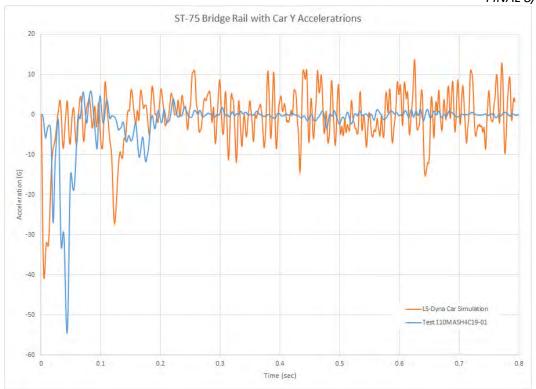


Figure 14-27 Graph of Lateral Accelerations for Full Scale and FE Model TRAP Results for 1100C Car

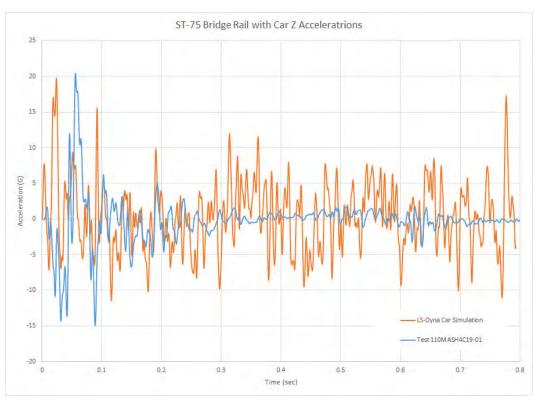


Figure 14-28 Graph of Vertical Accelerations for Full Scale and FE Model TRAP Results for 1100C Car

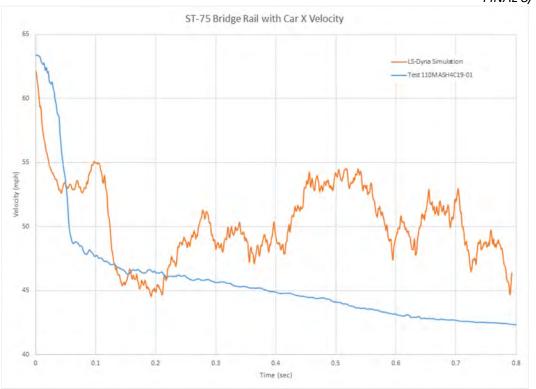


Figure 14-29 Graph of Longitudinal Velocity for Full Scale and FE Model TRAP Results for 1100C Car

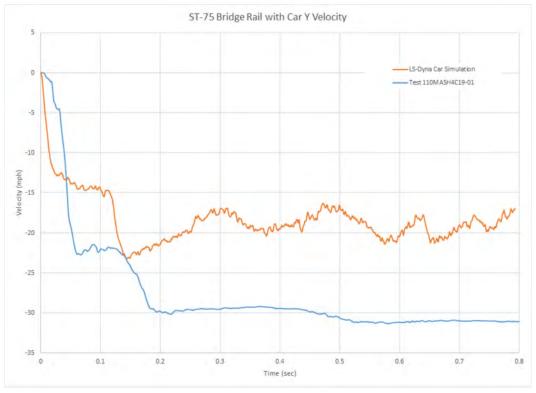


Figure 14-30 Graph of Lateral Velocity for Full Scale and FE Model TRAP Results for 1100C Car

14.5.2. Visual Comparison

A visual comparison of test 110MASH4C19-01 and the 1100C simulation shows that the vehicles' interaction with the barrier were similar. Figure 14-31 is a sequence of pictures showing the vehicles' interaction with the test article for both the full-scale test and the finite element model.

Test 110MASH4C19-01: 2017 Nissan Versa	Time	LS-Dyna Car Simulation: 2010 Toyota Yaris
	0.00 sec	
	0.06 sec	
	0.12 sec	
	0.18 sec	
	0.24 sec	
	0.30 sec	
	0.36 sec	

Figure 14-31 Visual Comparison of Actual Crash Test and Simulations for 1100C Small Car

14.6. 10000S Single Unit Truck

This section compares the results of test 110MASH4S19-02 and the results of the 10000S finite element model. Table 14-5 compares the center of gravity, mass, and wheel base between the 2013 4300 SBA International used in the crash test and the 1996 Ford F800 used in the finite element modeling. Section 14.6.1 compares the TRAP results and section 14.6.2 compares the impact sequence of test 110MASH4S19-02 to the FE simulation.

Table 14-5 Center of Gravity for 10000S Single Unit Truck and LS-Dyna Finite Element Model

	Vehicle Type	X*	γ**	Z	Mass	Wheel Base
Tort 110MASH4S10 02	2013 4300 SBA	148.7"	0.2"	NI/A	22077 lb	236.5"
Test 110MASH4S19-02 International	(3776 mm)	(4 mm)	N/A	(10014 kg)	(6007 mm)	
10000S Vehicle Model	1996 Ford F800	126.2"	-0.4"	NI/A	22046 lb	208.7"
100003 vehicle Model	1990 FOLG 1900	(3206 mm)	(-9 mm)	N/A	(10000 kg)	(5300 mm)

^{*} Behind centerline of front tire

14.6.1. TRAP Data Comparison

MASH does not provide criteria for TRAP data. The TRAP results for test 110MASH4S19-02 and the 10000S simulation were similar to each other with two exceptions. The lateral occupant impact velocity for the test was over twice that in the simulation. The maximum roll angle for the simulation was about twice the roll in the test. As in the pickup test, it seems the real-world test roll, pitch, and yaw angles lag behind those in the simulation. Again, perhaps this is due to the barrier being fully constrained as well as the simulation vehicle's wheelbase being 750 mm (29.5 in) shorter than the test vehicle. Damage to the post plates was observed in the real-world test, which shows the barrier does not perform as fully constrained when impacted with the 10000S vehicle. Table 14-6 shows the results of the TRAP analysis and Figure 14-32 through Figure 14-42 are graphs of the TRAP analysis for test 110MASH4S19-02 and the finite element model.

Table 14-6 TRAP Data Comparison for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck (Absolute Values)

Data Results	MASH Criteria	Test 110MASH4S19-02 2013 4300 SBA International	Finite Element Model 1996 Ford F800
Longitudinal Occupant Impact Velocity	n/a	3.6 ft/s (1.1 m/s)	3.3 ft/s (1.0 m/s)
Longitudinal Ridedown Acceleration 10 msec Average	n/a	2.2 G	1.5 G
Lateral Occupant Impact Velocity	n/a	25.3 ft/s (7.7 m/s)	10.5 ft/s (3.2 m/s)
Lateral Ridedown Acceleration 10 msec Average	n/a	3.7 G	5.2 G
PHD	n/a	4.1	5.2
ASI	n/a	1.89	0.44
Max Roll	n/a	19.6	36.8 degrees
Max Pitch	n/a	3.2	4.0 degrees
Max Yaw	n/a	16.6	14.8 degrees

^{**} Negative means CG is on the driver side of the centerline

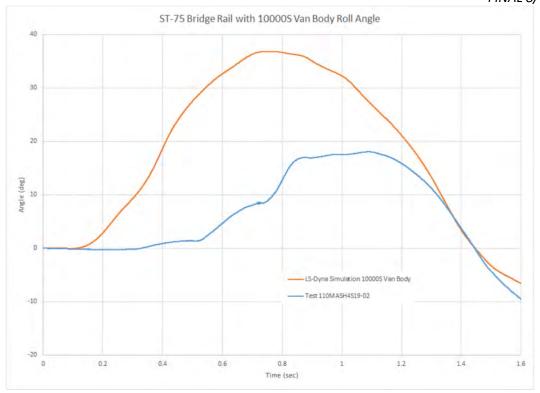


Figure 14-32 Graph of Roll Angles for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

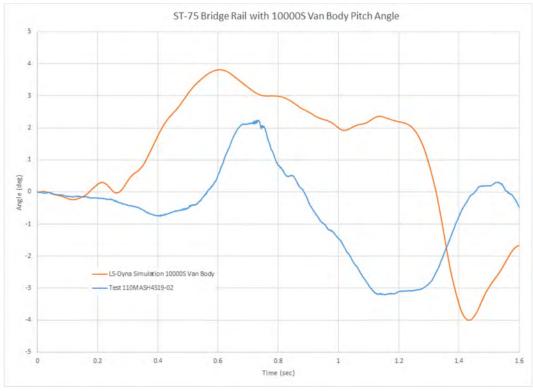


Figure 14-33 Graph of Pitch Angles for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

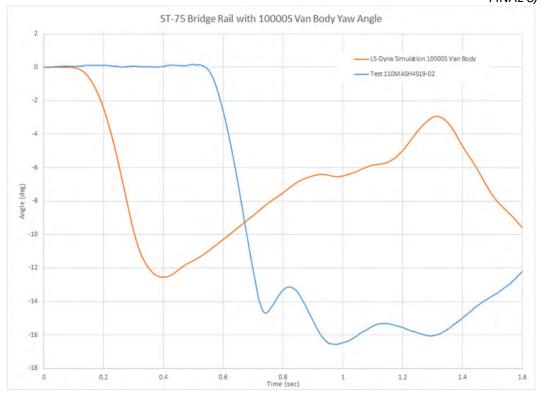


Figure 14-34 Graph of Yaw Angles for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

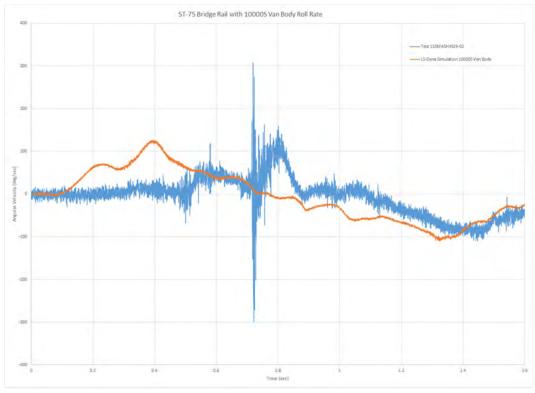


Figure 14-35 Graph of Roll Rates for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

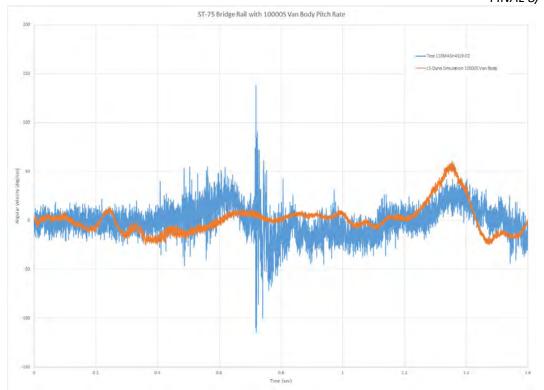


Figure 14-36 Graph of Pitch Rates for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

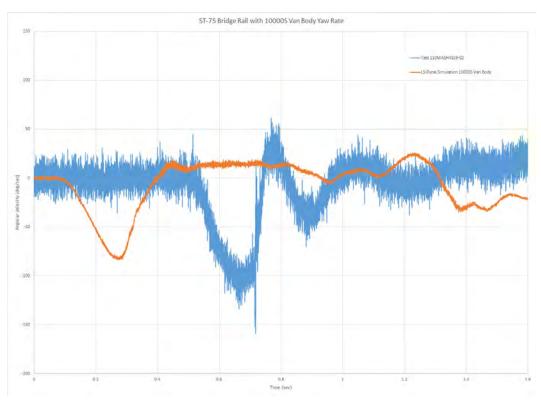


Figure 14-37 Graph of Yaw Rates for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

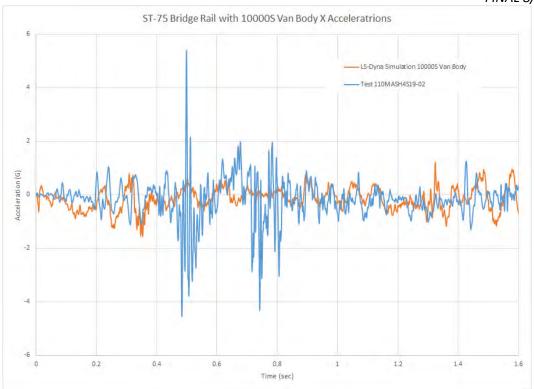


Figure 14-38 Graph of Longitudinal Accelerations for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

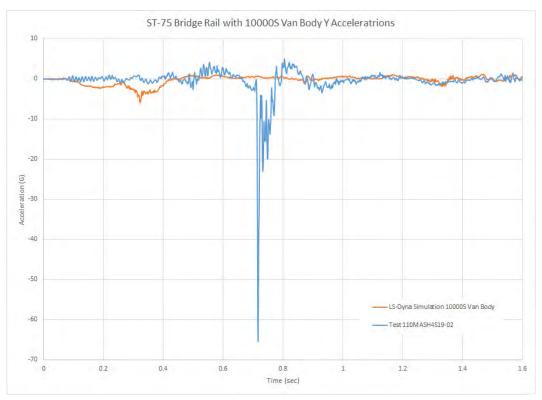


Figure 14-39 Graph of Lateral Accelerations for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

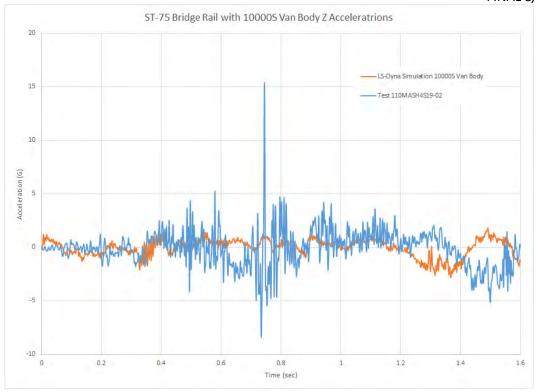


Figure 14-40 Graph of Vertical Accelerations for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

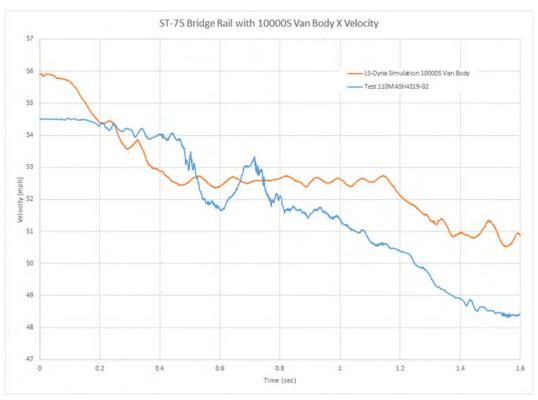


Figure 14-41 Graph of Longitudinal Velocity for Full Scale and FE Model TRAP Results for 10000S Single Unit Truck

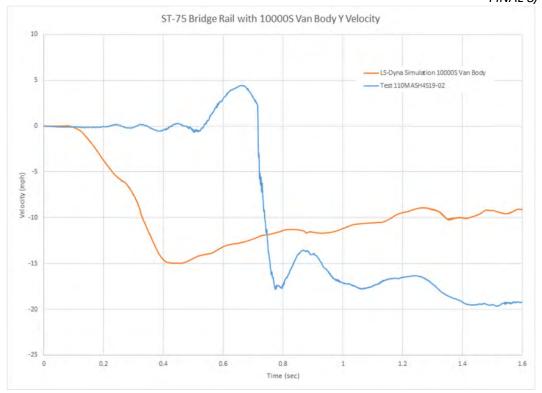


Figure 14-42 Graph of Lateral Velocity for Full Scale and FE Model TRAP Results for 10000S Single Unit

Truck

14.6.2. Visual Comparison

Visually comparing test 110MASH4S19-02 to the FE simulation shows that the vehicles' interaction with the test article were similar for about 0.5 seconds. From the initial impact, the vehicle's cargo box in the simulation overrode the top of the barrier. From about 0.5 seconds and on the simulation continued to rotate over and override the barrier while the full-scale test vehicle began to recover and rotate back onto its wheels. The photos are not shown in the figure below, but the simulation vehicle will eventually rotate away from the barrier and back onto its wheels. Figure 14-43 is a sequence of pictures showing the vehicles' interaction with the test article for both the full-scale test and the finite element model.

Test 110MASH4S19-02: 2013 4300 SBA International	Time	Finite Element Model: 1996 Ford F800
	0.00 sec	
	0.09 sec	
	0.18 sec	
	0.27 sec	
	0.36 sec	
	0.54 sec	
	0.72 sec	

Figure 14-43 Visual Comparison of Actual Crash Test and Simulations for 10000S Single Unit Truck

14.7. Conclusions

A fully constrained finite element shell model of the ST-75 steel bridge was developed, ran, and compared to full-scale crash test results. Comparing the TRAP results showed that the simulations tended to predict lower velocities and higher accelerations. While the 2270P truck model predicted the full-scale test would pass MASH Test Level 4 criteria, the 1100C car model predicted a failure due to high accelerations. The higher acceleration may be due to the barrier model being full constrained and the vehicle models deforming less than their real-world counter parts. Comparing the simulations to the full-scale crash tests showed that the interaction of the vehicles with the barrier were similar except for the 10000S single-unit van truck. The cargo box in the simulation overrode the top of the barrier which allowed the vehicle to roll further over the barrier compared to its real-world counterpart. Even with the additional roll the simulation vehicle eventually rolled back onto its wheels and was redirected as designed by the barrier.

Improvements to future finite element models will include the pedestrian hand/bicycle rail if the real-world test article includes the rail to see its effect on hood snag with the 2270P test and effect on the 10000S test. In the case of the ST-75, the physical crash testing of the test article built with a handrail did not show any potential for hood snag in the 2270P test but the handrail may have reduced cargo box override in the 10000S test. Other test articles may be different. Instead of fully constraining the rails in the barrier model the rails can be fully constrained every 3 m (10 ft) to represent posts and better match the full-scale test article. This might lower the accelerations in the 1100C car simulation since the rails will be allowed to translate and rotate. This would also likely improve the 10000S simulation as the barrier did not perform as fully constrained in the real-world test, as evidenced by damage to the post plates.

15. Document Revision History

Date	Description