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Executive Summary 

Problem, Need, and Purpose of Research 

Manual surveying of infrastructure assets remains a costly and labor-intensive 

process despite the availability of rich digital datasets such as mobile LiDAR 

scans.  This burden is especially evident in compliance assessments like those 

required by the Americans with Disabilities Act (ADA), where thousands of curb 

ramps must be precisely measured.  The purpose of this research is to develop 

and validate an automated framework that combines modern machine 

learning techniques with geometric modeling to automate surveying tasks, 

improve consistency, reduce labor, and enhance scalability for infrastructure 

management. 

Overview of Work and Methodology 

This work proposes a hybrid automation framework that integrates deep 

learning-based asset detection and segmentation with classical geometric and 

signal processing methods to perform high-accuracy measurements from point 

cloud data to check curb ramp ADA compliance.  The methodology includes 

ramp detection through 2D projection and object detection models, detailed 

component segmentation using an adapted image segmentation model, 

geometric refinement using design priors and geometric primitives, reference 

point extraction facilitated through the proposed score-based line fitting, and 

measurement acquisition on point cloud data given geometric reference 

points.  A human-annotated dataset of curb ramps, along with manual field 

measurements, supports training, evaluation, and validation of the proposed 

system.   

Major Results and Recommendations 

The automated system successfully detects and processes curb ramps with high 

reliability, achieving a measurement agreement rate of nearly 88% with manual 

field inspections, rising to over 97% agreement when small tolerance margins are 

allowed.  The system demonstrates particularly strong performance on slope-

related measurements, while minor discrepancies in width measurements are 

mainly attributed to surface irregularities and visual ambiguity in field surveys.  

Quality control steps are essential to ensure reliability, particularly in filtering 

ramps with poor data density or severe geometric anomalies. 

We recommend that Caltrans adopt quality control procedures similar to, and 

expanding upon, those outlined in this study, using digital point cloud quality 

(such as density thresholds) as an early filter to ensure reliable automated 

surveying outcomes.  Although nearly half of the ramps in our evaluation 

dataset were disqualified due to low data quality or severe geometric 
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deviations, these disqualifications correctly flagged assets that were either 

unsuitable for automation or already severely non-compliant.  Thus, quality 

control itself can serve as an early warning mechanism.  We also recommend 

that future mobile LiDAR data collections by Caltrans be designed with 

automation in mind, ensuring sufficient density and completeness to reduce 

disqualification rates and maximize automation efficiency.  Finally, while the 

current pipeline already enables significant labor reduction by automatically 

processing nearly half of the ramps, future work should focus on enabling a 

similar analysis on other design types and assets, as well as improving 

performance on irregular designs and occluded assets, and leveraging 

multimodal data sources to further enhance robustness. 
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Chapter 1: 

Introduction 

Background and Problem 
Surveying plays a pivotal role in city management and the maintenance of 

urban infrastructure, ensuring the functionality, safety, and accessibility of public 

spaces.  Accurate and timely surveys are essential for assessing the condition of 

infrastructure, identifying signs of deterioration, and planning necessary repairs 

or upgrades.  These activities also serve a critical function in verifying 

compliance with design specifications, construction standards, and regulatory 

frameworks.  For instance, adherence to the Americans with Disabilities Act 

(ADA) requirements ensures equitable access to public infrastructure for all 

individuals.  By systematically documenting infrastructure conditions and 

compliance, surveying supports effective resource allocation and minimizes 

potential liabilities associated with non-compliance or unsafe conditions.  As 

cities expand and age, the demand for efficient and accurate surveying 

continues to grow. 

Despite its critical importance, surveying remains an exceptionally labor-

intensive process due to the sheer scale and diversity of infrastructure and 

building assets that require regular assessment.  Urban environments encompass 

a vast array of features, including roadways, sidewalks, bridges, parking facilities, 

drainage systems, and utilities, each with their own unique set of compliance 

requirements and measurement criteria.  For example, ensuring ADA 

compliance involves assessing thousands of curb ramps at pedestrian crossings 

and measuring parameters such as ramp slope, cross slope, width, etc.  Similarly, 

evaluating the structural integrity of bridges demands detailed inspections of 

girders, bearings, and joints, while roadway surveys may require precise 

measurement of pavement conditions, lane markings, and traffic signage.  The 

extensive variety and geographic distribution of these assets necessitate 

significant manpower and time, often leading to surveying delays and 

increased costs.  As urban areas continue to grow, the burden of manual 

surveying is becoming increasingly unsustainable, emphasizing the urgent need 

for automation. 

In recent years, the California Department of Transportation (Caltrans) has 

increasingly turned to mobile terrestrial scanning technologies to document and 

manage infrastructure more effectively.  These systems generate high-resolution, 

georeferenced point cloud data and registered images, providing a detailed 
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and comprehensive digital representation of civil infrastructure.  These point 

clouds are commonly referred to as digital twins.  Digital twins serve as 

invaluable resources for infrastructure management, offering unprecedented 

opportunities for monitoring, planning, and decision-making.  However, despite 

the growing availability of such rich datasets, their potential remains largely 

untapped for automating critical surveying tasks.  Current efforts have 

predominantly focused on visualization and manual data interpretation, leaving 

a significant gap in leveraging these resources to streamline and enhance 

infrastructure assessment processes.  By developing automated methods to 

analyze and extract actionable information from these data, the full utility of 

digital twins can be realized, unlocking efficiencies that are yet to be achieved 

in surveying. 

Recent advancements in artificial intelligence (AI), particularly in machine 

learning (ML) and deep learning (DL), present transformative opportunities for 

automating surveying tasks, offering the potential to save millions of dollars 

annually.  These technologies excel in tasks such as feature/object detection, 

segmentation, and classification, making them valuable tools for processing 

large-scale data efficiently.  However, sole reliance on end-to-end AI-based 

solutions is not sufficient for the quantitative demands of surveying in which 

precision and accuracy are paramount.  Such end-to-end methods often 

require vast amounts of labeled training data, which are time-consuming to 

generate and may still fall short of achieving the stringent accuracy needed for 

many surveying applications.  There is a need for methods that automate the 

survey process using the available digital data. 

Objectives and Contributions 
The objective of this work is to develop reliable automated tools for survey 

measurements using the available terrestrial scanning data.  We propose a 

hybrid methodology that integrates the strengths of modern AI tools with 

conventional geometric analysis techniques.  This approach leverages the 

robust capabilities of AI for detection and segmentation while minimizing 

reliance on their precision by complementing them with classical geometric 

analysis methods for accurate quantitative measurements.  By combining the 

scalability of AI with the reliability of geometric analysis, we aim to achieve a 

generalizable and scalable framework for automating infrastructure surveying 

tasks across diverse applications. 

We validate this approach through the specific application of assessing curb 

ramps at pedestrian crossings.  This task exemplifies the broader challenges of 

surveying, as ensuring ADA compliance requires precise geometric 

measurements to guarantee accessibility and safety.  Accurate assessment of 

curb ramps requires the measurement of numerous geometric features to 

ensure compliance with ADA standards, including the slope, cross slope, width, 



3 

 

and surface deviations of the main ramp; the area featuring truncated domes; 

the flares; and gutter and landing areas (Appendix A).   

Such measurements are often prone to bias and inaccuracy due to the 

reliance on manual labor as workers frequently use aesthetic visual cues—such 

as concrete lines or surface patterns—to delineate ramp components.  These 

cues may not correspond to the actual boundaries required for precise 

measurement, leading to inconsistent results.  Compounding the challenge, is 

the fact that many ramps fail to meet ADA requirements during initial 

construction due to errors.  Over time, other factors, such as soil settling, erosion, 

or general wear and tear, can further degrade compliance, turning once-

compliant ramps into liabilities.  These various factors necessitate repeated 

measurements over the lifecycle of the infrastructure, imposing significant labor 

and costs while still falling short of the reliability and precision that modern urban 

management demands.  These issues, in one way or another, are shared across 

various surveying tasks.  For example, assessing roadway pavement conditions 

involves measuring surface smoothness, crack depths, and wear patterns, tasks 

that similarly rely on subjective visual assessments and are prone to error.  Given 

these challenges, and bearing in mind the sheer quantity of such assets in urban 

environments, underscores the broader need for scalable, automated solutions 

that can deliver the accuracy and consistency necessary for infrastructure 

surveying while reducing dependence on labor-intensive and costly manual 

methods. 

Focusing on automating ADA compliance assessment for curb ramps at 

pedestrian crossings, this work provides a publicly available dataset containing 

nearly 1,500 annotated and segmented ramps, representing one of the largest 

datasets of its kind.  The framework implements a novel hybrid approach to 

extract quantitative measurements.  While the methodologies are developed 

specifically for ADA ramps, they are designed to be adaptable to other 

surveying tasks.  Additionally, this work includes field-measured data as well as 

digital point cloud measurements performed by experts and trained personnel, 

ensuring a reliable benchmark for validation.  By combining shared datasets, 

ground-truth measurements, and open-source codes and algorithms, this effort 

paves the way for researchers to further advance methodologies and evaluate 

their approaches against validated manual measurements. 

Prior Work 
Recently, there have been some research efforts that leverage the available 

digital data, such as point clouds, and may indirectly benefit automation of 

surveying efforts.  A notable study [1] introduced a DL-based approach for point 

cloud classification using transformers, aiming to improve the accuracy of 

classified point clouds for applications such as urban planning and infrastructure 

management.  In the realm of bridge inspection, researchers [2] compared 
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three DL models—PointNet, PointCNN, and Dynamic Graph Convolutional 

Neural Network (DGCNN)—for classifying bridge components from point cloud 

data, highlighting the potential of DL in automating structural inspections.  

Additionally, other researchers [3] proposed a multi-faceted multi-object 

convolutional neural network (MMCN) combined with a support vector 

machine (SVM) for the fully automated classification of highly dense 3D point 

cloud data acquired from mobile LiDAR systems, demonstrating applications in 

high-density maps and highway monitoring.  Despite these advancements, fully 

automating a broader range of surveying tasks remains an emerging field, 

indicating significant opportunities for future research and application. 
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Chapter 2: 

Data-Driven, Hybrid ML/Analytical 

Framework for Survey Automation 

Survey automation in infrastructure management requires a structured 

methodology that combines modern ML techniques with classical analytical 

tools to achieve both scalability and precision.  The proposed framework begins 

with identifying assets of interest in MTLS data, leveraging advanced object 

detection techniques.  Once the asset is located, segmentation methods are 

applied to isolate its specific components, either in the raw 3D point cloud or 

through 2D projections or using associated RGB images.  Following 

segmentation, analytical techniques are employed to decompose the asset 

into its fundamental geometric primitives, such as planes, lines, and points.  

These primitives enable the determination of critical geometric reference points, 

including intersections and boundaries, which serve as anchors for making 

quantitative measurements.  By integrating ML-based data processing with 

analytical methodologies, this hybrid framework ensures accurate, repeatable, 

and scalable automation of surveying tasks, addressing the limitations of manual 

labor and end-to-end ML approaches. 

Asset Detection and Extraction 
The first step in the proposed framework is the identification of assets of 

interest within the MTLS data.  This process involves applying ML-based object 

detection techniques, leveraging either 2D image data, 2D projections of 3D 

point cloud, raw 3D point clouds, or a combination of these approaches.  For 2D 

approaches, state-of-the-art object detection models, such as YOLOv8 [4] and 

Faster R-CNN [5], have demonstrated robust performance in identifying 

infrastructure elements from registered images.  These methods can also be 

applied to 2D projections of point clouds [6] [7] [8], such as bird’s eye views or 

height maps, offering a simpler, yet effective, way to leverage 2D object 

detection tools for 3D data.  For 3D object detection, models like PointRCNN [9] 

and VoteNet [10] have emerged as leading solutions specifically designed to 

operate directly on point cloud data by identifying objects while preserving their 

spatial properties.  Hybrid approaches that combine image and point cloud 

data, such as Multi-View CNNs or multimodal fusion networks [11], further 

enhance detection accuracy by integrating complementary features from both 

data modalities.  This step is crucial as the accurate localization of the asset 

forms the foundation for subsequent processes, ensuring that only relevant 

portions of the digital terrestrial scanning dataset are analyzed in later stages. 
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Segmentation 
Once the asset of interest is identified, the next step involves segmenting it 

into its constituent parts to enable detailed analysis and measurement.  Similar 

to the detection stage, segmentation can be approached using either 2D or 3D 

techniques, depending on the data modality and application requirements.  For 

2D data, semantic segmentation models like DeepLabV3+ [12], U-Net [13] [14] 

and more recently, the Segment Anything Model (SAM) [15] methods have 

proven highly effective, offering pixel-level classification in registered images or 

2D projections of point clouds.  On the other hand, 3D segmentation 

techniques, such as those based on PointNet++ [16], Kernel Point Convolution 

(KPConv) [17], or RandLA-Net [18], directly operate on raw point cloud data, 

preserving spatial geometry while assigning labels to individual points.  These 

methods excel in parsing complex, unstructured datasets to isolate meaningful 

regions.  Recent advancements also highlight the use of hybrid segmentation 

approaches whereby 2D projections are segmented first, and the results are 

mapped back to the 3D domain to enhance computational efficiency and 

accuracy [19] [20] [21].   

Geometric Primitives 
The third step in the proposed framework focuses on extracting geometric 

primitives, leveraging the inherent assumption that man-made structures are 

often composed of simple, well-defined geometric elements, such as planes, 

edges, and lines.  The segmentation results from the previous stage serve as 

input, providing groups of points that can be fitted to these geometric primitives.  

Simple techniques, such as plane fitting, edge detection, and geometric 

modeling, are employed in this stage to identify the most reliable primitives while 

filtering out noise and outliers in the data.  By rooting this process in the known 

geometric structure of the asset, the extracted primitives provide a more 

accurate representation than segmentation results alone, ensuring that the 

building blocks of the asset are precisely defined.  This approach is particularly 

critical for addressing the imperfections and noise inherent in MTLS data or 

segmentation outputs.  Untreated noise can significantly impact the accuracy 

of quantitative measurements, but extracting primitives based on a geometric 

model mitigates these errors, enabling a cleaner and more structured 

representation of the assets of interest.  This stage lays a foundation for the 

identification of geometric reference points in the next step. 

Survey Reference Points 
The final step in the proposed framework involves extracting measurement 

reference points, which play a critical role in obtaining key quantitative 
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measurements, such as slopes, widths, surface deviations, and other essential 

parameters.  Building on the geometric primitives extracted in the previous step, 

intersections of planes are identified to form lines, and intersections of lines are 

further refined to yield points that represent the boundaries of the asset in a 

minimalistic and abstract form.  These reference points serve as the foundation 

for precise measurements, allowing the framework to quantify various aspects of 

the asset with accuracy.  To ensure reliability, this and the previous step often 

require iterative refinements.  The extracted reference points are tested against 

existing models and domain-specific knowledge of the asset, such as realistic 

ranges of distances, angles, or slopes.  Extreme and unrealistic discrepancies in 

these tests may highlight the need to revisit the geometric primitives extraction 

stage, refining and repeating the process to improve the quality of the 

reference points.  This iterative approach ensures that the reference points are 

robust and aligned with the structural and functional model of the asset.  Once 

reference points are established, they can be used to derive final 

measurements.  Figure 2.1 presents a flowchart of the proposed framework. 

 

Figure 2.1: Flowchart of the proposed ADA ramp compliance assessment 

automation method based on point cloud data. 
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Chapter 3: 

Automated ADA Ramp Compliance 

Assessment 

Background and Need 
In recent years, the State of California has faced significant legal challenges 

regarding the non-compliance of its infrastructure with ADA regulations.  In 2009, 

the Caltrans settled a lawsuit by pledging $1.1 billion to improve sidewalk access 

statewide, addressing deficiencies such as the absence of curb ramps and 

detectable warnings [22].  Similarly, in 2015, the City of Los Angeles resolved a 

landmark class-action lawsuit by committing $1.4 billion over 30 years to repair 

sidewalks and install curb ramps, ensuring compliance with ADA requirements 

[23] [24].  These settlements represent some of the largest disability access-

related agreements in U.S. history, highlighting the critical need for rigorous 

compliance with ADA standards to ensure accessibility and safety for all users. 

Current Manual Procedure for ADA Compliance 

Assessment 
In the conventional manual approach, ramp measurements are conducted 

manually in the field by trained personnel.  Depending on the ramp type, 

specific parameters, such as slopes, cross slopes, widths, surface deviations, and 

dimensions of features like truncated domes, flares, gutter and landing areas, 

must be recorded and compared against approved reference values.  For this 

study, we focus on four primary ramp types, referred to as Types A through D, 

each requiring a unique set of measurements based on their geometric 

characteristics.  For each ramp, field personnel are required to take 

approximately 45 distinct measurements.  These measurements are typically 

performed using tools such as inclinometers and measuring tapes, often relying 

on visual cues to delineate boundaries.  Once the measurements are collected, 

the data are populated into a standardized PDF form (Appendix A), which 

serves as an official record for compliance assessment.  This method, while 

thorough, is highly labor-intensive, prone to errors, and limited by the subjective 

interpretation of field personnel, particularly when clear geometric boundaries 

are absent. 

Appendix A illustrates the types of measurements required for ramp Types A 

through D, highlighting the diversity and complexity of the manual assessment 

process. 
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Dataset 
In recent years, Departments of Transportation (DOTs) across the United 

States, including Caltrans, have increasingly adopted advanced technologies 

such as static and MTLS to create detailed digital representations of urban 

infrastructure.  This shift towards digitalization has been driven by the need for 

accurate, efficient, and safe methods of managing transportation assets.  

Caltrans, for instance, owns and operates six MTLS systems using Trimble MX9 

and MX50 systems.  These systems have been instrumental in collecting high-

precision survey-grade point cloud data.  Caltrans has attempted to replace 

manual field measurement with manual measurement on digital point cloud 

data.  The integration of MTLS technology into Caltrans' workflow has led to 

increased employee safety, reduced costs, and expedited project delivery [25].  

The accumulation of extensive point cloud datasets presents significant 

opportunities for cost savings and operational efficiency.  By leveraging these 

data, DOTs can automate asset management, monitor infrastructure health, 

and ensure compliance with standards such as the ADA.  This reflects a broader 

trend towards digital transformation in infrastructure management.   

In this work, we utilize extensive digital data collected by Caltrans from cities, 

such as Woodland, Sacramento, and Chico, etc., which have been captured 

using MTLS systems.  While these datasets provide a comprehensive 

representation of urban infrastructure, they lack the annotations necessary for 

tasks such as ramp detection and segmentation.  To address this gap, we 

manually annotated a substantial portion of the data, focusing on ramps and 

their key components.  Figure 3.1 illustrates examples of segmented ramps from 

the dataset.  The annotated dataset, which we make publicly available, 

includes nearly 1700 detected and segmented ramps.  By sharing this resource, 

we aim to enable other research groups to build upon this work, advancing the 

automation of infrastructure management and surveying using existing digital 

data. 
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Figure 3.1: Example annotations indicating various components of an ADA ramp.   

Ramp Detection 
This section illustrates the ramp detection method, which aims to localize and 

extract individual ramps from a large point cloud with high accuracy and 

reliability for downstream processing and measurement extraction. 

Comparison of 3D and 2D Object Detection 
For ramp detection, both 3D and 2D object detection techniques were 

considered.  3D object detection directly processes the point cloud data, 

leveraging the full spatial structure of the environment.  While this method 

generally captures detailed geometric information, it usually requires 

significantly higher computational resources and complex models, and 

subsequently more training data, making it less efficient.  In addition, ramps 

often have minimal distinct features from the adjacent sidewalks, blending with 

them in terms of color and surface texture.  This lack of clear boundaries makes 

it challenging for 3D object detection models to reliably isolate ramps from their 

surroundings.   

On the other hand, 2D object detection simplifies the problem by projecting 

the 3D point cloud into a 2D representation.  In 2D, we can make use of well-
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established and robust 2D object detection models and reduce computational 

complexity.  Although some spatial information is lost in the top-down projection, 

the normalized grayscale intensity values compensate for such losses by 

providing a consistent representation of edges, textures, and surface variations.  

This factor enables the detection model to distinguish ramps from surrounding 

structures effectively.  As such, we chose 2D object detection methods for initial 

data processing and extracting the ADA ramps from the point cloud. 

Point Cloud Preprocessing 
We compared Faster R-CNN [5] and DeTR [26] for ramp detection, and 

chose DeTR as our final object detection model.  Faster R-CNN is a well-

established 2D object detection model with a two-stage approach.  While 

Faster R-CNN is effective for general object detection, in our application it 

struggled with small or indistinct features, which are critical for isolating ramps 

from the surroundings.  DeTR employs a transformer-based architecture that 

predicts object positions and classes in an end-to-end manner.  It excels at 

capturing contextual information throughout the entire image by leveraging a 

global attention mechanism, which makes it particularly effective for detecting 

ramps with minimal distinctions from their surroundings. 

For both models, we fine-tuned pre-trained weights on our ramp detection 

dataset.  Since inference speed is not a primary concern in this scenario, we 

evaluated both ResNet-50 and ResNet-101 backbones.  We then selected the 

ResNet-101 as the backbone for our DeTR model due to its superior 

performance. 

Data Preprocessing for Inference 

During deployment on unseen data, we follow the same preprocessing steps 

used during training.  The point cloud is divided into overlapping square patches 

and projected top-down onto a 1280 by1280 canvas.  Intensity values are 

normalized to grayscale, and the transformation metadata necessary for 

mapping predictions back to 3D space is preserved.  These preprocessed 2D 

images are then fed into the trained ramp detection model, which outputs 2D 

bounding boxes for the ramp class. 

Extracting Individual Ramps 
As a result of ramp detection, bounding boxes are predicted for each 2D 

image.  Using the transformation metadata, the 2D image and the 

corresponding bounding box coordinates are accurately converted back to 3D 

space.  The predicted 3D bounding boxes are then mapped back to the 

original point cloud.  Each bounding box is extended by moving its edges 

outwards by 10% of their original length to include any adjacent points that may 

belong to the ramp but fall outside the detected boundary.  Finally, the 
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extracted ramps are saved in separate files for downstream segmentation and 

measurement. 

Ramp Segmentation based on Visual Cues 
This section presents our approach for ramp segmentation based on visual 

cues.  The segmentation is challenged by (a) data scarcity; (b) the high 

dimensionality of 3D point clouds, which complicates segmentation; and (c) 

non-uniform point density, requiring robustness to point clouds of varying quality 

and density. 

In order to address (a) and (b), we carry out the segmentation in the 2D 

image space using the SAM [15], a strong pretrained image segmentation 

model that can efficiently adapt to custom segmentation tasks with minimal 

samples.  To convert point clouds to 2D images and mitigate the effect of 

density variation as specified in (c), we incorporate additional steps for 

preprocessing, which we describe in the following section. 

Point Cloud Preprocessing 
To visualize the point cloud as a 2D image, the projection of the 3D point 

cloud onto the horizontal plane is visualized as a grayscale image where 

different shades of gray reflect different LiDAR intensity values.  This 

preprocessing, however, outputs a sparsely colored image with varying local 

densities, reflecting the local PC density, resulting in poor segmentation 

performance.  As such, we apply pixel dilation to fill out the empty areas and 

form contiguous regions. 

Dilation, however, faces additional challenges.  Notably, varying point cloud 

densities prevent a one-size-fits-all dilation approach.  If we consider a small 

kernel, it will miss significant empty areas, leaving the lower-density areas still 

sparse and discontinuous.  On the other hand, a large kernel can obscure 

detailed ramp information and most importantly, ramp separation boundaries. 

To address these challenges, we propose an adaptive dilation approach, 

which tailors the dilation to local density with variable kernel sizes, vastly 

improving contiguity while preserving detail.  The process involves chunking the 

ramp images and computing the local density for each chunk and calculating 

and applying a corresponding optimal kernel size for each one.  The square 

dilation kernel size 𝜅 for the chunk is calculated by the following formula: 

 

where 𝜌𝑝𝑟𝑜𝑗 is the projected point cloud density in the image domain and 

comes from dividing the count of pixels with non-zero intensity values by the 
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total number of pixels in the chunk.  𝜅max denotes an upper bound to prevent 

the kernel from becoming too large for extremely sparse chunks.  Subsequently, 

a global dilation with a kernel size of 2 is then applied to the whole image to 

improve its quality.  Fig. 3.2 shows examples from before and after adaptive 

dilation. 

 

Figure 3.2: Grayscale images associated with the top-down view of point clouds 

of various densities before (top) and after (bottom) applying adaptive dilation.  

Adaptive dilation improves the 2D images in terms of contiguity for more 

accurate segmentation. 

The ground-truth segmentation masks are similarly treated as grayscale 

images.  Pixel intensities 0, 1, 2, etc. in a ground-truth mask image represent the 

associated class for each pixel.  Once the point clouds are processed to create 

the images and their associated masks, they can be used to fine-tune a SAM for 

segmentation. 

Segmentation with SAM 
Our segmentation approach adapts SAM to enable data-efficient finetuning 

by leveraging its strong priors from pretraining on large image datasets.  SAM 

consists of three main parts: an image encoder, a prompt encoder, and a 

lightweight mask decoder.  The role of the prompt encoder is to receive any 

available region proposals and cues in the form of either a bounding box, prior 

mask, or text prompt.  For our use case, the prompt is provided as a bounding 

box that contains the entire image.  We modify the architecture so that the 
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same image and prompt encodings are provided to multiple independent 

mask decoder modules, each specializing in a specific segmentation class. 

Ramp Decomposition into Constituting 

Components 
The segmentation results from the previous step are converted back to 3D 

point clouds with class labels coming from the segmentation of the 2D 

projection (Figures 3.1 and 3.3a).  The segments reflect a decent, though 

inadequate, annotation based on visuals, such as concrete joints.  Ideally, 

however, the annotation should correspond to the geometric structure, i.e., the 

constituting primitive planes, rather than visual segments.  In practice, there is 

often no clear geometric separation that perfectly matches the aesthetics, and 

in fact, the deviations are quite often significant (Figure 3.4).  Additionally, as a 

result of performing 2D image segmentation, there could be points that are 

vertically separated but overlapping on the horizontal plane and thus mistakenly 

assigned to a particular segment.  The segmentation quality paired with the 

fundamental distinction between aesthetic versus geometric components 

motivate further refinement of the segments before carrying out measurements. 
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Figure 3.3: Geometric component decomposition.  (a) Input component 

classifications, which are generally crude, agnostic to the vertical coordinate, 

and based solely on aesthetic features in the associated top-down 2D image.  

(b) Internal points for each component after applying One-Class Support Vector 

Machines (OCSVM).  (c) Reclassification based on proximity to the internal 

coreset plane fits.  The plane fit for the green component is shown.  The planes 

are also used to cross-filter some of the ribbon-like artifacts.  Red crosses denote 

ribbons associated with other components that can be cleaned out using the 

green plane.  For the red ribbon, only the portion beyond the black dashed line 

is cleaned when filtering via the green plane.  The process is repeated for all 

planes where incorrect labels are removed from the wrong half-space for each 

plane.  (d) Using the bottom line fit to the center component, a vertical plane 

and its perpendicular plane passing through the line are drawn to filter out any 

component labels from the three incorrect spatial quadrants, leaving 
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component labels only in the correct quadrant (top left).  (e) For each labeled 

point, its local plane fit is compared with the component plane fit.  If the 

absolute cosine similarity between their normal vectors falls below a critical 

threshold, the point will be removed from the component.  Two neighborhoods 

associated with a correct and an incorrect point are demonstrated respectively 

with a green check and a red cross next to them.  (f) Final decomposition output 

after all steps, including iForest anomaly detection and final Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN). 

 

Figure 3.4: Photo of a side flare.  The visual features often do not overlap with 

geometric attributes, and the deviations can be significant. 

A key observation is that, while the segmentation result does not adequately 

serve as the component separation endpoint, it provides us with a valuable 

prior; specifically, we observe that the segmentation model almost always 

retrieves segments with correct internal points even for very poor-quality outputs.  

We base the geometric refinement on this premise, namely the inliers associated 

with a segment are assumed to belong overwhelmingly to the correct 

component.  The second premise comes from the prototypical design of ADA 

ramps, which specifies that each surface that meets the standards is flat and 

should be well-approximated by a plane, with the possible exception of the 

gutter section for an ADA ramp with a curved roadside boundary. 

We restrict the geometric refinement to the center ramp and warning 

surface as well as the side flares.  Later in the text we will describe how the 

landing and gutter areas are handled.  Further, considering that the warning 
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surface and the center ramp should be on the same plane, we combine these 

two components in our analysis when the warning surface is present.  This means 

that we strive to identify and separate three components: ramp (plus warning 

surface if present), left flare, and right flare.  Importantly, we seek a method that 

does not rely on manual intervention and customization for different ADA ramps. 

Plane-Based Reassignment 
We begin by removing the noisy points of each of the three components.  To 

do this, we carry out an aggressive outlier detection and removal for each 

component.  For this purpose, we employ one-class support vector machines 

(OCSVM) [27] with a radial basis function kernel 𝑘(𝑥, 𝑦) = exp(−𝛾‖𝑥 − 𝑦‖2) and a 

slack variable, 𝜈.  𝜈 can be interpreted as an upper-bound on the fraction of 

outliers in each component. 

Once a coreset is retrieved for each component (Figure 3.3b), it is used to fit 

a component plane associated with it.  Following the plane fits, each initially 

excluded point is assigned to the component with the closest plane if its 

distance to that plane is less than a predefined threshold, t.  It is noted that this 

reassignment is done for all points not belonging to a coreset.  As a result, the 

ramp and flare boundaries now more accurately reflect the geometric surface 

characteristics.  This step also removes the initially misclassified vertically 

separated points. 

We note that, depending on the threshold, t, we might also remove points 

from each component that should nominally belong to them for measurement.  

However, we emphasize that the requirement for this stage is to have labels that 

can assist with defining references, such as corners and boundaries, and hence, 

useful in measurement, rather than correct class assignment for every point.  

During the measurement step, the potentially missed points will still contribute to 

the calculations. 

Clean-Up 
A consequence of reassigning points solely based on plane fits is that it often 

leads to substantial artifacts, external to the boundaries of ramp components, 

resulting from plane fits passing through the entire point cloud, including the 

sidewalk and street/gutter.  These artifacts include continuous, typically ribbon-

like extensions, above, below, and to the side of the ADA ramp area (Figure 

3.3c).  While anomaly detection and clustering algorithms like DBSCAN [28] can 

help mitigate this effect, we find it difficult, if not impossible, to pin down a set of 

universal DBSCAN hyperparameters that lead to robust performance across all 

or even a large fraction of ramps, making the choice impractical.  This is due to 

the high variability across ramps and their surroundings.  In the following 

discussion, we describe a primarily rule-based approach with minimal 
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hyperparameters that are much easier to set for robust performance across 

different ramps. 

First, we highlight that at the component-level, an ADA center ramp and side 

flares constitute a (piecewise flat) concave surface by design.  For components 

i and j of such an idealized surface, all points belonging to component i are only 

on one side of component j and vice versa (Figure 3.3c).  Applying this 

observation to the assignments, we check whether each point assigned to 

component i is located in the correct half-space with respect to the plane fit for 

component j ≠ i.  A point is in the correct half-space if its coordinate along the 

normal vector of the plane fit associate with component j with respect to the 

initial coreset centroid, for j has the same sign as that of initial coreset i centroid 

along the same normal vector in the same coordinate system.  We repeat this 

cross-check for all six possible combinations of components, and each time 

remove the label of points that reside on the wrong side of the plane. 

This process usually removes mislabeled points and ribbons on the sidewalk 

and the curbs.  However, prominent ribbons often misclassified as side flares 

remain on the street side as well as potential isolated points and small clusters 

farther from the ramp.  The following steps further clean up the ramp area. 

We fit a line to the bottom boundary of the center ramp component.  The 

details of the bottom-line fitting will be described later.  To this line, we first fit a 

vertical plane and then a generally tilted horizontal plane that is also 

perpendicular to the vertical plane.  For each plane, we remove mislabeled 

points from the wrong half-space.  As before, the correct half-space is 

determined by a sign match between the out-of-plane coordinate of a point 

and the ramp coreset centroid with respect to the plane’s coordinate system 

(Figure 3.3d).  This step removes most of the ribbons; some ribbon and 

miscellaneous points can still pass these filters and are nonetheless problematic 

for reference point detection. 

Next, we note that incorrect ribbon points locally reside on surfaces with local 

plane fits different from their assigned component plane fit.  We can leverage 

this fact to further trim them away.  To trim each component, we first obtain the 

nearest neighbors of each point that are within a ball of radius r centered at the 

point (Figure 3.3e).  The value r should be selected to accommodate varying 

point cloud densities and to ensure that the ribbon points do not dominate the 

neighborhood.  For each point, we can, therefore, obtain a plane fit to its local 

neighborhood.  If the absolute value of cosine similarity between a local normal 

vector and component normal vector fall below a defined similarity threshold 

𝑠𝑐𝑟𝑖𝑡, the point can be dismissed as a misclassification because its local plane 

does not adequately resemble the component plane. 

A caveat here is that, for the correctly classified points at the boundaries of 

ramp or flares, a local neighborhood will contain a significant number of 

incorrect points from the adjacent component and/or the non-ramp area.  To 
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mitigate this error, we can bias the local neighborhood such that only neighbors 

to the correct side of a point are considered.  Empirically, we define the correct 

side of the point as one which is closer or equal in distance from the initial 

component coreset centroid compared to the point.  Biasing the neighborhood 

in this way leads to a neighborhood of completely or overwhelmingly correct 

points for the component boundaries, leading to a local fit that closely 

resembles the component plane fit. 

Following this stage, we are typically left with a sparse amount of outliers.  To 

remove them, we employ Isolation Forest (iForest) [29].  While the optimal value 

for the contamination parameter (i.e., the expected proportion of outliers) 

depends on the specific ramp, we find that the search zone for this parameter is 

relatively small and that a fixed small value can yield a good performance 

across different ramps.  Even if manual intervention for parameters adjustment is 

desired, it is now an interpretable and decoupled parameter that can be set 

more easily. 

Finally, we apply DBSCAN to the set of all labeled points in case, after the 

anomaly detection, there still remain some isolated incorrect points.  We remove 

the label of any points not belonging to the largest cluster, which corresponds to 

the combined ramp and flares.  An example output for this process is shown in 

Figure 3.3f. 

Reference Point Detection 
Reference points are used to extract the measurements.  As such, accurate 

detection of reference points is crucial for geometric measurements.  Despite 

our extensive pre-processing and outlier detection efforts in previous steps, the 

point clouds may still contain noise and outliers, which can be affected by their 

varying density.  To address these challenges, we present a robust reference 

point detector that combines a novel Score-Based Line Fitting (SBLF) algorithm 

with geometric constraints to identify the key points that fully define the ramp 

structure.  Figure 3.5 offers a thorough example demonstrating the multi-stage 

reference point detection pipeline. 
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Figure 3.5: Proposed multi-stage reference point detection pipeline. First, we 

convert the 3D point clouds to bird's eye views (b) to enable efficient 2D 

processing while preserving geometric relationships.  We then employ our novel 

SBLF algorithm (c) to identify component boundaries by maximizing separation 

scores between point classes, eliminating the need for parameter tuning while 

maintaining robustness to outliers.  Finally, we leverage structural priors to detect 

additional reference points by identifying locations with maximum projection 

distance to the fitted boundaries (d), ensuring comprehensive capture of the 

ramp geometry. 

Score-Based Line Fitting 
We first convert the latest filtered and decomposed 3D point cloud data to a 

top-down 2D view.  The SBLF algorithm is designed specifically for identifying 

clear geometric boundaries between point cloud segments while maintaining 

robustness to outliers and sparsity.  Unlike traditional approaches, such as 
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RANSAC [30] or SVM [31], that can be sensitive to noise and the selection of a 

hyperparameter, SBLF operates by exhaustively evaluating potential boundary 

lines formed by point pairs, focusing on optimal separation between 

component regions without requiring parameter tuning. 

Given two point-sets A and B to be separated, and a candidate point set C 

from which to sample line-forming points, SBLF computes a separator line by 

evaluating all possible lines formed by pairs of points from the convex hull of C.  

For each candidate line l: ax + by + c = 0, we calculate a separation score: 

 

where | ∙ | denotes set cardinality.  The algorithm returns the line coefficients (a, 

b, c) that maximize this score, along with the optimal orientation.  The 

separation score is computed by counting the total number of correctly 

classified where 'correct' means points from group A lie on one side while points 

from group B lie on the other.  This approach naturally favors lines that create a 

clean geometric division between components while being robust to noise 

without need for parameter tuning. 

Component Separation 
The reference point detection process begins by identifying the primary 

geometric boundaries of the ramp using SBLF to compute the separator line 

between different ramp components.  For example, to fit the bottom line, we 

apply SBLF to separate the ramp points and non-ramp points using candidate 

points from the ramp.  For boundaries between flares and the main ramp, to 

enhance accuracy and robustness against non-uniform point distributions near 

component boundaries, we compute two candidate separator lines: one using 

only the flare region points for candidate points, and another using only the 

main ramp points.  The final separator line is then determined by averaging the 

coefficients of these two lines using the following equation: 
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Corner Point Detection 
Using the separator lines, we identify six reference points that characterize 

the ramp geometry.  Four points are computed as intersections between the 

separator lines and the ramp's convex hull.  The remaining two points mark the 

peaks of the left and right flares, identified by maximum projection distance: 

 

Finally, we map the 2D reference points back to 3D space through nearest 

neighbor search in the original point cloud, preserving elevation information 

critical for subsequent geometric measurements. 

Quality Assurance 
To improve the reliability of our measurements and prevent propagation of 

errors in the pipeline, we first remove ramps with insufficient point cloud density.  

Specifically, any ramp with an average point density below a predefined 

threshold is excluded to avoid inaccuracies in slope or length estimation due to 

sparsely sampled or incomplete surface geometry.  We apply density-based 

filtering at this stage because, for a more relevant and accurate density 

estimation, we need to restrict the estimate to the individual ramp asset and not 

an entire point cloud.  Further, density in terms of points per area is a better and 

more robust estimate compared to volumetric density, and as such, density-

based filtering is applied once we geometrically refine the components. 

 The surface density estimate is obtained by first projecting the points for 

each component on the corresponding plane-fit and then obtaining the area 

of the convex hull of the component projection.  Density can then be estimated 

by dividing the total number of considered points by the sum of the areas.  

While we can perform this analysis for the final components, we leverage the 

initial OCSVM-identified coresets for the 2D density estimate instead in order to 

avoid potential error propagation, considering the coresets still incorporate 

many points and a substantial surface area sufficient for obtaining a robust 

estimate. 

 Additionally, to ensure geometric consistency in corner detection, we apply 

two filtering methods.  First, we analyze the distribution of angles at the identified 

corners and exclude ramps where an angle deviated more than three standard 

deviations from the dataset mean.  This analysis works as a statistical outlier 

detection step where ramps with atypical corners are removed.  Second, we 

enforce a parallelism constraint on the top and bottom edges of the center 

ramp.  This constraint is informed by our a priori knowledge about the 

construction of ADA ramps and can be adapted to other assets.  This constraint 



23 

 

is critical because these edges are later used to approximate the landing and 

gutter regions as well as their corresponding measurements. 

Measurement Extraction 
Measurement extraction mainly relies on the extracted reference points, i.e., 

corners (previous steps).  For ADA ramps quantities, such as slope and width, are 

needed.  The exact measurement procedure should be aligned with the 

approved state of practice.  As such, although in some cases one may think of 

better or more efficient ways of measuring a certain value, it is important to stick 

to approved guidelines to ensure that extracted measurements are legally 

reliable in the case of future litigation.  Any changes in the measurement 

procedure should be made with the approval of legal entities, e.g., in this case 

within Caltrans.  As such, meaningful geometrical references should follow the 

measurement extraction guidelines described in Caltrans official documents 

such as that listed in Appendix A and indicated in Figure 3.6. 
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Figure 3.6: Ramp and gutter layout with corner points and measurement lines.  

Corner points define points necessary for measurements, and measurement 

lines indicate the guidelines on where/how slopes and widths are expected to 

be measured for the ramp. 

Center Ramp Measurement 
As seen in Figure 3.6, the center ramp consists of four corner points and the 

objective is to measure ramp slope (A), ramp cross slope (B), and ramp width 

(C). 

Generate Reference Lines: Following input from the project panel, we use the 

following procedure to extract measurements.  Each edge of the center ramp is 

divided into 10 equal segments.  To create initial reference lines, points at 1/10, 

5/10, and 9/10 of each point is connected with their corresponding points on 

the opposite side.  

Refine Reference Lines: For each reference line, we collect the 300 nearest 

points (to the line) from the point cloud.  Using these points, we fit a new line via 

Principal Component Analysis (PCA) to ensure that the point cloud geometry is 

accurately reflected.  Once the line is fitted, points that are more than one-

quarter inch away from the line are filtered out, adhering to Caltrans’ 

measurement guidelines.  This process of line fitting and point discarding is 

repeated iteratively until no points are removed.  The final fitted line is used for 

slope and width measurements, ensuring that it conforms to the ramp geometry 

and the established guidelines. 
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Slope and Width Measurement: Given the final measurement lines, we 

extract the slope and width of the center ramp.  For each fitted line, two 

endpoints are determined using the boundaries of the center ramp.  Then the 

slope is calculated as the ratio of vertical to horizontal displacement between 

the endpoints of the line.  To calculate the width, we measure the distance 

between the two endpoints of each fitted line.  These steps collectively ensure 

that the slope and width are measured based on the actual surface geometries 

of the ramp represented in the point cloud rather than simply relying on two 

points on the ramp boundaries for calculating slope and width. 

Flare Measurement 
The left and right flares each consist of three corner points (Figure 3.6).  The 

objective is to measure the slopes of D and E, which define the running slopes of 

the two flares.  We generate a reference line from the two bottom corner points.  

Using these points, we apply the same iterative process outlined for the center 

ramp measurement: collecting nearby points from the point cloud, fitting a line 

using Principal Component Analysis (PCA), and filtering points more than one-

quarter inch away from the line.  The final fitted line is then used to calculate the 

running slope of the two flares. 

Landing and Gutter Measurement 
In our analysis pipeline, the landing and the gutter areas are approximated 

by imposing their minimal standard geometric definition directly onto the point 

cloud.  For the landing area, we estimate the top landing boundary by 

extending the side edge of the center ramp outward and searching 

perpendicularly from the top edge.  This search is performed iteratively, 

extending the edge by a small fixed length at each step.  At each iteration, the 

endpoint of the extended line is projected vertically (in the z-direction) onto the 

point cloud, forming a sloped line between the projected point and the top 

corner of the center ramp.  As the search progresses, the slopes of these 

consecutive lines are continuously monitored.  When the difference between 

two consecutive slope calculations is larger than a pre-defined threshold, the 

algorithm marks the last valid projected point before the discontinuity as the top 

corner point of the landing.  This procedure is executed on both sides of the 

ramp to determine the full top landing boundary.  Similarly, the gutter area is 

approximated using the bottom edge of the center ramp as reference.  Using 

the boundary points derived from the approximation, we can calculate the 

slopes and lengths following the same measurement steps used for other ramp 

components. 
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Chapter 4: 

Experiments 

Dataset and Implementation Details 

Detection 
The annotated ramp detection dataset consists of 1604 images with 3217 

bounding boxes.  Each image represents a crop of a street-level point cloud, 

projected top-down and converted into grayscale using normalized LiDAR 

intensity values.  Example images are shown in Figure 4.1. 

 

 

Figure 4.1: Example images in ramp detection dataset.  Each image represents 

a crop of a street-level point cloud and may contain ramps. 

Our DeTR models were trained on an 8:2 split dataset with a batch size of 32 

for 500 epochs.  The Adam optimizer was used with a learning rate of 10-5 and a 

weight decay of 10-4. 



27 

 

Segmentation 
The available data, including street/block-level point clouds, were manually 

annotated by a third-party firm which delineated various segments of the ramp.  

The manual annotation output assigns to each unlabeled point one of six 

classes: center ramp, warning surface, left/right flares, landing, and gutter.  The 

individual asset point clouds are then extracted and converted to 512 by 512 

grayscale images.  To apply adaptive dilation, we divide each image into 32 by 

32 chunks and consider  𝜅𝑚𝑎𝑥 = 50. 

The input images and masks for SAM are resized to 256 by 256.  Masks are 

represented as one-hot tensors with a channel dimension where different 

channels represent different classes.  The mask represents the ground truth pixel 

classification for each segment of the ramp.  The prediction for each channel is 

generated by its associated mask decoder.  The model is initialized with 

pretrained weights.  The image and prompt encoder weights are frozen during 

training and only the decoder modules are finetuned.  The training process 

employs a hybrid loss consisting of Dice loss and cross-entropy loss with equal 

weights, with sigmoid activation applied to the decoder outputs.  The model 

with a ViT Base [32] image encoder is trained on 1,541 samples with a batch size 

of 16 for 100 epochs.  Adam optimizer is used with a learning rate of 10-5 and a 

weight decay of 10-4. 

Geometric Component Decomposition 
After retrieving point cloud class assignments, we set  𝜈 = 0.7 for extracting 

internal component points for each of the three components (left/right flares, 

combined center ramp/warning surface).  We find this to be a conservative 

value that consistently yields accurate candidate points.  We choose the kernel 

coefficient 𝛾 based on the default heuristic where 𝛾 = 1 3𝜎𝑥
2⁄  in which 𝜎𝑥

2 is the 

variance of the (centered) input point cloud coordinates and 3 in the 

denominator represents the space dimensionality. 

We set a threshold of t = 0.6 in.  We also set the neighborhood ball radius to 

r= 3 in, and the critical absolute cosine similarity to 𝑠𝑐𝑟𝑖𝑡 = 0.999.  We perform 

iForest with 100 trees and a contamination of 0.02.  Finally, we set the DBSCAN 

distance parameter 𝜀 = 2 ft. 

Detection Performance 
The ramp detection results are organized in Table 4.1.  The two DeTR models 

demonstrated superior performance compared to the Faster R-CNN model.  

Specifically, the DeTR model with the ResNet-50 backbone achieved a mAP@50 

of 0.866 and a recall@50 of 0.765, while the ResNet-101 backbone further 

improved these metrics to a mAP@50 of 0.873 and a recall at IoU ≥ 50  of 0.771. 
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Table 4.1 Detection Performance on Test Dataset 

Model mAP@50 mAP@50:95 Recall at IoU ≥ 50 

Faster R-CNN (ResNet-50) 0.538 0.428 - 

DeTR (ResNet-50) 0.866 0.661 0.765 

DeTR (ResNet-101) 0.873 0.684 0.771 

The use of overlapping crops during inference enhances overall detection 

reliability because the same ramp is seen multiple times under varying contexts 

or backgrounds. This strategy ensures that when a ramp is not detected in one 

crop, it can still be identified in other crops, reducing the chances of missed 

ramps. 

Survey Accuracy 
The trained SAM model was tested on 61 visualized point clouds.  The 

average Dice score across the six asset regions (excluding the background 

class) was calculated as 0.857, with the highest score attributed to flare segment 

(0.890) and the lowest score corresponding to the gutter (0.822).  Detailed results 

are provided in Table 4.2. 

Table 4.2 Segmentation Performance across Asset Regions 

Segment Dice Score Segment Dice Score 

Center Ramp 0.842 Warning Surface 0.882 

Right Flare 0.880 Left Flare 0.890 

Landing 0.822 Gutter 0.822 

Mean (Excluding Background) 0.857 

By analyzing angles derived from corner points, we identified anomalies that 

deviated more than three standard deviations from the mean.  This method  

resulted in the exclusion of four ramps from the dataset, which were identified as 

outliers due to significant deviations in their geometric properties.   

Figure 4.2 illustrates an example of excluded outliers, which shows irregular 

segmentation or corner placements that do not conform to expected patterns.  

These ramps exhibit irregular segmentation or corner placements that deviate 

significantly from expected geometric patterns.  As such, the proposed 

methodology will flag the ramps for manual investigation by experts. 
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Figure 4.2: The excluded outlier ramps. 

For quality control, density-based filtering is applied to the 46 ramps with 

components geometrically refined in the previous step.  Eleven ramps were 

disqualified due to insufficient point cloud resolution, leaving 35 ramps for further 

analysis.  Among these, another four were disqualified per angle-based 

statistical filter using a three-standard-deviation threshold, and 11 were removed 

by the parallelism constraint on opposing ramp edges.  In total, 20 ramps passed 

both stages of quality control and were retained for the final evaluation. 

To evaluate our automated measurement pipeline, we compared the ADA 

compliance assessment results against manual measurements (see Appendix A 

for manual field measurement details).  We conducted field measurements on 

16 ramps in the City of Woodland, which were selected from the subset that 

passed quality control and were accessible based on proximity to UC Davis 

campus and ease of access to our team. 

 The comparison was performed across 12 primary ADA ramp features, each 

of which is used by Caltrans in compliance assessment as illustrated in Table 4.3. 

Each feature comprises one or more measurements (e.g., A1–A3, B1–B3, etc.), 

resulting in a total of 31 sub-feature measurements used for detailed evaluation. 

For each feature, we calculated the average measurement difference and 

compliance consistency between the automated and manual assessments. 
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Table 4.3 Measurement Labels and Compliance Standards 

Feature Compliance 

A - Ramp Slope (%) ≤ 7.7%  

B - Ramp Cross Slope (%)  ≤ 1.7% 

C - Ramp Width (inches)  ≥ 49.75" 

D - Left Flare Slope (%) ≤ 9.2% 

E - Right Flare Slope (%) ≤ 9.2% 

F - Gutter Slope (%) ≤ 1.7% 

G - Gutter Cross Slope (%) ≤ 5.2% 

H - Road Surface Cross Slope (%) ≤ 5.2% 

I - Top Landing Cross Slope (%) ≤ 1.7% 

J - Top Landing Slope (%) ≤ 1.7% 

K - Top Landing Width (inches) ≥ 49.75" 

L - Top Landing Depth (inches) ≥ 49.75" 

Figure 4.3 illustrates the absolute mean differences between our automated 

measurements and manual measurements for each ADA ramp feature.  For 

slope-based features (left), the differences remain relatively small, generally 

under 1%, indicating strong alignment between automated and manual 

processes.  The largest slope deviation was observed for the road surface slope 

(feature H), at approximately +0.54%.  For length-based features (right), greater 

discrepancies were found, particularly in landing depth (feature L), where 

manual annotations tended to exceed automated estimates by an average of 

7.88 inches.  This discrepancy is likely due to the approximation involved in 

estimating the top landing line wherein small artifacts or irregularities in the 

surface geometry may lead to inconsistent depth calculations between manual 

and automated methods. 
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Figure 4.3: Absolute mean differences between automated and manual 

measurements across ADA ramp features.  Differences are separated into slope-

based (% value) and length-based (inches) measurements.  Positive values 

(blue) indicate overestimation by the automated pipeline, while negative values 

(red) indicate underestimation. 

Since the final decision on ADA compliance is binary, we further evaluated 

the practical utility of our system by comparing binary compliance assessments 

from the automated pipeline with those obtained through manual evaluation.  

Figure 4.4 highlights the number of compliance conflicts per feature type.  The 

majority of disagreements occurred in width-based features, particularly landing 

width (six cases) and ramp width (four cases) followed by ramp slope (three 

cases).  These features are often sensitive to boundary definitions, and the 

discrepancies can arise from local surface irregularities not captured uniformly in 

manual inspections, especially when concrete lines or transitions are ambiguous.  

Such inconsistencies underscore the benefit of a consistent, geometry-based 

approach for surveying as used in our automated pipeline.  It should be noted 

that in cases where automated assessment flags a ramp as non-compliant, 

manual follow-up can be limited to the specific feature(s) that failed quality 

checks or compliance thresholds.  This targeted verification further reduces the 

overall manual effort compared to traditional full-ramp assessments. 
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Figure 4.4: Analysis of compliance consistency between automated and manual 

ADA ramp assessments.  The bar chart shows the number of compliance 

conflicts per feature type with the most frequent discrepancies observed in 

landing width and ramp width. 

To account for human error in manual measurements or inaccuracies due to 

inconsistent point clouds, we define a tolerance margin around the compliance 

threshold to assess whether the disagreement is significant.  Let the margin be 

defined as: 

𝛿 = 𝑇 ×
𝑝

100
 

Where 𝑝 is our defined margin percentage (e.g., 𝑝 = 5 ).  We define the 

acceptable range as:  

[𝑇 − 𝛿,  𝑇 + 𝛿] 

If both the automated measurement 𝐴 and the manual measurement 𝑀 fall 

within this range:  

𝑇  −  𝛿 ≤ 𝐴  ≤ 𝑇  +  𝛿    and        𝑇  −  𝛿 ≤ 𝑀  ≤ 𝑇  +  𝛿 

then the disagreement is considered within tolerance and not treated as a 

significant conflict. 

We set tolerance margins of 5% and 10% to evaluate the robustness of 

compliance consistency.  The left chart in Figure 4.5 shows that 87.9% of feature 
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assessments were consistent with manual measurements.  Among the remaining 

12.1%, the breakdown (right) shows that most discrepancies (13 out of 16) fell 

within a 5% tolerance margin, and only a single instance exceeded a 10% 

margin.  This analysis suggests that a majority of the conflicts stem from minor, 

and likely acceptable, human variation, rather than fundamental measurement 

errors in the automated system.  The results demonstrate that our method 

remains robust and reliable even under modest margin thresholds. 

 

 

Figure 4.5: (Left) Overall compliance agreement between automated and 

manual assessments without any tolerance margin applied.  (Right) Breakdown 

of the 12.1% non-matching compliance results after introducing progressive 

tolerance margins of 5%, 10%, and beyond.  Most conflicts fell within a 5% 

margin, suggesting that minor deviations in manual measurement could explain 

a majority of the disagreements.  
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Chapter 5: 

Discussions and Future Work 

 While our automated pipeline demonstrates strong results, there are several 

limitations worth considering.  First, the accuracy of the automated 

measurements is inherently dependent on the quality and density of the input 

point clouds.  Sparse or noisy data, often caused by occlusions, or poor sensor 

calibration, can lead to misidentification of ramp boundaries or make 

slope/length measurements error prone.  Although we apply outlier filtering, this 

step cannot fully mitigate the effects of incomplete data.  Second, several ramp 

components, such as landing edges and the gutter transitions, may lack explicit 

visual cues in the field.  In those cases, both manual and automated methods 

rely on approximations.  In particular, our method uses geometric projections 

and slope-based heuristics to infer feature boundaries, which may diverge from 

human interpretation in ambiguous regions where markings are faded or 

surface continuity is disrupted.  One last limitation is that while our approximated 

landing and gutter boundaries work reasonably well, they rely on geometric 

regularity and slope transitions that may not generalize well to highly irregular 

ramp designs.  In such cases, the automated system might either fail to detect 

the intended boundary or assign it incorrectly. 

 We further note that field measurements are not entirely geometric, and in 

practice, ramp visual cues, such as boundaries, factor into the measurements.  

For instance, ramp cross slope direction is defined relative to the visible ramp 

boundaries.  Consequently, there exists an inherent difference between the field 

measurements and those obtained by the proposed method when separation 

of ramp components per visual references and local surface topography do not 

align.  As discussed earlier, we used visual segmentation to retrieve a relatively 

crude prior for geometry-based component decomposition.  Given the 

aforementioned inherent difference, if a closer match with field measurements is 

desired, it can be obtained by relying more closely on the visual segmentation 

output rather than geometric modeling.  Of course, as previously stated, an 

output based on visual segmentation would not align with actual geometric 

features as closely, which is the de facto motivation for the measurements.  

 Future research directions include extending the pipeline to handle partially 

occluded assets and further exploring multimodal data, for instance combining 

LiDAR with high-resolution images. 
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