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Chapter 1 

Introduction 

Stability efects can dominate the design of slender reinforced concrete (RC) bridge columns. Yet, 
bridge engineers are often forced to make assumptions in the stability design of RC columns that 
are not rigorously justifed by data. 

The AASHTO LRFD Bridge Design Specifcations (AASHTO, 2017), hereafter referred to as 
AASHTO LRFD, includes an approximate method for the design of slender RC bridge columns. 
This approximate method, the method most commonly used by bridge engineers, was adapted from 
building design codes such as the ACI Building Code Requirements for Structural Concrete (ACI, 
2019), hereafter referred to as ACI 318. Accordingly, the AASHTO LRFD approximate method 
applies to a specifc range of parameters and confgurations based on foor framing stifness, building 
story heights, and material properties and reinforcing ratios common to buildings. While some 
analogies carry over to bridge columns, the superstructure stifness and unbraced column lengths 
can be quite diferent for bridge systems compared to buildings. The assumptions built into the 
approximate AASHTO LRFD method can lead to unsafe bridges in some cases and inefcient 
designs that are more costly than necessary in other cases. 

Bridge engineers can obtain safer and more efcient designs using the refned method based 
on second-order fnite element analysis. In fact, if the slenderness ratio exceeds 100, AASHTO 
LRFD requires the refned method. Although the refned method can be more accurate than the 
approximate method, the refned method is rarely used in practice because of the computational 
efort and the need to make choices about uncertain parameters of a fnite element model. 

The purpose of this research is to develop improved guidelines for the efcient design of slender 
RC bridge columns using the approximate method (moment magnifcation) and the refned method 
(second-order analysis). This work evaluates the AASHTO LRFD approximate moment magnifca-
tion method against advanced second-order inelastic analyses. Parametric studies were conducted 
on single column models and common Caltrans bridge types. The impact of major parameters, 
e.g., slenderness, out-of-plumbness, and superstructure stifness, on structural response according 
to both the approximate method and advanced analysis were quantifed. Refnements to the ap-
proximate method were developed in cases where these methods difer substantially. This work 
provides the guidance necessary for engineers to make justifable decisions with confdence when 
designing slender RC columns. The increased accuracy will result in more efcient, cost-efective 
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designs while maintaining safety. 

This report is organized as follows. A review of relevant literature and development of a database 
of experimental data is presented in Chapter 2. Chapter 3 introduces the advanced second-order 
inelastic analysis model used in this work. Validation studies comparing results from the refned 
model to previously published experimental results are presented in Chapter 4. Chapter 5 presents 
an evaluation of current AASHTO LRFD design provisions. The development of potential modif-
cations to the design provisions is described in Chapter 6. The work is summarized, conclusions are 
stated, and overall recommendations are made in Chapter 7. A comparison of methods, including 
the recommended methods and their use in the software package CSiBridge, for an archetype bridge 
is presented in Appendix A. 
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Chapter 2 

Literature Review 

The literature review is divided into three general areas: physical experiments, analytical modeling, 
and design of slender reinforced concrete columns. 

2.1 Physical Experiments on Slender Reinforced Concrete Columns 

Thousands of physical experiments on RC columns are documented in the literature. Given the 
goals of the project, this literature review and database development are focused primarily on 
columns that were either slender, subjected to long-term loading, or both. Tests using common 
confgurations (e.g., cross-sectional shape, boundary conditions, and loading) were added to a 
highly-quantitative database to enable automated evaluation. Testing with less common confgu-
rations is described more qualitatively. 

The experimental database is the primary means of validating the numerical models from which 
the new design recommendations are calibrated. The database includes hundreds of tests on short-
term loaded, uniaxially loaded, eccentrically loaded RC columns. Table 2.1 lists the references and 
number of specimens from each reference included in the database. 

Fields in the database are sufcient to perform a second-order inelastic analysis of each specimen 
and compare experimental results to numerical results when paired with information common to 
all specimens in the database (e.g., all specimens that have a rectangular cross section). Note that 
while the focus of the project is on RC columns with circular or obround cross sections, the data 
on RC columns with rectangular cross sections is still useful for validation. The diferences in cross 
section will be handled via the defnition of fber cross sections in the fnite element analyses. The 
felds in the database include: 

• Author and year of reference (author, year) 

• Specimen name (specimen) 

• Column length (L) 

• Maximum load from experiment (Pexp) 

• Defection at maximum load (dmax at Pexp) 
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Table 2.1: References included in the database of short-term eccentrically loaded columns. 

Reference Number of Specimens 
Viest et al. (1956) 13 

Chang and Ferguson (1963) 6 
Saenz and Martin (1963) 52 

MacGregor and Barter (1966) 4 
Martin and Olivieri (1966) 8 
Goyal and Jackson (1971) 26 
Drysdale and Huggins (1971) 4 

Dracos (1982) 36 
Iwai et al. (1986) 11 

Kim and Yang (1995) 28 
Lloyd and Rangan (1996) 36 
Foster and Attard (1997) 68 
Chuang and Kong (1997) 20 
Claeson and Gylltoft (1998) 12 

Lee and Son (2000) 32 
Kim and Lee (2000) 6 

Claeson and Gylltoft (2000) 4 
Khalil et al. (2001) 11 

Sarker and Rangan (2003) 18 
Germain and Espion (2005) 12 
Pallarés et al. (2008) 21 

Jenkins and Frosch (2015) 8 
Total 436 

• Load eccentricity at top and bottom of column (et, eb) 

• Overall height and width of the cross section (H, B) 

• Concrete compressive strength and type of sample use to determine concrete compressive 
strength (fc, fc type) 

• Yield strength of longitudinal reinforcing bars (fy) 

• Distance from edge of cross section to center of longitudinal reinforcing bars (dp) 

• Diameter of longitudinal reinforcing bars (db) 

• Number of longitudinal reinforcing bars along each face (nbx, nby) 

• Diameter, spacing, and yield strength of transverse reinforcing bars (dbt, s, fyt) 

• Transverse reinforcing confguration (lat config) 

• Miscellaneous notes (notes) 

For each parameter with units, two felds are defned: the value and the units. For example, for 
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steel yield stress, the two felds are fy and fy units. Separate felds for values and units allows for 
more efcient and accurate data entry and checking. Parameters are converted to consistent units 
programmatically prior to analysis. Figure 2.1 shows some of the cross-sectional parameters stored 
in the database. Cases where load eccentricity is near the edge or outside the section are achieved 
in the physical experiments by enlarging the ends of the column. 

eH

B

x

y

Point of Load

dp

Figure 2.1: Cross-sectional parameters of the database columns 

Not all data are available for each specimen. If a major piece of data (i.e., concrete compressive 
strength) was not reported, then the specimen was not included in the database. Other data, such 
as the yield strength of transverse reinforcing bars, is less important. Analyses were conducted to 
evaluate the sensitivity of the strength of these columns to the missing data. In cases where the 
diference in column strength for the anticipated range of the values of the missing feld is negligible, 
such as for the yield strength of transverse reinforcing bars, the specimens were included in the 
database, and the feld of missing data was left blank. 

Some specimens were excluded from the database because they failed in ways that could not 
be simulated using the numerical model in this work (e.g. if failure occurred due to imperfect 
compaction of ends). 

The information in the database is visualized with several histograms. Figures 2.2–2.9 demon-
strate the frequency and range of selected parameters from the database. 

The following list describes other series of experimental tests which relevant to this work but fall 
outside the scope of the database (e.g., long-term loaded columns and biaxially loaded columns). 

• Babazadeh et al. (2016) tested 3 slender RC bridge columns in a cantilever confguration 
with constant axial compression and cyclically applied lateral displacements. This work is 
also described in other references Burgueño et al. (2016); Babazadeh et al. (2017); Babazadeh-
Naseri (2017). 

• Barrera et al. (2011) tested 44 slender RC members which were simply-supported and sub-
jected to axial load and a transverse load at the midpoint. 

• Breen and Ferguson (1969) tested 10 slender RC columns in a cantilever confguration. 
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• Green and Breen (1969) tested 10 slender RC columns under eccentric sustained load. 

• Hsu et al. (1995) tested 14 slender RC columns under biaxial loading. 5 of the columns had 
fber reinforced concrete. 

• Hung et al. (2024) tested 4 slender RC bridge columns bent in double curvature with constant 
axial compression and cyclically applied lateral displacements. 

• Ibrahim and MacGregor (1996) tested 20 high-strength RC columns under a non-proportional 
loading scheme. 

• Kim and Lee (2000) tested 10 RC column under biaxial eccentric load in addition to the 6 
already included in the database. 

• Mavichak and Furlong (1976) tested 24 RC columns under biaxial load, including 15 with 
“partial circlar” cross sections. 

• Pancholi (1977) tested 39 RC columns. 

• Ramamurthy (1966) tested 50 RC columns in biaxial bending. 

• Sarker et al. (2001) tested 12 RC columns in biaxial bending. 

• Schofeld (1983) tested 50 RC columns under non-proportional loading. 

• Taso and Hsu (1994) tested 14 RC columns in biaxial bending, including 8 with “L-shaped” 
cross sections. 

• Wang and Hsu (1992) tested 6 RC columns in biaxial bending. 

• Wu and Huggins (1977) tested 34 RC columns in biaxial bending and under sustained load. 
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Figure 2.2: Column slenderness ratio histogram 
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Figure 2.3: Cross section aspect ratio histogram 
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Figure 2.4: Normalized load eccentricity histogram 
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Figure 2.5: Normalized depth of compression reinforcement histogram 
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Figure 2.6: Longitudinal steel ratio histogram 
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Figure 2.7: Concrete compressive strength histogram 
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Figure 2.8: Steel yield strength histogram 
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Figure 2.9: Experimental peak load over the nominal strength of reinforced concrete 
column histogram 
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2.2 Analytical Modeling of Slender Reinforced Concrete Columns 

Simulating the response of reinforced concrete columns ranges from elastic models based on efective 
section properties to nonlinear fnite element models that incorporate the stress-strain behavior of 
concrete and steel. Due to the slenderness of columns, frame or beam-column line elements are 
commonly employed because, compared to solid fnite elements, line elements strike a balance 
between computational efciency and accuracy. Owing to their prevalence in modeling reinforced 
concrete column response, this review will focus on beam-column line elements and the constitutive 
models typically employed with these elements. 

2.2.1 Finite Element Formulations 

Formulations for material nonlinear beam-column fnite elements are typically categorized as either 
distributed plasticity or concentrated plasticity. While concentrated plasticity formulations are 
popular in earthquake simulation of columns in lateral load resisting systems, these formulations 
are less suitable for stability analysis. Concentrated plasticity formulations assume the largest 
bending moments are confned to the ends of the member; however, for stability analysis, the 
largest bending moment can occur along the member due to P -δ efects. Distributed plasticity 
formulations account for material nonlinearity (concrete cracking, steel yielding, etc.) along the 
member length and will thus be the focus of this project. 

There are three major approaches to distributed plasticity: displacement-based, force-based, 
and mixed formulations. In the displacement-based formulation, a strain feld is imposed along the 
element. In the presence of material nonlinearity, the displacement-based approach requires mesh 
refnement (multiple elements per member) in order to obtain an accurate representation of the 
member deformation feld. The force-based and mixed formulations do not require mesh refnement 
to capture material nonlinearity; however, the computed response can be sensitive to the numerical 
integration used for the element state determination. 

To account for geometric nonlinearity along a column member (P -δ efects), moderate to large 
deformation formulations for displacement-based, force-based, and mixed elements are available. 
For displacement-based elements, second-order Green-Lagrange strain is computed from the ele-
ment displacement felds Hjelmstad (2005) while for the force-based formulation, curvature-based 
displacement interpolation approximates the transverse displacement along an element Neuenhofer 
and Filippou (1998). In the mixed formulation, both the displacements and the stress resultants are 
treated as interpolated felds along each element using the Hellinger-Reissner principle Hjelmstad 
and Taciroglu (2003). The displacement-based formulation for geometric nonlinearity typically re-
quires mesh refnement while the force-based and mixed formulations can use a single element per 
member to capture combined material and geometric nonlinearity. However, using a single element 
per member for combined material and geometric nonlinearity is uncommon as it is desirable to 
defne intermediate nodes to track defections. Comparisons of the three formulations are given 
by Alemdar and White (2005). 

Instead of a single member, a mesh of material nonlinear, but geometrically linear elements, 
each with the corotational large displacement transformation Crisfeld (1991) can also capture 
geometric nonlinearity. This “corotational mesh” approach requires multiple elements, but can 
be a more suitable approach for stability analysis of reinforced concrete columns because the high 
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number of elements per member, typically four or fve, will also capture the change in stifness along 
the member. Because the mesh is already refned to capture geometric efects, the displacement-
based formulation is typically used in this “corotational mesh” approach because this formulation 
is the most computationally simple among the three formulations. 

2.2.2 Constitutive Models 

Fiber-discretized cross-sections provide a convenient approach to modeling the change in stifness 
along a member under combined axial and fexural loads. With this approach, the force-deformation 
response at each integration point along an element is computed from the stress-strain response at 
discrete locations (fbers) over the section area. Although the computed force-deformation response 
improves as the number of fbers increases, a relatively low number of fbers is required to obtain 
accurate response for reinforced concrete members in compression Kostic and Filippou (2012). 

With the fber section approach, one-dimensional, or uniaxial, stress-strain relationships are 
assigned to each fber. For monotonic (non-cyclic) loading such as the conditions expected for 
stability analysis, basic models of concrete and steel stress-strain behavior typically sufce. For 
concrete, the compressive backbone is often defned by Mander et al. (1988) or the Kent and 
Park (1971) approximation. The increase in concrete stifness and strength due to confnement in 
compression is typically represented with the Mander model based on transverse steel strength and 
spacing Mander et al. (1988). Although it is conservative to ignore the benefcial efects of concrete 
tension strength and strain hardening of steel when computing member strength, these efects can 
be included with little additional modeling efort when using fber sections. 

A schematic of a corotational mesh with the fber section modeling approach is shown in Fig-
ure 2.10. Note that, without complication, rotational and translational springs can be added at the 
ends of the corotational mesh in order to model bent cap and foundation stifnesses. All of these 
modeling components (corotational mesh, fber section, stress-strain relationships for concrete and 
steel, and rotational and translational springs) are available in the widely-used OpenSees fnite 
element software framework McKenna et al. (2010). 

2.2.3 Long-Term Load Efects 

Reinforced concrete column stability under long-term loads is an important consideration due to 
the additional strains, curvatures, and deformations owing to creep and shrinkage. Goel et al. 
(2007) compared several models for concrete creep and shrinkage, comparing the model efects on 
long-term behavior. Although none of the models give an explicit expression for the change in 
concrete compressive strength because the models are intended for service level loads, expressions 
are available for the change in elastic modulus as a function of time. Without a change in strength, 
the change in stifness will have an efect on column stability under long-term loading. 

Several time-dependent concrete material models by Knaack and Kurama (2018) are available in 
OpenSees Tošić et al. (2020), along with a general material wrapper that applies creep and shrinkage 
evolution equations to any uniaxial material. In the time-dependent concrete models available in 
OpenSees, the evolution equations for creep and shrinkage are based on either Eurocode 2010 fb 
(2013) or ACI 209-92R ACI Committee 209 (1997). The models employed in this project are based 
on ACI 209-92R evolution equations. These time-dependent models can be used directly in the 
fber section models described in the previous section. 
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Figure 2.10: Analytical model of a bridge column using corotational mesh and fber sections with 
uniaxial stress-strain relationships for concrete and steel. 

2.3 Design of Slender Reinforced Concrete Columns 

Standards that include provisions for the design of slender reinforced concrete columns often de-
scribe several methods. These methods of design are most generally categorized by the method of 
analysis they employ, including second-order inelastic analysis, second-order elastic analysis, and 
frst-order elastic analysis with moment magnifcation. 

Several standards, including AASHTO LRFD, the 2019 edition of ACI 318, and Eurocode 2, 
permit the use of second-order inelastic analysis for design of slender reinforced concrete columns. 
The design provisions in each of these standards are general with little guidance beyond which 
physical efects need to be considered. Provisions for design using second-order elastic analysis are 
typically general as well. 

The most detailed provisions for the design of slender reinforced concrete columns are for 
methods that utilize frst-order elastic analysis and moment magnifcation. Key aspects of these 
methods include: 1) a limit at which second-order efects may be neglected, 2) approximate formulas 
for efective fexural stifness, and 3) equations for determining the moment magnifcation factors. 
The provisions in AASHTO LRFD are largely based on those in ACI 318. 

AASHTO LRFD presents two equations (Equations 5.6.4.3-1 and 5.6.4.3-2) for computing the 
efective fexural rigidity of RC columns. 

0.4EcIg
EI = (2.1)

1 + βd 
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0.2EcIg + EsIse
EI = (2.2)

1 + βd 

where: 
Ec = modulus of elasticity of concrete 
Es = modulus of elasticity of longitudinal steel 
Ig = moment of inertia of the gross concrete section about the centroidal axis 
Ise = moment of inertia of longitudinal steel about the centroidal axis 
βd = ratio of maximum factored permanent load moments to maximum factored total load moment 

Basing the efective fexural rigidity on more precise calculation is also permitted by AASHTO 
LRFD. 

ACI 318 includes a third equation for the fexural rigidity based on the work of Khuntia and 
Ghosh (2004). � �� � 

0.80 + 25Ast 1 − Mu − 0.5Pu EcIg ≤ 0.875EcIgAg Puh Po 
EI = (2.3)

1 + βd 

where: 
Ast = total area of longitudinal reinforcement 
Ag = gross area of concrete section 
Mu = factored moment at section 
Pu = factored axial force 
h = overall depth of member 
Po = nominal axial strength at zero eccentricity 

Note that ACI 318 permits other, larger, values of stifness for second-order elastic analysis. 

Eurocode 2 governs reinforced concrete bridge design in Europe. Part 1-1 of this standard CEN 
(2004) contains general rules. Part 2 of this standard CEN (2005) contains design and detailing 
rules specifc to concrete bridges. For analysis of second-order efects with axial load, the specifc 
provisions in Part 2 are minimal. 

The simplifed method based on nominal stifness presented in Eurocode 2 is similar to the 
moment magnifcation methods in AASHTO LRFD and ACI 318. The efective stifness used in 
the analysis is 

EI = KcEcIg + EsIse (2.4) 

where Kc = k1k2/(1+ ϕef ), with a creep parameter ϕef . The parameter k1 is based on the concrete 
compressive strength r 

k1 = 
′ fc 

20 MPa 
(2.5) 

while k2 is based on axial load � � � � 
P λ 

k2 = ≤ 0.20′ Acf 170c 
(2.6) 
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′ where f is the specifed compressive strength of concrete, psi, and λ is a slenderness ratio.c 

Eurocode 2 also includes a simplifed method based on nominal curvature. This method is 
similar to that described by CEB-FIP Manual of Buckling and Instability, which Bažant et al. 
(1991) found provides highly accurate results. However, this method is mainly intended for isolated 
members. 

Other researchers have proposed equations for the fexural rigidity of reinforced concrete columns. 
Mirza (1990) developed equations that depend on the column length and eccentricity while Jenkins 
and Frosch (2015) developed equations that depend on required axial strength, required fexural 
strength, and steel ratio. 
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Chapter 3 

Refned Second-Order Analysis 

Refned second-order analysis capabilities are necessary for this work to form the “best guess” of 
true behavior and provide a benchmark against which current and proposed design provisions can 
be evaluated. The refned second-order analyses performed in this work utilize frame elements to 
model bridge columns and capture both material and geometric nonlinearity. The analyses are 
not necessarily intended for use in practice. This chapter describes the models while the following 
chapter describes validation studies that confrm the models produce accurate results. 

3.1 General Modeling 

Models of columns were developed in the OpenSees fnite element framework using Python and the 
OpenSeesPy interpreter Zhu et al. (2018). Columns were modeled with frame elements, specifcally 
a mixed beam column-element although displacement- and force-based beam-column elements are 
available and interchangeable with the mixed element. Eight elements along the length of the 
column and a corotational transformation between element basic and local coordinate systems 
were used to capture geometric nonlinearity and initial geometeric imperfections (by defnition of 
initial nodal coordinates). The Gauss-Lobatto quadrature rule with three integration points was 
used to integrate the section response. The constitutive response at each section was obtained 
from a fber section approach where stress-strain response is assigned to each cell of the discretized 
cross-section area. 

Three cross-sectional shapes are considered in this work: 1) rectangular, 2) circular, and 3) 
obround. Circular and obround shaped columns are common on Caltrans bridges. Rectangular 
columns are not standard Caltrans design, however, the vast majority of experimental results on 
RC columns identifed in the literature are with rectangular cross sections. Fiber discretized models 
have been developed for rectangular (Figure 3.1), circular (Figure 3.2), and obround cross sections 
(Figure 3.3). The cross sections shown in these fgures have only been discretized in one direction 
as is accurate and efcient for two-dimensional analyses. 

Each fber discretization consists of a) concrete patches that are subdivided into fbers and b) 
individually defned fbers for the longitudinal steel reinforcing bars. The patches were assigned ei-
ther a core concrete or cover concrete stress-strain relationship to capture the efects of confnement 
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Figure 3.1: Rectangular section fber discretization

with uniaxial materials as described below.

Figure 3.2: Circular section fber discretization

For circular cross sections, several concentric circular patches were used to make the size of
the individual fbers more uniform. Each individual fber representing a steel reinforcing bar was
paired with a second individual fber of negative area and concrete material in order to avoid double
counting of steel and concrete areas.

For each cross-sectional type, a Python function was written to defne the fber discretization.
To simplify input, the number of fbers is defned for the overall cross section as the approximate
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(a) 

(b) 

Figure 3.3: Obround section fber discretization (a) bending about the x-axis (b) bending about 
the y-axis 
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number of fbers in the x and y directions. The number of fbers in specifc concrete patches was 
computed using these values and cross-sectional properties. 

OpenSees includes a variety of uniaxial constitutive relations for reinforcing steel. A relatively 
simple elastic-perfectly plastic material (Figure 3.4) was used because this model captures yielding 
and requires only two input parameters, the modulus of elasticity and yield stress, both of which are 
generally known. Due to conservatism in the results, neglecting steel strain-hardening is common 
in the development of design recommendations for RC members. 

St
re
ss

Strain

E

Figure 3.4: Elastic-perfectly plastic material used for modeling reinforcing steel 

OpenSees also includes a variety of uniaxial constitutive relations for concrete. Many models 
are available for capturing the short-term behavior of concrete. The model described by Mander 
et al. (1988) was selected for this work as it is commonly used (Figure 3.5). The available concrete 
constitutive relations that capture creep and shrinkage in OpenSees are discussed in Chapter 4. A 
creep and shrinkage material wrapper was developed for this project so that modeling choices for 
short-term and long-term loading are as consistent as possible. 
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Figure 3.5: Mander material used for modelling concrete 

3.2 Concrete Constitutive Modeling for Short-Term Loading 

The stress-strain relationship described by Mander et al. (1988) was adopted for modeling concrete 
under short-term loading, with the exception of equations for Ec and εc which were taken from other 
references. The model describes a backbone curve for the compressive response and confnement 
model. The strength and stifness of concrete in tension are neglected. For GMNIA, the Concrete04 
uniaxial material is used to capture this behavior. 

The elastic modulus of the concrete is calculated as p 
′ Ec = 57000 f (3.1)c 

′ where Ec is the elastic modulus of the concrete and f is the compressive strength of the concrete, c 
both in units of psi. 

The strain at maximum compressive strength for unconfned concrete (εc) is calculated as 

′ )1/4(fcεc = (3.2)
4000 

′ where f is in units of psi.c 

Eq. (3.1) is based on ACI 318 while Eq. (3.2) is based on Chang and Mander (1994). 

The concrete in the core of the cross-section is confned by the transverse steel reinforcement, 
thus increasing its strength and ductility. The peak compressive strength for confned concrete 
(fcc) is calculated as 

For rectangular sections confned by rectangular hoops with or without cross ties 

′ ′ f = f (1 + k1x̄) (3.3)cc c 

For sections confned by spirals or circular hoops 
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√′ ′ f = f (−1.254 + 2.254 1 + 7.94x̄ − 2.0x̄) (3.4)cc c 

with k1 and x̄ defned as � � 
0.9 

k1 = A 0.1 + (3.5)
1 + Bx̄ 

For rectangular sections confned by rectangular hoops 

fl1 + fl2 
x̄ = (3.6)′ 2fc 

For sections confned by spirals or circular hoops 

fl 
x̄ = (3.7)′ fc 

where fl, fl1, and fl2 are the lateral confning pressure on the concrete (in x and y direction for fl1 
and fl2, respectively), and defned as: 

For rectangular sections confned by rectangular hoops: 

fl1 = keρsxfyh (3.8) 

fl2 = keρsyfyh (3.9) 

For sections confned by spirals or circular hoops: 

1 
fl = keρsfyh (3.10)

2 

where ρs is the ratio of the volume of transverse confning steel to the volume of confned concrete 
core (in x and y direction for ρsfyh and ρsfyh, respectively); fyh is the yield strength of the 
transverse reinforcement; ke is the confnement efectiveness coefcient as defned by Mander et al. 
(1988). 

The factors A and B are calculated as below 

−4.989qA = 6.886 − (0.6069 + 17.275q)e (3.11) 

4.5 
B = − 5 (3.12)5 −3.8939q] − 0.1[0.9849 − 0.6306eA 

with q defned as 
fl1 

q = , fl2 ≥ f11 (3.13)
fl2 

23 



The strain at maximum compressive strength for confned concrete is calculated as 

εcc = εc(1 + k2x̄) (3.14) 

where k2 = 5k1. 

Table 3.1 summarizes the parameters used for modelling core concrete versus cover concrete. 
The optional parameters to defne the tensile strength of concrete were omitted since the tensile 
strength of concrete was neglected in this work. 

Table 3.1: Concrete04 material parameters for core and cover concrete. 

Input Parameter Core Concrete Cover Concrete 
Concrete Compressive Strength, fc ′ f (Eq. (3.3), Eq. (3.4))cc 

′ fc 
Concrete Strain at Maximum Strength, epsc εcc (Eq. (3.14)) εc (Eq. (3.2)) 
Concrete Strain at Crushing Strength, epscu 2εcc 2εc 

Modulus of Elasticity, Ec Ec (Eq. (3.1)) Ec (Eq. (3.1)) 

3.2.1 Example Results 

Interaction diagrams computed using the refned second-order analysis model are among the pri-
mary analysis results that will be used in this project. Example interaction diagrams are presented 
in this section for a base case and variations from the base case. The structure examined for these 
example interaction diagrams is a simply-supported column subject to axial compression and equal 
end moments producing single-curvature bending (Figure 3.6). The parameters for the base case 
are as follows: 

• Column length, L = 200 in. 

• Section Diameter, D = 10 in. 

• Longitudinal steel ratio, ρs = Asr/Ag = 0.02 

• 6 bars in circumference direction 

• Distance from center of reinforcing to outside edge of concrete = 1 in. 

• Steel yield strength, fy = 60 ksi 

• Initial geometric imperfection, δo = L/1000 

A series of analyses was performed to construct each interaction diagram. The frst analysis 
subjects the column to axial load only. The analysis is performed in displacement control until a 
maximum applied load was observed. Once the maximum applied axial load was determined, a 
series of equally spaced axial loads between the maximum axial load and zero were selected. For 
each of these selected axial loads a non-proportional analysis was performed, frst applying the axial 
load, then increasing the applied moment (while holding the applied axial load constant) until a 
maximum applied moment was observed. The maximum applied moment was recorded as M1. 
The maximum internal moment along the length of the member when the applied load reached its 
maximum was recorded as M2. For this case, the two moments difer by the P-δ moment occurring 
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Figure 3.6: Example column and loading 

at mid-height of the columns (Figure 3.7). The resulting interaction diagrams for the base case are 
presented in Figure 3.8. 

To evaluate the model and ensure that the results align with known behavior of RC columns 
several series of interaction diagrams were produced each varying a single structural parameter. 
Interaction diagrams with variations in column slenderness ratio (Figure 3.9), concrete compressive 
strength (Figure 3.10), steel yield stress (Figure 3.11), and longitudinal steel ratio (Figure 3.12) 
were produced. 

The interaction diagrams shown in these fgures align with expectations based on known be-
havior of RC columns. In the base case, the shape of the interaction diagram is as exceed with a 
bulge near the balance point. The moments for the internal force interaction diagram are larger 
than for the applied load interaction diagram for all except the case with zero axial load where 
P -δ = 0 because P = 0. The internal moment for case with zero applied axial load is greater 
than zero because of the initial geometric imperfections. A reduction in maximum applied loads 
is seen with increasing member slenderness (Figure 3.9) due to the larger P -δ eforts that occur 
for longer columns. The internal moments are less sensitive to changes in member slenderness and 
only decrease for longer columns where the failure becomes more stability dominated. Increasing 
the concrete compressive strength has a much larger efect on the axial strength than the moment 
strength (Figure 3.10). Conversely, increasing the steel yield stress or steel ratio has a much larger 
efect on the moment strength than the compressive strength (Figure 3.11 and Figure 3.12). In-
creasing the steel yield stress or steel ratio also has the efect of changing the shape of the interaction 
diagram with the bulge at the balance point becoming less pronounced with more steel-dominant 
columns. 
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Figure 3.7: Moments produced in the column 
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Figure 3.8: P-M interaction diagram of the base case 
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Figure 3.9: P-M interaction diagram for diferent slenderness ratio values (diameter held constant) 
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Figure 3.10: P-M interaction diagram for diferent concrete compressive strength values 
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Figure 3.11: P-M interaction diagram for diferent steel yield strength values 
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Figure 3.12: P-M interaction diagram for diferent longitudinal steel ratio values (diameter and 
number of bars held constant) 
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3.3 Concrete Constitutive Modeling for Long-Term Loading 

To account for the efect of concrete shrinkage and creep over long periods (several decades) of 
bridge service life, the concrete stress-strain relationship used for short-term loading was modifed 
within the OpenSees model. 

3.3.1 OpenSees Time-Dependent Concrete Models 

Although several time-dependent uniaxial material models are available in OpenSees for modeling 
creep and shrinkage of concrete, none of the models meet the needs of this project. For example, the 
TDConcrete model uses ACI209R-92 creep evolution equations, but does not not incorporate peak 

′ compressive strength, f , i.e., the model assumes concrete is linear in compression. On the otherc 
hand, the TDConcreteMC10NL model incorporates compressive strength but uses creep evolution 
equations from Model Code 2010. And even though the TDConcreteNL model uses ACI209R-
92 evolution equations, the concrete compressive behavior is based on the Concrete02 model in 
OpenSees whereas the column interaction diagrams generated in this report for short-term loading 
use the Concrete04 material model. 

Rather than implement another “TDConcrete” model that is derivative of TDConcreteNL, dif-
fering by only the concrete stress-strain behavior, a generic CreepMaterial wrapper was developed. 
This wrapper is able to apply ACI209R-92 creep and shrinkage evolution equations to any uniaxial 
material model, ranging from Elastic material to the Concrete04 used previously in this report. 
The OpenSees input format for the wrapper material model is shown below: 

uniaxialMaterial Concrete04 $concTag $fc $epsc $epscu $Ec 

uniaxialMaterial Creep $matTag $concTag $tD $epsshu $psish \ 
$Tcr $phiu $psicr1 $psicr2 $tcast 

where matTag is the material tag of the wrapper and concTag is the material tag of the wrapped 
material (shown above with Concrete04 inputs). 

The parameters tD, epsshu, and psish control the evolution of concrete shrinkage, respectively 
defned as the analysis time at the start of drying, the ultimate shrinkage strain, and a ftting 
parameter based on the cross-section dimensions. 

The parameters Tcr, phiu, psicr1, and psicr2 defne the evolution of creep in the concrete 
material. The parameter Tcr is the creep model age in days and phiu is the ultimate creep 
coefcient. The parameters psicr1 and psicr2 are ftting parameters where the former is typically 
taken as 1.0 while the latter is based on the cross-section dimensions. 

The fnal parameter, tcast, is the analysis time when the concrete was cast. All analysis 
times input for the CreepMaterial wrapper are in days. Additional details on the time-dependent 
concrete models available in OpenSees, as well as utilities for calculating creep and shrinkage ftting 
parameters, are provided by Tošić et al. (2020). 
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3.3.2 Analysis Sequence for Long-Term Loading 

The concrete models that account for long-term load efects (creep and shrinkage) in OpenSees 
require additional analysis considerations beyond typical short-term loading scenarios. The creep 
concrete models use the time step from analysis domain in order to determine incremental stress, 
creep, and shrinkage efects. The models interpret the time unit as days, so some caution is required 
in order to mix long-term and short-term analyses in OpenSees. 

1. Adjust creep and shrinkage parameters based on member size. 

2. Defne the model with the CreepMaterial wrapper for concrete fbers. 

3. Analyze the model for zero load with creep turned on (setCreep 1) and with the domain 
time set to after the start of drying. Note that self-weight of the concrete is not included in 
the analyses performed for this report. 

4. Defne gravity loads. 

5. Analyze the model for the sustained gravity load with creep turned of (setCreep 0). This 
step puts the column into static equilibrium. 

6. Analyze the model for shrinkage efects with creep turned on (setCreep 1) and the domain 
time set to when the column can sustain loads, e.g., 28 days after casting. This step accounts 
for initial shrinkage. 

7. Leaving creep on, analyze the model for long-term creep efects inside a loop. Due to the 
long time scale, the stepping should be logarithmic and the time step should be passed to the 
LoadControl integrator at each analysis step inside the time loop. 

8. Turn creep of (setCreep 0), then perform one static analysis at the post-creep state. 

9. Analyze the model for remaining (post-creep) load capacity. If using displacement control, 
set the domain time to zero and defne a linear time series with reference loading for the 
capacity analysis. Assuming the model did not fail during the creep analysis, load the model 
to a specifed failure criterion. 

3.3.3 Minimal Long-Term Loading Examples 

To account for long-term load efects, only the concrete material model (Concrete04 used in this 
report) must be wrapped with the CreepMaterial wrapper. To demonstrate the evolution of creep 
and shrinkage strains, simulations of long-term loading were carried out in OpenSees for the base 
case and nominal parameters shown in Figure 3.6 along with the following additional parameters: 

• Constant axial load, 50 kip, held for 10,000 days (approximately 30 years) 

• Load eccentricity, 0.1D (one-tenth of column diameter) 

• After holding the axial load for 10,000 days, the axial load is increased in order to determine 
the axial load carrying capacity of the column 

Although there is zero moment applied, the initial L/1000 geometric imperfection will cause P -
δ moments to increase under sustained, long-term loading due to concrete creep and shrinkage. 
Long-term analyses are performed over the following parameter ranges: 
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• Ultimate creep factor, ϕu; base = 2.8, range = [1.3, 2.3, 2.8, 3.3, 4.3] 

• Ultimate shrinkage strain, εsh,u; base = 780×10−6 , range = [480×10−6 , 630×10−6 , 780×10−6 , 
930 × 10−6 , 1080 × 10−6] 

′• Concrete compressive strength, f ; base = 4 ksi, range = [3, 4, 5, 6] ksic 

Analyses are repeated for the range of values for each parameter listed above. Rather than analyze 
for all possible parameter combinations, when a parameter is varied, the other parameters are held 
fxed at their base value. 

Prior to analysis, the concrete creep and shrinkage parameters are adjusted based on the member 
size using spreadsheet tools developed by Tošić et al. (2020). In addition to member size, the 
adjustments accounts for relative humidity, aggregate size, cement type, and other factors. Default 
values are used for every factor except for member size. The important parameter is the ratio 
of volume to surface area for the member, which for a straight member reduces to the ratio of 
cross-section area to circumference. 

For a circular cross-section of diameter, D, the ratio of cross-section area to circumference is 
D/4. Using the spreadsheet tools developed by Tošić et al. (2020), the adjusted creep and shrinkage 
values for the D=10 inch diameter column are shown in Table 3.2. The parameters adjustments 
assume the nominal creep and shrinkage parameters are measured at 1000 days and that concrete 
drying begins seven days after casting. 

′ Table 3.2: Adjusted creep and shrinkage parameters for D=10 inch circular column with f =4 ksi.c 

CREEP, ϕu SHRINKAGE, εsh,u 
Nominal Adjusted Nominal Adjusted 
1.8 
2.3 
2.8 
3.3 
3.8 

1.00 
1.28 
1.56 
1.84 
2.12 

480 × 10−6 

630 × 10−6 

780 × 10−6 

930 × 10−6 

1080 × 10−6 

234 × 10−6 

307 × 10−6 

380 × 10−6 

454 × 10−6 

527 × 10−6 

Figure 3.13 shows the variation in column response over the range of nominal creep factors 
1.8–3.8. As expected, the lateral defection at column mid-height increases as the creep factor 
increases. There is little diference in the ultimate axial load capacity of the column, with ultimate 
strength of about 160 kip in all cases, about a 10% reduction compared to the case of no creep and 
shrinkage (short-term loading). 

Likewise, Figure 3.14 shows little efect on the ultimate capacity of the column over the range 
of nominal shrinkage strain (480 × 10−6–1080 × 10−6); however, the inclusion of long-term load 
efects causes a reduction in axial strength compared to the short-term loading case. 

31 



Figure 3.13: Axial force-lateral defection response for long-term loading on column with range of 
ultimate creep factors. 

Figure 3.14: Axial force-lateral defection response for long-term loading on column with range of 
ultimate shrinkage strain. 
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′ The fnal parametric variation shown in Figure 3.15 is over the concrete strength f . As ex-c 
pected, the lateral defection during the hold phase decreases and the axial strength of the column 
increases as the concrete compressive strength increases. In all cases, the inclusion of long-term 
creep and shrinkage efects leads to an approximately 10% reduction in column axial strength. 

Figure 3.15: Axial force-lateral defection response for long-term loading on column with range of 
concrete strength. 

These examples demonstrate the long-term loading capabilities and the relative efect of the 
creep and shrinkage parameters that afect column axial strength. The results indicate that the 
long-term axial capacity is not sensitive to the ultimate creep factor and ultimate shrinkage strain; 
however, the axial capacity is sensitive to the presence of long-term load efects, i.e., that the model 
includes long-term load efects, but not what the parameters are. The conclusions are preliminary 
and cannot be generalized before performing additional column analyses over various cross-section 
sizes, column slenderness ratios, and load eccentricities. In addition to further parametric anal-
yses, the Concrete04 with CreepMaterial wrapper model will be validated against a series of 
experimental results in Chapter 4. 
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Chapter 4 

Model Validation 

To validate the model described in Chapter 3, a series of analyses were performed to compare against 
experimental data compiled as described in Chapter 2. The comparisons are currently limited to 
short-term loading of rectangular RC columns using the database of experiments described in 
Table 2.1. 

4.1 Short-Term Loading of Rectangular Reinforced Concrete Columns 

Analyses were performed for each of the 436 RC columns listed in Table 2.1. These columns were 
all simply-supported single columns that were proportionally loaded with defned eccentricities. 
Each column was modeled as described in Chapter 3. Eight elements were used along the length 
of the column. 

The yield strength of lateral reinforcement was not reported for some of the columns in the 
database. According to trial evaluations, the exact value of fyt had minimal efect on the resulting 
peak load had little efect on the column strength, hence this has no relevant efect on the results. 
For these cases, a yield strength of fyt = 60 ksi was assumed. Note, however, some references that 
did not report the yield strength were published as early the 1960s when lower strength steel may 
have been common. 

Additionally, the concrete compressive strength for some columns in the database were reported 
as cubic specimen strength. As the value used in the model is cylinder specimen strength, the cubic 
ones needed to be converted to the equal cylinder values. This was done using conversion factors 
described by Reineck et al. (2003), specifcally 

′ ′ f = 0.78f (4.1)c,cyl c,cube 

Initial out-of-straightnesses were included through defnition of the initial nodal coordinates. 
The magnitude of initial imperfection of the column specimens was not typically reported. Three 
sets of analyses were performed, with diferent magnitudes of initial out-of-straightness. Statistics 
on the resulting ratio of maximum load from the OpenSees model, PGMNIA to the maximum load 
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Figure 4.1: Histogram of validation results (δo = L/1000) 

from the experiment, Pexp are shown in Table 4.1. A histogram of the PGMNIA/Pexp ratio for the 
case of δo = L/1000 is shown in Figure 4.1. 

Based on these results, the model is capable of accurately capturing the strength of RC columns. 
The mean value is closest to unity for initial out-of-straightness of L/1333. However, this does not 
necessarily mean that L/1333 is best representative of the actual out-of-straightness of the columns 
in the experimental database. It is likely still most appropriate to assume L/1000 as a conservative 
value for the development of design provisions. 

Table 4.1: Statistical data of PGMNIA/Pexp based on assumed initial geometric imperfection. 

Initial Imperfection Mean St. Dev. CoV 
δo = L/1000 0.981 0.135 0.138 
δo = L/1333 0.995 0.139 0.140 
δo = L/2000 1.014 0.140 0.138 

To further investigate the accuracy of the model, scatter plots were produced showing the 
PGMNIA/Pexp ratio as a function of column slenderness ratio (Figure 4.2), section aspect ratio (Fig-
ure 4.3), concrete compressive strength (Figure 4.4), and steel yield stress (Figure 4.5). No dis-
cernible relationship between PGMNIA/Pexp and the parameters is noted, indicating that the model 
is not biased for any of these parameters. 
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Figure 4.2: Scatter plot of validation results vs. column slenderness ratio (δo = L/1000) 

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Section aspect ratio, H/B

0.8

1.0

1.2

1.4

/P
e
x
p

P
G
M
N
I
A

Figure 4.3: Scatter plot of validation results vs. section aspect ratio (δo = L/1000) 
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Figure 4.4: Scatter plot of validation results vs. concrete compressive strength (δo = L/1000) 
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Figure 4.5: Scatter plot of validation results vs. steel yield stress (δo = L/1000) 

37



4.2 Long-Term Loading of Rectangular Reinforced Concrete Columns 

OpenSees models were developed for validation of long-term loading simulations against the exper-
imental results. 

4.2.1 Long-Term Loading Experiments 

Jenkins and Frosch (2015) performed a series of long-term loading experiments on slender reinforced 
concrete columns of rectangular cross-section shown in Figure 4.6. The slenderness ratio, L/r, for 
the columns was either 40 or 70 giving column lengths L=6 ft and 10 ft. The section dimensions 
and steel reinforcing pattern are shown in Figure 4.6. In addition to slenderness ratios of 40 and 70, 
Jenkins and Frosch varied the bar sizes (#3 and #5) along with the load eccentricity, e/h, equal 
to 0.10 and 0.25. 

6.125 inch 

6.125 inch 

Figure 4.6: Reinforced concrete section details for experiments in Jenkins and Frosch (2015). 

From the eight combinations of slenderness, bar size, and load eccentricity, the 12 specimens 
listed in Table 4.2 were tested under sustained loading. In four cases, two specimens of the same 
confguration were tested (denoted (2) in the table). 

Table 4.2: Specimens tested by Jenkins and Frosch (2015) for sustained loading. 

Specimen Bar Size Slenderness, L/r Load Eccentricity, e/h 
R3-40-10-LT 
R5-40-10-LT 

R3-40-25-LT (2) 
R5-40-25-LT (2) 
R3-70-10-LT (2) 
R5-70-10-LT (2) 
R3-70-25-LT 
R5-70-25-LT 

#3 
#5 
#3 
#5 
#3 
#5 
#3 
#5 

40 
40 
40 
40 
70 
70 
70 
70 

0.10 
0.10 
0.25 
0.25 
0.10 
0.10 
0.25 
0.25 

In the experiments, an axial load (with specifed eccentricity) is held constant for about 100 
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days. If the column specimen did not fail during this “hold phase”, the axial load is subsequently 
increased to determine the long-term column capacity. 

Jenkins and Frosch (2015) report experimentally obtained values for the ultimate shrink-
age strain, εshu=750 × 10−6 , and ultimate creep factor, ϕu=3.3. These values are input to the 
CreepMaterial wrapper along with ψcr1=1 and ψsh =ψcr2=45.168. The values for concrete strength, 
stifness, and axial load during the “hold phase” are detailed by Jenkins and Frosch (2015), along 
with reinforcing steel material properties. 

The subsequent fgures compare the experimentally obtained a) displacement-time and b) load-
displacement relationships for each column. Note that the recorded displacement is the lateral 
displacement at mid-height of each column. OpenSees models used a corotational mesh of eight 
mixedBeamColumn frame elements (to capture P -δ efects) with fber sections defned by Concrete04 
and Steel01 materials. Each section uses 40 concrete fbers (layers) through the section depth and 
one fber for each reinforcing bar. Concrete fbers of negative bar area are collocated with the steel 
fbers so that the concrete contribution is not double counted. 

In addition to simulations of short-term load efects with Concrete04, the following sections also 
present simulations of long-term loading using the CreepMaterial wrapper around Concrete04. 
This wrapper accounts for creep and shrinkage efects according to ACI209R-92 using the ultimate 
shrinkage strain and ultimate creep factor reported by Jenkins and Frosch (2015). Note that under 
short-term loading, a corotational mesh of displacement-based elements would be sufcient; how-
ever, the distribution of strain across each section will evolve under long-term creep and shrinkage 
efects, and the mixed formulation will maintain equilibrium along each element. 

4.2.2 R3-40-10-LT and R5-40-10-LT 

The frst comparisons are for the case of L/r=40 and load eccentricity e/h=0.1 with #3 and #5 
reinforcing bars. These conditions produce the least geometric efects and the specimens should 
pass the “hold phase” and be able to take on more axial load up to failure. As shown in Figure 4.7, 
the simulation does a good job of predicting the long-term displacement as well as the ultimate 
axial load after the “hold phase“. For references, the short-term simulation predicts an ultimate 
column capacity of 172 kip while the long-term simulation predicts a capacity of 157 kip, closer to 
the experimental capacity of 150 kip. 
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Figure 4.7: Comparison of short-term and long-term OpenSees simulations with experimental 
results for specimen R3-40-10-LT: (a) displacement-time and (b) load-displacement. 
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The second specimen for the L/r=40 slenderness and e/h=0.1 load eccentricity uses #5 instead 
of #3 steel bars. With more steel, the axial load carrying capacity of the section should increase and 
the long-term load efects should decrease slightly compared to the case with #3 bars. As shown 
in Figure 4.8, the long-term defection decreases while the axial load capacity increases compared 
to the previous case with #3 bars. 

Figure 4.8: Comparison of short-term and long-term OpenSees simulations with experimental 
results for specimen R5-40-10-LT: (a) displacement-time and (b) load-displacement. 
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4.2.3 R3-40-25-LT and R5-40-25-LT 

The second set of specimens maintains slenderness L/r=40 but has a higher axial load eccentricity, 
e/h=0.25, which should increase the bending moment in the column and thus the P -δ efect under 
long-term loading. 

Two specimens, designated R3-40-25-LT-1 and R3-40-25-LT-2 were tested with #3 bars. As 
shown in the load-displacement plots of Figures 4.9 and 4.10, these specimens had little to no axial 
load capacity after the “hold phase”. The simulated long-term models had difculty capturing 
the loss of capacity due to creep and predicted gains in strength after the hold phase. However, 
the models of long-term concrete behavior generally predicted less capacity than the short-term 
models. 

Figure 4.9: Comparison of short-term and long-term OpenSees simulations with experimental re-
sults for specimen R3-40-25-LT-1: (a) displacement-time and (b) load-displacement. 
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Figure 4.10: Comparison of short-term and long-term OpenSees simulations with experimental 
results for specimen R3-40-25-LT-2: (a) displacement-time and (b) load-displacement. 
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Two specimens were tested with #5 bars and slenderness and eccentricity of L/r=40 and 
e/h=0.25, respectively. With more steel, these columns fared better after the hold phase, able to 
take on additional axial load. The simulated results using long-term concrete showed lower axial 
load capacity than the simulations based on short-term concrete behavior; however, the simulated 
results did not match the experiments very well, perhaps due to the high amount of fexure resulting 
from the increased load eccentricity. 

Figure 4.11: Comparison of short-term and long-term OpenSees simulations with experimental 
results for specimen R5-40-25-LT-1: (a) displacement-time and (b) load-displacement. 
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Figure 4.12: Comparison of short-term and long-term OpenSees simulations with experimental 
results for specimen R5-40-25-LT-2: (a) displacement-time and (b) load-displacement. 
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4.2.4 R3-70-10-LT and R5-70-10-LT 

The next set of specimens were for higher slenderness, L/r=70, and low load eccentricity, e/h=0.10. 
The experimental and simulated results for two specimens using #3 bars are shown in Figures 4.13 
and 4.14. Although both specimens had the same sustained load, only the R3-70-10-LT-1 specimen 
was able to carry additional axial load after the hold phase. The long-term concrete model was 
able to simulate this case well, but the simulated results did not predict the failure during the hold 
phase for R3-70-10-LT-2. 

Figure 4.13: Comparison of short-term and long-term OpenSees simulations with experimental 
results for specimen R3-70-10-LT-1: (a) displacement-time and (b) load-displacement. 
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Figure 4.14: Comparison of short-term and long-term OpenSees simulations with experimental 
results for specimen R3-70-10-LT-2: (a) displacement-time and (b) load-displacement. 
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With the larger steel area owing to #5 bars, both specimens shown in Figures 4.15 and 4.16 are 
able to pass the hold phase and resist additional axial load. The prediction of axial load capacity 
using long-term concrete models is reasonable for both specimens with #5 bars. 

Figure 4.15: Comparison of short-term and long-term OpenSees simulations with experimental 
results for specimen R5-70-10-LT-1: (a) displacement-time and (b) load-displacement. 
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Figure 4.16: Comparison of short-term and long-term OpenSees simulations with experimental 
results for specimen R5-70-10-LT-2: (a) displacement-time and (b) load-displacement. 
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4.2.5 R3-70-25-LT and R5-70-25-LT 

The fnal group of specimens were of high slenderness, L/r=70, and high axial load eccentricity, 
e/h=0.25. For these cases, the magnitude of the sustained load was reduced to under 40 kip. As 
shown in Figure 4.17, the long-term concrete model does a good job of simulating the experimental 
results, both in defection and load. For the case of #5 bars shown in Figure 4.18, the long-
term concrete simulation adequately predicts the ultimate strength, but under predicts the lateral 
defections. 

Figure 4.17: Comparison of short-term and long-term OpenSees simulations with experimental 
results for specimen R3-70-25-LT: (a) displacement-time and (b) load-displacement. 
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Figure 4.18: Comparison of short-term and long-term OpenSees simulations with experimental 
results for specimen R5-70-25-LT: (a) displacement-time and (b) load-displacement. 
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4.2.6 Summary of Results 

Across all specimens, the maximum axial load predicted using long-term concrete models tended to 
be 10-20% less than the maximum axial load predicted using short-term concrete models. However, 
the simulated results did not always predict lower axial load capacity than that recorded in the 
experiments. Table 4.3 shows the maximum axial loads observed and predicted for all specimens 
while Figure 4.19 gives a graphical summary of the maximum axial loads. 

Table 4.3: Summary of maximum axial load (kip) recorded in the long-term load experiments 
of Jenkins and Frosch (2015) and simulated OpenSees results using the long-term creep wrapper 

(LT) around Concrete04 and short-term (ST) model of standalone Concrete04. 

Specimen Experiment Concrete04 (LT) Concrete04 (ST) 
R3-40-10-LT 
R3-40-25-LT-1 
R3-40-25-LT-2 
R3-70-10-LT-1 
R3-70-10-LT-2 
R3-70-25-LT 
R5-40-10-LT 
R5-40-25-LT-1 
R5-40-25-LT-2 
R5-70-10-LT-1 
R5-70-10-LT-2 
R5-70-25-LT 

150 164 174 
84.9 89.3 102 
66.1 82.9 90.1 
105 90 129 
66.1 95.7 113 
62 48.6 62.7 
202 189 183 
115 120 118 
150 124 124 
114 121 137 
112 122 140 
83.9 83.3 85 
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Figure 4.19: Maximum axial loads (kip) recorded in the long-term load experiments of Jenkins 
and Frosch (2015) and simulated OpenSees results using the long-term creep wrapper (LT) 

around Concrete04 and short-term (ST) model of standalone Concrete04. 
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Figure 4.20: Reduction in maximum axial load capacity observed in experiments of short-term 
and long-term loading. 
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Figure 4.21: Reduction in maximum axial load capacity based on simulation of short-term and 
long-term loading. 
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Figure 4.22: Comparison of simulated and experimentally observed reduction in maximum axial 
load capacity for short-term and long-term loading. 
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Chapter 5 

Evaluation of the Current Design 
Method 

To evaluate the current AASHTO LRFD approximate method for design of slender reinforced 
concrete bridge columns, comparisons were made between the maximum applied loads permitted 
by the design methodology and maximum applied loads from a second-order inelastic analysis using 
the model described in Chapter 3. The comparisons were made for a wide range of cases and are 
described separately for short-term loading and long-term loading. To evaluate many cases, the 
comparisons were automated to the maximum extent possible with code written in the Python 
programming language. 

5.1 Short-Term Loading 

This section evaluates the short-term strength of bridge columns. While bridges are always subject 
to long-term loading, it remains important to investigate short-term behavior. The behavior of a 
column subject to short-term loading represents a bound of the range of long-term behavior with 
short-term strength being an upper limit of the time-dependent strength. Additional deformations 
due to creep and shrinkage will only reduce the apparent strength of the column. Additionally, cur-
rent design provisions for long-term loading are based on short-term behavior with a correction for 
long-term efects and it is unclear that an alternative approach, not based on short-term behavior, 
would provide any beneft. Furthermore, a broader evaluation of cases is possible when investi-
gating short-term loading given the extra computational expense of evaluating columns subject to 
long-term loading. 

5.1.1 Parametric Suite 

This section describes the parametric suite of individual column cases that are investigated for short-
term loading. The suite includes cases with diferent cross-sectional shapes and sizes, diferent steel 
ratios, diferent member lengths, diferent boundary conditions, diferent bending axis (for obround 
columns), and sway condition (sway or nonsway). 
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Cross Sections 

The RC cross sections selected for investigation in this work represent the range of typical practice 
for Caltrans for the parameters most important to strength and stability. The parameters varied 
among the selected cross sections are: 

• Cross-sectional shape, circle or obround as shown in Figure 5.1. An obround is a shape 
that consists of two semicircles connected by parallel lines tangent to their endpoints. 

• Bending axis, x axis or y axis (only for obround shapes). Unlike circular sections, obround 
sections are not rotationally symmetric, which results in diferent response characteristics 
depending on the orientation of the applied bending moments. The bending axis of an 
obround shape refers to the axis about which the bending moments are applied. The x axis 
is the minor axis of the shape, while the y axis is the major axis of the shape, as denoted in 
Figure 5.1. 

• Cross-sectional dimensions. Three diferent diameters, D, were considered for the columns: 
16, 48, and 72 in. In the case of obround shapes, the diameter corresponds to the diameter of 
the semicircles that make up the ends of the shape. The diameter is also the smaller of the 
two lateral dimensions of the obround. Caltrans guidelines specify that the obround lengths 
should range from 1.25 times the diameter (1.25D) to 1.75 times the diameter (1.75D). As a 
result, the distance between the centers of each semicircle within the obround shape, a (Fig-
ure 5.1b), varies from 0.25 times the diameter (0.25D) to 0.75 times the diameter (0.75D). 
A middle value of a equal to 0.5 times the diameter (i.e., a = 0.5D) was selected as represen-
tative. 

• Longitudinal steel ratio. The nominal longitudinal steel ratio, ρnominal, was varied at 1%, 
2%, 3%, and 4%. The actual longitudinal steel ratio, denoted as ρ or ρactual, is defned as the 
ratio of the cross-sectional area of the longitudinal steel reinforcement (As) to the gross cross-
sectional area of the column (Ag). The number of bars and bar sizes were selected for each 
cross-sectional size and nominal steel ratio as described in Table 5.1 for circular cross sections 
and Table 5.2 for obround cross sections. These reinforcing confgurations are reasonably 
representative of typical practice. For example, confgurations were selected such that the 
spacing between the bars was between 3.8 in. and 8.4 in. However, in practice, bundled bars 
are often used in lieu of large bar sizes (e.g., #18). Also, #5 bars are not commonly used for 
longitudinal reinforcing. The large and small bar sizes are used in this work for simplicity. 

Other parameters are constant among the selected cross sections, including: 
′• Concrete compressive strength, f = 4 ksic 

• Yield strength of longitudinal reinforcement steel, fy = 60 ksi 

• Yield strength of transverse reinforcement, fyt = 60 ksi 

• Cover to transverse reinforcing, 2 in. This value is based on Table 5.10.1-1 of California 
Amendments to AASHTO LRFD (Caltrans, 2019) for columns in a non-corrosive exposure 
condition. 

• Transverse reinforcing of #4 hoops at 8 in. on center. Transverse reinforcing has a minor 
efect on the strength of the column determined from GMNIA since the model considers 
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Figure 5.1: Dimensions and coordinate axes of cross sections, (a) circle and (b) obround. 
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Table 5.1: Longitudinal reinforcing for circular sections 
D (in.) ρnominal (%) ρactual (%) Number of bars Bar size 

16 1 1.23 8 #5 
2 2.16 14 #5 
3 2.98 10 #7 
4 3.93 10 #8 

48 1 0.99 18 #9 
2 2.07 24 #11 
3 2.98 24 #14 
4 3.98 32 #14 

72 1 1.00 26 #11 
2 1.99 36 #14 
3 2.98 54 #14 
4 3.93 40 #18 

Table 5.2: Longitudinal reinforcing for obround sections 
D (in.) ρnominal (%) ρactual (%) Number of bars Bar size 

16 1 1.13 12 #5 
2 2.14 16 #6 
3 2.92 16 #7 
4 4.01 22 #7 

48 1 1.07 40 #8 
2 2.03 60 #9 
3 3.06 58 #11 
4 3.95 52 #14 

72 1 0.99 52 #10 
2 2.01 86 #11 
3 3.04 90 #14 
4 3.98 118 #14 
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confnement. The interaction strength per AASHTO LRFD does not depend on the transverse 
reinforcing. Accordingly, to produce conservative results, the single-column analyses in this 
project will use reinforcing representative of a lower bound of Caltrans practice. Note that 
Section 5.10.4.3 of AASHTO LRFD requires 1) a minimum tie bar size of #3 if the longitudinal 
bars are #10 or smaller and #4 bars otherwise; and 2) a maximum spacing of 12 in. or the 
least dimension of the member, whichever is less. 

For the obround shapes, no bars are included in the middle of the cross section. These middle 
bars are typically included for constructability, but not considered for strength and not subject 
to the same detailing requirements (e.g., splicing) as the main longitudinal reinforcing bars (Fig-
ure 5.1). 

Across the parametric suite, 36 cross sections were selected for investigation: 3 cross-sectional 
types (circular, obround bent about the x-axis, obround bent about the y-axis) × 3 diameters × 4 
longitudinal steel ratios = 36. 

Column Confgurations 

Each cross section was investigated with a variety of sway (sidesway uninhibited) and nonsway 
(sidesway inhibited) column confgurations as shown in Figure 5.2. Each confguration had a 
diferent member length and boundary conditions. The member length was defned using eight 
length-to-diameter (L/D) values: 5, 10, 15, 20, 25, 30, 35, and 40. The boundary conditions were 
diferent for sway and nonsway columns. 

For sway columns, the boundary conditions were defned by the rotational stifness of the springs 
at the top and bottom of the column, ktop and kbot, respectively. The spring stifnesses were defned 

Gn,botL 

relative to the column stifness using parameters Gn,top and Gn,bot as 

6(0.4EcIg)
ktop = 

Gn,topL 
(5.1) 

6(0.4EcIg)
kbot = (5.2) 

where L is the length of the column and Ig is the gross moment of inertia of the concrete section 
about its centroidal axis, neglecting reinforcement. 

Values for Gn,top and Gn,bot were back-calculated from selected nominal values of the efective 
length factor K. The nominal K in the table corresponds to a scenario where the column’s fexural 
rigidity (EI) equals 0.4EcIg. In this case, the values of Gn,top and Gn,bot are selected to achieve 
the desired length factor K. Selected values of Gn,top and Gn,bot are listed in Table 5.3. 

For nonsway columns, the boundary conditions are defned by the ratio of end moments, β, as 
shown in Figure 5.2. The values of β, 1.0, 0.5, 0.0, and -0.5, defne the ratio of applied moment 
at the top of the column to applied moment at the bottom of the column. These β values explore 
diferent load distributions and confgurations that afect the bending behavior and overall response 
of nonsway columns. 

The chosen L/D ratios and boundary conditions in the parameter suite explore individual 
column behavior under varying column slenderness and load conditions. Systematic analysis shed 
light on the stability and strength of columns subjected to axial compression and bending. 
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Figure 5.2: Example nonsway (left) and sway (right) columns. 

Table 5.3: Boundary conditions for sway columns 
Pair Gn,top Gn,bot K (nominal) 

1 0 (Fixed) ∞ (Pinned) 2.0 
2 0.604 ∞ (Pinned) 2.2 
3 1.228 ∞ (Pinned) 2.4 
4 0 (Fixed) 0 (Fixed) 1.0 
5 0.614 0.614 1.2 
6 1.288 1.228 1.4 
7 2.042 2.042 1.6 
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With the aforementioned parameters, 88 column confgurations are selected: 8 member lengths 
× (7 sway boundary condition options + 4 nonsway boundary condition options) = 88. Each cross 
section analyzed for each column confguration results in 3,168 individual cases (2,016 sway cases 
and 1,152 nonsway cases) for investigation. 

Each case is named using a specifc format, e.g., “C08-L35-NS02” and “Ox04-L15-S01” The frst 
letter designates the cross-sectional shape, with “C” representing circular sections and “Ox” and 
“Oy” representing obround sections. The second letter indicates the bending axis orientation for 
obround sections, with “x” denoting the x-axis and “y” indicating the y-axis. The subsequent two 
digits signify the unique identifer for the cross-section. The letter “L” is followed by a numerical 
value, representing the length-to-depth ratio of the cross-section. In the provided example, “L35” 
indicates a length-to-depth ratio of 35. The fnal component represents the sway condition, with 
“NS” indicating nonsway condition and “S” indicating sway condition. The fnal number, e.g., “02”, 
represents the column’s end condition, signifying β for nonsway cases and boundary condition for 
sway cases. 

5.1.2 Maximum Permitted Applied Loads According to AASHTO LRFD 

AASHTO LRFD includes provisions for assessing the strength of slender reinforced concrete columns. 
In general, the strength of a column is adequate if the required strength is less than or equal to the 
available strength. Accordingly, the maximum permitted applied loads per the AASHTO LRFD 
provisions are those that cause required strengths equal to the available strengths. 

The available strength of an RC column is that of the cross section based on the strain com-
patibility method. In design, resistance factors are applied to the nominal strength to compute the 
available strength. In this work, analyses are performed at the nominal strength level and thus 
resistance factors are not applied. 

The strain compatibility method was evaluated in this work using a fber-based approach im-
plemented in the Python programming language. Note that the fber discretization used for the 
strain compatibility method was diferent that that used in OpenSees for GMNIA, notably many 
more fbers were used. Approximately 200 fbers were used along each of the lateral dimensions of 
the cross section, resulting in approximately 30,000 total fbers for the circular sections and 45,000 
total fbers for the obround sections. The large number of fbers enabled calculation of a smooth 
interaction diagram and did not signifcantly afect calculation time since the strain compatibility 
method was performed outside any fnite element simulation. Examples of fber discretization, with 
a reduced number of fbers for clarity, are shown in Figures 5.3 and 5.4. 

Once the fber discretization was established for a cross section, axial load and bending moment 
pairs were computed for assumed neutral axis locations. For a given neutral axis position, an axial 
strain was calculated for each fber assuming a linear strain distribution and that the maximum 
compressive strain in the concrete was 0.003. A stress was assigned to each fber based on the 
strain using an elastic perfectly plastic model for the steel (Figure 3.4) and a rectangular stress 
block model for the concrete. The resulting axial load and bending moment were determined 
by numerically integrating the stresses over the cross section. Repeating this process for many 
diferent neutral axis locations procures many diferent pairs of axial load and bending moment, 
which when plotted produce an interaction diagram. According to AASHTO Eq. 5.7.4.4-2, the 
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Concrete Steel Reinforcement

Figure 5.3: Fiber discretization used in the strain compatibility method for circular cross sections 

nominal axial compressive strength was capped at 0.8P0 where P0 is the nominal axial strength at 
zero eccentricity: 

′ P0 = 0.85f (Ag − Ast) + fyAst (5.3)c 

The required strength includes second-order efects and is calculated using the moment mag-
nifcation approach defned in AASHTO LRFD Sections 4.5.3.2.2b and 5.6.4.3. While AASHTO 
LRFD does not allow use of the moment magnifcation approach when KL/r > 100, the moment 
magnifcation approach was used on all of the columns in the parameter suite. Use of the moment 
magnifcation approach for all cases enables a reevaluation of the KL/r > 100 limit. 

The required moment strength, Mc, is calculated using AASHTO LRFD Eq. 4.5.3.2.2b-1 as 

Mc = δbM2b + δsM2s (5.4) 

where 

M2b = moment on compression member due to factored gravity loads that result in no appre-
ciable sidesway, calculated by conventional frst-order elastic frame analysis; always positive 

M2s = moment on compression member due to factored lateral or gravity loads that result in 
sidesway, ∆, greater than L/1500, calculated by conventional frst-order elastic frame analysis; 
always positive 
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Concrete Steel Reinforcement

Figure 5.4: Fiber discretization used in the strain compatibility method for obround cross sections 

δb = nonsway moment magnifer (Eq. 5.6) 

δs = sway moment magnifer (Eq. 5.9) 

For the nonsway columns investigated in this work, M2s = 0 and the required strength reduces 
to 

Mc = δbM2b (5.5) 

The moment M2b is equal to the applied moment, M , shown in Figure 5.2 since |β| ≤ 1 for all 
cases investigated in this study. Unlike ACI 318, AASHTO LRFD does not have a minimum value 
of nonsway moment to account for initial geometric imperfections. 

The nonsway moment magnifer, δb, is calculated as 

Cm
δb = (5.6)

Pu
1 − 

ϕK Pe 

where 

Cm = equivalent uniform moment factor, Eq. (5.7) 

Pu = factored axial load 

ϕK = stifness reduction factor 
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Pe = Euler buckling load, Eq. (5.10) 

The coefcient Cm is defned as: 

M1b
Cm = 0.6 + 0.4 (5.7)

M2b 

where 

M1b = smaller end moment 

M2b = larger end moment 

In cases where the column is bent in single curvature, the ratio M1b/M2b is positive, while in 
cases of double curvature, the ratio is negative. This translates to a Cm value of 1.0, 0.8, 0.6, 0.4 
for nonsway cases with β values of 1.0, 0.5, 0.0, -0.5, respectively. 

For the sway columns investigated in this work, M2b = 0 and the required strength reduces to 

Mc = δsM2s (5.8) 

The sway moment magnifer, δs, is calculated as 

1 
δs = (5.9)

ΣPu
1 − 

ϕK ΣPe 

where the summation of Pu and Pe indicates that these values should be computed as the total for 
the bridge in the direction of translation being considered. For the sway frame (Figure 5.2b), there 
is only one column, therefore ΣPu = Pu and ΣPe = Pe. 

The stifness reduction factor, ϕK , in Equations 5.6 and 5.9 is a parameter that accounts for 
potential variations in material properties and workmanship in the analysis. It it specifed as 0.75 
for concrete members in AASHTO LRFD, but taken as 1.0 in this work given that comparisons 
are made at the nominal strength level and strength reduction factors are also not applied. This 
simplifying assumption is made for the sake of clarity and to focus on other aspects of the structural 
behavior without introducing unnecessary complexity related to these factors. 

The Euler buckling load, Pe, in Equations 5.6 and 5.9 is calculated as 

π2EI 
Pe = (5.10)

(KL)2 

where 

EI = fexural stifness of the reinforced concrete column 

K = efective length factor in the plane of bending. 

L = unsupported length of the column 
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AASHTO LRFD provides two equations, Equations 2.1 and 2.2 which are described in Section 
2, for the EI to be used in Eq. (5.10). Determination of the appropriate value of fexural stifness 
is an objective of this work therefore additional options for the fexural stifness, beyond those that 
appear in AASHTO LRFD, are examined in this study. 

For the nonsway columns, the efective length factor, K, is taken as 1. For the sway columns, 
the efective length factor, K, is calculated based on the stifness of the rotational springs. Stifness 
parameters Gtop and Gbot are computed based on the stifness of rotational springs and the assumed 
fexural stifness of the columns as: 

6(EI)L 
Gtop = (5.11)

ktop 

6(EI)L 
Gbot = (5.12)

kbot 

These computed values of Gtop and Gbot difer from the defned values of Gn,top and Gn,bot used 
to defne the spring stifness because EI = 0.4EcIg is always used with Gn,top and Gn,bot while 
various values of EI are used to defne Gtop and Gbot. 

The efective length factor, K, is determined iteratively as the value of K that solves the 
AASHTO LRFD Equation C.4.6.2.5-2: 

GbotGtop(π/K)
2 − 36 (π/K)− = 0 (5.13)

6(Gbot + Gtop) tan(π/K) 

Eq. (5.14) from Geschwindner et al. (2017), is used as an initial guess for the iterations. 

s 
1.6GbotGtop + 4(Gbot + Gtop) + 7.5 

K = (5.14)
Gbot + Gtop + 7.5 

The maximum permitted applied axial load is equal to the lesser of Pe computed using Eq. (5.10) 
and 0.8P0 where P0 computed using Eq. (5.3). The maximum permitted applied moment (for the 
nonsway columns) or lateral load (for the sway columns) is computed for a range of applied axial 
loads linearly spaced from zero to the maximum permitted axial load. At each level of applied axial 
load, the available fexural strength is determined from the cross-sectional interaction diagram and 
the applied moment or lateral load is back-calculated using the equations described above. 

5.1.3 Maximum Applied Loads from Second-Order Inelastic Analysis 

Results from a second-order inelastic analysis, also referred to as a geometrically and materially 
nonlinear analysis with imperfections included (GMNIA) form the best approximation of the true 
behavior of the column and are the benchmark against which results from the design methods are 
compared. 
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The analyses are performed using the OpenSees model described in Chapter 3 and validated in 
Chapter 4. The modeling of the columns included an initial out-of-straightness of L/1000 for both 
sway and nonsway columns, as well as an initial out-of-plumbness of L/500 for sway columns. 

The limit point of each analysis was defned as when the lowest eigenvalue of the system reached 
zero or a strain limit was reached, whichever occurred frst. The lowest eigenvalue of the system 
reaching zero corresponds with a true maximum of applied loads. In some cases, especially those 
with low or no axial compression, a true maximum of applied loads is not reached due to post-yield 
hardening and one of the strain limits defnes limit point. Two strain limits were used: 0.01 for 
concrete in compression and 0.05 for steel in tension. 

Applied loads and internal forces at the limit point were recorded and taken as the maximum 
applied loads from the second-order inelastic analysis. 

5.1.4 Error Calculation 

Error in the design method exists if the applied load interaction diagram representing the maximum 
applied load permitted by the design method does not coincide with the applied load interaction 
diagram calculated from second-order inelastic analysis. In this study, second-order inelastic anal-
ysis is taken as the best approximation of true behavior and the benchmark against which results 
from the design provisions are measured. 

If the design interaction curve lies outside the interaction curve from second-order inelastic 
analysis, the design method permits applied loads that the inelastic analysis indicates would cause 
failure. This error in the design method is unconservative. On the other hand, if the design 
interaction curve is within the interaction curve from second-order inelastic analysis, then the 
inelastic analysis indicates that there are some applied loads that are safe, but not permitted by 
the design method. This error in the design method is conservative. 

A radial error measure is used to quantify the error as shown in Figure 5.5. The interaction 
diagrams for a typical case are plotted with the axial compression normalized by P0 and the bending 
moment normalized by Mn. P0 is the nominal axial load capacity of the RC cross section calculated 
using Eq. (5.15). Mn is the nominal moment capacity of the RC section determined using the strain 
compatibility method. With this normalization, the design interaction curve will intersect the x 
axis at a value of 1.0. 

′ P0 = 0.85f Ac + fyAs (5.15)c 

Two lines are drawn from the origin at a given angle, θ, with respect to the x axis. The frst 
line terminates at the intersection with the interaction diagram representing the maximum applied 
loads from the second-order inelastic analysis. The length of this line is rGMNIA. The second line 
terminates at the intersection with the interaction diagram representing the maximum permitted 
applied loads according to AASHTO LRFD. The length of this line is rdesign. The error is defned 
as 

rGMNIA − rdesign 
ε = (5.16) 

rGMNIA 
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Figure 5.5: The essential parameters utilized in the calculation of errors 

Using this measure, positive values of error are conservative and negative values of error are un-
conservative. The error is quantifed at many diferent angles for a full assessment of the interaction 
diagrams. 

5.1.5 Results 

Example interaction diagrams using both Eq. (2.1) and Eq. (2.2) and the corresponding plots of 
error are shown in Figures 5.6a through 5.11b for the following cases: 

• Case C08-L35-NS02, a circular nonsway column with a diameter of 48 in., length to diameter 
ratio of 35, steel ratio of 4% and a β = 0.5 (Figure 5.6). 

• Case Ox05-L20-NS02, an obround nonsway column with a diameter of 48 in., length to diam-
eter ratio of 20, steel ratio of 1% and a β = 0.5, bending around the minor axis (Figure 5.7). 

• Case Oy01-L15-NS01, an obround nonsway column with a diameter of 16 in., length to 
diameter ratio of 15, steel ratio of 1% and a β = 1, bending around the major axis (Figure 5.8). 

• Case C01-L5-S05, a circular sway column with a diameter of 16 in., length to diameter of 5, 
steel ratio of 1% and a Knominal = 1.2 (Figure 5.9). 

• Case Ox02-L15-S02, an obround sway column with a diameter of 16 in., length to diameter 
of 15, steel ratio of 2%, bending around the minor axis with a Knominal of 2.2 (Figure 5.10). 
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• Case Oy01-L40-S04, an obround sway column with a diameter of 16 in., length to diameter 
of 40, steel ratio of 1%, bending around the major axis with a Knominal of 1.0 (Figure 5.11). 

Error plots for individual cases using both AASHTO LRFD equations are plotted together in 
Figures 5.12 through 5.15. Eight plots are shown, where error lines that are computed using EI 
from Eq. (2.1) are separated by sway condition and shown in Figures 5.12 and 5.13, while error 
lines that are computed using EI from Eq. (2.2) are similarly shown in Figures 5.14 and 5.15. 
Subplot (a) of each fgure shows all cases in the group while subplot (b) of each fgure shows only 
cases where KL/r < 100. 

The error lines of each case are plotted as thin gray lines, giving a graphical representation of 
which values of error are more frequent based on the darkness in each region. Additionally, the 
envelope of maximum error is shown as a green line and the envelope of minimum error is shown 
as a red line. 

Unconservative errors due to the overprediction of EI are observed when the axial loads are 
low across all of the plots. This unconservatism is more prominent for the cases with a higher 
slenderness ratio. Additionally, Eq. (2.2) tends to have lower overprediction error when compared 
to Eq. (2.1). 

Tables 5.4 through 5.7 list maximum and minimum errors. The cases identifed in each table 
caption are grouped by length-to-diameter ratio and steel ratio. The maximum and minimum errors 
were computed over each case in the group and over all angles. The average error in each group is 
not shown in this table, or generally in this work, because the distribution of cases investigated in 
this work is not representative of the distribution of actual bridge columns. The cases were selected 
to be representative of the range of actual bridge columns, but include a higher proportion of very 
slender columns than is used in construction. 
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(a) 

(b) 

Figure 5.6: Interaction diagram (a) and error plot (b) for case C08-L35-NS02 
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(a) 

(b) 

Figure 5.7: Interaction diagram (a) and error plot (b) for case Ox05-L20-NS02 
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(a) 

(b) 

Figure 5.8: Interaction diagram (a) and error plot (b) for case Oy01-L15-NS01 
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(a) 

(b) 

Figure 5.9: Interaction diagram (a) and error plot (b) for case C01-L5-S05 
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(a) 

(b) 

Figure 5.10: Interaction diagram (a) and error plot (b) for case Ox02-L15-S02 
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(a) 

(b) 

Figure 5.11: Interaction diagram (a) and error plot (b) for case Oy01-L40-S04 
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(a) 

(b) 

Figure 5.12: Error plot of (a) all nonsway cases and (b) nonsway cases with KL/r < 100, based 
on the results obtained with EI calculated using Eq. (2.1). 
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(a) 

(b) 

Figure 5.13: Error plot of (a) all sway cases and (b) sway cases with KL/r < 100, based on the 
results obtained with EI calculated using Eq. (2.1). 
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(a) 

(b) 

Figure 5.14: Error plot of (a) all nonsway cases and (b) nonsway cases with KL/r < 100, based 
on the results obtained with EI calculated using Eq. (2.2). 
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(a) 

(b) 

Figure 5.15: Error plot of (a) all sway cases and (b) sway cases with KL/r < 100, based on the 
results obtained with EI calculated using Eq. (2.2). 
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Table 5.4: Upper and lower error bounds for nonsway columns as determined by slenderness using 
Eq. (2.1). 

ρ ε 
0-25 25-50 

Slenderness Range 
50-75 75-100 100-125 ≥ 125 

1% Min 
Max 

-0.036 
0.295 

-0.107 
0.280 

-0.196 
0.204 

-0.323 
0.436 

-0.380 
0.503 

-0.464 
0.545 

2% Min 
Max 

-0.011 
0.283 

-0.029 
0.270 

-0.076 
0.248 

-0.147 
0.504 

-0.167 
0.567 

-0.195 
0.605 

3% Min 
Max 

-0.009 
0.274 

-0.014 
0.262 

-0.024 
0.297 

-0.068 
0.559 

-0.079 
0.615 

-0.094 
0.649 

4% Min 
Max 

0.008 
0.266 

0.009 
0.255 

0.010 
0.348 

-0.011 
0.604 

-0.022 
0.653 

-0.031 
0.684 

Table 5.5: Upper and lower error bounds for sway columns as determined by slenderness using 
Eq. (2.1). 

ρ ε 
0-25 25-50 

Slenderness Range 
50-75 75-100 100-125 ≥ 125 

1% Min 
Max 

-0.014 
0.291 

-0.024 
0.285 

-0.038 
0.233 

-0.092 
0.445 

-0.154 
0.512 

-0.510 
0.557 

2% Min 
Max 

0.002 
0.279 

-0.001 
0.274 

0.001 
0.273 

0.003 
0.511 

-0.006 
0.575 

-0.128 
0.615 

3% Min 
Max 

-0.003 
0.271 

-0.005 
0.265 

0.000 
0.313 

0.007 
0.564 

0.007 
0.622 

-0.001 
0.658 

4% Min 
Max 

0.010 
0.263 

0.009 
0.258 

0.012 
0.355 

0.015 
0.608 

0.018 
0.659 

0.020 
0.692 
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Table 5.6: Upper and lower error bounds for nonsway columns as determined by slenderness using 
Eq. (2.2). 

ρ ε 
0-25 25-50 

Slenderness Range 
50-75 75-100 100-125 ≥ 125 

1% Min 
Max 

-0.037 
0.295 

-0.087 
0.280 

-0.159 
0.300 

-0.237 
0.587 

-0.254 
0.627 

-0.284 
0.642 

2% Min 
Max 

-0.015 
0.283 

-0.042 
0.270 

-0.090 
0.240 

-0.148 
0.529 

-0.164 
0.571 

-0.181 
0.586 

3% Min 
Max 

-0.011 
0.274 

-0.030 
0.262 

-0.065 
0.209 

-0.110 
0.492 

-0.137 
0.534 

-0.157 
0.548 

4% Min 
Max 

0.003 
0.266 

-0.020 
0.255 

-0.048 
0.193 

-0.093 
0.451 

-0.108 
0.494 

-0.129 
0.507 

Table 5.7: Upper and lower error bounds for sway columns as determined by slenderness using 
Eq. (2.2). 

ρ ε 
0-25 25-50 

Slenderness Range 
50-75 75-100 100-125 ≥ 125 

1% Min 
Max 

-0.015 
0.291 

-0.023 
0.285 

-0.029 
0.328 

-0.038 
0.594 

-0.062 
0.635 

-0.193 
0.653 

2% Min 
Max 

-0.002 
0.279 

-0.006 
0.274 

-0.008 
0.271 

-0.012 
0.537 

-0.020 
0.581 

-0.058 
0.599 

3% Min 
Max 

-0.005 
0.271 

-0.008 
0.265 

-0.009 
0.242 

-0.005 
0.501 

-0.008 
0.545 

-0.040 
0.562 

4% Min 
Max 

0.007 
0.263 

0.005 
0.258 

-0.029 
0.215 

-0.012 
0.462 

-0.003 
0.506 

-0.023 
0.522 
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5.1.6 Discussion 

Examining the individual results of Figures 5.6 through 5.11, there is a distinct diference between 
shorter columns and longer columns. The axial capacity of the shorter columns is higher compared 
to longer columns (i.e., the intersection of the interaction diagram and the y axis is closer to 1.0). 
There is also a smaller diference between the frst-order moment, M1, and second-order moment, 
M2, for shorter columns compared to longer columns. The diference between M1 and M2 represents 
the P -δ and P -∆ efects. 

In several cases, the second-order moment from the inelastic analysis (i.e., M2 (GMNIA)) is 
similar to the available strength from design (i.e., M2 (design)), indicating that failure of the 
column is largely due to the internal forces reaching their cross-sectional strength. However, for 
longer columns near their axial capacity, the second-order moment from the inelastic analysis can 
be signifcantly less than the available strength from design, indicating stability failure. 

The error is generally smaller at zero axial load and high moments (i.e., θ = 0◦) but increases to 
higher values as the axial load increases (i.e., θ approaches 90◦). However, for low angles there is a 
dip in the error, often to the unconservative range, before increasing to conservative error for high 
axial loads. Low angles represent cases with high bending moment and some axial compression. 
In these cases, signifcant cracking is expected, reducing the stifness of the column even below the 
efective values used in design. 

The graphs presented in Figures 5.12a through 5.15b show that the unconservative error trends 
observed for the individual examples generally apply, meaning unconservative error is concentrated 
at low angles and for longer columns. However, signifcant unconservative error is observed for 
columns at higher angles (i.e., θ > 30◦) especially for the cases with a slenderness ratio (KL/r) of 
more than 100. 

The data in Tables 5.4 through 5.7 further reinforces the observed trends with respect to 
length-to-diameter ratio and uncovers further trends with respect to steel ratio. The greatest 
unconservative and conservative errors are for low steel ratio cases. The worst case unconservative 
error observed for results obtained using Eq. (2.1) overall is for a sway column with a slenderness 
ratio (KL/r) greater than 125 and a steel ratio (ρ) of 1% which has an error (ε) of -0.510. While 
the worst case for the results from Eq. (2.2) is a nonsway column with a KL/r of greater than 125 
and a ρ of 1%, which has a ε of -0.284. 

It was observed that in general, nonsway cases exhibit greater maximum unconservative errors 
than sway cases, likely due to the β = 1 cases where concrete cracking occurs along the entire 
length of the column. The spread of error values is also greater for nonsway cases than for sway 
cases. 

5.2 Long-Term Loading 

Select cases from the parametric study conducted for short-term loading are repeated for long-term 
loading efects using the cross-sectional shapes, bending axes, cross-section dimensions, and longi-
tudinal steel ratios described in the previous section. In addition to the parameters held constant 
across the short-term parametric study (concrete compressive strength, steel yield strengths, clear 
cover, and transverse hoop details), the long-term loading parametric study assumes the following 
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creep and shrinkage parameters are held constant: 

• Ultimate concrete shrinkage strain, εsh,0=600 × 10−6 

• Ultimate concrete creep factor, φ0=3.0 

Each analysis simulates the column holding a sustained load for 10,000 days (approximately 27 
years). For long-term analysis, the sustained load is set to 5% of the peak axial capacity from the 
interaction diagram for short-term loading of the column. 

After the hold phase, the capacity of the column is calculated. Similar to the short-term 
analysis in the previous section, the long-term simulation is repeated over several eccentricities of 
the sustained load in order to develop an interaction diagram. 

5.2.1 Results 

Interaction diagrams based on GMNIA with OpenSees are shown for the following cases. All 
columns are nonsway with β=1. 

• Case C06-L15-NS01 – Nonsway, D=48 inch diameter circular column with 2% steel and 
L/D=15 

• Case Oy01-L15-NS01 – Nonsway, D=16 inch obround column with 1% steel and L/D=15, 
bending about the major axis 

• Case Ox05-L20-NS01 – Nonsway, D=48 inch diameter obround column with 1% steel and 
L/D=20, bending about the minor axis 

In the cases listed above, for each level of eccentricity, the sustained long term load was set to 50% 
of the axial load capacity for short term loading at the same eccentricity. 

For the C06-L15-NS01 case, the axial force-lateral defection curves (Figure 5.16) for the column 
reveal signifcant long-term lateral defections under sustained loads. In addition, as shown in 
Figure 5.17, the applied loads that cause failure are lower when long-term efects are considered, 
but the internal forces at failure are not afected. The load-defection and axial-moment interaction 
diagrams for the Oy01-L15-NS01 case (Figure 5.18 and Figure 5.19) show similar trends with 
signifcant long-term defection adding to the second-order efects and reducing the applied load at 
failure. 

For the Ox05-L20-NS01 case, a more slender column than the previous two cases, Figure 5.20 
and Figure 5.21 show, in addition to sustained long-term defections, that both the applied loads 
and internal forces at failure are less when considering long-term efects for higher axial loads 
(i.e., over 40% of the pure axial capacity of the column). These results indicate that this column, 
with its greater slenderness, is experiencing a stability failure, not precipitated by reaching the 
cross-sectional strength of the column. 

The methodology shown here indicates a roughly 10-20% reduction in strength due long-term 
efects. Evaluating strength reductions across a broader range of columns and loading conditions 
can enable the development of more refned design recommendations. 
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Figure 5.16: Load-defection curves for long-term loading of column case C06-L15-NS01. 

Figure 5.17: Interaction diagram for short-term and long-term loading for case C06-L15-NS01. 

85 



Figure 5.18: Load-defection curves for long-term loading of column case Oy01-L15-NS01. 

Figure 5.19: Interaction diagram for short-term and long-term loading for case Oy01-L15-NS01. 
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Figure 5.20: Load-defection curves for long-term loading of column case Ox05-L20-NS01. 

Figure 5.21: Interaction diagram for short-term and long-term loading for case Ox05-L20-NS01. 
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Chapter 6 

Modifcations to Design Methods 

This chapter describes the development of several potential modifcations to the AASTHO LRFD 
method of design for slender RC columns. First, alternative equations for the fexural rigidity, EI, 
for use in the moment magnifcation procedure are evaluated and developed. Then, slenderness 
ratio limits on the use of the moment magnifcation procedure are evaluated. A new efective length 
factor for the transverse buckling mode of single column bents is developed. Finally, rules of thumb 
for preliminary design are proposed. 

6.1 Flexural Rigidity 

The results of Chapter 5 show that there is both conservative and unconservative error associated 
with the evaluation of strength of RC bridge columns using the AASHTO LRFD moment magnif-
cation approach. The fexural rigidity used in the approach, i.e., Eq. (2.1) or Eq. (2.2), is the largest 
source of the observed error because of its simplicity in comparison to the complex behavior that 
it stands in for. This section evaluates alternative equations for the fexural rigidity. Noting the 
limitations of equations that only depend on cross-sectional properties, the equations for fexural 
rigidity evaluated in this section depend on the axial load in the member, the maximum bending 
moment in the member, or both. They are the variable fexural rigidity equation in ACI 318, the 
equations developed by Jenkins and Frosch (2015), and new equations developed in this work. 

More emphasis is placed in this work on reducing unconservative error than reducing conser-
vative error. This is because of the greater consequences of unconservative error, but also because 
bridge columns often have relatively low axial loads in comparison to their cross-sectional axial 
strength. The unconservative errors observed in Chapter 5 were primarily seen at low axial loads 
and high bending moments. 

To create design interaction diagrams when using efective stifness equations that vary with 
axial load or bending moment, e.g., Eq. (2.3), some modifcations to the approach described in 
Section 5.1.2 were necessary. An iterative solution method is required here because the fexural 
stifness, EI, can depend on both the maximum factored moment along the length of the column 
and this moment, in turn, depends on EI. For a given axial load, factored internal bending moment 
was incrementally increased from zero to the section’s strength at the given axial load to fnd the 
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corresponding applied moment. The fexural stifness was calculated at each value of internal 
moment. This fexural stifness was used to calculate the buckling load. If the applied axial load 
is less than the computed buckling load, δ was computed and the applied moment was computed 
by dividing the internal moment by δ. If the applied axial load was greater than the buckling 
load, then the remaining moments increments were disregarded, the previous step was identifed 
as the limit point, and the applied moment from the previous step was identifed as the maximum 
permitted applied moment. 

6.1.1 ACI’s Variable Efective Flexural Stifness 

ACI 318 includes provisions for slender RC column design that are similar to those in AASHTO 
LRFD. Eq. (2.1) and Eq. (2.2) are options for use as the fexural rigidity in ACI 318. However, 
ACI 318 has a third equation to calculate the efective fexural rigidity of RC columns based on the 
work of Khuntia and Ghosh (2004). In the third equation, ACI 318 Equation 6.6.4.4.4c or Eq. (2.3) 
in this report, EI depends on the axial load and bending moment experienced by the column. 

In order to gain a deeper understanding of this equation, a contour plot of EIef according to 
Eq. (2.3) normalized by EcIg was created for the cross section of the frst column of the parameter 
suite, case C01-L5-NS01 (a circular column with a D=16 in./ and ρnominal=0.01, note that the 
member properties such as L/D do not efect the evaluation of EIef ). The contour plot is shown 
in Figure 6.1. The cross-sectional capacity obtained from the strain compatibility is plotted in 
Figure 6.1 as a solid black line. For a given axial load, the fexural rigidity computed from Eq. (2.3) 
decreases as the bending moment increases. For a given bending moment, the fexural rigidity 
computed from Eq. (2.3) frst increases then decreases. Within the cross-sectional strength, the 
lowest fexural rigidity occurs for low axial loads and high bending moments. 

Figure 6.2 shows the error plots for when fexural rigidity is defned by Eq. (2.3). These plots 
are constructed in the manner as the fgures in the Chapter 5 (e.g., Figure 5.12). As can be 
seen in Figure 6.2, the results obtained from this equation have a lower conservative errors in 
general compared to AASHTO LRFD equations (Figures 5.12 through 5.15). This is expected 
since Eq. (2.3) results in values of EI that are greater than from Eq. (2.1) or Eq. (2.2) over most 
of the cross-sectional strength. 

Unconservative errors were identifed in the lower axial load region as before with Eq. (2.1) and 
Eq. (2.2). However, Eq. (2.3) the unconservative errors manifest over a broader range of applied 
axial loads. The extent of unconservative error is less for cases with a slenderness of less than 100. 
However, some references (e.g., (Adams et al., 2019)) identify Eq. (2.3) as having superior precision 
compared to Eq. (2.1) and Eq. (2.2) and suitable for use when the slenderness exceeds 100. 
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Figure 6.1: Contour plot of EIef /EcIg with EIef computed using Eq. (2.3). Black line is the 
cross sectional strength of an example cross section. 
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(a) 

(b) 

Figure 6.2: Error plot of (a) all cases and (b) cases with KL/r < 100, based on the results 
obtained with EI calculated using Eq. (2.3). 
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Additionally, the error data, separated by nominal steel ratio and slenderness, is shown in Tables 
6.1 and 6.2. In general, higher unconservative error was observed for sway columns compared to 
nonsway columns. This is in direct contrast with the results obtained from Eq. (2.1) and Eq. (2.2). 
Also, the errors do not exhibit a consistent trend with steel ratio. This, too, is unlike what was 
observed for the error data based on the AASHTO LRFD EI equations. 

Table 6.1: Upper and lower error bounds for nonsway columns as determined by slenderness using 
Eq. (2.3). 

ρ ε (%) 
0-25 25-50 

Slenderness Range 
50-75 75-100 100-125 ≥ 125 

1% Min 
Max 

-0.034 
0.295 

-0.092 
0.280 

-0.207 
0.204 

-0.295 
0.221 

-0.309 
0.241 

-0.393 
0.234 

2% Min 
Max 

-0.009 
0.283 

-0.037 
0.270 

-0.147 
0.198 

-0.250 
0.298 

-0.261 
0.358 

-0.342 
0.381 

3% Min 
Max 

-0.008 
0.274 

-0.043 
0.262 

-0.157 
0.195 

-0.304 
0.360 

-0.313 
0.429 

-0.355 
0.492 

4% Min 
Max 

0.009 
0.266 

-0.037 
0.255 

-0.143 
0.215 

-0.345 
0.401 

-0.328 
0.482 

-0.334 
0.565 

Table 6.2: Upper and lower error bounds for sway columns as determined by slenderness using 
Eq. (2.3). 

ρ ε (%) 
0-25 25-50 

Slenderness Range 
50-75 75-100 100-125 ≥ 125 

1% Min 
Max 

-0.012 
0.291 

-0.018 
0.285 

-0.041 
0.212 

-0.123 
0.296 

-0.144 
0.302 

-0.578 
0.295 

2% Min 
Max 

0.002 
0.279 

0.000 
0.274 

-0.089 
0.217 

-0.207 
0.381 

-0.142 
0.405 

-0.586 
0.433 

3% Min 
Max 

-0.002 
0.271 

-0.004 
0.265 

-0.147 
0.258 

-0.186 
0.424 

-0.152 
0.482 

-0.537 
0.518 

4% Min 
Max 

0.010 
0.263 

-0.007 
0.258 

-0.161 
0.285 

-0.227 
0.464 

-0.191 
0.528 

-0.411 
0.586 

6.1.2 Variable Efective Flexural Stifness Proposed by Jenkins and Frosch 

Other equations for the efective fexural stifness has been proposed by Jenkins and Frosch (2015). 
They proposed two diferent sets of equations. The frst set of equations, described in Table 6.3, 
is described as more accurate but requires the steel reinforcement ratio, which may not be known 
initially in design. The second set of equations, described in Table 6.4, does not require the steel 
reinforcement ratio. In each set, one equation is provided for lower eccentricity and another equation 
is provided for higher eccentricity. Each equation has a lower bound of either 0.30 or 0.40 times 
EcIg. In the context of these equations P0 is defned as in Eq. (5.3) and represents the nominal 

′ axial strength, while P0g = 0.85f Ag and represents the axial strength of the gross concrete cross c 
section. 

Contour plots like shown in Figure 6.1 for case C01-L5-NS01 are shown in Figures 6.3 and 6.4 
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Table 6.3: Flexural stifness equations proposed by Jenkins and Frosch (2015) for detailed analysis 
or design. 

M e 
= Flexural Stifness of Compression Member, EI 

P h h 

≤ 0.1 
� � � � �� 

P Ast
1.05 − 0.6 1.0 + 3 − 0.01 EcIg ≥ 0.30EcIg

P0 Ag 

> 0.1 
� � � � �� � � 

P Ast M 
1.05 − 0.6 1.0 + 3 − 0.01 1.2 − 2 EcIg ≥ 0.30EcIg

P0 Ag P h 

Table 6.4: Flexural stifness equations proposed by Jenkins and Frosch (2015) for general design. 

M e 
= Flexural Stifness of Compression Member, EI 

P h h 

≤ 0.1 
� � 

P 
1.0 − 0.5 EcIg ≥ 0.40EcIg

P0g 

> 0.1 
� � � � 

P M 
1.0 − 0.5 1.2 − 2 EcIg ≥ 0.40EcIg

P0g P h 

for the two sets of Jenkins and Frosch equations. These fgures show that the Jenkins and Frosch 
equations exhibit the same general trends with axial load and bending moment as Eq. (2.3). 

Error plots are shown in Figures 6.5 and 6.6. The frst subplot of each of these fgure which 
shows the results for all cases shows high unconservative errors that signifcantly surpass any ac-
ceptable limit. These errors are prevalent across the entire spectrum of axial loads. However, the 
unconservative errors are less in Figures 6.5b and 6.6b which show the results only for cases where 
KL/r < 100. The unconservative errors shown in Figure 6.5b for the EI defned by set of equa-
tions in Table 6.3 are relatively modest and fall into the same range as errors determined using the 
AASHTO LRFD equations for EI. 

Error data is listed in Tables 6.5 through 6.8. The information presented in Table 6.6 indicates 
that the error value increases when employing the equations from Table 6.3 for sway columns, 
particularly when the slenderness ratio is higher than 125. Specifcally, the maximum unconser-
vative error observed is 7.6% when KL/r ≤ 125. Furthermore, data in Tables 6.5 and 6.7 shows 
a signifcant increase in unconservative error as the steel ratio decreases when using either set of 
equations proposed by Jenkins and Frosch. 
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Figure 6.3: Normalized contour plot for equations in Table 6.3 

Figure 6.4: Normalized contour plot for equations in Table 6.4 
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(a) 

(b) 

Figure 6.5: Error plot of (a) all cases and (b) cases with KL/r < 100, based on the results 
obtained with EI calculated using Table 6.3. 
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(a) 

(b) 

Figure 6.6: Error plot of (a) all cases and (b) cases with KL/r < 100, based on the results 
obtained with EI calculated using Table 6.4. 
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Table 6.5: Upper and lower error bounds for nonsway columns as determined by slenderness using 
equations from Table 6.3. 

ρ ε (%) 
0-25 25-50 

Slenderness Range 
50-75 75-100 100-125 ≥ 125 

1% Min 
Max 

-0.032 
0.295 

-0.074 
0.280 

-0.122 
0.204 

-0.212 
0.332 

-0.228 
0.374 

-0.274 
0.386 

2% Min 
Max 

-0.007 
0.283 

-0.015 
0.270 

-0.062 
0.265 

-0.055 
0.444 

-0.074 
0.508 

-0.095 
0.535 

3% Min 
Max 

-0.007 
0.274 

-0.006 
0.262 

-0.046 
0.314 

-0.029 
0.505 

-0.022 
0.584 

-0.093 
0.605 

4% Min 
Max 

0.009 
0.266 

0.000 
0.255 

-0.032 
0.375 

-0.019 
0.557 

-0.012 
0.637 

-0.088 
0.653 

Table 6.6: Upper and lower error bounds for sway columns as determined by slenderness using 
equations from Table 6.3. 

ρ ε (%) 
0-25 25-50 

Slenderness Range 
50-75 75-100 100-125 ≥ 125 

1% Min 
Max 

-0.010 
0.291 

-0.015 
0.285 

-0.032 
0.279 

-0.076 
0.423 

-0.073 
0.433 

-0.813 
0.424 

2% Min 
Max 

0.003 
0.279 

0.001 
0.274 

-0.050 
0.336 

-0.066 
0.495 

-0.067 
0.544 

-0.748 
0.543 

3% Min 
Max 

-0.001 
0.271 

-0.003 
0.265 

-0.058 
0.375 

-0.061 
0.547 

-0.069 
0.600 

-0.719 
0.611 

4% Min 
Max 

0.011 
0.263 

0.010 
0.258 

-0.048 
0.423 

-0.060 
0.598 

-0.068 
0.643 

-0.673 
0.655 

Table 6.7: Upper and lower error bounds for nonsway columns as determined by slenderness using 
equations from Table 6.4. 

ρ ε (%) 
0-25 25-50 

Slenderness Range 
50-75 75-100 100-125 ≥ 125 

1% Min 
Max 

-0.036 
0.295 

-0.107 
0.280 

-0.196 
0.204 

-0.322 
0.257 

-0.379 
0.291 

-0.463 
0.314 

2% Min 
Max 

-0.011 
0.283 

-0.029 
0.270 

-0.076 
0.198 

-0.146 
0.387 

-0.167 
0.424 

-0.194 
0.438 

3% Min 
Max 

-0.009 
0.274 

-0.014 
0.262 

-0.026 
0.243 

-0.067 
0.459 

-0.079 
0.505 

-0.094 
0.518 

4% Min 
Max 

0.008 
0.266 

0.009 
0.255 

-0.016 
0.285 

-0.012 
0.515 

-0.021 
0.563 

-0.029 
0.586 
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Table 6.8: Upper and lower error bounds for sway columns as determined by slenderness using 
equations from Table 6.4. 

ρ ε (%) 
0-25 25-50 

Slenderness Range 
50-75 75-100 100-125 ≥ 125 

1% Min 
Max 

-0.014 
0.291 

-0.024 
0.285 

-0.040 
0.212 

-0.092 
0.333 

-0.153 
0.360 

-0.729 
0.370 

2% Min 
Max 

0.002 
0.279 

-0.001 
0.274 

-0.055 
0.255 

-0.070 
0.430 

-0.052 
0.455 

-0.623 
0.466 

3% Min 
Max 

-0.003 
0.271 

-0.005 
0.265 

-0.055 
0.295 

-0.046 
0.491 

-0.045 
0.523 

-0.559 
0.534 

4% Min 
Max 

0.010 
0.263 

0.009 
0.258 

-0.037 
0.334 

-0.030 
0.540 

-0.036 
0.575 

-0.478 
0.593 

6.1.3 Proposed Enhanced Equation for Flexural Rigidity 

Chapter 5 and the preceding sections show the unconservative error associated with the existing 
equations for estimating the fexural rigidity of RC columns. Recognizing the critical need for more 
accuracy, this section introduces new equations aimed at improving upon the existing ones. 

Calculation of Flexural Rigidity Using GMNIA Results 

To derive an equation for the efective fexural stifness of columns, it is important to understand how 
fexural stifness varies across diferent columns properties and under diverse loading conditions. For 
this purpose, fexural stifness values are back-calculated for each case in the parameter suite. This 
calculation ensures that the maximum applied moment allowed by the AASHTO LRFD method 
equals the maximum applied moment determined from GMINA. This approach aims to achieve zero 
error when using the calculated EI in design. Given that calculated EI varies with cross-sectional 
and member properties, as well as loading conditions, the back-calculation is performed at each 
axial load evaluated by GMNIA. 

Alternatively, EI can be back-calculated such that the magnifed moment from the AASHTO 
LRFD method equals the maximum internal moment from the GMNIA. This approach may yield 
fexural rigidity values that are more physically realistic. However, it may not necessarily minimize 
errors when applied in the design approach. 

In some instances, the maximum applied load obtained from GMNIA exceeds the moment 
capacity from the strain compatibility method. For these cases, the back-calculated EI is left 
undefned. In other instances, the maximum applied load obtained from GMNIA is only slightly 
less than the moment capacity from the strain compatibility method resulting in unrealistically 
large EI values greater than the gross uncracked stifness (i.e., EcIc + EsIs). These cases tend to 
occur for short columns where second-order efects are minimal. For these cases, use of any value 
for EI equal to or less than the gross uncracked stifness would be conservative. To avoid skewing 
the data, the values of EI greater than EcIc + EsIs were excluded from the analysis. 

For both types of back-calculation described above, the resulting value of EI is normalized by 
EcIg and plotted in Figures 6.7 through 6.10. The fgures are separated by sidesway condition. 
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Figure 6.7: Calculated EI of nonsway cases to their respective P/P0 using moment capacity 
obtained from strain compatibility 

Figure 6.7 shows that for nonsway cases an increase in axial load mostly corresponds to an increase 
in the fexural rigidity of the column. This result agrees with the fndings of Hung et al. (2024), 
who also observed that the initial stifness of the column increases under higher axial loading. This 
increase is nonlinear and exhibits diferent slopes for diferent columns. The same cannot be said 
about sway cases, as Figure 6.8 shows the pattern is not consistent among the cases. 

The results in Figures 6.7 through 6.10 are colored by the nominal longitudinal steel rein-
forcement ratio. Figure 6.7 demonstrates that for nonsway cases, as the steel reinforcement ratio 
increases, there is a concurrent increase in the minimum fexural stifness. This pattern is not seen 
for sway cases. 
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Figure 6.8: Calculated EI of sway cases to their respective P/P0 using moment capacity obtained 
from strain compatibility 

0.0 0.2 0.4 0.6 0.8 1.0

(EI)calculated/EIgross

0.0

0.2

0.4

0.6

0.8

1.0

P
/P

0

Nominal Steel Ratio (%)

1

2

3

4

Figure 6.9: Calculated EI of nonsway cases to their respective P/P0 using moment capacity 
obtained from GMINA 
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Figure 6.10: Calculated EI of sway cases to their respective P/P0 using moment capacity 
obtained from GMINA 

Formulation of the New Equations 

New equations were developed for the efective fexural rigidity of RC columns based on the back-
calculated EI results. These equations were developed with the goal of achieving the least possible 
unconservative error while controlling the conservative error. 

Equation Set 1: 

The frst set of equations is based on the observation that fexural rigidity of the column 
decreases as the moment in the column nears the available strength. Flexural rigidity decreases 
because of cracks in the concrete and near the available strength it decreases further due to steel 
yielding. 

For this equation set, either one of the current AASHTO LRFD equations is used when ratio 
of maximum internal moment to cross-sectional moment strength at zero axial load is less than or 
equal to 0.95, i.e., M/Mn ≤ 0.95, and EI = 0.4EsIs is used when M/Mn > 0.95. This equation 
set is described in Table 6.9. 

Table 6.9: Flexural stifness equation using available moment. 

M 
Mn 

Flexural Stifness of Compression Member, EI 

≤ 0.95 0.4EcIg (Eq. 2.1) or 0.2EcIg + EsIs (Eq. 2.2) 

> 0.95 0.4EsIs 
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Based on the fexural rigidity obtained from the proposed equation defned in Table 6.9, all 
of the columns in the parameter suite were analyzed and the resulting error plots are shown in 
Figures 6.11 through 6.14. These plots are divided into sway and nonsway cases as they have 
shown diferent results in the equations investigated in the previous chapter. Additionally, the 
error values only for cases that have a slenderness ratio of less than 100 are plotted separately to 
understand slenderness efects on the equation accuracy. 

These plots show that the new approach using either Eq. (2.1) or Eq. (2.2) results in no sig-
nifcant unconservative error when the slenderness ratio is less than or equal to 100. However, 
unconservative error is observed for cases with a slenderness ratio greater than 100, especially 
when Eq. (2.1) is used. 

The error results are listed in Tables 6.10 through 6.13 for diferent slenderness ranges. No 
signifcant unconservative errors exist for cases within the range of 0-125 when using Eq. (2.1) and 
0-160 when using Eq. (2.2) with the proposed approach. Additionally, the highest unconservative 
errors are consistently for the cases with the highest slenderness and lowest steel ratio. 
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(a) 

(b) 

Figure 6.11: Error plot of (a) all nonsway cases and (b) nonsway cases with KL/r < 100, based 
on the results obtained with EI calculated using Table 6.9 with Eq. (2.1). 
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(a) 

(b) 

Figure 6.12: Error plot of (a) all nonsway cases and (b) nonsway cases with KL/r < 100, based 
on the results obtained with EI calculated using Table 6.9 with Eq. (2.2). 
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(a) 

(b) 

Figure 6.13: Error plot of (a) all sway cases and (b) sway cases with KL/r < 100, based on the 
results obtained with EI calculated using Table 6.9 with Eq. (2.1). 
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(a) 

(b) 

Figure 6.14: Error plot of (a) all nonsway cases and (b) nonsway cases with KL/r < 100, based 
on the results obtained with EI calculated using Table 6.9 with Eq. (2.2). 
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Table 6.10: Upper and lower error bounds for nonsway cases as determined by slenderness based 
on the results obtained with EI calculated using Table 6.9 with Eq. (2.1). 

ρ ε 
0-24 25-49 

Slenderness Range 
50-74 75-99 100-124 125-149 150-160 

1% Min 
Max 

-0.006 
0.427 

-0.003 
0.571 

-0.002 
0.579 

-0.001 
0.583 

-0.076 
0.504 

-0.164 
0.535 

-0.252 
0.545 

2% Min 
Max 

0.002 
0.287 

0.003 
0.388 

0.004 
0.387 

-0.018 
0.504 

-0.021 
0.567 

-0.045 
0.595 

-0.080 
0.605 

3% Min 
Max 

-0.004 
0.274 

-0.003 
0.305 

0.000 
0.312 

-0.007 
0.559 

-0.020 
0.615 

-0.021 
0.640 

-0.033 
0.649 

4% Min 
Max 

0.009 
0.266 

0.009 
0.272 

0.010 
0.348 

0.000 
0.604 

-0.006 
0.653 

-0.014 
0.675 

-0.005 
0.684 

Table 6.11: Upper and lower error bounds for nonsway cases as determined by slenderness based 
on the results obtained with EI calculated using Table 6.9 with Eq. (2.2). 

ρ ε 
0-24 25-49 

Slenderness Range 
50-74 75-99 100-124 125-149 150-160 

1% Min 
Max 

-0.006 
0.430 

-0.003 
0.571 

-0.002 
0.579 

-0.001 
0.587 

-0.011 
0.627 

-0.043 
0.641 

-0.082 
0.642 

2% Min 
Max 

0.002 
0.287 

0.003 
0.388 

0.004 
0.387 

-0.001 
0.529 

-0.011 
0.571 

-0.043 
0.585 

-0.082 
0.586 

3% Min 
Max 

-0.004 
0.274 

-0.003 
0.305 

0.000 
0.308 

-0.007 
0.492 

-0.021 
0.534 

-0.021 
0.548 

-0.024 
0.548 

4% Min 
Max 

0.009 
0.266 

0.009 
0.272 

0.009 
0.276 

0.000 
0.451 

-0.012 
0.494 

-0.015 
0.507 

-0.025 
0.506 

Table 6.12: Upper and lower error bounds for sway cases as determined by slenderness based on 
the results obtained with EI calculated using Table 6.9 with Eq. (2.1). 

ρ ε 
0-99 100-149 

Slenderness Range 
150-174 175-199 200-224 225-249 ≥ 250 

1% Min 
Max 

0.004 
0.557 

0.020 
0.545 

-0.067 
0.557 

-0.250 
0.504 

-0.261 
0.478 

-0.385 
0.477 

-0.468 
0.444 

2% Min 
Max 

0.007 
0.511 

0.020 
0.604 

0.024 
0.615 

-0.001 
0.575 

-0.036 
0.544 

-0.060 
0.556 

-0.114 
0.533 

3% Min 
Max 

0.001 
0.564 

0.015 
0.647 

0.020 
0.658 

0.027 
0.626 

0.031 
0.591 

0.043 
0.612 

0.018 
0.596 

4% Min 
Max 

0.010 
0.608 

0.022 
0.682 

0.028 
0.692 

0.035 
0.666 

0.043 
0.631 

0.053 
0.656 

0.066 
0.643 
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Table 6.13: Upper and lower error bounds for sway cases as determined by slenderness based on 
the results obtained with EI calculated using Table 6.9 with Eq. (2.2). 

ρ ε 
0-99 100-149 

Slenderness Range 
150-174 175-199 200-224 225-249 ≥ 250 

1% Min 
Max 

0.005 
0.594 

0.020 
0.650 

0.025 
0.653 

0.012 
0.594 

-0.015 
0.536 

-0.059 
0.563 

-0.142 
0.528 

2% Min 
Max 

0.007 
0.537 

0.020 
0.597 

0.025 
0.599 

0.030 
0.530 

0.019 
0.434 

0.007 
0.496 

-0.017 
0.458 

3% Min 
Max 

0.001 
0.501 

0.015 
0.560 

0.020 
0.562 

0.021 
0.487 

0.013 
0.359 

0.008 
0.451 

-0.002 
0.410 

4% Min 
Max 

-0.028 
0.462 

0.023 
0.521 

0.019 
0.522 

0.015 
0.440 

0.010 
0.296 

0.008 
0.401 

0.005 
0.360 

Equation Set 2: The second set of equation is based on several observations from the back-
calculated EI results. The fexural rigidity depends on the applied axial load on the column. Cross 
sections with higher steel ratio show higher efective fexural stifness (Figures 6.7 and 6.8). For 
the most of the columns, a near sinusoidal pattern is observed for the changes in the EI value with 
respect to the axial load P with the magnitude of the change increasing as the column gets more 
slender. 

Based on these observations, Eq. (6.1) was developed to evaluate the fexural rigidity of the 
column. The term 0.45 P EcIg represents the linear portion of the increase in EI with an increaseP0 

in axial load. The term 0.35(Kg L 
)1.85 sin (πP )EcIg represents the approximately sinusoidal pattern100r P0 

observed in the variations of the EI concerning the axial load. The term 0.3EsIs corresponds to the 
minimum stifness the columns exhibited, irrespective of the loading and slenderness conditions. 

" � �1.85 � �# 
P KgL πP 

EI = 0.45 + 0.35 sin EcIg + 0.3EsIs (6.1)
P0 100r P0 

where Kg is the efective length factor of the column when Eq. (2.1) is used to calculate the efective 
fexural rigidity. Kg is used instead of K to avoid the need for iterative calculations of EI resulting 
from a mutual dependence of K on EI and vice versa. 

A contour plot of EI according to Eq. (6.1) normalized by EcIg for the cross section of case 
C01-L5-NS01 is shown in Figure 6.15. Unlike the previous contour plots which were investigated 
in subsections 6.1.1 and 6.1.2, the EI calculated by Eq. (6.1) depends on the slenderness of the 
column. The values shown in Figure 6.15 are for KgL/r = 5. 

To evaluate the efcacy Eq. (6.1) in reducing error, error values were calculated in comparison 
to results from GMNIA as has been done in this work for other equations of fexural rigidity. Figures 
6.16 and 6.17 show the error values plotted against the angle with respect to the x-axis. These 
plot show nearly no unconservative error for both sway and nonsway cases with a KL/r < 100. 
Looking at the density of the lines from individual cases seen by darkness in the plots of in Figures 
6.16 and 6.17, most of the cases with KL/r < 100 have a maximum positive error of less than 0.3. 
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Figure 6.15: Contour plot of EI/EcIg with EI computed using Eq. (6.1) and KgL/r = 5. Black 
line is the cross sectional strength of an example cross section. 

Additionally, the maximum conservative error for these cases is decreased up to 50% for diferent 
slenderness ratios when compared to the AASHTO LRFD equations (Tables 6.14 and 6.14). 

For more slender cases, unconservative errors are observed for sway cases in Figure 6.17. These 
are limited to a maximum of -10%, which typically happens on the cases with the highest slenderness 
and low steel ratio. For the cases with a slightly higher slenderness than 100 (100< KL/r < 125), 
the fexural rigidity obtained from Eq. (6.1) does not show any unconservative error which means 
the equation can safely be used for the cases near the current AASHTO LRFD slenderness limit of 
100. 
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(a) 

(b) 

Figure 6.16: Error plot of (a) all nonsway cases, and (b) nonsway cases with a slenderness of less 
than 100, using equation in Eq. (6.1). 
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(a) 

(b) 

Figure 6.17: Error plot of (a) all sway cases, and (b) nonsway cases with a slenderness ratio of 
less than 100, based on the results obtained from Eq. (6.1) 
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Table 6.14: Upper and lower error bounds for nonsway columns as determined by slenderness 
using Eq. (6.1). 

ρ ε 
0-24 25-49 

Slenderness Range 
50-74 75-99 100-124 125-149 150-160 

1% Min 
Max 

-0.006 
0.295 

-0.003 
0.280 

-0.003 
0.219 

-0.001 
0.310 

-0.016 
0.339 

-0.019 
0.364 

-0.003 
0.390 

2% Min 
Max 

0.002 
0.283 

0.003 
0.270 

0.004 
0.229 

-0.015 
0.334 

0.007 
0.374 

0.003 
0.417 

0.002 
0.498 

3% Min 
Max 

-0.004 
0.274 

-0.003 
0.262 

0.000 
0.252 

-0.007 
0.357 

-0.015 
0.432 

-0.010 
0.523 

-0.015 
0.611 

4% Min 
Max 

0.009 
0.266 

0.009 
0.255 

0.009 
0.267 

0.000 
0.407 

-0.005 
0.510 

-0.014 
0.606 

0.003 
0.667 

Table 6.15: Upper and lower error bounds for sway columns as determined by slenderness using 
Eq. (6.1). 

ρ ε 
0-99 100-149 

Slenderness Range 
150-174 175-199 200-224 225-249 ≥ 250 

1% Min 
Max 

0.004 
0.421 

-0.005 
0.458 

-0.074 
0.470 

-0.103 
0.484 

-0.065 
0.396 

-0.038 
0.602 

-0.076 
0.718 

2% Min 
Max 

-0.018 
0.430 

0.021 
0.474 

0.027 
0.517 

0.035 
0.614 

0.043 
0.457 

0.054 
0.679 

0.058 
0.711 

3% Min 
Max 

0.002 
0.441 

0.018 
0.535 

0.025 
0.623 

0.033 
0.673 

0.042 
0.517 

0.052 
0.703 

0.103 
0.713 

4% Min 
Max 

0.011 
0.457 

0.026 
0.618 

0.033 
0.679 

0.042 
0.694 

0.051 
0.548 

0.062 
0.709 

0.110 
0.709 

6.2 Slenderness Ratio Limits 

Second-order efects, such as P -∆ and P -δ efects, become more signifcant as member slenderness 
increases. Like other standards, AASHTO LRFD uses the slenderness ratio, KL/r, to defne limits 
of slenderness where certain provisions apply. 

One such limit is the maximum value of KL/r for which second-order efects can be neglected. 
Neglecting second-order efects simplifes the structural analysis and design process. AASHTO 
LRFD Section 5.6.4.3 allows second-order efects to be neglected for members not braced against 
sidesway when the slenderness ratio is less than 22. For members braced against sidesway, second-
order efects may be neglected when the slenderness ratio is less than 34 − 12(M1/M2), where M1 
and M2 are the smaller and larger end moments, respectively (the term M1/M2 is positive if the 
member is bent in single curvature). 

Another important limit is the maximum value of KL/r for which second-order efects can be 
evaluated using the approximate moment magnifcation procedure. According to AASHTO LRFD 
Section 5.6.4.3, the approximate procedure may be used for nonprestressed compression members 
with KL/r less than 100. 
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These specifed limits and associated design considerations are evaluated in this section. The 
limits are primarily evaluated as a means of maintaining unconservative error below a tolerance. 
As a point of reference, 5% is a commonly used tolerance for maximum unconservative error in 
beam-column design methodologies (ASCE, 1997). 

6.2.1 Slenderness Limit to Neglect Second-Order Efects 

To examine the slenderness limit to neglect second-order efects, analyses were performed to quan-
tify the unconservative error associated with a design method in which second-order efects are 
neglected. The analyses were performed as described in Chapter 5, but with second-order efects 
neglected by setting δs = 1 in Eq. (5.5) and δb = 1 in Eq. (5.8). Analyses were performed for 
each column in the parametric suite described in Section 5.1.1 plus additional nonsway cases, with 
length-to-diameter ratios of 2, 6, 7, 8, 11, 12, 14, and 17. The additional cases had the same cross 
sections and boundary conditions as the main parametric suite. 

The results for sway columns are presented in Figure 6.18. Each point in this fgure repre-
sents the minimum (i.e., most unconservative) error, computed using Eq. (5.16), over the entire 
interaction diagram. The current limiting value of KL/r = 22 is shown as a vertical dashed line. 
As expected, the maximum unconservative error increases with slenderness. Unconservative errors 
greater than 5% (i.e., ε < −0.05) are not observed until a slenderness of 30, indicating that the 
current limit of 22 is appropriate or could potentially be increased. 

The results for nonsway columns are presented in Figure 6.19. Again, each point in this fgure 
represents the minimum (i.e., most unconservative) error over the entire interaction diagram. Dif-
ferent markers are used for diferent values of β since β = M1/M2 and the the limiting slenderness 
ratio depends on this parameter. The current limiting values of KL/r for β = 1.0, 0.5, 0.0, and 
−0.5 are shown as vertical dashed lines. The maximum unconservative error increases with slen-
derness but also with β. For β = 1.0, the current limit of KL/r < 22 appears appropriate since the 
maximum unconservative error starts signifcantly exceeding 5% for KL/r greater than 22. The 
other limits appear to be conservative. For example, for β = 0.5, maximum unconservative error 
does not exceed 5% until KL/r is greater than 45, signifcantly higher than the current limiting 
value of 28. 
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Figure 6.18: Maximum unconservative error when neglecting second-order efects for sway columns 
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Figure 6.19: Maximum unconservative error when neglecting second-order efects for nonsway 
columns 
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6.2.2 Slenderness Limit for the Moment Magnifcation Approach 

The AASHTO LRFD restricts the use of the approximate moment magnifcation approach to 
columns with a slenderness ratio (KL/r) less than 100. However, the rationale behind this limita-
tion is not explicitly addressed in the available commentary. 

In a design example published by the Federal Highway Administration (Adams et al., 2019), 
matrix fnite elements and the variable EI equation from ACI 318 (Eq. 2.3) are used for a column 
with KL/r > 100. Results using the moment magnifcation approach and the AASHTO equations 
for calculating EI (larger value calculated from Eq. 2.1 and Eq. 2.2) are also presented in the 
example. The results showed that the moment magnifcation approach and the matrix fnite element 
solution gave nearly identical results for the example structure for a given values of EI. This 
suggests that the moment magnifcation approach is an efective method of second-order elastic 
analysis, even when the slenderness exceeds the AASHTO limitation. This fnding challenges the 
conventional notion that matrix structural analysis is essential for columns with higher slenderness. 

The results of Chapter 5 work showed that error in the design of RC columns increases with 
increasing slenderness. While unconservative error was noted across most of the slenderness range 
investigated, the value of these errors are greater for more slender columns as shown in Figures 
5.12 through 5.15. Greater conservative errors are also observed for more slender columns. In 
another study, Mirza and MacGregor (1989) found that the slenderness of RC columns impacts 
their fexural rigidity. They attributed this discrepancy to the relative concentration of cracking 
in more slender columns, compared to short columns where cracking is distributed more uniformly 
along the length of the column. Therefore, to accurately predict the fexural rigidity of a column, 
it is reasonable to consider the slenderness of the column as a major factor. 

Tables 5.4 through 5.7 show the maximum unconservative errors associated with the use of 
Eq. (2.1) and Eq. (2.2). Within the current slenderness limit of KL/r ≤ 100 the errors exceed the 
5% tolerance noted by ASCE (1997). In fact, even with a 10% tolerance for unconservative error, a 
slenderness limit of 50 would be required to control errors for nonsway cases when using Eq. (2.1) 
and Eq. (2.2). The current slenderness limit of 100 controls errors for sway cases. 

Slenderness remains an important factor even when variable EI equations are used. Error 
results when using the ACI variable EI equation (2.3) are presented in Tables 6.1 and 6.2. Based 
on these results, the slenderness limits would need to be 50 and 75 for nonsway and sway columns, 
respectively, to maintain maximum unconservative error below 10%. 

The same slenderness limits may be used while using the equations suggested by Jenkins and 
Frosch (2015) (Tables 6.3 and 6.4) to confne the non-conservative error below 10%, as indicated 
by the error values in Tables 6.5 through 6.8, with the exception of an extended sway limit of 125 
for the equations presented in Table 6.3. 

The proposed equations for EI demonstrate a notable improvement in limiting unconservative 
error at high slenderness ratio compared to existing equations. When utilizing proposed equation 
set 1 alongside AASHTO equation 6.6.4.4.4a (Eq. 2.1), no unconservative error surpassing 10% is 
observed for slenderness (KL/r) less than 125 and 175 for nonsway and sway cases, respectively. 
This is depicted in Figures 6.20 and 6.21. Similarly, limits of 160 and 250 can be considered when 
using AASHTO equation 6.6.4.4.4b (Eq. 2.2) to ensure that the unconservative error remains safely 
below 10% (Figures 6.22 and 6.23). 
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Table 6.16: Slenderness limit (KL/r) necessary to maintain maximum unconservative error below 
target maximum percentage. 

Limit for 5% Limit for 10% 
EI Nonsway Sway Nonsway Sway 

Eq. (2.1) 30 75 50 100 
Eq. (2.2) 30 100 50 125 
Eq. (2.3) 30 60 50 60 

Eqs. in Table 6.3 30 60 50 125 
Eqs. in Table 6.4 30 70 50 100 

Eq. set 1 (with Eq. 2.1) 100 150 125 175 
Eq. set 1 (with Eq. 2.2) 150 225 160 250 

Eq. set 2 160 150 160 384 

For the second proposed set, the nonsway results consistently exhibit safety, with unconservative 
errors never exceeding 5% (Figure 6.24). However, some sway cases surpass the 5% unconservative 
error threshold and one case exceeds 10% error with a maximum error of 10.3% (Figure 6.25). 
However, unlike with the current AASHTO equations, these errors do not continue to increase with 
slenderness. Based on these results, it appears that the inclusion of slenderness in the calculation of 
EI efectively controls the unconservative errors within the extended slenderness range examined 
in this research (KL/r up to 384). 

Table 6.16 provides a summary of slenderness limits for the various equations, categorized 
according to sway condition and error tolerance. 

Given that the current AASHTO equations result in error signifcantly greater than 10% within 
their range of applicability, use of limits based on a maximum unconservative error of 10% instead 
of the commonly referenced error tolerance of 5% may be appropriate. However, it is important 
to note that not all of the slenderness values examined in this research were explored under all 
boundary conditions. Therefore, for practical applications, the recommended slenderness limit is 
125 for Eq. set 1 with Eq. 2.1 for nonsway conditions and 160 for other applications of the proposed 
equations. The upper limit of 160 is recommended since this range is evaluated across all boundary 
conditions considered in this study. Further assessment of the equation under expanded scenarios 
could potentially result in an extended range of slenderness. 

Above the slenderness limit, refned analysis should be used. Such analyses should be refned 
in their determination of EI or through the use of inelastic analysis where the efects of concrete 
cracking, concrete crushing, and steel yielding are modeled explicitly. 
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Figure 6.20: Error values obtained for nonsway cases based on EI values obtained from equation 
set 1 with AASHTO equation 6.6.4.4.4a (Eq. 2.1). 
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Figure 6.21: Error values obtained for sway cases based on EI values obtained from equation set 
1 with AASHTO equation 6.6.4.4.4a (Eq. 2.1). 

119 

https://e/h=0.25


Figure 6.22: Error values obtained for nonsway cases based on EI values obtained from equation 
set 1 with AASHTO equation 6.6.4.4.4b (Eq. 2.2). 
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Figure 6.23: Error values obtained for sway cases based on EI values obtained from equation set 
1 with AASHTO equation 6.6.4.4.4b (Eq. 2.2). 
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Figure 6.24: Error values obtained for nonsway cases based on EI values obtained from equation 
set 2. 
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Figure 6.25: Error values obtained for sway cases based on EI values obtained from equation set 
2. 

123 



6.3 Efective Length Factor 

The equation for Euler buckling load in AASHTO LRFD, i.e., Eq. (5.10), includes an efective length 
factor, K, that refects the amount of fexural restraint at the column ends. A more restrained 
column has a higher buckling load and smaller efective length factor while a less restrained column 
has a lower buckling load and a larger efective length factor. 

For multi-column bents where the bases of the columns are designed as pinned and the tops of 
the columns are fxed to a bent cap or the superstructure, current Caltrans practice is to assume an 
efective length factor of K = 2.0 for both the longitudinal and transverse buckling modes, based 
on case “(f)” from AASHTO LRFD Table C4.6.2.5-1 (Figure 6.26). This assumption relies on the 
bending stifness of the bent cap and superstructure to restrict rotations, but not sway, at the top 
of the column. Large sways will be restricted by the abutments; however, since the abutments 
are designed to provide no lateral restraint for small sways, any potential restraint is neglected for 
stability design. 

Figure 6.26: AASTHTO Table of Efective Length Factors, K (AASHTO LRFD Table C4.6.2.5-1) 

For single column bents where the base of the column is designed as fxed and the top of the 
column is fxed to the superstructure, current Caltrans practice is to assume efective length factors 
based on case “(d)” for the longitudinal buckling mode and case “(e)” for the transverse buckling 
mode. These assumptions rely on the bending stifness of the superstructure to restrict rotations 
in the longitudinal buckling mode, but rotational restraint provided by the torsional stifness of the 
superstructure is neglected. 

While the abutment does not restrict sway of the superstructure or rotation of the super-
structure about vertical or transverse axes, it does restrict twist of the superstructure about the 
superstructure’s longitudinal axis. Out-of-plane rotation of the column is thus restrained by the 
torsional stifness of the superstructure. 
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An efective length factor that accounts for the rotational restraint provided by the torsional 
stifness of the superstructure can be obtained through eigenvalue buckling analysis of a three-
dimensional model of the bridge. However, this type of analysis is typically not practical for design. 
This section describes the development of practical design tools for determining an efective length 
factor for out-of-plane buckling of single column bents considering the torsional stifness of the 
superstructure. 

6.3.1 Governing Diferential Equation 

The governing diferential equation for planar fexure of a column including second-order efects, 
i.e., P -∆ and P -δ efects, is 

v(x) ′′′′ v(x) ′′ + k2 = 0 (6.2) 
′ where v(x) is the lateral defection of the column at location x, indicates derivative with respect p 

to x, and k = P/EI, where P is the axial compression force and EI is the fexural stifness of 
the column. 

The general solution of this diferential equation is 

v(x) = A + Bx + C sin kx + D cos kx (6.3) 

where A, B, C, and D are constants to be solved for specifc boundary conditions. 

6.3.2 Two-Span Bridge 

Consider the case of a two-span bridge with one column of length Lcol that is fxed at the base 
as shown in Figure 6.27. Because of the fxity, there will be no defection or rotation at the base, 
resulting in the frst two boundary conditions. 

v(0) = 0 (6.4) 

v ′ (0) = 0 (6.5) 

The abutment does not restrain sway, so translation at the top of the column is free, resulting in 
the third boundary condition. 

v ′′′ (Lcol) + k2 v ′ (Lcol) = 0 (6.6) 

Rotation at the top of column is restrained by the torsional stifness of the superstructure, 
neither perfectly free nor perfectly fxed. Assuming linear elastic behavior of the superstructure, 
the moment at the top of the column is proportional to rotation at the top of the column. The 
proportionality constant is based on the torsional stifness of the superstructure, resulting in the 
fourth boundary condition. 

−EIv ′′ (Lcol) = 2(GJ/L)superv ′ (Lcol) (6.7) 

where (GJ/L)super is the torsional stifness of the superstructure and the factor of two accounts for 
both spans restraining the rotation of the column. 
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Figure 6.27: Schematic elevation view of two-span bridge 

Defning a non-dimensional parameter g for the relative stifness of the superstructure as 

(GJ/L)super
g = 

(EI/L)col 
(6.8) 

results in a simplifed version of the fourth boundary condition. 

2g 
v ′′ (Lcol) + v ′ (Lcol) = 0 

Lcol 
(6.9) 

By combining the four boundary conditions with the general solution of the diferential equation, 
it can be shown that equilibrium is satisfed for arbitrarily large defections, i.e., buckling occurs at 
a critical load, Pcr. Defning Pcr as 

π2EIcol
Pcr = (6.10)

(KLcol)2 

allows quantifcation of the efective length factor, K. 

Using the defnition in Eq. (6.10) and the solution of the governing diferential equation, a 
relationship between the stifness parameter, g, and the efective length factor, K, can be determined 
as 

−(π/K) 
g = (6.11)

2 tan (π/K) 

A plot of this relationship is shown in Figure 6.28. As expected, K = 2 when the normalized 
superstructure torsional stifness equals zero and K approaches 1 as the superstructure torsional 
stifness approaches infnity. The relationship was verifed against results of eigenvalue buckling 
analyses performed using MASTAN2. 

An analysis to assess the bounds of g for Caltrans bridges indicated that values less than 1 
are possible, as are values greater than 20. Accordingly, use of a single prescribed value less than 
2 for the efective length factor is not advisable. Nonetheless, the stifness parameter, g, can be 
computed and the efective length factor, K, can be determined from g with relative ease. However, 
Eq. (6.11) only applies to two-span bridges. 
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Figure 6.28: Relationship between normalized superstructure torsional stifness and efective 
length factor for a two-span bridge 

6.3.3 Three-Span Bridge 

For a three-span bridge with two columns of length Lcol, each fxed at the base as shown in 
Figure 6.29, the boundary conditions and thus buckling loads and efective length factors will be 
diferent than for the two-span bridge. With two columns, two diferential equations need to be 
solved simultaneously. 

v1(x) ′′′′ v1(x) ′′ + k2 = 0 (6.12) 

v2(x) ′′′′ v2(x) ′′ + k2 = 0 (6.13) 

where v1(x) is the lateral defection of a frst column and v2(x) is the lateral defection of a second 
column. The parameter k is used for both columns because it is assumed the columns have the 
same axial compression force and fexural stifness. 

Again, the columns are assumed to have a fxed base 

v1(0) = v2(0) = 0 (6.14) 

′ ′ v1(0) = v2(0) = 0 (6.15) 

and the columns are assumed to be free to translate at the top. 

′′′ ′ ′′′ ′ v1 (Lcol) + k2 v1(Lcol) = v2 (Lcol) + k2 v2(Lcol) = 0 (6.16) 
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Figure 6.29: Schematic elevation view of three-span bridge 

Out-of-plane rotation at the top of the columns is restrained by the torsional stifness as before. 
The moment at the top of each column is proportional to the rotation at the top of the column 
relative to either the abutment (i.e., zero rotation) or to the rotation at the top of the adjacent 
column, resulting in the following two boundary conditions. 

g g′′ ′ ′ ′ v1 (Lcol) + v1(Lcol) + [v1(Lcol) − v2(Lcol)] = 0 (6.17)
γLcol Lcol 

g g′′ ′ ′ ′ v2 (Lcol) + v2(Lcol) + [v2(Lcol) − v1(Lcol)] = 0 (6.18)
γLcol Lcol 

Note that the end spans of the bridge are assumed to have a diferent length than the center span 
(γLsuper vs Lsuper). 

Solving the diferential equation leads to two modes of buckling, where the mode with the lower 
critical load, and thus higher efective length factor, is the controlling mode. The controlling mode 
is expressed as a function of the stifness parameter, g, and the efective length factor, K, as follows 

−γ(π/K) 
g = (6.19)

tan π/K 

The relationship for both buckling modes is presented in Figure 6.30. Again, the relationship 
was verifed against results of eigenvalue buckling analyses performed using MASTAN2. 

6.3.4 Additional Spans 

Repeating the process for four-span and fve-span bridges results in Eq. (6.20) and Eq. (6.21), 
respectively. " p # 

1 (2 + 6γ)(π/K) 1 − 2γ + 9γ2(π/K) sin (2π/K) 
g = − + (6.20)

8 tan (π/K) sin2 (π/K) 

" p # 
1 1 + 2γ + (1 + 4γ2) 

g = − (π/K) (6.21)
2 tan (π/K) 
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Figure 6.30: Relationship between normalized superstructure torsional stifness and efective 
length factor for a three-span bridge (γ = 0.75) 

Closed form expressions for additional spans become increasingly complex. 

The relationships between the normalized superstructure torsional stifness and efective length 
factor for the controlling mode for two-, three-, four-, and fve-span bridges are presented in Fig-
ure 6.31. The efective length factor increases with number of spans since, as the number of spans 
increases, the total length of the bridge increases and the superstructure is responsible for restrain-
ing the rotation of more columns. Both of these factors lead to less restraint of the columns. 

6.3.5 Base Flexibility 

The evaluation in the previous sections assumes idealized boundary conditions at the base of the 
columns, specifcally zero translation and rotation. It is common in design to recognize that full ro-
tational fxity will not exist at base connections. For example, in AASHTO LRFD Table C4.6.2.5-1 
(Figure 6.26), two sets of efective length values are provided: those that assume idealized boundary 
conditions, the “theoretical K values”, and those that assume some amount of rotational fexibility 
at nominally rotation fxed ends, the “design values of K when ideal conditions are approximated”. 
For cases with a rotation fxed end, the design values of K are higher. Case “(e)” in the table is 
for a cantilever column. The theoretical efective length factor is 2.0 and the design efective length 
factor is 2.1. 

Rotational fexibility at the base can be considered in the derivation of efective length factors in 
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Figure 6.31: Relationship between normalized superstructure torsional stifness and efective 
length factor for all spans investigated (γ = 0.75) 

this work by replacing the boundary condition v ′ (x) = 0 with Eq. (6.22) which relates the moment 
in the column at the base to rotation at the base. 

EIv ′′ (0) = kθv ′ (0) (6.22) 

where, kθ is the rotational stifness at the base expressed in relation to the fexural stifness of the 
column as follows 

EI 
kθ = (6.23)

GbaseLcol 

where, Gbase is a non-dimensional parameter relating the rotational stifness of the base to the 
fexural stifness of the column. 

The parameter Gbase is similar to the parameter G defned in AASHTO LRFD Equation 
C4.6.2.5-3 and used in the efective length factor alignment charts of AASHTO LRFD Figures 
C4.6.2.5-1 and C4.6.2.5-2. For a cantilever column, i.e., case (e) of Figure 6.26, a value of 
Gbase = 0.05 results in the design values of the efective length factor when ideal conditional 
are approximated, i.e., K = 2.1. 

With revised boundary conditions, new characteristic equations that depend on the parameter 
Gbase can be developed. The revised equations are Eq. (6.24) for two-span bridges, Eq. (6.25) for 
three-span bridges, Eq. (6.26) for four-span bridges, and Eq. (6.27) for fve-span bridges. 
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Gbase(π/K)
2 sin (π/K) − (π/K) cos (π/K) 

g = (6.24)
2 [Gbase(π/K) cos (π/K) + sin (π/K)] 

γ(π/K) [Gbase(π/K) sin (π/K) − cos (π/K)] 
g = (6.25)

Gbase(π/K) cos (π/K) + sin (π/K) 

   − 2(π/K)2Gbase cos (2π/K) − 6(π/K)2Gbaseγ cos (2π/K) − (π/K) sin (2π/K)   
− 3(π/K)γ sin (2π/K) + (π/K)3G2 

baseγ sin (2π/K)base sin (2π/K) + 3(π/K)3G2   p � � 
+ (π/K) 1 − 2γ + 9γ2 −2(π/K)Gbase cos (2π/K) − sin (2π/K) + (π/K)2Gbase 

2 sin (2π/K) 
g = � � 

2 2 + 2(π/K)2G2 − 2 cos (2π/K) + 2(π/K)2G2 cos (2π/K) + 4(π/K)Gbase sin (2π/K)base base 
(6.26) 

� p � Gbase(π/K) sin (π/K) − cos (π/K) 
g = (π/K) 1 + 2γ + 1 + 4γ2 (6.27)

2 [Gbase(π/K) cos (π/K) + sin (π/K)] 

6.3.6 Design Tool and Recommendations 

To enable easy determination of the proposed efective length factor for the transverse buckling 
mode of single column bents in design, a Microsoft Excel based design tool was created. The tool 
has tabulated data relating normalized superstructure torsional stifness, g, to the efective length 
factor, K, for bridges with 2, 3, 4, and 5 spans; end span ratios, γ, of 0.5, 0.6, 0.7, 0.8. 0.9, and 1.0; 
and with and without base fexibility. For given normalized superstructure torsional stifness, g, 
and end span ratio, γ, the tool linearly interpolates the tabulated data to compute and display the 
efective length factor, K, for each of the number of spans between 2 and 5 and with an idealized 
fxed base and with a practical fxed base. A screenshot of the tool is shown in Figure 6.32. 

The tool will also calculate the normalized superstructure torsional stifness, g, given more 
fundamental input values such as Poisson’s ratio of concrete, superstructure span length, and 
column moment of inertia. 

It is common to account for cracking in the determination of elastic properties of RC members. 
The tool allows input of separate crack factors (i.e., the ratio between cracked and uncracked 
section stifness) for the column and the superstructure. In general, it is conservative to use a 
higher efective length factor in design. Thus, overestimates of column stifness and underestimates 
of superstructure stifness are generally conservative in this analysis. The recommended value of 
column crack factor of 0.7 is a reasonable upper bound of the cracked stifness and permitted by 
ACI 318 for elastic analysis at the factored load level. The recommended value of crack factor is 0.5 
for nonprestrssed RC box girders and 1.0 for prestressed RC box girders based on Section 4.2.5.1(a) 
of Caltrans Bridge Design Practice 4 (Caltrans, 2022). Note that the values for the superstructure 
are based on the reduction in torsional stifness due to fexural cracking. The reduction in torsional 
stifness due to torsional cracking can be much more severe (Tavio and Teng, 2004; Katsaras et al., 
2009), but torsional cracking is not expected to occur because of column buckling. 

For columns on pile caps or spread footings, it is recommended that the efective length of the 
column be determined as the length of the column down to the top of the foundation times the 
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Figure 6.32: Screenshot of the interface for the Microsoft Excel based tool for determining the 
efective length factor for the transverse buckling mode of single column bents 
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efective length factor for a practical fxed base. For columns on shafts, it is recommended that the 
efective length of the column be determined as the length of the column down to the equivalent 
point of fxity times the efective length factor for a idealized fxed base. These recommendations 
are illustrated in Figure 6.33. 

Figure 6.33: Schematic of diferent bridge column base conditions and recommendations for 
column height and base fxity 

While the end span ratio, γ, accounts for diferences between the end span and the interior spans 
for bridges with three spans or more, diferences in span lengths assumed equal in this derivation 
can still exist. Minor diferences in span lengths can be accommodated by using the average length 
in the equations. Specifcally, for bridges with three or more spans, the span length should be the 
arithmetic mean of the interior spans and the end span ratio should be the arithmetic mean of the 
end spans divided by the span length. For bridges with two spans, the span length should be the 
arithmetic mean of the two span lengths (note, however, that using the harmonic mean of the span 
lengths is more accurate). When defned this way, variation in individual spans from the arithmetic 
mean of up to 20% will cause minimal error as shown in Table 6.17. 

Table 6.17 shows a comparison between the proposed efective length factor and efective length 
factors computed from eigenvalue buckling analysis in MASTAN2 for for various confgurations with 
20% variation in span length. For these analyses, the column had a height of 40 ft, cross-sectional 
area of 1,800 in2 , moment of inertia about both axes of 260,000 in4 , and torsional constant of 
520,000 in4 . The superstructure had a cross-sectional area of 9,000 in2 , moment of inertia about 
the horizontal axis of 4,000,000 in4 , moment of inertia about the vertical axis of 180,000,000 in4 , 
and torsional constant of 2,000,000 in4 . The concrete for both the column and the superstructure 
has a modulus of elasticity of 3,605 ksi and shear modulus of 1,502 ksi. The diference between 
the proposed efective length factor and the efective length factor compute from the eigenvalue 
buckling analysis is less than 3% for all the cases examined. 
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For variations greater than 20%, the longer span length should be used or the efective length 
factor should be determined from eigenvalue buckling analysis. 

Table 6.17: Comparison between proposed efective length factor and efective length factor com-
puted from eigenvalue buckling analysis in MASTAN2 for bridges with unequal span lengths 

Span Length (ft) MASTAN2 Proposed Percent 
Span 1 Span 2 Span 3 Span 4 Pcr (kips) K g K Diference 
100 100 — — 23,345 1.31 1.282 1.31 -0.1% 
80 120 — — 23,683 1.30 1.282 1.31 0.6% 
75 100 75 — 20,188 1.41 1.282 1.41 0.0% 
60 100 90 — 20,308 1.41 1.282 1.41 0.3% 
75 100 100 75 17,071 1.53 1.282 1.56 1.7% 
60 100 100 90 17,105 1.53 1.282 1.56 1.8% 
60 80 120 90 17,224 1.53 1.282 1.56 2.2% 
60 120 80 90 16,958 1.54 1.282 1.56 1.4% 

6.4 Tools for Preliminary Design 

Preliminary design of bridges helps engineers understand the general parameters of a bridge early 
in the design process. Current practice for preliminary design of bridge columns is focused on 
rules of thumb based on axial load. Preliminary designs could be improved by considering bending 
moment if appropriate simplifed analysis methods are available. 

This section describes the development of two tools. The frst is a rule of thumb to approximate 
the moment strength of an RC cross section. The second is a rule of thumb to approximate the 
moment magnifcation factor. 

6.4.1 Moment Strength 

The moment strength at zero axial load, Mn, was determined for each of the 36 cross sections 
described in Section 5.1.1 using the strain compatibility approach described in Section 5.1.2. Ad-
ditionally, moment strength of 216 similar cross sections but with six diferent pairs of steel and 

′ concrete strength was determined. The pairs of fy and f were 50 and 3, 50 and 4, 60 and 3, 60 and c 
5, 70 and 4, and 70 and 5, all in units of ksi, making the total number of cross sections 252. Then, 
using PySR, an open-source software for symbolic regression (Cranmer, 2023), a new equation was 
developed to approximate the moment strength. The regression software was provided with cal-
culated moment strength, steel ratio, nominal axial strength of cross section, depth to reinforcing, 
concrete strength, and steel strength, and output diferent equations to approximate the moment 
strength with varying accuracy and complexity. Eq. (6.28) was selected from the output equations 
for its balance of simplicity and accuracy. 

� �0.6Ast
Mn ≈ P0d (6.28)

Ag 

where 
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Mn = approximate moment strength of cross section 

Ast = total area of longitudinal reinforcement 

Ag = gross area of concrete section 

P0 = nominal axial strength of cross section, Eq. (5.3) 

d = distance from the extreme compression fber to the centroid of the extreme tensile rein-
forcement 

To quantify the accuracy of the approximate formula, the moment strength computed from 
the strain compatibility method, Mn(SC), was compared to the moment strength according to 
Eq. (6.28), Mn(eqn) for the 252 cross sections in the training set. For each case, an error value was 
calculated using Eq. (6.29). 

Mn(SC) − Mn(eqn)
ε = (6.29)

Mn(SC) 

Summary statistics of the errors computed using Eq. (6.29) are listed in Table 6.18 by cross 
section type and bending axes. Note that positive values of error indicate that the approximate 
equation underpredicts the moment strength calculated from the strain compatibility method. 

The proposed equation has an average error less than 1% for circular cross sections. Greater 
error is observed for obround cross sections. These errors are related to the shape of the cross 
section and the distribution of reinforcing. For example, for obround sections bending about their 
x-axis, the distribution of reinforcing bars is more favorable with more bars located farther from 
the neutral axis. Capturing these efects in the approximate equation and achieving additional 
accuracy would require additional terms and complexity in the equation which may not be suitable 
for initial design. 

Although the average errors are positive for all cross section types, error for individual cases 
can be negative or positive, resulting in either an overprediction or underprediction of strength. 
The maximum and minimum errors are listed in Table 6.18. Moreover, the equation is noted to be 
less accurate when higher strength steel is employed with lower strength concrete, or conversely, 
when lower strength steel is used with higher strength concrete. 

Table 6.18: Error values for the results obtained from Eq. (6.29) 

Cross Bending Average Standard Minimum Maximum 
Section Axis Error Deviation Error Error 
Type of Error 
Circle - 0.95% 9.64% -21.70% 20.98% 
Obround x 23.36% 10.72% -7.88% 44.99% 
Obround y 12.79% 10.53% -16.63% 35.76% 

135 



6.4.2 Moment Magnifcation Factor 

The moment magnifcation approach defned in AASHTO LRFD Section 4.5.3.2.2b is relatively 
simple, but can be further simplifed for preliminary design. By assuming Cm = 1 and the ratio 
Pu/Pe is the same for all columns, the nonsway and sway moment magnifers become equal and 
can be written as: 

1 
δ = (6.30)

Pu
1 − 

ϕK Pe 

The term Pu/ϕK Pe can be expanded by substituting in the defnition of Pe (Eq. 5.10) and an 
expression for EI (Eq. 2.1). 

Pu Pu Pu 
= = (6.31)

ϕK Pe π2EI π20.4EcIg
ϕK ϕK
(KL)2 (1 + βd)(KL)2 

′ Multiplying the numerator by P0g/P0g where P0g = 0.85f Ag yieldsc 

Pu ′ 0.85f AgcPu P0g
= (6.32)

ϕK Pe π20.4EcIg
ϕK 
(1 + βd)(KL)2 

Substituting in expressions for the area and moment of inertia of a circle yields 

Pu π′ 0.85f D2 
cPu P0g 4 

ϕK Pe 
= 

π20.4Ec 
π
D4 

(6.33) 

64ϕK 
(1 + βd)(KL)2 

Canceling common terms, substituting in ϕK = 0.75, and simplifying yields 

� �2′ Pu f Pu KL c = 4.6 (1 + βd) (6.34)
ϕK Pe Ec P0g D 

Substituting back into the moment magnifcation factor equation yields 

1 
δ = � �2 (6.35)′ f Pu KL c1 − 4.6 (1 + βd)

Ec P0g D 

′ Eq. (6.35) is tabulated for f = 4 ksi, Ec = 3,605 ksi based on Eq. (3.1), and βd = 0.5 inc 
Table 6.19. While derived for circular shapes, this approximate moment magnifer can also be 
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applied to obround shapes if D is taken as the cross-sectional dimension perpendicular to the 
axis of bending. However, the approximation is less accurate for bending about the minor axis of 
obround shapes. 

Together with Eq. (6.28), the approximate moment magnifer can aid preliminary design of 
bridge columns by providing an approximate size column size or by identifying when the size of a 
column should be increased due to slenderness efects. 

′ Table 6.19: Approximate moment magnifer for f = 4 ksi and βd = 0.5. Values greater than 3 arec 
not shown. 

Pu/P0g 0 5 
KL/D 

10 15 20 25 
0.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.05 1.00 1.01 1.04 1.09 1.18 1.31 
0.10 1.00 1.02 1.08 1.21 1.44 1.92 
0.15 1.00 1.03 1.13 1.35 1.85 — 
0.20 1.00 1.04 1.18 1.53 2.58 — 
0.25 1.00 1.05 1.24 1.76 — — 
0.30 1.00 1.06 1.30 2.07 — — 
0.35 1.00 1.07 1.37 2.52 — — 
0.40 1.00 1.08 1.44 — — — 
0.45 1.00 1.09 1.53 — — — 
0.50 1.00 1.11 1.62 — — — 
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Chapter 7 

Conclusions 

The importance of second-order efects has long been recognized in the design of slender RC bridge 
columns. While the decades old moment magnifcation method remains a robust approach to 
account for second-order efects in most cases, it is important for engineers to understand the 
limitations of the methods they employ and be aware of alternatives to the simplifcations they use 
as highlighted in this work. 

For stability design, the AASHTO LRFD allows, within certain slenderness limits, calculation 
of required strengths using moment magnifcation. However, this method is approximate. Use of 
simplifed equations for the fexural rigidity of RC sections, especially the equations in the AASHTO 
LRFD, is a major source of error in the approximate method. Use of simplifed efective length 
factors that do not fully account for the restraint provided by the bridge superstructure can also be 
a major source of error in the approximate method. Use of a refned method in design is permitted 
regardless of member slenderness, but refned methods based on second-order analysis requires 
many modeling choices that can be unclear. 

A numerical investigation was undertaken to improve the accuracy of the approximate approach 
and develop guidance on how to address second-order efects in the design of slender RC bridge 
columns. An advanced second-order inelastic model for RC bridge columns was developed and 
validated against the results of hundreds of physical experiments. The model considers geometric 
nonlinearity, including P -δ and P -∆ efects; material nonlinearity, including concrete cracking and 
crushing and steel yielding; as well as long-term efects such as creep and shrinkage. A parametric 
study was performed to generate data on the strength of columns. This data was used as a 
benchmark against which the accuracy of design methods was quantifed. The results of these 
comparisons show that the simplifed equations for fexural rigidity in the AASHTO LRFD are 
generally conservative but can result in unconservative error especially for more slender members 
with relatively low axial load and high bending moments. Evaluation of other available equations 
for the fexural rigidity, including those that depend on the axial load and bending moment in the 
column were found to be more accurate on average but with even greater unconservative errors 
over a broader range than the AASHTO LRFD equations. New equations for fexural rigidity were 
developed to minimize unconservative error while controlling overall error. 

Slenderness limits in the AASHTO LRFD were reevaluated as a means to limit unconservative 
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error. The results indicated that the proposed equations could be safely used in the moment 
magnifcation approach for members with slenderness much greater than the current limit of 100. 
Refned analysis, which is required to be used for members that exceed the slenderness limit, was 
not explicitly studied in this work. With the proposed EI equations and greater slenderness limits, 
it may be appropriate to simply not design columns with slenderness exceeding the slenderness 
limit. However, it is anticipated that refned analysis is still necessary for irregular geometries or to 
model the stifness more accurately. Simply using matrix structural analysis instead of the moment 
magnifcation approach may not improve accuracy. Further investigation is required to develop 
robust procedures and requirements for refned analysis. 

Guidance was also developed on the efective length factor. Using eigenvalue buckling analyses 
of three-dimensional models of basic bridge types, current Caltrans practice for selecting efective 
length factors was found to be appropriate for multi-column bents and single-column bents for 
buckling in the plane of the bridge, i.e., in the longitudinal direction. Current Caltrans practice 
for selecting the efective length factor for single-column bents for buckling out of the plane of the 
bridge, i.e., in the transverse direction, was found to be conservative as it neglected the torsional 
stifness of the superstructure, which can be substantial in many cases. A new efective length factor 
for out-of-plane buckling of single-column bents was developed based on closed-form solutions to the 
governing diferential equation. The efective length factor was implemented in a spreadsheet-based 
design tool for easy use by engineers. 

Further evaluation of long-term efects and the use of analysis models to account for the restraint 
provided by the superstructure and foundation is recommended. Nonetheless, given the thorough 
evaluation of the fexural rigidity and efective length factor, the identifcation and quantifcation of 
errors due to simplifcations, and the rigorously justifed and practical recommendations to reduce 
error, this work will help engineers make more confdent, accurate decisions when designing slender 
RC columns. 

Several avenues for future study have been identifed. 

• This study focused primarily on relatively simple bridges where the restraint of the columns 
can readily be idealized. Research to develop detailed guidance for efciently incorporating 
restraint from the foundation, superstructure, abutment, etc. in a “refned” second-order 
elastic analysis for the design of the columns would be benefcial. The research could identify 
how the various components should be modeled and what simplifcations are appropriate. The 
research could also help identify under what conditions a refned analysis is the best approach. 
Ideally, the research would cover a range of bridge types (including curved), foundation types, 
abutment types (including integral). 

• This study found that that the use of βd in the fexural rigidity equations may overesti-
mate the impact of long-term efects. Research to further these observations and to develop 
recommendations for design would be benefcial. 

• This study focused on columns subject to combined axial compression and bending about 
one axis. Research to confrm the applicability of the recommendations when the column is 
subject to combined axial compression and bending about two axes would be benefcial. 

• This study focused on traditional elastic analyses where the fexural stifness is defned a 
priori. Elastic analyses can also be performed with fber sections where the steel is defned 
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with an elastic stress-strain relationship and the concrete is defned with an elastic-no-tension 
stress-strain relationship. These nonlinear elastic analyses could be advantageous because 
they would track the level of cracking explicitly within a second-order analysis and could be 
performed efciently for regular bridge types with an app powered by OpenSees. However, 
research is needed to develop the analysis approach and the app. 
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Appendix A 

Second-Order Analysis Using 
CSiBridge 

Where the foregoing research results based on OpenSees may be too cumbersome for design foor 
use, this appendix shows how results similar to those from OpenSees can be obtained using CSiB-
ridge (v24). 

A.1 Bridge Model 

The canonical bridge model shown in Figure A.1 is used for analyses in both OpenSees and CSiB-
ridge. The model is defned in three dimensions (3D) with three spans with 100 ft main span and 
75 foot approach spans. 

wL 
w 

Torsion Torsion 
restrained restrained 

Rigid ofsets 
D=48 inch 

60 ft L/D=15 
Y Y 

X Z 

75 ft 100 ft 75 ft 

Figure A.1: Bridge model for second order analysis using OpenSees and CSiBridge. 

The column section is round with diameter D=48 inch and 2% longitudinal reinforcing steel 
′ (24 #11 Grade 60 bars) with 2 inch clear cover. Concrete compressive strength is f = 4 ksi.c 

Rigid beam ofsets connect the top of the columns to the centerline of the superstructure (half 
of the superstructure depth). The fexible column length is 60 ft (aspect ratio L/D=15). The 
superstructure is elastic with the following properties: 
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• Elastic modulus, Ess = 4000 ksi; Poisson ratio, ν = 0.3 

• Area, Ass = 63.5 ft2 

• Second moment of area (local z, global Z) Izss = 182 ft4 

• Second moment of area (local y, global Y ) Iyss = 8570 ft4 

• Polar second moment of area, Jss = 550 ft4 

The abutment boundary conditions are rollers with torsion restrained in the superstructure. 

A.2 Bridge Loading 

A series of analyses will be performed in OpenSees and CSiBridge for a reference load pattern of 
uniform distributed load across the bridge superstructure. In the vertical direction (along global 
−Y axis), the reference distributed load magnitude is w. For analyses cases that include out-of-
plumbness, the columns are defned with an initial ofset L/500=1.44 inch in the global Z-direction. 

A.2.1 Geometric and Material Nonlinear Analysis (GMNIA) 

An analysis that includes both material and geometric nonlinearity is the “best guess” at true 
behavior. Using fber sections for the columns with EPP steel fbers and Concrete04 for the 
concrete, consistent with the models used for short-term loading in this report, an analysis with 
geometric nonlinearity (corotational mesh of column elements) predicts a peak load of w=78 kip/ft. 
The analysis includes L/500 out of plumbness for the columns and the load-displacement response 
is shown in Figure A.2. 

Figure A.2: Transverse load-displacement response based on GMNIA in OpenSees. 

Although this analysis (GMNIA) was performed only in OpenSees, the following analyses were 
performed in CSiBridge. 
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A.2.2 Geometric Nonlinear Analysis (GNA) 

Accounting for only geometric nonlinearity with elastic column response, analyses were performed 
in CSiBridge to determine the distributed loading, w, on the bridge that placed the column demands 
at the interaction curve shown in Figure A.3. For all cases, the column moment is the resultant of 
the moment about the local axes 2 and 3 in CSiBridge. 

The nominal P -M interaction curve for this section is shown in Figure A.3. 

Figure A.3: Nominal P -M interaction curve for column section used in bridge analysis. 

Four cases of GNA were performed in CSiBridge to estimate the maximum distributed load the 
bridge model can support: 

• EIef = 0.4EcIg with L/500 out-of-plumbness 

• EIef = 0.4EcIg with no out-of-plumbness 

• EIef based on Eq. (6.1) with L/500 out-of-plumbness 

• EIef based on Eq. (6.1) with no out-of-plumbness 

Although EIef depends on the applied axial load according to Eq. (6.1), the value of EIef used 
for the two cases of GNA is based on axial load where P/Po ≈ 1. In this case, EIef = 0.52EcIg 
for the columns in this bridge model. 

The EIef values are input in CSiBridge using Ec=3605 ksi (for 4000 psi concrete), Ig based 
on the column diameter, and appropriate section modifers (0.4 or 0.52) on the I values about the 
section 2 and 3 axes. The distributed load is applied as a reference uniform load pattern up to a 
peak value of w=68 kip/ft (corresponds to Po on axial-moment interaction curve in Figure A.3). 
Loads are applied in 10 steps and the CSiBridge analysis uses both P -∆ and P -δ efects in the 
column elements. 

For GNA with EIef = 0.4EcIg and L/500 out-of-plumbness, the distributed load that leads to 
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axial-moment demands on the column interaction curve is w=62 kip/ft. For the other three GNA 
cases, the maximum distributed load is w=67 kip/ft. With no out-of-plumbness, the higher EIef 
leads to higher column demands as “stifness attracts load”; however, when out-of-plumbness is 
included in the analysis, the lower EIef leads to a lower maximum distributed load because the 
lower fexural stifness leads to higher defections and thus higher second order moments. 

Figure A.4: Geometrically nonlinear analysis (GNA) with column efective stifness EIef = 0.4EcIg. 

A.3 Key Steps for CSiBridge Analysis 

While the OpenSees analyses for the example bridge analysis closely follow the methods presented 
in this report, the CSiBridge analyses require diferent considerations, the highlights of which are 
summarized in this section. 

For the analysis presented in this appendix, the bridge model consists of line elements as shown 
in Figure A.5. The base of each column is completely fxed (restrained in all six DOFs) while the 
ends of the superstructure are on rollers but with the torsional DOF constrained. In CSiBridge, 
the nodal restraint at the ends of the superstructure (nodes 2 and 8 in Figure A.5) is “u3,r1”, i.e., 
fxed in both Z-direction translation and rotation about the X-axis. 

Additional modeling details for the superstructure are omitted here and the focus is on the 
columns. 

• Defne column sections as elastic and use property/stifness modifers to achieve the desired 
efective fexural stifness. For example, to set the efective fexural stifness for the columns 
to 0.52EcIg, use the inputs shown in Figure A.6. Note that the modifers should be set for 
both axes of bending. 

• For analysis cases that require out-of-plumbness for the columns, the Y -coordinate of the 
column base nodes was adjusted manually to achieve L/500. 
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Figure A.5: CSiBridge model using line elements for the example bridge. 

• Reference distributed loads of magnitude 1 kip/ft were applied as line loads along the longi-
tudinal direction the superstructure. 

• Geometric nonlinear analysis was defned as a load case with the options shown in Figure A.7. 
The main points are: 

– The Load Case Type (upper right of Figure A.7) should be ”Multi-step Static”. 

– The Analysis Type (just below Load Case Type in Figure A.7) should be set to “Non-
linear”. 

– The Geometric Nonlinearity Parameters (lower right of Figure A.7) should be set to 
“P-Delta plus Large Displacements”. 

– The Loads Applied information (middle section of Figure A.7) should refer to the ref-
erence load pattern (distributed load on superstructure) and include a maximum scale 
factor, e.g., 62, meaning the fnal analysis step will apply 62 times the reference load 
pattern. Some trial and error may be required in order to determine a suitable scale 
factor for the analysis. 
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Figure A.6: Frame property/stifness modifers in CSiBridge. 
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Figure A.7: Options for geometric nonlinear analysis in CSiBridge. 
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A.4 Moment Magnifcation Analysis 

To apply the moment magnifcation method, a frst order analysis is performed with w=1 kip/ft 
vertical distributed load and no out-of-plumbness. In the frst order analysis, the fexural stifness 
of the columns is EIef = 0.7EcIg, which is achieved by setting the column I2 and I3 modifers to 
0.7 in CSiBridge. 

The column demands from the frst order analysis are: 

• Axial force, P =97.7 kip 

• Bending moment, M1b=-50.3 kip-in, M2b=101 kip-in (double curvature) 

These demands are then scaled up via moment magnifcation for two cases: 

• EIef = 0.4EcIg in the moment magnifer equations. 

• The EIef proposed in Eq. (6.1) for the moment magnifer equations, accounting for modifed 
magnifer coefcients as the axial load increases and efects the fexural stifness. For the 
columns in this bridge model, the fexural stifness is EIef = 0.52EcIg. 

Figure A.8: Moment magnifcation method with column efective stifness EIef = 0.7EcIg in frst 
order analysis and EIef = 0.4EcIg and EIef proposed in Eq. (6.1) in the moment magnifcation 
procedure. 

With a large efective stifness, the moment magnifcation using the proposed EIef is not as 
signifcant as the case of EIef = 0.4EcIg. The maximum distributed load predicted by moment 
magnifcation is w=67 kip/ft using the proposed EIef and w=66 kip/ft using 0.4EcIg. 

A.5 Commentary 

The foregoing analyses show that the analysis methods proposed in this report can be carried 
out using CSiBridge. The slenderness of the columns for the chosen bridge model was moderate 
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(L/D = 15) and the moment magnifer analysis and all but one GNA case showed the column 
demands reaching the peak axial strength. For more slender columns, the moment amplifcation 
would be more signifcant. In all GNA and moment magnifcation cases, the predicted maximum 
distributed load was less than the “best guess of true behavior” of w = 78 kip/ft predicted by 
GMNIA, indicating these methods gave conservative results for this sample bridge model. While 
advanced analysis software such as CSiBridge and OpenSees are not required in order to model 
second order efects in standard bridges where moment magnifcation does a good job, the analysis 
methods presented in this appendix may be necessary for bridges with irregular geometries, e.g., 
due to skewed or curved superstructures. 
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	Stability effects can dominate the design of slender reinforced concrete (RC) bridge columns. Yet, bridge engineers are often forced to make assumptions in the stability design of RC columns that are not rigorously justified by data. 
	The AASHTO LRFD Bridge Design Specifications hereafter referred to as AASHTO LRFD, includes an approximate method for the design of slender RC bridge columns. This approximate method, the method most commonly used by bridge engineers, was adapted from building design codes such as the ACI Building Code Requirements for Structural Concrete hereafter referred to as ACI 318. Accordingly, the AASHTO LRFD approximate method applies to a specific range of parameters and configurations based on floor framing stiff
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	Bridge engineers can obtain safer and more efficient designs using the refined method based on second-order finite element analysis. In fact, if the slenderness ratio exceeds 100, AASHTO LRFD requires the refined method. Although the refined method can be more accurate than the approximate method, the refined method is rarely used in practice because of the computational effort and the need to make choices about uncertain parameters of a finite element model. 
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	-
	-

	designs while maintaining safety. 

	This report is organized as follows. A review of relevant literature and development of a database of experimental data is presented in Chapter 2. Chapter 3 introduces the advanced second-order inelastic analysis model used in this work. Validation studies comparing results from the refined model to previously published experimental results are presented in Chapter 4. Chapter 5 presents an evaluation of current AASHTO LRFD design provisions. The development of potential modifications to the design provision
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	Chapter 2 

	Literature Review 
	Literature Review 
	The literature review is divided into three general areas: physical experiments, analytical modeling, and design of slender reinforced concrete columns. 
	2.1 Physical Experiments on Slender Reinforced Concrete Columns 
	2.1 Physical Experiments on Slender Reinforced Concrete Columns 
	Thousands of physical experiments on RC columns are documented in the literature. Given the goals of the project, this literature review and database development are focused primarily on columns that were either slender, subjected to long-term loading, or both. Tests using common configurations (e.g., cross-sectional shape, boundary conditions, and loading) were added to a highly-quantitative database to enable automated evaluation. Testing with less common configurations is described more qualitatively. 
	-

	The experimental database is the primary means of validating the numerical models from which the new design recommendations are calibrated. The database includes hundreds of tests on short-term loaded, uniaxially loaded, eccentrically loaded RC columns. Table lists the references and number of specimens from each reference included in the database. 
	2.1 

	Fields in the database are sufficient to perform a second-order inelastic analysis of each specimen and compare experimental results to numerical results when paired with information common to all specimens in the database (e.g., all specimens that have a rectangular cross section). Note that while the focus of the project is on RC columns with circular or obround cross sections, the data on RC columns with rectangular cross sections is still useful for validation. The differences in cross section will be h
	• 
	• 
	• 
	Author and year of reference (author, year) 

	• 
	• 
	Specimen name (specimen) 

	• 
	• 
	Column length (L) 

	• 
	• 
	Maximum load from experiment (Pexp) 

	• 
	• 
	Deflection at maximum load (dmax at Pexp) 

	• 
	• 
	Load eccentricity at top and bottom of column (et, eb) 

	• 
	• 
	Overall height and width of the cross section (H, B) 

	• 
	• 
	Concrete compressive strength and type of sample use to determine concrete compressive strength (fc, fc type) 

	• 
	• 
	Yield strength of longitudinal reinforcing bars (fy) 

	• 
	• 
	Distance from edge of cross section to center of longitudinal reinforcing bars (dp) 

	• 
	• 
	Diameter of longitudinal reinforcing bars (db) 

	• 
	• 
	Number of longitudinal reinforcing bars along each face (nbx, nby) 

	• 
	• 
	Diameter, spacing, and yield strength of transverse reinforcing bars (dbt, s, fyt) 

	• 
	• 
	Transverse reinforcing configuration (lat config) 

	• 
	• 
	Miscellaneous notes (notes) For each parameter with units, two fields are defined: the value and the units. For example, for 


	Table 2.1: References included in the database of short-term eccentrically loaded columns. 
	Reference 
	Reference 
	Reference 
	Number of Specimens 

	Viest et al. (1956) 
	Viest et al. (1956) 
	Viest et al. (1956) 

	13 

	Chang and Ferguson (1963) 
	Chang and Ferguson (1963) 
	Chang and Ferguson (1963) 

	6 

	Saenz and Martin (1963) 
	Saenz and Martin (1963) 
	Saenz and Martin (1963) 

	52 

	MacGregor and Barter (1966) 
	MacGregor and Barter (1966) 
	MacGregor and Barter (1966) 

	4 

	Martin and Olivieri (1966) 
	Martin and Olivieri (1966) 
	Martin and Olivieri (1966) 

	8 

	Goyal and Jackson (1971) 
	Goyal and Jackson (1971) 
	Goyal and Jackson (1971) 

	26 

	Drysdale and Huggins (1971) 
	Drysdale and Huggins (1971) 
	Drysdale and Huggins (1971) 

	4 

	Dracos (1982) 
	Dracos (1982) 
	Dracos (1982) 

	36 

	Iwai et al. (1986) 
	Iwai et al. (1986) 
	Iwai et al. (1986) 

	11 

	Kim and Yang (1995) 
	Kim and Yang (1995) 
	Kim and Yang (1995) 

	28 

	Lloyd and Rangan (1996) 
	Lloyd and Rangan (1996) 
	Lloyd and Rangan (1996) 

	36 

	Foster and Attard (1997) 
	Foster and Attard (1997) 
	Foster and Attard (1997) 

	68 

	Chuang and Kong (1997) 
	Chuang and Kong (1997) 
	Chuang and Kong (1997) 

	20 

	Claeson and Gylltoft (1998) 
	Claeson and Gylltoft (1998) 
	Claeson and Gylltoft (1998) 

	12 

	Lee and Son (2000) 
	Lee and Son (2000) 
	Lee and Son (2000) 

	32 

	Kim and Lee (2000) 
	Kim and Lee (2000) 
	Kim and Lee (2000) 

	6 

	Claeson and Gylltoft (2000) 
	Claeson and Gylltoft (2000) 
	Claeson and Gylltoft (2000) 

	4 

	Khalil et al. (2001) 
	Khalil et al. (2001) 
	Khalil et al. (2001) 

	11 

	Sarker and Rangan (2003) 
	Sarker and Rangan (2003) 
	Sarker and Rangan (2003) 

	18 

	Germain and Espion (2005) 
	Germain and Espion (2005) 
	Germain and Espion (2005) 

	12 

	Pallar´es et al. (2008) 
	Pallar´es et al. (2008) 
	Pallar´es et al. (2008) 

	21 

	Jenkins and Frosch (2015) 
	Jenkins and Frosch (2015) 
	Jenkins and Frosch (2015) 

	8 

	Total 
	Total 
	436 


	steel yield stress, the two fields are fy and fy units. Separate fields for values and units allows for more efficient and accurate data entry and checking. Parameters are converted to consistent units programmatically prior to analysis. Figure shows some of the cross-sectional parameters stored in the database. Cases where load eccentricity is near the edge or outside the section are achieved in the physical experiments by enlarging the ends of the column. 
	2.1 

	Figure
	Figure 2.1: Cross-sectional parameters of the database columns 
	Figure 2.1: Cross-sectional parameters of the database columns 


	Not all data are available for each specimen. If a major piece of data (i.e., concrete compressive strength) was not reported, then the specimen was not included in the database. Other data, such as the yield strength of transverse reinforcing bars, is less important. Analyses were conducted to evaluate the sensitivity of the strength of these columns to the missing data. In cases where the difference in column strength for the anticipated range of the values of the missing field is negligible, such as for 
	Some specimens were excluded from the database because they failed in ways that could not be simulated using the numerical model in this work (e.g. if failure occurred due to imperfect compaction of ends). 
	The information in the database is visualized with several histograms. Figures demonstrate the frequency and range of selected parameters from the database. 
	2.2–
	2.9 
	-

	The following list describes other series of experimental tests which relevant to this work but fall outside the scope of the database (e.g., long-term loaded columns and biaxially loaded columns). 
	• 
	• 
	• 
	tested 3 slender RC bridge columns in a cantilever configuration with constant axial compression and cyclically applied lateral displacements. This work is et 
	Babazadeh et al. 
	(2016) 
	also described in other references Burgue˜no et 
	al. (2016); Babazadeh 

	al. (2017); Babazadeh-
	Naseri 
	(2017). 


	• 
	• 
	tested 44 slender RC members which were simply-supported and subjected to axial load and a transverse load at the midpoint. 
	Barrera et al. 
	(2011) 
	-


	• 
	• 
	tested 10 slender RC columns in a cantilever configuration. 
	Breen and Ferguson 
	(1969) 


	• 
	• 
	tested 10 slender RC columns under eccentric sustained load. 
	Green and Breen 
	(1969) 


	• 
	• 
	tested 14 slender RC columns under biaxial loading. 5 of the columns had fiber reinforced concrete. 
	Hsu et al. 
	(1995) 


	• 
	• 
	in double curvature with constant axial compression and cyclically applied lateral displacements. 
	Hung et 
	al. (2024) tested 4 slender RC bridge columns bent 



	• 
	• 
	a non-proportional loading scheme. 
	Ibrahim and MacGregor (1996) tested 20 high-strength RC columns under 


	• 
	• 
	tested 10 RC column under biaxial eccentric load in addition to the 6 already included in the database. 
	Kim and Lee 
	(2000) 


	• 
	• 
	tested 24 RC columns under biaxial load, including 15 with “partial circlar” cross sections. 
	Mavichak and 
	Furlong (1976) 



	• 
	• 
	tested 39 RC columns. 
	Pancholi 
	(1977) 


	• 
	• 
	tested 50 RC columns in biaxial bending. 
	Ramamurthy 
	(1966) 


	• 
	• 
	tested 12 RC columns in biaxial bending. 
	Sarker et al. 
	(2001) 


	• 
	• 
	tested 50 RC columns under non-proportional loading. 
	Schofield 
	(1983) 


	• 
	• 
	tested 14 RC columns in biaxial bending, including 8 with “L-shaped” cross sections. 
	Taso and Hsu 
	(1994) 


	• 
	• 
	tested 6 RC columns in biaxial bending. 
	Wang and Hsu 
	(1992) 


	• 
	• 
	tested 34 RC columns in biaxial bending and under sustained load. 
	Wu and 
	Huggins (1977) 




	Figure
	Figure 2.2: Column slenderness ratio histogram 
	Figure 2.2: Column slenderness ratio histogram 


	Figure
	Figure 2.3: Cross section aspect ratio histogram 
	Figure 2.3: Cross section aspect ratio histogram 


	Figure
	Figure 2.4: Normalized load eccentricity histogram 
	Figure 2.4: Normalized load eccentricity histogram 


	Figure
	Figure 2.5: Normalized depth of compression reinforcement histogram 
	Figure 2.5: Normalized depth of compression reinforcement histogram 


	Figure
	Figure 2.6: Longitudinal steel ratio histogram 
	Figure 2.6: Longitudinal steel ratio histogram 


	Figure
	Figure 2.7: Concrete compressive strength histogram 
	Figure 2.7: Concrete compressive strength histogram 


	Figure
	Figure 2.8: Steel yield strength histogram 
	Figure 2.8: Steel yield strength histogram 


	Figure
	Figure 2.9: Experimental peak load over the nominal strength of reinforced concrete column histogram 
	Figure 2.9: Experimental peak load over the nominal strength of reinforced concrete column histogram 



	2.2 Analytical Modeling of Slender Reinforced Concrete Columns 
	2.2 Analytical Modeling of Slender Reinforced Concrete Columns 
	Simulating the response of reinforced concrete columns ranges from elastic models based on effective section properties to nonlinear finite element models that incorporate the stress-strain behavior of concrete and steel. Due to the slenderness of columns, frame or beam-column line elements are commonly employed because, compared to solid finite elements, line elements strike a balance between computational efficiency and accuracy. Owing to their prevalence in modeling reinforced concrete column response, t
	2.2.1 Finite Element Formulations 
	2.2.1 Finite Element Formulations 
	Formulations for material nonlinear beam-column finite elements are typically categorized as either distributed plasticity or concentrated plasticity. While concentrated plasticity formulations are popular in earthquake simulation of columns in lateral load resisting systems, these formulations are less suitable for stability analysis. Concentrated plasticity formulations assume the largest bending moments are confined to the ends of the member; however, for stability analysis, the largest bending moment ca
	There are three major approaches to distributed plasticity: displacement-based, force-based, and mixed formulations. In the displacement-based formulation, a strain field is imposed along the element. In the presence of material nonlinearity, the displacement-based approach requires mesh refinement (multiple elements per member) in order to obtain an accurate representation of the member deformation field. The force-based and mixed formulations do not require mesh refinement to capture material nonlinearity
	To account for geometric nonlinearity along a column member (P -δ effects), moderate to large deformation formulations for displacement-based, force-based, and mixed elements are available. For displacement-based elements, second-order Green-Lagrange strain is computed from the element displacement fields while for the force-based formulation, curvature-based displacement interpolation approximates the transverse displacement along an element In the mixed formulation, both the displacements and the stress r
	-
	Hjelmstad (2005) 
	Neuenhofer 
	and Filippou 
	(1998). 
	principle Hjelmstad 
	and 
	Taciroglu (2003). 

	-
	Alemdar and White 
	(2005). 

	Instead of a single member, a mesh of material nonlinear, but geometrically linear elements, each with the corotational large displacement transformation can also capture geometric nonlinearity. This “corotational mesh” approach requires multiple elements, but can be a more suitable approach for stability analysis of reinforced concrete columns because the high 
	Instead of a single member, a mesh of material nonlinear, but geometrically linear elements, each with the corotational large displacement transformation can also capture geometric nonlinearity. This “corotational mesh” approach requires multiple elements, but can be a more suitable approach for stability analysis of reinforced concrete columns because the high 
	Crisfield 
	(1991) 

	number of elements per member, typically four or five, will also capture the change in stiffness along the member. Because the mesh is already refined to capture geometric effects, the displacement-based formulation is typically used in this “corotational mesh” approach because this formulation is the most computationally simple among the three formulations. 


	2.2.2 Constitutive Models 
	2.2.2 Constitutive Models 
	Fiber-discretized cross-sections provide a convenient approach to modeling the change in stiffness along a member under combined axial and flexural loads. With this approach, the force-deformation response at each integration point along an element is computed from the stress-strain response at discrete locations (fibers) over the section area. Although the computed force-deformation response improves as the number of fibers increases, a relatively low number of fibers is required to obtain accurate respons
	Kostic and Filippou 
	(2012). 

	With the fiber section approach, one-dimensional, or uniaxial, stress-strain relationships are assigned to each fiber. For monotonic (non-cyclic) loading such as the conditions expected for stability analysis, basic models of concrete and steel stress-strain behavior typically suffice. For concrete, the compressive backbone is often defined by or the approximation. The increase in concrete stiffness and strength due to confinement in compression is typically represented with the Mander model based on transv
	Mander et al. 
	(1988) 
	Kent and 
	Park 
	(1971) 
	Mander et 
	al. (1988). 


	A schematic of a corotational mesh with the fiber section modeling approach is shown in Figure Note that, without complication, rotational and translational springs can be added at the ends of the corotational mesh in order to model bent cap and foundation stiffnesses. All of these modeling components (corotational mesh, fiber section, stress-strain relationships for concrete and steel, and rotational and translational springs) are available in the widely-used OpenSees finite element software framework 
	-
	2.10. 
	McKenna et al. 
	(2010). 


	2.2.3 Long-Term Load Effects 
	2.2.3 Long-Term Load Effects 
	Reinforced concrete column stability under long-term loads is an important consideration due to the additional strains, curvatures, and deformations owing to creep and shrinkage. several models for concrete creep and shrinkage, comparing the model effects on long-term behavior. Although none of the models give an explicit expression for the change in concrete compressive strength because the models are intended for service level loads, expressions are available for the change in elastic modulus as a functio
	Goel et al. 
	(2007) compared 

	Several time-dependent concrete material are available in a general material wrapper that applies creep and shrinkage evolution equations to any uniaxial material. In the time-dependent concrete models available in OpenSees, the evolution equations for creep and shrinkage are based on either Eurocode 2010 or ACI 209-92R The models employed in this project are based on ACI 209-92R evolution equations. These time-dependent models can be used directly in the fiber section models described in the previous secti
	models by Knaack and Kurama (2018) 
	OpenSees Toˇsi´c 
	et al. (2020), along with 

	fib 
	(2013) 
	ACI Committee 209 (1997). 
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	Bridge Column Corotational Mesh Fiber Section Stress-Strain 
	Figure 2.10: Analytical model of a bridge column using corotational mesh and fiber sections with uniaxial stress-strain relationships for concrete and steel. 


	2.3 Design of Slender Reinforced Concrete Columns 
	2.3 Design of Slender Reinforced Concrete Columns 
	Standards that include provisions for the design of slender reinforced concrete columns often describe several methods. These methods of design are most generally categorized by the method of analysis they employ, including second-order inelastic analysis, second-order elastic analysis, and first-order elastic analysis with moment magnification. 
	-

	Several standards, including AASHTO LRFD, the 2019 edition of ACI 318, and Eurocode 2, permit the use of second-order inelastic analysis for design of slender reinforced concrete columns. The design provisions in each of these standards are general with little guidance beyond which physical effects need to be considered. Provisions for design using second-order elastic analysis are typically general as well. 
	The most detailed provisions for the design of slender reinforced concrete columns are for methods that utilize first-order elastic analysis and moment magnification. Key aspects of these methods include: 1) a limit at which second-order effects may be neglected, 2) approximate formulas for effective flexural stiffness, and 3) equations for determining the moment magnification factors. The provisions in AASHTO LRFD are largely based on those in ACI 318. 
	AASHTO LRFD presents two equations (Equations 5.6.4.3-1 and 5.6.4.3-2) for computing the effective flexural rigidity of RC columns. 
	0.4EcIg
	EI = (2.1)
	1+ βd 
	0.2EcIg + EsIse
	0.2EcIg + EsIse

	EI = (2.2)
	1+ βd 
	where: 
	Ec = modulus of elasticity of concrete 
	Es = modulus of elasticity of longitudinal steel 
	Ig = moment of inertia of the gross concrete section about the centroidal axis 
	Ise = moment of inertia of longitudinal steel about the centroidal axis 
	βd = ratio of maximum factored permanent load moments to maximum factored total load moment 
	Basing the effective flexural rigidity on more precise calculation is also permitted by AASHTO LRFD. 
	ACI 318 includes a third equation for the flexural rigidity based on the work of 
	Khuntia and 

	Ghosh 
	Ghosh 
	(2004). 
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	EI = (2.3)
	1+ βd 
	where: Ast = total area of longitudinal reinforcement Ag = gross area of concrete section Mu = factored moment at section Pu = factored axial force h = overall depth of member Po = nominal axial strength at zero eccentricity 
	Note that ACI 318 permits other, larger, values of stiffness for second-order elastic analysis. 
	Eurocode 2 governs reinforced concrete bridge design in Europe. Part contains general rules. Part 2 of this standard contains design and detailing rules specific to concrete bridges. For analysis of second-order effects with axial load, the specific provisions in Part 2 are minimal. 
	1-1 of this standard CEN 
	(2004) 
	CEN 
	(2005) 

	The simplified method based on nominal stiffness presented in Eurocode 2 is similar to the 
	moment magnification methods in AASHTO LRFD and ACI 318. 
	moment magnification methods in AASHTO LRFD and ACI 318. 
	moment magnification methods in AASHTO LRFD and ACI 318. 
	The effective stiffness used in 

	the analysis is 
	the analysis is 

	TR
	EI 
	= KcEcIg + EsIse 
	(2.4) 


	where Kc = kk/(1+ ϕef ), with a creep parameter ϕef . The parameter kis based on the concrete compressive strength 
	1
	2
	1 

	 
	k1 = 
	k1 = 
	k1 = 
	′ fc 20 MPa 
	(2.5) 

	while k2 is based on axial load 
	while k2 is based on axial load 
	    P λ k2 = ≤ 0.20′ Acf 170c 
	(2.6) 


	′ 
	where f is the specified compressive strength of concrete, psi, and λ is a slenderness ratio.
	c 
	Eurocode 2 also includes a simplified method based on nominal curvature. This method is similar to that described by CEB-FIP Manual of Buckling and Instability, which accurate results. However, this method is mainly intended for isolated members. 
	Baˇzant et al. 
	(1991) found provides highly 

	Other researchers have proposed equations for the flexural rigidity of reinforced concrete columns. on the column length and developed equations that depend on required axial strength, required flexural strength, and steel ratio. 
	Mirza (1990) developed equations that depend 
	eccentricity while Jenkins 
	and Frosch 
	(2015) 

	Chapter 3 


	Refined Second-Order Analysis 
	Refined Second-Order Analysis 
	Refined second-order analysis capabilities are necessary for this work to form the “best guess” of true behavior and provide a benchmark against which current and proposed design provisions can be evaluated. The refined second-order analyses performed in this work utilize frame elements to model bridge columns and capture both material and geometric nonlinearity. The analyses are not necessarily intended for use in practice. This chapter describes the models while the following chapter describes validation 
	3.1 General Modeling 
	3.1 General Modeling 
	Models of columns were developed in the OpenSees finite element framework using Python and the OpenSeesPy interpreter Columns were modeled with frame elements, specifically a mixed beam column-element although displacement-and force-based beam-column elements are available and interchangeable with the mixed element. Eight elements along the length of the column and a corotational transformation between element basic and local coordinate systems were used to capture geometric nonlinearity and initial geomete
	Zhu et al. 
	(2018). 

	Three cross-sectional shapes are considered in this work: 1) rectangular, 2) circular, and 3) obround. Circular and obround shaped columns are common on Caltrans bridges. Rectangular columns are not standard Caltrans design, however, the vast majority of experimental results on RC columns identified in the literature are with rectangular cross sections. Fiber discretized models have been developed for circular and obround cross sections The cross sections shown in these figures have only been discretized in
	rectangular (Figure 3.1), 
	(Figure 3.2), 
	(Figure 3.3). 

	Each fiber discretization consists of a) concrete patches that are subdivided into fibers and b) individually defined fibers for the longitudinal steel reinforcing bars. The patches were assigned either a core concrete or cover concrete stress-strain relationship to capture the effects of confinement 
	-
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	Figure
	Figure 3.3: Obround section fiber discretization (a) bending about the x-axis (b) bending about the y-axis 
	Figure 3.3: Obround section fiber discretization (a) bending about the x-axis (b) bending about the y-axis 


	(b) 
	number of fibers in the x and y directions. The number of fibers in specific concrete patches was computed using these values and cross-sectional properties. 
	OpenSees includes a variety of uniaxial constitutive relations for reinforcing steel. A relatively simple elastic-perfectly plastic material was used because this model captures yielding and requires only two input parameters, the modulus of elasticity and yield stress, both of which are generally known. Due to conservatism in the results, neglecting steel strain-hardening is common in the development of design recommendations for RC members. 
	(Figure 3.4) 

	Figure
	Figure 3.4: Elastic-perfectly plastic material used for modeling reinforcing steel 
	Figure 3.4: Elastic-perfectly plastic material used for modeling reinforcing steel 


	OpenSees also includes a variety of uniaxial constitutive relations for concrete. Many models are available for capturing the short-term behavior of concrete. The model described by was selected for this work as it is commonly used The available concrete constitutive relations that capture creep and shrinkage in OpenSees are discussed in Chapter A creep and shrinkage material wrapper was developed for this project so that modeling choices for short-term and long-term loading are as consistent as possible. 
	Mander 
	et al. 
	(1988) 
	(Figure 3.5). 
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	The elastic modulus of the concrete is calculated as 
	 
	′ 
	Ec = 57000 f (3.1)
	c 
	′ 
	where Ec is the elastic modulus of the concrete and f is the compressive strength of the concrete, 
	c 
	both in units of psi. 
	The strain at maximum compressive strength for unconfined concrete (εc) is calculated as 
	′ /4
	)
	1

	(f
	c
	c

	εc = (3.2)
	4000 
	′ 
	where f is in units of psi.
	c 
	is based on ACI 318 while is based on 
	Eq. (3.1) 
	Eq. (3.2) 
	Chang and Mander 
	(1994). 

	The concrete in the core of the cross-section is confined by the transverse steel reinforcement, thus increasing its strength and ductility. The peak compressive strength for confined concrete (fcc) is calculated as 
	For rectangular sections confined by rectangular hoops with or without cross ties 
	′′ 
	f = f (1 + kx¯) (3.3)
	1

	cc c 
	For sections confined by spirals or circular hoops 
	√
	′′ 
	f = f (−1.254 + 2.254 − 2.0¯x) (3.4)
	1+7.94¯x 

	cc c 
	with kand x¯ defined as 
	1 
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	For rectangular sections confined by rectangular hoops 
	fl1 + fl2 
	fl1 + fl2 

	x¯ = (3.6)
	′ 
	2f
	c 
	For sections confined by spirals or circular hoops 
	fl 
	fl 

	x¯ = (3.7)
	′ 
	f
	c 
	where fl, fl1, and fl2 are the lateral confining pressure on the concrete (in x and y direction for fl1 and fl2, respectively), and defined as: 
	For rectangular sections confined by rectangular hoops: 
	fl1 = keρsxfyh (3.8) 
	fl2 = keρsyfyh (3.9) 
	For sections confined by spirals or circular hoops: 1 
	fl = keρsfyh (3.10)
	2 
	where ρs is the ratio of the volume of transverse confining steel to the volume of confined concrete core (in x and y direction for ρsfyh and ρsfyh, respectively); fyh is the yield strength of the transverse reinforcement; ke is the confinement effectiveness coefficient as defined by 
	Mander et al. 
	(1988). 

	The factors A and B are calculated as below 
	−4.989q
	A =6.886 − (0.6069 + 17.275q)e (3.11) 
	4.5 
	B = − 5 (3.12)
	5 
	5 
	−3.8939q
	] − 0.1

	[0.9849 − 0.6306e
	[0.9849 − 0.6306e

	A 
	with q defined as 
	fl1 

	q = ,fl2 ≥ f(3.13)fl2 
	11 

	The strain at maximum compressive strength for confined concrete is calculated as 
	εcc = εc(1 + kx¯) (3.14) 
	2

	where k=5k. 
	2 
	1

	Table summarizes the parameters used for modelling core concrete versus cover concrete. The optional parameters to define the tensile strength of concrete were omitted since the tensile strength of concrete was neglected in this work. 
	3.1 

	Table 3.1: Concrete04 material parameters for core and cover concrete. 
	Input Parameter 
	Input Parameter 
	Input Parameter 
	Core Concrete 
	Cover Concrete 

	Concrete Compressive Strength, fc 
	Concrete Compressive Strength, fc 
	′ f (Eq. (3.3), Eq. (3.4))cc 
	′ f (Eq. (3.3), Eq. (3.4))cc 

	′ fc 

	Concrete Strain at Maximum Strength, epsc 
	Concrete Strain at Maximum Strength, epsc 
	εcc (Eq. (3.14)) 
	εcc (Eq. (3.14)) 

	εc (Eq. (3.2)) 
	εc (Eq. (3.2)) 


	Concrete Strain at Crushing Strength, epscu 
	Concrete Strain at Crushing Strength, epscu 
	2εcc 
	2εc 

	Modulus of Elasticity, Ec 
	Modulus of Elasticity, Ec 
	Ec (Eq. (3.1)) 
	Ec (Eq. (3.1)) 

	Ec (Eq. (3.1)) 
	Ec (Eq. (3.1)) 



	3.2.1 Example Results 
	3.2.1 Example Results 
	Interaction diagrams computed using the refined second-order analysis model are among the primary analysis results that will be used in this project. Example interaction diagrams are presented in this section for a base case and variations from the base case. The structure examined for these example interaction diagrams is a simply-supported column subject to axial compression and equal end moments producing single-curvature The parameters for the base case are as follows: 
	-
	bending (Figure 3.6). 

	• 
	• 
	• 
	Column length, L = 200 in. 

	• 
	• 
	Section Diameter, D = 10 in. 

	• 
	• 
	Longitudinal steel ratio, ρs = Asr/Ag =0.02 

	• 
	• 
	6 bars in circumference direction 

	• 
	• 
	Distance from center of reinforcing to outside edge of concrete = 1 in. 

	• 
	• 
	Steel yield strength, fy = 60 ksi 

	• 
	• 
	Initial geometric imperfection, δo = L/1000 


	A series of analyses was performed to construct each interaction diagram. The first analysis subjects the column to axial load only. The analysis is performed in displacement control until a maximum applied load was observed. Once the maximum applied axial load was determined, a series of equally spaced axial loads between the maximum axial load and zero were selected. For each of these selected axial loads a non-proportional analysis was performed, first applying the axial load, then increasing the applied
	A series of analyses was performed to construct each interaction diagram. The first analysis subjects the column to axial load only. The analysis is performed in displacement control until a maximum applied load was observed. Once the maximum applied axial load was determined, a series of equally spaced axial loads between the maximum axial load and zero were selected. For each of these selected axial loads a non-proportional analysis was performed, first applying the axial load, then increasing the applied
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	creasing the steel yield stress or steel ratio also has the effect of changing the shape of the interaction diagram with the bulge at the balance point becoming less pronounced with more steel-dominant columns. 
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	Figure
	Figure 3.9: P-M interaction diagram for different slenderness ratio values (diameter held constant) 
	Figure 3.9: P-M interaction diagram for different slenderness ratio values (diameter held constant) 


	Figure
	Figure 3.10: P-M interaction diagram for different concrete compressive strength values 
	Figure 3.10: P-M interaction diagram for different concrete compressive strength values 


	Figure
	Figure 3.11: P-M interaction diagram for different steel yield strength values 
	Figure 3.11: P-M interaction diagram for different steel yield strength values 


	Figure
	Figure 3.12: P-M interaction diagram for different longitudinal steel ratio values (diameter and number of bars held constant) 
	Figure 3.12: P-M interaction diagram for different longitudinal steel ratio values (diameter and number of bars held constant) 




	3.3 Concrete Constitutive Modeling for Long-Term Loading 
	3.3 Concrete Constitutive Modeling for Long-Term Loading 
	To account for the effect of concrete shrinkage and creep over long periods (several decades) of bridge service life, the concrete stress-strain relationship used for short-term loading was modified within the OpenSees model. 
	3.3.1 OpenSees Time-Dependent Concrete Models 
	3.3.1 OpenSees Time-Dependent Concrete Models 
	Although several time-dependent uniaxial material models are available in OpenSees for modeling creep and shrinkage of concrete, none of the models meet the needs of this project. For example, the TDConcrete model uses ACI209R-92 creep evolution equations, but does not not incorporate peak 
	′ 
	compressive strength, f , i.e., the model assumes concrete is linear in compression. On the other
	c 
	hand, the TDConcreteMC10NL model incorporates compressive strength but uses creep evolution equations from Model Code 2010. And even though the TDConcreteNL model uses ACI209R92 evolution equations, the concrete compressive behavior is based on the Concrete02 model in OpenSees whereas the column interaction diagrams generated in this report for short-term loading use the Concrete04 material model. 
	-

	Rather than implement another “TDConcrete” model that is derivative of TDConcreteNL, differing by only the concrete stress-strain behavior, a generic CreepMaterial wrapper was developed. This wrapper is able to apply ACI209R-92 creep and shrinkage evolution equations to any uniaxial material model, ranging from Elastic material to the Concrete04 used previously in this report. The OpenSees input format for the wrapper material model is shown below: 
	-

	uniaxialMaterial Concrete04 $concTag $fc $epsc $epscu $Ec 
	uniaxialMaterial Creep $matTag $concTag $tD $epsshu $psish \ $Tcr $phiu $psicr1 $psicr2 $tcast 
	where matTag is the material tag of the wrapper and concTag is the material tag of the wrapped material (shown above with Concrete04 inputs). 
	The parameters tD, epsshu, and psish control the evolution of concrete shrinkage, respectively defined as the analysis time at the start of drying, the ultimate shrinkage strain, and a fitting parameter based on the cross-section dimensions. 
	The parameters Tcr, phiu, psicr1, and psicr2 define the evolution of creep in the concrete material. The parameter Tcr is the creep model age in days and phiu is the ultimate creep coefficient. The parameters psicr1 and psicr2 are fitting parameters where the former is typically taken as 1.0 while the latter is based on the cross-section dimensions. 
	The final parameter, tcast, is the analysis time when the concrete was cast. All analysis times input for the CreepMaterial wrapper are in days. Additional details on the time-dependent concrete models available in OpenSees, as well as utilities for calculating creep and shrinkage fitting parameters, are provided by 
	Toˇsi´c et al. 
	(2020). 


	3.3.2 Analysis Sequence for Long-Term Loading 
	3.3.2 Analysis Sequence for Long-Term Loading 
	The concrete models that account for long-term load effects (creep and shrinkage) in OpenSees require additional analysis considerations beyond typical short-term loading scenarios. The creep concrete models use the time step from analysis domain in order to determine incremental stress, creep, and shrinkage effects. The models interpret the time unit as days, so some caution is required in order to mix long-term and short-term analyses in OpenSees. 
	1. 
	1. 
	1. 
	Adjust creep and shrinkage parameters based on member size. 

	2. 
	2. 
	Define the model with the CreepMaterial wrapper for concrete fibers. 

	3. 
	3. 
	Analyze the model for zero load with creep turned on (setCreep 1) and with the domain time set to after the start of drying. Note that self-weight of the concrete is not included in the analyses performed for this report. 

	4. 
	4. 
	Define gravity loads. 

	5. 
	5. 
	Analyze the model for the sustained gravity load with creep turned off (setCreep 0). This step puts the column into static equilibrium. 

	6. 
	6. 
	Analyze the model for shrinkage effects with creep turned on (setCreep 1) and the domain time set to when the column can sustain loads, e.g., 28 days after casting. This step accounts for initial shrinkage. 

	7. 
	7. 
	Leaving creep on, analyze the model for long-term creep effects inside a loop. Due to the long time scale, the stepping should be logarithmic and the time step should be passed to the LoadControl integrator at each analysis step inside the time loop. 

	8. 
	8. 
	Turn creep off (setCreep 0), then perform one static analysis at the post-creep state. 

	9. 
	9. 
	Analyze the model for remaining (post-creep) load capacity. If using displacement control, set the domain time to zero and define a linear time series with reference loading for the capacity analysis. Assuming the model did not fail during the creep analysis, load the model to a specified failure criterion. 



	3.3.3 Minimal Long-Term Loading Examples 
	3.3.3 Minimal Long-Term Loading Examples 
	To account for long-term load effects, only the concrete material model (Concrete04 used in this report) must be wrapped with the CreepMaterial wrapper. To demonstrate the evolution of creep and shrinkage strains, simulations of long-term loading were carried out in OpenSees for the base case and nominal parameters shown in Figure along with the following additional parameters: 
	3.6 

	• 
	• 
	• 
	Constant axial load, 50 kip, held for 10,000 days (approximately 30 years) 

	• 
	• 
	Load eccentricity, 0.1D (one-tenth of column diameter) 

	• 
	• 
	After holding the axial load for 10,000 days, the axial load is increased in order to determine the axial load carrying capacity of the column 


	Although there is zero moment applied, the initial L/1000 geometric imperfection will cause P δ moments to increase under sustained, long-term loading due to concrete creep and shrinkage. Long-term analyses are performed over the following parameter ranges: 
	-

	• 
	• 
	• 
	Ultimate creep factor, ϕu; base = 2.8, range = [1.3, 2.3, 2.8, 3.3, 4.3] 

	• 
	• 
	Ultimate shrinkage strain, εsh,u; base = 780×10, range = [480×10, 630×10, 780×10, 930 × 10, 1080 × 10] 
	−6 
	−6 
	−6 
	−6 
	−6 
	−6



	′
	• Concrete compressive strength, f ; base = 4 ksi, range = [3, 4, 5, 6] ksi
	c 
	Analyses are repeated for the range of values for each parameter listed above. Rather than analyze for all possible parameter combinations, when a parameter is varied, the other parameters are held fixed at their base value. 
	Prior to analysis, the concrete creep and shrinkage parameters are adjusted based on the member size using spreadsheet tools developed by In addition to member size, the adjustments accounts for relative humidity, aggregate size, cement type, and other factors. Default values are used for every factor except for member size. The important parameter is the ratio of volume to surface area for the member, which for a straight member reduces to the ratio of cross-section area to circumference. 
	Toˇsi´c et al. 
	(2020). 

	For a circular cross-section of diameter, D, the ratio of cross-section area to circumference is D/4. Using the spreadsheet values for the D=10 inch diameter column are shown in Table The parameters adjustments assume the nominal creep and shrinkage parameters are measured at 1000 days and that concrete drying begins seven days after casting. 
	tools developed by Toˇsi´c et 
	al. (2020), the adjusted creep and shrinkage 

	3.2. 

	′ 
	Table 3.2: Adjusted creep and shrinkage parameters for D=10 inch circular column with f =4 ksi.
	c 
	CREEP, 
	CREEP, 
	CREEP, 
	ϕu 
	SHRINKAGE, 
	εsh,u 

	Nominal 
	Nominal 
	Adjusted 
	Nominal 
	Adjusted 

	1.8 2.3 2.8 3.3 3.8 
	1.8 2.3 2.8 3.3 3.8 
	1.00 1.28 1.56 1.84 2.12 
	480 × 10−6 630 × 10−6 780 × 10−6 930 × 10−6 1080 × 10−6 
	234 × 10−6 307 × 10−6 380 × 10−6 454 × 10−6 527 × 10−6 

	Figure shows the variation in column response over the range of nominal creep factors 1.8–3.8. As expected, the lateral deflection at column mid-height increases as the creep factor increases. There is little difference in the ultimate axial load capacity of the column, with ultimate strength of about 160 kip in all cases, about a 10% reduction compared to the case of no creep and shrinkage (short-term loading). 
	Figure shows the variation in column response over the range of nominal creep factors 1.8–3.8. As expected, the lateral deflection at column mid-height increases as the creep factor increases. There is little difference in the ultimate axial load capacity of the column, with ultimate strength of about 160 kip in all cases, about a 10% reduction compared to the case of no creep and shrinkage (short-term loading). 
	3.13 



	Likewise, Figure shows little effect on the ultimate capacity of the column over the range of nominal shrinkage strain (480 × 10–1080 × 10); however, the inclusion of long-term load effects causes a reduction in axial strength compared to the short-term loading case. 
	3.14 
	−6
	−6

	Figure
	Figure 3.13: Axial force-lateral deflection response for long-term loading on column with range of ultimate creep factors. 
	Figure 3.13: Axial force-lateral deflection response for long-term loading on column with range of ultimate creep factors. 


	Figure
	Figure 3.14: Axial force-lateral deflection response for long-term loading on column with range of ultimate shrinkage strain. 
	Figure 3.14: Axial force-lateral deflection response for long-term loading on column with range of ultimate shrinkage strain. 


	′ 
	The final parametric variation shown in Figure is over the concrete strength f . As ex-
	3.15 

	c 
	pected, the lateral deflection during the hold phase decreases and the axial strength of the column increases as the concrete compressive strength increases. In all cases, the inclusion of long-term creep and shrinkage effects leads to an approximately 10% reduction in column axial strength. 
	Figure
	Figure 3.15: Axial force-lateral deflection response for long-term loading on column with range of concrete strength. 
	Figure 3.15: Axial force-lateral deflection response for long-term loading on column with range of concrete strength. 


	These examples demonstrate the long-term loading capabilities and the relative effect of the creep and shrinkage parameters that affect column axial strength. The results indicate that the long-term axial capacity is not sensitive to the ultimate creep factor and ultimate shrinkage strain; however, the axial capacity is sensitive to the presence of long-term load effects, i.e., that the model includes long-term load effects, but not what the parameters are. The conclusions are preliminary and cannot be gene
	-
	4. 

	Chapter 4 



	Model Validation 
	Model Validation 
	To validate the model described in Chapter 3, a series of analyses were performed to compare against experimental data compiled as described in Chapter 2. The comparisons are currently limited to short-term loading of rectangular RC columns using the database of experiments described in Table 
	2.1. 

	4.1 Short-Term Loading of Rectangular Reinforced Concrete Columns 
	4.1 Short-Term Loading of Rectangular Reinforced Concrete Columns 
	Analyses were performed for each of the 436 RC columns listed in Table These columns were all simply-supported single columns that were proportionally loaded with defined eccentricities. Each column was modeled as described in Chapter 3. Eight elements were used along the length of the column. 
	2.1. 

	The yield strength of lateral reinforcement was not reported for some of the columns in the database. According to trial evaluations, the exact value of fyt had minimal effect on the resulting peak load had little effect on the column strength, hence this has no relevant effect on the results. For these cases, a yield strength of fyt = 60 ksi was assumed. Note, however, some references that did not report the yield strength were published as early the 1960s when lower strength steel may have been common. 
	Additionally, the concrete compressive strength for some columns in the database were reported as cubic specimen strength. As the value used in the model is cylinder specimen strength, the cubic ones needed to be converted to the equal cylinder values. This was done using conversion factors described by specifically 
	Reineck et al. 
	(2003), 

	′′ 
	f =0.78f (4.1)
	c,cyl c,cube 
	Initial out-of-straightnesses were included through definition of the initial nodal coordinates. The magnitude of initial imperfection of the column specimens was not typically reported. Three sets of analyses were performed, with different magnitudes of initial out-of-straightness. Statistics on the resulting ratio of maximum load from the OpenSees model, PGMNIA to the maximum load 
	Initial out-of-straightnesses were included through definition of the initial nodal coordinates. The magnitude of initial imperfection of the column specimens was not typically reported. Three sets of analyses were performed, with different magnitudes of initial out-of-straightness. Statistics on the resulting ratio of maximum load from the OpenSees model, PGMNIA to the maximum load 
	from the experiment, Pexp are shown in Table A histogram of the PGMNIA/Pexp ratio for the case of δo = L/1000 is shown in Figure 
	4.1. 
	4.1. 


	Figure
	Figure 4.1: Histogram of validation results (δo = L/1000) 
	Figure 4.1: Histogram of validation results (δo = L/1000) 


	Based on these results, the model is capable of accurately capturing the strength of RC columns. The mean value is closest to unity for initial out-of-straightness of L/1333. However, this does not necessarily mean that L/1333 is best representative of the actual out-of-straightness of the columns in the experimental database. It is likely still most appropriate to assume L/1000 as a conservative value for the development of design provisions. 
	Table 4.1: Statistical data of PGMNIA/Pexp based on assumed initial geometric imperfection. 
	Initial Imperfection 
	Initial Imperfection 
	Initial Imperfection 
	Mean 
	St. Dev. 
	CoV 

	δo = L/1000 
	δo = L/1000 
	0.981 
	0.135 
	0.138 

	δo = L/1333 
	δo = L/1333 
	0.995 
	0.139 
	0.140 

	δo = L/2000 
	δo = L/2000 
	1.014 
	0.140 
	0.138 


	To further investigate the accuracy of the model, scatter plots were produced showing the PGMNIA/Pexp ratio as a function of column slenderness ratio section aspect ratio (Figure concrete compressive and steel yield stress No discernible relationship between PGMNIA/Pexp and the parameters is noted, indicating that the model is not biased for any of these parameters. 
	(Figure 4.2), 
	-
	4.3), 
	strength (Figure 4.4), 
	(Figure 4.5). 
	-

	Figure
	Figure 4.2: Scatter plot of validation results vs. column slenderness ratio (δo = L/1000) 
	Figure 4.2: Scatter plot of validation results vs. column slenderness ratio (δo = L/1000) 


	Figure
	Figure 4.3: Scatter plot of validation results vs. section aspect ratio (δo = L/1000) 
	Figure 4.3: Scatter plot of validation results vs. section aspect ratio (δo = L/1000) 


	Figure
	Figure 4.4: Scatter plot of validation results vs. concrete compressive strength (δo = L/1000) 
	Figure 4.4: Scatter plot of validation results vs. concrete compressive strength (δo = L/1000) 


	Figure
	Figure 4.5: Scatter plot of validation results vs. steel yield stress (δo = L/1000) 
	Figure 4.5: Scatter plot of validation results vs. steel yield stress (δo = L/1000) 



	4.2 Long-Term Loading of Rectangular Reinforced Concrete Columns 
	4.2 Long-Term Loading of Rectangular Reinforced Concrete Columns 
	OpenSees models were developed for validation of long-term loading simulations against the experimental results. 
	-

	4.2.1 Long-Term Loading Experiments 
	4.2.1 Long-Term Loading Experiments 
	a series of long-term loading experiments on slender reinforced concrete columns of rectangular cross-section shown in Figure The slenderness ratio, L/r, for the columns was either 40 or 70 giving column lengths L=6 ft and 10 ft. The section dimensions and steel reinforcing pattern are shown in Figure In addition to slenderness ratios of 40 and 70, Jenkins and Frosch varied the bar sizes (#3 and #5) along with the load eccentricity, e/h, equal to 0.10 and 0.25. 
	Jenkins and Frosch (2015) performed 
	4.6. 
	4.6. 


	6.125 inch 
	6.125 inch 
	6.125 inch 
	Figure 4.6: Reinforced concrete section details for experiments in 
	Jenkins and Frosch 
	(2015). 

	From the eight combinations of slenderness, bar size, and load eccentricity, the 12 specimens listed in Table were tested under sustained loading. In four cases, two specimens of the same configuration were tested (denoted (2) in the table). 
	4.2 

	Table 4.2: Specimens tested by for sustained loading. 
	Jenkins and Frosch 
	(2015) 

	Specimen 
	Specimen 
	Specimen 
	Bar Size 
	Slenderness, L/r 
	Load Eccentricity, e/h 

	R3-40-10-LT R5-40-10-LT R3-40-25-LT (2) R5-40-25-LT (2) R3-70-10-LT (2) R5-70-10-LT (2) R3-70-25-LT R5-70-25-LT 
	R3-40-10-LT R5-40-10-LT R3-40-25-LT (2) R5-40-25-LT (2) R3-70-10-LT (2) R5-70-10-LT (2) R3-70-25-LT R5-70-25-LT 
	#3 #5 #3 #5 #3 #5 #3 #5 
	40 40 40 40 70 70 70 70 
	0.10 0.10 0.25 0.25 0.10 0.10 0.25 0.25 


	days. If the column specimen did not fail during this “hold phase”, the axial load is subsequently increased to determine the long-term column capacity. 
	report experimentally obtained values for the ultimate shrinkage strain, εshu=750 × 10, and ultimate creep factor, ϕu=3.3. These values are input to the CreepMaterial wrapper along with ψcr1=1 and ψsh =ψcr2=45.168. The values for concrete strength, stiffness, and axial load during the “hold phase” are detailed by with reinforcing steel material properties. 
	Jenkins and Frosch 
	(2015) 
	-
	−6 
	Jenkins and Frosch 
	(2015), along 

	The subsequent figures compare the experimentally obtained a) displacement-time and b) load-displacement relationships for each column. Note that the recorded displacement is the lateral displacement at mid-height of each column. OpenSees models used a corotational mesh of eight mixedBeamColumn frame elements (to capture P -δ effects) with fiber sections defined by Concrete04 and Steel01 materials. Each section uses 40 concrete fibers (layers) through the section depth and one fiber for each reinforcing bar
	In addition to simulations of short-term load effects with Concrete04, the following sections also present simulations of long-term loading using the CreepMaterial wrapper around Concrete04. This wrapper accounts for creep and shrinkage effects according to ACI209R-92 using the ultimate shrinkage strain and ultimate creep factor reported Note that under short-term loading, a corotational mesh of displacement-based elements would be sufficient; however, the distribution of strain across each section will evo
	by Jenkins and Frosch 
	(2015). 
	-


	4.2.2 R3-40-10-LT and R5-40-10-LT 
	4.2.2 R3-40-10-LT and R5-40-10-LT 
	The first comparisons are for the case of L/r=40 and load eccentricity e/h=0.1 with #3 and #5 reinforcing bars. These conditions produce the least geometric effects and the specimens should pass the “hold phase” and be able to take on more axial load up to failure. As shown the simulation does a good job of predicting the long-term displacement as well as the ultimate axial load after the “hold phase“. For references, the short-term simulation predicts an ultimate column capacity of 172 kip while the long-t
	in Figure 4.7, 

	Figure
	Figure 4.7: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R3-40-10-LT: (a) displacement-time and (b) load-displacement. 
	Figure 4.7: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R3-40-10-LT: (a) displacement-time and (b) load-displacement. 


	The second specimen for the L/r=40 slenderness and e/h=0.1 load eccentricity uses #5 instead of #3 steel bars. With more steel, the axial load carrying capacity of the section should increase and the long-term load effects should decrease slightly compared to the case with #3 bars. As shown in the long-term deflection decreases while the axial load capacity increases compared to the previous case with #3 bars. 
	Figure 4.8, 

	Figure
	Figure 4.8: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R5-40-10-LT: (a) displacement-time and (b) load-displacement. 
	Figure 4.8: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R5-40-10-LT: (a) displacement-time and (b) load-displacement. 



	4.2.3 R3-40-25-LT and R5-40-25-LT 
	4.2.3 R3-40-25-LT and R5-40-25-LT 
	The second set of specimens maintains slenderness L/r=40 but has a higher axial load eccentricity, , which should increase the bending moment in the column and thus the P -δ effect under long-term loading. 
	e/h=0.25

	Two specimens, designated R3-40-25-LT-1 and R3-40-25-LT-2 were tested with #3 bars. As shown in the load-displacement plots of Figures and these specimens had little to no axial load capacity after the “hold phase”. The simulated long-term models had difficulty capturing the loss of capacity due to creep and predicted gains in strength after the hold phase. However, the models of long-term concrete behavior generally predicted less capacity than the short-term models. 
	4.9 
	4.10, 

	Figure
	Figure 4.9: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R3-40-25-LT-1: (a) displacement-time and (b) load-displacement. 
	Figure 4.9: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R3-40-25-LT-1: (a) displacement-time and (b) load-displacement. 
	-



	Figure
	Figure 4.10: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R3-40-25-LT-2: (a) displacement-time and (b) load-displacement. 
	Figure 4.10: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R3-40-25-LT-2: (a) displacement-time and (b) load-displacement. 


	Two specimens were tested with #5 bars and slenderness and eccentricity of L/r=40 and , respectively. With more steel, these columns fared better after the hold phase, able to take on additional axial load. The simulated results using long-term concrete showed lower axial load capacity than the simulations based on short-term concrete behavior; however, the simulated results did not match the experiments very well, perhaps due to the high amount of flexure resulting from the increased load eccentricity. 
	e/h=0.25

	Figure
	Figure 4.11: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R5-40-25-LT-1: (a) displacement-time and (b) load-displacement. 
	Figure 4.11: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R5-40-25-LT-1: (a) displacement-time and (b) load-displacement. 


	Figure
	Figure 4.12: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R5-40-25-LT-2: (a) displacement-time and (b) load-displacement. 
	Figure 4.12: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R5-40-25-LT-2: (a) displacement-time and (b) load-displacement. 



	4.2.4 R3-70-10-LT and R5-70-10-LT 
	4.2.4 R3-70-10-LT and R5-70-10-LT 
	The next set of specimens were for higher slenderness, L/r=70, and low load eccentricity, . The experimental and simulated results for two specimens using #3 bars are shown in Figures Although both specimens had the same sustained load, only the R3-70-10-LT-1 specimen was able to carry additional axial load after the hold phase. The long-term concrete model was able to simulate this case well, but the simulated results did not predict the failure during the hold phase for R3-70-10-LT-2. 
	e/h=0.10
	4.13 
	and 4.14. 

	Figure
	Figure 4.13: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R3-70-10-LT-1: (a) displacement-time and (b) load-displacement. 
	Figure 4.13: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R3-70-10-LT-1: (a) displacement-time and (b) load-displacement. 


	Figure
	Figure 4.14: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R3-70-10-LT-2: (a) displacement-time and (b) load-displacement. 
	Figure 4.14: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R3-70-10-LT-2: (a) displacement-time and (b) load-displacement. 


	With the larger steel area owing to #5 bars, both specimens shown are able to pass the hold phase and resist additional axial load. The prediction of axial load capacity using long-term concrete models is reasonable for both specimens with #5 bars. 
	in Figures 4.15 and 4.16 

	Figure
	Figure 4.15: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R5-70-10-LT-1: (a) displacement-time and (b) load-displacement. 
	Figure 4.15: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R5-70-10-LT-1: (a) displacement-time and (b) load-displacement. 


	Figure
	Figure 4.16: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R5-70-10-LT-2: (a) displacement-time and (b) load-displacement. 
	Figure 4.16: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R5-70-10-LT-2: (a) displacement-time and (b) load-displacement. 



	4.2.5 R3-70-25-LT and R5-70-25-LT 
	4.2.5 R3-70-25-LT and R5-70-25-LT 
	The final group of specimens were of high slenderness, L/r=70, and high axial load eccentricity, . For these cases, the magnitude of the sustained load was reduced to under 40 kip. As shown the long-term concrete model does a good job of simulating the experimental results, both in deflection and load. For the case of #5 bars shown in Figure the longterm concrete simulation adequately predicts the ultimate strength, but under predicts the lateral deflections. 
	e/h=0.25
	in Figure 4.17, 
	4.18, 
	-

	Figure
	Figure 4.17: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R3-70-25-LT: (a) displacement-time and (b) load-displacement. 
	Figure 4.17: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R3-70-25-LT: (a) displacement-time and (b) load-displacement. 


	Figure
	Figure 4.18: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R5-70-25-LT: (a) displacement-time and (b) load-displacement. 
	Figure 4.18: Comparison of short-term and long-term OpenSees simulations with experimental results for specimen R5-70-25-LT: (a) displacement-time and (b) load-displacement. 


	4.2.6 Summary of Results 
	Across all specimens, the maximum axial load predicted using long-term concrete models tended to be 10-20% less than the maximum axial load predicted using short-term concrete models. However, the simulated results did not always predict lower axial load capacity than that recorded in the experiments. Table shows the maximum axial loads observed and predicted for all specimens while Figure gives a graphical summary of the maximum axial loads. 
	4.3 
	4.19 

	Table 4.3: Summary of maximum axial load (kip) recorded in the long-term load experiments of and simulated OpenSees results using the long-term creep wrapper (LT) around Concrete04 and short-term (ST) model of standalone Concrete04. 
	Jenkins and Frosch 
	(2015) 

	Specimen 
	Specimen 
	Specimen 

	Experiment 
	Experiment 

	Concrete04 (LT) 
	Concrete04 (LT) 

	Concrete04 (ST) 
	Concrete04 (ST) 


	R3-40-10-LT R3-40-25-LT-1 R3-40-25-LT-2 R3-70-10-LT-1 R3-70-10-LT-2 R3-70-25-LT R5-40-10-LT R5-40-25-LT-1 R5-40-25-LT-2 R5-70-10-LT-1 R5-70-10-LT-2 R5-70-25-LT 
	150 
	164 
	174 
	84.9 
	89.3 
	102 
	66.1 
	82.9 
	90.1 
	105 
	90 
	129 
	66.1 
	95.7 
	113 
	62 
	48.6 
	62.7 
	202 
	189 
	183 
	115 
	120 
	118 
	150 
	124 
	124 
	114 
	121 
	137 
	112 
	122 
	140 
	83.9 
	83.3 
	85 
	Figure
	Figure 4.19: Maximum axial loads (kip) recorded in the long-term load experiments of and simulated OpenSees results using the long-term creep wrapper (LT) around Concrete04 and short-term (ST) model of standalone Concrete04. 
	Figure 4.19: Maximum axial loads (kip) recorded in the long-term load experiments of and simulated OpenSees results using the long-term creep wrapper (LT) around Concrete04 and short-term (ST) model of standalone Concrete04. 
	Jenkins 
	and Frosch 
	(2015) 



	Figure
	Figure 4.20: Reduction in maximum axial load capacity observed in experiments of short-term and long-term loading. 
	Figure 4.20: Reduction in maximum axial load capacity observed in experiments of short-term and long-term loading. 


	Figure
	Figure 4.21: Reduction in maximum axial load capacity based on simulation of short-term and long-term loading. 
	Figure 4.21: Reduction in maximum axial load capacity based on simulation of short-term and long-term loading. 


	Figure
	Figure 4.22: Comparison of simulated and experimentally observed reduction in maximum axial load capacity for short-term and long-term loading. 
	Figure 4.22: Comparison of simulated and experimentally observed reduction in maximum axial load capacity for short-term and long-term loading. 


	Chapter 5 



	Evaluation of the Current Design Method 
	Evaluation of the Current Design Method 
	To evaluate the current AASHTO LRFD approximate method for design of slender reinforced concrete bridge columns, comparisons were made between the maximum applied loads permitted by the design methodology and maximum applied loads from a second-order inelastic analysis using the model described in Chapter 3. The comparisons were made for a wide range of cases and are described separately for short-term loading and long-term loading. To evaluate many cases, the comparisons were automated to the maximum exten
	5.1 Short-Term Loading 
	5.1 Short-Term Loading 
	This section evaluates the short-term strength of bridge columns. While bridges are always subject to long-term loading, it remains important to investigate short-term behavior. The behavior of a column subject to short-term loading represents a bound of the range of long-term behavior with short-term strength being an upper limit of the time-dependent strength. Additional deformations due to creep and shrinkage will only reduce the apparent strength of the column. Additionally, current design provisions fo
	-
	-

	5.1.1 Parametric Suite 
	5.1.1 Parametric Suite 
	This section describes the parametric suite of individual column cases that are investigated for short-term loading. The suite includes cases with different cross-sectional shapes and sizes, different steel ratios, different member lengths, different boundary conditions, different bending axis (for obround columns), and sway condition (sway or nonsway). 
	Cross Sections 
	The RC cross sections selected for investigation in this work represent the range of typical practice for Caltrans for the parameters most important to strength and stability. The parameters varied among the selected cross sections are: 
	• 
	• 
	• 
	Cross-sectional shape, circle or obround as shown in Figure An obround is a shape that consists of two semicircles connected by parallel lines tangent to their endpoints. 
	5.1. 


	• 
	• 
	Bending axis, x axis or y axis (only for obround shapes). Unlike circular sections, obround sections are not rotationally symmetric, which results in different response characteristics depending on the orientation of the applied bending moments. The bending axis of an obround shape refers to the axis about which the bending moments are applied. The x axis is the minor axis of the shape, while the y axis is the major axis of the shape, as denoted in Figure 
	5.1. 


	• 
	• 
	Cross-sectional dimensions. Three different diameters, D, were considered for the columns: 16, 48, and 72 in. In the case of obround shapes, the diameter corresponds to the diameter of the semicircles that make up the ends of the shape. The diameter is also the smaller of the two lateral dimensions of the obround. Caltrans guidelines specify that the obround lengths should range from 1.25 times the diameter (1.25D) to 1.75 times the diameter (1.75D). Asa result, the distance between the centers of each semi
	-
	5.1b), 
	-


	• 
	• 
	Longitudinal steel ratio. The nominal longitudinal steel ratio, ρnominal, was varied at 1%, 2%, 3%, and 4%. The actual longitudinal steel ratio, denoted as ρ or ρactual, is defined as the ratio of the cross-sectional area of the longitudinal steel reinforcement (As) to the gross cross-sectional area of the column (Ag). The number of bars and bar sizes were selected for each cross-sectional size and nominal steel ratio as cross sections and Table for obround cross sections. These reinforcing configurations a
	described in Table 5.1 for circular 
	5.2 



	Other parameters are constant among the selected cross sections, including: 
	′
	• Concrete compressive strength, f = 4 ksi
	c 
	• 
	• 
	• 
	Yield strength of longitudinal reinforcement steel, fy = 60 ksi 

	• 
	• 
	Yield strength of transverse reinforcement, fyt = 60 ksi 

	• 
	• 
	Cover to transverse reinforcing, 2 in. This value is based on Table 5.10.1-1 of California Amendments to AASHTO LRFD for columns in a non-corrosive exposure condition. 
	(Caltrans
	, 2019) 



	• 
	• 
	Transverse reinforcing of #4 hoops at 8 in. on center. Transverse reinforcing has a minor effect on the strength of the column determined from GMNIA since the model considers 


	Figure
	(a) 
	Figure
	(b) Figure 5.1: Dimensions and coordinate axes of cross sections, (a) circle and (b) obround. 
	Table 5.1: Longitudinal reinforcing for circular sections 
	D (in.) ρnominal (%) ρactual (%) Number of bars Bar size 
	161 1.23 8 #5 2 2.16 14 #5 3 2.98 10 #7 4 3.93 10 #8 
	481 0.99 18 #9 
	2 2.07 24 #11 
	3 2.98 24 #14 
	4 3.98 32 #14 
	72 1 1.00 26 #11 2 1.99 36 #14 3 2.98 54 #14 4 3.93 40 #18 
	Table 5.2: Longitudinal reinforcing for obround sections 
	D (in.) ρnominal (%) ρactual (%) Number of bars Bar size 
	161 1.13 12 #5 2 2.14 16 #6 3 2.92 16 #7 4 4.01 22 #7 
	481 1.07 40 #8 
	2 2.03 60 #9 
	3 3.06 58 #11 
	4 3.95 52 #14 
	72 1 0.99 52 #10 2 2.01 86 #11 3 3.04 90 #14 4 3.98 118 #14 
	72 1 0.99 52 #10 2 2.01 86 #11 3 3.04 90 #14 4 3.98 118 #14 
	confinement. The interaction strength per AASHTO LRFD does not depend on the transverse reinforcing. Accordingly, to produce conservative results, the single-column analyses in this project will use reinforcing representative of a lower bound of Caltrans practice. Note that Section 5.10.4.3 of AASHTO LRFD requires 1) a minimum tie bar size of #3 if the longitudinal bars are #10 or smaller and #4 bars otherwise; and 2) a maximum spacing of 12 in. or the least dimension of the member, whichever is less. 

	For the obround shapes, no bars are included in the middle of the cross section. These middle bars are typically included for constructability, but not considered for strength and not subject to the same detailing requirements (e.g., splicing) as the main longitudinal reinforcing bars (Figure 
	-
	5.1). 

	Across the parametric suite, 36 cross sections were selected for investigation: 3 cross-sectional types (circular, obround bent about the x-axis, obround bent about the y-axis) × 3 diameters × 4 longitudinal steel ratios = 36. 
	Column Configurations 
	Each cross section was investigated with a variety of sway (sidesway uninhibited) and nonsway (sidesway inhibited) column configurations as shown in Figure Each configuration had a different member length and boundary conditions. The member length was defined using eight length-to-diameter (L/D) values: 5, 10, 15, 20, 25, 30, 35, and 40. The boundary conditions were different for sway and nonsway columns. 
	5.2. 

	For sway columns, the boundary conditions were defined by the rotational stiffness of the springs at the top and bottom of the column, ktop and kbot, respectively. The spring stiffnesses were defined 
	Gn,botL 
	relative to the column stiffness using parameters Gn,top and Gn,bot as 
	relative to the column stiffness using parameters Gn,top and Gn,bot as 
	relative to the column stiffness using parameters Gn,top and Gn,bot as 

	6(0.4EcIg)ktop = Gn,topL 
	6(0.4EcIg)ktop = Gn,topL 
	(5.1) 

	6(0.4EcIg)kbot = 
	6(0.4EcIg)kbot = 
	(5.2) 


	where L is the length of the column and Ig is the gross moment of inertia of the concrete section about its centroidal axis, neglecting reinforcement. 
	Values for Gn,top and Gn,bot were back-calculated from selected nominal values of the effective length factor K. The nominal K in the table corresponds to a scenario where the column’s flexural rigidity (EI) equals 0.4EcIg. In this case, the values of Gn,top and Gn,bot are selected to achieve the desired length factor K. Selected values of Gn,top and Gn,bot are listed in Table 
	5.3. 

	For nonsway columns, the boundary conditions are defined by the ratio of end moments, β, as shown in Figure The values of β, 1.0, 0.5, 0.0, and -0.5, define the ratio of applied moment at the top of the column to applied moment at the bottom of the column. These β values explore different load distributions and configurations that affect the bending behavior and overall response of nonsway columns. 
	5.2. 

	The chosen L/D ratios and boundary conditions in the parameter suite explore individual column behavior under varying column slenderness and load conditions. Systematic analysis shed light on the stability and strength of columns subjected to axial compression and bending. 
	Figure
	Figure 5.2: Example nonsway (left) and sway (right) columns. 
	Figure 5.2: Example nonsway (left) and sway (right) columns. 


	Table 5.3: Boundary conditions for sway columns Pair Gn,top Gn,bot K (nominal) 
	1 
	1 
	1 
	0 (Fixed) 
	∞ (Pinned) 
	2.0 

	2 
	2 
	0.604 
	∞ (Pinned) 
	2.2 

	3 
	3 
	1.228 
	∞ (Pinned) 
	2.4 

	4 
	4 
	0 (Fixed) 
	0 (Fixed) 
	1.0 

	5 
	5 
	0.614 
	0.614 
	1.2 

	6 
	6 
	1.288 
	1.228 
	1.4 

	7 
	7 
	2.042 
	2.042 
	1.6 


	With the aforementioned parameters, 88 column configurations are selected: 8 member lengths × (7 sway boundary condition options + 4 nonsway boundary condition options) = 88. Each cross section analyzed for each column configuration results in 3,168 individual cases (2,016 sway cases and 1,152 nonsway cases) for investigation. 
	Each case is named using a specific format, e.g., “C08-L35-NS02” and “Ox04-L15-S01” The first letter designates the cross-sectional shape, with “C” representing circular sections and “Ox” and “Oy” representing obround sections. The second letter indicates the bending axis orientation for obround sections, with “x” denoting the x-axis and “y” indicating the y-axis. The subsequent two digits signify the unique identifier for the cross-section. The letter “L” is followed by a numerical value, representing the 

	5.1.2 Maximum Permitted Applied Loads According to AASHTO LRFD 
	5.1.2 Maximum Permitted Applied Loads According to AASHTO LRFD 
	AASHTO LRFD includes provisions for assessing the strength of slender reinforced concrete columns. In general, the strength of a column is adequate if the required strength is less than or equal to the available strength. Accordingly, the maximum permitted applied loads per the AASHTO LRFD provisions are those that cause required strengths equal to the available strengths. 
	The available strength of an RC column is that of the cross section based on the strain compatibility method. In design, resistance factors are applied to the nominal strength to compute the available strength. In this work, analyses are performed at the nominal strength level and thus resistance factors are not applied. 
	-

	The strain compatibility method was evaluated in this work using a fiber-based approach implemented in the Python programming language. Note that the fiber discretization used for the strain compatibility method was different that that used in OpenSees for GMNIA, notably many more fibers were used. Approximately 200 fibers were used along each of the lateral dimensions of the cross section, resulting in approximately 30,000 total fibers for the circular sections and 45,000 total fibers for the obround secti
	-
	5.3 
	5.4. 

	Once the fiber discretization was established for a cross section, axial load and bending moment pairs were computed for assumed neutral axis locations. For a given neutral axis position, an axial strain was calculated for each fiber assuming a linear strain distribution and that the maximum compressive strain in the concrete was 0.003. A stress was assigned to each fiber based on the strain using an elastic perfectly plastic model for the steel and a rectangular stress block model for the concrete. The res
	Once the fiber discretization was established for a cross section, axial load and bending moment pairs were computed for assumed neutral axis locations. For a given neutral axis position, an axial strain was calculated for each fiber assuming a linear strain distribution and that the maximum compressive strain in the concrete was 0.003. A stress was assigned to each fiber based on the strain using an elastic perfectly plastic model for the steel and a rectangular stress block model for the concrete. The res
	(Figure 3.4) 

	nominal axial compressive strength was capped at 0.8Pwhere Pis the nominal axial strength at zero eccentricity: 
	0 
	0 


	Figure
	Figure 5.3: Fiber discretization used in the strain compatibility method for circular cross sections 
	Figure 5.3: Fiber discretization used in the strain compatibility method for circular cross sections 


	′ 
	P=0.85f (Ag − Ast)+ fyAst (5.3)
	0 

	c 
	The required strength includes second-order effects and is calculated using the moment magnification approach defined in AASHTO LRFD Sections and 5.6.4.3. While AASHTO LRFD does not allow use of the moment magnification approach when KL/r > 100, the moment magnification approach was used on all of the columns in the parameter suite. Use of the moment magnification approach for all cases enables a reevaluation of the KL/r > 100 limit. 
	-
	4.5.3.2.2b 

	The required moment strength, Mc, is calculated using AASHTO LRFD Eq. 4.5.3.2.2b-1 as 
	Mc = δbMb + δsMs (5.4) 
	2
	2

	where 
	Mb = moment on compression member due to factored gravity loads that result in no appreciable sidesway, calculated by conventional first-order elastic frame analysis; always positive 
	2
	-

	Ms = moment on compression member due to factored lateral or gravity loads that result in sidesway, ∆, greater than L/1500, calculated by conventional first-order elastic frame analysis; always positive 
	2

	Figure
	Figure 5.4: Fiber discretization used in the strain compatibility method for obround cross sections 
	Figure 5.4: Fiber discretization used in the strain compatibility method for obround cross sections 


	δb = nonsway moment magnifier (Eq. 
	5.6) 

	δs = sway moment magnifier (Eq. 
	5.9) 

	For the nonsway columns investigated in this work, Ms = 0 and the required strength reduces to Mc = δbMb (5.5) 
	2
	2

	The moment Mb is equal to the applied moment, M, shown in Figure since |β|≤ 1 for all cases investigated in this study. Unlike ACI 318, AASHTO LRFD does not have a minimum value of nonsway moment to account for initial geometric imperfections. 
	2
	5.2 

	The nonsway moment magnifier, δb, is calculated as 
	Cm
	δb = (5.6)
	Pu
	Pu

	1 − 
	ϕK Pe where 
	Cm = equivalent uniform moment 
	factor, Eq. (5.7) 

	Pu = factored axial load 
	ϕK = stiffness reduction factor 
	Pe = Euler The coefficient Cm is defined as: 
	buckling load, Eq. (5.10) 

	M
	M
	1
	b

	Cm =0.6+0.4 (5.7)Mb 
	2

	where Mb = smaller end moment Mb = larger end moment 
	1
	2

	In cases where the column is bent in single curvature, the ratio Mb/Mb is positive, while in cases of double curvature, the ratio is negative. This translates to a Cm value of 1.0, 0.8, 0.6, 0.4 for nonsway cases with β values of 1.0, 0.5, 0.0, -0.5, respectively. 
	1
	2

	For the sway columns investigated in this work, Mb = 0 and the required strength reduces to 
	2

	Mc = δsMs (5.8) 
	2

	The sway moment magnifier, δs, is calculated as 1 
	δs = (5.9)
	ΣPu
	ΣPu

	1 − 
	ϕK ΣPe 
	where the summation of Pu and Pe indicates that these values should be computed as the total for the bridge in the direction of translation being considered. For the sway frame (Figure there is only one column, therefore ΣPu = Pu and ΣPe = Pe. 
	5.2b), 

	The stiffness reduction factor, ϕK , in Equations and is a parameter that accounts for potential variations in material properties and workmanship in the analysis. It it specified as 0.75 for concrete members in AASHTO LRFD, but taken as 1.0 in this work given that comparisons are made at the nominal strength level and strength reduction factors are also not applied. This simplifying assumption is made for the sake of clarity and to focus on other aspects of the structural behavior without introducing unnec
	5.6 
	5.9 

	The Euler buckling load, Pe, in Equations and is calculated as 
	5.6 
	5.9 

	πEI 
	2

	Pe = (5.10)
	where EI = flexural stiffness of the reinforced concrete column K = effective length factor in the plane of bending. L = unsupported length of the column 
	(KL)
	2 

	AASHTO LRFD provides two equations, Equations and which are described in Section 2, for the EI to be used in Determination of the appropriate value of flexural stiffness is an objective of this work therefore additional options for the flexural stiffness, beyond those that appear in AASHTO LRFD, are examined in this study. 
	2.1 
	2.2 
	Eq. (5.10). 

	For the nonsway columns, the effective length factor, K, is taken as 1. For the sway columns, the effective length factor, K, is calculated based on the stiffness of the rotational springs. Stiffness parameters Gtop and Gbot are computed based on the stiffness of rotational springs and the assumed flexural stiffness of the columns as: 
	6(EI)L 
	Gtop = (5.11)
	ktop 
	6(EI)L 
	Gbot = (5.12)
	kbot 
	These computed values of Gtop and Gbot differ from the defined values of Gn,top and Gn,bot used to define the spring stiffness because EI =0.4EcIg is always used with Gn,top and Gn,bot while various values of EI are used to define Gtop and Gbot. 
	The effective length factor, K, is determined iteratively as the value of K that solves the AASHTO LRFD Equation C.4.6.2.5-2: 
	GbotGtop(π/K)− 36 (π/K)
	2 

	− = 0 (5.13)
	6(Gbot + Gtop) tan(π/K) 
	from is used as an initial guess for the iterations. 
	Eq. (5.14) 
	Geschwindner et al. 
	(2017), 

	 
	1.6GbotGtop + 4(Gbot + Gtop)+7.5 
	K = (5.14)
	Gbot + Gtop +7.5 
	The maximum permitted applied axial load is equal to the lesser of Pe and 0.8Pwhere PThe maximum permitted applied moment (for the nonsway columns) or lateral load (for the sway columns) is computed for a range of applied axial loads linearly spaced from zero to the maximum permitted axial load. At each level of applied axial load, the available flexural strength is determined from the cross-sectional interaction diagram and the applied moment or lateral load is back-calculated using the equations described
	computed using Eq. (5.10) 
	0 
	0 
	computed using Eq. (5.3). 


	5.1.3 Maximum Applied Loads from Second-Order Inelastic Analysis 
	5.1.3 Maximum Applied Loads from Second-Order Inelastic Analysis 
	Results from a second-order inelastic analysis, also referred to as a geometrically and materially nonlinear analysis with imperfections included (GMNIA) form the best approximation of the true behavior of the column and are the benchmark against which results from the design methods are compared. 
	The analyses are performed using the OpenSees model described in Chapter and validated in Chapter The modeling of the columns included an initial out-of-straightness of L/1000 for both sway and nonsway columns, as well as an initial out-of-plumbness of L/500 for sway columns. 
	3 
	4. 

	The limit point of each analysis was defined as when the lowest eigenvalue of the system reached zero or a strain limit was reached, whichever occurred first. The lowest eigenvalue of the system reaching zero corresponds with a true maximum of applied loads. In some cases, especially those with low or no axial compression, a true maximum of applied loads is not reached due to post-yield hardening and one of the strain limits defines limit point. Two strain limits were used: 0.01 for concrete in compression 
	Applied loads and internal forces at the limit point were recorded and taken as the maximum applied loads from the second-order inelastic analysis. 

	5.1.4 Error Calculation 
	5.1.4 Error Calculation 
	Error in the design method exists if the applied load interaction diagram representing the maximum applied load permitted by the design method does not coincide with the applied load interaction diagram calculated from second-order inelastic analysis. In this study, second-order inelastic analysis is taken as the best approximation of true behavior and the benchmark against which results from the design provisions are measured. 
	-

	If the design interaction curve lies outside the interaction curve from second-order inelastic analysis, the design method permits applied loads that the inelastic analysis indicates would cause failure. This error in the design method is unconservative. On the other hand, if the design interaction curve is within the interaction curve from second-order inelastic analysis, then the inelastic analysis indicates that there are some applied loads that are safe, but not permitted by the design method. This erro
	A radial error measure is used to quantify the error as shown in Figure The interaction diagrams for a typical case are plotted with the axial compression normalized by Pand the bending moment normalized by Mn. Pis the nominal axial load capacity of the RC cross section calculated Mn is the nominal moment capacity of the RC section determined using the strain compatibility method. With this normalization, the design interaction curve will intersect the x axis at a value of 1.0. 
	5.5. 
	0 
	0 
	using Eq. (5.15). 

	′ 
	P=0.85fAc + fyAs (5.15)
	0 

	c 
	Two lines are drawn from the origin at a given angle, θ, with respect to the x axis. The first line terminates at the intersection with the interaction diagram representing the maximum applied loads from the second-order inelastic analysis. The length of this line is rGMNIA. The second line terminates at the intersection with the interaction diagram representing the maximum permitted applied loads according to AASHTO LRFD. The length of this line is rdesign. The error is defined as 
	rGMNIA − rdesign 
	rGMNIA − rdesign 

	ε = (5.16) 
	rGMNIA 
	Figure
	Figure 5.5: The essential parameters utilized in the calculation of errors 
	Figure 5.5: The essential parameters utilized in the calculation of errors 


	Using this measure, positive values of error are conservative and negative values of error are unconservative. The error is quantified at many different angles for a full assessment of the interaction diagrams. 
	-


	5.1.5 Results 
	5.1.5 Results 
	Example interaction diagrams using both and and the corresponding plots of error are shown in Figures through for the following cases: 
	Eq. (2.1) 
	Eq. (2.2) 
	5.6a 
	5.11b 

	• 
	• 
	• 
	Case C08-L35-NS02, a circular nonsway column with a diameter of 48 in., length to diameter ratio of 35, steel ratio of 4% and a β = 0.5 
	(Figure 5.6). 


	• 
	• 
	Case Ox05-L20-NS02, an obround nonsway column with a diameter of 48 in., length to diameter ratio of 20, steel ratio of 1% and a β = 0.5, bending around the minor axis 
	-
	(Figure 5.7). 


	• 
	• 
	Case Oy01-L15-NS01, an obround nonsway column with a diameter of 16 in., length to diameter ratio of 15, steel ratio of 1% and a β = 1, bending around the 
	major axis (Figure 5.8). 


	• 
	• 
	Case C01-L5-S05, a circular sway column with a diameter of 16 in., length to diameter of 5, steel ratio of 1% and a Knominal = 1.2 (Figure 
	5.9). 


	• 
	• 
	Case Ox02-L15-S02, an obround sway column with a diameter of 16 in., length to diameter of 15, steel ratio of 2%, bending around the minor axis with a Knominal of 2.2 (Figure 
	5.10). 


	• 
	• 
	Case Oy01-L40-S04, an obround sway column with a diameter of 16 in., length to diameter of 40, steel ratio of 1%, bending around the major axis with a Knominal of 1.0 (Figure 
	5.11). 



	Error plots for individual cases using both AASHTO LRFD equations are plotted together in Figures through Eight plots are shown, where error lines that are computed using EI from are separated by sway condition and shown in Figures and while error lines that are computed using EI from Eq. are similarly shown in Figures and Subplot (a) of each figure shows all cases in the group while subplot (b) of each figure shows only cases where KL/r < 100. 
	5.12 
	5.15. 
	Eq. (2.1) 
	5.12 
	5.13, 
	(2.2) 
	5.14 
	5.15. 

	The error lines of each case are plotted as thin gray lines, giving a graphical representation of which values of error are more frequent based on the darkness in each region. Additionally, the envelope of maximum error is shown as a green line and the envelope of minimum error is shown as a red line. 
	Unconservative errors due to the overprediction of EI are observed when the axial loads are low across all of the plots. This unconservatism is more prominent for the cases with a higher slenderness ratio. Additionally, tends to have lower overprediction error when compared to 
	Eq. (2.2) 
	Eq. (2.1). 

	Tables through list maximum and minimum errors. The cases identified in each table caption are grouped by length-to-diameter ratio and steel ratio. The maximum and minimum errors were computed over each case in the group and over all angles. The average error in each group is not shown in this table, or generally in this work, because the distribution of cases investigated in this work is not representative of the distribution of actual bridge columns. The cases were selected to be representative of the ran
	5.4 
	5.7 

	Figure
	(a) 
	Figure
	Figure 5.6: Interaction diagram (a) and error plot (b) for case C08-L35-NS02 
	Figure 5.6: Interaction diagram (a) and error plot (b) for case C08-L35-NS02 


	(b) 
	(b) 
	(a) 

	Figure
	Figure
	Figure 5.7: Interaction diagram (a) and error plot (b) for case Ox05-L20-NS02 
	Figure 5.7: Interaction diagram (a) and error plot (b) for case Ox05-L20-NS02 


	(b) 
	(b) 
	(a) 

	Figure
	Figure
	Figure 5.8: Interaction diagram (a) and error plot (b) for case Oy01-L15-NS01 
	Figure 5.8: Interaction diagram (a) and error plot (b) for case Oy01-L15-NS01 


	(b) 
	(b) 
	(a) 

	Figure
	Figure
	Figure 5.9: Interaction diagram (a) and error plot (b) for case C01-L5-S05 
	Figure 5.9: Interaction diagram (a) and error plot (b) for case C01-L5-S05 


	(b) 
	(b) 
	(a) 

	Figure
	Figure
	Figure 5.10: Interaction diagram (a) and error plot (b) for case Ox02-L15-S02 
	Figure 5.10: Interaction diagram (a) and error plot (b) for case Ox02-L15-S02 


	(b) 
	(b) 
	(a) 

	Figure
	Figure
	Figure 5.11: Interaction diagram (a) and error plot (b) for case Oy01-L40-S04 
	Figure 5.11: Interaction diagram (a) and error plot (b) for case Oy01-L40-S04 


	(b) 
	(b) 
	(a) 

	Figure
	(b) 
	(b) 
	(a) 

	Figure
	Figure 5.12: Error plot of (a) all nonsway cases and (b) nonsway cases with KL/r < 100, based on the results obtained with EI calculated 
	Figure 5.12: Error plot of (a) all nonsway cases and (b) nonsway cases with KL/r < 100, based on the results obtained with EI calculated 
	using Eq. (2.1). 



	Figure
	(b) 
	(b) 
	(a) 

	Figure
	Figure 5.13: Error plot of (a) all sway cases and (b) sway cases with KL/r < 100, based on the results obtained with EI calculated 
	Figure 5.13: Error plot of (a) all sway cases and (b) sway cases with KL/r < 100, based on the results obtained with EI calculated 
	using Eq. (2.1). 



	Figure
	(b) 
	(b) 
	(a) 

	Figure
	Figure 5.14: Error plot of (a) all nonsway cases and (b) nonsway cases with KL/r < 100, based on the results obtained with EI calculated 
	Figure 5.14: Error plot of (a) all nonsway cases and (b) nonsway cases with KL/r < 100, based on the results obtained with EI calculated 
	using Eq. (2.2). 



	Figure
	(b) 
	Figure
	Figure 5.15: Error plot of (a) all sway cases and (b) sway cases with KL/r < 100, based on the results obtained with EI calculated 
	Figure 5.15: Error plot of (a) all sway cases and (b) sway cases with KL/r < 100, based on the results obtained with EI calculated 
	using Eq. (2.2). 



	Table 5.4: Upper and lower error bounds for nonsway columns as determined by slenderness using 
	Eq. (2.1). 

	ρ 
	ρ 
	ρ 
	ε 
	0-25 
	25-50 
	Slenderness Range 50-75 75-100 100-125 
	≥ 125 

	1% 
	1% 
	Min Max 
	-0.036 0.295 
	-0.107 0.280 
	-0.196 0.204 
	-0.323 0.436 
	-0.380 0.503 
	-0.464 0.545 

	2% 
	2% 
	Min Max 
	-0.011 0.283 
	-0.029 0.270 
	-0.076 0.248 
	-0.147 0.504 
	-0.167 0.567 
	-0.195 0.605 

	3% 
	3% 
	Min Max 
	-0.009 0.274 
	-0.014 0.262 
	-0.024 0.297 
	-0.068 0.559 
	-0.079 0.615 
	-0.094 0.649 

	4% 
	4% 
	Min Max 
	0.008 0.266 
	0.009 0.255 
	0.010 0.348 
	-0.011 0.604 
	-0.022 0.653 
	-0.031 0.684 


	Table 5.5: Upper and lower error bounds for sway columns as determined by slenderness using 
	Eq. (2.1). 

	ρ 
	ρ 
	ρ 
	ε 
	0-25 
	25-50 
	Slenderness Range 50-75 75-100 100-125 
	≥ 125 

	1% 
	1% 
	Min Max 
	-0.014 0.291 
	-0.024 0.285 
	-0.038 0.233 
	-0.092 0.445 
	-0.154 0.512 
	-0.510 0.557 

	2% 
	2% 
	Min Max 
	0.002 0.279 
	-0.001 0.274 
	0.001 0.273 
	0.003 0.511 
	-0.006 0.575 
	-0.128 0.615 

	3% 
	3% 
	Min Max 
	-0.003 0.271 
	-0.005 0.265 
	0.000 0.313 
	0.007 0.564 
	0.007 0.622 
	-0.001 0.658 

	4% 
	4% 
	Min Max 
	0.010 0.263 
	0.009 0.258 
	0.012 0.355 
	0.015 0.608 
	0.018 0.659 
	0.020 0.692 


	Table 5.6: Upper and lower error bounds for nonsway columns as determined by slenderness using 
	Eq. (2.2). 

	ρ 
	ρ 
	ρ 
	ε 
	0-25 
	25-50 
	Slenderness Range 50-75 75-100 100-125 
	≥ 125 

	1% 
	1% 
	Min Max 
	-0.037 0.295 
	-0.087 0.280 
	-0.159 0.300 
	-0.237 0.587 
	-0.254 0.627 
	-0.284 0.642 

	2% 
	2% 
	Min Max 
	-0.015 0.283 
	-0.042 0.270 
	-0.090 0.240 
	-0.148 0.529 
	-0.164 0.571 
	-0.181 0.586 

	3% 
	3% 
	Min Max 
	-0.011 0.274 
	-0.030 0.262 
	-0.065 0.209 
	-0.110 0.492 
	-0.137 0.534 
	-0.157 0.548 

	4% 
	4% 
	Min Max 
	0.003 0.266 
	-0.020 0.255 
	-0.048 0.193 
	-0.093 0.451 
	-0.108 0.494 
	-0.129 0.507 


	Table 5.7: Upper and lower error bounds for sway columns as determined by slenderness using 
	Eq. (2.2). 

	ρ 
	ρ 
	ρ 
	ε 
	0-25 
	25-50 
	Slenderness Range 50-75 75-100 100-125 
	≥ 125 

	1% 
	1% 
	Min Max 
	-0.015 0.291 
	-0.023 0.285 
	-0.029 0.328 
	-0.038 0.594 
	-0.062 0.635 
	-0.193 0.653 

	2% 
	2% 
	Min Max 
	-0.002 0.279 
	-0.006 0.274 
	-0.008 0.271 
	-0.012 0.537 
	-0.020 0.581 
	-0.058 0.599 

	3% 
	3% 
	Min Max 
	-0.005 0.271 
	-0.008 0.265 
	-0.009 0.242 
	-0.005 0.501 
	-0.008 0.545 
	-0.040 0.562 

	4% 
	4% 
	Min Max 
	0.007 0.263 
	0.005 0.258 
	-0.029 0.215 
	-0.012 0.462 
	-0.003 0.506 
	-0.023 0.522 



	5.1.6 Discussion 
	5.1.6 Discussion 
	Examining the individual results of Figures there is a distinct difference between shorter columns and longer columns. The axial capacity of the shorter columns is higher compared to longer columns (i.e., the intersection of the interaction diagram and the y axis is closer to 1.0). There is also a smaller difference between the first-order moment, M, and second-order moment, M, for shorter columns compared to longer columns. The difference between Mand Mrepresents the P -δ and P -∆ effects. 
	5.6 
	through 5.11, 
	1
	2
	1 
	2 

	In several cases, the second-order moment from the inelastic analysis (i.e., M(GMNIA)) is similar to the available strength from design (i.e., M(design)), indicating that failure of the column is largely due to the internal forces reaching their cross-sectional strength. However, for longer columns near their axial capacity, the second-order moment from the inelastic analysis can be significantly less than the available strength from design, indicating stability failure. 
	2 
	2 

	The error is generally smaller at zero axial load and high moments (i.e., θ =0) but increases to higher values as the axial load increases (i.e., θ approaches 90). However, for low angles there is a dip in the error, often to the unconservative range, before increasing to conservative error for high axial loads. Low angles represent cases with high bending moment and some axial compression. In these cases, significant cracking is expected, reducing the stiffness of the column even below the effective values
	◦
	◦

	The graphs presented in Figures that the unconservative error trends observed for the individual examples generally apply, meaning unconservative error is concentrated at low angles and for longer columns. However, significant unconservative error is observed for columns at higher angles (i.e., θ> 30) especially for the cases with a slenderness ratio (KL/r) of more than 100. 
	5.12
	a through 5.15b show 

	◦

	The data in Tables through further reinforces the observed trends with respect to length-to-diameter ratio and uncovers further trends with respect to steel ratio. The greatest unconservative and conservative errors are for low steel ratio cases. The worst case unconservative error observed for results obtained overall is for a sway column with a slenderness ratio (KL/r) greater than 125 and a steel ratio (ρ) of 1% which has an error (ε) of -0.510. While the worst case for the results from is a nonsway colu
	5.4 
	5.7 
	using Eq. (2.1) 
	Eq. (2.2) 

	It was observed that in general, nonsway cases exhibit greater maximum unconservative errors than sway cases, likely due to the β = 1 cases where concrete cracking occurs along the entire length of the column. The spread of error values is also greater for nonsway cases than for sway cases. 


	5.2 Long-Term Loading 
	5.2 Long-Term Loading 
	Select cases from the parametric study conducted for short-term loading are repeated for long-term loading effects using the cross-sectional shapes, bending axes, cross-section dimensions, and longitudinal steel ratios described in the previous section. In addition to the parameters held constant across the short-term parametric study (concrete compressive strength, steel yield strengths, clear cover, and transverse hoop details), the long-term loading parametric study assumes the following 
	Select cases from the parametric study conducted for short-term loading are repeated for long-term loading effects using the cross-sectional shapes, bending axes, cross-section dimensions, and longitudinal steel ratios described in the previous section. In addition to the parameters held constant across the short-term parametric study (concrete compressive strength, steel yield strengths, clear cover, and transverse hoop details), the long-term loading parametric study assumes the following 
	-

	creep and shrinkage parameters are held constant: 

	• 
	• 
	• 
	Ultimate concrete shrinkage strain, εsh,0=600 × 10
	−6 


	• 
	• 
	Ultimate concrete creep factor, φ=3.0 
	0



	Each analysis simulates the column holding a sustained load for 10,000 days (approximately 27 years). For long-term analysis, the sustained load is set to 5% of the peak axial capacity from the interaction diagram for short-term loading of the column. 
	After the hold phase, the capacity of the column is calculated. Similar to the short-term analysis in the previous section, the long-term simulation is repeated over several eccentricities of the sustained load in order to develop an interaction diagram. 
	5.2.1 Results 
	5.2.1 Results 
	Interaction diagrams based on GMNIA with OpenSees are shown for the following cases. All columns are nonsway with β=1. 
	• 
	• 
	• 
	Case C06-L15-NS01 – Nonsway, D=48 inch diameter circular column with 2% steel and L/D=15 

	• 
	• 
	Case Oy01-L15-NS01 – Nonsway, D=16 inch obround column with 1% steel and L/D=15, bending about the major axis 

	• 
	• 
	Case Ox05-L20-NS01 – Nonsway, D=48 inch diameter obround column with 1% steel and L/D=20, bending about the minor axis 


	In the cases listed above, for each level of eccentricity, the sustained long term load was set to 50% of the axial load capacity for short term loading at the same eccentricity. 
	For the C06-L15-NS01 case, the axial force-lateral deflection curves reveal significant long-term lateral deflections under sustained loads. In addition, as shown in the applied loads that cause failure are lower when long-term effects are considered, but the internal forces at failure are not affected. The load-deflection and axial-moment interaction diagrams for the Oy01-L15-NS01 case (Figure and Figure show similar trends with significant long-term deflection adding to the second-order effects and reduci
	(Figure 5.16) for the column 
	Figure 5.17, 
	5.18 
	5.19) 

	For the Ox05-L20-NS01 case, a more slender column than the previous two cases, Figure and Figure show, in addition to sustained long-term deflections, that both the applied loads and internal forces at failure are less when considering long-term effects for higher axial loads (i.e., over 40% of the pure axial capacity of the column). These results indicate that this column, with its greater slenderness, is experiencing a stability failure, not precipitated by reaching the cross-sectional strength of the col
	5.20 
	5.21 

	The methodology shown here indicates a roughly 10-20% reduction in strength due long-term effects. Evaluating strength reductions across a broader range of columns and loading conditions can enable the development of more refined design recommendations. 
	Figure
	Figure 5.16: Load-deflection curves for long-term loading of column case C06-L15-NS01. 
	Figure 5.16: Load-deflection curves for long-term loading of column case C06-L15-NS01. 


	Figure
	Figure 5.17: Interaction diagram for short-term and long-term loading for case C06-L15-NS01. 
	Figure 5.17: Interaction diagram for short-term and long-term loading for case C06-L15-NS01. 


	Figure
	Figure 5.18: Load-deflection curves for long-term loading of column case Oy01-L15-NS01. 
	Figure 5.18: Load-deflection curves for long-term loading of column case Oy01-L15-NS01. 


	Figure
	Figure 5.19: Interaction diagram for short-term and long-term loading for case Oy01-L15-NS01. 
	Figure 5.19: Interaction diagram for short-term and long-term loading for case Oy01-L15-NS01. 


	Figure
	Figure 5.20: Load-deflection curves for long-term loading of column case Ox05-L20-NS01. 
	Figure 5.20: Load-deflection curves for long-term loading of column case Ox05-L20-NS01. 


	Figure
	Figure 5.21: Interaction diagram for short-term and long-term loading for case Ox05-L20-NS01. 
	Figure 5.21: Interaction diagram for short-term and long-term loading for case Ox05-L20-NS01. 


	Chapter 6 



	Modifications to Design Methods 
	Modifications to Design Methods 
	This chapter describes the development of several potential modifications to the AASTHO LRFD method of design for slender RC columns. First, alternative equations for the flexural rigidity, EI, for use in the moment magnification procedure are evaluated and developed. Then, slenderness ratio limits on the use of the moment magnification procedure are evaluated. A new effective length factor for the transverse buckling mode of single column bents is developed. Finally, rules of thumb for preliminary design a
	6.1 Flexural Rigidity 
	6.1 Flexural Rigidity 
	The results of Chapter 5 show that there is both conservative and unconservative error associated with the evaluation of strength of RC bridge columns using the AASHTO LRFD moment magnification approach. or source of the observed error because of its simplicity in comparison to the complex behavior that it stands in for. This section evaluates alternative equations for the flexural rigidity. Noting the limitations of equations that only depend on cross-sectional properties, the equations for flexural rigidi
	-
	The flexural rigidity used in the approach, i.e., Eq. (2.1) 
	Eq. (2.2), is the largest 
	Jenkins and Frosch 
	(2015), 

	More emphasis is placed in this work on reducing unconservative error than reducing conservative error. This is because of the greater consequences of unconservative error, but also because bridge columns often have relatively low axial loads in comparison to their cross-sectional axial strength. The unconservative errors observed in Chapter 5 were primarily seen at low axial loads and high bending moments. 
	-

	To create design interaction diagrams when using effective stiffness equations that vary with axial load or bending moment, e.g., Eq. some modifications to the approach described in Section were necessary. An iterative solution method is required here because the flexural stiffness, EI, can depend on both the maximum factored moment along the length of the column and this moment, in turn, depends on EI. For a given axial load, factored internal bending moment was incrementally increased from zero to the sec
	To create design interaction diagrams when using effective stiffness equations that vary with axial load or bending moment, e.g., Eq. some modifications to the approach described in Section were necessary. An iterative solution method is required here because the flexural stiffness, EI, can depend on both the maximum factored moment along the length of the column and this moment, in turn, depends on EI. For a given axial load, factored internal bending moment was incrementally increased from zero to the sec
	(2.3), 
	5.1.2 

	corresponding applied moment. The flexural stiffness was calculated at each value of internal moment. This flexural stiffness was used to calculate the buckling load. If the applied axial load is less than the computed buckling load, δ was computed and the applied moment was computed by dividing the internal moment by δ. If the applied axial load was greater than the buckling load, then the remaining moments increments were disregarded, the previous step was identified as the limit point, and the applied mo

	6.1.1 ACI’s Variable Effective Flexural Stiffness 
	6.1.1 ACI’s Variable Effective Flexural Stiffness 
	ACI 318 includes provisions for slender RC column design that are similar to those in AASHTO LRFD. and are options for use as the flexural rigidity in ACI 318. However, ACI 318 has a third equation to calculate the effective flexural rigidity of RC columns based on the In the third equation, or in this report, EI depends on the axial load and bending moment experienced by the column. 
	Eq. (2.1) 
	Eq. (2.2) 
	work of Khuntia and Ghosh (2004). 
	ACI 318 Equation 6.6.4.4.4c 
	Eq. (2.3) 

	In order to gain a deeper understanding of this equation, a contour plot of EIeff according to normalized by EcIg was created for the cross section of the first column of the parameter suite, case C01-L5-NS01 (a circular column with a D=16 in./ and , note that the member properties such as L/D do not effect the evaluation of EIeff ). The contour plot is shown in Figure The cross-sectional capacity obtained from the strain compatibility is plotted in as a solid black line. For a given axial load, decreases a
	Eq. (2.3) 
	ρnominal=0.01
	6.1. 
	Figure 6.1 
	the flexural rigidity computed from Eq. (2.3) 
	Eq. (2.3) 

	Figure shows the error plots for when flexural rigidity is defined by These plots are constructed in the manner as the figures in the Chapter 5 (e.g., Figure As can be seen in Figure the results obtained from this equation have a lower conservative errors in general compared to AASHTO LRFD equations (Figures through This is expected since results in values of EI that are greater than from or over most of the cross-sectional strength. 
	6.2 
	Eq. (2.3). 
	5.12). 
	6.2, 
	5.12 
	5.15). 
	Eq. (2.3) 
	Eq. (2.1) 
	Eq. (2.2) 

	Unconservative errors were identified in the lower axial load region as before with and However, the unconservative errors manifest over a broader range of applied axial loads. The extent of unconservative error is less for cases with a slenderness of less than 100. However, some as having superior precision compared to and and suitable for use when the slenderness exceeds 100. 
	Eq. (2.1) 
	Eq. (2.2). 
	Eq. (2.3) 
	references (e.g., (Adams et al.
	, 2019)) identify Eq. (2.3) 

	Eq. (2.1) 
	Eq. (2.2) 

	Figure
	Figure 6.1: Contour plot of EIeff /EcIg with EIeff Black line is the cross sectional strength of an example cross section. 
	Figure 6.1: Contour plot of EIeff /EcIg with EIeff Black line is the cross sectional strength of an example cross section. 
	computed using Eq. (2.3). 



	(a) 
	Figure
	(b) 
	Figure
	Figure 6.2: Error plot of (a) all cases and (b) cases with KL/r < 100, based on the results obtained with EI calculated using Eq. 
	Figure 6.2: Error plot of (a) all cases and (b) cases with KL/r < 100, based on the results obtained with EI calculated using Eq. 
	(2.3). 



	Additionally, the error data, separated by nominal steel ratio and slenderness, is shown in Tables 
	and In general, higher unconservative error was observed for sway columns compared to nonsway columns. This is in direct contrast with the results obtained from and Also, the errors do not exhibit a consistent trend with steel ratio. This, too, is unlike what was observed for the error data based on the AASHTO LRFD EI equations. 
	6.1 
	6.2. 
	Eq. (2.1) 
	Eq. (2.2). 

	Table 6.1: Upper and lower error bounds for nonsway columns as determined by slenderness using 
	Eq. (2.3). 

	ρ 
	ρ 
	ρ 
	ε (%) 
	0-25 
	25-50 
	Slenderness Range 50-75 75-100 100-125 
	≥ 125 

	1% 
	1% 
	Min Max 
	-0.034 0.295 
	-0.092 0.280 
	-0.207 0.204 
	-0.295 0.221 
	-0.309 0.241 
	-0.393 0.234 

	2% 
	2% 
	Min Max 
	-0.009 0.283 
	-0.037 0.270 
	-0.147 0.198 
	-0.250 0.298 
	-0.261 0.358 
	-0.342 0.381 

	3% 
	3% 
	Min Max 
	-0.008 0.274 
	-0.043 0.262 
	-0.157 0.195 
	-0.304 0.360 
	-0.313 0.429 
	-0.355 0.492 

	4% 
	4% 
	Min Max 
	0.009 0.266 
	-0.037 0.255 
	-0.143 0.215 
	-0.345 0.401 
	-0.328 0.482 
	-0.334 0.565 


	Table 6.2: Upper and lower error bounds for sway columns as determined by slenderness using 
	Eq. (2.3). 

	ρ 
	ρ 
	ρ 
	ε (%) 
	0-25 
	25-50 
	Slenderness Range 50-75 75-100 100-125 
	≥ 125 

	1% 
	1% 
	Min Max 
	-0.012 0.291 
	-0.018 0.285 
	-0.041 0.212 
	-0.123 0.296 
	-0.144 0.302 
	-0.578 0.295 

	2% 
	2% 
	Min Max 
	0.002 0.279 
	0.000 0.274 
	-0.089 0.217 
	-0.207 0.381 
	-0.142 0.405 
	-0.586 0.433 

	3% 
	3% 
	Min Max 
	-0.002 0.271 
	-0.004 0.265 
	-0.147 0.258 
	-0.186 0.424 
	-0.152 0.482 
	-0.537 0.518 

	4% 
	4% 
	Min Max 
	0.010 0.263 
	-0.007 0.258 
	-0.161 0.285 
	-0.227 0.464 
	-0.191 0.528 
	-0.411 0.586 



	6.1.2 Variable Effective Flexural Stiffness Proposed by Jenkins and Frosch 
	6.1.2 Variable Effective Flexural Stiffness Proposed by Jenkins and Frosch 
	Other equations for the effective flexural stiffness has been proposed by They proposed two different sets of equations. The first set of equations, described in Table is described as more accurate but requires the steel reinforcement ratio, which may not be known initially in design. The second set of equations, described in Table does not require the steel reinforcement ratio. In each set, one equation is provided for lower eccentricity and another equation is provided for higher eccentricity. Each equati
	Jenkins and Frosch 
	(2015). 
	6.3, 
	6.4, 
	0 
	Eq. (5.3) 

	′ 
	axial strength, while Pg =0.85fAg and represents the axial strength of the gross concrete cross 
	0

	c 
	section. 
	Contour plots like shown in Figure for case C01-L5-NS01 are shown in Figures and 
	6.1 
	6.3 
	6.4 

	Table 6.3: Flexural stiffness equations proposed by for detailed analysis or design. 
	Jenkins and Frosch 
	(2015) 

	M e 
	M e 
	M e 

	= 
	= 
	Flexural Stiffness of Compression Member, EI 

	P h h 
	P h h 

	≤ 0.1 
	≤ 0.1 
	     P Ast1.05 − 0.6 1.0 + 3 − 0.01 EcIg ≥ 0.30EcIgP0 Ag 

	> 0.1 
	> 0.1 
	       P Ast M 1.05 − 0.6 1.0 + 3 − 0.01 1.2 − 2 EcIg ≥ 0.30EcIgP0 Ag P h 


	Table 6.4: Flexural stiffness equations proposed by for general design. 
	Jenkins and Frosch 
	(2015) 

	M e 
	M e 
	M e 

	= 
	= 
	Flexural Stiffness of Compression Member, EI 

	P h h 
	P h h 

	≤ 0.1 
	≤ 0.1 
	  P 1.0 − 0.5 EcIg ≥ 0.40EcIgP0g 

	> 0.1 
	> 0.1 
	    P M 1.0 − 0.5 1.2 − 2 EcIg ≥ 0.40EcIgP0g P h 


	for the two sets of Jenkins and Frosch equations. These figures show that the Jenkins and Frosch equations exhibit the same general trends with axial load and bending moment as 
	Eq. (2.3). 

	Error plots are shown in Figures and The first subplot of each of these figure which shows the results for all cases shows high unconservative errors that significantly surpass any acceptable limit. These errors are prevalent across the entire spectrum of axial loads. However, the unconservative errors are less in Figures and which show the results only for cases where KL/r < 100. The unconservative errors shown in Figure for the EI defined by set of equations in Table are relatively modest and fall into th
	6.5 
	6.6. 
	-
	6.5b 
	6.6b 
	6.5b 
	-
	6.3 

	Error data is listed in Tables through The information presented in Table indicates that the error value increases when employing the equations from Table for sway columns, particularly when the slenderness ratio is higher than 125. Specifically, the maximum unconservative error observed is 7.6% when KL/r ≤ 125. Furthermore, data in Tables and shows a significant increase in unconservative error as the steel ratio decreases when using either set of equations proposed by Jenkins and Frosch. 
	6.5 
	6.8. 
	6.6 
	6.3 
	-
	6.5 
	6.7 

	Figure
	Figure 6.3: Normalized contour plot for equations in Table 
	Figure 6.3: Normalized contour plot for equations in Table 
	6.3 



	Figure
	Figure 6.4: Normalized contour plot for equations in Table 
	Figure 6.4: Normalized contour plot for equations in Table 
	6.4 



	(a) 
	Figure
	(b) 
	(b) 
	(a) 

	Figure
	Figure 6.5: Error plot of (a) all cases and (b) cases with KL/r < 100, based on the results obtained with EI calculated using Table 
	Figure 6.5: Error plot of (a) all cases and (b) cases with KL/r < 100, based on the results obtained with EI calculated using Table 
	6.3. 



	Figure
	(b) 
	Figure
	Figure 6.6: Error plot of (a) all cases and (b) cases with KL/r < 100, based on the results obtained with EI calculated using Table 
	Figure 6.6: Error plot of (a) all cases and (b) cases with KL/r < 100, based on the results obtained with EI calculated using Table 
	6.4. 



	Table 6.5: Upper and lower error bounds for nonsway columns as determined by slenderness using equations from Table 
	6.3. 

	ρ 
	ρ 
	ρ 
	ε (%) 
	0-25 
	25-50 
	Slenderness Range 50-75 75-100 100-125 
	≥ 125 

	1% 
	1% 
	Min Max 
	-0.032 0.295 
	-0.074 0.280 
	-0.122 0.204 
	-0.212 0.332 
	-0.228 0.374 
	-0.274 0.386 

	2% 
	2% 
	Min Max 
	-0.007 0.283 
	-0.015 0.270 
	-0.062 0.265 
	-0.055 0.444 
	-0.074 0.508 
	-0.095 0.535 

	3% 
	3% 
	Min Max 
	-0.007 0.274 
	-0.006 0.262 
	-0.046 0.314 
	-0.029 0.505 
	-0.022 0.584 
	-0.093 0.605 

	4% 
	4% 
	Min Max 
	0.009 0.266 
	0.000 0.255 
	-0.032 0.375 
	-0.019 0.557 
	-0.012 0.637 
	-0.088 0.653 


	Table 6.6: Upper and lower error bounds for sway columns as determined by slenderness using equations from Table 
	6.3. 

	ρ 
	ρ 
	ρ 
	ε (%) 
	0-25 
	25-50 
	Slenderness Range 50-75 75-100 100-125 
	≥ 125 

	1% 
	1% 
	Min Max 
	-0.010 0.291 
	-0.015 0.285 
	-0.032 0.279 
	-0.076 0.423 
	-0.073 0.433 
	-0.813 0.424 

	2% 
	2% 
	Min Max 
	0.003 0.279 
	0.001 0.274 
	-0.050 0.336 
	-0.066 0.495 
	-0.067 0.544 
	-0.748 0.543 

	3% 
	3% 
	Min Max 
	-0.001 0.271 
	-0.003 0.265 
	-0.058 0.375 
	-0.061 0.547 
	-0.069 0.600 
	-0.719 0.611 

	4% 
	4% 
	Min Max 
	0.011 0.263 
	0.010 0.258 
	-0.048 0.423 
	-0.060 0.598 
	-0.068 0.643 
	-0.673 0.655 


	Table 6.7: Upper and lower error bounds for nonsway columns as determined by slenderness using equations from Table 
	6.4. 

	ρ 
	ρ 
	ρ 
	ε (%) 
	0-25 
	25-50 
	Slenderness Range 50-75 75-100 100-125 
	≥ 125 

	1% 
	1% 
	Min Max 
	-0.036 0.295 
	-0.107 0.280 
	-0.196 0.204 
	-0.322 0.257 
	-0.379 0.291 
	-0.463 0.314 

	2% 
	2% 
	Min Max 
	-0.011 0.283 
	-0.029 0.270 
	-0.076 0.198 
	-0.146 0.387 
	-0.167 0.424 
	-0.194 0.438 

	3% 
	3% 
	Min Max 
	-0.009 0.274 
	-0.014 0.262 
	-0.026 0.243 
	-0.067 0.459 
	-0.079 0.505 
	-0.094 0.518 

	4% 
	4% 
	Min Max 
	0.008 0.266 
	0.009 0.255 
	-0.016 0.285 
	-0.012 0.515 
	-0.021 0.563 
	-0.029 0.586 


	Table 6.8: Upper and lower error bounds for sway columns as determined by slenderness using equations from Table 
	6.4. 

	ρ 
	ρ 
	ρ 
	ε (%) 
	0-25 
	25-50 
	Slenderness Range 50-75 75-100 100-125 
	≥ 125 

	1% 
	1% 
	Min Max 
	-0.014 0.291 
	-0.024 0.285 
	-0.040 0.212 
	-0.092 0.333 
	-0.153 0.360 
	-0.729 0.370 

	2% 
	2% 
	Min Max 
	0.002 0.279 
	-0.001 0.274 
	-0.055 0.255 
	-0.070 0.430 
	-0.052 0.455 
	-0.623 0.466 

	3% 
	3% 
	Min Max 
	-0.003 0.271 
	-0.005 0.265 
	-0.055 0.295 
	-0.046 0.491 
	-0.045 0.523 
	-0.559 0.534 

	4% 
	4% 
	Min Max 
	0.010 0.263 
	0.009 0.258 
	-0.037 0.334 
	-0.030 0.540 
	-0.036 0.575 
	-0.478 0.593 



	6.1.3 Proposed Enhanced Equation for Flexural Rigidity 
	6.1.3 Proposed Enhanced Equation for Flexural Rigidity 
	Chapter 5 and the preceding sections show the unconservative error associated with the existing equations for estimating the flexural rigidity of RC columns. Recognizing the critical need for more accuracy, this section introduces new equations aimed at improving upon the existing ones. 
	Calculation of Flexural Rigidity Using GMNIA Results 
	To derive an equation for the effective flexural stiffness of columns, it is important to understand how flexural stiffness varies across different columns properties and under diverse loading conditions. For this purpose, flexural stiffness values are back-calculated for each case in the parameter suite. This calculation ensures that the maximum applied moment allowed by the AASHTO LRFD method equals the maximum applied moment determined from GMINA. This approach aims to achieve zero error when using the c
	Alternatively, EI can be back-calculated such that the magnified moment from the AASHTO LRFD method equals the maximum internal moment from the GMNIA. This approach may yield flexural rigidity values that are more physically realistic. However, it may not necessarily minimize errors when applied in the design approach. 
	In some instances, the maximum applied load obtained from GMNIA exceeds the moment capacity from the strain compatibility method. For these cases, the back-calculated EI is left undefined. In other instances, the maximum applied load obtained from GMNIA is only slightly less than the moment capacity from the strain compatibility method resulting in unrealistically large EI values greater than the gross uncracked stiffness (i.e., EcIc + EsIs). These cases tend to occur for short columns where second-order ef
	For both types of back-calculation described above, the resulting value of EI is normalized by EcIg and plotted in Figures through The figures are separated by sidesway condition. 
	6.7 
	6.10. 

	Figure
	Figure 6.7: Calculated EI of nonsway cases to their respective P/Pusing moment capacity obtained from strain compatibility 
	Figure 6.7: Calculated EI of nonsway cases to their respective P/Pusing moment capacity obtained from strain compatibility 
	0 



	that for nonsway cases an increase in axial load mostly corresponds to an increase in the flexural rigidity of the column. This result agrees with the findings of who also observed that the initial stiffness of the column increases under higher axial loading. This increase is nonlinear and exhibits different slopes for different columns. The same cannot be said about sway cases, as Figure shows the pattern is not consistent among the cases. 
	Figure 6.7 shows 
	Hung et al. 
	(2024), 
	6.8 

	The results in Figures through are colored by the nominal longitudinal steel reinforcement ratio. Figure demonstrates that for nonsway cases, as the steel reinforcement ratio increases, there is a concurrent increase in the minimum flexural stiffness. This pattern is not seen for sway cases. 
	6.7 
	6.10 
	-
	6.7 

	Figure
	Figure 6.8: Calculated EI of sway cases to their respective P/Pusing moment capacity obtained from strain compatibility 
	Figure 6.8: Calculated EI of sway cases to their respective P/Pusing moment capacity obtained from strain compatibility 
	0 



	Figure
	Figure 6.9: Calculated EI of nonsway cases to their respective P/Pusing moment capacity obtained from GMINA 
	Figure 6.9: Calculated EI of nonsway cases to their respective P/Pusing moment capacity obtained from GMINA 
	0 



	Figure
	Figure 6.10: Calculated EI of sway cases to their respective P/Pusing moment capacity obtained from GMINA 
	Figure 6.10: Calculated EI of sway cases to their respective P/Pusing moment capacity obtained from GMINA 
	0 



	Formulation of the New Equations 
	New equations were developed for the effective flexural rigidity of RC columns based on the back-calculated EI results. These equations were developed with the goal of achieving the least possible unconservative error while controlling the conservative error. 
	Equation Set 1: 
	The first set of equations is based on the observation that flexural rigidity of the column decreases as the moment in the column nears the available strength. Flexural rigidity decreases because of cracks in the concrete and near the available strength it decreases further due to steel yielding. 
	For this equation set, either one of the current AASHTO LRFD equations is used when ratio of maximum internal moment to cross-sectional moment strength at zero axial load is less than or equal to 0.95, i.e., M/Mn ≤ 0.95, and EI =0.4EsIs is used when M/Mn > 0.95. This equation set is described in Table 
	6.9. 

	Table 6.9: Flexural stiffness equation using available moment. 
	M Mn 
	M Mn 
	M Mn 
	Flexural Stiffness of Compression Member, EI 

	≤ 0.95 
	≤ 0.95 
	0.4EcIg (Eq. 2.1) or 0.2EcIg + EsIs (Eq. 2.2) 
	0.4EcIg (Eq. 2.1) or 0.2EcIg + EsIs (Eq. 2.2) 


	> 0.95 
	> 0.95 
	0.4EsIs 


	Based on the flexural rigidity obtained from the proposed equation defined in Table all of the columns in the parameter suite were analyzed and the resulting error plots are shown in Figures through These plots are divided into sway and nonsway cases as they have shown different results in the equations investigated in the previous chapter. Additionally, the error values only for cases that have a slenderness ratio of less than 100 are plotted separately to understand slenderness effects on the equation acc
	6.9, 
	6.11 
	6.14. 

	These plots show that the new approach using either or results in no significant unconservative error when the slenderness ratio is less than or equal to 100. However, unconservative error is observed for cases with a slenderness ratio greater than 100, especially when is used. 
	Eq. (2.1) 
	Eq. (2.2) 
	-
	Eq. (2.1) 

	The error results are listed in Tables through for different slenderness ranges. No significant unconservative errors exist for cases within the range of 0-125 when and 0-160 when with the proposed approach. Additionally, the highest unconservative errors are consistently for the cases with the highest slenderness and lowest steel ratio. 
	6.10 
	6.13 
	using Eq. (2.1) 
	using Eq. (2.2) 

	(a) 
	Figure
	(b) 
	(b) 
	(a) 

	Figure
	Figure 6.11: Error plot of (a) all nonsway cases and (b) nonsway cases with KL/r < 100, based on the results obtained with EI calculated using Table with 
	Figure 6.11: Error plot of (a) all nonsway cases and (b) nonsway cases with KL/r < 100, based on the results obtained with EI calculated using Table with 
	6.9 
	Eq. (2.1). 



	Figure
	(b) 
	(b) 
	(a) 

	Figure
	Figure 6.12: Error plot of (a) all nonsway cases and (b) nonsway cases with KL/r < 100, based on the results obtained with EI calculated using Table with 
	Figure 6.12: Error plot of (a) all nonsway cases and (b) nonsway cases with KL/r < 100, based on the results obtained with EI calculated using Table with 
	6.9 
	Eq. (2.2). 



	Figure
	(b) 
	(b) 
	(a) 

	Figure
	Figure 6.13: Error plot of (a) all sway cases and (b) sway cases with KL/r < 100, based on the results obtained with EI calculated using Table with 
	Figure 6.13: Error plot of (a) all sway cases and (b) sway cases with KL/r < 100, based on the results obtained with EI calculated using Table with 
	6.9 
	Eq. (2.1). 



	Figure
	(b) 
	Figure
	Figure 6.14: Error plot of (a) all nonsway cases and (b) nonsway cases with KL/r < 100, based on the results obtained with EI calculated using Table with 
	Figure 6.14: Error plot of (a) all nonsway cases and (b) nonsway cases with KL/r < 100, based on the results obtained with EI calculated using Table with 
	6.9 
	Eq. (2.2). 



	Table 6.10: Upper and lower error bounds for nonsway cases as determined by slenderness based on the results obtained with EI calculated using Table with 
	6.9 
	Eq. (2.1). 

	ρ 
	ρ 
	ρ 
	ε 
	0-24 
	25-49 
	Slenderness Range 50-74 75-99 100-124 
	125-149 
	150-160 

	1% 
	1% 
	Min Max 
	-0.006 0.427 
	-0.003 0.571 
	-0.002 0.579 
	-0.001 0.583 
	-0.076 0.504 
	-0.164 0.535 
	-0.252 0.545 

	2% 
	2% 
	Min Max 
	0.002 0.287 
	0.003 0.388 
	0.004 0.387 
	-0.018 0.504 
	-0.021 0.567 
	-0.045 0.595 
	-0.080 0.605 

	3% 
	3% 
	Min Max 
	-0.004 0.274 
	-0.003 0.305 
	0.000 0.312 
	-0.007 0.559 
	-0.020 0.615 
	-0.021 0.640 
	-0.033 0.649 

	4% 
	4% 
	Min Max 
	0.009 0.266 
	0.009 0.272 
	0.010 0.348 
	0.000 0.604 
	-0.006 0.653 
	-0.014 0.675 
	-0.005 0.684 


	Table 6.11: Upper and lower error bounds for nonsway cases as determined by slenderness based on the results obtained with EI calculated using Table with 
	6.9 
	Eq. (2.2). 

	ρ 
	ρ 
	ρ 
	ε 
	0-24 
	25-49 
	Slenderness Range 50-74 75-99 100-124 
	125-149 
	150-160 

	1% 
	1% 
	Min Max 
	-0.006 0.430 
	-0.003 0.571 
	-0.002 0.579 
	-0.001 0.587 
	-0.011 0.627 
	-0.043 0.641 
	-0.082 0.642 

	2% 
	2% 
	Min Max 
	0.002 0.287 
	0.003 0.388 
	0.004 0.387 
	-0.001 0.529 
	-0.011 0.571 
	-0.043 0.585 
	-0.082 0.586 

	3% 
	3% 
	Min Max 
	-0.004 0.274 
	-0.003 0.305 
	0.000 0.308 
	-0.007 0.492 
	-0.021 0.534 
	-0.021 0.548 
	-0.024 0.548 

	4% 
	4% 
	Min Max 
	0.009 0.266 
	0.009 0.272 
	0.009 0.276 
	0.000 0.451 
	-0.012 0.494 
	-0.015 0.507 
	-0.025 0.506 


	Table 6.12: Upper and lower error bounds for sway cases as determined by slenderness based on the results obtained with EI calculated using Table with 
	6.9 
	Eq. (2.1). 

	ρ 
	ρ 
	ρ 
	ε 
	0-99 
	100-149 
	Slenderness Range 150-174 175-199 200-224 
	225-249 
	≥ 250 

	1% 
	1% 
	Min Max 
	0.004 0.557 
	0.020 0.545 
	-0.067 0.557 
	-0.250 0.504 
	-0.261 0.478 
	-0.385 0.477 
	-0.468 0.444 

	2% 
	2% 
	Min Max 
	0.007 0.511 
	0.020 0.604 
	0.024 0.615 
	-0.001 0.575 
	-0.036 0.544 
	-0.060 0.556 
	-0.114 0.533 

	3% 
	3% 
	Min Max 
	0.001 0.564 
	0.015 0.647 
	0.020 0.658 
	0.027 0.626 
	0.031 0.591 
	0.043 0.612 
	0.018 0.596 

	4% 
	4% 
	Min Max 
	0.010 0.608 
	0.022 0.682 
	0.028 0.692 
	0.035 0.666 
	0.043 0.631 
	0.053 0.656 
	0.066 0.643 


	Table 6.13: Upper and lower error bounds for sway cases as determined by slenderness based on the results obtained with EI calculated using Table with 
	6.9 
	Eq. (2.2). 

	ρ 
	ρ 
	ρ 
	ε 
	0-99 
	100-149 
	Slenderness Range 150-174 175-199 200-224 
	225-249 
	≥ 250 

	1% 
	1% 
	Min Max 
	0.005 0.594 
	0.020 0.650 
	0.025 0.653 
	0.012 0.594 
	-0.015 0.536 
	-0.059 0.563 
	-0.142 0.528 

	2% 
	2% 
	Min Max 
	0.007 0.537 
	0.020 0.597 
	0.025 0.599 
	0.030 0.530 
	0.019 0.434 
	0.007 0.496 
	-0.017 0.458 

	3% 
	3% 
	Min Max 
	0.001 0.501 
	0.015 0.560 
	0.020 0.562 
	0.021 0.487 
	0.013 0.359 
	0.008 0.451 
	-0.002 0.410 

	4% 
	4% 
	Min Max 
	-0.028 0.462 
	0.023 0.521 
	0.019 0.522 
	0.015 0.440 
	0.010 0.296 
	0.008 0.401 
	0.005 0.360 


	Equation Set 2: The second set of equation is based on several observations from the back-calculated EI results. The flexural rigidity depends on the applied axial load on the column. Cross sections with higher steel ratio show higher effective flexural stiffness (Figures and For the most of the columns, a near sinusoidal pattern is observed for the changes in the EI value with respect to the axial load P with the magnitude of the change increasing as the column gets more slender. 
	6.7 
	6.8). 

	Based on these observations, Eq. was developed to evaluate the flexural rigidity of the column. The term 0.45 EcIg represents the linear portion of the increase in EI with an increase
	(6.1) 
	P 

	Pin axial load. The term 0.35()sin ()EcIg represents the approximately sinusoidal pattern
	0 
	K
	g 
	L 
	1
	.85 
	πP 

	100rP
	0 

	observed in the variations of the EI concerning the axial load. The term 0.3EsIs corresponds to the minimum stiffness the columns exhibited, irrespective of the loading and slenderness conditions. 
	 
	 
	 
	1
	.85 
	 


	PKgL πP 
	EI =0.45 +0.35 sin EcIg +0.3EsIs (6.1)
	100r
	P
	0 
	P
	0 

	where Kg is the effective to calculate the effective flexural rigidity. Kg is used instead of K to avoid the need for iterative calculations of EI resulting from a mutual dependence of K on EI and vice versa. 
	length factor of the column when Eq. (2.1) is used 

	A contour plot of EI according to normalized by EcIg for the cross section of case C01-L5-NS01 is shown in Figure Unlike the previous contour plots which were investigated in subsections 6.1.1 and 6.1.2, the EI calculated by on the slenderness of the column. The values shown in Figure are for KgL/r = 5. 
	Eq. (6.1) 
	6.15. 
	Eq. (6.1) depends 
	6.15 

	To evaluate the in reducing error, error values were calculated in comparison to results from GMNIA as has been done in this work for other equations of flexural rigidity. Figures 
	efficacy Eq. (6.1) 

	and show the error values plotted against the angle with respect to the x-axis. These plot show nearly no unconservative error for both sway and nonsway cases with a KL/r < 100. Looking at the density of the lines from individual cases seen by darkness in the plots of in Figures 
	6.16 
	6.17 

	and most of the cases with KL/r < 100 have a maximum positive error of less than 0.3. 
	and most of the cases with KL/r < 100 have a maximum positive error of less than 0.3. 
	6.16 
	6.17, 

	Figure
	Figure 6.15: Contour plot of EI/EcIg with EI and KgL/r = 5. Black line is the cross sectional strength of an example cross section. 
	Figure 6.15: Contour plot of EI/EcIg with EI and KgL/r = 5. Black line is the cross sectional strength of an example cross section. 
	computed using Eq. (6.1) 



	Additionally, the maximum conservative error for these cases is decreased up to 50% for different slenderness ratios when compared to the AASHTO LRFD equations (Tables and 
	6.14 
	6.14). 

	For more slender cases, unconservative errors are observed for sway cases in Figure These are limited to a maximum of -10%, which typically happens on the cases with the highest slenderness and low steel ratio. For the cases with a slightly higher slenderness than 100 (100< KL/r < 125), the flexural rigidity obtained from does not show any unconservative error which means the equation can safely be used for the cases near the current AASHTO LRFD slenderness limit of 100. 
	6.17. 
	Eq. (6.1) 

	(a) 
	Figure
	(b) 
	(b) 
	(a) 

	Figure
	Figure 6.16: Error plot of (a) all nonsway cases, and (b) nonsway cases with a slenderness of less than 100, using equation in 
	Figure 6.16: Error plot of (a) all nonsway cases, and (b) nonsway cases with a slenderness of less than 100, using equation in 
	Eq. (6.1). 



	Figure
	(b) 
	Figure
	Figure 6.17: Error plot of (a) all sway cases, and (b) nonsway cases with a slenderness ratio of less than 100, based on the results obtained from 
	Figure 6.17: Error plot of (a) all sway cases, and (b) nonsway cases with a slenderness ratio of less than 100, based on the results obtained from 
	Eq. (6.1) 



	Table 6.14: Upper and lower error bounds for nonsway columns as determined by slenderness 
	using Eq. (6.1). 

	ρ 
	ρ 
	ρ 
	ε 
	0-24 
	25-49 
	Slenderness Range 50-74 75-99 100-124 
	125-149 
	150-160 

	1% 
	1% 
	Min Max 
	-0.006 0.295 
	-0.003 0.280 
	-0.003 0.219 
	-0.001 0.310 
	-0.016 0.339 
	-0.019 0.364 
	-0.003 0.390 

	2% 
	2% 
	Min Max 
	0.002 0.283 
	0.003 0.270 
	0.004 0.229 
	-0.015 0.334 
	0.007 0.374 
	0.003 0.417 
	0.002 0.498 

	3% 
	3% 
	Min Max 
	-0.004 0.274 
	-0.003 0.262 
	0.000 0.252 
	-0.007 0.357 
	-0.015 0.432 
	-0.010 0.523 
	-0.015 0.611 

	4% 
	4% 
	Min Max 
	0.009 0.266 
	0.009 0.255 
	0.009 0.267 
	0.000 0.407 
	-0.005 0.510 
	-0.014 0.606 
	0.003 0.667 


	Table 6.15: Upper and lower error bounds for sway columns as determined by slenderness using 
	Eq. (6.1). 

	ρ 
	ρ 
	ρ 
	ε 
	0-99 
	100-149 
	Slenderness Range 150-174 175-199 200-224 
	225-249 
	≥ 250 

	1% 
	1% 
	Min Max 
	0.004 0.421 
	-0.005 0.458 
	-0.074 0.470 
	-0.103 0.484 
	-0.065 0.396 
	-0.038 0.602 
	-0.076 0.718 

	2% 
	2% 
	Min Max 
	-0.018 0.430 
	0.021 0.474 
	0.027 0.517 
	0.035 0.614 
	0.043 0.457 
	0.054 0.679 
	0.058 0.711 

	3% 
	3% 
	Min Max 
	0.002 0.441 
	0.018 0.535 
	0.025 0.623 
	0.033 0.673 
	0.042 0.517 
	0.052 0.703 
	0.103 0.713 

	4% 
	4% 
	Min Max 
	0.011 0.457 
	0.026 0.618 
	0.033 0.679 
	0.042 0.694 
	0.051 0.548 
	0.062 0.709 
	0.110 0.709 





	6.2 Slenderness Ratio Limits 
	6.2 Slenderness Ratio Limits 
	Second-order effects, such as P -∆ and P -δ effects, become more significant as member slenderness increases. Like other standards, AASHTO LRFD uses the slenderness ratio, KL/r, to define limits of slenderness where certain provisions apply. 
	One such limit is the maximum value of KL/r for which second-order effects can be neglected. Neglecting second-order effects simplifies the structural analysis and design process. AASHTO LRFD Section 5.6.4.3 allows second-order effects to be neglected for members not braced against sidesway when the slenderness ratio is less than 22. For members braced against sidesway, second-order effects may be neglected when the slenderness ratio is less than 34 − 12(M/M), where Mand Mare the smaller and larger end mome
	1
	2
	1 
	2 
	1
	2 

	Another important limit is the maximum value of KL/r for which second-order effects can be evaluated using the approximate moment magnification procedure. According to AASHTO LRFD Section 5.6.4.3, the approximate procedure may be used for nonprestressed compression members with KL/r less than 100. 
	These specified limits and associated design considerations are evaluated in this section. The limits are primarily evaluated as a means of maintaining unconservative error below a tolerance. As a point of reference, 5% is a commonly used tolerance for maximum unconservative error in beam-column design 
	methodologies (ASCE, 1997). 

	6.2.1 Slenderness Limit to Neglect Second-Order Effects 
	6.2.1 Slenderness Limit to Neglect Second-Order Effects 
	To examine the slenderness limit to neglect second-order effects, analyses were performed to quantify the unconservative error associated with a design method in which second-order effects are neglected. The analyses were performed as described in Chapter 5, but with second-order effects neglected by setting δs = 1 in Eq. and δb = 1 in Eq. Analyses were performed for each column in the parametric suite described in Section plus additional nonsway cases, with length-to-diameter ratios of 2, 6, 7, 8, 11, 12, 
	-
	(5.5) 
	(5.8). 
	5.1.1 

	The results for sway columns are presented in Figure Each point in this figure represents the minimum (i.e., most unconservative) error, computed using over the entire interaction diagram. The current limiting value of KL/r = 22 is shown as a vertical dashed line. As expected, the maximum unconservative error increases with slenderness. Unconservative errors greater than 5% (i.e., ε< −0.05) are not observed until a slenderness of 30, indicating that the current limit of 22 is appropriate or could potentiall
	6.18. 
	-
	Eq. (5.16), 

	The results for nonsway columns are presented in Figure Again, each point in this figure represents the minimum (i.e., most unconservative) error over the entire interaction diagram. Different markers are used for different values of β since β = M/Mand the the limiting slenderness ratio depends on this parameter. The current limiting values of KL/r for β = 1.0, 0.5, 0.0, and −0.5 are shown as vertical dashed lines. The maximum unconservative error increases with slenderness but also with β. For β =1.0, the 
	6.19. 
	-
	1
	2 
	-

	Figure
	Figure 6.18: Maximum unconservative error when neglecting second-order effects for sway columns 
	Figure 6.18: Maximum unconservative error when neglecting second-order effects for sway columns 


	Figure
	Figure 6.19: Maximum unconservative error when neglecting second-order effects for nonsway columns 
	Figure 6.19: Maximum unconservative error when neglecting second-order effects for nonsway columns 



	6.2.2 Slenderness Limit for the Moment Magnification Approach 
	6.2.2 Slenderness Limit for the Moment Magnification Approach 
	The AASHTO LRFD restricts the use of the approximate moment magnification approach to columns with a slenderness ratio (KL/r) less than 100. However, the rationale behind this limitation is not explicitly addressed in the available commentary. 
	-

	In a design example published by the Federal Highway Administration matrix finite elements and the variable EI equation from ACI 318 (Eq. are used for a column with KL/r > 100. Results using the moment magnification approach and the AASHTO equations for calculating EI (larger value calculated from Eq. and Eq. are also presented in the example. The results showed that the moment magnification approach and the matrix finite element solution gave nearly identical results for the example structure for a given v
	(Adams et al., 
	2019), 
	2.3) 
	2.1 
	2.2) 

	The results of Chapter 5 work showed that error in the design of RC columns increases with increasing slenderness. While unconservative error was noted across most of the slenderness range investigated, the value of these errors are greater for more slender columns as shown in Figures 
	through Greater conservative errors are also observed for more slender columns. In another study, Mirza and found that the slenderness of RC columns impacts their flexural rigidity. They attributed this discrepancy to the relative concentration of cracking in more slender columns, compared to short columns where cracking is distributed more uniformly along the length of the column. Therefore, to accurately predict the flexural rigidity of a column, it is reasonable to consider the slenderness of the column 
	5.12 
	5.15. 
	MacGregor (1989) 

	Tables through show the maximum unconservative errors associated with the use of and Within the current slenderness limit of KL/r ≤ 100 the errors exceed the 5% tolerance noted by In fact, even with a 10% tolerance for unconservative error, a slenderness limit of 50 would be required to control errors for nonsway cases when using and The current slenderness limit of 100 controls errors for sway cases. 
	5.4 
	5.7 
	Eq. (2.1) 
	Eq. (2.2). 
	ASCE (1997). 
	Eq. (2.1) 
	Eq. (2.2). 

	Slenderness remains an important factor even when variable EI equations are used. Error results when using the ACI variable EI are presented in Tables and Based on these results, the slenderness limits would need to be 50 and 75 for nonsway and sway columns, respectively, to maintain maximum unconservative error below 10%. 
	equation (2.3) 
	6.1 
	6.2. 

	The same slenderness limits may be used while using the equations suggested by and to confine the non-conservative error below 10%, as indicated by the error values in Tables with the exception of an extended sway limit of 125 for the equations presented in Table 
	Jenkins and 
	Frosch 
	(2015) (Tables 
	6.3 
	6.4) 
	6.5 
	through 6.8, 
	6.3. 

	The proposed equations for EI demonstrate a notable improvement in limiting unconservative error at high slenderness ratio compared to existing equations. When utilizing proposed equation set 1 alongside AASHTO equation (Eq. no unconservative error surpassing 10% is observed for slenderness (KL/r) less than 125 and 175 for nonsway and sway cases, respectively. This is depicted in Figures and Similarly, limits of 160 and 250 can be considered when to ensure that the unconservative error remains safely below 
	6.6.4.4.4a 
	2.1), 
	6.20 
	6.21. 
	using AASHTO equation 6.6.4.4.4b (Eq. 
	2.2) 
	6.22 
	6.23). 

	Table 6.16: Slenderness limit (KL/r) necessary to maintain maximum unconservative error below target maximum percentage. 
	Limit for 5% 
	Limit for 5% 
	Limit for 5% 
	Limit for 10% 

	EI 
	EI 
	Nonsway 
	Sway 
	Nonsway 
	Sway 

	Eq. (2.1) 
	Eq. (2.1) 
	Eq. (2.1) 

	30 
	75 
	50 
	100 

	Eq. (2.2) 
	Eq. (2.2) 
	Eq. (2.2) 

	30 
	100 
	50 
	125 

	Eq. (2.3) 
	Eq. (2.3) 
	Eq. (2.3) 

	30 
	60 
	50 
	60 

	Eqs. in Table 6.3 
	Eqs. in Table 6.3 
	Eqs. in Table 6.3 

	30 
	60 
	50 
	125 

	Eqs. in Table 6.4 
	Eqs. in Table 6.4 
	Eqs. in Table 6.4 

	30 
	70 
	50 
	100 

	Eq. set 1 (with Eq. 2.1) 
	Eq. set 1 (with Eq. 2.1) 
	Eq. set 1 (with Eq. 2.1) 

	100 
	150 
	125 
	175 

	Eq. set 1 (with Eq. 2.2) 
	Eq. set 1 (with Eq. 2.2) 
	Eq. set 1 (with Eq. 2.2) 

	150 
	225 
	160 
	250 

	Eq. set 2 
	Eq. set 2 
	160 
	150 
	160 
	384 


	For the second proposed set, the nonsway results consistently exhibit safety, with unconservative errors never exceeding 5% However, some sway cases surpass the 5% unconservative error threshold and one case exceeds 10% error with a maximum error of 10.3% (Figure However, unlike with the current AASHTO equations, these errors do not continue to increase with slenderness. Based on these results, it appears that the inclusion of slenderness in the calculation of EI effectively controls the unconservative erro
	(Figure 6.24). 
	6.25). 

	Table provides a summary of slenderness limits for the various equations, categorized according to sway condition and error tolerance. 
	6.16 

	Given that the current AASHTO equations result in error significantly greater than 10% within their range of applicability, use of limits based on a maximum unconservative error of 10% instead of the commonly referenced error tolerance of 5% may be appropriate. However, it is important to note that not all of the slenderness values examined in this research were explored under all boundary conditions. Therefore, for practical applications, the recommended slenderness limit is 125 for Eq. set 1 with Eq. 2.1 
	Above the slenderness limit, refined analysis should be used. Such analyses should be refined in their determination of EI or through the use of inelastic analysis where the effects of concrete cracking, concrete crushing, and steel yielding are modeled explicitly. 
	Figure
	Figure 6.20: Error values obtained for nonsway cases based on EI values obtained from equation set 1 with AASHTO equation (Eq. 
	Figure 6.20: Error values obtained for nonsway cases based on EI values obtained from equation set 1 with AASHTO equation (Eq. 
	6.6.4.4.4a 
	2.1). 



	Figure
	Figure 6.21: Error values obtained for sway cases based on EI values obtained from equation set 1 with AASHTO equation (Eq. 
	Figure 6.21: Error values obtained for sway cases based on EI values obtained from equation set 1 with AASHTO equation (Eq. 
	6.6.4.4.4a 
	2.1). 



	Figure
	Figure 6.22: Error values obtained for nonsway cases based on EI values obtained from equation set 1 with AASHTO equation (Eq. 
	Figure 6.22: Error values obtained for nonsway cases based on EI values obtained from equation set 1 with AASHTO equation (Eq. 
	6.6.4.4.4b 
	2.2). 



	Figure
	Figure 6.23: Error values obtained for sway cases based on EI values obtained from equation set 1 with AASHTO equation (Eq. 
	Figure 6.23: Error values obtained for sway cases based on EI values obtained from equation set 1 with AASHTO equation (Eq. 
	6.6.4.4.4b 
	2.2). 



	Figure
	Figure 6.24: Error values obtained for nonsway cases based on EI values obtained from equation set 2. 
	Figure 6.24: Error values obtained for nonsway cases based on EI values obtained from equation set 2. 


	Figure
	Figure 6.25: Error values obtained for sway cases based on EI values obtained from equation set 2. 
	Figure 6.25: Error values obtained for sway cases based on EI values obtained from equation set 2. 




	6.3 Effective Length Factor 
	6.3 Effective Length Factor 
	an effective length factor, K, that reflects the amount of flexural restraint at the column ends. A more restrained column has a higher buckling load and smaller effective length factor while a less restrained column has a lower buckling load and a larger effective length factor. 
	The equation for Euler buckling load in AASHTO LRFD, i.e., Eq. (5.10), includes 

	For multi-column bents where the bases of the columns are designed as pinned and the tops of the columns are fixed to a bent cap or the superstructure, current Caltrans practice is to assume an effective length factor of K =2.0 for both the longitudinal and transverse buckling modes, based on case “(f)” from AASHTO LRFD Table C4.6.2.5-1 This assumption relies on the bending stiffness of the bent cap and superstructure to restrict rotations, but not sway, at the top of the column. Large sways will be restric
	(Figure 6.26). 

	Figure
	Figure 6.26: AASTHTO Table of Effective Length Factors, K (AASHTO LRFD Table C4.6.2.5-1) 
	Figure 6.26: AASTHTO Table of Effective Length Factors, K (AASHTO LRFD Table C4.6.2.5-1) 


	For single column bents where the base of the column is designed as fixed and the top of the column is fixed to the superstructure, current Caltrans practice is to assume effective length factors based on case “(d)” for the longitudinal buckling mode and case “(e)” for the transverse buckling mode. These assumptions rely on the bending stiffness of the superstructure to restrict rotations in the longitudinal buckling mode, but rotational restraint provided by the torsional stiffness of the superstructure is
	While the abutment does not restrict sway of the superstructure or rotation of the superstructure about vertical or transverse axes, it does restrict twist of the superstructure about the superstructure’s longitudinal axis. Out-of-plane rotation of the column is thus restrained by the torsional stiffness of the superstructure. 
	-

	An effective length factor that accounts for the rotational restraint provided by the torsional stiffness of the superstructure can be obtained through eigenvalue buckling analysis of a three-dimensional model of the bridge. However, this type of analysis is typically not practical for design. This section describes the development of practical design tools for determining an effective length factor for out-of-plane buckling of single column bents considering the torsional stiffness of the superstructure. 
	6.3.1 Governing Differential Equation 
	6.3.1 Governing Differential Equation 
	The governing differential equation for planar flexure of a column including second-order effects, i.e., P -∆ and P -δ effects, is 
	′′′′ ′′ 
	v(x) 
	v(x) 

	+ k= 0 (6.2) 
	2 

	′ 
	where v(x) is the al deflection of the column at location x, indicates derivative with respect 
	later

	 
	to x, and k = P/EI, where P is the axial compression force and EI is the flexural stiffness of the column. 
	The general solution of this differential equation is 
	v(x)= A + Bx + C sin kx + D cos kx (6.3) 
	where A, B, C, and D are constants to be solved for specific boundary conditions. 

	6.3.2 Two-Span Bridge 
	6.3.2 Two-Span Bridge 
	Consider the case of a two-span bridge with one column of length Lcol that is fixed at the base as shown in Figure Because of the fixity, there will be no deflection or rotation at the base, resulting in the first two boundary conditions. 
	6.27. 

	v(0) = 0 (6.4) 
	v (0) = 0 (6.5) 
	′ 

	The abutment does not restrain sway, so translation at the top of the column is free, resulting in the third boundary condition. 
	v (Lcol)+ kv (Lcol) = 0 (6.6) 
	′′′ 
	2 
	′ 

	Rotation at the top of column is restrained by the torsional stiffness of the superstructure, neither perfectly free nor perfectly fixed. Assuming linear elastic behavior of the superstructure, the moment at the top of the column is proportional to rotation at the top of the column. The proportionality constant is based on the torsional stiffness of the superstructure, resulting in the fourth boundary condition. 
	−EIv (Lcol) = 2(GJ/L)superv (Lcol) (6.7) 
	′′ 
	′ 

	where (GJ/L)super is the torsional stiffness of the superstructure and the factor of two accounts for both spans restraining the rotation of the column. 
	Figure
	Figure 6.27: Schematic elevation view of two-span bridge 
	Figure 6.27: Schematic elevation view of two-span bridge 


	Defining a non-dimensional parameter g for the relative stiffness of the superstructure as (GJ/L)super
	g = 
	g = 
	g = 
	(EI/L)col 
	(6.8) 

	results in a simplified version of the fourth boundary condition. 
	results in a simplified version of the fourth boundary condition. 

	2g v ′′ (Lcol) + v ′ (Lcol) = 0 Lcol 
	2g v ′′ (Lcol) + v ′ (Lcol) = 0 Lcol 
	(6.9) 


	By combining the four boundary conditions with the general solution of the differential equation, it can be shown that equilibrium is satisfied for arbitrarily large deflections, i.e., buckling occurs at a critical load, Pcr. Defining Pcr as 
	πEIcol
	2

	Pcr = (6.10)
	(KLcol)
	2 

	allows quantification of the effective length factor, K. 
	Using the definition in Eq. and the solution of the governing differential equation, a relationship between the stiffness parameter, g, and the effective length factor, K, can be determined as 
	(6.10) 

	−(π/K) 
	g = (6.11)
	2 tan (π/K) 
	A plot of this relationship is shown in Figure As expected, K = 2 when the normalized superstructure torsional stiffness equals zero and K approaches 1 as the superstructure torsional stiffness approaches infinity. The relationship was verified against results of eigenvalue buckling analyses performed using MASTAN2. 
	6.28. 

	An analysis to assess the bounds of g for Caltrans bridges indicated that values less than 1 are possible, as are values greater than 20. Accordingly, use of a single prescribed value less than 2 for the effective length factor is not advisable. Nonetheless, the stiffness parameter, g, can be computed and the effective length factor, K, can be determined from g with relative ease. However, only applies to two-span bridges. 
	Eq. (6.11) 

	Figure
	Figure 6.28: Relationship between normalized superstructure torsional stiffness and effective length factor for a two-span bridge 
	Figure 6.28: Relationship between normalized superstructure torsional stiffness and effective length factor for a two-span bridge 



	6.3.3 Three-Span Bridge 
	6.3.3 Three-Span Bridge 
	For a three-span bridge with two columns of length Lcol, each fixed at the base as shown in the boundary conditions and thus buckling loads and effective length factors will be different than for the two-span bridge. With two columns, two differential equations need to be solved simultaneously. 
	Figure 6.29, 

	′′′′ ′′ 
	v
	1
	(x) 
	v
	1
	(x) 

	+ k= 0 (6.12) ′′′′ ′′ 
	2 
	v
	2
	(x) 
	v
	2
	(x) 

	+ k= 0 (6.13) 
	2 

	where v(x) is the lateral deflection of a first column and v(x) is the lateral deflection of a second column. The parameter k is used for both columns because it is assumed the columns have the same axial compression force and flexural stiffness. 
	1
	2

	Again, the columns are assumed to have a fixed base 
	v(0) = v(0) = 0 (6.14) 
	1
	2

	′′ 
	v(0) = v(0) = 0 (6.15) 
	1
	2

	and the columns are assumed to be free to translate at the top. 
	′′′ ′′′′ ′ 
	v(Lcol)+ kv(Lcol)= v(Lcol)+ kv(Lcol) = 0 (6.16) 
	1 
	2 
	1
	2 
	2 
	2

	Figure
	Figure 6.29: Schematic elevation view of three-span bridge 
	Figure 6.29: Schematic elevation view of three-span bridge 


	Out-of-plane rotation at the top of the columns is restrained by the torsional stiffness as before. The moment at the top of each column is proportional to the rotation at the top of the column relative to either the abutment (i.e., zero rotation) or to the rotation at the top of the adjacent column, resulting in the following two boundary conditions. 
	gg
	′′ ′′′ 
	v(Lcol)+ v(Lcol)+ [v(Lcol) − v(Lcol)] = 0 (6.17)γLcol Lcol 
	1 
	1
	1
	2

	gg
	′′ ′′′ 
	v(Lcol)+ v(Lcol)+ [v(Lcol) − v(Lcol)] = 0 (6.18)γLcol Lcol 
	2 
	2
	2
	1

	Note that the end spans of the bridge are assumed to have a different length than the center span (γLsuper vs Lsuper). 
	Solving the differential equation leads to two modes of buckling, where the mode with the lower critical load, and thus higher effective length factor, is the controlling mode. The controlling mode is expressed as a function of the stiffness parameter, g, and the effective length factor, K, as follows 
	−γ(π/K) 
	g = (6.19)
	tan π/K 
	The relationship for both buckling modes is presented in Figure Again, the relationship was verified against results of eigenvalue buckling analyses performed using MASTAN2. 
	6.30. 


	6.3.4 Additional Spans 
	6.3.4 Additional Spans 
	Repeating the process for four-span and five-span bridges results in Eq. and Eq. 
	(6.20) 
	(6.21), 

	respectively. 
	  
	1 (2+6γ)(π/K)(π/K) sin (2π/K) 
	1 − 2γ +9γ
	2

	g = − + (6.20)
	8 tan (π/K) sin(π/K) 
	2 

	 
	1 1+2γ + 
	(1+4γ
	2
	) 

	g = − (π/K) (6.21)
	2 tan (π/K) 
	2 tan (π/K) 
	Closed form expressions for additional spans become increasingly complex. 

	Figure
	Figure 6.30: Relationship between normalized superstructure torsional stiffness and effective length factor for a three-span bridge (γ =0.75) 
	Figure 6.30: Relationship between normalized superstructure torsional stiffness and effective length factor for a three-span bridge (γ =0.75) 


	The relationships between the normalized superstructure torsional stiffness and effective length factor for the controlling mode for two-, three-, four-, and five-span bridges are presented in Figure The effective length factor increases with number of spans since, as the number of spans increases, the total length of the bridge increases and the superstructure is responsible for restraining the rotation of more columns. Both of these factors lead to less restraint of the columns. 
	-
	6.31. 
	-


	6.3.5 Base Flexibility 
	6.3.5 Base Flexibility 
	The evaluation in the previous sections assumes idealized boundary conditions at the base of the columns, specifically zero translation and rotation. It is common in design to recognize that full rotational fixity will not exist at base connections. For example, in AASHTO LRFD Table C4.6.2.5-1 two sets of effective length values are provided: those that assume idealized boundary conditions, the “theoretical K values”, and those that assume some amount of rotational flexibility at nominally rotation fixed en
	-
	(Figure 6.26), 

	Rotational flexibility at the base can be considered in the derivation of effective length factors in 
	Figure
	Figure 6.31: Relationship between normalized superstructure torsional stiffness and effective length factor for all spans investigated (γ =0.75) 
	Figure 6.31: Relationship between normalized superstructure torsional stiffness and effective length factor for all spans investigated (γ =0.75) 


	this work by replacing the boundary condition v (x) = 0 with which relates the moment in the column at the base to rotation at the base. 
	′ 
	Eq. (6.22) 

	EIv (0) = kθv (0) (6.22) 
	′′ 
	′ 

	where, kθ is the rotational stiffness at the base expressed in relation to the flexural stiffness of the column as follows 
	EI 
	kθ = (6.23)
	GbaseLcol 

	where, Gbase is a non-dimensional parameter relating the rotational stiffness of the base to the flexural stiffness of the column. 
	The parameter Gbase is similar to the parameter G defined in AASHTO LRFD Equation C4.6.2.5-3 and used in the effective length factor alignment charts of AASHTO LRFD Figures C4.6.2.5-1 and C4.6.2.5-2. For a cantilever column, i.e., case (e) of Figure a value of Gbase =0.05 results in the design values of the effective length factor when ideal conditional are approximated, i.e., K =2.1. 
	6.26, 

	With revised boundary conditions, new characteristic equations that depend on the parameter Gbase can be developed. The revised equations are for two-span for for four-span bridges, and for five-span bridges. 
	Eq. (6.24) 
	bridges, Eq. (6.25) 
	three-span bridges, Eq. (6.26) 
	Eq. (6.27) 

	Gbase(π/K)sin (π/K) − (π/K) cos (π/K) 
	2 

	g = (6.24)
	2[Gbase(π/K) cos (π/K) + sin(π/K)] 
	γ(π/K)[Gbase(π/K) sin (π/K) − cos (π/K)] 
	g = (6.25)
	Gbase(π/K) cos (π/K) + sin(π/K) 
	 
	− 2(π/K)Gbase cos (2π/K) − 6(π/K)Gbaseγ cos (2π/K) − (π/K) sin (2π/K) 
	 
	2
	2
	

	 
	− 3(π/K)γ sin (2π/K)+(π/K)Gγ sin (2π/K)
	3
	2 
	base

	sin (2π/K) + 3(π/K)G
	base 
	3
	2 

	
	  
	+(π/K)−2(π/K)Gbase cos (2π/K) − sin (2π/K)+(π/K)Gsin (2π/K) 
	1 
	− 2γ +9γ
	2 
	2
	base 
	2 

	g =  
	2 2+2(π/K)G− 2 cos (2π/K) + 2(π/K)Gcos (2π/K) + 4(π/K)Gbase sin (2π/K)
	2
	2 
	2
	2 

	base base 
	(6.26) 
	  
	Gbase(π/K) sin (π/K) − cos (π/K) 
	g =(π/K) 1+2γ + 1+4γ(6.27)
	2 

	2[Gbase(π/K) cos (π/K) + sin(π/K)] 

	6.3.6 Design Tool and Recommendations 
	6.3.6 Design Tool and Recommendations 
	To enable easy determination of the proposed effective length factor for the transverse buckling mode of single column bents in design, a Microsoft Excel based design tool was created. The tool has tabulated data relating normalized superstructure torsional stiffness, g, to the effective length factor, K, for bridges with 2, 3, 4, and 5 spans; end span ratios, γ, of 0.5, 0.6, 0.7, 0.8. 0.9, and 1.0; and with and without base flexibility. For given normalized superstructure torsional stiffness, g, and end sp
	6.32. 

	The tool will also calculate the normalized superstructure torsional stiffness, g, given more fundamental input values such as Poisson’s ratio of concrete, superstructure span length, and column moment of inertia. 
	It is common to account for cracking in the determination of elastic properties of RC members. The tool allows input of separate crack factors (i.e., the ratio between cracked and uncracked section stiffness) for the column and the superstructure. In general, it is conservative to use a higher effective length factor in design. Thus, overestimates of column stiffness and underestimates of superstructure stiffness are generally conservative in this analysis. The recommended value of column crack factor of 0.
	(Caltrans
	, 2022). 

	(Tavio and Teng
	, 2004; 

	Katsaras et al., 
	2009), 

	For columns on pile caps or spread footings, it is recommended that the effective length of the column be determined as the length of the column down to the top of the foundation times the 
	Figure
	Figure 6.32: Screenshot of the interface for the Microsoft Excel based tool for determining the effective length factor for the transverse buckling mode of single column bents 
	Figure 6.32: Screenshot of the interface for the Microsoft Excel based tool for determining the effective length factor for the transverse buckling mode of single column bents 


	effective length factor for a practical fixed base. For columns on shafts, it is recommended that the effective length of the column be determined as the length of the column down to the equivalent point of fixity times the effective length factor for a idealized fixed base. These recommendations are illustrated in Figure 
	6.33. 

	Figure
	Figure 6.33: Schematic of different bridge column base conditions and recommendations for column height and base fixity 
	Figure 6.33: Schematic of different bridge column base conditions and recommendations for column height and base fixity 


	While the end span ratio, γ, accounts for differences between the end span and the interior spans for bridges with three spans or more, differences in span lengths assumed equal in this derivation can still exist. Minor differences in span lengths can be accommodated by using the average length in the equations. Specifically, for bridges with three or more spans, the span length should be the arithmetic mean of the interior spans and the end span ratio should be the arithmetic mean of the end spans divided 
	6.17. 

	shows a comparison between the proposed effective length factor and effective length factors computed from eigenvalue buckling analysis in MASTAN2 for for various configurations with 20% variation in span length. For these analyses, the column had a height of 40 ft, cross-sectional area of 1,800 in, moment of inertia about both axes of 260,000 in, and torsional constant of 520,000 in. The superstructure had a cross-sectional area of 9,000 in, moment of inertia about the horizontal axis of 4,000,000 in, mome
	Table 6.17 
	2 
	4 
	4 
	2 
	4 
	4 
	4 

	For variations greater than 20%, the longer span length should be used or the effective length factor should be determined from eigenvalue buckling analysis. 
	Table 6.17: Comparison between proposed effective length factor and effective length factor computed from eigenvalue buckling analysis in MASTAN2 for bridges with unequal span lengths 
	-

	Span Length (ft) MASTAN2 Proposed Percent Span 1 Span 2 Span 3 Span 4 Pcr (kips) KgK Difference 
	100 
	100 
	100 
	100 
	— 
	— 
	23,345 
	1.31 
	1.282 
	1.31 
	-0.1% 

	80 
	80 
	120 
	— 
	— 
	23,683 
	1.30 
	1.282 
	1.31 
	0.6% 

	75 
	75 
	100 
	75 
	— 
	20,188 
	1.41 
	1.282 
	1.41 
	0.0% 

	60 
	60 
	100 
	90 
	— 
	20,308 
	1.41 
	1.282 
	1.41 
	0.3% 

	75 
	75 
	100 
	100 
	75 
	17,071 
	1.53 
	1.282 
	1.56 
	1.7% 

	60 
	60 
	100 
	100 
	90 
	17,105 
	1.53 
	1.282 
	1.56 
	1.8% 

	60 
	60 
	80 
	120 
	90 
	17,224 
	1.53 
	1.282 
	1.56 
	2.2% 

	60 
	60 
	120 
	80 
	90 
	16,958 
	1.54 
	1.282 
	1.56 
	1.4% 




	6.4 Tools for Preliminary Design 
	6.4 Tools for Preliminary Design 
	Preliminary design of bridges helps engineers understand the general parameters of a bridge early in the design process. Current practice for preliminary design of bridge columns is focused on rules of thumb based on axial load. Preliminary designs could be improved by considering bending moment if appropriate simplified analysis methods are available. 
	This section describes the development of two tools. The first is a rule of thumb to approximate the moment strength of an RC cross section. The second is a rule of thumb to approximate the moment magnification factor. 
	6.4.1 Moment Strength 
	6.4.1 Moment Strength 
	The moment strength at zero axial load, Mn, was determined for each of the 36 cross sections described in Section using the strain compatibility approach described in Section Additionally, moment strength of 216 similar cross sections but with six different pairs of steel and 
	5.1.1 
	5.1.2. 
	-

	′ 
	concrete strength was determined. The pairs of fy and f were 50 and 3, 50 and 4, 60 and 3, 60 and 
	c 
	5, 70 and 4, and 70 and 5, all in units of ksi, making the total number of cross sections 252. Then, using PySR, an open-source software for symbolic a new equation was developed to approximate the moment strength. The regression software was provided with calculated moment strength, steel ratio, nominal axial strength of cross section, depth to reinforcing, concrete strength, and steel strength, and output different equations to approximate the moment strength with varying accuracy and complexity. was sele
	regression (Cranmer, 2023), 
	-
	Eq. (6.28) 

	P
	0
	.6
	Ast

	Mn ≈ Pd (6.28)Ag 
	0

	where 
	Mn = approximate moment strength of cross section 
	Ast = total area of longitudinal reinforcement 
	Ag = gross area of concrete section 
	P= nominal axial strength of cross 
	0 
	section, Eq. (5.3) 

	d = distance from the extreme compression fiber to the centroid of the extreme tensile reinforcement 
	-

	To quantify the accuracy of the approximate formula, the moment strength computed from the strain compatibility method, M, was compared to the moment strength according to Mfor the 252 cross sections in the training set. For each case, an error value was calculated 
	n(SC)
	Eq. (6.28), 
	n(eqn) 
	using Eq. (6.29). 

	M
	M
	n(SC) 
	− M
	n(eqn)

	ε = (6.29)
	M
	n(SC) 
	Summary statistics of the errors are listed in Table by cross section type and bending axes. Note that positive values of error indicate that the approximate equation underpredicts the moment strength calculated from the strain compatibility method. 
	computed using Eq. (6.29) 
	6.18 

	The proposed equation has an average error less than 1% for circular cross sections. Greater error is observed for obround cross sections. These errors are related to the shape of the cross section and the distribution of reinforcing. For example, for obround sections bending about their x-axis, the distribution of reinforcing bars is more favorable with more bars located farther from the neutral axis. Capturing these effects in the approximate equation and achieving additional accuracy would require additi
	Although the average errors are positive for all cross section types, error for individual cases can be negative or positive, resulting in either an overprediction or underprediction of strength. The maximum and minimum errors are listed in Table Moreover, the equation is noted to be less accurate when higher strength steel is employed with lower strength concrete, or conversely, when lower strength steel is used with higher strength concrete. 
	6.18. 

	Table 6.18: Error values for the results obtained from 
	Eq. (6.29) 

	Cross 
	Cross 
	Cross 
	Bending 
	Average 
	Standard 
	Minimum 
	Maximum 

	Section 
	Section 
	Axis 
	Error 
	Deviation 
	Error 
	Error 

	Type 
	Type 
	of Error 

	Circle 
	Circle 
	-
	0.95% 
	9.64% 
	-21.70% 
	20.98% 

	Obround 
	Obround 
	x 
	23.36% 
	10.72% 
	-7.88% 
	44.99% 

	Obround 
	Obround 
	y 
	12.79% 
	10.53% 
	-16.63% 
	35.76% 



	6.4.2 Moment Magnification Factor 
	6.4.2 Moment Magnification Factor 
	The moment magnification approach defined in AASHTO LRFD Section is relatively simple, but can be further simplified for preliminary design. By assuming Cm = 1 and the ratio Pu/Pe is the same for all columns, the nonsway and sway moment magnifiers become equal and can be written as: 
	4.5.3.2.2b 

	1 
	δ = (6.30)
	Pu
	Pu

	1 − 
	ϕK Pe 
	The term Pu/ϕK Pe can be expanded by substituting in the definition of Pe (Eq. and an expression for EI (Eq. 
	5.10) 
	2.1). 

	Pu Pu 
	Pu 

	= = (6.31)
	ϕK Pe πEI π0.4EcIg
	2
	2

	ϕK ϕK
	(1 + βd)(KL)
	(KL)
	2 
	2 

	′ 
	Multiplying the numerator by Pg/Pg where Pg =0.85fAg yields
	0
	0
	0

	c 
	Pu 
	Pu 

	′ 
	0.85fAg
	c
	Pg
	Pu 
	0

	= (6.32)
	ϕK Pe 
	π
	2
	0.4EcIg

	ϕK 
	(1 + βd)(KL)Substituting in expressions for the area and moment of inertia of a circle yields 
	2 

	Pu π
	′ 
	0.85fD
	2 

	c
	Pu Pg 4 
	0

	= (6.33) 64
	ϕ
	K 
	P
	e 
	π
	2
	0.4E
	c 
	π
	D
	4 

	ϕK 
	(1 + βd)(KL)Canceling common terms, substituting in ϕK =0.75, and simplifying yields 
	2 

	P
	2

	′ 
	Pu fPu KL 
	c 
	=4.6 (1+ βd) (6.34)
	ϕK Pe Pg D 
	Ec 
	0

	Substituting back into the moment magnification factor equation yields 
	1 
	δ = (6.35)
	2 

	′ 
	fPu KL 
	c
	1 − 4.6 (1+ βd)
	Pg D 
	Ec 
	0

	′ 
	Eq. is tabulated for f = 4 ksi, Ec = 3,605 ksi based on Eq. and βd =0.5 in
	(6.35) 
	(3.1), 

	c 
	Table While derived for circular shapes, this approximate moment magnifier can also be 
	Table While derived for circular shapes, this approximate moment magnifier can also be 
	6.19. 

	applied to obround shapes if D is taken as the cross-sectional dimension perpendicular to the axis of bending. However, the approximation is less accurate for bending about the minor axis of obround shapes. 

	Together with Eq. the approximate moment magnifier can aid preliminary design of bridge columns by providing an approximate size column size or by identifying when the size of a column should be increased due to slenderness effects. 
	(6.28), 

	′ 
	Table 6.19: Approximate moment magnifier for f = 4 ksi and βd =0.5. Values greater than 3 are
	c 
	not shown. 
	Pu/P0g 
	Pu/P0g 
	Pu/P0g 
	0 
	5 
	KL/D 10 15 
	20 
	25 

	0.00 
	0.00 
	1.00 
	1.00 
	1.00 
	1.00 
	1.00 
	1.00 

	0.05 
	0.05 
	1.00 
	1.01 
	1.04 
	1.09 
	1.18 
	1.31 

	0.10 
	0.10 
	1.00 
	1.02 
	1.08 
	1.21 
	1.44 
	1.92 

	0.15 
	0.15 
	1.00 
	1.03 
	1.13 
	1.35 
	1.85 
	— 

	0.20 
	0.20 
	1.00 
	1.04 
	1.18 
	1.53 
	2.58 
	— 

	0.25 
	0.25 
	1.00 
	1.05 
	1.24 
	1.76 
	— 
	— 

	0.30 
	0.30 
	1.00 
	1.06 
	1.30 
	2.07 
	— 
	— 

	0.35 
	0.35 
	1.00 
	1.07 
	1.37 
	2.52 
	— 
	— 

	0.40 
	0.40 
	1.00 
	1.08 
	1.44 
	— 
	— 
	— 

	0.45 
	0.45 
	1.00 
	1.09 
	1.53 
	— 
	— 
	— 

	0.50 
	0.50 
	1.00 
	1.11 
	1.62 
	— 
	— 
	— 





	Chapter 7 Conclusions 
	Chapter 7 Conclusions 
	The importance of second-order effects has long been recognized in the design of slender RC bridge columns. While the decades old moment magnification method remains a robust approach to account for second-order effects in most cases, it is important for engineers to understand the limitations of the methods they employ and be aware of alternatives to the simplifications they use as highlighted in this work. 
	For stability design, the AASHTO LRFD allows, within certain slenderness limits, calculation of required strengths using moment magnification. However, this method is approximate. Use of simplified equations for the flexural rigidity of RC sections, especially the equations in the AASHTO LRFD, is a major source of error in the approximate method. Use of simplified effective length factors that do not fully account for the restraint provided by the bridge superstructure can also be a major source of error in
	A numerical investigation was undertaken to improve the accuracy of the approximate approach and develop guidance on how to address second-order effects in the design of slender RC bridge columns. An advanced second-order inelastic model for RC bridge columns was developed and validated against the results of hundreds of physical experiments. The model considers geometric nonlinearity, including P -δ and P -∆ effects; material nonlinearity, including concrete cracking and crushing and steel yielding; as wel
	Slenderness limits in the AASHTO LRFD were reevaluated as a means to limit unconservative 
	error. The results indicated that the proposed equations could be safely used in the moment magnification approach for members with slenderness much greater than the current limit of 100. Refined analysis, which is required to be used for members that exceed the slenderness limit, was not explicitly studied in this work. With the proposed EI equations and greater slenderness limits, it may be appropriate to simply not design columns with slenderness exceeding the slenderness limit. However, it is anticipate
	Guidance was also developed on the effective length factor. Using eigenvalue buckling analyses of three-dimensional models of basic bridge types, current Caltrans practice for selecting effective length factors was found to be appropriate for multi-column bents and single-column bents for buckling in the plane of the bridge, i.e., in the longitudinal direction. Current Caltrans practice for selecting the effective length factor for single-column bents for buckling out of the plane of the bridge, i.e., in th
	Further evaluation of long-term effects and the use of analysis models to account for the restraint provided by the superstructure and foundation is recommended. Nonetheless, given the thorough evaluation of the flexural rigidity and effective length factor, the identification and quantification of errors due to simplifications, and the rigorously justified and practical recommendations to reduce error, this work will help engineers make more confident, accurate decisions when designing slender RC columns. 
	Several avenues for future study have been identified. 
	• 
	• 
	• 
	This study focused primarily on relatively simple bridges where the restraint of the columns can readily be idealized. Research to develop detailed guidance for efficiently incorporating restraint from the foundation, superstructure, abutment, etc. in a “refined” second-order elastic analysis for the design of the columns would be beneficial. The research could identify how the various components should be modeled and what simplifications are appropriate. The research could also help identify under what con

	• 
	• 
	This study found that that the use of βd in the flexural rigidity equations may overestimate the impact of long-term effects. Research to further these observations and to develop recommendations for design would be beneficial. 
	-


	• 
	• 
	This study focused on columns subject to combined axial compression and bending about one axis. Research to confirm the applicability of the recommendations when the column is subject to combined axial compression and bending about two axes would be beneficial. 

	• 
	• 
	This study focused on traditional elastic analyses where the flexural stiffness is defined a priori. Elastic analyses can also be performed with fiber sections where the steel is defined 


	with an elastic stress-strain relationship and the concrete is defined with an elastic-no-tension stress-strain relationship. These nonlinear elastic analyses could be advantageous because they would track the level of cracking explicitly within a second-order analysis and could be performed efficiently for regular bridge types with an app powered by OpenSees. However, research is needed to develop the analysis approach and the app. 
	Appendix A 

	Second-Order Analysis Using CSiBridge 
	Second-Order Analysis Using CSiBridge 
	Where the foregoing research results based on OpenSees may be too cumbersome for design floor use, this appendix shows how results similar to those from OpenSees can be obtained using CSiBridge (v24). 
	-

	A.1 Bridge Model 
	A.1 Bridge Model 
	The canonical bridge model shown in Figure is used for analyses in both OpenSees and CSiBridge. The model is defined in three dimensions (3D) with three spans with 100 ft main span and 75 foot approach spans. 
	A.1 
	-

	wL 
	w 
	Torsion Torsion restrained restrained 
	Rigid offsets 
	D=48 inch 
	60 ft 
	L/D=15 
	YY 
	XZ 
	75ft 100ft 75ft 
	Figure A.1: Bridge model for second order analysis using OpenSees and CSiBridge. 
	The column section is round with diameter D=48 inch and 2% longitudinal reinforcing steel 
	′ 
	(24 #11 Grade 60 bars) with 2 inch clear cover. Concrete compressive strength is f = 4 ksi.
	c 
	Rigid beam offsets connect the top of the columns to the centerline of the superstructure (half of the superstructure depth). The flexible column length is 60 ft (aspect ratio L/D=15). The superstructure is elastic with the following properties: 
	• 
	• 
	• 
	Elastic modulus, Ess = 4000 ksi; Poisson ratio, ν = 0.3 

	• 
	• 
	Area, Ass = 63.5 ft
	2 


	• 
	• 
	Second moment of area (local z, global Z) Izss = 182 ft
	4 


	• 
	• 
	Second moment of area (local y, global Y ) Iyss = 8570 ft
	4 


	• 
	• 
	Polar second moment of area, Jss = 550 ft
	4 



	The abutment boundary conditions are rollers with torsion restrained in the superstructure. 

	A.2 Bridge Loading 
	A.2 Bridge Loading 
	A series of analyses will be performed in OpenSees and CSiBridge for a reference load pattern of uniform distributed load across the bridge superstructure. In the vertical direction (along global −Y axis), the reference distributed load magnitude is w. For analyses cases that include out-ofplumbness, the columns are defined with an initial offset Z-direction. 
	-
	L/500=1.44 inch in the global 

	A.2.1 Geometric and Material Nonlinear Analysis (GMNIA) 
	A.2.1 Geometric and Material Nonlinear Analysis (GMNIA) 
	An analysis that includes both material and geometric nonlinearity is the “best guess” at true behavior. Using fiber sections for the columns with EPP steel fibers and Concrete04 for the concrete, consistent with the models used for short-term loading in this report, an analysis with geometric nonlinearity (corotational mesh of column elements) predicts a peak load of w=78 kip/ft. The analysis includes L/500 out of plumbness for the columns and the load-displacement response is shown in Figure 
	A.2. 

	Figure
	Figure A.2: Transverse load-displacement response based on GMNIA in OpenSees. 
	Figure A.2: Transverse load-displacement response based on GMNIA in OpenSees. 


	Although this analysis (GMNIA) was performed only in OpenSees, the following analyses were performed in CSiBridge. 

	A.2.2 Geometric Nonlinear Analysis (GNA) 
	A.2.2 Geometric Nonlinear Analysis (GNA) 
	Accounting for only geometric nonlinearity with elastic column response, analyses were performed in CSiBridge to determine the distributed loading, w, on the bridge that placed the column demands at the interaction curve shown in Figure For all cases, the column moment is the resultant of the moment about the local axes 2 and 3 in CSiBridge. 
	A.3. 

	The nominal P -M interaction curve for this section is shown in Figure 
	A.3. 

	Figure
	Figure A.3: Nominal P -M interaction curve for column section used in bridge analysis. 
	Figure A.3: Nominal P -M interaction curve for column section used in bridge analysis. 


	Four cases of GNA were performed in CSiBridge to estimate the maximum distributed load the bridge model can support: 
	• 
	• 
	• 
	EIeff =0.4EcIg with L/500 out-of-plumbness 

	• 
	• 
	EIeff =0.4EcIg with no out-of-plumbness 

	• 
	• 
	EIeff based on with L/500 out-of-plumbness 
	Eq. (6.1) 


	• 
	• 
	EIeff based on with no out-of-plumbness 
	Eq. (6.1) 



	Although EIeff depends on the applied axial load according to the value of EIeff used for the two cases of GNA is based on axial load where P/Po ≈ 1. In this case, EIeff =0.52EcIg for the columns in this bridge model. 
	Eq. (6.1), 

	The EIeff values are input in CSiBridge using Ec=3605 ksi (for 4000 psi concrete), Ig based on the column diameter, and appropriate section modifiers (0.4 or 0.52) on the I values about the section 2 and 3 axes. The distributed load is applied as a reference uniform load pattern up to a peak value of w=68 kip/ft (corresponds to Po on axial-moment interaction curve in Loads are applied in 10 steps and the CSiBridge analysis uses both P -∆ and P -δ effects in the column elements. 
	Figure A.3). 

	For GNA with EIeff =0.4EcIg and L/500 out-of-plumbness, the distributed load that leads to 
	axial-moment demands on the column interaction curve is w=62 kip/ft. For the other three GNA cases, the maximum distributed load is w=67 kip/ft. With no out-of-plumbness, the higher EIeff leads to higher column demands as “stiffness attracts load”; however, when out-of-plumbness is included in the analysis, the lower EIeff leads to a lower maximum distributed load because the lower flexural stiffness leads to higher deflections and thus higher second order moments. 
	Figure
	Figure A.4: Geometrically nonlinear analysis (GNA) with column effective stiffness EIeff =0.4EcIg. 
	Figure A.4: Geometrically nonlinear analysis (GNA) with column effective stiffness EIeff =0.4EcIg. 




	A.3 Key Steps for CSiBridge Analysis 
	A.3 Key Steps for CSiBridge Analysis 
	While the OpenSees analyses for the example bridge analysis closely follow the methods presented in this report, the CSiBridge analyses require different considerations, the highlights of which are summarized in this section. 
	For the analysis presented in this appendix, the bridge model consists of line elements as shown in Figure The base of each column is completely fixed (restrained in all six DOFs) while the ends of the superstructure are on rollers but with the torsional DOF constrained. In CSiBridge, the nodal restraint at the ends of the superstructure (nodes 2 and 8 in is “u3,r1”, i.e., fixed in both Z-direction translation and rotation about the X-axis. 
	A.5. 
	Figure A.5) 

	Additional modeling details for the superstructure are omitted here and the focus is on the columns. 
	• 
	• 
	• 
	Define column sections as elastic and use property/stiffness modifiers to achieve the desired effective flexural stiffness. For example, to set the effective flexural stiffness for the columns to 0.52EcIg, use the inputs shown in Figure Note that the modifiers should be set for both axes of bending. 
	A.6. 


	• 
	• 
	For analysis cases that require out-of-plumbness for the columns, the Y -coordinate of the column base nodes was adjusted manually to achieve L/500. 

	• 
	• 
	Reference distributed loads of magnitude 1 kip/ft were applied as line loads along the longitudinal direction the superstructure. 
	-


	• 
	• 
	• 
	Geometric nonlinear analysis was defined as a load case with the options shown The main points are: 
	in Figure A.7. 


	– 
	– 
	– 
	The Load Case Type (upper right of should be ”Multi-step Static”. 
	Figure A.7) 


	– 
	– 
	The Analysis Type (just below Load Case Type in should be set to “Nonlinear”. 
	Figure A.7) 
	-


	– 
	– 
	The Geometric Nonlinearity Parameters (lower right of Figure should be set to “P-Delta plus Large Displacements”. 
	A.7) 


	– 
	– 
	The Loads Applied information (middle section of Figure should refer to the reference load pattern (distributed load on superstructure) and include a maximum scale factor, e.g., 62, meaning the final analysis step will apply 62 times the reference load pattern. Some trial and error may be required in order to determine a suitable scale factor for the analysis. 
	A.7) 
	-





	Figure
	Figure A.5: CSiBridge model using line elements for the example bridge. 
	Figure A.5: CSiBridge model using line elements for the example bridge. 


	Figure
	Figure A.6: Frame property/stiffness modifiers in CSiBridge. 
	Figure A.6: Frame property/stiffness modifiers in CSiBridge. 


	Figure
	Figure A.7: Options for geometric nonlinear analysis in CSiBridge. 
	Figure A.7: Options for geometric nonlinear analysis in CSiBridge. 



	A.4 Moment Magnification Analysis 
	A.4 Moment Magnification Analysis 
	To apply the moment magnification method, a first order analysis is performed with w=1 kip/ft vertical distributed load and no out-of-plumbness. In the first order analysis, the flexural stiffness of the columns is EIeff =0.7EcIg, which is achieved by setting the column Iand Imodifiers to 
	2 
	3 

	0.7 in CSiBridge. The column demands from the first order analysis are: 
	• Axial force, P =97.7 kip 
	• Bending moment, Mb=-50.3 kip-in, Mb=101 kip-in (double curvature) These demands are then scaled up via moment magnification for two cases: 
	1
	2

	• 
	• 
	• 
	EIeff =0.4EcIg in the moment magnifier equations. 

	• 
	• 
	The EIeff proposed for the moment magnifier equations, accounting for modified magnifier coefficients as the axial load increases and effects the flexural stiffness. For the columns in this bridge model, the flexural stiffness is EIeff =0.52EcIg. 
	in Eq. (6.1) 



	Figure
	Figure A.8: Moment magnification method with column effective stiffness EIeff =0.7EcIg in first order analysis and EIeff =0.4EcIg and EIeff proposed in in the moment magnification procedure. 
	Figure A.8: Moment magnification method with column effective stiffness EIeff =0.7EcIg in first order analysis and EIeff =0.4EcIg and EIeff proposed in in the moment magnification procedure. 
	Eq. (6.1) 



	With a large effective stiffness, the moment magnification using the proposed EIeff is not as significant as the case of EIeff =0.4EcIg. The maximum distributed load predicted by moment magnification is w=67 kip/ft using the proposed EIeff and w=66 kip/ft using 0.4EcIg. 

	A.5 Commentary 
	A.5 Commentary 
	The foregoing analyses show that the analysis methods proposed in this report can be carried out using CSiBridge. The slenderness of the columns for the chosen bridge model was moderate 
	The foregoing analyses show that the analysis methods proposed in this report can be carried out using CSiBridge. The slenderness of the columns for the chosen bridge model was moderate 
	(L/D = 15) and the moment magnifier analysis and all but one GNA case showed the column demands reaching the peak axial strength. For more slender columns, the moment amplification would be more significant. In all GNA and moment magnification cases, the predicted maximum distributed load was less than the “best guess of true behavior” of w = 78 kip/ft predicted by GMNIA, indicating these methods gave conservative results for this sample bridge model. While advanced analysis software such as CSiBridge and O
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