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Optimizing Fuel Consumption and Pollutant Emissions in 
Truck Routing with Parking Availability Prediction and 
Working Hours Constraints 

EXECUTIVE SUMMARY 

According to the U.S. Environment Protection Agency (EPA, 2018), the U.S. Transportation 
sector is responsible for 28% of the US's greenhouse gas emissions, 23% of which are caused by 
medium- and heavy-duty trucks. This means that 6.4% of all greenhouse gas emissions in the 
U.S. are generated by trucks. Furthermore, this issue is not particular to the U.S.A. The 
European Union faces a similar problem, with almost 5% of their CO2 emissions originating from 
heavy-duty vehicles (Gregor, 2018). Considering the continuous growth of the trucking industry, 
it is clear the importance of developing more efficient ways reduce trucks' pollutant emissions. 
However, when it comes to the trucking industry, `green' routing studies do not consider other 
important practical factors, like working hours regulations and parking availability. Due to 
parking shortages, routes and schedules that do not account for parking availability may lead to 
last-minute changes that make them more polluting than expected. Similarly, working hours 
regulations influence the timing of required rest stops, which may force drivers to deviate from 
initially selected routes and schedules with negative consequences to fuel consumption and 
emissions. Several fuel and emissions optimization problems have been treated in the 
literature, and we have developed regulation-compliant and parking-aware truck scheduling 
methods in previous projects, but the intersection of these problems is still a research gap. 
Currently, we still lack a model able to generate solutions with reduced environmental cost, yet 
accounting for practical constraints. This project's objective is to integrate fuel and emissions 
optimization, parking information, and regulation-aware scheduling to develop models able to 
better describe the practical constraints faced by drivers in realistic scenarios. We study 
methods for long-haul truck planning that generate regulation-compliant, parking-aware and 
environmentally friendly routes and schedules. 

We extend the shortest path and truck driver scheduling problem model developed in a 
previous project (Vital & Ioannou, 2021a) to include controllable travel speed and  time-
dependent speed limits, and use a non-linear speed dependent fuel consumption model to 
optimize fuel consumption and pollutant emissions. When studying the trade-offs between 
prioritizing emissions reduction or trip duration, we found that although focusing on emissions 
reduction can increase trip duration significantly, this impact is greatly reduced when 
considering scenarios with limited parking availability. The scenarios studied showed reductions 
of up to 5-8% on average CO2 emissions, which come at the cost of increases on average trip 
duration and average trip cost. However, results showed a large variance. Time-dependent 
instances with high priority set to reducing emissions showed an average increase in trip 
duration higher than 40% when parking is abundant, but lower than 20% when parking is 
scarce. At times prioritizing emissions might be too costly, but this cost is also influenced by the 
region's parking infrastructure conditions. These results illustrate the importance of improving 
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the models used to evaluate the impact of any policy and investment decisions. The proposed 
model can help estimate the level of emissions reduction that can be expected for different 
regions and types of vehicles, at what cost, and how they are affected by the region's truck 
parking infrastructure. We also present a cost lower bound that combines HOS requirements 
with information on optimal speeds for particular cost functions, and can be used to 
significantly speed-up problem solution in deterministic scenarios. 

Afterwards, we considered the case of stochastic parking availability, as opposed to the 
deterministic time-windows considered initially. The resource-constrained shortest path 
formulation was further extended to model drivers possible recourse actions when unable to 
find parking and the ensuing costs. We used this formulation to study how the solutions are 
affected by the level of information provided to drivers. We found that ignoring uncertainty in 
parking availability results in inconsistent performance even when restricting parking to periods 
when probability of finding parking is high. Furthermore, results might not reflect the used cost 
function's intent, e.g., minimizing illegal parking events and/or the priority assigned to 
emissions reduction. Giving drivers full information about the probability of finding parking at 
any time/location significantly improves performance and reduces illegal parking-related risks, 
but also substantially increases problem complexity and computation time. Using full 
information regarding parking availability but restricting the parking times to high availability 
time-windows can reduce complexity while maintaining consistent, although reduced, 
performance. 

Truck parking is a critical issue in the USA, and it can have a significant impact on the 
environment and industry costs. Integrating truck parking information in the planning process 
can mitigate this issue by recommending safer, more efficient itineraries to drivers. Although, in 
general, parking availability is uncertain and we cannot guarantee a parking space, by including 
this uncertainty in the model users can better manage the risks. 
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Introduction 

According to the U.S. Environment Protection Agency (EPA, 2018), the U.S. Transportation 
sector is responsible for 28% of the US’s greenhouse gas emissions, 23% of which are caused by 
medium- and heavy-duty trucks. This means that 6.4% of all greenhouse gas emissions in the 
U.S. are generated by trucks. Furthermore, this issue is not particular to the U.S.A. The 
European Union faces a similar problem, with almost 5% of their CO2 emissions originating from 
heavy-duty vehicles (Gregor, 2018).  The European Commission proposed, in 2018, targets for 
the reduction of emissions in new heavy-duty vehicles, showing that there is a growing concern 
with the topic  (Gregor, 2018). Similar measures have already been adopted by the state of 
California as an effort to improve its fleet’s efficiency and curb CO2 emissions. Although 
California was able to reach its total emissions reduction targets early by pushing for the usage 
of renewable energy and greener technologies, the emissions caused by the transportation 
sector keep rising, and heavy-duty vehicles still count for around 8% of the state’s CO2 
emissions (Barboza & Lange, 2018). Considering the continuous growth of the trucking industry, 
it is clear the importance of developing more efficient ways of using the trucks, trying to reduce 
their emissions as much as possible. 

The problem of trying to minimize the fuel/energy consumption and pollutants emissions in the 
transportation sector is not new. Several studies have approached this topic both for passenger 
vehicles and trucks. A survey on ‘green’ vehicle routing can be found in (Eglese & Bektas, 2014), 
which gives an overview of the types of models used for fuel consumption and emissions, and 
of the different variants of the vehicle routing problem which involve environmental factors. 
Multiple models have been developed to estimate the fuel consumption and pollutants 
emissions based on different factors and targeting the usage on problems of different scales. 
Some models consider only the average speed of the car, as the one used in (Van De Hoef et al., 
2015), but more precise models may consider the vehicle load (Zhang et al., 2015), road incline, 
and if the vehicle is accelerating, decelerating or cruising (Demir et al., 2011). Reference (Demir 
et al., 2011) presents a comparison of different fuel consumption models. These models are 
then used to give an environmental aspect to transportation problems. These problems can be 
divided based on their time-dependency (time-dependent traffic conditions or not), choice of 
decision variables (route, number of vehicles, travel speed, departure time, etc) and choice of 
cost function (only environmental factors or multi-objective).  The problem presented in (Zhang 
et al., 2015) considers the impact of load and speed on carbon emissions and fuel consumption. 
Simulation results showed fuel consumption reductions of up to 18%. The traffic conditions are 
not considered, so the proposed model is time-independent. Also, the speed is taken as a 
parameter of the road, not as a decision variable for the model, so the model can choose to use 
a faster or slower road when convenient, but it cannot tell the driver to drive slower than the 
road ‘regular’ speed. In (Van De Hoef et al., 2015), the speed is used as a decision variable to 
optimize fuel consumption during the trip and to facilitate the organization of truck platoons. 
Although the treated problem is a routing problem, the fuel consumption optimization is only 
performed after a shortest path has been chosen for each vehicle. At this point it turns into a 
scheduling problem, as the route is given. Other variants of the problem consider time-
dependent traffic conditions on the road networks (Franceschetti et al., 2013) or the impact of 
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different idling options used when resting (Koç et al., 2016). Several studies targeted the 
benefits of truck platoons (Van De Hoef et al., 2015), (Agriesti et al., 2018; Tsugawa, 2014; 
Tsugawa et al., 2016), showing that it is possible to achieve fuel consumption reductions in the 
range of 5%-15% depending on platoon speed, gap between trucks and position of the truck 
inside the platoon. 

The problem is that most of these fuel/emissions-efficient models do not address important 
practical constraints of the trucking industry, i.e. working hours or Hours-of-Service (HOS) 
regulations and parking availability. These factors are particularly important to long-haul truck 
drivers, which are usually not the focus of these studies. In (Koç et al., 2016), the author 
considered the working hour regulations and included an environmental cost based on the 
emissions generated by truck idling depending on the equipment installed in the truck and the 
one available at the parking location. However, this model did not consider the possibility to 
optimize the emissions/fuel by controlling the speed of the vehicle, and also did not consider 
traffic conditions. In most cases, the studies focused on the trucking industry which consider 
working hours regulations and, to a certain extent, parking focus on the monetary costs directly 
accrued by the trucking company. Thus the objective function usually considers only the total 
trip duration (Asvin Goel, 2012; Kok et al., 2011), or a function of the total trip duration and the 
working time or travel distance (Rancourt et al., 2013). There are studies on the combined 
routing and scheduling problem, and studies focused only on scheduling, but it is the scheduling 
problem the one responsible for the practical feasibility of the solutions when subject to 
regulations and parking availability. Some methods allow the driver to rest at any point during 
the route (Asvin Goel & Irnich, 2017; Asvin Goel & Vidal, 2014; Kok, Meyer, et al., 2010; 
Rancourt et al., 2013; Xu et al., 2003), not considering the need for an appropriate rest location, 
others only allow the driver to rest at truck stops and/or client locations (Asvin Goel, 2012; Koç 
et al., 2016; Kok et al., 2011). Most studies do not consider time-dependent travel times, 
however there are still some that do (Kok et al., 2011; Kok, Hans, et al., 2010; Shah, 2008). 

A part of this problem which is still overlooked most of the time is the issue of parking 
availability. Most models assume that any valid parking location will always be free, which is 
unrealistic as appropriate truck parking is an issue both in the U.S.A. (U.S. Department of 
Transportation, 2015) and in Europe (SETPOS Consortium, 2009). In (Vital & Ioannou, 2019, 
2020), Vital and Ioannou studied the problem of including both parking availability information 
and HOS regulations in the planning of long-haul transportation, but those studies do not cover 
fuel consumption and emissions. Several variants of the two sides of this problem, 
fuel/emissions optimization and scheduling with working hours regulations, have been studied. 
Currently, what we lack is a model that can integrate both sides. A model able to generate 
solutions with reduced environmental cost, but that are still feasible in practice. In this project, 
we address this research gap by extending the shortest path and truck driver scheduling 
problem under parking availability constraints (Vital & Ioannou, 2021a), which focused on the 
working hours regulations and parking availability constraints, to consider the impact of traffic 
conditions and different travel speeds in the fuel consumption and pollutants emissions of the 
trucks, as well as how uncertainties in the parking availability affect the problem's solutions. 



 3 

This report is organized as follows: Section Related Work reviews related work. Section USA’s 
Hours of Service Regulations describes the HOS regulation considered. Section Problem 
Description describes the problem being studied. Section Model presents the model used to 
represent the problem. Section Dynamic Programming Formulation and Rollout Algorithm 
describes the dynamic programming formulation used to solve the problem. Section Parking 
Availability Uncertainty extends the model to consider stochastic parking availability. Section 
Experiments presents the experiments and results. Section Feasibility of Commercialization and 
possible model extensions discusses the system's commercialization potential. Section 
Conclusion presents the conclusion. 

Related Work 

Time-dependent Shortest Path Problem 

The time-dependent shortest path problem was first studied by Cooke and Halsey (1966) 
(Cooke & Halsey, 1966), who extended bellman's equations to time-dependent networks and 
presented an dynamic programming solution for the discrete time problem. Since then, 
polynomial time solutions have been proposed for networks with the FIFO (first in, first out) 
property, i.e., one cannot arrive earlier at the end of an arc by departing later. (Kaufman & 
Smith, 2007) proves that, in problems where the network has the FIFO property the complexity 
of labeling algorithms for time-dependent networks is the same as for static networks.  The 
FIFO assumption holds in practice for many networks, including transportation networks. Most 
algorithms proposed for the time-dependent shortest path problem are based on the Dijkstra 
and A* algorithms often studied for the static problem  (Dean, 2004; Dell’Amico et al., 2008; 
Delling, 2011; Ferone et al., 2017; Nannicini et al., 2008; Ziliaskopoulos & Mahmassani, 1993). 
(Ziliaskopoulos & Mahmassani, 1993) proposed an algorithm to calculate simultaneously all the 
shortest paths from all nodes to a given destination node and for every discrete time step in a 
network with time-dependent arc costs. They presented a label correcting method that uses a 
bottom-up dynamic programming approach to calculate shortest paths. The problem does not 
assume FIFO networks. In (Dean, 2001), Dean studies the theoretical properties of time-
dependent shortest path problems, and presents serial and parallel algorithms for the problem 
of calculating the earliest arrival time at one or more nodes in FIFO networks. In (Zhao et al., 
2008), Zhao generalizes the A* algorithm for time dependent networks. The algorithm 
correctness is guaranteed if the used time-dependent estimator functions satisfy the proposed 
sufficient conditions. The landmark based ALT algorithm is also extended to the time-
dependent case. Landmarks with precalculated optimal travel times to every node (at every 
time) are used to estimate lower bounds for the travel times from every node to the 
destination. These lower bounds satisfy the sufficient conditions proposed and are used in the 
A* algorithm to guide the exploration of the search space, improving performance. In 
(Nannicini et al., 2008), Nannicini et al. present a bidirectional search method that is also based 
on ALT algorithms. In (Delling, 2011), Delling presents a time-dependent version of the SHARC 
algorithm, which uses preprocessing routines based on highways hierarchies (Sanders & 
Schultes, 2006) and arc-flags (Lauther, 2004) to speed-up a Dijkstra-based algorithm. 
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Another important consideration is whether waiting at nodes is allowed. In (Orda & Rom, 
1990), Orda & Rom showed that if waiting is allowed, then a shortest path can be found in 
polynomial time even without the FIFO assumption. However, if waiting is not allowed and the 
network does not have the FIFO property, the problem is NP-hard (Orda & Rom, 1990). Later, 
Foschini et al studied in detail the complexity of the arrival time function and of algorithms 
searching for a minimum delay path (Foschini et al., 2011). Omer and Poss (Omer & Poss, 2020) 
proposed a polynomial time algorithm for the case when wait times are allowed at all nodes, 
but when those wait times are not considered in the cost function. The algorithm calculates the 
shortest paths while iteratively increasing the maximum allowed total wait time.  The authors 
used FIFO network and piece-wise linear travel time assumptions to prove that an optimum 
solution can be found while testing only a finite number of total wait times. The length of the 
sequence of wait times that need to be considered depends on the total number of breakpoints 
of all travel time functions. The sequence of wait times to be tested is chosen so that shortest 
paths passing through each node can be written as a concatenation of a shortest path found in 
the previous iteration, the wait time increase for the current iteration, and a path to the 
destination without waits. The problem addressed does not consider time-windows, the only 
constraint is on total waiting time. 

(Huang et al., 2017) uses a time-delay neural network with the same topology as the road 
network to calculate the shortest path to a given destination node when travel time between 
nodes is defined by piecewise constant functions. The time complexity depends on the product 
of the number of time-windows needed to describe the travel time functions, and on the 
shortest path's arrival time at the destination node (in time steps). This is an interesting line of 
research, as, compared to methods based on Dijkstra and A*, the time complexity is not as 
affected by the network size. 

Most studies focus on minimizing trip duration, arrival time or driving time. However, in 
practice, those are not the only relevant objectives. For example, the transportation companies 
might want to minimize fuel consumption, emissions, safety risks, or monetary costs. These 
types of objective functions may not satisfy FIFO assumptions and can be more problematic to 
deal with, as studied in (Orda & Rom, 1991). (Orda & Rom, 1991) showed that in some time-
dependent minimum weight path problems there is no finite optimal path, and proposed 
conditions for the existence of finite optimal paths. (Cooper & Cowlagi, 2018) study path 
planning under time-dependent cost functions modeled as a spatiotemporal scalar field. As an 
example, they mention that minimizing a weighted sum of travel duration and exposure to 
traffic might be useful in reducing emissions-related health risks to long-haul truck drivers. They 
study the effects of allowing waiting under scalar fields defined by linear combinations of 
Gaussian functions and propose local conditions to prune search trees used by graph search 
algorithms. In (He et al., 2020), He et al. study problem variants where a subset of nodes has 
penalties for waiting or where there is a limit on the total waiting time at a subset of nodes. 
They proved that some variants are NP-Hard and proposed polynomial time algorithms for the 
ones that are not. In (Cai et al., 1997), Cai et al. consider node-dependent upper-bounds on the 
waiting time at each node. 
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The work on time-dependent shortest paths problems with constraints is limited. The most 
common constraints considered are applied to the waiting time, as in (Cai et al., 1997; He et al., 
2020), or total trip duration (Wenting & Xiaoqiang, 2007). (Sherali et al., 2003) addresses time-
dependent label-constrained shortest path problems which restrict the structure of acceptable 
paths. Besides the usual setup for shortest path problems, each arc is ascribed a label, and the 
acceptable label sequences are defined by a `language'. For example, the labels can represent 
travel modes, such as walk, drive, and bus, and the language can specify that only paths using at 
most 2 labels (travel modes) are acceptable. Although variants with time-window constraints 
are common for the static shortest path problem that is not the case for the time-dependent 
version. In (Spliet et al., 2018), Spliet et al. studied a problem variant with time-window 
constraints in the context of a routing problem. Spliet et al. presented an exact labeling 
algorithm and a heuristic tabu search algorithm for the shortest path problem with a capacity 
constraint, time-dependent travel times, time window constraints on both the nodes and on 
the arcs, and linear node costs. The labeling algorithm was based on the algorithm proposed by 
(Ioachim et al., 1998) for a similar variant, where the travel time is not time-dependent, but 
nodes have time-windows and time-dependent costs. (Mayerle et al., 2020) studied the time-
dependent shortest path problem under time-window and hours-of-service regulation 
constraints, where the solution represents not only a path, but also a schedule specifying for 
how long the driver must rest at each location. They define a state-graph where each node is a 
certain stoppage configuration and present a Dijkstra-based algorithm with a pruning heuristic 
to find good solutions. A related problem was studied in (Kok et al., 2011), where Kok et al. 
presented an integer linear programming formulation for the time-dependent truck driver 
scheduling problem. Although their formulation considers a fixed path, it can be used as a post-
processing step for shortest path or vehicle routing problems under time-window and hours-of-
service regulation constraints. 

Truck Driver Scheduling Problem 

The inclusion of HOS rules in scheduling algorithms, the truck driver scheduling problem (TDSP), 
was approached in many studies in recent years (Archetti & Savelsbergh, 2009; A. Goel, 2010; 
Asvin Goel, 2012; Asvin Goel & Kok, 2012; Koç et al., 2016; Vital & Ioannou, 2019). Multiple 
regulations have been considered, including ones from the United States (Asvin Goel & Kok, 
2012), Europe (A. Goel, 2010) and Canada (Asvin Goel & Rousseau, 2011). Furthermore, it is 
often studied as part of a vehicle routing and truck driver scheduling problem (VRTDSP) (Gaddy 
et al., 2018; Asvin Goel & Vidal, 2014; Koç et al., 2018; Kok et al., 2011; Kok, Hans, et al., 2010; 
Rancourt et al., 2013), which is a variant of the vehicle routing problem (VRP) that accounts for 
HOS rules, and, less commonly, it is studied in the context of shortest path problems (SPP) 
(Drexl & Prescott-Gagnon, 2010; Asvin Goel & Irnich, 2017; Mayerle et al., 2020). Besides the 
particular methods used, the differences between problems treated in the literature usually 
relate to the following aspects: regulation considered, optimality of the solutions, parking 
restrictions, cost function, and main problem (TDSP, VRP or SPP). We are most interested in 
how they approached parking restrictions and path planning. 
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Parking restrictions 

Although truck parking is currently a critical issue, it is often overlooked in the literature, with 
many methods not even restricting parking to appropriate facilities. In (Archetti & Savelsbergh, 
2009), Archetti et al. considered the problem of determining whether a sequence of  𝑛  full 
truckload transportation requests is feasible given a set of HOS regulations and pick-up time-
windows. The proposed method allows drivers to park anywhere and finds a feasible schedule 
in 𝑂(𝑛3) time. In (A. Goel, 2010), Goel considered a similar problem using the European 
regulations, and in (Asvin Goel & Kok, 2012), presented an algorithm to find feasible schedules 
to visit  𝑛  locations using the US regulations in 𝑂(𝑛2) time. However, these methods assumed 
that drivers could park anywhere, which is not valid in practice. This assumption is also present 
in (Drexl & Prescott-Gagnon, 2010; Asvin Goel & Irnich, 2017; Asvin Goel & Vidal, 2014; Kok, 
Meyer, et al., 2010; Rancourt et al., 2013). In (Asvin Goel, 2012), Goel presented a mixed 
integer programming (MIP) formulation and a dynamic programming algorithm for the TDSP 
that restricts parking to client locations and calculates a schedule with minimum trip duration. 
Rest areas were modeled as clients with zero service time and unbounded time-windows. 
Similar MIP models were used in (Koç et al., 2016; Kok et al., 2011; Vital & Ioannou, 2019), 
focusing on different aspects of the problem but keeping parking restricted to appropriate 
facilities. In (Kok et al., 2011), Kok et al. addressed the issue of traffic congestion by considering 
time-dependent travel times and proposed a heuristic approach to integrate the TDSP model 
into a VRP method. In (Koç et al., 2016), Koç et al. approached the environmental impact 
caused by truck idling and how it is affected by the truck's equipment and rest areas' 
infrastructure. The drivers can only park at rest areas, which have different types of 
infrastructure available. Early arrival is allowed at client locations, but it does not count as off-
duty time. The cost function accounts for the type of idling used in each stop given the 
equipment installed on the truck and the infrastructure available at each rest area. This method 
was later used as a base for a VRTDSP algorithm with the same focus (Koç et al., 2018). In (Vital 
& Ioannou, 2019), Vital and Ioannou approached the issue of truck parking availability and US 
HOS rules for long trips. Their model considered a single client trip, which hinders drivers' 
ability to plan consecutive trips. Parking was restricted to rest areas, and parking availability 
was modeled as time-window constraints for each rest area. Each rest area's availability time-
windows take effect only if a stop is scheduled for that particular location. Due to the focus on 
parking availability issues, the model assumed that parking is unavailable outside of the delivery 
time-window and did not allow early arrival at the client or rest areas. As short-term staging 
due to warehouse or terminal hours is a source of truck parking demand (Cambridge 
Systematics, 2019; U.S. Department of Transportation, 2015), we see the restriction on early 
arrivals (also included in our model) as an important distinction when considering truck parking 
shortages. This study is the only one that considered time-dependent parking availability in the 
TDSP. Nevertheless, as (Vital & Ioannou, 2019) addresses only the scheduling problem, it does 
not account for alternative paths or parking locations that require a detour to be reached. This 
limitation motivates the other aspect of our work: path planning. 
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Path planning 

The inclusion of parking constraints and HOS regulations when determining the shortest path 
between locations is relevant not only to individual drivers that need to plan their itineraries, 
but also to carriers and other stakeholders that need to estimate operational costs and allocate 
resources. Hence why we are interested in the shortest path problem with resource constraints 
(SPPRC) that lies between the TDSP and the VRTDSP. VRTDSP methods assume that the shortest 
path between any two clients is known (and independent of the current status of the HOS 
constraints), and use TSDP algorithms to calculate the cost of each route generated. The rest 
areas considered in these problems are located along these known shortest paths. If the driver 
is allowed to rest anywhere or only at client locations, this assumption does not affect the route 
cost. However, when parking is restricted and rest areas are considered, the minimum cost 
path between two clients will depend on the location of every reachable rest area and the HOS 
constraints' status at the departure time from the client. The inclusion of parking availability 
constraints makes it even more important to consider alternative paths and rest areas. When 
parking is scarce at the usual routes, it may be cost-effective to take a slightly longer path if it 
has better parking conditions. Failing to consider how parking availability and HOS constraints 
affect the shortest path between clients may cause planners to underestimate the trip's 
duration and cost. This inaccuracy can upset operations planning as well as fair driver 
remuneration (depending on how wages are determined). The issue is aggravated when drivers 
lack the flexibility to adjust their route, as some of the drivers surveyed in (Sun et al., 2013). In 
this case, the driver is limited to taking a sub-optimal route, further increasing the difference 
between estimated and actual trip cost and duration. 

The shortest path problem with resource constraints (SPPRC) often appears in column 
generation solutions to the VRP (Costa et al., 2019) and several approaches have been 
proposed for its variants (Asvin Goel & Irnich, 2017; Horváth & Kis, 2016; Irnich & Desaulniers, 
2005; Lozano et al., 2016; Pugliese & Guerriero, 2013). The SPPRC is often solved through 
dynamic programming-based labeling algorithms, applying tailored dominance rules and bound 
estimates to identify and discard inferior paths. SPPRC formulations and algorithms are tailored 
to their own problem variants and may not be directly applicable to other problems. Hence the 
need to develop tailored methods for the SPPRC in the context of HOS regulations and parking 
availability constraints. However, the number of studies using SPPRC formulations in the 
context of HOS-compliant planning is very limited. In (Drexl & Prescott-Gagnon, 2010), Drexl 
and Prescott-Gagnon present a SPPRC formulation to the problem of finding HOS-compliant 
routes and schedules, and propose exact and heuristic labeling algorithms. In (Asvin Goel & 
Irnich, 2017), Goel and Irnich propose an exact method for the VRTDSP using a branch and price 
algorithm where a SPPRC is used to generate HOS-compliant routes and their costs. An auxiliary 
network is used to model drivers' possible activities, but parking locations are not considered. 
Even though they consider HOS regulations, both (Asvin Goel & Irnich, 2017) and (Drexl & 
Prescott-Gagnon, 2010) assume that drivers may stop and rest anywhere on a route. This 
limitation is partially addressed in (Mayerle et al., 2020), where Mayerle et al. study the impact 
of Brazilian regulations in the planning of long-haul full truckload shipments. Differently from 
(Drexl & Prescott-Gagnon, 2010; Asvin Goel & Irnich, 2017), this study is not aimed at deciding 
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which clients to visit and in what order for a VRTDSP, but at how changes to HOS rules affect 
the best path to reach a client. They use a labeling algorithm and pruning heuristics to optimize 
the path a truck takes to reach a single client, while scheduling stops at allowed locations to 
satisfy regulations. Their model includes some time-restrictions to all rest stops by restricting 
departure times at the beginning of each work day, as well as the start time of lunch breaks. 
However, they also overlook the question of whether those parking locations will be available 
at the desired times. In addition, it shares the same single client limitation as (Vital & Ioannou, 
2019). 

USA’s Hours of Service Regulations 

The USA HOS regulation restricts for how long drivers can drive/work, and how long they 
should rest before being allowed to drive again. We refer to the off-duty periods required by 
the regulation based on their minimum duration: breaks (0.5 h), daily rests (10 h) and  weekly 
rests (34 h). The USA HOS regulation can be summarized as follows (Federal Motor Carrier 
Safety Administration, 2021): 

• 11-hour Driving Time Limit: A driver may drive at most 11 hours between 2 consecutive 
daily rests. 

• 14-Hour Elapsed Time Limit: A driver cannot drive after 14 hours have elapsed since the 
last daily rest ended. 

• Rest Breaks: A driver must take a break after 8 cumulative hours of driving time. Recent 
changes in the regulation allow this constraint to be satisfied by any non-driving period 
of 30 consecutive minutes. 

• 60-Hour Limit: A driver cannot drive after having been on duty for 60 hours in any 
period of 7 consecutive days. The 7 days period can be reset by taking a weekly rest. 

We do not consider the sleeper berth provision, which allows daily rests to be split. And, for the 
60-hour limit, instead of restricting the on-duty time over any period of 7 consecutive days, the 
on-duty time between two consecutive weekly rests was restricted to 60 hours. 

Problem Description  

In this project, we first address a `green' variant of the SPTDSP-PA (shortest path and truck 
driver scheduling problem with parking availability constraints) (Vital & Ioannou, 2021a). This 
variant differs mainly by the inclusion of fuel consumption in the objective function, the usage 
of travel speed as a decision variable (in order to control fuel consumption), and for considering 
time-dependent traffic conditions. Then, to make the model more realistic, section Parking 
Availability Uncertainty extends it to include uncertainty in parking availability. In practice, it is 
impossible to be certain about the future parking availability of any location during planning. 
Therefore, we include this uncertainty in the model and study its effect on the solutions 
depending on the information provided to drivers/planners. 

The problem consists of planning the path and schedule for a truck starting at an origin location 
and visiting an ordered list of clients, where the last client is referred to as the destination. Each 
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client has a fixed non-negative service time, and time-window constraints restricting the 
vehicle's arrival time. The schedule must comply with HOS (Hours-of-Service) regulations, which 
impose restrictions on how long the driver can work or drive without resting, and the minimum 
duration of rests (rests of different durations satisfy different restrictions). Drivers can rest only 
at rest areas, but arrival time at rest area nodes is also subject to time-window constraints 
(representing parking availability). The problem is solved over a simplified road network that 
includes only the main routes the truck can take between two consecutive client locations, and 
the rest areas around them. The simplified road network is defined as an acyclic directed graph 
𝐺 = (𝑉, 𝐴), where  𝑉  is the set of nodes of the graph and  𝐴  is the set of edges. The vehicle 
consumes fuel when driving or idling. We consider the consumption model for diesel trucks 
defined in section Consumption Model. The driving consumption rate is described by a non-
linear speed-dependent function, and the idling consumption rate is taken as constant. Each 
road section (𝑖, 𝑗) ∈ 𝐴  has a fixed length 𝑑𝑖𝑗 and a time-dependent allowed speed range 

[𝑠𝑖𝑗
−(𝑡), 𝑠𝑖𝑗

+(𝑡)], thus setting the allowed travel time to [
𝑑𝑖𝑗

𝑠𝑖𝑗
+ ,

𝑑𝑖𝑗

𝑠𝑖𝑗
− ]. The average travel speed can be 

adjusted within the allowed range to control the travel time and energy consumption. We 
assume that the speed profiles are defined such that all edges satisfy FIFO assumptions when 
considering only one of the speed limits. 

During long trips, HOS regulations require drivers to rest along the way. Rest stops are 
restricted to rest areas and their minimum durations are defined by the regulation. We do not 
allow for rests to be taken at client locations. However, note that service times longer than 
30min can reset the 8h driving limit constraint despite counting as on-duty time for other 
constraints. Each parking location has a set of time-windows representing the intervals when 
parking spaces are expected to be available. These time-windows restrict the vehicle's arrival 
time. The vehicle is not allowed to arrive early and wait. The regulation sets a minimum 
duration for the rest stops, but it does not set a maximum duration, so the driver is allowed to 
extend the stay when convenient. Similarly, each client has a set of time-windows constraints 
and a service time, which define when the truck can arrive at the client and the duration of 
stay. However, drivers cannot extend the service time at the client. As rest areas are not 
required stops, the graph  𝐺  is built so that rest areas can be bypassed. Clients are mandatory 
stops, so all considered routes go through the client nodes. 

As this project addresses the issue of emissions reduction, we want this to be reflected in our 
objective function. We take as objective function a linear combination of trip duration and fuel 
consumption. The trip duration term accounts for driver wages and operational costs (excluding 
fuel), whereas the fuel term accounts for fuel and emissions costs. The emissions costs can be 
seen both as some kind of carbon pricing, or simply the level of importance attached to 
reducing emissions as opposed to reducing trip duration. Consider the following cost function 
for a decision of duration  δ: 

 
𝑔(𝛿) = {

𝛼𝛿 + 𝛽𝜇𝑒𝜁(𝜇𝑒/𝛿), 𝑖𝑓 𝑑𝑟𝑖𝑣𝑖𝑛𝑔

(𝛼 + 𝛽𝛾 + 𝜃)𝛿, 𝑜. 𝑤.
 (1) 
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where  α is the trucks hourly operational cost (excluding fuel) and  β is the cost per unit of 
fuel/energy. For non-driving decisions,  γ is the hourly idling fuel consumption,  θ represents 
hourly costs incurred while stopped from sources other than idle fuel consumption and 
operational costs. For driving decisions, μ𝑒  is the length of the road segment considered, and 
ζ(𝑣) is the fuel consumption per unit of distance. This cost function considers both time and 
fuel related costs, and their relative importance can be adjusted using the parameters α,  β, and  
θ . 

Model  

The problem was formulated as a resource constrained shortest path problem as in (Vital & 
Ioannou, 2021a). The formulation uses an auxiliary network to explicitly model drivers' 
activities. Time and the counters associated with the different HOS regulations are treated as 
resources. Time is subject to time-window constraints at client and rest area nodes. Each HOS-
related resource has a different upper limit, and depending on the activity being performed, 
these resources can increase (by the activity’s duration), keep their current value, or be reset to 
zero. For example, a resource tracking driving time is not affected by edges representing service 
time at a client; a resource tracking the elapsed time since the last 10h rest (daily rest) will 
increase during a 30min stop (break), but will be reset to zero during a daily rest. 

At the origin, client locations and rest areas, drivers perform non-driving activities. These nodes 
are expanded according to the subnetworks in Figure 1, forming an extended network 𝐺′ =
(𝑉′, 𝐴′) that includes non-driving activities explicitly in the graph. Each edge has its activity 
indicated below the arrow. Edges that have a fixed duration have their duration indicated 
above the arrow. The incoming/outgoing edges of the subnetwork are the incoming/outgoing 
edges of the node being expanded. The duration of edges representing rest extensions (edges 
marked with  δ's in Figure 1a) was already controllable in (Vital & Ioannou, 2021a). When speed 
optimization is included, the duration of driving edges will be controllable within a given range, 
and in the time-dependent case, the range of allowed speed varies with time. 
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Figure 1. Sub-networks used to model non-driving activities. 

System Equations 

We consider the system’s state as being a vector 𝑥𝑘 = (𝑣𝑘 , 𝜃𝑘), where 𝜃𝑘 =

(𝜂𝑘
0 , 𝜂𝑘

𝑏 , 𝜂𝑘
𝑟 , 𝜓𝑘

𝑟 , 𝜓𝑘
𝑤) containing the truck’s current location (𝑣𝑘 ∈  𝑉

′ ) and the current resource 
values (𝜃𝑘). The resources are responsible for tracking the HOS restrictions, and arrival time at 
each node. The resources used are: 

• 𝜂0: Arrival time at current location 

• 𝜂𝑏: Accumulated driving time since last break 

• 𝜂𝑟 : Elapsed time since last daily rest 

• 𝜓𝑟: Accumulated driving time since last daily rest 

• 𝜓𝑤: Accumulated on-duty time since last weekly rest 

The evolution of the system is described by 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) , where 𝑥𝑘 is the current state, 
𝑥𝑘+1 is the next state, and 𝑢𝑘 is the decision taken. The decision 𝑢𝑘 is composed by an edge 
𝑒𝑘 = (𝑣𝑘 , 𝑣𝑘+1) ∈ 𝐴′, with length 𝜇𝑘, and a duration 𝛿𝑘 included in 𝑒𝑘’s allowed duration set. 
When dealing with edges related to driving, this set is defined by the length and allowed speed 
values of 𝑒𝑘. The function 𝑓(𝑥𝑘 , 𝑢𝑘) defines how each element of 𝑥𝑘 is affected by a decision 
𝑢𝑘, and the resulting next state 𝑥𝑘+1. As different activities have different impacts on each 

 

(a) Sub-network used to expand rest area nodes. 
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(b) Sub-network used to expand the origin node. 
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(c) Sub-network used to expand client nodes. wi is the service time. 
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resource, each edge of the extended network has an activity assigned to it. Table 1 shows how 
the resources are updated depending on the activity. The functions 𝑓𝑑, 𝑓𝑠, 𝑓𝑏 , 𝑓𝑟, 𝑓𝑤 and 𝑓0 
describe the update rules for activities drive, service, break, daily rest, weekly rest and 
departure, respectively. Figure 1 shows how the activities are assigned to each edge. Note that 
𝜂𝑏 ’s and 𝑓𝑏 ’s definitions differ from (Vital & Ioannou, 2020) due to recent changes in the 
regulation. Now the 8h limit is applied to driving time instead of elapsed time, and any non-
driving period longer than 30 minutes can satisfy this constraint. 

Table 1. Resource Extension Functions 

 𝑓𝑑  𝑓𝑠   𝑓𝑏   𝑓𝑟 𝑓𝑤 𝑓0 

𝜂𝑘+1
0 = 𝜂𝑘

0
 +  𝛿𝑘 

𝜂𝑘+1
𝑏 = 𝜂𝑘

𝑏 + 𝛿𝑘 {
0, 𝑖𝑓𝛿𝑘 > 𝑡𝑏
𝜂𝑘
𝑏 , 𝑜. 𝑤.

 0 𝜂𝑘
𝑏  

𝜂𝑘+1
𝑟 = 𝜂𝑘

𝑟 + 𝛿𝑘 0 𝜂𝑘
𝑟  

𝜓𝑘+1
𝑟 = 𝜓𝑘

𝑟 + 𝛿𝑘 𝜓𝑘
𝑟 0 𝜓𝑘

𝑟 

𝜓𝑘+1
𝑤 = 𝜓𝑘

𝑤 + 𝛿𝑘 𝜓𝑘
𝑤 0 𝜓𝑘

𝑤 

Consumption Model 

The fuel consumption depends on the activity being considered, so we separate the model in 
driving, and idling. The model parameters considered are listed in Table 2. 

Driving 

We used the model presented by Wang and Rakha in (Wang & Rakha, 2017). More specifically, 
the parameters used are the ones for a convex model of a Freightliner/FLD 120, year 2001, 
labeled as ``HDDT8'' in their paper. The model first estimates the vehicle's power demand due 
to resistance forces acting on the vehicle, then estimates the consumption rate based on the 
power demand. We consider the average travel speed over each road section, and terms 
relative to acceleration and road grade were omitted. This model characterizes fuel 
consumption as a second-order polynomial function of the power demand, as follows: 

 
𝑃𝐷(𝑣) = (

𝜌𝐴𝐶𝐷
25.92

𝑣2 +𝑚𝑔𝐶𝑅(𝑐1𝑣 + 𝑐2))
𝑣

3600𝜂𝑑
 

(2) 

 
𝜁𝐷(𝑣) = (𝛼0 + 𝛼1𝑃𝐷(𝑣) + 𝛼2𝑃𝐷(𝑣)

2)
3600

𝑣
 

(3) 

where  𝑃𝐷(𝑣) represents the power demand (𝑘𝑊), and ζ𝐷(𝑣) represents the fuel consumption 
per distance ( 𝐿/𝑘𝑚 ). 𝐶𝐷 is the drag coefficient (unitless). 𝐶𝑅, 𝑐1 and 𝑐2 are the rolling 
resistance parameters (unitless), η𝑑  is the driveline efficiency (unitless), α0, α1 and α2 are 
vehicle-specific model coefficients calibrated in (Wang & Rakha, 2017) using empirical data. The 
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air density (𝑘𝑔/𝑚3) is given by  ρ, and  the acceleration due to gravity is given by  𝑔 . The terms 
𝑣,  𝑚  and  𝐴  represent the truck's speed (𝑘𝑚/ℎ), mass (𝑘𝑔) and frontal area (𝑚2), 
respectively. 

Idling 

When `idling', we consider a fixed consumption rate 𝐹𝐼 (𝐿/ℎ). Service time at clients is 
considered idling time. 

Table 2. Model Parameters 

Parameter Description Value 

CD (Wang & Rakha, 2017) coefficient of drag 0.78 

CR  (Wang & Rakha, 2017) coefficient of rolling resistance 1.25E-3 

c1  (Wang & Rakha, 2017) coefficient of rolling resistance 0.0328 

c2  (Wang & Rakha, 2017) coefficient of rolling resistance 4.575 

ηd  (Wang & Rakha, 2017) driveline efficiency 0.94 

m (kg) (Wang & Rakha, 2017) truck’s total mass 3.6E4 

A (m2) (Wang & Rakha, 2017) truck’s frontal area 10 

α0  (Wang & Rakha, 2017) vehicle-specific model coefficient 2.16E-3 

α1  (Wang & Rakha, 2017) vehicle-specific model coefficient 7.98E-5 

α2  (Wang & Rakha, 2017) vehicle-specific model coefficient 1.0E-8 

FI (L/h) (U.S. Department of Energy, 2015) idling fuel consumption 3 

g(m/s2) (Wang & Rakha, 2017) gravity 9.8066 

ρ(kg/m3) (Sripad & Viswanathan, 2017) air density 1.2256 

βd(kg/L) (Argonne National Laboratory, 

2020; U.S. Energy Information 

Administration, 2016) 

CO2 emission factor for diesel 3.13 

Dynamic Programming Formulation and Rollout Algorithm  

Let 𝐽(𝑥𝑘) be the minimum cost to go from state 𝑥𝑘 to the destination, and 𝑋𝑑  the set of feasible 
states at the destination node. This cost-to-go function is defined as: 

 
𝐽(𝑥𝑘) = {

0, if 𝑥𝑘 ∈ 𝑋𝑑
min

𝑢∈𝑈(𝑥𝑘)
𝑔(𝑥𝑘 , 𝑢) + 𝐽(𝑓(𝑥𝑘 , 𝑢)),o.w. 

(4) 

where 𝑔(𝑥𝑘 , 𝑢) is the cost accrued by decision 𝑢  at state 𝑥𝑘, and 𝑈(𝑥𝑘) is the set of decisions 
 𝑢  for which 𝑓(𝑥𝑘 , 𝑢) is a feasible state. A state is considered feasible if all resources are within 
their respective feasible ranges. If 𝑈(𝑥𝑘) is empty, we say that the destination cannot be 
reached from 𝑥𝑘 and 𝐽(𝑥𝑘) is infinite. The choice of 𝑔(⋅) determines what is being minimized. In 
this project, we use the cost function (1), which combines fuel and trip duration costs. 
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Although any node has only a finite number of outgoing edges, the decision space 𝑈(𝑥𝑘) can 
have uncountably many elements if the allowed duration set of one or more of these edges is a 
continuous interval. In order to mitigate this issue, we first propagate the constraints of each 
node to all upstream nodes. This reduces the feasible space at each node and the decision 
space to be considered for each decision. During execution, the algorithm uses the 
preprocessed feasible ranges to generate a reduced decision space, which is then discretized, 
generating a finite set of decisions. Nevertheless, due to the curse of dimensionality, this 
approach does not scale well for large instances. Using a coarse decision space discretization 
can bring significant improvements to computation time, but will also cause the cost to 
deteriorate. Therefore, we use a rollout algorithm (Bertsekas, 2017) to find suboptimal 
solutions while keeping the computational demand in check. The general idea is to use the cost 
obtained from applying a base policy as an approximate cost function, then use this 
approximation to generate a one-step lookahead policy. One-step lookahead policies choose 
the decision that minimizes the following expression: 

 min
𝑢𝑘∈𝑈(𝑥𝑘)

𝑔(𝑥𝑘 , 𝑢𝑘) + 𝐽(𝑓(𝑥𝑘, 𝑢𝑘)) (5) 

where 𝐽(𝑥𝑘) is the approximated cost-to-go of state 𝑥𝑘. Let the policy  π be a function that 
returns a feasible decision π(𝑥𝑘) ∈ 𝑈(𝑥𝑘) for every state 𝑥𝑘.  𝐽π(𝑥𝑘) is the cost-to-go when the 
policy  π is used to take decisions at every state, and it can be described as: 

 
𝐽𝜋(𝑥𝑘) = {

0, if 𝑥𝑘 ∈ 𝑋𝑑

𝑔(𝑥𝑘, 𝜋(𝑥𝑘)) + 𝐽𝜋 (𝑓(𝑥𝑘 , 𝜋(𝑥𝑘))) ,     o.w.
 (6) 

In this project, we used 𝐽(𝑥) = 𝐽π(𝑥), where  π is the policy generated by solving the problem 
with a coarser discretization of the decision space. The strategy used to propagate constraints is 
included in Section Constraint Propagation and Feasible Decision Space. Section Graph 
Preprocessing describes how the graphs were preprocessed to reduce issues with short links. 
Section Analytical Solutions and Section Cost Lower Bound show, respectively, analytical 
solutions and cost lower bounds that can be used to speed-up the algorithm. 

Constraint Propagation and Feasible Decision Space 

Consider the following expression describes how the states are updated: 

 𝑥𝑖+1 = 𝑓(𝑥𝑖 , 𝑢𝑖), 𝑢𝑖 ∈ 𝑈𝑖(𝑥𝑖) ⊂ 𝑈𝑖 (7) 

Let 𝐹𝑖 represent the set of feasible states at node 𝑣𝑖. We define 𝑈𝑖(𝑥𝑖) as: 

 𝑈𝑖(𝑥𝑖) = {𝑢 ∈ 𝑈𝑖| 𝑓(𝑥𝑖 , 𝑢) ∈ 𝐹𝑖+1} (8) 

When choosing the decisions to test, we can either sample 𝑈𝑖 and check the feasibility of each 
decision or calculate the feasible decision space with an inverse function 𝑓−1(𝐹𝑖+1, 𝑥𝑖) that 
returns the elements of 𝑈𝑖 that can generate a next state in 𝐹𝑖+1. In this case, 𝐹𝑖+1 refers to the 
set of feasible next states, i.e., ⋃ 𝐹𝑗𝑗, (𝑣𝑖,𝑣𝑗)∈𝐴′

. As most edges update the resources by adding its 

duration to the current resource, in general this operation consists of shifting the intervals 
representing the constraint for each resource, then taking the intersection between all of them, 
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e.g. if the next node has a time-window [10,15] and the current time is 5, then the decision 
duration must be in the interval [5,10] to be feasible. Different resources will generate different 
intervals, and feasible decisions must satisfy all of them. 

Originally, 𝐹𝑖 represents only the feasibility regarding the local constraints at node 𝑣𝑖, however, 
if we consider constraints from other nodes, we may be able to reduce 𝐹𝑖, and consequently 
reduce 𝑈𝑖(𝑥𝑖). Each node’s local constraints can be propagated downstream and upstream to 
reduce other nodes’ feasible spaces. 

Forward Propagation 

Let ℱ∗ (𝐹𝑖 ,  𝐹𝑗 , 𝑈𝑖(⋅)) represent a function that returns which states in 𝐹𝑗 can be reached from 

𝐹𝑖, i.e., 

 ℱ∗ (𝐹𝑖 ,  𝐹𝑗 , 𝑈𝑖(⋅)) = {𝑥𝑗 ∈ 𝐹𝑗|∃𝑥𝑖 ∈ 𝐹𝑖 ,  ∃𝑢 ∈ 𝑈𝑖(𝑥𝑖),  𝑓(𝑥𝑖 , 𝑢) = 𝑥𝑗} (9) 

The set ℛ𝑗
∗ of states that can be reached at node 𝑣𝑗 is given by: 

 ℛ𝑗
∗ = ⋃ ℱ∗

𝑖, (𝑣𝑖,𝑣𝑗)∈𝐴

(ℛ𝑖
∗, 𝐹𝑗 , 𝑈𝑖(⋅)) (10) 

ℛ𝑗
∗ can be overly complex due to the coupling between resources, so we try to approximate it 

by propagating the constraints for each resource separately. Let 𝐹𝑖
(𝑟) be the projection of  𝐹𝑖 on 

the axis representing resource 𝑟, and 𝑓(𝑟) the component of 𝑓 that defines the evolution of 

resource 𝑟. Let ℱ(𝑟) (𝐹𝑖 , 𝐹𝑗 , 𝑈𝑖(⋅)) be a function that returns which values of resource 𝑟 can be 

reached at node 𝑣𝑗 starting from a state in 𝐹𝑖, defined as follows: 

 ℱ(𝑟) (𝐹𝑖 , 𝐹𝑗 , 𝑈𝑖(⋅)) = {𝑥𝑗
(𝑟) ∈ 𝐹𝑗

(𝑟)|∃𝑥𝑖
(𝑟) ∈ 𝐹𝑖

(𝑟), ∃𝑢 ∈ 𝑈𝑖(𝑥𝑖), 𝑓
(𝑟)(𝑥𝑖

(𝑟), 𝑢) = 𝑥𝑗
(𝑟)} (11) 

Let ℛ̂𝑗 approximate ℛ𝑗
∗ as follows: 

 ℛ𝑖,𝑗 =∏ (ℱ(𝑟) (ℛ̂𝑖 ,  𝐹𝑗 , 𝑈𝑖(⋅)))

𝑟

ℛ̂𝑗 =∏ ⋃ ℛ𝑖,𝑗
(𝑟)

𝑗, (𝑣𝑖,𝑣𝑗)∈𝐴𝑟

 (12) 

where ℛ𝑖,𝑗  is the approximation accounting only for the constraints of upstream node 𝑣𝑖, and 

ℛ𝑖,𝑗
(𝑟) is its projection on the axis representing resource 𝑟. Note that, for a given 𝑣𝑖 , if ∃𝑟 such 

that ℱ(𝑟) (ℛ̂𝑖 , 𝐹𝑗 , 𝑈𝑖(⋅)) = ∅ , then ℛ𝑖,𝑗 = ∅. That is, if states from 𝑣𝑖 cannot satisfy the 

constraints for 1 or more resources, then 𝑣𝑖 will not be counted when calculating the reachable 

states at 𝑣𝑗. Furthermore, the edge (𝑣𝑖 , 𝑣𝑗) can be removed from the problem. At the origin 

node we have that ℛ0
∗ = ℛ̂0, where ℛ̂0 is the set of possible initial states. 
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Backward Propagation 

Backward propagation follows the same general idea as forward propagation. Let 𝐹‾𝑖 be the 
reduced feasible space, i.e. the set of states 𝑥𝑖 ∈ 𝐹𝑖 able to generate feasible solutions given 

downstream constraints. Like how we calculated 𝑈𝑖(𝑥𝑖), we need a function ℬ (𝐹𝑖 ,  𝐹𝑗 , 𝑈𝑖(⋅)) 

that can calculate the values of 𝑥𝑖 at node 𝑣𝑖 that can lead to at least one feasible state 𝑥𝑗 at 

one of the successors 𝑣𝑗 , i.e, 

 ℬ (𝐹𝑖 , 𝐹𝑗 , 𝑈𝑖(⋅)) = {𝑥𝑖 ∈ 𝐹𝑖|∃𝑢 ∈ 𝑈𝑖(𝑥𝑖),  𝑓(𝑥𝑖 , 𝑢) ∈ 𝐹𝑗} (13) 

However, this function is hard to compute and generates complex regions that will require 
more space to store, and more time to check during execution. Therefore, we calculate 
separate regions for each resource and use it to generate an approximate reduced feasible 

state space 𝐹̂𝑖 as follows: 

 𝒞(𝑟) (𝐹𝑖 ,  𝐹𝑗 , 𝑈𝑖(⋅)) = {𝑥𝑖
(𝑟) ∈ 𝐹𝑖

(𝑟)|∃𝑢 ∈ 𝑈𝑖(𝑥𝑖), 𝑓
(𝑟)(𝑥𝑖

(𝑟), 𝑢) ∈ 𝐹𝑗
(𝑟)}

𝐹̂𝑖,𝑗 =∏ (𝒞(𝑟) (𝐹𝑖 , 𝐹̂𝑗 , 𝑈𝑖(⋅)))

𝑟

𝐹̂𝑖 =∏ ⋃ 𝐹𝑖,𝑗
(𝑟)

𝑗, (𝑣𝑖,𝑣𝑗)∈𝐴𝑟

 (14) 

As in ℛ𝑖,𝑗, 𝐹̂𝑖,𝑗 is the empty set if any resource constraint cannot be satisfied. In this case, the 

edge (𝑣𝑖 , 𝑣𝑗) can be removed from the graph as it cannot appear in a feasible solution. We do 

the forward propagation before the backward, so, at the destination node 𝑣𝑛, we have that 

𝐹‾𝑛 = 𝐹̂𝑛 = ℛ̂𝑛. For example, if a node 𝑣𝑗 has a time-window [10,15] and the edge (𝑖, 𝑗) can 

have a duration in the interval [2,5], then 𝑣𝑖 must be visited in the time-window 
[10 − 5,15 − 2] = [5,13]. If a different edge (𝑣𝑖 , 𝑣𝑘) generated a propagated time-window of 
[7,17] on 𝑣𝑖, we would consider the union of both time-windows, i.e., [5,17]. Then we would 
take the intersection of 𝑣𝑖’s original time-window, say [0,15], and the time-windows obtained 
from propagating downstream constraints to obtain an estimated feasible time-window of 
[5,17]. Note that the interval [5,15] can be divided into an interval feasible for paths passing 
through 𝑣𝑖, [5,13], and one feasible for paths through 𝑣𝑘, [7,15]. The same can happen to 

other resource constraints. Therefore, it is possible that a state in 𝐹̂𝑖 only satisfies the time-
window for a certain path but satisfies the HOS resource constraints only for a different path. 

As all constraints are satisfied by some path, the state is included in 𝐹̂𝑖 , but, in practice, that 

state cannot generate feasible successors. So, we have that 𝐹̂𝑖 might contain states that cannot 

satisfy downstream solutions, i.e., 𝐹‾𝑖 ⊆ 𝐹̂𝑖 ⊆ 𝐹𝑖. Figure 2 shows a 2D example of the difference 

between reduced feasible state space 𝐹‾𝑖 and its approximation 𝐹̂𝑖. The blue region in Figure 2b  

belongs to 𝐹̂𝑖, but not to 𝐹‾𝑖. 
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Figure 2. The green and brown regions are examples of possible feasible regions in a 2D 
space. The figures show how the (a) exact and (b) approximate feasible spaces are calculated. 

Propagating the resources 

We separate the resource extension functions according to how they affect the resource being 
updated. The resource extension functions either add a value to the resource (ADD), maintain 

the current resource value (NoEff), or set the resource value to 0 (RESET). Let 𝑒 = (𝑣𝑖 , 𝑣𝑗) be an 

edge, [𝛿𝑒
−, 𝛿𝑒

+] be edge 𝑒’s possible durations defined in 𝑈𝑖. In the case of static networks, we 
use 𝑈𝑖 directly instead of 𝑈𝑖(𝑥). Let [𝜂𝑖

−, 𝜂𝑖
+] be the feasible values for resource 𝑟 at node 𝑣𝑖. 

The approximate propagation functions described previously are defined as follows for the 3 
types of REF: 

Forward Propagation 

ADD:  ℱ(𝑟) (𝐹𝑖 ,  𝐹𝑗 , 𝑈𝑖(⋅)) = [𝜂𝑖
− + 𝛿𝑒

−, 𝜂𝑖
+ + 𝛿𝑒

+]⋂[𝜂𝑗
−, 𝜂𝑗

+] 

NoEff: ℱ(𝑟) (𝐹𝑖 , 𝐹𝑗 , 𝑈𝑖(⋅)) = [𝜂𝑖
−, 𝜂𝑖

+]⋂[𝜂𝑗
−, 𝜂𝑗

+] 

RESET:  ℱ(𝑟) (𝐹𝑖 ,  𝐹𝑗 , 𝑈𝑖(⋅)) = {0}⋂[𝜂𝑗
−, 𝜂𝑗

+] 

Backward Propagation 

ADD:  𝒞(𝑟) (𝐹𝑖 , 𝐹𝑗 , 𝑈𝑖(⋅)) = [𝜂𝑗
− − 𝛿𝑒

+, 𝜂𝑗
+ − 𝛿𝑒

−]⋂[𝜂𝑖
−, 𝜂𝑖

+] 

NoEff: 𝒞(𝑟) (𝐹𝑖 ,  𝐹𝑗 , 𝑈𝑖(⋅)) = [𝜂𝑖
−, 𝜂𝑖

+]⋂[𝜂𝑗
−, 𝜂𝑗

+] 

RESET: 𝒞(𝑟) (𝐹𝑖 ,  𝐹𝑗 , 𝑈𝑖(⋅)) = {0}⋂[𝜂𝑗
−, 𝜂𝑗

+] 

 

(a) Blue dashed line: correct feasible space. (b) Blue dashed line: approximate feasible 

space. Blue region: infeasible. 



 18 

When a resource’s feasible range is a set of disjoint intervals, the functions above can be 
applied to each interval separately and we take the union of the resulting sets. Note that, in 
these REFs, the decision’s duration is directly used to update the resource values. When 
energy/fuel consumption is included as a resource, the update value will be a function of the 
duration, so the propagation function will depend on the consumption model used. 

Reduced Decision Space 

The reduced decision space is generated following the same idea. 

 

U̅i,j(xi, Ui(⋅), F̂j) = {u ∈ Ui(xi)|f(xi, u) ∈ F̂j} =⋂{u

r

∈ Ui(xi)|f
(r)(xi, u) ∈ F̂j

(r)} (15) 

 U̅i(xi, Ui(⋅), {F̂j}) = ⋃ U̅i,j(xi, Ui(⋅), Fĵ)

j, (vi,vj)∈A′

 (16) 

Let 𝜂𝑖 be the current value of resource 𝑟. The other symbols are defined as in the previous 
section. 

ADD: 𝑈‾𝑖,𝑗
(𝑟)(𝑥𝑖 , 𝑈𝑖(⋅), 𝐹̂𝑗) = {𝑢 ∈ 𝑈𝑖(𝑥𝑖)|𝑓

(𝑟)(𝑥𝑖 , 𝑢) ∈ 𝐹̂𝑗
(𝑟)} = [𝜂𝑗

− − 𝜂𝑖 , 𝜂𝑗
+ − 𝜂𝑖]⋂[𝛿𝑒

−, 𝛿𝑒
+] 

NoEff: 𝑈‾𝑖,𝑗
(𝑟)(𝑥𝑖 , 𝑈𝑖(⋅), 𝐹̂𝑗) = {

∅, 𝑖𝑓 𝜂𝑖 ∉ 𝐹̂𝑗
(𝑟)

[𝛿𝑒
−, 𝛿𝑒

+],  𝑜. 𝑤.
 

RESET: 𝑈‾𝑖,𝑗
(𝑟)(𝑥𝑖 , 𝑈𝑖(⋅), 𝐹̂𝑗) = {

∅, 𝑖𝑓 0 ∉ 𝐹̂𝑗
(𝑟)

[𝛿𝑒
−, 𝛿𝑒

+],  𝑜. 𝑤.
 

Analytical Solutions 

At nodes where the only possible next stop is the destination it is possible to analytically define 
the best decision so that the algorithm does not need to search over the remainder of that 
search tree branch. Naturally, the decision depends on the cost function and constraints being 
considered in the problem. Although we focus on diesel trucks, the problem formulation is very 
similar to the one needed to model battery electric trucks (BET). Therefore, this section 
considers the more general case used for BETs. This case can also be used if a limit is imposed 
on fuel consumption or emissions (set recharge rates to zero, and use emissions limit as battery 
capacity), or if fuel capacity and refueling time need to be considered (non-zero recharge rates, 
treating fuel capacity as battery capacity). The RCSPP formulation and REFs for BETs can be 
found in (Vital & Ioannou, 2021b). The solutions for diesel trucks without emissions limits or 
refueling concerns can be obtained by ignoring the battery constraint. 

Consider the following cost function for a decision of duration 𝛿: 

 
𝐶(𝛿) = {

𝛼𝛿 + 𝛽𝜇𝑒𝜁(𝜇𝑒/𝛿), 𝑖𝑓 𝑑𝑟𝑖𝑣𝑖𝑛𝑔

(𝛼 + 𝛽𝛾 + 𝜃)𝛿, 𝑜. 𝑤.
 (17) 
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, where 𝛼 is the trucks hourly operational cost (excluding fuel/energy) and 𝛽 is the cost per unit 
of fuel/energy. For non-driving decisions, 𝛾 is the hourly idling fuel/energy consumption, 𝜃 
represents hourly costs incurred while stopped from sources other than idle energy 
consumption and operational costs. For driving decisions, 𝜇𝑒  is the length of the road segment 
considered, and 𝜁(𝑣) is the fuel/energy consumption per unit of distance. This cost function 
considers both time and energy/fuel related costs, and their relative importance can be 
adjusted using the parameters 𝛼, 𝛽, and 𝜃. In this section, we study the optimal decisions for 
the last driving and rest extension decisions. 

Last driving decision 

 𝑑𝐶

𝑑δ
= α + βμ𝑒

𝑑ζ(𝑣)

𝑑δ
= α + βμ𝑒

𝑑ζ(𝑣)

𝑑𝑣

𝑑𝑣

𝑑δ
= α − βμ𝑒

𝑑ζ(𝑣)

𝑑𝑣

μ𝑒
δ2

= α − β𝑣2
𝑑ζ(𝑣)

𝑑𝑣
= 0 

(18) 

Cost is minimum for 𝛿 =
𝜇𝑒

𝑣̃
, such that 𝑣̃ is the root of 𝑣2

𝑑𝜁(𝑣)

𝑑𝑣
=
𝛼

𝛽
. Assuming that 𝜁(𝑣) is a 

convex function, and, consequently, 
𝑑𝜁

𝑑𝑣
 is monotonically non-decreasing, we can say that 

𝑣2
𝑑𝜁(𝑣)

𝑑𝑣
 is strictly increasing over (max(0, 𝑣′),∞), where 𝑣′ satifies 

𝑑𝜁(𝑣′)

𝑑𝑣
= 0. As 𝛼 and 𝛽 are 

positive, 𝑣̃ is unique. The function 𝑣2
𝑑𝜁(𝑣)

𝑑𝑣
 does not depend on the edge, so 𝑣̃ can be calculated 

beforehand. Let [𝛿, 𝛿
_
] be 𝛿’s domain, the optimal decision is given by: 

 

𝛿 = {

𝛿
_
, 𝑖𝑓 𝛿 < 𝛿

_

𝛿, 𝑖𝑓 𝛿 > 𝛿

𝛿, 𝑜. 𝑤.

 (19) 

Last rest extension 

Let 𝜌 be the recharge rate at the current location, 𝐵0 the battery charge on arrival at the 

current node,  𝛿0 ∈ [𝛿0, 𝛿0] the rest extension to be chosen, and 𝛿ℓ ∈ [𝛿ℓ, 𝛿ℓ] the duration of 

the decision at the following edge, which is the last driving edge. The cost from the rest node to 
the destination can be written as 𝐶(𝛿0, 𝛿ℓ) = (𝛼 + 𝛽𝛾 + 𝜃)𝛿0 + 𝛼𝛿ℓ + 𝛽𝜇𝑒𝜁(𝜇𝑒/𝛿ℓ). Assume 
that, due to the destination node’s resource constraints and the current state’s resource values, 

𝛿0 + 𝛿ℓ ∈ [𝐷,𝐷]. The optimization problem being solved at the last rest decision can be 

described as: 

 min
δ0,δl

𝐶(δ0, δl) = (α + βγ + θ)δ0 + αδl + βμ𝑒ζ(μ𝑒/δl) (20) 

s.t.: μ𝑒ζ(μ𝑒/δl) − δ0ρ − 𝐵0 ≤ 0 (21) 

 𝐷 ≤ δ0 + δl ≤ 𝐷 (22) 

 δ0 ≤ δ0 ≤ δ0 (23) 
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 δl ≤ δl ≤ δl (24) 

, where (21) guarantees that the battery charge is non-negative when arriving at the 
destination. (22) restricts the time to reach the destination, and can be related to both HOS and 
time-window constraints. (23) and (24) restrict the domains of 𝛿0 and 𝛿ℓ to the reduced 
decision space, which is affected by all constraints and the current state. Consider the following 
definitions: 

𝐻(𝑣) = 𝑣2
𝑑𝜁(𝑣)

𝑑𝑣

𝑃(𝑣) =
𝜇𝑒𝜁(𝑣) − 𝐵0

𝜌

∇𝐶 = [(𝛼 + 𝛽𝛾 + 𝜃) (𝛼 − 𝛽𝐻(𝑣))]

∇𝑔1 = [(−𝜌) (−𝐻(𝑣))]

𝑣̃, 𝐻(𝑣̃) =
𝛼

𝛽

𝑣̂, 𝐻(𝑣̂) = −
𝜃

𝛽
− 𝛾

𝑣̌, 𝐻(𝑣̌) = 𝜌

𝑣̆, 𝐻(𝑣̆) = 0

𝑣∗, 𝐻(𝑣∗) =
𝛼𝜌

𝛼 + 𝛽(𝜌 + 𝛾) + 𝜃

 

, where 𝑔1 represents constraint (21). 𝐻(𝑣) and 𝑃(𝑣) are auxiliary functions defined to simplify 
the notation and represent, respectively, the derivative of the energy consumption with respect 
to 𝛿ℓ and the minimum feasible 𝛿0 given 𝛿ℓ. The 𝑣’s with different accents are values used in 
the solution that can be calculated offline. 𝑣̃, 𝑣̂, and 𝑣∗ represent, respectively, the speeds at 
which the cost gradient ∇𝐶 is perpendicular to (23), (22), and (21). 𝑣̌ and 𝑣̆ are the speeds at 
which (21) is parallel to (22) and (23), respectively. Note that, given a distance 𝜇𝑒, each 𝑣 also 

defines a duration 𝛿ℓ, e.g. 𝛿ℓ =
𝜇𝑒

𝑣̂
. The accents on the 𝛿’s indicate which 𝑣 generate them. 

First, consider the case when (21) is not active (e.g., diesel trucks). The optimum point is given 
by: 

𝛿0 = {
𝛿0, 𝑖𝑓 𝛿0 + 𝛿ℓ ≥ 𝐷

min (𝛿0, 𝐷 − 𝛿ℓ,max(𝛿0, 𝐷 − 𝛿𝑙 , 𝐷 − 𝛿ℓ)) , 𝑜. 𝑤.

𝛿ℓ = {

𝛿ℓ, 𝑖𝑓 𝛿0 + 𝛿ℓ ≥ 𝐷

𝐷 − 𝛿0, 𝑖𝑓(𝛿0 + 𝛿ℓ < 𝐷) ∧ (𝛿0 ≠ 𝛿0)

min (𝛿ℓ,  max(𝛿ℓ, 𝛿𝑙 , 𝐷 − 𝛿0)) , 𝑜. 𝑤.

 

If the point (𝛿0, 𝛿ℓ) satisfies (21), then it is optimal. Otherwise, it means that (21) must be 
active. In this case, we can define 7 candidate points and the sufficient conditions for them to 
be the optimum. The candidate points are given by the point along 𝑔1 with minimum cost and 
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the points where (21) intersects other constraints, and the conditions conditions are derived 
from each point’s KKT conditions. Table 3 presents the candidate solutions and their conditions. 
Feasibility is a basic necessary condition for any solution, and was thus omitted from the table. 
𝑃−1(𝑣) refers to the inverse of 𝑃(𝑣) over the domain 𝑣 ∈ [𝑣̆,∞). The points 𝑥2 and 𝑥3, 
representing the candidates where (21) and one of the constraints forming (22) intersect, might 
be computationally expensive to calculate, so we can leave testing them for last. We can also 
use approximate solutions instead of solving it exactly. Note that the conditions are generated 
from speeds that can be calculated beforehand. Therefore, we may be able to directly eliminate 
some candidate solutions based on 𝛿ℓ’s domain. 

Table 3. Solution Candidates 

Point Condition 

𝑥1 = (𝑃(𝑣
∗), 𝛿ℓ

∗) - 

𝑥2 = (𝐷 − 𝛿2, 𝛿2),  𝑃(𝜇𝑒/𝛿2) = 𝐷 − 𝛿2 𝛿ℓ < 𝛿2 ≤ 𝛿ℓ
∗ 

𝑥3 = (𝐷 − 𝛿3, 𝛿3),  𝑃(𝜇𝑒/𝛿3) = 𝐷 − 𝛿3 𝛿ℓ
∗ ≤ 𝛿3 ≤ 𝛿ℓ 

𝑥4 = (𝛿0, 𝑃
−1(𝛿0)) 𝛿ℓ ≤ 𝑃

−1(𝛿0) ≤ 𝛿ℓ
∗ 

𝑥5 = (𝛿0, 𝑃
−1(𝛿0)) 𝛿ℓ

∗ ≤ 𝑃−1(𝛿0) ≤ 𝛿ℓ 

𝑥6 = (𝑃(𝜇𝑒/𝛿ℓ), 𝛿ℓ) 𝛿ℓ ≥ 𝛿ℓ
∗ 

𝑥7 = (𝑃(𝜇𝑒/𝛿ℓ), 𝛿ℓ) 𝛿ℓ ≤ 𝛿ℓ
∗ 

Cost Lower Bound 

Let 𝐴𝑑 ⊂ 𝐴′ represent the set of all arcs with driving as their assigned activity. For every node 
pair (𝑝, 𝑞) such that there is a directed path from 𝑝 to 𝑞 , let 𝒟(𝑝, 𝑞), 𝒟𝑑(𝑝, 𝑞), and 𝒟ℓ(𝑝, 𝑞) 
be, respectively, the minimum travel time (including service time), minimum driving time and 
minimum travel distance between nodes 𝑝 and 𝑞 with all resource, time-window and HOS 
constraints relaxed: 

𝒟(𝑝, 𝑞) = {
min(𝛥𝑝𝑞), 𝑖𝑓(𝑝, 𝑞) ∈ 𝐴′

min
(𝑝,𝑘)∈𝐴′

(min(𝛥𝑝𝑘) + 𝒟(𝑘, 𝑞)) , 𝑜. 𝑤.

𝒟𝑑(𝑝, 𝑞) = {

0, 𝑖𝑓(𝑝, 𝑞) ∈ 𝐴′ ∖ 𝐴𝑑

min(𝛥𝑝𝑞), 𝑖𝑓(𝑝, 𝑞) ∈ 𝐴𝑑

min
(𝑝,𝑘)∈𝐴′

(𝒟𝑑(𝑝, 𝑘) + 𝒟𝑑(𝑘, 𝑞)), 𝑜. 𝑤.

𝒟ℓ(𝑝, 𝑞) = {

0, 𝑖𝑓(𝑝, 𝑞) ∈ 𝐴′ ∖ 𝐴𝑑

𝜇𝑝𝑞 , 𝑖𝑓(𝑝, 𝑞) ∈ 𝐴𝑑

min
(𝑝,𝑘)∈𝐴′

(𝐷ℓ(𝑝, 𝑘) + 𝐷ℓ(𝑘, 𝑞)), 𝑜.𝑤.
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If there is no directed path from 𝑝 to 𝑞 , then 𝒟(𝑝, 𝑞) = 𝒟𝑑(𝑝, 𝑞) = 𝒟ℓ(𝑝, 𝑞) = ∞. 

Let 𝐷𝐻𝑂𝑆(𝑑, 𝜓) represent the minimum duration of a HOS-compliant trip with 𝑑 driving hours 
and initial resource vector 𝜓, assuming the driver can rest anywhere, and without considering 
service time and time-window constraints, i.e. if a driver were at the beginning of an empty 
straight road with length equivalent to 𝑑 driving hours where he/she can rest anywhere, given 
an initial resource vector 𝜓, how long would he/she take to reach the end of the road without 
breaking the HOS regulations. A method to calculate 𝐷𝐻𝑂𝑆(𝑑,𝜓) is described in (Vital & 
Ioannou, 2021a). Let 𝒟𝑠(𝑝, 𝑞) be the service time required between nodes p and q. If the 
objective were simply to minimize trip duration, the lower bound ℒ𝑑𝑢𝑟 can be calculated as: 

ℒ𝑑𝑢𝑟(𝑝, 𝑞, 𝜓) = 𝐷𝐻𝑂𝑆(𝒟𝑑(𝑝, 𝑞), 𝜓) + 𝒟𝑠(𝑝, 𝑞) 

However, when considering a combination of trip duration and energy/fuel consumption or 
emissions as the objective function, the lower bound generated using only the duration term 
(𝛼ℒ𝑑𝑢𝑟(𝑝, 𝑞,𝜓)) is too loose and not as useful. Therefore, we need a lower bound on the fuel 
consumption/emissions. 

Bound 1 

Idling cost: Let 𝛾 the energy/fuel consumption rate when idle (resting or service). A lower 
bound on the idling cost is given by: 

 ℒ𝑖𝑑𝑙1(𝑝, 𝑞,𝜓) = (𝛽𝛾 + 𝜃)(𝐷𝐻𝑂𝑆(𝒟𝑑(𝑝, 𝑞), 𝜓) − 𝒟𝑑(𝑝, 𝑞) + 𝒟𝑠(𝑝, 𝑞)) (25) 

𝒟𝑠 is fixed as client visits are mandatory. 𝒟𝑑  considers the minimum driving time of each edge, 
and 𝐷𝐻𝑂𝑆(𝑑, 𝜓) − 𝑑 is monotonically increasing in 𝑑 (required rest time cannot decrease when 
driving time increases), so ℒ𝑖𝑑𝑙1 is a lower bound on idling cost. Note that if the 
cost/consumption parameters for rest and service time are different, the term 𝒟𝑠(𝑝, 𝑞) will 
appear separately multiplying its own parameter. 

Driving consumption: Let 𝑣𝑚𝑖𝑛 be the minimum travel speed allowed in the network. We 
assume that the fuel consumption per time 𝐹𝐶(𝑣) is monotonically increasing in the range of 
speeds used in the problem, as is the case for the model we use. Therefore, 𝐹𝐶(𝑣𝑚𝑖𝑛) gives a 
lower bound on the energy/fuel consumption rate when driving. A lower bound on the 
consumption due to driving is given by: 

ℒ𝑓_𝑑𝑟1(𝑝, 𝑞) = 3600 ⋅ 𝐹𝐶(𝑣𝑚𝑖𝑛)𝒟𝑑(𝑝, 𝑞) 

An alternative is using the minimum travel distance 𝒟ℓ(𝑝, 𝑞) and the speed 𝑣ℓ that minimizes 
the fuel consumption per distance, 𝜁(𝑣), (or the nearest feasible speed) to generate a 
energy/fuel consumption lower bound. 

Cost: Consider the cost function defined in (1). A cost lower bound is given by: 

ℒ𝑐𝑜𝑠𝑡1(𝑝, 𝑞, 𝜓) =  𝛼ℒ𝑑𝑢𝑟(𝑝, 𝑞,𝜓) + 𝛽ℒ𝑓_𝑑𝑟1(𝑝, 𝑞) +  ℒ𝑖𝑑𝑙1(𝑝, 𝑞, 𝜓) 
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Note that the driving energy/fuel consumption bound is calculated using the minimum travel 
speed, whereas the idling cost and trip duration bounds are calculated using the maximum 
travel speed. Therefore, this bound is not tight. 

Bound 2 

When calculating analytical solutions in Last driving decision, we showed how to calculate the 
optimal speed based on energy/fuel and duration costs, and consumption model. We now use 
this information to refine the lower bound. 

Driving time: Bound 1 used a driving time considering the maximum travel speed. However, 
depending on the cost function, the cost increase due to fuel consumption at higher speeds 
may exceed savings due to shorter trip duration. Optimal solutions are expected to tend 
towards using the optimal speed 𝑣̃ (limited by possible increases in required rest time). With 
this in mind, we scale the driving time so that it represents the travel time at the optimal speed 
(or the nearest feasible speed). 

𝑣𝑡 = 𝑚𝑎𝑥(𝑚𝑖𝑛(𝑣̃, 𝑣𝑚𝑎𝑥), 𝑣𝑚𝑖𝑛)

𝒟̃𝑑(𝑝, 𝑞) = 𝒟𝑑(𝑝, 𝑞)
𝑣𝑚𝑎𝑥
𝑣𝑡

 

This scaling assumes that all edges have the same speed limits and optimum speed. An 
alternative (but still assuming that all edges have the same optimum speed) would be to use 
the length of the minimum length path, 𝒟ℓ(𝑝, 𝑞), to estimate a lower bound on the driving cost 
when traveling with speed 𝑣𝑡. A more general approach would be to, when building the graph, 
calculate 𝑣𝑡 for each edge, and store in each edge the travel time and cost associated with 𝑣𝑡. 
The stored costs can be used to calculate a minimum cost path and its driving time. In both 
alternatives, the minimum cost (we refer to it as ℒ𝑑𝑟_𝑐𝑜𝑠𝑡(𝑝, 𝑞)) can be used as a lower bound 
on the driving related costs (due to both emissions and duration) and we would require only to 
complement it with a lower bound on the idling costs (due to both emissions and duration). 

It is important to remember that, due to HOS regulations, increasing driving time may end up 
increasing required rests. The extra rest time caused by driving time scaling is given by: 

𝛬 = 𝐷𝐻𝑂𝑆(𝒟̃𝑑(𝑝, 𝑞), 𝜓) − 𝒟̃𝑑(𝑝, 𝑞) − (𝐷𝐻𝑂𝑆(𝒟𝑑(𝑝, 𝑞), 𝜓) − 𝒟𝑑(𝑝, 𝑞)) 

Trip duration and fuel consumption are calculated following the same ideas as Bound 1 but 
using the scaled driving time and correcting trip duration and idling time to remove the extra 
rest time. 

Trip Duration: The trip duration is calculated as follows: 

ℒ𝑑𝑢𝑟2(𝑝, 𝑞, 𝜓) = 𝐷𝐻𝑂𝑆(𝒟̃𝑑(𝑝, 𝑞),𝜓) − 𝛬 + 𝒟𝑠(𝑝, 𝑞) 

Idling cost: The idling cost lower bound is given by the same expression as (25) due to the rest 
time correction, i.e., 

ℒ𝑖𝑑𝑙2(𝑝, 𝑞,𝜓) = ℒ𝑖𝑑𝑙1(𝑝, 𝑞,𝜓). 
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Driving consumption: Energy/fuel consumption due to driving is given by: 

ℒ𝑓_𝑑𝑟2(𝑝, 𝑞) = 3600 ⋅ 𝐹𝐶(𝑣𝑡)𝒟̃𝑑(𝑝, 𝑞) 

Cost: A cost lower bound is given by: 

ℒ𝑐𝑜𝑠𝑡2(𝑝, 𝑞, 𝜓) =  𝛼ℒ𝑑𝑢𝑟2(𝑝, 𝑞, 𝜓) + 𝛽ℒ𝑓_𝑑𝑟2(𝑝, 𝑞) +  ℒ𝑖𝑑𝑙2(𝑝, 𝑞, 𝜓) 

Note that while ℒ𝑑𝑢𝑟2(𝑝, 𝑞, 𝜓) ≥ ℒ𝑑𝑢𝑟(𝑝, 𝑞,𝜓) and ℒ𝑓_𝑑𝑟2(𝑝, 𝑞) ≥ ℒ𝑓_𝑑𝑟1(𝑝, 𝑞), ℒ𝑑𝑢𝑟2 and 

ℒ𝑓_𝑑𝑟2 are consistent with respect to the travel speed used for their calculation, and use a 

speed that minimizes cost (not accounting for mandatory rests). As the rest (idling) time is kept 
as the one from the minimum duration path, the rest time is the minimum feasible. Decreasing 
ℒ𝑑𝑢𝑟2 would imply that one or more edges are using a speed greater than the optimal, causing 
an increase in fuel consumption costs that exceeds the savings in trip duration costs. Similarly, 
decreasing ℒ𝑓_𝑑𝑟2, would cause an increase in trip duration costs, and increase overall cost. 

Therefore, ℒ𝑐𝑜𝑠𝑡2  is a lower bound. Each term is not a lower bound for the value it 
approximates, but they are calculated so that they generate a cost lower bound. If the driving 
cost lower bound ℒ𝑑𝑟_𝑐𝑜𝑠𝑡(𝑝, 𝑞) is calculated directly, then the cost lower bound is given by: 

ℒ𝑐𝑜𝑠𝑡2(𝑝, 𝑞, 𝜓) = ℒ𝑑𝑟_𝑐𝑜𝑠𝑡(𝑝, 𝑞) + (𝛼 + 𝛾𝛽 + 𝜃) (𝐷𝐻𝑂𝑆(𝒟𝑑(𝑝, 𝑞), 𝜓) − 𝒟𝑑(𝑝, 𝑞) + 𝒟𝑠(𝑝, 𝑞))⏟                            
𝑖𝑑𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

 

Graph Preprocessing 

In the approximate dynamic programming algorithm used, we store the decision and cost for 
several states at each node. Therefore, having a large number of intermediate nodes between 
rest areas increases both the number of decisions needed to reach the destination and the 
storage space required by the algorithm. Furthermore, when optimizing travel speed to reduce 
fuel consumption, the precision with which speed can be adjusted depends on the time 
resolution used in the decision space, but also on the length of any given edge. If an edge is too 
short, any change in duration might generate a travel speed outside of the allowed range. In 
order to reduce the number of nodes in the graph, we use a stop-based graph based on the 
road network and remove short edges between nearby rest areas (e.g., only consider rest areas 
that are at least 2h away from the current node). By stop-based graph we mean a graph that 
directly links possible stop locations (origin, rest areas, clients), analogous to customer-based 
graphs used for vehicle routing problems. However, the graph is not complete as each location 
is connected only to locations that were downstream in the original road network. As clients 
are mandatory stops and have a fixed order, nodes are not directly connected to nodes 
downstream of the next client. It can be seen as generating the stop-based graph based on the 
subnetworks connecting each pair of consecutive clients, as opposed to using the whole 
network directly. Figure 3 shows a graph representing a road network, whereas Figure 4 shows 
the stop-based graph that would be generated from that network. As our experiments set the 
same speed profile for all edges, each edge (𝑖, 𝑗) of the stop-based graph was generated using 
the length of the minimum distance path between nodes i and j in the road network and setting 
the same speed profile used in the road network. We assume that a stop-based graph is known 
or can be obtained by the user, and do not cover the specifics of its construction for general 
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networks. Algorithms to construct customer-based graphs for time-dependent road networks 
were proposed in (Ben Ticha et al., 2021). 

Given a stop-based graph, we remove edges that have distance or minimum travel time shorter 
than chosen limits, except when one of the edge’s nodes is a client, the origin, or the 
destination. In our experiments, the time and distance limits were set to 2h and 100km, 
respectively. In addition, as HOS regulations limit driving time, edges with minimum travel time 
greater than 8h were also removed. Although it is possible for the fastest path between 
locations to vary with time in time-dependent networks, we assume that edge lengths 
(distance) are fixed in the stop-based graph. 

 

Figure 3. Example graph focusing on the road network. Focuses on rest area (nodes with 
letter indexes) placement along main roads. Easy to visualize but has a large number of 
intermediate nodes (nodes with number indexes). 

 

Figure 4. Stop-based graph generated from Figure 3 to focus on the connection between 
possible stops (rest areas, clients, origin, destination). Each possible stop is directly connected 
to downstream stops satisfying predetermined conditions. Dashed arrows exemplify edges 
that could be removed for being too short or too long. 
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Modifications for time-dependent networks 

The dynamic programming formulation presented in section Dynamic Programming 
Formulation and Rollout Algorithm already represents the decision space as a function of the 
state (𝑈(𝑥𝑘)), so it is general enough to represent the time-dependent case and does not need 
any modification. However, the analytical solutions, lower bounds and the methods presented 
for constraint propagation are described for time-independent networks and need some 
clarification. 

• Constraint Propagation: Although travel time affects all resources, due to the FIFO 
assumption, we focus the modifications on the time resource. Let the function 𝑎𝑖𝑗(η𝑖) 

represent the arrival time at node  𝑗  when departing node  𝑖  at time η𝑖, and we use an 
under-bar to indicate when the minimum speed is being considered, and an over-bar to 
indicate when the maximum speed is being considered. During forward propagation, we 

replace [η𝑖
− + δ𝑒

−, η𝑖
+ + δ𝑒

+] by [𝑎𝑖𝑗(η𝑖
−), 𝑎𝑖𝑗(η𝑖

+)]. During backward propagation, we 

replace [η𝑖
− − δ𝑒

+, η𝑖
+ − δ𝑒

−] by [𝑎𝑖𝑗
−1(η𝑖

−), 𝑎𝑖𝑗
−1(η𝑖

+)], the superscript ` −1 ' refers to the 

inverse function. As we assume that the speed profiles satisfy FIFO assumptions, both 
𝑎𝑖𝑗 and 𝑎𝑖𝑗 are strictly increasing and have unique inverses. For the other (non time) 

resources, we simply take δ𝑒
− and δ𝑒

+ as the lower and upper bounds for the travel time 
at any time instant. Another possibility is to use [η𝑖

−, η𝑖
+] to calculate the range of 

possible travel times for these departure/arrival times. However, this method can only 
provide a better range if the interval  [η𝑖

−, η𝑖
+] is narrow and does not span a wide range 

of possible travel times. 

• Analytical Solutions: The analytical solution for the last driving decision, described in 
section Last driving decision, is not affected by the time-dependent travel time as the 
departure time is fixed and known. The last rest extension decision is affected by the 
change in travel time, so the one described in section Last rest extension is not valid 
anymore. In this case, we did not calculate a new solution, and opted to stop using 
analytical solutions for those cases.  

• Cost Lower Bound: Similar to the case of HOS constraints propagation, we use the 
upper and lower speed bounds over the whole planning period to calculate the bounds 
described in section Cost Lower Bound. 

Parking Availability Uncertainty  

The model presented in section Problem Description considered that parking availability could 
be predicted with certainty. However, in practice, there is a certain level of uncertainty in any 
prediction, and the longer the prediction horizons the less certain we can be about any 
prediction. Therefore, we now model parking availability in a probabilistic way. The previous 
formulation represented parking availability as time-windows at each rest area. Two possible 
ways of extending this formulation are: 

• Stochastic Time-Windows: we assume that there is a continuous time interval within 
which parking is guaranteed, but we are unsure of the exact start and end times. The 
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time-window's start and end times are given by random variables with known 
distribution. Parking availability is defined indirectly, depending on whether the arrival 
time falls within that interval or not. So, we would need to consider the probability of 
arriving after the start of the time-window, but before its end. The deterministic model 
could be seen as an approximation using the expected values of the time-window’s 
limits, or values that satisfy some confidence level. This model would ignore the small 
occupancy variations that can occur. For example, overnight, most of the parking spaces 
are taken by long-term parking. However, unless ALL parking spaces are used for long-
term parking, there will still be some trucks leaving on occasion. 

• Stochastic Parking Availability: directly model parking availability as a random variable 
with a time-dependent probability distribution, i.e., at any time  𝑡  , there is a probability 
𝑝𝑖(𝑡) of rest area  𝑖  having an available parking space. In this approach, the probability 
of finding parking can be calculated directly, without worrying about how the 
distributions of time-windows’ limits interact. The small variations that occur even at 
high occupancy periods can be modeled by a very small, but non-zero, probability of 
finding parking during that period. The deterministic model can be seen as time-
windows defined by the intervals at which 𝑝𝑖(𝑡) exceeds a given threshold. 

We take the second approach, modeling stochastic parking availability directly. A new binary 
component  𝑤 , representing whether parking is available at the current location (Yes:1, No:0), 
is added to the state definition. This component can be used to control the actions available to 
drivers at rest areas, e.g., if parking is available ( 𝑤 = 1 ), the driver needs to choose for how 
long to rest, if the rest area is full, the driver needs to revise the trip plan and decide whether to 
search for nearby alternative parking locations or to continue driving. The new state contains 
the following information: 

• Current node ( 𝑣 ) 

• Time when node was visited (𝜂0) 

• Accumulated driving time since last break (𝜂𝑏) 

• Elapsed time since last daily rest (𝜂𝑟) 

• Accumulated driving time since last daily rest (𝜓𝑟) 

• Accumulated on-duty time since last weekly rest (𝜓𝑤) 

• Parking availability ( 𝑤 ) 

We define the update rule for  𝑤  as 𝑤𝑖+1 = 𝑓
(𝑤)(𝑥𝑖 , 𝑢𝑖 , ω) =, where  ω is a binary random 

variable characterized by a probability distribution 𝑃(⋅ |𝑥𝑖 , 𝑢𝑖). As  𝑤  aims to model the parking 
availability at rest areas, it is set to default values at other locations as needed. The dynamic 
programming formulation presented before can be updated as follows: 
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𝐽∗(𝑥) = min
𝑢∈𝑈(𝑥)

𝐸ω {𝑔(𝑥, 𝑢, ω) + 𝐽
∗(𝑓(𝑥, 𝑢, ω))} 

= min
𝑢∈𝑈(𝑥)

∑𝑃(ω|𝑥, 𝑢) (𝑔(𝑥, 𝑢, ω) + 𝐽∗(𝑓(𝑥, 𝑢, ω)))

1

ω=0

 
(26) 

It is important to note that as we are considering parking availability to be stochastic, it might 
be impossible to guarantee parking at all times. As long as the probability of finding parking at 
the visited locations is not 1, it is possible for a driver to try to park at every single location 
without success until the next location is too far to be reached without exceeding HOS 
constraints. Therefore, the model must include what happens in those cases. If the driver 
exceeds the HOS limits, the truck’s monitoring equipment might automatically shut down the 
truck, and the driver would be stuck somewhere inconvenient for a while. The driver might face 
legal penalties, maybe a fine or license suspension. If the driver stops at a road shoulder or 
highway ramp, there is an associated risk of causing accidents or being fined. In any case, the 
model must consider that such scenarios are possible, what actions can be taken and what are 
their consequences/costs. 

Recourse Actions 

We consider two possible ways for a driver to react when unable to find parking at the current 
location: reroute and try to rest at a downstream facility, or look for an alternative parking 
location in the surrounding region. Essentially, the driver needs to decide whether it is feasible 
to stop later or if they need to stop right away. The deterministic model included three types of 
actions at rest areas, each one representing an off-duty period that resets the counter for a 
certain set of regulations. In the stochastic model, if parking is available, the same set of actions 
is used, but when parking is unavailable, we consider that all 3 rest actions are prohibited. 
Instead, we include the actions search and exit: 

• Exit: represents the action of leaving the rest area and heading to the next location 
without resting, and is connected to the exit node of the rest area in the problem’s 
graph representation. 

• Search: represents the action of looking for an alternative parking option nearby, and it 
leads to the entrance node of an alternative parking location. The alternative parking 
location will behave the same way as a regular parking location, except by the fact that 
penalty costs will be incurred for its usage. 

Figure 5 shows a diagram of the actions available at rest areas after including the recourse 
actions.  The search action's duration can be used as a time penalty that forces drivers to adjust 
the rest of the trip, and it can have cost penalties included in it. Essentially, it is any action that 
will lead to having a location to rest without driving to another one of the facilities included in 
the graph. For the purpose of calculating fuel consumption, searching is treated as driving at a 
user-defined speed. In our experiments, we only apply penalties for the search action if its 
duration exceeds the driver's remaining allowed driving time. In this case, we assume that the 
driver would need to park at a location even worse than usual in order to avoid HOS violations, 
hence incurring some extra penalties (both a fixed penalty and one proportional to the excess 
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duration). In the alternative parking locations, we do not include time penalties as that was 
already considered in the search edge, but they may have both fixed and variable costs 
assigned to them (on top of the usual time and fuel consumption costs). Note that we want to 
model the fact that drivers can react to the lack of parking and we use these generic actions to 
do so. Whether drivers will drive around for a while looking for parking and then park at a road 
shoulder, or will make use of some service to arrange for appropriate parking, depends on the 
options available in the region, drivers/companies preferences and the risks/costs involved with 
each option. One could even include multiple sets of alternative parking locations and recourse 
actions, e.g., one for looking for a road shoulder to park at, and another for using an expensive 
service that offers guaranteed parking or driver replacement. 

 

Figure 5. Subgraph representing the actions that can be taken at rest areas after inclusion of 
recourse actions and alternative parking locations. 

Policy 

Our objective is to give drivers and planners good recommendations about how to plan their 
trips. The policy obtained takes the current state of the system and outputs the decision that 
minimizes a certain cost (or whatever estimate we have of that cost). As can be seen in (26), in 
the stochastic case we optimize an expected value of the cost function, so the policy cost is a 
single value representing that expectation. However, it might be interesting for the user to 
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visualize more information about this cost. As shown in (6), to calculate the policy cost we need 
to simulate its effect on the system by recursively applying the policy. When doing this, we 
generate a decision tree describing how the system evolves under that policy given an initial 
state. The tree branches out at decisions leading to rest areas, as the state when arriving at the 
rest area depends on the random variable representing parking availability. As parking 
availability can only take binary values, this system is easier to simulate than systems where the 
random variables can take a large or infinite number of values (e.g., a continuous interval). 
Although that decision tree is readable only for very small problems, we can use it to calculate 
the probability distribution of any cost function, regardless of if it was actually considered 
during the policy generation or not. The decision tree gives us the possible paths and their 
probabilities, so if we know how to calculate the target information given the path, we can 
calculate the probability distribution of that information. For example, we can generate a policy 
that minimizes the estimated trip duration, then simulate that policy to find out how it affects 
the likelihood of using alternative parking, the probability distribution of emissions, etc. The 
time it takes to calculate that information depends on how fast the policy function can be 
evaluated and how many states need to be visited, so it will increase if the trip is longer or has 
many rest stops (rest stops cause branching). 

Imperfect Information 

Studying this question of simulating the cost/effects of a given policy raised another concern. 
Similar to how lookahead policies optimize an approximate cost, which is usually different from 
its own policy cost, policies may be calculated based on information or assumptions that do not 
match reality. For example, companies that disregard parking difficulties might generate 
policies based on the assumption that all rest areas are available 24/7. Even if that policy is 
calculated without using approximations and is the optimal policy for a scenario satisfying the 
assumption, it can show significantly different results when applied to the real world. 
Therefore, we think it is interesting to study how imperfect information affects different 
policies. This can give us some insight on the value of information and severity of cost 
misestimation. 

For clarity, we redefine the policy used, differentiating between the model used by the planner 
and the ones used for simulation, where the models define the probability distributions, cost 
functions and state transition functions considered. Let π𝑝(𝑥𝑘) be a one-step lookahead policy 

calculated using a model  𝑝, and 𝐽π𝑝,𝑠(𝑥𝑘) be the cost of applying policy π𝑝 when a model  𝑠  is 

taken as the ``world model'' for simulation. 

 π𝑝(𝑥𝑘) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢∈𝑈(𝑥𝑘)𝐸ω𝑝 {𝑔𝑝(𝑥𝑘, 𝑢, ω𝑝) + 𝐽 (𝑓𝑝(𝑥𝑘, 𝑢, ω𝑝))} 

 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢∈𝑈(𝑥𝑘)∑ 𝑃𝑝(ω𝑝|𝑥𝑘 , 𝑢) (𝑔𝑝(𝑥𝑘 , 𝑢, ω𝑝) + 𝐽 (𝑓𝑝(𝑥𝑘 , 𝑢, ω𝑝)))
1
ω𝑝=0  

Jπp,s(xk) = {
0, if xk ∈ Xd

Eωs {gs(xk, πp(xk),ωs) + Jπp,s (fs(xk, πp(xk), ωs))} ,o.w.
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As in the deterministic case, we use a rollout algorithm, so the approximate cost function is the 
policy cost of a base policy. Our base policy is the optimal policy over a coarsely discretized 
decision space. However, now it is important to emphasize that, as the simulation model might 
be unknown to the planner, the planning model is the one used to calculate the base policy's 
cost, i.e.: 

J̃(xk) = {
0, if xk ∈ Xd

min
u∈Ũ(xk)

Eωp {gp(xk, u, ωp) + J̃ (fp(xk, u, ωp))} ,o.w.
 

, where 𝑈(𝑥𝑘) is the coarsely discretized decision space. This project's experiments consider 
the following cases: 

• Full Information (Scenario 0): drivers have full access to parking availability probability 
distributions, and arrival time at rest areas is not restricted. 

• Time-window + Deterministic (Scenarios 1-3): drivers assume that parking is 
guaranteed within certain time-windows generated from experience or data. As in the 
deterministic case, drivers can only arrive at rest areas within the given time-windows. 

• Time-window + Uncertainty (Scenarios 4-6): drivers have access to the parking 
availability probability distribution within given time-windows. However, arrival at rest 
areas is still limited to within these time-windows. 

Scenarios 1-3 were implemented while trying to limit modifications to the system’s basic 
routines. They use a deterministic view of the world, so they were implemented by bypassing 
the usage of probability distributions when calculating the policies. Modifications to the current 
implementation of cost functions and policies are required to facilitate the decoupling between 
the information used during planning and the ``world model'' used for simulation/evaluation. 

Experiments  

The following sections present the results of experiments performed on static and time-
dependent networks. The marginal operational cost per hour does not account for fuel costs 
and is set to $54.77 (similar to $54.71 found in (Murray & Glidewell, 2019)). The emission 
coefficient is set to 3.13 kg 𝐶𝑂2/L (0.44 from production (Argonne National Laboratory, 2020) 
and 2.69 from combustion (U.S. Energy Information Administration, 2016)), diesel prices were 
set to 1$/L, and the emission costs are set to 18𝑒−3$/𝑘𝑔𝐶𝑂2 (California Air Resources Board, 
2021). The relative importance of reducing emissions is controlled by applying a penalty 
multiplier to the emission cost. The deterministic scenarios were also used to compare the 
effectiveness of the cost lower bounds presented in section  Cost Lower Bound, and the results 
were included in section Stochastic Scenarios. We implemented our algorithm in Python 3.8, 
and all experiments were run on an Intel Core i7, 2.6 GHz CPU with 32 Gb of RAM. We would 
like to note that the obtained running times could be reduced by implementing the algorithm in 
faster languages, such as C, C++ or Java, however, this is not the focus of this work. 
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Static Network 

The results presented were obtained using the lower bound described in section Bound 2.  The 
rollout policy used a sampled decision space with 0.5h sampling interval, and the base policy is 
the optimal solution when using a sampled decision space with 5h sampling interval and 
stopping if a solution is within 5% of the cost lower bound. 

Figure 6 presents the improvements obtained in CO2 emissions when the penalty multiplier is 
increased under different parking availability conditions. We see up to 5-7% decrease in CO2 
emissions, with the smaller improvements happening in scenarios with narrow time-windows. 
Figure 7 and Figure 8 show the effects of different penalty multipliers on the average trip 
duration and nonpenalized trip cost, respectively. Although there are some outliers with more 
than 20% increase in trip duration or cost, the average increases in duration and cost are under 
15% and 7%, respectively, in all scenarios.  Figure 9 presents the average running time varies 
with the penalty multiplier. The instances placing a higher priority on emissions reductions 
show significantly longer running times. This is possibly due to the bounds on trip duration 
being tighter than the bounds on the multi-objective cost accounting for both duration and 
emissions. Nevertheless, as the penalty multiplier does not affect feasibility, solving faster 
instances first and using their solutions to generate upper bounds for slower instances might 
improve performance. This approach is tested in the experiments over time-dependent 
networks (section Time-Dependent Network). Table 4 to Table 7 present the results for each 
network separately. 

 

Figure 6. CO2 emissions as a fraction of the baseline emission. The baseline emission for each 
scenario is the value obtained with penalty multiplier of 1. 
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Figure 7. Trip duration as a fraction of the baseline duration. The baseline duration for each 
scenario is the value obtained with penalty multiplier of 1. 

 

Figure 8. Nonpenalized cost as a fraction of the baseline cost. The baseline cost for each 
scenario is the value obtained with penalty multiplier of 1. 
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Figure 9. Running time as a fraction of the baseline cost. The baseline running time for each 
scenario is the value obtained with penalty multiplier of 1. 

Time-Dependent Network 

Including time-dependent travel times increases problem complexity so an extra heuristic was 
included to improve performance. As can be seen in the static network experiment results, the 
problem is significantly faster to solve when lower penalty values are used, so we solved the 
instances with small penalty first and used the solutions to generate upper bounds for instances 
with larger penalty. The solution for penalty 1 instances were used to generate upper bounds 
for the instances with penalty 10, which were used to improve instances with penalty 50, and 
so on. The results presented were obtained using the lower bound described in section Bound 2 
and do not include the time spent solving smaller instances. The rollout policy used a sampled 
decision space with 0.2h sampling interval, and the base policy is the optimal solution when 
using a sampled decision space with 2h sampling interval and stopping if a solution is within 1% 
of the cost lower bound. 

Figure 10 presents the improvements obtained in CO2 emissions when the penalty multiplier is 
increased under different parking availability conditions. As in the static case, we see up to 5-
7% decrease in CO2 emissions, with the smaller improvements happening in scenarios with 
narrow time-windows. On the other hand, the impact of higher penalty values on trip duration 
and cost is substantially larger than in the static case. Although Figure 11 shows that emissions 
reduction comes at the cost of significant increases in trip duration, we can also notice that 
when parking availability is scarce the increase in trip duration is not as severe. This behavior is 
also reflected in the costs shown in Figure 12. Whereas scenarios with wide and medium time-
windows showed average cost increases of up to 30%, scenarios with narrow time windows 
showed an average cost increase of around 12% when the penalty multiplier is set to 1000. 
These results illustrate the significance of the impact of parking availability conditions and HOS 
regulations in the cost-benefit analysis of prioritizing emissions reduction during planning. 

Figure 13 shows the increases in running time relative to the instances with penalty equal to 1. 
Even though the solutions of instances with low penalty are being used as upper bounds for the 
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instances with high penalty, there is still a significant increase in the average running time. 
Possible reasons for this are: the lower bounds are tighter when lower penalties are used; the 
significantly larger increases in the penalty multiplier from 100 to 500 and from 500 to 1000 
(compared to 1-10, 10-50) make it so the solutions used as upper bounds are not as efficient as 
for scenarios with closer penalties. Nevertheless, the faster running times for low penalty 
solutions make it convenient to solve a low penalty instance first and use its solution as an 
upper bound for high penalty instances. Table 8 to Table 11 present the results for each 
network separately. 

 

Figure 10. CO2 emissions as a fraction of the baseline emission. The baseline emission for each 
scenario is the value obtained with penalty multiplier of 1. 

 

Figure 11. Trip duration as a fraction of the baseline duration. The baseline duration for each 
scenario is the value obtained with penalty multiplier of 1. 
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Figure 12. Nonpenalized cost as a fraction of the baseline cost. The baseline cost for each 
scenario is the value obtained with penalty multiplier of 1. 

 

Figure 13. Running time as a fraction of the baseline cost. The baseline running time for each 
scenario is the value obtained with penalty multiplier of 1. 

Uncertain Parking Availability 

Our experiments used the same probability distribution for all locations. The parking availability 
probability distribution was set so that the likelihood of finding parking is low at night and high 
during the day. This behavior reflects drivers’ usual complaints regarding difficulty to find 
parking for overnight rests. In practice, historical data should be used to define a probability 
distribution for each rest area. 
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Figure 14. Function used to define the probability of finding parking at a given rest area and 
time. 

Due to the increased complexity, the minimum travel time between rest areas was increased to 
4h. In addition, experiments were run only in a subset of the networks used in the deterministic 
experiments. The objective function includes an hourly penalty of $10/h when parked illegally, 
and a fixed penalty of $100 per illegal parking event. We set the search when parking is 
unavailable to 0.5h. We apply a fixed penalty of $100 if the driver has less than 0.5h of 
remaining driving time, plus a variable penalty of $300/h applied on the difference between the 
search time and the remaining drive time. Even when parking at unauthorized locations, drivers 
still need some time to search for a less risky one. Therefore, we apply this penalty to represent 
both the increased risk of parking at a worse location due to lack of time, and the risk of not 
being able to find a location to park before exceeding regulations' limits. As described in section 
Imperfect Information, the scenarios used vary according to the information available to 
drivers/planners and the weight given to CO2 emissions. In Scenario 0, drivers know the 
probability of finding parking at every location and time. For scenarios 1-3, drivers assume that 
parking is always available within given time-windows. These time-windows are defined as time 
intervals when the probability of finding parking is equal to or larger than a certain threshold. 
Scenarios 1, 2 and 3 use, respectively, 0.95, 0.77, and 0.59 as thresholds. Scenarios 4, 5 and 6 
use the same time-windows as scenarios 1, 2 and 3, but drivers know that parking is not 
guaranteed and know the probability of finding parking at each time within those windows. 

Results 

Figure 15 presents the emissions, trip duration, and trip cost of one of the test networks. When 
full information is used (scenario 0), the results reflect well the intent of the cost functions 
used. Scenarios with larger CO2 penalties result in lower emissions even at the cost of higher 
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trip cost and duration, and worse results have decreasing probabilities. Scenarios 1 to 3 
generate somewhat disorderly probability distributions with average performance inferior to 
scenario 0 and larger variances. In these scenarios, the CO2 penalty is unable to control the CO2 
emissions as effectively. For example, in scenario 2 of Network 5, the average CO2 emissions 
with penalty 50 is larger than with penalty 1. 

Figure 16 presents the probability distributions for parking-related performance measures for 
each test network for scenarios 0 to 3. As for Figure 15, scenario 0 has a significantly better 
performance, with decreasing probabilities for worse outcomes and similar behavior for all 
networks. On the other hand, scenarios 1 to 3's performance is less consistent and more 
sensitive to the network. 

Figure 17 and Figure 18 present the same performance measures, but comparing scenarios 4 to 
6 with scenario 0. In all these scenarios the driver has full information about the probability of 
finding parking. However, in the scenarios 4 to 6, drivers are restricted to the same time-
windows considered in scenarios 1 to 3. We can see that by informing drivers about the parking 
uncertainty and including this information in the planning algorithm, the performance is 
significantly less affected by the time-windows used. The drop in performance is not as 
pronounced, and the results are less sensitive to scenario parameters, keeping the exponential-
like shape of the distributions found for scenario 0. Although restricting drivers' decisions to 
these time-windows can negatively impact performance, it significantly reduces problem 
complexity, thus reducing running time. One possible approach it to use policies generated 
from narrow time-window scenarios as base policies for the rollout algorithm. Table 12 to Table 
15 present the expected values for the performance measures used in Figure 15 to Figure 18 for 
each network, scenario and CO2 penalty value. 
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Figure 15. Probability distribution of CO2 emissions, trip duration and trip cost (with CO2 
penalty parameter set to 1) of the decision policies obtained for network 5. 
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Figure 16. Probability distribution performance measures related to illegal parking for 
networks 0,2,4 and 5, with CO2 penalty set to 1. 
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Figure 17. Probability distribution of CO2 emissions, trip duration and trip cost (with CO2 
penalty parameter set to 1) of the decision policies obtained for network 5. 
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Figure 18. Probability distribution performance measures related to illegal parking for 
networks 0, 2, 4 and 5, with CO2 penalty set to 1. 
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Feasibility of Commercialization and possible model extensions  

In this section, to assess the feasibility of commercialization, we discuss the project’s strengths 
and shortcomings. We begin by recalling the project objectives, followed by system 
requirements, potential benefits, and the disadvantages that could hinder implementation. 

Objectives 

The project objective is to integrate eco-routing, parking information, and regulation-aware 
scheduling to develop models able to better describe the practical constraints faced by drivers 
in realistic scenarios. Such a model can be used not only by individual drivers as a trip planning 
aid but also by policymakers to analyze the impacts of policy or investment decisions (e.g., 
changes in environmental policy, parking infrastructure, road network, and HOS regulations) on 
truck routes, schedules, costs, and emissions. 

Requirements 

Parking Data: The main requirement for any implementation of this system is for truck parking 
availability data to be available. Ideally, real-time parking availability should be available for all 
parking facilities being considered. Currently, truck parking data is available only in a limited 
number of parking facilities used as testbeds for intelligent truck parking systems and in some 
private truck stops with reservation systems. It might be feasible to test this system in regions 
where a sufficient number of parking facilities provide availability information, but this could 
significantly limit drivers’ parking options. Another option would be to use rough estimates 
based on surveys or user experience to guide planning (e.g., avoid stopping at region A after 6 
PM) and gradually update these guidelines according to user feedback. 

Consumption Models: In our experiments, we used consumption models found in the 
literature. For better emissions estimates, the system would need consumption models for the 
main truck models in operation and models to be used for less common models, or a 
reasonable/convenient way to estimate models for particular vehicles as needed. 

Map Information: The system would need road networks information, including information on 
which routes can be accessed by trucks, speed limits, historical data on average travel speed, 
and the ability to estimate future travel speeds (possibly accounting for planned events). This 
kind of information should already be available in today’s GPS guidance systems. 

Benefits 

Illegal Truck Parking:  Truck parking is a critical issue in the USA, and it can have a significant 
impact on the environment and industry costs. Integrating truck parking information in the 
planning process can mitigate this issue by recommending safer itineraries to drivers. Although, 
in general, parking availability is uncertain, and we cannot guarantee a parking space, by 
including this uncertainty in the model, users can better manage the risks. In scenarios where 
parking availability is deterministic, e.g., reservation systems, a scenario that guarantees 
parking is generated. 
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Emission Reduction: The scenarios studied showed reductions of up to 5-8% on average CO2 
emissions, which come at the cost of increases on average trip duration and average trip cost. 
However, results showed a large variance, with some instances having more than 40% increase 
in trip duration and cost, especially when considering time-dependent speed limits. These 
results show that, at times, prioritizing emissions might be too costly and illustrate the 
importance of improving the models used to evaluate the impact of any policy and investment 
decisions. The proposed model can help estimate the level of emissions reduction that can be 
expected for different regions and types of vehicles, at what cost, and how they are affected by 
the region’s truck parking infrastructure. 

Disadvantages 

Cost Increase and Adoption:  Safer and environmentally friendly itineraries can significantly 
increase trip duration (and, consequently, cost), hindering voluntary adoption of any such 
system unless some incentive is provided. The proposed model provides a way to generate 
regulation and parking-aware routes with a user-defined level of importance given to emissions 
and estimate the suggested routes' cost, duration, and emissions. However, we do not address 
how to encourage drivers and companies to adopt such a system. That said, policymakers could 
use the model to estimate their decisions' impact on the trucking industry and truck parking 
demand. 

System-Level Effects:  In this project, we consider the problem of planning trips for individual 
vehicles, and we do not account for the effects that each driver's decisions would have on the 
overall parking availability. This can be seen as assuming that a relatively small number of 
drivers use the system. If adopted on a large scale without taking system-wide effects into 
account, similar recommendations could be given to many drivers and end up having adverse 
effects. Therefore, the proposed model could be used for simulations or small-scale tests, but 
further research is required to make it adequate for large-scale deployment. 

Scalability: The problem treated is very complex, requiring decisions on route, schedule, and 
travel speeds, depending on traffic conditions, HOS regulations, and parking availability 
information. Therefore, as trip length, duration, and the number of routes and parking facilities 
considered increase, the problem turns intractable fairly quickly. This problem can be alleviated 
by limiting the number of routes considered using heuristics or user knowledge, and grouping 
nearby parking facilities as a single location. Besides network size, the resolution used for 
decisions also has a significant impact on problem complexity. Our experiments use a resolution 
of 0.5h for decisions on trips with average durations between 28h and 60h, resulting in average 
running times ranging from 1s to 330s. This shows that, for similar-sized problems, there is still 
some margin to increase the resolution, network size, or relax some of the heuristics used. 
Especially if we consider that, as the interval between rests is relatively long, drivers could 
generate a schedule with a lower resolution right before the trip and let the system refine it 
while driving. However, running time sharply increases when longer trips are considered, 
especially for trips where on-duty time reaches the 60h limit, and 34h rests need to be 
scheduled. Another issue is that speed optimization is sensitive to link lengths and decision 
space's time resolution. Speed cannot be controlled if the link's minimum travel time is too 
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short, as any increase in travel time might push the speed beyond the minimum limit. The 
network can be preprocessed to merge short links, but fuel consumption calculation will be 
affected when the speed information for different links is merged into a single link. As the 
consumption model is nonlinear, the average travel time over the concatenated/merged link 
will generate a different consumption than the sum of the links' consumptions (when using 
their own average speeds). As merging links also helps improve algorithm performance by 
decreasing the number of decisions required, using the original links and increasing the 
resolution so that speed can be controlled would slow the algorithm down substantially. 
Therefore, we lose some accuracy in the emission estimates due to scalability issues. 

Conclusion 

The main issues for commercialization are the lack of truck parking availability data, scalability, 
and the need to study the systemwide effects that would be caused by a large-scale 
deployment. The current state of the USA's truck parking infrastructure is unfavorable for 
systems that rely on parking availability information such as the one developed in this project. 
Due to the limited availability of truck parking data, usage would be limited to regions and 
routes with facilities able to provide data, or to applications where it is acceptable to use rough 
estimates based on user experience or surveys. For example, if used to estimate the impact of 
policy decisions, it might suffice to perform periodic surveys of the parking conditions in order 
to determine reasonable simulation parameters. Furthermore, even in the absence of parking 
data, drivers might appreciate the option of defining time periods when they would rather 
avoid certain parking facilities based on past experience, even if that is not as accurate as data 
provided by intelligent parking systems. We believe that, currently, the potential for 
commercialization is low as a standalone system, but parts of it could be gradually integrated 
into existing routing/scheduling/planning systems for small-scale experimentation. We 
recommend as a primary direction for future research studying how large-scale usage of this 
type of planning algorithm would affect truck parking demand, and ways to coordinate 
decisions so as to avoid adverse effects. 

Conclusion 

In this study, we addressed a variant of the shortest path and truck driver scheduling problem 
under parking availability constraints which focuses on optimizing fuel consumption and 
emissions by controlling the truck's travel speed and accounting for time-dependent traffic 
conditions. As it is impossible to be absolutely certain about the future parking availability of 
any location during planning, we also studied the case of stochastic parking availability. 

When studying the trade-offs between prioritizing emissions reduction or trip duration, we 
found that although focusing on emissions reduction can increase trip duration significantly, 
this impact is greatly reduced when considering scenarios with limited parking availability. We 
also present a cost lower bound that combines HOS requirements with information on optimal 
speeds for particular cost functions, and can be used to significantly speed-up problem solution 
in deterministic scenarios, both static and time-dependent. 
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The resource-constrained shortest path formulation was further extended to model drivers 
possible recourse actions when unable to find parking and the ensuing costs. We used this 
formulation to study how the solutions are affected by the level of information provided to 
drivers. We found that ignoring uncertainty in parking availability results in inconsistent 
performance even when restricting parking to periods when probability of finding parking is 
high. Furthermore, results might not reflect the intent of the cost function used, e.g., 
minimizing illegal parking events and/or the priority assigned to emissions reduction. Giving 
drivers full information about the probability of finding parking at any time/location 
significantly improves performance and reduces illegal parking-related risks, but also 
substantially increase problem complexity and computation time. Using full information 
regarding parking availability but restricting the parking times to high availability time-windows 
can reduce complexity while maintaining consistent, although reduced, performance. 
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Data Summary  

Products of Research 

The data generated are simulation data presented in plots and tables in the final report. 

Data Format and Content 

The data is presented as tables and plots in the final report, and consists of average emissions, 
durations and costs, as well as experiments' average running times. 

Data Access and Sharing 

The data is included in the final report. 

Reuse and Redistribution 

The data will be published as part of the final report. 
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Appendix A Experiment Results 

Static Networks 

Detailed Results 

Table 4. Static Network Scenarios: Avg. CO2 Emissions (Kg) 

Penalty  1 10 50 100 500 1000 

Network Time-Window       

0 Wide 2927 2927 2896 2767.1 2767.1 2767.1 

0 Medium 2927 2927 2886.4 2767.1 2767.1 2767.1 

0 Narrow 2927 2927 2833.6 2791 2791.9 2791.9 

1 Wide 4126.6 4128 4051.7 3919.2 3813.9 3811.2 

1 Medium 4131.2 4131.2 3993.2 3965.3 3949.9 3962.1 

1 Narrow 4161.3 4161.3 4056.2 4033.1 4023.6 4037.8 

2 Wide 2849.7 2849.7 2765 2632.5 2632 2632 

2 Medium 2849.7 2849.7 2697.4 2632.5 2632 2632 

2 Narrow 2849.7 2849.7 2711 2688.1 2687.4 2687.9 

3 Wide 4147.1 4138.1 3925.5 3668.2 3658.5 3654.3 

3 Medium 4154.8 4143.3 3900.7 3903.5 3583.9 3580.8 

3 Narrow 4203.6 4203.6 4090.6 3993.1 3773.7 3759 

4 Wide 2797.3 2797.3 2633.7 2609.1 2609.1 2609.1 

4 Medium 2797.3 2797.3 2646.1 2633.2 2625.8 2625.8 

4 Narrow 2834.6 2835 2782.9 2771.9 2761.4 2753.5 

5 Wide 2467 2467 2272.1 2167.8 2166.3 2166.3 

5 Medium 2467 2467 2272.1 2180.6 2179.1 2179.1 

5 Narrow 2467 2467 2321.7 2235.1 2263.5 2270.1 

6 Wide 3853.2 3836 3788.4 3589.2 3512.7 3683.1 

6 Medium 3816 3838.7 3702.7 3688.3 3684.6 3684.6 

6 Narrow 3889 3893.5 3797.5 3741 3764.5 3764.5 

7 Wide 2973.7 2973.7 2856.4 2830.6 2830.6 2830.6 

7 Medium 2969.1 2969.1 2858.8 2830.6 2830.6 2830.6 

7 Narrow 3006.2 3006.2 2907.7 2907.7 2880.4 2872.7 

8 Wide 3785.8 3785.8 3457.9 3447.2 3457.6 3448.8 

8 Medium 3751.8 3751.1 3557.6 3551.3 3504.3 3479.5 

8 Narrow 3711.2 3719.4 3623.2 3646.9 3599.8 3584.7 

9 Wide 2826.2 2826.2 2817.6 2633.6 2661.7 2661.7 

9 Medium 2826.2 2826.2 2733.7 2633.6 2661.7 2638.7 

9 Narrow 2826.2 2826.2 2690.5 2692.2 2686.4 2673.3 
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Table 5. Static Network Scenarios: Avg. Duration (h) 

Penalty  1 10 50 100 500 1000 

Network Time-Window       

0 Wide 30.6 30.6 31 33.1 33.1 33.1 

0 Medium 30.6 30.6 31.1 33.1 33.1 33.1 

0 Narrow 30.6 30.6 31.9 32.5 32.6 32.6 

1 Wide 48.4 48.4 49.3 51.2 53.3 53.9 

1 Medium 48.3 48.3 50 50.5 51.2 51 

1 Narrow 51.5 51.5 52.9 53.3 53.8 53.5 

2 Wide 30.1 30.1 31.1 32.9 32.9 32.9 

2 Medium 30.1 30.1 32 32.9 32.9 32.9 

2 Narrow 30.1 30.1 31.8 32.3 32.3 32.3 

3 Wide 49.3 49.4 53.2 59.9 61 67.6 

3 Medium 49.1 49.3 53.1 53.2 68.1 68.2 

3 Narrow 50 50 51.9 54.1 69.4 70.8 

4 Wide 29.7 29.7 32.2 33.1 33.1 33.1 

4 Medium 29.7 29.7 32 32.4 32.7 32.7 

4 Narrow 34.7 34.8 35.3 35.7 36.7 37.3 

5 Wide 26.9 26.9 29.4 32.4 32.5 32.5 

5 Medium 26.9 26.9 29.4 32.2 32.3 32.3 

5 Narrow 26.9 26.9 28.8 31.2 32.2 32.5 

6 Wide 46.2 45.9 46.8 50.6 52 48.9 

6 Medium 46.5 46.2 48.2 48.7 49.2 49.2 

6 Narrow 49.2 49.2 50.3 51.3 50.2 50.2 

7 Wide 30.9 30.9 32.6 32.6 32.6 32.6 

7 Medium 31 31 32.5 32.6 32.6 32.6 

7 Narrow 32.6 32.6 33.3 33.3 34.7 35.2 

8 Wide 45.9 45.9 50.3 50.7 51 51.4 

8 Medium 46.4 46.4 48.9 49.3 50.9 52.6 

8 Narrow 50.1 50.1 50.7 51.2 54 54.7 

9 Wide 29.9 29.9 30 32.4 32.7 32.7 

9 Medium 29.9 29.9 31.1 32.4 32.7 39.9 

9 Narrow 29.9 29.9 31.7 31.7 32.1 35.7 
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Table 6. Static Network Scenarios: Avg. Nonpenalized Cost ($) 

Penalty  1 10 50 100 500 1000 

Network Time-Window       

0 Wide 2664.3 2664.3 2676.5 2748.4 2748.4 2748.4 

0 Medium 2664.3 2664.3 2679.7 2748.4 2748.4 2748.4 

0 Narrow 2664.3 2664.3 2702.8 2723.5 2729.3 2729.3 

1 Wide 4042.4 4042.1 4067.4 4128.6 4208 4238.4 

1 Medium 4041.3 4041.3 4088.7 4105.1 4139.3 4132.4 

1 Narrow 4226.7 4226.7 4264.4 4282.7 4305.4 4291.9 

2 Wide 2608.7 2608.7 2638.3 2692 2692.9 2692.9 

2 Medium 2608.7 2608.7 2661.1 2692 2692.9 2692.9 

2 Narrow 2608.7 2608.7 2656.3 2673.8 2675.2 2678.1 

3 Wide 4098.7 4103.8 4240.2 4519.2 4574.4 4933.4 

3 Medium 4093 4097.4 4224.9 4233.3 4941.2 4945.6 

3 Narrow 4155.8 4155.8 4222.2 4310.3 5072.9 5146.7 

4 Wide 2571.3 2571.3 2653 2694 2694 2694 

4 Medium 2571.3 2571.3 2646.2 2661.6 2676.4 2676.4 

4 Narrow 2859.3 2862.2 2874.7 2891.3 2940.9 2969.5 

5 Wide 2308.6 2308.6 2379.8 2507.3 2510 2510 

5 Medium 2308.6 2308.6 2379.8 2500.6 2503.4 2503.4 

5 Narrow 2308.6 2308.6 2360.9 2464.9 2529 2545.2 

6 Wide 3828.7 3808.5 3844 3982.7 4035.2 3920.2 

6 Medium 3835.1 3825.9 3887.1 3912.1 3939.9 3939.9 

6 Narrow 4009.9 4008.7 4035.4 4070.8 4021.9 4021.9 

7 Wide 2698.2 2698.2 2746.8 2738.1 2738.1 2738.1 

7 Medium 2699.4 2699.4 2744.6 2738.1 2738.1 2738.1 

7 Narrow 2798.2 2798.2 2804.8 2804.8 2872.6 2894.7 

8 Wide 3792.9 3792.9 3919.7 3937.8 3960.1 3980.6 

8 Medium 3806.8 3806.9 3880.1 3898.5 3971.3 4057.2 

8 Narrow 3994.9 3997.7 3998.3 4037.5 4173.6 4205.7 

9 Wide 2592 2592 2594 2663.9 2688 2688 

9 Medium 2592 2592 2626.3 2663.9 2688 3077.9 

9 Narrow 2592 2592 2646.7 2644 2664.6 2856.3 
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Table 7. Static Network Scenarios: Avg. Running Time (s) 

Penalty  1 10 50 100 500 1000 

Network Time-Window       

0 Wide 0.4 0.4 1.1 2.2 8.8 13.3 

0 Medium 0.3 0.3 0.3 0.9 3.6 5.6 

0 Narrow 0.2 0.2 0.2 0.3 1 1.5 

1 Wide 1.6 1.6 2.8 7.5 32.4 40.3 

1 Medium 1.1 1.1 1.6 3.6 12.3 15.8 

1 Narrow 0.4 0.5 0.7 0.9 3.2 4.3 

2 Wide 0.2 0.2 0.6 1.6 6.4 9.4 

2 Medium 0.1 0.1 0.2 0.7 2.5 3.9 

2 Narrow 0.1 0.1 0.1 0.2 0.6 0.9 

3 Wide 3.7 3.4 6.1 10 22.1 26.9 

3 Medium 5.1 5.2 6.5 12.7 27.5 27.4 

3 Narrow 1.7 1.7 2.1 3.3 6.4 7.2 

4 Wide 2 1.6 1.4 1.5 3.3 3.4 

4 Medium 1.2 1 0.8 1 1.8 2 

4 Narrow 0.8 0.7 0.6 0.6 0.9 0.9 

5 Wide 0.4 0.3 0.5 1.8 5.8 7.1 

5 Medium 0.3 0.4 0.5 1 3.2 4.4 

5 Narrow 0.3 0.3 0.4 0.5 1.4 2 

6 Wide 12.4 10.9 16.1 33.1 96.1 126.9 

6 Medium 6 6 9.2 16.3 38.5 50.3 

6 Narrow 1.7 1.7 2.8 4.2 9 12 

7 Wide 0.2 0.2 0.5 0.6 2 2.7 

7 Medium 0.2 0.2 0.3 0.4 0.9 1.3 

7 Narrow 0.2 0.2 0.2 0.2 0.4 1 

8 Wide 3.4 2.7 3.6 6.6 14.5 16.8 

8 Medium 1.8 1.7 2.3 3.6 7.5 7.7 

8 Narrow 0.9 0.9 1 1.4 2.3 2.6 

9 Wide 0.5 0.5 0.9 2.1 9 11.5 

9 Medium 0.3 0.3 0.4 1.1 3.6 5.1 

9 Narrow 0.3 0.3 0.3 0.4 1 1.5 

Lower Bound Impact 

The experiments for both lower bounds used sampling intervals of 0.5h and 5h for the decision 
spaces of the rollout policy and base policy, respectively. Figure 19 shows the running time 
obtained using each lower bound. Bound 2 showed significant performance improvements. 
Figure 20 shows the ratio between the running time from bounds 2 and 1 on the left, and the 
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ratio between the objective function values on the right. Half of the instances showed a 
reduction of at least 76% in running time. 

 

Figure 19. Histogram of the running time of simulations performed with bounds 1 and 2 
separated by the penalty multiplier used. 

 

Figure 20. Cumulative distribution of the ratio between results (left: running time, right: 
objective function) obtained with bounds 2 and 1. 
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Time-dependent Networks 

Detailed Results 

Table 8. Time-dependent Scenarios: Avg. CO2 Emissions (Kg) 

Penalty  1 10 50 100 500 1000 

Network Time-
Window 

      

0 Wide 2796.7 2796.7 2763.5 2754.4 2554.4 2559.7 

0 Medium 2802.3 2798 2745.7 2745.6 2617.1 2573 

0 Narrow 2798.1 2798.1 2733.5 2729.9 2639.3 2612.1 

1 Wide  3927.8 3915.1 3842.2 3806.4 3780.5 3741.7 
1 Medium 3916.3 3903.9 3833.4 3846.1 3792.1 3776.3 

1 Narrow 3995.1 3995.1 3892 3881.1 3873.6 3817 

2 Wide 2680.6 2682.6 2639.5 2632.8 2504 2498.8 

2 Medium 2688.2 2683.3 2647.3 2637.8 2531.1 2504.4 

2 Narrow 2745.2 2745.2 2698.9 2682 2647.2 2572.6 
3 Wide 3992 3992 3833.1 3433.3 3418.4 3418.4 

3 Medium 3958.5 3938.3 3835.4 3753.1 3440.8 3447.6 

3 Narrow 3868.2 3858.7 3802.3 3794.7 3519.9 3521.8 

4 Wide 2700.1 2699.9 2694.4 2639 2492.4 2476.4 

4 Medium 2712.4 2710.9 2693 2702.4 2498.5 2525.5 
4 Narrow 2711 2711 2688.4 2668.4 2564.9 2573.2 

5 Wide 2360.2 2355.5 2264.2 2164.9 2156 2156 

5 Medium 2316.4 2316.4 2255.6 2170.6 2162.1 2162.1 

5 Narrow 2310.9 2307.4 2259.9 2193.9 2205.6 2199.5 
6 Wide 3600.7 3600.7 3547.3 3412.5 3423.9 3421.2 

6 Medium 3595.8 3595.8 3531.9 3416.8 3445.7 3425.2 

6 Narrow 3631.2 3631.4 3551.7 3530.5 3523.8 3487.7 

7 Wide 2856.8 2825.9 2822.9 2822.9 2666.7 2665.3 

7 Medium 2851.4 2839.1 2832.1 2832.2 2666.5 2665.3 
7 Narrow 2916.1 2914.3 2825.4 2797 2745.1 2724.6 

8 Wide 3606.7 3593.5 3433.5 3433.2 3431 3337 

8 Medium 3599 3591.5 3441.3 3443.6 3444.9 3365.9 
8 Narrow 3624.6 3622.5 3504.8 3481.7 3489.4 3465.1 

9 Wide 2661.9 2659 2598.3 2598.3 2604.3 2484.2 
9 Medium 2660.9 2660.9 2603.3 2603.3 2604.1 2522.7 

9 Narrow 2663 2662.7 2621.9 2628.9 2612.3 2588.9 
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Table 9. Time-dependent Scenarios: Avg. Duration (h) 

Penalty  1 10 50 100 500 1000 
Network Time-Window       

0 Wide 32.8 32.8 33.3 33.4 49.2 49.1 

0 Medium 33.2 33.2 33.8 33.8 44.8 50.6 

0 Narrow 39.4 39.4 40.3 40.6 47.6 50.1 

1 Wide 51.1 51.2 52.3 53.3 56.4 60.4 

1 Medium 51.5 51.6 52.8 52.7 56.5 59.1 

1 Narrow 58.1 58.1 59.1 59.7 62.1 70.3 

2 Wide 31.9  31.9  32.6  32.8  50.6  52.6  

2 Medium 32.1  32.2  32.7  33  48.9  52.4 

2 Narrow 37.8  37.8  38.4  38.9  42.2  52.8 

3 Wide 51.7 51.7 53.8 64.4 67.5 67.6 

3 Medium 52.2 52.3 53.8 56.5 71.7 72 

3 Narrow 58.4 58.4 59 59.5 75.8 76.5 

4 Wide 32.6 32.6 33 33.9 44.5 47.7 

4 Medium 32.7 32.7 32.9 32.8 50.2 49 

4 Narrow 43.3 43.3 43.5 43.9 50.4 51.2 
5 Wide 28.2 28.3 29.4 32.1 33.4 33.4 
5 Medium 28.7 28.7 29.7 32 32.8 32.8 
5 Narrow 29.1 29.1 29.9 31.9 32.1 32.5 
6 Wide 49 49 49.8 53.1 54.4 55 
6 Medium 49.1 49.1 50.2 53 54.9 60.6 
6 Narrow 51.7 51.7 52.9 53.5 57.3 67.6 
7 Wide 34.1 34.2 34 33.8 51.7 52 
7 Medium 34.7 34.8 34.9 34.9 51.8 52 
7 Narrow 46.3 46.3 47.9 48.7 51.3 55.2 
8 Wide 48 48.1 50.4 50.4 50.5 70.8 
8 Medium 48.1 48.2 50.4 50.5 51.1 65.4 
8 Narrow 49.9 49.8 51.4 51.8 53.5 57.8 
9 Wide 31.8 31.8 32.8 32.8 32.9 48.4 
9 Medium 31.8 31.8 32.7 32.7 33.1 43.6 
9 Narrow 32.6 32.6 33 33 35 40.3 
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Table 10. Time-dependent Scenarios: Avg. Nonpenalized Cost ($) 

Penalty  1 10 50 100 500 1000 
Network Time-Window       

0 Wide  2740.9  2740.9  2754.6  2757.9  3557.5  3551.1 

0  Medium  2763.5  2765  2775.4  2775.7  3336.8  3640.2  

0  Narrow  3100  3100  3128.9  3144.9  3495.2  3622.9  

1 Wide  4122.9  4125.1  4161.6  4201.7  4367.1  4570.7  

1 Medium  4144.3  4146  4183.3  4184.9  4373.8  4511.4 

1 Narrow  4531.7  4531.7  4552.2  4578.2  4707  5136.1  

2  Wide  2654.6 2655.2 2676.1 2684.3 3617.7 3722.5 

2 Medium 2667.8 2667.6 2686.3 2697.8 3533.7 3713.6 

2 Narrow 2997.9 2997.9 3012.2 3035.5 3205.8 3761.1 

3 Wide 4179.6 4179.6 4240.8 4686.3 4852.5 4854.3 

3 Medium 4192.5 4193.7 4239.6 4363.3 5085.8 5108.1 

3  Narrow 4501.4 4500.5 4515.6 4539.6 5338.5 5377.4  

4  Wide 2696.3 2698.4 2718.8 2750 3276.1 3448.2  

4  Medium 2709  2706.9 2713.4 2710.6 3593.6 3535.1  

4 Narrow 3287.3 3287.3 3291.8 3307.1 3625.9 3672.6 

5 Wide 2342.9 2343.6 2376 2489.8 2556.4 2556.4 
5 Medium 2351.5 2351.5 2388.7 2487 2523.5 2523.5 
5 Narrow 2372 2372.3 2400.7 2487.6 2502.7 2523 
6 Wide 3898.9 3898.9 3926.4 4060.5 4132.3 4164.8 
6 Medium 3904.6 3904.6 3942.2 4054.6 4167.5 4472.3 
6 Narrow 4054.7 4056.1 4095.8 4123.2 4326.2 4880.5 
7 Wide 2830.8 2829.4 2815.6 2802.3 3732.7 3749.7 
7 Medium 2863.2 2865.3 2864.9 2864.9 3734.4 3749.7 
7 Narrow 3519.2 3519.4 3574.4 3612.2 3738.5 3944.9 
8 Wide 3843.8 3846.6 3919.2 3919.1 3924 5002.4 
8 Medium 3848.1 3849.4 3919.4 3929 3961.3 4718.6 
8 Narrow 3955.6 3951.5 3995.4 4012.1 4108.6 4336.8 
9 Wide 2638.5 2638.5 2674.4 2674.4 2683.1 3489.2 
9 Medium 2639.2 2639.2 2671.1 2671.1 2689.6 3237.5 
9 Narrow 2682 2686.6 2692.9 2696.9 2800 3081.2 
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Table 11. Time-dependent Scenarios: Avg. Running Time (s) 

Penalty  1 10 50 100 500 1000 
Network Time-Window       

0 Wide 17.1 11.1 19.5 37.8 53.8 72.3 

0 Medium 12.3 6.7 9.7 14.3 21.9 33 

0 Narrow 14.9 9.3  8.8  9  12.2 18.8 

1  Wide  16  4.5  6.7  16.5  49.6  84.5  

1  Medium  12.8  2.3  2.4  10.1  36.9  36.5  

1  Narrow  52.8  20.2  16.5  23.8  30.8  41.2  

2  Wide  4.1  1.6  1.7  4.6  21.1  13.4 

2 Medium  1.2  1  1.2 2.1  9  5.6 

2  Narrow  5.7  1.8  1.8  3.2  4.2  5.6 

3 Wide 329.2 16.7 26.3 39.4 43.2 33 

3 Medium 96.1 7.9 12 31.9 46.3 26.6 

3 Narrow  40.9  11.6  13.5  15.6  20.8  22.8  

4  Wide  41.1  6.9  7.6  14  15.7  21.2  

4  Medium  18  3.3  4  5.9  10.6  12.1 

4 Narrow 11 6.2 4.7 5.3 5.6 7.1 

5 Wide 4.4 1.8 2.5 3.9 3.8 4.3 

5 Medium 2.8 1 1.6 2.6 3 3.3 
5 Narrow 2.3 0.7 0.7 1.2 1.6 1.6 
6 Wide 98.8 14.2 17.9 46.2 98.3 59.9 
6 Medium 26.6 6.5 7.8 21.4 106.7 127.3 
6 Narrow 11.1 9.2 7.9 13.7 57.5 64.2 
7 Wide 1.8 3.6 4 3.8 18.3 22.4 
7 Medium 1.5 2.2 2.4 2.5 7.8 10.4 
7 Narrow 6.9 4.3 4.8 5.3 5.4 5.5 
8 Wide 130.9 10.5 14.8 21.7 143.1 238.9 
8 Medium 26 4.9 6.7 15.3 50.2 67.9 
8 Narrow 10.9 7.6 7.1 11.2 25.1 32.9 
9 Wide 7.6 2.8 3.7 7.6 11.7 22.7 
9 Medium 3.3 1.7 2.5 4.7 5.7 10.1 
9 Narrow 1.9 1.7 1.7 2.9 3.7 6.3 

Lower bound impact 

The experiments ran using the lower bound from Bound 1 used sampling intervals of 0.5h and 
5h for the decision spaces of the rollout policy and base policy, respectively. Figure 21 shows 
the running time obtained using each lower bound.  Bound 2 showed significant performance 
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improvements even though the experiments used higher resolutions. The improvement is 
focused mostly on the higher penalty instances, which were also the slowest ones. Figure 22 
shows the ratio between the running time from bounds 2 and 1 on the left, and the ratio 
between the objective function values on the right. While lower penalty instances showed 
some increase in running time, the performance of around 80% of all instances improved, 
especially for higher penalty values, the ratio is mostly lower than 1. The objective function 
ratio shows that most instances showed improvements in the solution, which is expected as the 
experiments using bound 2 use a higher resolution. However, some instances showed a slightly 
worse solution. This is caused by the differences in search space due to using different sampling 
intervals for the decision space. 

 

Figure 21. Histogram of the running time of simulations performed with bounds 1 and 2 
separated by the penalty multiplier used. 
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Figure 22. Cumulative distribution of the ratio between results (left: running time, right: 
objective function) obtained with bounds 2 and 1. 
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Stochastic Scenarios 

Table 12. Stochastic Scenarios 1-3: Average Duration/Emissions/Cost 

  Scenario 0 1 2 3 
Field Net Penalty     

Trip Duration (h) 0 1 35.923 45.103 46.784 48.500 
  50 35.923 45.103 47.022 55.796 

  500 48.026 47.075 54.000 56.000 

 2 1 40.831 46.000 46.000 46.500 
  50 42.450 46.882 46.500 46.500 

  500 47.726 47.500 53.500 54.000 
 4 1 40.275 45.518 46.000 46.500 

  50 42.173 45.518 46.000 46.500 

  500 44.962 45.537 50.990 50.000 

 5 1 36.796 47.841 63.135 46.000 

  50 36.889 46.224 63.135 46.000 
  500 46.166 48.485 58.215 73.025 

CO2 (kg) 0 1 2,814.387 2,791.348 2,842.667 2,935.984 

  50 2,812.992 2,791.332 2,826.517 2,802.933 

  500 2,705.267 2,762.947 2,706.953 2,765.926 

 2 1 2,796.374 2,695.222 2,738.839 2,794.807 
  50 2,674.378 2,627.899 2,688.314 2,794.807 

  500 2,543.236 2,615.785 2,586.881 2,695.069 
 4 1 2,759.585 2,634.713 2,674.284 2,681.677 

  50 2,628.449 2,634.713 2,674.284 2,681.677 

  500 2,548.114 2,634.560 2,624.490 2,642.914 
 5 1 2,817.781 2,857.288 2,979.517 2,878.386 

  50 2,811.225 2,681.212 3,002.406 2,878.386 
  500 2,649.735 2,659.140 2,709.030 2,868.101 

Non Penalized 
Cost 

0 1 2,962.632 3,960.290 4,068.968 4,445.840 

  50 2,966.606 3,960.304 4,056.589 4,518.105 

  500 3,587.345 4,068.575 4,441.346 4,838.189 
 2 1 3,200.070 3,918.177 3,844.269 3,770.075 

  50 3,248.139 3,768.851 3,564.817 3,770.075 

  500 3,524.830 3,798.615 4,020.220 4,464.673 
 4 1 3,157.618 3,853.365 3,650.251 3,488.688 

  50 3,227.038 3,853.365 3,650.251 3,488.688 
  500 3,361.747 3,854.353 3,951.879 4,180.341 

 5 1 2,994.704 4,025.289 5,208.110 3,910.644 

  50 2,997.580 3,668.034 5,066.641 3,910.644 

  500 3,464.060 3,768.341 4,641.981 6,263.692 
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Table 13 Stochastic Scenarios 1-3: Parking-related Performance 

  Scenario 0 1 2 3 

Field Net Penalty     
Illegal Parking 
(Events) 

0 1 0.159 1.687 1.788 1.950 

  50 0.159 1.687 1.743 1.305 
  500 0.167 1.687 1.410 1.950 

 2 1 0.100 1.180 1.180 0.885 
  50 0.100 1.266 0.316 0.885 

  500 0.150 1.266 0.510 1.950 

 4 1 0.100 1.230 1.036 0.109 
  50 0.100 1.230 1.036 0.109 

  500 0.150 1.230 0.690 1.180 

 5 1 0.150 1.986 3.135 1.000 

  50 0.150 1.068 2.598 1.000 

  500 0.150 1.050 1.410 2.850 
Illegal Parking 
Duration (h) 

0 1 1.720 16.605 17.023 14.630 

  50 2.165 16.605 16.520 19.077 

  500 1.379 17.592 13.370 15.810 
 2 1 1.000 13.225 14.135 10.739 

  50 1.025 12.261 3.961 10.739 

  500 1.025 12.261 4.180 15.741 

 4 1 1.000 12.666 10.577 1.297 

  50 1.000 12.666 10.577 1.297 
  500 1.025 12.666 5.980 16.276 

 5 1 0.669 23.025 33.514 13.930 

  50 0.669 10.313 28.043 13.930 

  500 1.602 10.089 17.467 42.349 

HOS Violation 
Risk (Events) 

0 1 0.093 0.917 0.838 1.900 

  50 0.093 0.917 0.793 1.037 

  500 0.061 0.917 1.410 1.950 
 2 1 0.000 1.180 0.950 0.475 

  50 0.003 0.316 0.266 0.475 
  500 0.150 0.316 0.510 1.000 

 4 1 0.003 1.000 0.086 0.059 

  50 0.050 1.000 0.086 0.059 
  500 0.097 1.000 0.690 1.180 

 5 1 0.048 0.048 0.835 0.950 

  50 0.048 0.096 0.299 0.950 

  500 0.053 0.050 1.410 2.850 
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  Scenario 0 1 2 3 
Field Net Penalty     

Illegal Parking 
Ratio (%) 

0 1 5.300 56.240 59.600 65.000 

  50 5.300 56.240 58.100 43.511 

  500 5.570 56.240 47.000 65.000 
 2 1 5.000 59.000 59.000 44.240 

  50 5.000 42.200 15.800 44.240 

  500 5.000 42.200 17.000 65.000 

 4 1 5.000 41.000 51.800 5.450 

  50 5.000 41.000 51.800 5.450 
  500 5.000 41.000 23.000 59.000 

 5 1 5.000 66.200 80.380 50.000 

  50 5.000 35.600 66.967 50.000 

  500 5.000 35.000 47.000 95.000 
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Table 14. Stochastic Scenarios 4-6: Average Duration/Emissions/Cost 

  Scenario 0 4 5 6 

Field Net Penalty     
Trip Duration (h) 0 1 35.923 46.103 47.286 50.656 

  50 35.923 46.103 50.674 50.702 

  500 48.026 52.000 50.699 51.325 
 2 1 40.831 47.000 46.000 47.000 

  50 42.450 46.000 46.000 47.000 
  500 47.726 54.500 53.500 49.500 

 4 1 40.275 45.500 46.500 46.500 

  50 42.173 45.501 46.500 46.500 
  500 44.962 46.093 50.000 50.000 

 5 1 36.796 45.500 46.000 46.500 

  50 36.889 46.703 46.000 46.500 

  500 46.166 54.500 53.898 51.000 

CO2 (kg) 0 1 2,814.387 2,775.880 2,881.018 2,776.022 
  50 2,812.992 2,709.792 2,715.501 2,772.575 

  500 2,705.267 2,678.361 2,713.916 2,727.823 

 2 1 2,796.374 2,708.924 2,753.446 2,752.090 

  50 2,674.378 2,666.435 2,751.924 2,731.147 
  500 2,543.236 2,611.484 2,603.875 2,670.080 

 4 1 2,759.585 2,617.445 2,659.258 2,711.199 

  50 2,628.449 2,632.222 2,649.585 2,701.018 

  500 2,548.114 2,619.457 2,621.383 2,625.068 

 5 1 2,817.781 2,748.844 2,823.153 2,852.525 
  50 2,811.225 2,656.418 2,690.156 2,851.039 

  500 2,649.735 2,622.846 2,657.362 2,753.905 

Non Penalized 
Cost 

0 1 2,962.632 3,487.202 3,590.621 3,747.158 

  50 2,966.606 3,489.009 3,736.394 3,749.099 
  500 3,587.345 3,806.506 3,741.341 3,765.895 

 2 1 3,200.070 3,509.734 3,476.040 3,523.365 

  50 3,248.139 3,519.662 3,477.073 3,526.747 
  500 3,524.830 3,919.881 3,953.703 3,727.539 

 4 1 3,157.618 3,445.843 3,465.075 3,482.179 
  50 3,227.038 3,450.396 3,471.309 3,488.680 

  500 3,361.747 3,492.728 3,814.979 3,805.935 

 5 1 2,994.704 3,448.064 3,492.528 3,531.138 
  50 2,997.580 3,498.652 3,570.121 3,531.155 

  500 3,464.060 3,921.490 4,069.101 3,763.994 
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Table 15. Stochastic Scenarios 4-6: Parking-related Performance 

  Scenario 0 4 5 6 

Field Net Penalty     
Illegal Parking 
(Events) 

0 1 0.159 0.150 0.159 0.150 

  50 0.159 0.150 0.159 0.150 
  500 0.167 0.159 0.176 0.150 

 2 1 0.100 0.100 0.100 0.100 
  50 0.100 0.280 0.100 0.100 

  500 0.150 0.150 0.510 0.271 

 4 1 0.100 0.280 0.100 0.100 
  50 0.100 0.282 0.100 0.100 

  500 0.150 0.330 0.460 0.460 

 5 1 0.150 0.100 0.100 0.100 

  50 0.150 0.150 0.928 0.100 

  500 0.150 0.150 0.510 0.100 
Illegal Parking 
Duration (h) 

0 1 1.720 1.027 1.255 2.058 

  50 2.165 1.074 1.684 2.058 

  500 1.379 1.416 1.911 1.864 
 2 1 1.000 1.131 1.030 1.038 

  50 1.025 3.145 1.148 1.038 

  500 1.025 1.357 4.295 2.794 

 4 1 1.000 3.145 1.035 1.038 

  50 1.000 3.190 1.137 1.138 
  500 1.025 3.214 5.865 5.328 

 5 1 0.669 1.100 1.033 1.164 

  50 0.669 1.142 4.997 1.163 

  500 1.602 1.350 4.180 1.176 

HOS Violation 
Risk (Events) 

0 1 0.093 0.000 0.000 0.003 

  50 0.093 0.098 0.050 0.005 

  500 0.061 0.112 0.051 0.003 
 2 1 0.000 0.000 0.048 0.000 

  50 0.003 0.280 0.050 0.048 
  500 0.150 0.100 0.269 0.271 

 4 1 0.003 0.050 0.003 0.000 

  50 0.050 0.052 0.050 0.050 
  500 0.097 0.089 0.460 0.460 

 5 1 0.048 0.050 0.000 0.000 

  50 0.048 0.098 0.000 0.003 

  500 0.053 0.100 0.510 0.100 
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  Scenario 0 4 5 6 
Field Net Penalty     

Illegal Parking 
Ratio (%) 

0 1 5.300 5.000 5.300 5.000 

  50 5.300 5.000 5.300 5.000 

  500 5.570 5.300 5.870 5.000 
 2 1 5.000 5.000 5.000 5.000 

  50 5.000 14.000 5.000 5.000 

  500 5.000 5.000 17.000 13.550 

 4 1 5.000 14.000 5.000 5.000 

  50 5.000 13.423 5.000 5.000 
  500 5.000 11.000 23.000 23.000 

 5 1 5.000 5.000 5.000 5.000 

  50 5.000 5.000 30.946 5.000 

  500 5.000 5.000 17.000 5.000 

 


	Task 3354_Technical Report 060723.pdf
	Task 3344_disclaimer page.pdf
	3344_Final Report 060723.pdf
	EXECUTIVE SUMMARY
	Introduction
	Related Work
	Time-dependent Shortest Path Problem
	Truck Driver Scheduling Problem
	Parking restrictions
	Path planning


	USA’s Hours of Service Regulations
	Problem Description
	Model
	System Equations
	Consumption Model
	Driving
	Idling


	Dynamic Programming Formulation and Rollout Algorithm
	Constraint Propagation and Feasible Decision Space
	Forward Propagation
	Backward Propagation
	Propagating the resources
	Reduced Decision Space

	Analytical Solutions
	Last driving decision
	Last rest extension

	Cost Lower Bound
	Bound 1
	Bound 2

	Graph Preprocessing
	Modifications for time-dependent networks

	Parking Availability Uncertainty
	Recourse Actions
	Policy
	Imperfect Information

	Experiments
	Static Network
	Time-Dependent Network
	Uncertain Parking Availability
	Results


	Feasibility of Commercialization and possible model extensions
	Objectives
	Requirements
	Benefits
	Disadvantages
	Conclusion

	Conclusion
	References
	Data Summary
	Products of Research
	Data Format and Content
	Data Access and Sharing
	Reuse and Redistribution

	Appendix A Experiment Results
	Static Networks
	Detailed Results
	Lower Bound Impact

	Time-dependent Networks
	Detailed Results
	Lower bound impact

	Stochastic Scenarios





