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Updating the Induced Travel Calculator
EXECUTIVE SUMMARY

In early 2019, the National Center for Sustainable Transportation (NCST) developed and 
launched an online tool that allows users to estimate the additional vehicle travel induced by 
expanding the capacity of major roadways in California’s urbanized counties (i.e., counties
within Census-defined metropolitan statistical areas). The Induced Travel Calculator (Calculator) 
has generated substantial interest among policymakers and practitioners as a method for 
estimating induced vehicle miles traveled (VMT), particularly since Caltrans adopted its 2020 
Transportation Analysis Framework in which it included the Calculator as a method to 
estimate—or at least benchmark—induced VMT. Over 3,000 people used the Calculator at least 
once in 2021.

With Calculator use increasing, we at the Institute of Transportation Studies at University of 
California, Davis (ITS-Davis) initiated a project to update the Calculator and improve its 
functionality based on recent data and empirical research. This report describes our efforts and 
outcomes. We first provide background on induced travel, summarize the empirical research on 
induced travel, and describe the Calculator and how it works. We then describe the updates we 
made to the Calculator’s documentation and functionality. We also discuss the options and
limitations for future efforts to validate of the Calculator’s induced VMT estimates. In addition, 
we describe the other induced travel calculators we helped build (one in Colorado and one that 
is national in coverage).

We began the project by providing an updated review of the induced travel literature. The 
substantive changes we made to the Calculator include adding three more years of baseline 
VMT and lane mile data (2017, 2018, and 2019), and adding ranges—a rough 95% confidence 
interval—to the Calculator’s induced VMT estimates (+/-20%). We also investigated and 
determined that there is not enough empirical evidence to justify using different elasticities 
based on initial congestion levels, urban versus rural setting, or lane type (for general-purpose 
lanes, high-occupancy-vehicle lanes, and high-occupancy toll lanes). Going forward, our report 
suggests avenues for future induced travel research, including meta-analyses of induced travel 
studies to estimate pooled effect sizes, more research on the impact of existing traffic 
congestion and other contextual factors on induced travel effect size, and further studies on 
induced travel from managed lanes. It will also be important to continue monitoring other
induced travel calculators for consistency with NCST’s Calculator.
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Introduction

Roadway capacity expansion is often proposed as a solution to traffic congestion and even as a 
way to reduce greenhouse gas (GHG) emissions. The cited logic is often that increasing roadway 
capacity increases average vehicle speeds, which improves vehicle fuel efficiency and reduces 
per-mile emissions of GHGs and local air pollutants. But that logic relies on the flawed 
assumption that the demand for vehicle travel is inelastic, i.e., that it is unresponsive to 
changes in cost (including travel time cost). In fact, the demand for vehicle travel does respond 
to changes in cost. Empirical research demonstrates that as roadway supply increases vehicle 
miles traveled (VMT) generally does, too (see Table 1. Empirical Estimates of Induced Travel
Elasticities from Area-Wide Studies, below). This is the “induced travel” effect (some 
alternatively call it “induced demand”)—a net increase in VMT across the roadway network due 
to an increase in roadway capacity, which ultimately erodes any initial increases in travel 
speeds and causes increased GHG emissions.

Despite its importance, the induced travel effect is often not fully accounted for in travel 
demand models or in the environmental review process for roadway capacity expansion 
projects (Milam et al., 2017; Metz, 2021; Naess et al., 2012; Volker et al., 2020). This can result 
in agencies overestimating the benefits of capacity expansions like reduced traffic congestion 
and underestimating the environmental costs like emissions of GHGs and local air pollutants 
(Metz, 2021). With these problems in mind, we at the National Center for Sustainable 
Transportation (NCST) developed an online tool that estimates the VMT induced annually by 
adding lanes to major roadways in California’s urbanized counties based on empirical evidence. 
Agencies and advocates can use the induced VMT estimates to either provide high-level 
estimates of induced VMT from proposed capacity expansion projects or benchmark induced 
VMT estimates from travel demand model forecasts, which might not include robust 
mechanisms for capturing induced travel effects. The website1 for the Induced Travel Calculator 
(Calculator) went live in early 2019, and we followed its release with several education and 
outreach activities, including a recorded webinar in May 2019.2

The launch of the Calculator and our ongoing outreach efforts coincided with a state-level 
policy shift towards acknowledging induced travel and prioritizing transportation projects that 
“do not significantly increase passenger vehicle travel” (California State Transportation Agency, 
2021, p. 17), as reflected in the California State Transportation Agency’s 2021 Climate Action 
Plan for Transportation Infrastructure, the California Department of Transportation’s (Caltrans’) 
California Transportation Plan 2050, and Caltrans’ 2020-2024 Strategic Plan (California 
Department of Transportation, 2021a, b). As part of that shift, and in line with California Senate 
Bill 743 (2013-2014), Caltrans decided to replace automobile level of service (LOS) with VMT as 
the primary metric for measuring the transportation impacts of projects on the state highway 
system under the California Environmental Quality Act (CEQA) (California Department of

1 Note that the Calculator was formerly hosted at https://blinktag.com/induced-travel-calculator. In February 
2021, the Calculator was moved to https://travelcalculator.ncst.ucdavis.edu.
2  https://its.ucdavis.edu/webinar/a-new-web-tool-to-calculate-induced-travel/

https://blinktag.com/induced-travel-calculator
https://travelcalculator.ncst.ucdavis.edu/
https://its.ucdavis.edu/webinar/a-new-web-tool-to-calculate-induced-travel/
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Transportation, 2020). That means analyzing induced travel. Caltrans’ CEQA review policy states 
that VMT impact analyses “will require a supporting induced travel analysis for capacity-
increasing transportation projects” on the state highway system (California Department of 
Transportation, 2020a, p. 1).

The big question was how to analyze induced travel. Ultimately, in its 2020 Transportation 
Analysis Framework, Caltrans included the Calculator as a method to estimate—or at least 
benchmark—induced VMT: “In cases where the NCST Calculator can be directly used, it should 
either be used exclusively or used to benchmark results from a [travel demand model]” 
(California Department of Transportation, 2020a, p. 14). Caltrans recommendation was 
supported by an accompanying expert panel report (Deakin et al., 2020).

With Calculator use increasing, we initiated a technical assistance project in 2020 to support 
Caltrans and others in applying the Calculator. This project extends that work. In addition to 
providing continued assistance to Caltrans, we conducted an updated review of the induced 
travel literature, improved the documentation on the Calculator website, explored and 
implemented some technical improvements to the Calculator, and ensured the consistency of 
NCST’s Calculator with other induced travel calculators we helped build for use nationally and 
in other geographies.

This report proceeds as follows. The next (second) chapter provides background on induced 
travel. The third chapter summarizes the empirical research on induced travel. The fourth 
chapter describes the Calculator. The fifth chapter describes the updates we made to the 
documentation on the Calculator website. The sixth chapter describes the updates we made 
and explored to the Calculator’s functionality. The seventh chapter discusses validation of the 
Calculator’s induced VMT estimates. The eighth chapter describes the other induced travel 
calculators we helped build. And the ninth chapter concludes.

Background on Induced Vehicle Travel

Induced travel is a well-documented phenomenon in which expanding capacity on a roadway— 
either by widening an existing road, extending a road, or building an entirely new road3— 
increases the average travel speed on the roadway (at least in the short term), improves travel 
time reliability, makes driving on the roadway perceptibly safer or less stressful, or provides 
access to previously inaccessible areas, all of which reduce the perceived “cost” of driving and 
thereby induce more driving (Deakin et al., 2020; Handy, 2015; Noland & Hanson, 2013). In the 
shorter term, the reduced cost of vehicle travel can cause people to substitute driving for other 
travel modes (like transit or active travel), drive solo instead of carpooling, make longer trips 
(by taking longer routes or choosing farther destinations), or make additional trips. These 
behavioral responses can affect both personal and commercial driving (Duranton & Turner, 
2011; Milam et al., 2017). In the longer term, it can lead people to live farther away from where 
they work (or vice versa) and even spur commercial or residential growth in the region

3 The empirical research generally does not distinguish between—or calculate separate elasticities for—these 
three types of capacity expansion.
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(Duranton & Turner, 2011; Milam et al., 2017). Figure 1 illustrates the induced travel effect 
conceptually.

Congestion, 
Air Quality, & 
Road Hazard 

Problems

Faster, Safer, 
Shorter Travel 

Times, Less 
Congestion, 

Greater Access

Figure 1. Induced Vehicle Travel Effect of Roadway Capacity Expansions

Figure 2 illustrates the induced travel effect using supply and demand curves. The empirical 
research demonstrates that the amount of travel (in this case, driving) undertaken is elastic and 
responds to changes in the time cost of travel (Noland & Lem, 2002). Figure 2 reflects this with 
a downward-sloping demand curve. As the roadway supply increases in a region (shown by the 
shift in the supply curve), the time cost of driving decreases and the amount of driving increases 
(from V to V’). In the longer-term, the demand curve likely becomes even more elastic (flatter) 
as people or firms relocate to more distant locations within the region to take advantage of the 
greater mobility provided by the capacity expansion, leading to a further increase in the 
amount of driving.

New Roadway
Capacity

New Driving
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Cost of 
driving

Supply Supply’ Increased 
capacity
means lower 
time cost

Induced Travel
Increase in VMT from lower cost

V V’ Volume of driving,
VMT

Figure 2. Elastic Demand for Vehicle Travel and the Induced Travel Effect

The induced travel effect is separate from exogenous increases in demand due, for example, to 
population growth. The effect of population growth, which causes an outward shift in the 
demand curve, is shown in Figure 3. However, roadway capacity expansions can themselves 
induce population growth, as people or firms relocate from elsewhere to take advantage of the 
greater mobility in the region (Duranton & Turner, 2011; Noland & Hanson, 2013). So, roadway 
capacity expansions can result in shifts to both the supply and demand curves.
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Cost of 
driving

Supply

V  V’ Volume of driving,
VMT

Figure 3. Exogenous Increase in Demand for Vehicle Travel

Empirical Research on Induced Travel

Induced travel is not a new concept. The phenomenon has been theorized and anecdotally 
observed for more than a century. Anthony Downs popularized the concept when he suggested 
the “fundamental law of highway congestion” in a seminal 1962 paper and follow-up work 
(Downs, 1962, 1992, 2004). But Ladd (2013) documents numerous examples of planners and 
engineers bemoaning the futility of roadway capacity expansions for reducing congestion in the 
early 1900s. For example, Ladd (2013, p. 17) quotes one official in Los Angeles who observed in 
1928 that “‘a newly opened . . . or widened street immediately becomes glutted by the access 
of cars that hitherto have reposed more in their garages than they have utilized the streets.’”

Despite having been theorized and anecdotally observed for decades, however, the first 
empirical research on induced travel did not appear until the 1940s and 1950s (Ladd, 2013; 
Cervero, 2002). Most of the early empirical research consisted of facility-specific studies. Those 
studies typically compared the growth in average daily trips on an expanded facility to either 
the projected traffic volumes on the facility without an expansion or the traffic volume trends 
on an unexpanded comparison facility or the area as a whole (Cervero, 2002). One of the major 
limitations of those facility-specific studies is that they did not account for area-wide induced 
travel effects and could not distinguish between diverted trips from parallel routes (which 
might not actually increase VMT) and the new or longer trips that do increase VMT. Those 
limitations precluded accurate estimation of induced VMT, particularly in the long term 
(Cervero, 2002).
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Starting in the 1970s researchers began conducting area-wide studies (Cervero, 2002), which 
are better able to capture the net effect of capacity expansions on VMT across the roadway 
network than facility-specific or corridor-level studies (Anderson et al., 2021; Handy & Boarnet, 
2014; Hymel, 2019). They also tend to produce more generalizable results. However, using an 
area-wide unit of analysis (e.g., counties, urbanized areas, metropolitan areas, or states) does 
not by itself guarantee a study’s internal validity. That depends on how well the studies control 
for both the exogenous factors besides roadway capacity that affect VMT as well as the 
endogenous (bi-directional) relationship between VMT and roadway capacity—the possibility 
that VMT growth can cause roadway capacity expansion and not just the other way around. The 
earliest area-wide studies ran simple ordinary least squares (OLS) regressions using cross- 
sectional data (Cervero, 2002). These studies typically controlled for numerous exogenous 
variables, but could not control for unmeasured region-specific effects, time-specific effects, or 
the endogeneity of roadway capacity. Researchers began addressing the first two of these 
limitations in the 1990s by using cross-sectional time-series data and including fixed-effects 
variables to capture the effects on VMT of unmeasured variables associated with a specific 
region or time period, but they were unable to overcome the endogeneity problem (Hansen & 
Huang, 1997; Noland, 2001). Noland and Cowart (2000) and Fulton et al. (2000) were the first 
two studies to also attempt to correct for endogeneity. Many others have done so since then, 
most commonly by using instrumental variables (IV). The area-wide studies that attempt to 
correct for endogeneity are summarized in Table 1 below.

Numerous prior reviews discuss the induced travel literature in great depth and breadth 
(Anderson et al., 2021; Cairns et al., 1998; Cervero, 2002; Currie & Delbosc, 2010; United States 
Environmental Protection Agency, 2002; Goodwin, 1996; Handy & Boarnet, 2014; Hymel, 2019; 
Noland & Hanson, 2013; Noland & Lem, 2002; WSP, 2018). We used those reviews as a starting 
point for our targeted summary of the literature in this report, which focuses on studies that 
estimated an elasticity of VMT (or VKT, vehicle kilometers traveled) with respect to roadway 
capacity using empirical data. We also conducted our own search of literature to identify more 
recent studies and potentially relevant studies omitted by past reviews. To identify sources, we 
searched Google Scholar in the winter of 2021-2022 using the following search terms:

(“induced travel” OR “induced demand”) AND (“elasticity”) AND (“VMT” OR “VKT”)

We also reviewed the reference lists from the selected sources to identify additional studies 
that did not appear in our web searches. We focused on peer-reviewed studies that either 
examined the induced travel literature or estimated induced travel elasticities using empirical 
data. However, we also included high-quality “gray” literature relevant to the more 
understudied questions we discuss in this report (e.g., the effect of existing congestion levels 
and managed lanes on the induced travel effect size).4

In the subsections that follow, we first summarize the empirical evidence on the magnitude of 
the induced travel effect. We then discuss the impact on effect size of four factors that we are

4 While the “gray” literature studies (not yet published in a peer-reviewed journal) we included have not yet been 
published in peer-reviewed journals, they have all been peer reviewed, sometimes extensively.
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frequently asked about: route substitution, existing congestion levels, rural versus urban 
context, and managed lanes.

Magnitude of the Induced Travel Effect
Area-wide studies typically measure the magnitude of the induced travel effect as the elasticity 
of VMT with respect to lane miles, as shown in Equation 1. The elasticity is the percentage 
increase in VMT in the studied area that results from a 1% increase in lane miles in that area. An 
elasticity of 1.0 means that VMT will increase by the same percentage as the increase in lane 
miles.

Elasticity = % Change in VMT
% Change in Lane Miles

(Eq. 1)

The studies typically obtain elasticity estimates by using the logarithm of both VMT and lane 
miles in their regression models. Using the logarithmic form, the regression coefficients can be 
interpreted as elasticities. For example, a 1.0 coefficient on the lane miles variable would 
indicate a 1.0 elasticity of VMT with respect to lane miles.

The timeframe for the estimated elasticities varies based on the data and regression methods 
used. Short-run elasticities capture the induced travel effects that occur immediately and within 
the first couple of years after a capacity expansion, such as substitution of driving for other 
travel modes, increases in trip lengths (by taking longer routes or choosing farther 
destinations), or increases in the number of trips. Longer-run elasticities capture a fuller set of 
induced travel effects, including persistent short-run effects and other effects that take longer 
to actualize, such as changes in residential and commercial locations and increased growth. We 
generally use “short run” and “long run” to refer to the periods one to two years and three to 
10 years after the capacity expansion, respectively.

Table 1 summarizes the 12 studies we found that (1) estimated an elasticity of VMT (or VKT) 
with respect to lane miles (or kilometers), (2) used a regional unit of analysis (i.e., counties, 
urbanized areas, metropolitan areas, or states in the United States, or equivalent spatial units in 
countries outside the US), (3) controlled for factors affecting VMT other than roadway capacity, 
and (4) attempted to account for the endogeneity of roadway capacity. Studies in the US are 
more generalizable within the US and thus more relevant to NCST’s Calculator and the other 
calculators developed for use in the US.5 However, we also include at the bottom of the table 
the studies we found from other countries that met our selection criteria.

5 Note, however, that the US studies are not all based on the same geographies, and some focus on just a single 
state or small group of states. Cervero and Hansen (2002), for example, used data from urbanized counties in 
California, while Fulton et al. (2000) relied on data from three states and Washington, DC. Applying those findings 
to other areas requires careful extrapolation based on theory and the available evidence.
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Table 1. Empirical Estimates of Induced Travel Elasticities from Area-Wide Studies
Estimation Strategyb Elasticities

Authors Geography Unit of Analysis Study Years Roadway Typesa Controls Identification Estimator Short Run Longer Run

Fulton et al. 
(2000)

United States (Maryland, 
North Carolina, Virginia,
Washington, DC)

Counties 1985–1995
Interstate highways, state 
highways, other state-maintained
primary roads (class 1-3)

Population, income per capita, county fixed effects, 
year fixed effects

Lagged growth in highway capacity (internal 
instrument)

2-stage least 
squares regression

0.46–0.51 -

Noland & 
Cowart (2000)

United States Urbanized areas 1982–1986
Interstate highways, other freeways 
and expressways, principal arterials,
minor arterials (class 1-4)

Population density, fuel cost, income per capita, 
urbanized area fixed effects, year fixed effects

Urbanized land area (external instrument) 2-stage least 
squares regression

0.28–0.76 -

Cervero & 
Hansen (2002) United States (California)

Urbanized counties 
(counties within 
metropolitan
statistical areas)

1976–1997
State-maintained freeways, 
arterials, and other major 
thoroughfares (class 1-3)

Population, fuel cost, income per capita, employment 
density, county fixed effects

Measures of topography and weather, air 
quality, and politics (external instruments)

3-stage least 
squares regression 0.59 0.79

(5 year)

Duranton & 
Turner (2011) United States Metropolitan 

statistical areas 1983–2003 Interstate highways (class 1)
Population, Census divisions, elevation range, terrain 
ruggedness index, heating degree days, cooling
degree days, sprawl index

1947 interstate highway plan, 1898 railroad 
routes, mapped major exploration routes
from 1835-1850 (external instruments)

2-stage least 
squares regression - 1.03

(10 year)

Su (2011) United States States 2001–2008 All roads (class 1-7)
Population, fuel cost, income, vehicles per capita, 
congestion (annual hours of delay per capita), average
vehicle fuel economy, numerous others

Lagged levels and differences in the values of 
the dependent and independent variables
(internal instruments)

Generalized 
method of
moments

0.07 0.26

Melo et al. 
(2012)

United States Urbanized areas 1982–2010 Principal arterials, minor arterials 
(class 3-4)

Congestion (total hours of delay per peak-period 
traveler), gross domestic product per capita

Lagged levels and differences in the values of 
the dependent and independent variables
(internal instruments)

Generalized 
method of
moments

- 0.98

Graham et al. 
(2014)

United States Urbanized areas 1985–2010
Interstate highways, other freeways 
and expressways, principal arterials, 
minor arterials (class 1-4)

Population growth, income per capita, fuel cost, 
congestion (annual hours of delay per VMT), network 
composition (freeway lane miles/arterial lane miles), 
traffic composition (arterial VMT/freeway VMT), 
mode share (annual public transit passenger miles), 
metropolitan wage per year, employment level, 
metropolitan share of manufacturing jobs, year fixed
effects

Lagged levels and differences in the values of 
the dependent and independent variables 
(internal instruments)

Generalized 
propensity score

- 0.77

Hymel (2019) United States States 1981–2015
Freeways and other limited-access 
roads

Population, unemployment level, income per capita, 
fuel cost, state fixed effects, year fixed effects

Cumulative delegate-years of membership in
House and Senate transportation 
committees (external instruments)

2-stage least 
squares regression 0.32–0.37 0.89–1.06

Gonz?lez & 
Marrero (2012) Spain

Autonomous 
communities (16 
regions; similar to
US states)

1998-2006 All roads Population, gross domestic product per capita, fuel 
cost, vehicles per capita, regional fixed effects

Lagged levels and differences in the values of 
the dependent and independent variables 
(internal instruments)

Generalized 
method of 
moments

0.11–0.17 0.27–0.31

Hsu & Zhang 
(2014)

Japan

Urban employment 
areas (similar to US 
metropolitan 
statistical areas)

1990–2005 National expressways (like class 1 
US interstate highways)

Population, per capita income, regional fixed effects 1987 national expressway network plan 
(external instrument)

2-stage least 
squares regression

Limited- 
information 
maximum
likelihood

-

-

1.24–1.30
(3-5 year)

1.24–1.34
(3-5 year)

Chen & Klaiber 
(2020) China

Prefecture-level 
cities (similar to US 
metropolitan 
statistical areas)

2011–2014
Urban roads (“paved roads with a 
width of at least 3.5 m;” excludes 
highways)

Population, land area, regional gross domestic 
product, disposable income per capita, regional fixed 
effects, year fixed effects

Footprint of 1984 municipal roads, footprint 
of 162 routes of highways, time-varying 
instrument capturing competitive effects 
from investment in other cities (external
instruments)

2-stage least 
squares regression 0.99 -

Garcia-López et 
al. (2020) Europe (29 countries)

Functional urban 
area (similar to US 
metropolitan 
statistical areas)

1985–2005 Highways (E-Road network)

Population, 1960 population, 1970 population, 1980 
population, gross domestic product, unemployment 
rate, industrial composition, total land area, 
suburbanization index, altitude, elevation range, 
terrain ruggedness index, distance to nearest coast, 
historical major cities, regional fixed effects, year fixed
effects, country fixed effects

Map of ancient Roman roads in Europe

Limited- 
information 
maximum 
likelihood

- 1.21
(5 year)

Notes: a. The Federal Highway Administration (FHWA) uses a seven-level system to classify roadways according to their function (regardless of ownership or jurisdiction), starting with interstate highways (class 1) and ending with the lowest-capacity and lowest-speed roads, local roads (class 7). 
Those classifications are shown in parentheses where they were discernable from a study’s documentation. b. Most of the studies compared multiple estimators and model specifications, many of which did not account for the endogeneity of roadway capacity. The table attempts to summarize 
the preferred estimators and elasticities reported by the studies’ authors for the models that attempted to control for endogeneity.
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The area-wide studies summarized in Table 1 consistently find an induced travel effect from 
roadway capacity expansions, even after controlling for a wide variety of other factors affecting 
VMT and attempting to correct for the endogeneity of roadway capacity. Short-run elasticity 
estimates range from 0.07-0.76 in the US and 0.07-0.99 across all studies. Longer-run elasticity 
estimates range from 0.26-1.06 in the US and 0.26-1.34 across all studies.

Those elasticity ranges tighten substantially when the two studies that used all road types 
(including local roads)—Su (2011) and Gonz?lez and Marrero (2012)—are excluded. Excluding 
those two studies, the range of short-run elasticities shrinks to 0.28-0.76 in the US and 0.28-
0.99 across all studies. The range of longer-run elasticities narrows to 0.77-1.06 in the US and 
0.77-1.34 across all studies. One reason the elasticities estimated in Su (2011) and Gonz?lez and 
Marrero (2012) might be outliers is that both studies include local roads (the lowest FHWA 
facility class – class 7).6 Local roads typically constitute the bulk of the roadway network yet 
they tend to provide the least per-mile improvement in travel speed or access, as indicated by 
the fact that they generally have the lowest VMT densities of all roadway classes.7 As a result, 
the elasticity of VMT with respect to roadway capacity is likely lower (though not zero) for local 
roads than for higher road classifications (Noland, 2001).

Contrary to expectations, the only other study that included local roads in its dataset (Chen & 
Klaiber, 2020) estimated a short-run elasticity of 0.99 for urban roads in prefecture-level cities 
in China, much higher than the short-run elasticities of 0.07 and 0.11-0.17 estimated 
respectively by Su (2011) and Gonz?lez and Marrero (2012) for all road types in the US and 
Spain. However, the circumstances of Chen and Klaiber’s (2020) study were unique. As the 
authors note, the “rapid adjustment in traffic over our relatively short time period is likely 
related to the economic setting in China” (p. 10), where vehicle ownership increased tenfold 
between 2000 and 2020, a period encompassing the study years (p. 2). The authors did not 
separately control for vehicle ownership in their regression models, so the relatively high 
elasticity (0.99) they estimated could well reflect a vehicle ownership effect unrelated to 
roadway capacity expansions as well as induced travel from the expansions.8

Apart from Su (2011), Gonz?lez and Marrero (2012), and Chen and Klaiber (2020), every other 
study focused on roadways equivalent to FHWA classes 1-4 (interstate highways, other 
freeways and expressways, principal arterials, and minor arterials). Three studies used data 
from facilities equivalent to classes 1-3 (Cervero & Hansen, 2002; Fulton et al., 2000; Hymel, 
2019). Two studies looked at class 1-4 facilities (Graham et al., 2014; Noland & Cowart, 2000). 
One study estimated an elasticity just for class 3 and 4 facilities (Melo et al., 2012). And three 
studies focused on class 1-equivalent facilities (Duranton & Turner, 2011; Hsu & Zhang, 2014) or

6 When we refer to “local roads,” we mean roadways similar in function to those classified as class 7 by FHWA. This
designation is agnostic of roadway ownership and jurisdiction.
7 For example, Caltrans’ 2019 Public Road Data show that local roads comprised nearly 57% of all lane miles across 
California, but carried only 5% of its VMT (California Department of Transportation, 2020b).
8 Note that in the long run, increases in roadway capacity can themselves induce more vehicle ownership, which in 
turn induces more VMT. So, some of the increased vehicle ownership in China could have been induced by 
roadway capacity expansions.
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class 1 and 2 facilities (Garcia-López et al., 2020). Some of the studies included additional 
facility types in some of their models, but not in the models that accounted for the endogeneity 
of roadway capacity, which are the focus of this summary. Overall, the six studies that included 
class 3 and/or 4 facilities estimated short-run elasticities between 0.28-0.76 and longer-run 
elasticities between 0.77-1.06. The three studies that looked only at class 1 and/or 2 facilities 
estimated longer-run elasticities of 1.03-1.34. These results indicate a longer-run induced travel 
elasticity of close to 1.0 across all four facility types, albeit a potentially greater elasticity for 
expansions of class 1 facilities than class 2-4 roadways.

Every study controlled for factors affecting VMT other than roadway capacity. For example, 
nearly every study controlled in some form for population and income, half the studies 
controlled for fuel cost, and one quarter controlled for elements of physical geography. More 
than half the studies also included regional and/or year fixed effects in their regression models 
to capture the effects on VMT of unmeasured variables associated with a specific region or time 
period.

Every study also attempted to correct for the endogeneity of roadway capacity—the possibility 
that VMT growth can cause roadway capacity expansion and not just the other way around. A 
detailed discussion of the methods used to control for endogeneity is beyond the scope of this 
report, but most studies attempted to isolate the causal effect of roadway capacity on VMT 
using instrumental variables (IV). The basic idea is to first build a regression model to estimate 
lane miles in the study regions, then use the predicted lane miles to model the effect of 
roadway capacity on VMT. The best-vetted approaches have used external instruments— 
variables that are strongly correlated with roadway capacity but uncorrelated with VMT—that 
passed tests for weak or invalid instrument bias. Those studies include Duranton and Turner 
(2011), Hsu and Zhang (2014), and Garcia-López et al. (2020), which relied on external 
instruments related to historical roadway networks or transportation plans, as well as Hymel 
(2019), which relied on a proxy for a state’s power in federal transportation policymaking 
(cumulative delegate-years of membership in House and Senate transportation committees). 
All four of those studies—two in the US, one in Japan, and one in Europe—estimated longer- 
term induced travel elasticities exceeding 1.0. All four studies also estimated large, albeit 
smaller, elasticities (ranging from 0.7-1.1) using OLS regressions that did not correct for 
endogeneity.

The Substitution Effect
A key question in determining the induced travel effect size is whether increased VMT on the 
expanded roadways is partially offset by decreases in VMT on other roads (i.e., where VMT is 
effectively diverted from other roads). A major benefit of area-wide studies, like those 
summarized in Table 1, is that they allow researchers to capture the net change in VMT across 
the entire area where travel behavior is likely to change in response to a capacity expansion.
Handy and Boarnet (2014, pp. 2-3) concluded in a previous review of the induced travel
literature that “[r]egion- or county-level analysis may be most effective in capturing the effect 
of the shifting of travel from one roadway to another in determining the net effect of capacity 
expansions.” However, most studies only include a subset of roadways within the studied
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regions, as discussed above. For example, three of the studies listed in Table 1 used data from 
facilities equivalent to classes 1-3 (Cervero & Hansen, 2002; Fulton et al., 2000; Hymel, 2019), 
two studies looked at class 1-4 facilities (Graham et al., 2014; Noland & Cowart, 2000), one 
study estimated an elasticity just for class 3 and 4 facilities (Melo et al., 2012), and three studies 
focused on class 1-equivalent facilities. While all of those studies found a net increase in VMT 
on the studied facilities, it is conceivable that some of the increased VMT was diverted from— 
and not replaced on—other types of roadways in the region (e.g., minor arterials [class 4], 
major collectors [class 5], minor collectors [class 6], and local roads [class 7]). However, the few 
studies that have attempted to quantify this have found at most a minimal substitution effect.

Duranton and Turner (2011) estimated cross-elasticities of interstate highway VKT (both in and 
outside urbanized areas) with respect to lane kilometers of other major urbanized area roads 
(classes 2-6) and vice versa, and found none with a greater magnitude than (negative) 0.1.
Using those cross-elasticities, the authors estimated that the diversion of traffic from other 
major roadways (classes 2-6) accounts for between 0-10% of the total increase in interstate 
highway VKT resulting from an interstate capacity expansion. Overall, they concluded that
“[i]ncreasing lane kilometers for one type of road diverts little traffic from other types of road”
(Duranton & Turner, 2011, p. 2616).

Rentziou et al. (2012) used seemingly unrelated regression with panel data (1998-2008) from 
the US to estimate separate cross-elasticities for roadway classes 1-5 in both urban and rural 
areas. The authors only found two statistically significant cross-elasticities and both of them 
were positive, indicating that an expansion of one type of road can actually increase VMT on 
other classes of roads. Note, however, that this study used passenger VMT not total VMT 
(which includes heavy truck VMT), and thus did not estimate the full induced VMT effect (which 
is why we did not include it in Table 1).

Hansen and Huang (1997, p. 205)9 similarly found “no conclusive evidence that increases in 
state highway lane-miles have affected traffic on other roads” in the US. In neither of their 
regression model specifications did the authors find a statistically significant effect between 
state highway lane miles (which includes class 1, class 2, and some class 3 facilities) and “off- 
state highway” VMT (which includes primarily VMT on class 4-7 facilities). As the authors 
explain, the lack of a substitution effect for lower-classification roadways is not all that 
surprising since they also serve as complements to higher-classification roadways, with most 
trips on state highways beginning and ending on non-state facilities. They conclude that “this 
complementary relationship compensates for, or even outweighs, the substitution effect
stemming from traffic diversion” (Hansen & Huang, 1997, p. 215).

The Role of Context
The elasticities estimated by area-wide studies, like those summarized in Table 1, capture the 
average induced travel effect across the studied geographies and roadway types. Even though

9 We did not include the Hansen and Huang (1997) study in Table 1 because it did not correct for the endogeneity 
of roadway capacity in its estimates of induced travel elasticities.
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the studies control for other factors that affect VMT besides roadway capacity, the induced 
travel effect size can still vary across both geographies and road types. For example, as 
discussed above, expansions of higher-classification roadways (e.g., class 1 interstates) might 
have a greater induced travel effect (higher elasticity) than expansions of lower-classification 
facilities, though capacity expansions of any roadway type would be expected to induce at least 
some travel. With respect to geography, the induced travel effect is often assumed to be 
greater in urban areas and, more generally, areas with greater traffic congestion. We first 
explore the impact of existing congestion levels on induced travel effect size, then we discuss 
the differences between urban and rural areas.

Existing Congestion Levels

Roadway capacity expansion is often proposed as a solution to traffic congestion, but induced 
travel does not only occur in congested areas. Induced travel can be expected to occur 
wherever an expansion project increases the average travel speed on the roadway (at least in 
the short term), improves travel time reliability, makes driving on the roadway perceptibly safer 
or less stressful, or provides access to previously inaccessible areas, all of which reduce the
perceived “cost” of driving and thereby induce more driving. Deakin et al. (2020) and Noland 
and Hanson (2013) came to similar conclusions in their reviews of the literature and theory on 
induced travel.

That said, Deakin et al. (2020) and others also suggest that the magnitude of the induced travel 
effect (elasticity) might still differ based on existing congestion levels, with, for example, 
potentially lower short-run elasticities in relatively uncongested rural areas. However, very few 
studies have attempted to answer this question empirically. The limited available evidence all 
comes from metropolitan areas and indicates that metro areas with higher baseline levels of 
traffic congestion could potentially have lower elasticities than metro areas with less 
congestion. But the body of research is too limited to be conclusive.

Chang et al. (2020) is the most recent study on this issue and is the lone study we found that 
tackles the issue directly. The authors used the same data and instrumental variables as 
Duranton and Turner (2011), but employed instrumental variable quantile regression (IVQR) 
rather than 2-stage least squares regression. The putative benefit of the IVQR approach is that
it allowed the authors to “evaluate the impact of changes in the stock of interstate highways on 
the conditional distribution of VMT, not just the impact on the conditional mean” (Chang et al., 
2020, p. 1). They found that all else equal (original lane miles, population, etc.), regions with 
higher initial levels of VMT (and, theoretically, congestion) had lower induced travel elasticities, 
ranging from an elasticity of 0.8 for regions in the 90th percentile for congestion to 1.45 for 
regions in the 10th percentile. However, the elasticity estimates were generally not precise 
enough to reject the hypothesis that the effects were the same (or different from 1.0) across 
the different percentile partitions.

Duranton and Turner (2011) themselves did not directly examine whether the induced travel 
effect is greater in congested areas. However, they did find a weak downward trend in 
estimated elasticities over time (from 1983-2003, during which time average congestion
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increased). They suggested that this could indicate a greater induced travel effect “when roads
are not congested” (Duranton & Turner, 2011, p. 2634).

Noland and Cowart (2000) also did not directly examine whether induced travel elasticities vary 
based on existing levels of congestion. Instead, they used their induced travel regression results 
to forecast VMT growth over a 15-year period for class 1-4 roadways in all major metropolitan 
areas in the US, assuming that the growth rates for lane miles, population, income, and fuel 
cost all remained the same as they were for original study period (1982-1996). They found that 
the percentage of VMT growth due to induced travel (from capacity expansions) did “not 
appear to be affected by either existing congestion or the relative size of the metropolitan
area” (Noland & Cowart, 2000, p. 386).

In sum, the limited available evidence indicates that metropolitan areas with higher baseline 
levels of traffic congestion could potentially have lower elasticities than metro areas with less 
congestion, perhaps because congestion is so pervasive that relieving it on one stretch would 
not lead to much travel time savings across the entire network. But additional investigation of 
this issue is needed.

Rural vs. Urban

In large part due to the perceived lack of congestion in rural areas, the induced travel effect is 
often assumed to be greater in urban areas. But induced travel can and would still be expected 
to happen in rural areas wherever an expansion project increases the average travel speed on 
the roadway (regardless of initial congestion levels), improves travel time reliability, makes 
driving on the roadway perceptibly safer or less stressful, or provides access to previously 
inaccessible areas. Deakin et al. (2020, p. 3) illustrated useful examples of induced travel 
occurring in uncongested rural areas. The empirical research also suggests that induced travel 
happens in rural areas.

Noland (2001)10 was the earliest study we found that estimated separate induced travel 
elasticities for rural roads and urban roads. The author used seemingly unrelated regression 
with panel data (1984-1996) from the US to estimate elasticities at the state level for three 
categories of roads (encompassing class 1-6 roadways) in both urban and rural areas.11 The 
author found that the short-run elasticities for all road types were larger in urban areas than 
rural areas, but that the longer-run elasticities were nearly the same. The author found slightly 
larger longer-term elasticities in urban areas for class 1 and 2 roads (combined) and class 3 and 
4 roads (combined), but slightly smaller elasticities for class 5 and 6 facilities (combined). The 
author concluded that while short-term elasticities might be lower in rural areas due to less 
congestion, the longer-term elasticities could be relatively similar because capacity expansions

10 We did not include the Noland (2001) study in Table 1 because it did not correct for the endogeneity of roadway 
capacity in its estimates of induced travel elasticities.
11 Rural areas were defined as areas with a population below 5,000 (Noland, 2001, p. 54).
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can trigger “fundamental land use changes that increase VMT in both urban and rural areas” (p. 
63).

More recently, Rentziou et al. (2012) used seemingly unrelated regression to estimate short-run 
induced travel elasticities at the state level for class 1-5 facilities in both urban and rural areas 
in the US. Like Noland (2001), the authors found larger short-run elasticities in urban areas 
across all roadway types. However, as noted above, this study used passenger VMT not total 
VMT (which includes heavy truck VMT), and thus did not estimate the full induced VMT effect. 
Nor did the authors estimate longer-run elasticities.

Duranton and Turner’s (2011) study is also relevant, even though it looked only at roadways 
within metropolitan statistical areas (MSAs). The authors used OLS regression with cross- 
sectional data to estimate and compare induced travel elasticities for all class 1 interstate 
highways within MSAs, interstates within the urbanized portions of MSAs, and interstates 
within the non-urbanized portions of MSAs.12 They found large elasticities for all three 
geographies (ranging from 0.71 to 1.06), but slightly larger elasticities for interstates within the 
urbanized areas (0.92-1.06) than interstates within the non-urbanized portions (0.81-0.85).

Fulton et al. (2000) did not directly examine whether elasticities differ in rural areas versus 
urban areas, but the study is still relevant. The authors estimated county-level induced travel 
elasticities for class 1-3 roads in Maryland, North Carolina, Virginia, and the Washington 
DC/Baltimore area. The authors did not explicitly differentiate between urban and rural roads, 
but they did estimate separate elasticities for each of the four areas in addition to elasticities 
from all geographies combined. In interpreting their results, the authors concluded that the 
“similar results in urban (DC/Baltimore) and mostly rural (North Carolina) areas suggest that 
both short run congestion effects and longer run land use/growth effects may be important 
contributors to induced demand” (Fulton et al., 2000, p. 13). That echoes Noland’s (2001) 
conclusion from his nationwide study.

Overall, the empirical research suggests that induced travel occurs in both urban and more 
rural areas, though the elasticities might be slightly smaller in rural areas, at least in the short 
run. There is better empirical evidence here than on the issue of whether and how induced 
travel elasticities vary based on initial congestion levels. However, more (and more recent) 
studies would help flesh out whether and how the induced travel effect changes in rural versus 
urban contexts.

Differences Based on Lane Type
Roadway capacity expansions—particularly on freeways and highways—are increasingly done 
with managed lanes rather than general-purpose lanes. For purposes of this report, we define 
“managed lanes” as high-occupancy vehicle (HOV) lanes, high-occupancy toll (HOT) lanes, and

12 Note that OLS regression with cross-sectional data was not the authors’ preferred estimating induced travel 
elasticities, but they could not do the full MSA-urbanized area-non-urbanized area comparison using their 
preferred method. Their preferred method, specification, and estimate are summarized in Table 1.
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pure toll lanes.13 HOV lanes are restricted to vehicles with a certain number of occupants (often 
2+ or 3+ occupants, but sometimes more). HOT lanes are available to both high-occupancy 
vehicles (free of charge) and vehicles below the occupancy threshold that pay the requisite toll. 
Pure toll lanes are only available to vehicles that pay a toll and (generally) public transit 
vehicles. The usage restrictions for all types of managed lanes can vary by hour, by period, by 
day, or dynamically according to traffic conditions. Because managed lanes constitute a growing 
share of capacity expansion projects in California and elsewhere, it is important to understand 
whether they cause more or less induced travel than general-purpose lane expansions.

Most empirical studies of induced travel, like those summarized in Table 2, use aggregate VMT 
and lane mile data for both general-purpose and managed lanes. This results in blended 
elasticity estimates for all lane types combined, though the vast majority of lane miles were— 
and still are—general purpose. Very few studies have attempted to isolate induced travel 
effects by lane type, as previous literature reviews confirm (Shewmake, 2012; Anderson et al., 
2021). Most studies of the induced travel effects of managed lane additions rely on simulations 
using travel demand models or related methods (Dahlgren, 1998; Johnston & Ceerla, 1996; 
Rodier & Johnston, 1997). We found only one study that directly estimated induced travel 
elasticities for managed lane additions using empirical data (Anderson et al., 2021).

Anderson et al. (2021) used time series loop detector data to estimate the short-run effects on 
traffic flows of four capacity expansion projects in California. One project added an HOT lane to 
I-580 in Alameda County in 2016. Another project added an HOV lane and connecting bridges to 
I-405 in Orange County in 2014. A third project added one general-purpose lane and one HOV 
lane to I-215 in San Bernardino County in 2010. The fourth project—the Caldecott Tunnel 
Fourth Bore—added two general-purpose lanes (both in the off-peak direction) to State Route 
24 in Alameda and Contra Costa counties. The authors also analyzed the traffic flow changes at 
comparison sites without lane expansions to help control for unobservable factors influencing 
traffic flows at the study sites.14

Using regression analyses that controlled for monthly, weekly, and daily traffic patterns, 
Anderson et al. (2021) found statistically significant short-run increases in total traffic flows15 on 
all four facilities post expansion. By contrast, their analysis of the comparison sites showed 
smaller (and sometimes negative) changes in traffic flows over the same time periods. As a 
result, the authors concluded that most of the observed flow increases on the expanded 
facilities likely reflected induced travel due to the expansions, while other factors were

13 Dedicated transit lanes are also sometimes considered managed lanes, but we do not discuss them here since 
they do not allow private vehicle travel.
14 The comparison sites were in the same counties as the study sites, but the authors attempted to choose
comparison locations that were “unlikely to be traversed by trips that also cross the study site of interest, so as to
avoid capturing any direct impacts of the lane expansions” (Anderson et al. 2021, p. 13).
15 This includes total traffic flow in all lanes combined for the expanded stretch of each facility. For the I-580 
expansion, the authors were not able to observe data in the HOT lane that was added. So, the documented flow 
increases were on the existing general-purpose lanes only. The percent increases would have been even greater if 
the HOT lane flow data had been included.
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“unlikely to explain more than a small fraction” of the flow increases (Anderson et al., 2021, p. 
54). That allowed the authors to estimated “implied” induced travel elasticities for the four 
study sites, calculated as the ratio of the percentage change in total traffic flows (across all 
lanes combined) to the percentage change in total lanes. Table 2 shows the implied short-run 
elasticities (one- or two-year time period) for the four study sites.

Table 2. Implied Elasticity Estimates for the Four Study Sites from Anderson et al. (2021)

Expansion 
Project
Name

Roadway County Year of 
Expansion

Type of 
Expansion

Change in 
Total
Lanes

Change in 
Total Flows

Implied 
Short-Run
Elasticity

I-580
Express 
Lanes

I-580
(class 1) Alameda 2016 One new HOT 

lane
+25%
(4 to 5) +17.5% 0.700

West County 
Connectors

I-405
(class 1) Orange 2014

One new HOV 
lane and new
connectors

+14%
(7 to 8) +11.8% 0.843

San 
Bernardino 
Widening
Project

I-215
(class 1)

San 
Bernardino 2010

One new HOV 
lane and one 
new general-
purpose lane

+67%
(3 to 5) +22.4% 0.334

Caldecott 
Tunnel
Fourth Bore

SR-24
(class 2)

Alameda 
and Contra
Costa

2013
Two new 
general-
purpose lanes

+100%
(2 to 4) +15.2% 0.152

Source: Anderson et al. (2021, pp. 13, 66).

Overall, Anderson et al. (2021, p. 65) found that the “implied elasticities [were] similar across 
different types of lane expansions, and in all cases within the range of estimates from previous 
studies” (like those summarized in Table 1). Because these are facility-level estimates, they do 
not account for the wider regional effects on travel, including route diversions from alternate 
routes (a potential reduction in travel elsewhere) and longer trips (an increase in travel 
elsewhere), as the authors note. However, the available evidence discussed above indicates at 
most a minimal substitution effect, suggesting that Anderson et al.’s (2021) results might, if 
anything, underestimate the induced travel effect. In sum, although the study’s facility-level 
analyses do not capture the expansion projects’ full regional effects on travel and are not 
necessarily generalizable to other locations, the results nonetheless indicate that the induced 
travel effect for HOV and HOT lanes can be just as large as the effect for general-purpose lanes.

Two additional pieces of empirical evidence from California support those conclusions. First, 
Bento et al. (2014) analyzed loop detector data from all freeways with HOV lanes in the Los 
Angeles metro areas at the beginning and the end of a policy that allowed vehicles with a 
“clean air vehicle” sticker to use HOV lanes alongside high-occupancy vehicles. Using a
regression discontinuity model, they found statistically significant short-run increases in traffic 
flows on the region’s HOV lanes, but no statistically significant change in flows on the general- 
purpose lanes. The authors concluded that while “policymakers may have expected congestion
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decreases in the mainline to be a potential benefit of the policy, these results are suggestive of
the presence of induced demand” (Bento et al., 2014, p. 19).

Second, Caltrans loop detector data from 2019 show that the average annual traffic flows on 
the state’s HOV and HOT lanes were nearly as high as on the adjacent general-purpose lanes. 
Flows on the HOV and HOT lanes averaged 952 vehicles/hour/lane across the morning and 
afternoon peak periods (5am-10am, 3pm-8pm), just 13% lower than on the adjacent general-
purpose lanes during the same time periods (1,099 vehicles/hour/lane) (California Department 
of Transportation, 2022). The similar flows indicate that, despite their access restrictions, HOV 
and HOT lanes will eventually reach similar flows as general-purpose lanes during periods of 
peak congestion. That in turn suggests that adding HOV and HOT lanes has similar induced 
travel effects (elasticities) to general-purpose lane expansions, assuming that traffic flows in the 
general-purpose lanes do not decrease after the managed lane addition. The findings from both 
Anderson et al. (2021) and Bento et al. (2014) support that assumption.

The induced travel effects of the third category of managed lanes—pure toll lanes—are less 
certain. Pure toll lanes could have anywhere from zero induced travel effect (if they are priced 
so prohibitively that no one uses them) to the same effect as general-purpose lanes (if they are 
priced so low or so weakly enforced that they draw similar traffic flows). We only found one 
empirical study that accounted for tolling. Garcia-López et al. (2020) estimated induced travel 
elasticities for highway expansions in the 545 largest metropolitan areas (functional urban 
areas) in Europe, as summarized in Table 1. As part of their analysis, the authors estimated 
separate elasticities based on the extent of tolling on each region’s highways, ranging from a 
maximum elasticity of 1.9 in regions without tolls to an elasticity of 0.3 in regions with tolls on 
all their highways. They estimated an elasticity of at least 1.0 in regions with tolls on less than 
56% of their highways (Garcia-López et al., 2020, p. 14). However, the authors did not account 
for the amount of the tolls.

Overall, the available empirical evidence suggests that new HOV and HOT lanes might have 
similar induced travel effects as general-purpose lane expansions. Furthermore, because HOT 
lanes allow more vehicles than HOV lanes (high-occupancy vehicles plus drivers willing to pay to 
use the lane), they would logically have at least as large induced travel effects as HOV lanes.
Pure toll lanes, on the other hand, could have lower elasticities. However, the empirical 
literature on managed lanes is limited and more research is needed to better flesh out any 
differences.

NCST’s Induced Travel Calculator

Despite its importance and extensive documentation in the empirical literature, the induced 
travel effect is often not fully accounted for in travel demand models or in the environmental 
review process for roadway capacity expansion projects (Metz, 2021; Milam et al., 2017; Naess 
et al., 2012; Volker et al., 2020). The primary issue is that most models do not include all of the 
feedback loops necessary to capture the behavioral changes caused by capacity expansion 
(Litman, 2022; Milam et al., 2017; Noland & Lem, 2002). For example, not many models feed 
changes in estimated travel times back into the trip distribution or trip generation stages of the
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model, which ignores the possibility that improved travel times from a capacity expansion will:
(a) increase the number of trips that households and freight operators choose to make, or (b) 
cause them to choose more distant trip destinations. Neither do most models feed changes in 
estimated travel times back into assumptions about the growth and distribution of population 
and employment. These omissions can result in agencies overestimating the benefits of 
capacity expansions like reduced traffic congestion and underestimating the environmental 
costs like emissions of GHGs and local air pollutants (Metz, 2021).

With these problems in mind, we developed the NCST Induced Travel Calculator to help 
agencies estimate the VMT induced annually by adding lanes to major roadways in California’s 
urbanized counties. We followed Milam et al.’s (2017, p. 6) recommendation to produce
“elasticity-based estimates of VMT levels derived from the project’s lane mile changes” and the 
elasticity values reported in the literature. The Calculator estimates project-induced VMT using 
the project length entered by the user, lane mile and VMT data from Caltrans, and estimates of 
elasticities from peer-reviewed studies. To estimate the induced VMT for capacity expansion 
projects, the Calculator solves the following equation (Equation 2) based on the user-specified 
project geography and lane mile length:

% ∆ Lane Miles * Existing VMT * Elasticity = Project-Induced VMT (Eq. 2)

The Calculator produces longer-run estimates of induced VMT—the additional annual VMT that 
could be expected across the regional network 3 to 10 years after facility installation. All 
estimates account for the possibility that some of the increased VMT on the expanded facility is 
traffic diverted from other types of roads in the network, though as discussed above the studies 
generally show at most a minimal substitution effect. All estimates are also now presented as a 
range (a point estimate +/-20%), reflecting the variation—a rough 95% confidence interval— 
around the average elasticities reported in the literature.16

The Calculator currently only applies directly to publicly owned facilities (like those managed by 
Caltrans) with FHWA functional classifications of 1, 2, or 3 in one of California’s urbanized 
counties (the 37 counties within a metropolitan statistical area). That corresponds to interstate 
highways (class 1), other freeways and expressways (class 2), and other principal arterials (class 
3). The Calculator is also limited to use for capacity expansions (lane additions, roadway 
lengthening, and new facility construction17). It cannot be used to estimate the VMT effects of 
capacity reductions, and it should not be used to estimate the induced VMT from lane type 
conversions without supplemental analysis. In addition, the Calculator is limited to use for 
additions of general-purpose lanes, HOV lanes, and HOT lanes. It should not be used to 
estimate induced VMT from additions of toll lanes without supplemental analysis. Other 
caveats also apply to using the Calculator, which are enumerated on the Calculator website.18

16 We explain how we derived the +/-20% range in the Updates to Calculator Functionality section below.
17 The empirical research generally does not distinguish between—or calculate separate elasticities for—these 
three types of capacity expansion.
18 Note that the Calculator was formerly hosted at https://blinktag.com/induced-travel-calculator. In February 
2021, the Calculator was moved to https://travelcalculator.ncst.ucdavis.edu.

https://blinktag.com/induced-travel-calculator
https://travelcalculator.ncst.ucdavis.edu/
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We describe below the data sources and specifications for the inputs to the Calculator 
equation.

Lane Mile Data
The Calculator uses lane mileage data from Caltrans’ Transportation System Network (TSN) 
database (similarly reported in the Highway Performance Monitoring System [HPMS]). The user 
has the option to use baseline data from 2016, 2017, 2018, or 2019. The percent change in lane 
miles is calculated by dividing the number of project-added lane miles (input by the user) by the 
total lane miles of the same facility type (either class 1 or class 2 and class 3 combined) in the 
same geography. For interstate highways (class 1), lane mileage is calculated at the MSA level. 
For other freeways, expressways and major arterials (classes 2 and 3), lane mileage is calculated 
at the county level. The choice of geographies is discussed further below, in conjunction with 
elasticities. The data are available on the Calculator website.

VMT Data
The Calculator uses VMT data retrieved using Caltrans’ TSN and HPMS database. The VMT is 
tallied for each county and each FHWA functional classification. The user has the option to use 
baseline data from 2016, 2017, 2018, or 2019 (the same baseline year is used for both lane 
miles and VMT). As with lane miles, existing VMT on interstate highways is calculated at the 
MSA level, and existing VMT on other freeways, expressways, and major arterials is calculated 
at the county level. The data are available on the Calculator website.

Elasticities
The Calculator uses an elasticity of 1.0 for capacity expansions on interstate highways, and an 
elasticity of 0.75 for capacity expansions on class 2 or 3 facilities. The same elasticities apply to 
additions of general-purpose lanes as to additions of HOV lanes and HOT lanes, since the 
available empirical evidence suggests that new HOV and HOT lanes might have similar induced 
travel effects as general-purpose lane expansions, as discussed above.

For interstate highways (class 1 facilities), the 1.0 elasticity derives from Duranton and Turner’s 
(2011) preferred longer-run elasticity estimate of 1.03, albeit rounded in part to account for the 
small potential route substitution effect (discussed above in the The Substitution Effect section, 
and estimated by Duranton and Turner to account for between 0 and 10 percent of the total 
induced travel effect). Duranton and Turner (2011) remains perhaps the most thorough and 
stringently vetted study of induced travel in the US to date, as discussed above. The 1.0 
elasticity is also consistent with the other studies summarized in Table 1 that estimated induced 
travel elasticities for roadways including class 1-equivalent facilities and also controlled for the 
endogeneity of roadway capacity. Like Duranton and Turner (2011), the Calculator uses MSAs 
as the unit of analysis for interstate highway capacity expansions.

For other publicly managed highways, expressways and major arterials (class 2 and 3 facilities), 
the 0.75 elasticity derives from Cervero and Hansen (2002), Duranton and Turner (2011), and 
the subsequent US-based studies that control for endogeneity (see Table 1), though it is
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rounded down in part to account for the small potential substitution effect (discussed above in 
the The Substitution Effect section). Cervero and Hansen (2002) estimated a longer-run (5-year) 
VMT elasticity of 0.79 for lane mile additions to class 1-3 roadways in California’s urbanized 
counties. That is similar to the elasticities estimated by the three other studies summarized in 
Table 1 that included class 3 and/or 4 facilities and controlled for endogeneity, ranging between
0.77 and 1.06 (Graham et al. 2014; Hymel, 2019; Melo et al. 2012). While Duranton and Turner 
(2011) could not use their preferred method (which controlled for endogeneity) to estimate
elasticities for other “major roads”19 besides interstates, their elasticity estimates using OLS 
regression all fell between 0.66 and 0.90. Like Cervero and Hansen (2002)—the one study that 
looked just at California—the Calculator uses urbanized counties (those within MSAs) as the 
unit of analysis for capacity expansions on non-interstate highways, expressways, and major 
arterials.

Updates to Calculator Documentation

With Calculator use increasing, a key goal for this project was to improve the documentation on 
the Calculator website to better inform users about induced travel and how to apply the 
Calculator. We started by convening a discussion with a large group of stakeholders from 
around California, including representatives from Caltrans, other state agencies, regional 
agencies, local agencies, consulting firms, advocacy organizations, and elsewhere. From that 
initial meeting, along with follow-up discussions and input from the original stakeholders and 
others, we identified a long list of frequently asked questions. We used that list to guide three 
related efforts we completed for this project: (1) update the text on the Calculator website to 
improve clarity, (2) add a Frequently Asked Questions (FAQ) page to the website,20 and (3) 
conduct a targeted review and summary of the induced travel literature, focusing on the 
magnitude of the induced travel effect and the impact on effect size of four factors we have 
been frequently asked about (route substitution, existing congestion levels, rural versus urban 
context, and managed lanes). The FAQ page is available on the Calculator website and also 
attached hereto as Appendix A. The literature review is produced above and integrated into the 
FAQ and other text updates on the Calculator website.

Updates to Calculator Functionality

In addition to improving the documentation for the Calculator, we implemented two technical 
improvements and explored two others.

First, with Caltrans’ assistance, we added baseline lane mile and VMT data from 2017, 2018, 
and 2019. Previously, the Calculator used only 2016 data. Now, users have the option to select 
2016, 2017, 2018, or 2019 data. We excluded data from 2020 because of the shock to

19 Besides non-interstate highways, these “major roads” included other freeways and expressways (class 2), 
principal arterials (class 3), minor arterials (class 4), and collectors (class 5) in urbanized areas within MSAs. 
20 https://travelcalculator.ncst.ucdavis.edu/faq.html

https://travelcalculator.ncst.ucdavis.edu/faq.html
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statewide travel demand that year from COVID-1921 and the resulting risk that using 2020 VMT 
data in the Calculator would underestimate induced VMT from capacity expansion projects.
Additional years of data will be added periodically as it becomes available and as travel demand 
rebounds to a new normal in the COVID-19 era.

Second, we added ranges to the Calculator’s induced VMT estimates. Previously, the Calculator 
only produced point estimates (see Equation 2). The Calculator now presents all estimates as a 
range (a point estimate +/-20%), reflecting the variation—a rough confidence interval—around 
the average elasticities reported in the literature. Not all of the studies summarized in Table 1
reported standard errors for their elasticity estimates, but for those that did we calculated 95% 
confidence intervals22 for their preferred elasticity estimates (Cervero & Hansen, 2002; 
Duranton & Turner, 2011; Garcia-López et al., 2020; Graham et al., 2014; Hsu & Zhang, 2014). 
Most of the confidence intervals were close to +/-20% of the elasticity point estimate. For 
example, Duranton and Turner’s (2011) preferred 1.03 elasticity for class 1 roadways had a 95% 
confidence interval of +/-21%. Cervero and Hansen’s (2002) 0.79 elasticity estimate for class 1-3 
roadways had a 95% confidence interval of +/-13%. A meta-analysis might be able to provide a 
pooled confidence interval across the relevant induced travel studies and could be a useful 
endeavor for future research. Until then, an interval of +/-20% is a reasonable approximation of 
the range of the average induced VMT effect that can be expected from roadway capacity 
expansion projects.23

Third, we explored whether adding managed lanes causes more or less induced travel than 
general-purpose lane expansions and, if so, whether there was enough evidence to justify using 
different elasticities for HOV, HOT, and general-purpose lanes in the Calculator. As discussed 
above, the available empirical evidence suggests that new HOV and HOT lanes might have 
similar induced travel effects as general-purpose lane expansions. Using different elasticities for 
HOV, HOT, and general-purpose lane expansions is thus not justified at present. However, the 
empirical literature is limited and more research is needed to better flesh out any differences.

Fourth, we investigated whether induced travel elasticities vary based on project context and, if 
so, whether there was enough empirical evidence to justify adjusting the elasticities used in the 
Calculator. We looked specifically at the impact of existing traffic congestion levels on induced 
travel effect size and the differences in elasticities between urban and rural areas, as discussed 
in more detail above. With respect to congestion, the limited available evidence indicates that 
metropolitan areas with higher baseline levels of traffic congestion could potentially have lower

21 For example, total annual VMT in the state was over 50,000,000,000 less in 2020 than 2019 (California 
Department of Transportation, 2021c, 2020b).
22 We calculated the 95% confidence intervals (CI) using this equation:               where x is the 
elasticity estimate from the relevant study and SE is the standard error reported for that estimate.
23 This is the same interval used in the SHIFT Calculator we helped develop with the Rocky Mountain Institute and 
others, which estimates VMT induced by expanding a class 1, class 2, or class 3 facility in any MSA or urbanized 
county in the US. Using a range of +/-20% is also consistent with the report of the expert panel that Caltrans 
commissioned to make recommendations on how best to estimate induced travel from roadway expansion 
projects. The panel cautioned against trusting travel demand model estimates of induced travel that differed by 
more than +/-20% from the Calculator’s estimates (Deakin et al., 2020, p. 21).
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elasticities than metro areas with less congestion. With respect to urban-rural differences, the 
empirical research suggests that induced travel occurs in both urban and more rural areas, but 
that the elasticities might be slightly smaller in rural areas, especially in the short run. Overall, 
there is not enough empirical evidence to justify using different elasticities based on initial 
congestion levels or urban versus rural setting. That said, the Calculator remains limited to use 
in California’s 37 urbanized counties (counties within MSAs), since urbanized counties,
urbanized areas, and MSAs were the units of observation and analysis used in the most relevant 
studies (see Table 1).

Validation of Calculator Estimates

The Calculator’s estimates should be interpreted as the range of average induced VMT effects 
that could be expected based on the type, extent, and location of a given project. Those 
estimates are supported by substantial empirical evidence, as detailed above. And they are 
frequently larger than the induced VMT estimates from travel demand models, as indicated by 
our previous research (Volker et al., 2020) as well as unpublished comparisons we have seen. 
However, it is difficult to validate how accurate the Calculator’s estimates actually are for a 
specific capacity expansion project. Indeed, a true validation may not be possible, given the 
long periods of time over which projects are constructed and induced travel effects occur, as 
well as the challenge of isolating the effect of a single capacity expansion from the effects of 
other capacity expansions as well as other factors in real-world settings (e.g., population 
changes, income changes, shifts in industries and job types, and global pandemics like we have 
seen with COVID-19). There are a few ways of doing quasi-validation for specific projects, but 
they all have limitations.

One option would be to use Caltrans’ HPMS data to calculate the change in VMT for the 
relevant geography (MSA or urbanized county) between the year a project was built and 10 
years hence, then compare that to the Calculator’s induced VMT estimate. The problems with 
that approach include that it does not account for the effects on VMT of other roadway
capacity changes in the region during the 10-year time period or other factors that would likely 
change over that period (like population, household income, etc.). One could try to control for 
the exogenous factors by using elasticities estimated in the induced travel literature of VMT 
with respect to population and other factors. But that approach effectively trusts those other 
elasticities over the elasticities of VMT with respect to capacity expansion, which is a risky 
assumption.

A second option would be to use a difference-in-differences-type approach with facility-level 
traffic flow data to estimate the change in VMT due to a capacity expansion, then compare the 
change to the Calculator’s induced VMT estimate. This approach utilizes longitudinal data from 
both the treatment facility and a comparison facility (or multiple comparison facilities) to help 
control for exogenous factors and isolate the effect of the treatment (the capacity expansion) 
over time. The analysis can be done more robustly using regression (if there are enough 
longitudinal data points) or in a simplified fashion by merely comparing the relative change in 
VMT between the treatment and comparison facilities. In a related realm, researchers have 
used the difference-in-differences technique to examine the effect on local business sales and
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employment of adding bicycle and pedestrian facilities (Liu & Shi, 2020a, b). However, the 
efficacy of the method depends on finding a suitable comparison facility that (1) was not 
expanded during the study period, (2) would not likely affect or be affected by induced travel 
on the expanded facility, and (3) has a similar trend in traffic flows to the expanded facility prior 
to the expansion (the parallel trends assumption). In addition, as discussed above, induced VMT 
estimates based on facility-level data do not account for the wider regional effects of a capacity 
expansion project on travel, including route diversions from alternate routes (a potential 
reduction in travel elsewhere) and longer trips (an increase in travel elsewhere). By contrast,
the Calculator’s estimates are based on area-wide data and elasticities. So, the comparison 
would not be apples-to-apples.

A third option would be to use an interrupted time series-type technique with facility-level 
traffic flow data to estimate the change in VMT due to a capacity expansion, then compare the 
change to the Calculator’s induced VMT estimation. This regression-based approach uses 
longitudinal data from only the expanded facility (both pre- and post-expansion). It is thus 
simpler than difference-in-differences in that it does not require selection of a comparison 
facility with parallel trends, though it still requires data from multiple points in time both before 
and after the treatment (expansion). However, it does not control for exogenous factors whose 
effects vary with time, which limits the method’s utility, particularly for estimating longer-run 
induced travel effects. It also has the same limitations as the difference-in-differences 
technique with respect to using facility-level data. As with difference-in-differences, interrupted 
time series has been used to examine the effect on local business sales and employment of 
adding bicycle and pedestrian facilities (Liu & Shi, 2020a, b). Anderson et al. (2021) also used a 
similar regression-based approach to estimate the short-run induced travel effect from four 
specific capacity expansion projects, as detailed above. However, they looked solely at changes 
in traffic flows and did not estimate VMT changes—let alone longer-run VMT changes—that 
could be compared with estimates from the Calculator.

Other Calculators

In addition to building and maintaining NCST’s Calculator, we have also advised and/or 
partnered with other groups to build induced travel calculators for use outside of California and 
ensure their consistency with NCST’s Calculator. Most prominently, we worked with the Rocky 
Mountain Institute and others to create the Colorado Induced Travel Calculator24 and the SHIFT 
Calculator.25 The Colorado Induced Travel Calculator employs the same basic method as NCST’s 
Calculator to estimate the induced VMT caused by expanding a class 1, 2, or 3 facility within any 
urbanized area in Colorado. The SHIFT Calculator uses the same method as NCST’s Calculator to 
estimate VMT induced by expanding a class 1-3 facility in any MSA or urbanized county in the 
US, including Washington, DC and Puerto Rico, relying on HPMS data from the federal 
Department of Transportation. It also estimates the cumulative greenhouse gas emissions 
generated by the induced VMT through 2050. As part of this project, we have attempted to

24 https://rmi.org/colorado-induced-travel-calculator/
25 https://shift.rmi.org

https://rmi.org/colorado-induced-travel-calculator/
https://shift.rmi.org/
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ensure consistency between the national SHIFT Calculator and the NCST Calculator, particularly 
since both can be used to estimate induced VMT from roadway expansion projects in California.

Conclusion

Despite its importance, the induced travel effect is often not fully accounted for in travel 
demand models or in the environmental review process for roadway capacity expansion 
projects. We developed an online tool to help agencies estimate the VMT induced annually by 
adding lanes to major roadways in California’s urbanized counties. Caltrans now officially 
recommends using the Calculator where possible to estimate—or at least benchmark—induced 
VMT. That highlights the importance of keeping the Calculator up to date with both the state’s 
roadway data and the empirical induced travel literature, as well as responding to practitioners’ 
questions, concerns, and needs. We have continued our efforts to do that through this project. 
We updated the documentation on the Calculator website, added three more years of baseline 
VMT and lane mile data to the Calculator (2017, 2018, and 2019), added ranges to the
Calculator’s induced VMT estimates (+/-20%), and provided an updated review of the induced 
travel literature in this report. We also investigated and determined that there is not enough 
empirical evidence to justify using different elasticities based on initial congestion levels, urban 
versus rural setting, or lane type (for general-purpose, HOV, and HOT lanes). In addition, we 
explored the options and limitations for future efforts to validate the Calculator’s estimates.
Going forward, our report suggests avenues for future induced travel research, including meta- 
analyses of induced travel studies to estimate pooled effect sizes, more research on the impact 
of existing traffic congestion and other contextual factors on induced travel effect size, and 
further studies on induced travel from managed lanes. It will also be important to continue 
monitoring other induced travel calculators for consistency with NCST’s Calculator.
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Data Summary

Products of Research
The VMT and lane mile data used in the Calculator comes from Caltrans’ Transportation System 
Network database (similarly reported in the Highway Performance Monitoring System) and was 
provided to us by Caltrans.

Data Format and Content
The VMT and lane mile data used in the Calculator is stored in an Excel spreadsheet.

Data Access and Sharing
The public can download the spreadsheets containing the VMT and lane mile data from the 
About page on the Calculator website (https://travelcalculator.ncst.ucdavis.edu/about.html).

Reuse and Redistribution
There are no restrictions on how the data can be reused and redistributed by the general 
public.

https://travelcalculator.ncst.ucdavis.edu/about.html
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Appendix A

Frequently Asked Questions about Induced Travel and the Calculator

Does the Calculator estimate induced VMT in the short term or longer term?

The Calculator produces longer-run estimates of induced VMT—the additional annual VMT that 
could be expected across the regional network 3 to 10 years after facility installation. Volker 
and Handy (2022) discuss the short- and longer-run induced travel effects in more detail and 
summarize the best available estimates of both short- and longer-run elasticities from the 
empirical studies.

Can the Calculator be used to estimate VMT changes due to capacity reductions?

No, the Calculator cannot yet be used to estimate the VMT effects of capacity reductions. 
However, our best estimate based on the area-wide econometric studies of induced VMT is 
that the effects of capacity reductions are symmetric with the effects of capacity increases. 
That is supported by the available evidence from facility-level studies, which do not provide 
elasticity estimates but indicate that capacity reductions generally reduce traffic volumes both 
on the treated road and in the surrounding area (Cairns et al., 2002).

Can the Calculator be used for managed lane (HOV, HOT, toll) expansions?

The Calculator can be used to estimate induced VMT from additions of general-purpose lanes, 
HOV lanes, and HOT lanes. It should not be used to estimate induced VMT from additions of 
pure toll lanes without supplemental analysis. As documented in Volker and Handy (2022), the 
available empirical evidence suggests that new HOV and HOT lanes might have similar induced 
travel effects as general-purpose lane expansions.

What types of roadways can the Calculator be used for?

The Federal Highway Administration (FHWA) uses a seven-level system to classify roadways 
according to their function, starting with interstate highways (class 1) and ending with the 
lowest-capacity and lowest-speed roads, local roads (class 7):

· Class 1 – Interstate highways
· Class 2 – Other freeways and expressways
· Class 3 – Other principal arterials
· Class 4 – Minor arterials
· Class 5 – Major collectors
· Class 6 – Minor collectors
· Class 7 – Local roads

The Calculator currently only applies directly to publicly owned facilities (like those managed by 
Caltrans) with FHWA functional classifications of 1, 2, or 3. That does not mean that expansions 
of class 4, 5, 6, or 7 facilities do not induce travel. They do. For example, the available evidence 
indicates that the induced travel elasticity for class 4 minor arterials is likely similar to that of
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class 1-3 facilities. However, because there is less empirical research on class 4-7 facilities, as 
detailed in Volker and Handy (2022), they are not yet included in the Calculator.

How can I determine the type (functional classification) of a given roadway?

Caltrans maintains a map of California’s roadways with functional class delineations.

Is the induced travel elasticity different for different roadway types (functional 
classifications)?

The empirical research indicates a longer-run induced travel elasticity of close to 1.0 for class 1, 
2, 3, and 4 facilities, albeit a potentially greater elasticity for expansions of class 1 facilities than 
class 2-4 roadways. The induced travel elasticities are likely lower for class 5 and 6 facilities, and 
lowest for class 7 facilities.

Based on the empirical research, the Calculator conservatively uses an elasticity of 1.0 for 
capacity expansions on interstate highways, and an elasticity of 0.75 for capacity expansions on 
class 2 or 3 facilities.

See Volker and Handy (2022) for more detail.

Can the Calculator be used for projects in rural areas?

Induced travel can and would still be expected to happen in rural areas wherever an expansion 
project increases the average travel speed on the roadway (regardless of initial congestion 
levels), improves travel time reliability, makes driving on the roadway perceptibly safer or less 
stressful, and/or provides access to previously inaccessible areas. Indeed, the empirical 
research suggests that induced travel occurs in both urban and more rural areas, but that the 
elasticities might be slightly smaller in rural areas, especially in the short run. That said, the 
Calculator remains limited to use in California’s 37 urbanized counties (counties within MSAs), 
since urbanized counties, urbanized areas, and MSAs were the units of observation and analysis 
used in the most relevant studies summarized in Volker and Handy (2022).

Do existing levels of traffic congestion affect the induced travel elasticity?

Induced travel does not only occur in congested areas. Induced travel can be expected to occur 
wherever an expansion project increases the average travel speed on the roadway (at least in 
the short term), improves travel time reliability, makes driving on the roadway perceptibly safer 
or less stressful, or provides access to previously inaccessible areas, all of which reduce the
perceived “cost” of driving and thereby induce more driving. The limited available evidence 
indicates that metropolitan areas with higher baseline levels of traffic congestion could 
potentially have lower elasticities than metro areas with less congestion, possibly because 
pervasive regional congestion limits the travel time savings from any particular capacity 
expansion (at least smaller-scale ones). However, there is not enough empirical evidence to 
justify using different elasticities in the Calculator based on initial congestion levels.

That said, the Calculator inherently accounts for differences in traffic densities between 
geographies by using geography-specific baseline data for VMT and lane miles. While the
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calculator uses the same elasticities for every region, it would estimate more total induced VMT 
for a given increase in lane miles in areas with higher baseline VMT per lane mile.

See Volker and Handy (2022) for more detail.

Is the induced travel elasticity different for projects that expand capacity where there is a
traffic “bottleneck”?

There is not enough empirical evidence to justify using a different elasticity in the Calculator for 
projects where there is a traffic bottleneck. In theory, the induced travel effect might be greater 
for projects that expand capacity where there is a true bottleneck, since there can be a greater 
relative reduction in travel time (and thus perceived “cost” of driving) than for projects that 
expand capacity for just a portion of a uniformly congested roadway. However, the reduction in 
travel time depends on how congested the rest of the roadway network is.

Is the induced travel elasticity lower for shorter capacity expansions?

There is not enough empirical evidence to justify using different elasticities in the Calculator for 
different project lengths. However, the Calculator’s induced VMT estimates inherently account for 
the project length since the estimates are proportional to the percentage increase in facility 
capacity, and a longer project means a greater percentage increase in facility capacity.

Is freight (heavy duty) VMT included in the Calculator’s induced VMT estimates?

Yes, the Calculator’s induced VMT estimates include total VMT from both light- and heavy-duty 
traffic.

Does the Calculator’s induced VMT estimates account for diverted trips?

A key question in determining the induced travel effect size is whether increased VMT on the 
expanded roadways is partially offset by decreases in VMT on other roads (i.e., where VMT is 
effectively diverted from other roads). The few studies that have attempted to quantify this 
have found at most a minimal substitution effect (Duranton & Turner, 2011; Hansen & Huang, 
1997; Rentiziou et al., 2012). Duranton and Turner (2011), for example, estimated that the 
diversion of traffic from other major roadways (classes 2-6) accounts for between 0-10% of the 
total increase in interstate highway VKT resulting from an interstate capacity expansion.

All of the Calculator’s induced VMT estimates account for the possibility that a small portion of 
the increased VMT on the expanded facility is traffic diverted from other types of roads in the 
network. The 1.0 elasticity used for capacity expansions on interstate highways and the 0.75 
elasticity used for capacity expansions on class 2 or 3 facilities are both slightly rounded down 
from the relevant estimates from the empirical research in part to account for the small 
potential substitution effects.

See Volker and Handy (2022) for more detail.

Where do the elasticities used by the Calculator come from?

The elasticities used by the Calculator are derived from peer-reviewed empirical studies. The
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About page and Volker and Handy (2022) provide more details. Volker and Handy (2022) also 
review and summarize the relevant literature.

Do the studies from which the elasticities used by the Calculator are taken control for factors 
such as population growth and economic changes?

Yes. Every relevant study reviewed in Volker and Handy (2022) controlled for factors affecting 
VMT other than roadway capacity. For example, nearly every study controlled in some form for 
population and income, half the studies controlled for fuel cost, and one quarter controlled for 
elements of physical geography. More than half the studies also included regional and/or year 
fixed effects in their regression models to capture the effects on VMT of unmeasured variables 
associated with a specific region or time period. Every study also attempted to correct for the 
endogeneity of roadway capacity—the possibility that VMT growth can cause roadway capacity 
expansion and not just the other way around.

See Volker and Handy (2022) for more detail.

Will the elasticities used by the Calculator be updated as new empirical research becomes 
available?

Yes. We monitor the induced travel literature for new empirical research. Volker and Handy 
(2022) provide our most recent review of literature.

We encourage users to send us any additional research that they are aware of. Please direct 
information and inquiries to Jamey Volker (jvolker@ucdavis.edu).

Is the Calculator’s VMT and lane mile data publicly available?

Yes. The lane mile data is available as a downloadable spreadsheet here. The VMT data is 
available as a downloadable spreadsheet here.

How often will the Calculator’s VMT and lane mile data be updated?

The Calculator currently allows users to choose baseline data from 2016, 2017, 2018, or 2019. 
Data from 2020 is excluded because of the shock to statewide travel demand that year from 
COVID-19 and the resulting risk that using 2020 VMT data in the Calculator would 
underestimate induced VMT from capacity expansion projects. Additional years of data will be 
added periodically as it becomes available and as travel demand rebounds to a new normal in 
the COVID-19 era.

Which California counties are “urbanized counties”?

There are 37 urbanized counties in California, i.e., counties within metropolitan statistical areas 
(MSAs). A complete list is provided here.

What are the metropolitan statistical areas used by the Calculator?

There are 26 MSAs in California. A complete list, along with the constituent counties is provided 
here.
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