
STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION
TECHNICAL REPORT DOCUMENTATION PAGE
TR0003 (REV 10/98)

1. REPORT NUMBER

CA21-3427

2. GOVERNMENT ASSOCIATION NUMBER 3. RECIPIENT'S CATALOG NUMBER

4. TITLE AND SUBTITLE

Software and Hardware Systems for Autonomous Smart Parking Accommodating both
Traditional and Autonomous Vehicles

5. REPORT DATE

06/17/2021
6. PERFORMING ORGANIZATION CODE

University of California, Irvine
7. AUTHOR(S)

Mohammad Abdullah Al Faruque, Mohanad Odema, Luke Chen

8. PERFORMING ORGANIZATION REPORT NO.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

University of California, Irvine
3223 Engineering Hall,
Irvine, CA 92697-2625

10. WORK UNIT NUMBER

11. CONTRACT OR GRANT NUMBER

65A0674, TASK ORDER TASK ID 3427
12. SPONSORING AGENCY AND ADDRESS

California Department of Transportation
P.O. Box 942873 Sacramento, CA 94273-0001

13. TYPE OF REPORT AND PERIOD COVERED

Final Report, Jan 1, 2020 - Apr 1, 2021

14. SPONSORING AGENCY CODE

Caltrans
15. SUPPLEMENTARY NOTES

16. ABSTRACT

Parking infrastructure is suffering from congestion as the number of vehicles circulating in urban areas is growing and expansion is not a cost-
effective solution. In parallel, developments in autonomous vehicle technology mean driver-less vehicles are predicted to be in circulation by
the 2020s and makeup 40% of vehicle travel by the 2040s. Expected benefits of autonomous vehicle travel include reduced congestion through
vehicle sharing and reduced walking distance for passengers who can be dropped off chauffeur-style by autonomous vehicles. However,
empty vehicle cruising, or the case in which autonomous vehicles cannot efficiently locate parking and circle instead, can potentially increase
congestion. Given that this new technology has the potential to exacerbate existing congestion issues, it is necessary to develop a solution for
parking congestion integrated with autonomous vehicles. This project addresses this issue by providing a full-stack solution including sensors
to monitor occupancy, Fog systems to perform local data pre-processing, and Software Defined Radio (SDR) radios to communicate with
autonomous vehicles.

17. KEY WORDS

Autonomous Vehicles, Smart Parking, Parking Congestion, Smart
Technologies, Connected Vehicles, Dedicated Short Range
Communication, Parking Simulation

18. DISTRIBUTION STATEMENT

No Restrictions

19. SECURITY CLASSIFICATION (of this report)

Unclassified

20. NUMBER OF PAGES

24

21. COST OF REPORT CHARGED

Reproduction of completed page authorized.

ADA Notice
For individuals with sensory disabilities, this document is available in alternate
formats. For information call (916) 654-6410 or TDD (916) 654-3880 or write
Records and Forms Management, 1120 N Street, MS-89, Sacramento, CA 95814.

DISCLAIMER STATEMENT

This document is disseminated in the interest of information exchange. The contents of
this report reflect the views of the authors who are responsible for the facts and
accuracy of the data presented herein. The contents do not necessarily reflect the
official views or policies of the State of California or the Federal Highway Administration.
This publication does not constitute a standard, specification or regulation. This report
does not constitute an endorsement by the Department of any product described herein.

For individuals with sensory disabilities, this document is available in alternate formats.
For information, call (916) 654-8899, TTY 711, or write to California Department of
Transportation, Division of Research, Innovation and System Information, MS-83, P.O.
Box 942873, Sacramento, CA 94273-0001.

1

Agreement Number 65A0674 TO-027

Final Technical Report

Project Title: Software and Hardware Systems for Autonomous Smart Parking Accommodating both
Traditional and Autonomous Vehicles

PI: Mohammad Abdullah Al Faruque
Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA
Email: alfaruqu@uci.edu
Team Members: Mohanad Odema, Luke Chen

1. Introduction
Parking infrastructure is suffering from congestion as the number of vehicles circulating in urban
areas is growing and expansion is not a cost-effective solution. In parallel, developments in
autonomous vehicle technology mean that driverless vehicles are predicted to be in circulation by
the 2020s and makeup 40% of vehicle travel by the 2040s. Expected benefits of autonomous
vehicle travel include reduced congestion through vehicle sharing and reduced walking distance
for passengers who can be dropped off chauffeur-style by autonomous vehicles. However, empty
vehicle cruising, or the case in which autonomous vehicles cannot efficiently locate parking and
circle instead, can potentially increase congestion. Given that this new technology has the
potential to exacerbate existing congestion issues, it is necessary to develop a solution for parking
congestion integrated with autonomous vehicles. Our project addresses this issue by providing a
full-stack solution including sensors to monitor occupancy, Fog systems to perform local data pre-
processing, and SDR radios to communicate with autonomous vehicles.
Current infrastructure supports parking guidance information and a parking reservation system
for traditional vehicles with smartphone-equipped users. DSRC has also been successfully
employed in V2V and V2I communications. As such, the research challenge is integrating
autonomous vehicles into existing smart parking platform options. This entails not only securing
DSRC connections between smart parking systems and autonomous vehicles, but also ensuring
that the system provides sufficient information for successful parking services in real time. The
challenge of integration is addressed by developing a full stack system that will accomplish the
following: monitor a parking garage’s occupancy, classify vehicles within the parking garage,
aggregate location data for available spaces and associated mapping data, and assign them to
the respective vehicles to be routed to it.

mailto:alfaruqu@uci.edu

2

2. System Architecture

A. Overview

2.1 The Wireless Sensor Network (WSN) and the fog

For the purpose of monitoring occupancy in the parking structure, data needs to be aggregated
by a local IoT module from the deployed sensors installed around the structure. As such, the
Wireless Sensor Network (WSN) responsible for collecting the occupancy data from different
sensors distributed around the parking structure is a core subsystem of the proposed full stack
solution. From here, different types of sensors were to be assessed based on the criteria of cost
effectiveness, ease of setup, and type/quality of information provided. Mainly, these sensors are
used for the primary purpose of tracking available parking spaces. Preliminary research revealed
that known sensor options include LDR (Light Dependent Resistors) and PIR (Passive Infrared
Resistors) seemed like the most suitable candidates for the occupancy monitoring functionality.

However, the sensors on their own cannot be deployed to send their raw data readings to the
local IoT module (which in our case would be the Parking Tracker Fog System). As this would
require the entire sensors to be connected directly to it; this is quite unfeasible as it would require
wired connections to the module which, on its own regard, has a limited number of such
connection ports. In this context, the wireless sensor network would be designed to have a
multitude of sensing motes as an intermediary between the sensors and the central unit. They
would be conceptually deployed around different areas of the structure with the capability to
communicate wirelessly with the local module in a star-like topology. Furthermore, each sensing
mote can have a multitude of sensors connected to it depending on the number of ports each
designated mote has. This would allow extension of the network as the communication is based
on a wireless protocol, and in theory allows planning the WSN in an XMesh configuration allowing
some motes to be intermediate hops to further extend the network reach. From here, our main
design objective was to establish the star communication allowing the local IoT module to
aggregate the received sensor data from the sensing motes to maintain the occupancy
functionality.

B. Implementation Details
In the proposed implementation, we decided to prototype the
wireless sensor network using the multipurpose ESP32
development board [1]. The ESP32 would represent the
functionality of a sensing mote having the sensors connected to it
on one hand and sending wireless messages to the local IoT
module on the other hand. Currently, the sensors used in our
implementation are Light Dependent Resistors (LDRs) mounted Figure 1: LDR and ESP32 connection

configuration on the ESP32 boards and interfaced through one of the General-
Purpose Input Output Pins (GPIOs) with Analog to Digital Conversion (ADC) functionality. The
connection configuration between the sensor and the ESP32 is shown in Fig. 1 and an actual
screenshot of the circuit is in Fig. 2. In this circuit, the LDR sensor cathode end is connected to
the ADC(1-0) GPIO36 pin which can take in the analog readings by the sensors and convert them
to digital values to be processed by the board. It is also connected to a resistor which interfaced

3

from the other side with the ground terminal of the board. The alternative terminal of the sensor
is connected to the 3.3V from the board. These sensors indicate the occupancy status based on
the level of sensed light intensity. Furthermore, in order to assess the effectiveness of the
message transmission from the sensing motes, we implemented the local IoT module functionality
on a Raspberry Pi 3 [6] board to process the occupancy data. Figure 3 shows the connection
between the ESP32 board and the local IoT module.

Figure 2: ESP32 Circuit Connection

An additional merit that can be exploited when using the ESP32 board is that ESP32 supports
multiple power modes. So, the WSN nodes can be optimized to preserve their energy by switching
to one of the lower power modes when they are not transmitting or receiving packets. In this
context, the active mode requires the chip to operate around 240 mA operational current. Lower
power modes include MODEM sleep, Light Sleep, and Deep sleep; such modes support waking
up the main system based on the measurements from the acquired sensor data. The operating
current can reach as low as 20mA, 0.8 mA, and 0.01 mA for each of the power modes
respectively. This can aid us in our design to have the development board switch between the
deep sleeping mode and active mode depending on the changes in the sensor readings
associated in this application with the parking spots.

PTFS running
AWS Greengrass

Core

ESP32 board running
AWS Free RTOS

Wireless
Connection

Figure 3: Wireless Sensor Network Design. Currently a star topology between the PTFS and one ESP32 board which can be
scaled to include further boards in an XMesh configuration

3.3 V
Connection

Ground To ADC(1-0)-
GPIO36 Pin

Resistor (10kΩ)

Light
Dependent

Resistor

USB Connector
for Power

PTF

4

C. AWS IoT Framework
From here, the AWS IoT framework has been chosen to achieve the connectivity functionalities
between different components of the hierarchical design. Mainly because the framework is
established to facilitate communication between the different levels of design hierarchy, which in
our case is resembled as cloud-fog-edge hierarchy. In this context, the occupancy data would
propagate from the sensing mote across the fog device and to the cloud as shown in Fig. 4. To
achieve this, AWS FreeRTOS [2] was installed on ESP32 as real-time operating system to
facilitate connection of each one of them to the fog node. For the IoT module (Fog device), AWS
IoT Greengrass core [3] was deployed on the Raspberry Pi to extend its functionality to act locally
on the collected data using the AWS Lambda functions. In addition, devices running AWS IoT
Greengrass can act as an intermediary between the sensing nodes and a central cloud; which
conceptually is capable of managing multiple fog devices representing multiple parking structures.
Detailed steps of how to configure ESP32 to run AWS FreeRTOS and how to configure the
Raspberry Pi to run AWS IoT GreenGrass are provided in [4] and [5] respectively.

A. Overview

Figure 4: Occupancy Data Propagation from the ESP32 device through the PTFS and to the central AWS cloud

2.2 PTFS Proof of Concept

For the proof of concept of the PTFS functionality, a hardware-in-the-loop simulation is set up
consisting of 3 main components (Figure 5): The Fog Node, the Edge Device, and the Vehicle.
The Fog Node is the core of our Parking Tracker Fog System (PTFS). It is implemented using the
AWS IoT Greengrass framework on the Raspberry Pi 3 B+ model [6]. The job of the Fog Node is
to process occupancy data from the Edge Devices and to handle parking requests from vehicles
entering the smart parking structure. The Edge Device is implemented using the multipurpose
ESP32 development board which runs the Amazon FreeRTOS kernel and communicates to the
Fog Node through MQTT publisher/subscriber protocols. The Edge Device is an intermediary unit
between the multitude of sensors and the Fog Node. It is a sensor mote that aggregates and
sends sensor data to the Fog Node for processing. The Vehicle we used is the TI Robotics System
Learning Kit (TI-RSLK) robotics vehicle from Texas Instrument [7]. It acts as the
autonomous/traditional vehicle agent that interacts with a smart parking structure. The vehicle
currently communicates wirelessly to the Fog Node through a server using the TCP/IP protocol.
Incorporating support for DSRC shall be detailed in the following subsections 2.3 and 2.4.

Figure 5: Hardware-in-the-loop structural Diagram

5

B. Implementation Details

Fog node waiting for a
vehicle connection

Fog node parsing the
vehicle information

Fog Node
querying local
database for
open parking
spots

Fog node
acknowledging the
client that it received
the parking request

Fog Node
updating its
local database
to reflect a spot
reservation

Figure 6: v2xComm lambda function log
The AWS IoT framework uses lambda functions to run application logic on local Fog Nodes. In
our application, the Fog Node has two main tasks. First to manage the parking requests of
Vehicles and second to process occupancy sensor data from the Edge Devices. Therefore, we
deployed two lambda functions to the Fog Node called sensor_update and v2xComm.
Sensor_update manages the communication between the Fog Node and the Edge Device while
V2xComm manages the communication between the Fog Node and the Vehicle. When a Vehicle
makes a parking request to the Fog Node, it will send some metadata such as vehicle id and type
(compact, regular or handicap) illustrated by Figure 6. In the Fog node, the v2xComm lambda
function hosts a server that will process the parking request. A local SQLite database on the Fog
Node stores the parking occupancy status of all the spots on the hardware simulation and is used
to query for available parking spots based on the vehicle type. Once a suitable parking spot is
found, the Fog Node will set the parking spot status to “reserved” in the local database and send
the parking spot information to the Vehicle. In the event that the Fog Node receives information
from the Edge Device that a parking spot’s occupancy status has changed, the sensor_update
lambda function will trigger and it will update the occupancy status of that parking spot in the local

6

database. The Fog Node also handles the occupancy indicators and will change the color of the
LEDs based on the parking occupancy status (green = empty, yellow = reserved, red = occupied).

Figure 7: Hardware-in-the-loop simulation
The Edge Device utilizes the Amazon FreeRTOS kernel to establish a secure wireless
connection with the Fog Node. When a Vehicle arrives at its reserved parking spot, the light-
dependant resistor (LDR) sensor, shown in Figure 7, will sense a change in the light intensity
value. If this change is greater than some preset threshold value, the ESP32 will detect that the
parking spot is being occupied. It will then send this information to the Fog Node via MQTT
publisher/subscriber protocol. The Fog Node will then reflect the occupancy status in the database
and provide visual feedback through the occupancy indicators (LEDs). The code that
communicates between the Edge Device and the Fog Node is based on our modification of the
AWS IoT Greengrass discovery demo application [8]. We modified the code so that the ESP32
will continuously loop over the six LDR sensors to check if any of the sensors meet the threshold
value.

7

Figure 8: TI robotics vehicle attached with ESP32 for wireless capabilities
TI robotics learning kit is used as the test vehicle. Because the TI module does not come with
a wireless module, we used a ESP32 microcontroller to handle wireless communications between
the Vehicle and the Fog Node as shown in Figure 8. When the ESP32 boots up, it waits for a
button press. When the button is pressed, it attempts to connect to the server created by the
v2xComm lambda function on the Fog Node. When the connection is successful, it sends the Fog
Node a message that includes its vehicle id and the type of vehicle (compact, regular or handicap).
When the ESP32 successfully receives a parking spot number from the Fog Node, it will
communicate this information to the Vehicle using 3 output pins (GPIO_OUTPUT_IO_0,
GPIO_OUTPUT_IO_1, GPIO_OUTPUT_IO_2). These 3 pins are used to encode the parking spot
numbers in binary format (ex. 001 = 1, 010 = 2, 011 = 3, etc.). Another pin (GPIO_OUTPUT_IO_3)
is used to let the ESP32 know when to read the 3 pins for decoding. Recall that these wired
connections are within the demo vehicle between the TI kit and the ESP32 microcontroller, in
which the ESP32 was added to incorporate wireless support for the demo vehicle. Based on the
decoded parking spot number, the Vehicle will then proceed to navigate itself towards the
reserved parking spot via a pre-programmed path.

Figure 9: Hardware-in-the-loop and software simulation layout

GPIO_OUTPUT_IO_3 GPIO_OUTPUT_IO_0

GPIO_OUTPUT_IO_2
GPIO_OUTPUT_IO_1

3.3 V Connection

Parking Request

Resistor (1 kΩ) 3.3 V Connection
Ground

GPIO_INPUT_IO_0

8

C. Parking Occupancy Simulation

A. Overview

In order to test the compatibility of our hardware simulation with real parking occupancy
monitoring systems, we integrated a parking occupancy software that mimics a parking lot
environment. The software simulation is based on the Parking Occupancy Simulator from
Geospatial Technologies Research Group [9]. We made modifications to the code for it to be
compatible with our hardware simulation. The simulation utilizes Geographic Information Systems
(GIS) data to map the parking environment and uses model drivers as agents to interact with the
parking environment. Six spots on the software simulation are reserved to reflect the physical
parking spots on our hardware simulation. As shown in Figure 9, there are visible parking spots
on the map differentiated by colors of green, yellow, and red which indicate empty, reserved and
occupied, respectively. As the simulation runs, the driver agents will begin to occupy parking
spaces throughout the map. The software simulation communicates with the hardware simulation
(Fog Node) through a tcp server. When a parking spot reservation request is detected by
v2xComm or when a change in parking occupancy data (empty or occupied) is sent to
sensor_update, the Fog Node will send the parking spot id of the affected parking spot to the
simulation through the server. The server has the mapping of the physical parking location (local
spot id) to six corresponding parking spaces (global spot id) on the simulation. Therefore, any
changes to the parking occupancy status in the physical simulation will be reflected in the software
simulation in real-time.
One caveat for the simulation software is that the original ArcGIS server that hosts the geographic
data for the map is currently no longer in service. Therefore, we devised a workaround with copies
of the GIS data stored on several json files and have a python flask web server that runs in the
background to service the GIS data. Therefore, it is necessary to run the python web server code
prior to launching the simulation in order for it to work correctly.

2.3 DSRC Integration

Integrating the Dedicated Short-Range Communication (DSRC) with the Parking Tracker Fog
System (PTFS) is to enable communication between the PTFS and Intelligent Vehicles (IV).
DSRC is a variation of the IEEE 802.11 short-range wireless communication protocol called IEEE
802.11p. DSRC operates in the 5.9 GHz band with a bandwidth of 75 MHz. Just like the WiFi
802.11a/g protocols, DSRC also follows the Open Systems Interconnection model (OSI model)
for implementing various layers of this protocol. The fundamental layers of the OSI model are the
physical layer (PHY layer) and the data link layer which consists of the Logical Link Control (LLC)
and Medium Access Control (MAC) sub-layers. Above the data link layer are the high level

9

abstraction layers like the application layer and various other sublayers in between. To enable
communication using DSRC, we need to at least have the PHY layer and LLC/MAC layers.

Figure 10: DSRC architecture [1]

B. Implementation Details

Figure 11: Wime-project
To build the PHY and MAC layers, we looked into various resources that have implemented some
kind of PHY and MAC layers for the DSRC standard. We found that the Wime-project [11] was
the best option in the open source area for wireless communication modules. The Wime-project
is an open-source collaboration project between various college institutions. The creators of the
project also published a paper detailing the performance assessment of their WiFi module in [12].
They created a DSRC Software Defined Radio (SDR) prototype that is compatible with the Ettus
B210 & N210 boards, which are boards that are capable of operating in the 5.9 GHz band for
DSRC communication. We integrated their IEEE 802.11a/g/p – WiFi module into our system [13].
The module provides a complete physical layer implementation for a WiFi transceiver that works

10

with the IEEE 802.11p protocol. The module was created using GNU Radio, a well-known real-
time signal processing framework for use in Software Defined Radio (SDR) systems.

Figure 12: Example of GNU Radio Flowgraph
Just like Simulink and LabView, GNU Radio is a graph-based application that enables users to
design software radios to be used with hardware to create software-defined radios (SDR).
Within each flowgraph, for example Figure 12, blocks are contained that perform simple
mathematical operations to complex signal processing. The flow of data is represented by the
arrows that connect each block, and the type of input/output data is determined by the color of
the input/output ports of each block. GNU Radio comes with an extensive library of blocks that
perform standard signal processing tasks. Just by connecting blocks together, we can create
more complex blocks that can model or perform custom signal processing functions.

Figure 13: WiFi Loopback Flowgraph
Having installed GNU Radio following the official GNU Radio webpage [13] as well as installing
the custom blocks created by the Wime-project, we ran a WiFi loopback test that assess the
functionality of the PHY and MAC layers of the custom blocks. Figure 13 shows the wifi loopback

11

flowgraph and the blocks that construct it. The main goal of this loopback test is to verify the
correct functionality of the WiFi PHY Hier block. In order to do so, a message strobe with 10 x’s
is sent through the WiFi MAC and into the WiFi PHY Hier’s mac_in input port. The WiFi PHY Hier
is a complex block that contains a multitude of complex signal processing blocks inside. For more
information on the details and implementations of the WiFi PHY Hier block with signal processing,
please refer to the paper in [12]. To give a general explanation of the functionality of the WiFi PHY
Hier block, it basically applies the signal processing to the data and outputs it through the PDU to
Tagged Stream block and into a graphical user interface (GUI) constellation sink. At the same
time, the processed signal was extracted and sent out from the samp_out output port to be
reconfigured by the Packet Pad2, Fast Multiply Const, Channel Model, and Polyphase Arbitrary
Resampler, so that it can be sent back to the WiFi PHY Hier block as the data for the test.

C. Hardware and Software Specifications

Figure 14: WiFi loopback Quadrature
The results of the loopback test are shown in Figure 14 through the constellation diagram. The
number of constellation points in a diagram depends on the encoding type and it specifies the
size of the symbols that can be transmitted by each sample of data. In this case, the encoding
type is QPSK ½ with 4 points which represents a modulation scheme that can separately
encode 4 combinations of two bits: 00, 01, 10, and 11, and so can transmit two bits per sample.
The clear separation in the constellation shows that the samples are being interpreted correctly
and there is no misrepresentation of the samples.

For the hardware we decided to use the Ettus Board B210 from Ettus Research. The Wime-
project has shown successful integration of their IEEE802.11p module with the USRP N210 as
well as the B210. The USRP B210 is a fully integrated, single board Universal Software Radio
Peripheral (USRP) platform with continuous frequency coverage from 70 MHz - 6 GHz. It has
full support for development in GNU Radio with its USRP Hardware Driver (UHD). Once we

12

A. Overview

received the USRP B210 boards and installed the necessary drivers for the device from Ettus
Research, we ran the benchmark software and verified that the B210s are operating correctly
without faults.

2.4 End-to-end Integration

The integration of the Dedicated Short-Range Communication (DSRC) with the Parking Tracker
Fog System (PTFS) can be broken down into three parts shown in Figure 15: the vehicle agent,
the parking tracker fog node, and the parking simulation. Each component consists of
subcomponents that allow the communication flow to work correctly. In the following sections,
we will be breaking down the three main parts alongside their subcomponents in detail.

Figure 15: Hardware Diagram

B. Implementation Details
Vehicle Agent: the communication between DSRC equipped vehicle agents and the smart parking
fog node starts from the generation of a parking request message. In our implementation, the
vehicle agent is represented by a laptop computer that is equipped with a Universal Software
Radio Peripheral (USRP). Note that the DSRC-based agent is orthogonal to the one implemented
using the TI Robotics kit, as each agent reflects different operational scenarios (i.e., a vehicle that
supports DSRC communication and another which does not). The USRP that we are using is the
Ettus Research B210 board. The B210 boards allow the transmission and reception of signals in
the 5.9 Ghz band, but the processing of the signals is accomplished through GNU Radio, a
software development toolkit for signal processing in.

13

Figure 16: Hardware Diagram (Vehicle Agent)

As shown in Figure 16, when a parking request message is prepared by the vehicle agent, it will
send the message to the USRP to be transmitted over-the-air to the fog node. After sending the
parking request message, the vehicle agent will wait to receive a parking spot reservation
message from the fog node. How the USRP sends and receives data over-the-air is shown by
the expanded view of the USRP in Figure 17, which shows the GNU Radio blocks that performs
signal processing in the background.

Figure 17: USRP Expanded View (GNU Radio Blocks)

The USRP gets the parking request message from the vehicle agent through the socket PDU.
The message goes through the WiFi MAC and WiFi PHY Hier blocks where the corresponding
MAC and PHY header information is added to the original message. The WiFi PHY Hier block
models the IEEE 802.11p physical layer protocol. Finally, the padded message with the header
information goes to the UHD: USRP Sink block which transmits the padded message over-the-
air in the 5.9 Ghz band. The UHD: USRP Source block receives messages over-the-air from the

14

5.9 Ghz band. Both UHD blocks are device driver modules that allow the GNU Radio software to
interact with the B210 board’s transmit (TX) and receive (RX) channels.

Figure 18: Hardware Diagram (Fog Node)

Fog Node: The fog node in our implementation (Fig. 18) is built on a Raspberry Pi 3 B+. Just like
the vehicle agent, the fog node is also equipped with a USRP device that allows it to communicate
through DSRC using a B210 and the GNU Radio software. Alongside the GNU Radio software
for signal processing, the fog node also runs the Amazon Web Service (AWS) greengrass service
which handles the smart parking system’s reservation functions using a local database of parking
spots. We will refer to the AWS greengrass node as the AWS database. When the fog node
receives the parking request message from the USRP device, which was explained in the vehicle
agent part, it will relay this information to the AWS database. The AWS database will parse the
message to extract relevant information and decide which parking spot to reserve for the vehicle.
When it finds a suitable parking spot, the AWS database will send the reserved parking spot
message back to the USRP to send it over-the-air to the requesting vehicle agent. It should be
noted that installing all the necessary packages on Raspberry Pi 3 B+ was challenging and time
consuming due to the limited memory resources of the device. We recommend an upgrade to
Raspberry Pi 4 devices if the same brand of devices is to be used for the fog nodes.

To explain the inner workings of the communication that goes on inside the fog node, we provide
a communication diagram from the point of view of the fog node in Figure 19.

Figure 19: Communication Diagram (Fog Node)

15

Because there is no direct communication between the GNU Radio software and the AWS
Database, since they are two independent programs running on the fog node, we had to create a
python program that acts as a bridge between the two components. When GNU Radio receives
a parking request message through USRP Source, it sends this information to the UDP port of
the python server. The python server will relay the information to the AWS Database through a
TCP port. When the AWS database returns a parking spot reservation, the python server will relay
the information back to GNU Radio and the information will be transmitted over-the-air to the
vehicle agent through the USRP Sink. The reason we don’t use a UDP/TCP port to communicate
directly from GNU Radio to the AWS database is because the UDP port in GNU radio is different
from the standard UDP port and the python program imports the GNU radio libraries to use the
special UDP port for communication. Since it’s a custom python program, we can also use
standard TCP socket libraries to communicate with the AWS database.

Figure 20: Hardware Diagram (Simulation)

Simulation: The last component for the DSRC integration is the simulation, shown in Figure 20.
When the fog node receives the parking request message and before it parses the message, it
also sends this message to the parking simulation software. The parking simulation software also
parses the message for relevant information and will generate a parking agent to park at a
reserved spot in the simulation. This component exists for DSRC to work with our simulation
software. It is not a necessary component for implementing PTFS with DSRC capabilities, only
the vehicle agent and fog node components are necessary.

Figure 21: Communication Diagram (Simulation)

16

We use the communication diagram in Figure 21 to explain the communication between the fog
node and the simulation. The TCP client inside the Python Server shown here is the same TCP
client that was shown in Figure 19. This diagram shows that the information is also sent from the
AWS database to the simulation and that the simulation creates a corresponding parking agent
that will park at a reserved spot.

C. Message Protocols
We have been talking about sending and receiving parking request messages and reserved
parking spot messages between the vehicle agent, the fog node, and the simulation, but we have
not explained what these messages contain. The exact messages that we are sending and
receiving is our variant of the Basic Safety Message (BSM).

Figure 22: Basic Safety Message Part I Elements [14]

BSM is a message protocol that is used to communicate information between vehicles equipped
with DSRC capabilities, and was designed to be used in safety applications. BSM consists of two
parts, Part I - known as Basic Vehicle State is mandatory and must always be included in a BSM
(shown in Figure 22), while Part II, which includes the Vehicle Safety Extensions and Vehicle
Status is optional. Typically, vehicles periodically broadcast BSM Part I only. Therefore, we only
consider BSM Part I and its corresponding data elements and data frames for our implementation.
In our case, we utilize the Latitude and Longitude data elements which are part of the
PositionLocal3D sequence. Elevation is currently not being used but it could be useful in the case
of multilevel parking garages such that the elevation position of the vehicle can be taken into
account when reserving a parking spot that is on the same floor as the vehicle.

It is important to note that due to the fact that BSM is used solely for safety communication, it is
not designed to work with a smart parking application, therefore we use a variant of the BSM to
convey the necessary information for our system to work.

17

Figure 23: Parking Request Message (Our BSM Variant)

Our BSM variant for parking request message, shown in Figure 23, sent from the vehicle agents
to the fog node consists of the following: Tx_timestamp (the time the message is transmitted),
Type (the type of vehicle i.e. compact, sedan, etc.) Id (a unique vehicle identifier), longitude
(current GPS longitude), and latitude (current GPS latitude). For the sake of demonstration, we
did not include all the data elements and data frames that are part of the BSM but only the ones
useful to us. However, once can modify and include the full BSM as they desire.

Figure 24: Reserved Parking Spot Message (Our BSM Variant)

On the other hand, the other reserved parking spot BSM (Figure 24.) variant message sent from
the fog node to the vehicle agents contains the following: Tx_timestamp (the time the message is
transmitted), Id (a unique fog node identifier in case there are multiple parking garages) and spot
(the reserved parking spot). The spot data shows the parking spot number that is reserved, this
is so that it is compatible with our simulation, however in a real smart parking system, the spot
data will be replaced by the longitude and latitude of the physical spot so that the vehicle can
navigate to that position.

As a final note to the message protocol, we wanted to mention that currently there is no standard
message set that contains data elements specific to smart parking system applications (i.e.,
parking spot availability, routing information, etc.). BSM was developed for safety message
exchange within V2x applications and so our BSM variant would not be recognized by vehicles
and they would not know what to do with these messages. To develop a working smart parking
system that accommodates smart vehicles equipped with DSRC capabilities would require a
protocol standard agreement amongst the vehicle manufacturers and the protocol standard
creation companies. Our preliminary research suggests smart parking system integrators to look
into the SAE J2945/x series that is currently in development by SAE International which specify
application specific message sets for DSRC systems, however most of the standards are listed
as work-in-progress and none have been created for smart parking applications.

https://www.sae.org/standards/content/j2945_201712/
https://www.sae.org/

18

3. Experiments

3.1 Assessments and Experiments
A. Hardware Setup

B. DSRC Latency

C. DSRC Integration Tests

Figure 25: Ettus Research B210

The Ettus Research B210 boards [15] are used as our USRP device. In order for the B210s to
communicate with GNU Radio we need to install the USRP Hardware Driver (UHD) onto the host
device, a comprehensive installation guide for installing UHD and GNU Radio is shown in [16].
As can be seen from the image, the B210 boards connect to the host device through USB 3.0
Type B. Once UHD drivers are properly installed on the host device, it is simply plug & play by
connecting the device directly to the host device's USB port (recommended is USB 3.0 for best
data rates). To verify the operation of the USRP device, we followed the instructions in [17] which
has connection tests, transmission and reception benchmarks for us to test our device. Note that
most if not all of the support for both UHD and GNU Radio is for linux-based Operating Systems
(OS) like Ubuntu so it is recommended to use the supported Operating System for the host device.

We conducted a simple latency test to determine the time it takes to send and receive our custom
messages over-the-air to two devices equipped with the B210s. These two devices are a laptop
and a desktop computer both running the Ubuntu 18.04 LTS OS with GNU Radio version 3.8 and
UHD driver version 4.0. The test was conducted with the two devices at separate ends of a room
around 20-25 feet apart from each other. From figure 26 we can see that the latency is between
43-78 milliseconds. Note that this is a simple test of transmission and receive which does not
account for environmental factors that would interfere with the signal.

Once we confirmed the correct operability of our B210 devices, we integrated the USRP into our
existing smart parking system. Figure 27 shows the transmission of the parking request message
from the vehicle agent which is represented by the python program running on a local computer.
The bottom portion of the image is GNU Radio running in the background and transmitting the
message over-the-air. This is the demonstration of the hardware diagram (vehicle agent) portion.

19

The time the message
was received and
logged

The time the message was transmitted

Message Latency

Real-time messages
being received and
printed to standard
output

Figure 26: DSRC Latency Test

Figure 27: DSRC Integration (Vehicle Agent)

20

Figure 28: DSRC Integration (Fog Node)
The top image of figure 28 shows the parking request message being received by GNU Radio for
the fog node. The bottom image shows the python program relaying the message to v2xComm
which is the AWS database that handles the smart parking reservation. Once the AWS database
queries and finds a parking spot, the python program receives the reserved parking spot and will
relay the reserved spot message back to GNU Radio to transmit over-the-air to the vehicle agent.

Figure 29 shows the parking request message being received by our simulation software from
the AWS database. Remember that the AWS database first receives the message over-the-air
through the USRP and before it parses the message it also relays the message to the simulation
through TCP. When the simulation receives the parking request message, it will parse the
longitude and latitude information from the parking request message. The simulation will generate
a BSM agent at the given longitude and latitude location and reserve a parking spot that is closest
to the longitude and latitude of the vehicle. Finally, the vehicle will proceed to park at its reserved
parking spot.

21

Figure 29: DSRC Integration (Simulation)

3.2 Simulation Scenarios
One of the tasks for us was to consider real life parking scenarios in our smart parking system.
This section addresses the concerns of Multi-entry parking garages, parking in unassigned spots,
and reservation timeout.

In the simulation software, green dots are open spots, and black dots are vehicle agents that have
parked. Yellow dots are parking spots that are reserved, and blue dots are guided agents that
communicate with the smart parking system and receive reserved parking. The brown dots are
explorer agents that do not communicate with the smart parking system and park on their own,
and lastly red dots are guided agents that have their reserved spots taken by an explorer agent.
In the simulation snippet in figure 30, vehicles were spawn at different entry points of the simulated
parking space which took into account the multi-gate/multi-entry scenario of a parking structure.
Moreover, the parking in the unassigned spot can be seen in Figure 30 by the red dotted vehicle
agent due to its reserved spot being taken by an explorer agent.

22

Figure 30: Multi-entry & Parking in unassigned spots

Figure 31: Simulation Software Console Output
If we look at the console output of the simulation software in Figure 31, we can see that explorer
agent 51 wanted to park at slot 155, however at the same time guided agent 621 was assigned
to slot 155 since it was not yet taken. Due to explorer agent 51 arriving at slot 155 before guided
agent 621, when guided agent 621 arrives at its reserved spot location, it sees that its spot has
been taken and it requests for a new slot and eventually parks at slot 150. The same case can be
seen between explorer agent 292 and guided agent 773.

The last scenario is to show a parking reservation timeout system. We demonstrate this through
our hardware-in-the-loop setup where the green lights are open parking spaces, red lights are
occupied spaces, and blue lights are reserved spaces. It can be seen from Figure 16 and 17 that
the reserved parking spot eventually clears to become an open parking spot after a set amount
of time. This is accomplished with a simple timer that is set when a parking spot is reserved.

23

Figure 32: Parking Spot reserved (Blue)

Figure 33: Reservation Timeout (Back to green)

24

4. Conclusion
The work throughout this project showcased hardware and software implementation of a smart
parking system that is capable of communicating with both traditional and connected vehicles
alike. This comes as a step towards evolving the existing parking infrastructures to accommodate
the estimated wide-scale adoption of autonomous vehicles and connected vehicles, which would
require real-time information about available parking services. In this regard, we developed a
Parking Tracker Fog System (PTFS) that is capable of establishing communication through
traditional wireless communication and DSRC, which is the expected communication technology
for connected vehicles. We conducted several experiments through simulations and Hardware
setup demos to assess the reliability of the parking information exchange in real-time for both
traditional and DSRC-based communications. Finally, we foresee our work being scalable to
multiple parking spaces, each represented through its own PTFS, and all PTFSs are managed
through a central cloud that can alleviate the smart parking services to a city-wide level and
complement it with parking occupancy predictions.

5. References
[1] [Online] https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

[2] [Online] https://aws.amazon.com/freertos/

[3] [Online] https://aws.amazon.com/greengrass/

[4] [Online] https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_espressif.html

[5] [Online] https://docs.aws.amazon.com/greengrass/latest/developerguide/setup-filter.rpi.html

[6] [Online] https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

[7] [Online] https://training.ti.com/ti-robotics-system-learning-kit

[8] [Online] https://docs.aws.amazon.com/freertos/latest/userguide/gg-demo.html

[9] [Online] https://github.com/GeoTecINIT/parking_occupancy_simulator

[10] [Online] http://www.wirelesscommunication.nl/reference/chaptr01/dtmmsyst/dsrc/dssr4.htm

[11] [Online] https://www.wime-project.net/

[12] [Online] Bastian Bloessl, Michele Segata, Christoph Sommer and Falko Dressler, "Performance Assessment of
IEEE 802.11p with an Open Source SDR-based Prototype," IEEE Transactions on Mobile Computing, vol. 17 (5), pp.
1162-1175, May 2018.

[13] [Online] https://github.com/bastibl/gr-ieee802-11

[14] [Online] https://www-esv.nhtsa.dot.gov/Proceedings/24/files/24ESV-000379.PDF

[15] [Online] https://files.ettus.com/manual/page_usrp_b200.html

[16] [Online] https://kb.ettus.com/Building_and_Installing_the_USRP_Open-
Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux

[17] [Online] https://kb.ettus.com/Verifying_the_Operation_of_the_USRP_Using_UHD_and_GNU_Radio

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://aws.amazon.com/freertos/
https://aws.amazon.com/greengrass/
https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_espressif.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/setup-filter.rpi.html
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://training.ti.com/ti-robotics-system-learning-kit
https://docs.aws.amazon.com/freertos/latest/userguide/gg-demo.html
https://github.com/GeoTecINIT/parking_occupancy_simulator
http://www.wirelesscommunication.nl/reference/chaptr01/dtmmsyst/dsrc/dssr4.htm
https://www.wime-project.net/
https://www.bastibl.net/
https://ans.disi.unitn.it/%7Esegata/
http://www.ccs-labs.org/%7Esommer/
http://www.ccs-labs.org/%7Edressler/
https://github.com/bastibl/gr-ieee802-11
https://www-esv.nhtsa.dot.gov/Proceedings/24/files/24ESV-000379.PDF
https://files.ettus.com/manual/page_usrp_b200.html
https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux
https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux
https://kb.ettus.com/Verifying_the_Operation_of_the_USRP_Using_UHD_and_GNU_Radio

	Task 3427 Technical Report Documentation Page1
	appendix_3-2_disclaimer_page
	Final Technical Report_rev_1.1_ADA_Compliance
	1. Introduction
	2. System Architecture
	2.1 The Wireless Sensor Network (WSN) and the fog
	A. Overview
	B. Implementation Details
	C. AWS IoT Framework

	2.2 PTFS Proof of Concept
	A. Overview
	B. Implementation Details
	C. Parking Occupancy Simulation

	2.3 DSRC Integration
	A. Overview
	B. Implementation Details
	C. Hardware and Software Specifications

	2.4 End-to-end Integration
	A. Overview
	B. Implementation Details
	C. Message Protocols

	3. Experiments
	3.1 Assessments and Experiments
	A. Hardware Setup
	B. DSRC Latency
	C. DSRC Integration Tests

	3.2 Simulation Scenarios

	4. Conclusion
	5. References

