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1. Introduction
Parking infrastructure is suffering from congestion as the number of vehicles circulating in urban 
areas is growing and expansion is not a cost-effective solution. In parallel, developments in 
autonomous vehicle technology mean that driverless vehicles are predicted to be in circulation by 
the 2020s and makeup 40% of vehicle travel by the 2040s. Expected benefits of autonomous 
vehicle travel include reduced congestion through vehicle sharing and reduced walking distance 
for passengers who can be dropped off chauffeur-style by autonomous vehicles. However, empty 
vehicle cruising, or the case in which autonomous vehicles cannot efficiently locate parking and 
circle instead, can potentially increase congestion. Given that this new technology has the 
potential to exacerbate existing congestion issues, it is necessary to develop a solution for parking 
congestion integrated with autonomous vehicles. Our project addresses this issue by providing a 
full-stack solution including sensors to monitor occupancy, Fog systems to perform local data pre- 
processing, and SDR radios to communicate with autonomous vehicles. 
Current infrastructure supports parking guidance information and a parking reservation system 
for traditional vehicles with smartphone-equipped users. DSRC has also been successfully 
employed in V2V and V2I communications. As such, the research challenge is integrating 
autonomous vehicles into existing smart parking platform options. This entails not only securing 
DSRC connections between smart parking systems and autonomous vehicles, but also ensuring 
that the system provides sufficient information for successful parking services in real time. The 
challenge of integration is addressed by developing a full stack system that will accomplish the 
following: monitor a parking garage’s occupancy, classify vehicles within the parking garage, 
aggregate location data for available spaces and associated mapping data, and assign them to 
the respective vehicles to be routed to it. 

mailto:alfaruqu@uci.edu
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2. System Architecture

A. Overview

2.1 The Wireless Sensor Network (WSN) and the fog 

For the purpose of monitoring occupancy in the parking structure, data needs to be aggregated 
by a local IoT module from the deployed sensors installed around the structure. As such, the 
Wireless Sensor Network (WSN) responsible for collecting the occupancy data from different 
sensors distributed around the parking structure is a core subsystem of the proposed full stack 
solution. From here, different types of sensors were to be assessed based on the criteria of cost 
effectiveness, ease of setup, and type/quality of information provided. Mainly, these sensors are 
used for the primary purpose of tracking available parking spaces. Preliminary research revealed 
that known sensor options include LDR (Light Dependent Resistors) and PIR (Passive Infrared 
Resistors) seemed like the most suitable candidates for the occupancy monitoring functionality. 

However, the sensors on their own cannot be deployed to send their raw data readings to the 
local IoT module (which in our case would be the Parking Tracker Fog System). As this would 
require the entire sensors to be connected directly to it; this is quite unfeasible as it would require 
wired connections to the module which, on its own regard, has a limited number of such 
connection ports. In this context, the wireless sensor network would be designed to have a 
multitude of sensing motes as an intermediary between the sensors and the central unit. They 
would be conceptually deployed around different areas of the structure with the capability to 
communicate wirelessly with the local module in a star-like topology. Furthermore, each sensing 
mote can have a multitude of sensors connected to it depending on the number of ports each 
designated mote has. This would allow extension of the network as the communication is based 
on a wireless protocol, and in theory allows planning the WSN in an XMesh configuration allowing 
some motes to be intermediate hops to further extend the network reach. From here, our main 
design objective was to establish the star communication allowing the local IoT module to 
aggregate the received sensor data from the sensing motes to maintain the occupancy 
functionality. 

B. Implementation Details
In the proposed implementation, we decided to prototype the 
wireless sensor network using the multipurpose ESP32 
development board [1]. The ESP32 would represent the 
functionality of a sensing mote having the sensors connected to it 
on one hand and sending wireless messages to the local IoT 
module on the other hand. Currently, the sensors used in our 
implementation are Light Dependent Resistors (LDRs) mounted Figure 1: LDR and ESP32 connection 

configuration on the ESP32 boards and interfaced through one of the General- 
Purpose Input Output Pins (GPIOs) with Analog to Digital Conversion (ADC) functionality. The 
connection configuration between the sensor and the ESP32 is shown in Fig. 1 and an actual 
screenshot of the circuit is in Fig. 2. In this circuit, the LDR sensor cathode end is connected to 
the ADC(1-0) GPIO36 pin which can take in the analog readings by the sensors and convert them 
to digital values to be processed by the board. It is also connected to a resistor which interfaced 
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from the other side with the ground terminal of the board. The alternative terminal of the sensor 
is connected to the 3.3V from the board. These sensors indicate the occupancy status based on 
the level of sensed light intensity. Furthermore, in order to assess the effectiveness of the 
message transmission from the sensing motes, we implemented the local IoT module functionality 
on a Raspberry Pi 3 [6] board to process the occupancy data. Figure 3 shows the connection 
between the ESP32 board and the local IoT module. 

Figure 2: ESP32 Circuit Connection 

An additional merit that can be exploited when using the ESP32 board is that ESP32 supports 
multiple power modes. So, the WSN nodes can be optimized to preserve their energy by switching 
to one of the lower power modes when they are not transmitting or receiving packets. In this 
context, the active mode requires the chip to operate around 240 mA operational current. Lower 
power modes include MODEM sleep, Light Sleep, and Deep sleep; such modes support waking 
up the main system based on the measurements from the acquired sensor data. The operating 
current can reach as low as 20mA, 0.8 mA, and 0.01 mA for each of the power modes 
respectively. This can aid us in our design to have the development board switch between the 
deep sleeping mode and active mode depending on the changes in the sensor readings 
associated in this application with the parking spots. 

PTFS running 
AWS Greengrass 

Core 

ESP32 board running 
AWS Free RTOS 

Wireless 
Connection 

Figure 3: Wireless Sensor Network Design. Currently a star topology between the PTFS and one ESP32 board which can be 
scaled to include further boards in an XMesh configuration 

3.3 V 
Connection 

Ground To ADC(1-0)- 
GPIO36 Pin 

Resistor (10kΩ) 

Light 
Dependent 

Resistor 

USB Connector 
for Power 

PTF 



4 

C. AWS IoT Framework
From here, the AWS IoT framework has been chosen to achieve the connectivity functionalities 
between different components of the hierarchical design. Mainly because the framework is 
established to facilitate communication between the different levels of design hierarchy, which in 
our case is resembled as cloud-fog-edge hierarchy. In this context, the occupancy data would 
propagate from the sensing mote across the fog device and to the cloud as shown in Fig. 4. To 
achieve this, AWS FreeRTOS [2] was installed on ESP32 as real-time operating system to 
facilitate connection of each one of them to the fog node. For the IoT module (Fog device), AWS 
IoT Greengrass core [3] was deployed on the Raspberry Pi to extend its functionality to act locally 
on the collected data using the AWS Lambda functions. In addition, devices running AWS IoT 
Greengrass can act as an intermediary between the sensing nodes and a central cloud; which 
conceptually is capable of managing multiple fog devices representing multiple parking structures. 
Detailed steps of how to configure ESP32 to run AWS FreeRTOS and how to configure the 
Raspberry Pi to run AWS IoT GreenGrass are provided in [4] and [5] respectively. 

A. Overview

Figure 4: Occupancy Data Propagation from the ESP32 device through the PTFS and to the central AWS cloud 

2.2 PTFS Proof of Concept 

For the proof of concept of the PTFS functionality, a hardware-in-the-loop simulation is set up 
consisting of 3 main components (Figure 5): The Fog Node, the Edge Device, and the Vehicle. 
The Fog Node is the core of our Parking Tracker Fog System (PTFS). It is implemented using the 
AWS IoT Greengrass framework on the Raspberry Pi 3 B+ model [6]. The job of the Fog Node is 
to process occupancy data from the Edge Devices and to handle parking requests from vehicles 
entering the smart parking structure. The Edge Device is implemented using the multipurpose 
ESP32 development board which runs the Amazon FreeRTOS kernel and communicates to the 
Fog Node through MQTT publisher/subscriber protocols. The Edge Device is an intermediary unit 
between the multitude of sensors and the Fog Node. It is a sensor mote that aggregates and 
sends sensor data to the Fog Node for processing. The Vehicle we used is the TI Robotics System 
Learning Kit (TI-RSLK) robotics vehicle from Texas Instrument [7]. It acts as the 
autonomous/traditional vehicle agent that interacts with a smart parking structure. The vehicle 
currently communicates wirelessly to the Fog Node through a server using the TCP/IP protocol. 
Incorporating support for DSRC shall be detailed in the following subsections 2.3 and 2.4. 

Figure 5: Hardware-in-the-loop structural Diagram 
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B. Implementation Details

Fog node waiting for a 
vehicle connection 

Fog node parsing the 
vehicle information 

Fog Node 
querying local 
database for 
open parking 
spots 

Fog node 
acknowledging the 
client that it received 
the parking request 

Fog Node 
updating its 
local database 
to reflect a spot 
reservation 

Figure 6: v2xComm lambda function log 
The AWS IoT framework uses lambda functions to run application logic on local Fog Nodes. In 
our application, the Fog Node has two main tasks. First to manage the parking requests of 
Vehicles and second to process occupancy sensor data from the Edge Devices. Therefore, we 
deployed two lambda functions to the Fog Node called sensor_update and v2xComm. 
Sensor_update manages the communication between the Fog Node and the Edge Device while 
V2xComm manages the communication between the Fog Node and the Vehicle. When a Vehicle 
makes a parking request to the Fog Node, it will send some metadata such as vehicle id and type 
(compact, regular or handicap) illustrated by Figure 6. In the Fog node, the v2xComm lambda 
function hosts a server that will process the parking request. A local SQLite database on the Fog 
Node stores the parking occupancy status of all the spots on the hardware simulation and is used 
to query for available parking spots based on the vehicle type. Once a suitable parking spot is 
found, the Fog Node will set the parking spot status to “reserved” in the local database and send 
the parking spot information to the Vehicle. In the event that the Fog Node receives information 
from the Edge Device that a parking spot’s occupancy status has changed, the sensor_update 
lambda function will trigger and it will update the occupancy status of that parking spot in the local 
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database. The Fog Node also handles the occupancy indicators and will change the color of the 
LEDs based on the parking occupancy status (green = empty, yellow = reserved, red = occupied). 

Figure 7: Hardware-in-the-loop simulation 
The Edge Device utilizes the Amazon FreeRTOS kernel to establish a secure wireless 
connection with the Fog Node. When a Vehicle arrives at its reserved parking spot, the light- 
dependant resistor (LDR) sensor, shown in Figure 7, will sense a change in the light intensity 
value. If this change is greater than some preset threshold value, the ESP32 will detect that the 
parking spot is being occupied. It will then send this information to the Fog Node via MQTT 
publisher/subscriber protocol. The Fog Node will then reflect the occupancy status in the database 
and provide visual feedback through the occupancy indicators (LEDs). The code that 
communicates between the Edge Device and the Fog Node is based on our modification of the 
AWS IoT Greengrass discovery demo application [8]. We modified the code so that the ESP32 
will continuously loop over the six LDR sensors to check if any of the sensors meet the threshold 
value. 
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Figure 8: TI robotics vehicle attached with ESP32 for wireless capabilities 
TI robotics learning kit is used as the test vehicle. Because the TI module does not come with 
a wireless module, we used a ESP32 microcontroller to handle wireless communications between 
the Vehicle and the Fog Node as shown in Figure 8. When the ESP32 boots up, it waits for a 
button press. When the button is pressed, it attempts to connect to the server created by the 
v2xComm lambda function on the Fog Node. When the connection is successful, it sends the Fog 
Node a message that includes its vehicle id and the type of vehicle (compact, regular or handicap). 
When the ESP32 successfully receives a parking spot number from the Fog Node, it will 
communicate this information to the Vehicle using 3 output pins (GPIO_OUTPUT_IO_0, 
GPIO_OUTPUT_IO_1, GPIO_OUTPUT_IO_2). These 3 pins are used to encode the parking spot 
numbers in binary format (ex. 001 = 1, 010 = 2, 011 = 3, etc.). Another pin (GPIO_OUTPUT_IO_3) 
is used to let the ESP32 know when to read the 3 pins for decoding. Recall that these wired 
connections are within the demo vehicle between the TI kit and the ESP32 microcontroller, in 
which the ESP32 was added to incorporate wireless support for the demo vehicle. Based on the 
decoded parking spot number, the Vehicle will then proceed to navigate itself towards the 
reserved parking spot via a pre-programmed path. 

Figure 9: Hardware-in-the-loop and software simulation layout 

GPIO_OUTPUT_IO_3 GPIO_OUTPUT_IO_0 

GPIO_OUTPUT_IO_2 
GPIO_OUTPUT_IO_1 

3.3 V Connection 

Parking Request 

Resistor (1 kΩ) 3.3 V Connection 
Ground 

GPIO_INPUT_IO_0 



8 

C. Parking Occupancy Simulation

A. Overview

In order to test the compatibility of our hardware simulation with real parking occupancy 
monitoring systems, we integrated a parking occupancy software that mimics a parking lot 
environment. The software simulation is based on the Parking Occupancy Simulator from 
Geospatial Technologies Research Group [9]. We made modifications to the code for it to be 
compatible with our hardware simulation. The simulation utilizes Geographic Information Systems 
(GIS) data to map the parking environment and uses model drivers as agents to interact with the 
parking environment. Six spots on the software simulation are reserved to reflect the physical 
parking spots on our hardware simulation. As shown in Figure 9, there are visible parking spots 
on the map differentiated by colors of green, yellow, and red which indicate empty, reserved and 
occupied, respectively. As the simulation runs, the driver agents will begin to occupy parking 
spaces throughout the map. The software simulation communicates with the hardware simulation 
(Fog Node) through a tcp server. When a parking spot reservation request is detected by 
v2xComm or when a change in parking occupancy data (empty or occupied) is sent to 
sensor_update, the Fog Node will send the parking spot id of the affected parking spot to the 
simulation through the server. The server has the mapping of the physical parking location (local 
spot id) to six corresponding parking spaces (global spot id) on the simulation. Therefore, any 
changes to the parking occupancy status in the physical simulation will be reflected in the software 
simulation in real-time. 
One caveat for the simulation software is that the original ArcGIS server that hosts the geographic 
data for the map is currently no longer in service. Therefore, we devised a workaround with copies 
of the GIS data stored on several json files and have a python flask web server that runs in the 
background to service the GIS data. Therefore, it is necessary to run the python web server code 
prior to launching the simulation in order for it to work correctly. 

2.3 DSRC Integration 

Integrating the Dedicated Short-Range Communication (DSRC) with the Parking Tracker Fog 
System (PTFS) is to enable communication between the PTFS and Intelligent Vehicles (IV). 
DSRC is a variation of the IEEE 802.11 short-range wireless communication protocol called IEEE 
802.11p. DSRC operates in the 5.9 GHz band with a bandwidth of 75 MHz. Just like the WiFi 
802.11a/g protocols, DSRC also follows the Open Systems Interconnection model (OSI model) 
for implementing various layers of this protocol. The fundamental layers of the OSI model are the 
physical layer (PHY layer) and the data link layer which consists of the Logical Link Control (LLC) 
and Medium Access Control (MAC) sub-layers. Above the data link layer are the high level 



9 

abstraction layers like the application layer and various other sublayers in between. To enable 
communication using DSRC, we need to at least have the PHY layer and LLC/MAC layers. 

Figure 10: DSRC architecture [1] 

B. Implementation Details

Figure 11: Wime-project 
To build the PHY and MAC layers, we looked into various resources that have implemented some 
kind of PHY and MAC layers for the DSRC standard. We found that the Wime-project [11] was 
the best option in the open source area for wireless communication modules. The Wime-project 
is an open-source collaboration project between various college institutions. The creators of the 
project also published a paper detailing the performance assessment of their WiFi module in [12]. 
They created a DSRC Software Defined Radio (SDR) prototype that is compatible with the Ettus 
B210 & N210 boards, which are boards that are capable of operating in the 5.9 GHz band for 
DSRC communication. We integrated their IEEE 802.11a/g/p – WiFi module into our system [13]. 
The module provides a complete physical layer implementation for a WiFi transceiver that works 
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with the IEEE 802.11p protocol. The module was created using GNU Radio, a well-known real- 
time signal processing framework for use in Software Defined Radio (SDR) systems. 

Figure 12: Example of GNU Radio Flowgraph 
Just like Simulink and LabView, GNU Radio is a graph-based application that enables users to 
design software radios to be used with hardware to create software-defined radios (SDR). 
Within each flowgraph, for example Figure 12, blocks are contained that perform simple 
mathematical operations to complex signal processing. The flow of data is represented by the 
arrows that connect each block, and the type of input/output data is determined by the color of 
the input/output ports of each block. GNU Radio comes with an extensive library of blocks that 
perform standard signal processing tasks. Just by connecting blocks together, we can create 
more complex blocks that can model or perform custom signal processing functions. 

Figure 13: WiFi Loopback Flowgraph 
Having installed GNU Radio following the official GNU Radio webpage [13] as well as installing 
the custom blocks created by the Wime-project, we ran a WiFi loopback test that assess the 
functionality of the PHY and MAC layers of the custom blocks. Figure 13 shows the wifi loopback 
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flowgraph and the blocks that construct it. The main goal of this loopback test is to verify the 
correct functionality of the WiFi PHY Hier block. In order to do so, a message strobe with 10 x’s 
is sent through the WiFi MAC and into the WiFi PHY Hier’s mac_in input port. The WiFi PHY Hier 
is a complex block that contains a multitude of complex signal processing blocks inside. For more 
information on the details and implementations of the WiFi PHY Hier block with signal processing, 
please refer to the paper in [12]. To give a general explanation of the functionality of the WiFi PHY 
Hier block, it basically applies the signal processing to the data and outputs it through the PDU to 
Tagged Stream block and into a graphical user interface (GUI) constellation sink. At the same 
time, the processed signal was extracted and sent out from the samp_out output port to be 
reconfigured by the Packet Pad2, Fast Multiply Const, Channel Model, and Polyphase Arbitrary 
Resampler, so that it can be sent back to the WiFi PHY Hier block as the data for the test. 

C. Hardware and Software Specifications

Figure 14: WiFi loopback Quadrature 
The results of the loopback test are shown in Figure 14 through the constellation diagram. The 
number of constellation points in a diagram depends on the encoding type and it specifies the 
size of the symbols that can be transmitted by each sample of data. In this case, the encoding 
type is QPSK ½ with 4 points which represents a modulation scheme that can separately 
encode 4 combinations of two bits: 00, 01, 10, and 11, and so can transmit two bits per sample. 
The clear separation in the constellation shows that the samples are being interpreted correctly 
and there is no misrepresentation of the samples. 

For the hardware we decided to use the Ettus Board B210 from Ettus Research. The Wime- 
project has shown successful integration of their IEEE802.11p module with the USRP N210 as 
well as the B210. The USRP B210 is a fully integrated, single board Universal Software Radio 
Peripheral (USRP) platform with continuous frequency coverage from 70 MHz - 6 GHz. It has 
full support for development in GNU Radio with its USRP Hardware Driver (UHD). Once we 
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A. Overview

received the USRP B210 boards and installed the necessary drivers for the device from Ettus 
Research, we ran the benchmark software and verified that the B210s are operating correctly 
without faults. 

2.4 End-to-end Integration 

The integration of the Dedicated Short-Range Communication (DSRC) with the Parking Tracker 
Fog System (PTFS) can be broken down into three parts shown in Figure 15: the vehicle agent, 
the parking tracker fog node, and the parking simulation. Each component consists of 
subcomponents that allow the communication flow to work correctly. In the following sections, 
we will be breaking down the three main parts alongside their subcomponents in detail. 

Figure 15: Hardware Diagram 

B. Implementation Details
Vehicle Agent: the communication between DSRC equipped vehicle agents and the smart parking 
fog node starts from the generation of a parking request message. In our implementation, the 
vehicle agent is represented by a laptop computer that is equipped with a Universal Software 
Radio Peripheral (USRP). Note that the DSRC-based agent is orthogonal to the one implemented 
using the TI Robotics kit, as each agent reflects different operational scenarios (i.e., a vehicle that 
supports DSRC communication and another which does not). The USRP that we are using is the 
Ettus Research B210 board. The B210 boards allow the transmission and reception of signals in 
the 5.9 Ghz band, but the processing of the signals is accomplished through GNU Radio, a 
software development toolkit for signal processing in. 
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Figure 16: Hardware Diagram (Vehicle Agent) 

As shown in Figure 16, when a parking request message is prepared by the vehicle agent, it will 
send the message to the USRP to be transmitted over-the-air to the fog node. After sending the 
parking request message, the vehicle agent will wait to receive a parking spot reservation 
message from the fog node. How the USRP sends and receives data over-the-air is shown by 
the expanded view of the USRP in Figure 17, which shows the GNU Radio blocks that performs 
signal processing in the background. 

Figure 17: USRP Expanded View (GNU Radio Blocks) 

The USRP gets the parking request message from the vehicle agent through the socket PDU. 
The message goes through the WiFi MAC and WiFi PHY Hier blocks where the corresponding 
MAC and PHY header information is added to the original message. The WiFi PHY Hier block 
models the IEEE 802.11p physical layer protocol. Finally, the padded message with the header 
information goes to the UHD: USRP Sink block which transmits the padded message over-the- 
air in the 5.9 Ghz band. The UHD: USRP Source block receives messages over-the-air from the 
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5.9 Ghz band. Both UHD blocks are device driver modules that allow the GNU Radio software to 
interact with the B210 board’s transmit (TX) and receive (RX) channels. 

Figure 18: Hardware Diagram (Fog Node) 

Fog Node: The fog node in our implementation (Fig. 18) is built on a Raspberry Pi 3 B+. Just like 
the vehicle agent, the fog node is also equipped with a USRP device that allows it to communicate 
through DSRC using a B210 and the GNU Radio software. Alongside the GNU Radio software 
for signal processing, the fog node also runs the Amazon Web Service (AWS) greengrass service 
which handles the smart parking system’s reservation functions using a local database of parking 
spots. We will refer to the AWS greengrass node as the AWS database. When the fog node 
receives the parking request message from the USRP device, which was explained in the vehicle 
agent part, it will relay this information to the AWS database. The AWS database will parse the 
message to extract relevant information and decide which parking spot to reserve for the vehicle. 
When it finds a suitable parking spot, the AWS database will send the reserved parking spot 
message back to the USRP to send it over-the-air to the requesting vehicle agent. It should be 
noted that installing all the necessary packages on Raspberry Pi 3 B+ was challenging and time 
consuming due to the limited memory resources of the device. We recommend an upgrade to 
Raspberry Pi 4 devices if the same brand of devices is to be used for the fog nodes. 

To explain the inner workings of the communication that goes on inside the fog node, we provide 
a communication diagram from the point of view of the fog node in Figure 19. 

Figure 19: Communication Diagram (Fog Node) 
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Because there is no direct communication between the GNU Radio software and the AWS 
Database, since they are two independent programs running on the fog node, we had to create a 
python program that acts as a bridge between the two components. When GNU Radio receives 
a parking request message through USRP Source, it sends this information to the UDP port of 
the python server. The python server will relay the information to the AWS Database through a 
TCP port. When the AWS database returns a parking spot reservation, the python server will relay 
the information back to GNU Radio and the information will be transmitted over-the-air to the 
vehicle agent through the USRP Sink. The reason we don’t use a UDP/TCP port to communicate 
directly from GNU Radio to the AWS database is because the UDP port in GNU radio is different 
from the standard UDP port and the python program imports the GNU radio libraries to use the 
special UDP port for communication. Since it’s a custom python program, we can also use 
standard TCP socket libraries to communicate with the AWS database. 

Figure 20: Hardware Diagram (Simulation) 

Simulation: The last component for the DSRC integration is the simulation, shown in Figure 20. 
When the fog node receives the parking request message and before it parses the message, it 
also sends this message to the parking simulation software. The parking simulation software also 
parses the message for relevant information and will generate a parking agent to park at a 
reserved spot in the simulation. This component exists for DSRC to work with our simulation 
software. It is not a necessary component for implementing PTFS with DSRC capabilities, only 
the vehicle agent and fog node components are necessary. 

Figure 21: Communication Diagram (Simulation) 
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We use the communication diagram in Figure 21 to explain the communication between the fog 
node and the simulation. The TCP client inside the Python Server shown here is the same TCP 
client that was shown in Figure 19. This diagram shows that the information is also sent from the 
AWS database to the simulation and that the simulation creates a corresponding parking agent 
that will park at a reserved spot. 

C. Message Protocols
We have been talking about sending and receiving parking request messages and reserved 
parking spot messages between the vehicle agent, the fog node, and the simulation, but we have 
not explained what these messages contain. The exact messages that we are sending and 
receiving is our variant of the Basic Safety Message (BSM). 

Figure 22: Basic Safety Message Part I Elements [14] 

BSM is a message protocol that is used to communicate information between vehicles equipped 
with DSRC capabilities, and was designed to be used in safety applications. BSM consists of two 
parts, Part I - known as Basic Vehicle State is mandatory and must always be included in a BSM 
(shown in Figure 22), while Part II, which includes the Vehicle Safety Extensions and Vehicle 
Status is optional. Typically, vehicles periodically broadcast BSM Part I only. Therefore, we only 
consider BSM Part I and its corresponding data elements and data frames for our implementation. 
In our case, we utilize the Latitude and Longitude data elements which are part of the 
PositionLocal3D sequence. Elevation is currently not being used but it could be useful in the case 
of multilevel parking garages such that the elevation position of the vehicle can be taken into 
account when reserving a parking spot that is on the same floor as the vehicle. 

It is important to note that due to the fact that BSM is used solely for safety communication, it is 
not designed to work with a smart parking application, therefore we use a variant of the BSM to 
convey the necessary information for our system to work. 
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Figure 23: Parking Request Message (Our BSM Variant) 

Our BSM variant for parking request message, shown in Figure 23, sent from the vehicle agents 
to the fog node consists of the following: Tx_timestamp (the time the message is transmitted), 
Type (the type of vehicle i.e. compact, sedan, etc.) Id (a unique vehicle identifier), longitude 
(current GPS longitude), and latitude (current GPS latitude). For the sake of demonstration, we 
did not include all the data elements and data frames that are part of the BSM but only the ones 
useful to us. However, once can modify and include the full BSM as they desire. 

Figure 24: Reserved Parking Spot Message (Our BSM Variant) 

On the other hand, the other reserved parking spot BSM (Figure 24.) variant message sent from 
the fog node to the vehicle agents contains the following: Tx_timestamp (the time the message is 
transmitted), Id (a unique fog node identifier in case there are multiple parking garages) and spot 
(the reserved parking spot). The spot data shows the parking spot number that is reserved, this 
is so that it is compatible with our simulation, however in a real smart parking system, the spot 
data will be replaced by the longitude and latitude of the physical spot so that the vehicle can 
navigate to that position. 

As a final note to the message protocol, we wanted to mention that currently there is no standard 
message set that contains data elements specific to smart parking system applications (i.e., 
parking spot availability, routing information, etc.). BSM was developed for safety message 
exchange within V2x applications and so our BSM variant would not be recognized by vehicles 
and they would not know what to do with these messages. To develop a working smart parking 
system that accommodates smart vehicles equipped with DSRC capabilities would require a 
protocol standard agreement amongst the vehicle manufacturers and the protocol standard 
creation companies. Our preliminary research suggests smart parking system integrators to look 
into the SAE J2945/x series that is currently in development by SAE International which specify 
application specific message sets for DSRC systems, however most of the standards are listed 
as work-in-progress and none have been created for smart parking applications. 

https://www.sae.org/standards/content/j2945_201712/
https://www.sae.org/


18 

3. Experiments

3.1 Assessments and Experiments 
A. Hardware Setup

B. DSRC Latency

C. DSRC Integration Tests

Figure 25: Ettus Research B210 

The Ettus Research B210 boards [15] are used as our USRP device. In order for the B210s to 
communicate with GNU Radio we need to install the USRP Hardware Driver (UHD) onto the host 
device, a comprehensive installation guide for installing UHD and GNU Radio is shown in [16]. 
As can be seen from the image, the B210 boards connect to the host device through USB 3.0 
Type B. Once UHD drivers are properly installed on the host device, it is simply plug & play by 
connecting the device directly to the host device's USB port (recommended is USB 3.0 for best 
data rates). To verify the operation of the USRP device, we followed the instructions in [17] which 
has connection tests, transmission and reception benchmarks for us to test our device. Note that 
most if not all of the support for both UHD and GNU Radio is for linux-based Operating Systems 
(OS) like Ubuntu so it is recommended to use the supported Operating System for the host device. 

We conducted a simple latency test to determine the time it takes to send and receive our custom 
messages over-the-air to two devices equipped with the B210s. These two devices are a laptop 
and a desktop computer both running the Ubuntu 18.04 LTS OS with GNU Radio version 3.8 and 
UHD driver version 4.0. The test was conducted with the two devices at separate ends of a room 
around 20-25 feet apart from each other. From figure 26 we can see that the latency is between 
43-78 milliseconds. Note that this is a simple test of transmission and receive which does not 
account for environmental factors that would interfere with the signal.

Once we confirmed the correct operability of our B210 devices, we integrated the USRP into our 
existing smart parking system. Figure 27 shows the transmission of the parking request message 
from the vehicle agent which is represented by the python program running on a local computer. 
The bottom portion of the image is GNU Radio running in the background and transmitting the 
message over-the-air. This is the demonstration of the hardware diagram (vehicle agent) portion. 
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Figure 26: DSRC Latency Test 

Figure 27: DSRC Integration (Vehicle Agent) 
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Figure 28: DSRC Integration (Fog Node) 
The top image of figure 28 shows the parking request message being received by GNU Radio for 
the fog node. The bottom image shows the python program relaying the message to v2xComm 
which is the AWS database that handles the smart parking reservation. Once the AWS database 
queries and finds a parking spot, the python program receives the reserved parking spot and will 
relay the reserved spot message back to GNU Radio to transmit over-the-air to the vehicle agent. 

Figure 29 shows the parking request message being received by our simulation software from 
the AWS database. Remember that the AWS database first receives the message over-the-air 
through the USRP and before it parses the message it also relays the message to the simulation 
through TCP. When the simulation receives the parking request message, it will parse the 
longitude and latitude information from the parking request message. The simulation will generate 
a BSM agent at the given longitude and latitude location and reserve a parking spot that is closest 
to the longitude and latitude of the vehicle. Finally, the vehicle will proceed to park at its reserved 
parking spot. 
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Figure 29: DSRC Integration (Simulation) 

3.2 Simulation Scenarios 
One of the tasks for us was to consider real life parking scenarios in our smart parking system. 
This section addresses the concerns of Multi-entry parking garages, parking in unassigned spots, 
and reservation timeout. 

In the simulation software, green dots are open spots, and black dots are vehicle agents that have 
parked. Yellow dots are parking spots that are reserved, and blue dots are guided agents that 
communicate with the smart parking system and receive reserved parking. The brown dots are 
explorer agents that do not communicate with the smart parking system and park on their own, 
and lastly red dots are guided agents that have their reserved spots taken by an explorer agent. 
In the simulation snippet in figure 30, vehicles were spawn at different entry points of the simulated 
parking space which took into account the multi-gate/multi-entry scenario of a parking structure. 
Moreover, the parking in the unassigned spot can be seen in Figure 30 by the red dotted vehicle 
agent due to its reserved spot being taken by an explorer agent. 
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Figure 30: Multi-entry & Parking in unassigned spots 

Figure 31: Simulation Software Console Output 
If we look at the console output of the simulation software in Figure 31, we can see that explorer 
agent 51 wanted to park at slot 155, however at the same time guided agent 621 was assigned 
to slot 155 since it was not yet taken. Due to explorer agent 51 arriving at slot 155 before guided 
agent 621, when guided agent 621 arrives at its reserved spot location, it sees that its spot has 
been taken and it requests for a new slot and eventually parks at slot 150. The same case can be 
seen between explorer agent 292 and guided agent 773. 

The last scenario is to show a parking reservation timeout system. We demonstrate this through 
our hardware-in-the-loop setup where the green lights are open parking spaces, red lights are 
occupied spaces, and blue lights are reserved spaces. It can be seen from Figure 16 and 17 that 
the reserved parking spot eventually clears to become an open parking spot after a set amount 
of time. This is accomplished with a simple timer that is set when a parking spot is reserved. 
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Figure 32: Parking Spot reserved (Blue) 

Figure 33: Reservation Timeout (Back to green) 
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4. Conclusion
The work throughout this project showcased hardware and software implementation of a smart 
parking system that is capable of communicating with both traditional and connected vehicles 
alike. This comes as a step towards evolving the existing parking infrastructures to accommodate 
the estimated wide-scale adoption of autonomous vehicles and connected vehicles, which would 
require real-time information about available parking services. In this regard, we developed a 
Parking Tracker Fog System (PTFS) that is capable of establishing communication through 
traditional wireless communication and DSRC, which is the expected communication technology 
for connected vehicles. We conducted several experiments through simulations and Hardware 
setup demos to assess the reliability of the parking information exchange in real-time for both 
traditional and DSRC-based communications. Finally, we foresee our work being scalable to 
multiple parking spaces, each represented through its own PTFS, and all PTFSs are managed 
through a central cloud that can alleviate the smart parking services to a city-wide level and 
complement it with parking occupancy predictions. 
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