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I. INTRODUCTION 

According to the US Department of Transportation and the Insurance Institute for Highway 
Safety (IIHS) Highway Loss Data Institute (HLDI), the number of traffic fatalities in the state 
of California was 3,623 in 2016, which is more than 9.2 deaths per 100,000 population 
(USDOT 2016). The city of Los Angeles alone has one of the highest rates of traffic death 
among large U.S. cities.  Currently,  the city  of Los Angeles has a strong  understanding 
of vehicular travel at key intersections and corridors. Caltrans and local departments of 
transportation can optimize their traffic signal system to improve vehicular travel times 
using the Automated Traffic Surveillance and Control (ATSAC) System for vehicles and 
Regional Integration of Intelligent Transportation Systems (RIITS). However, understanding 
the movement of people, bicycles, and their interaction with vehicles is critical to avoiding 
traffic accidents and improving safety. Currently, there is no efficient automated system for 
monitoring the movement of pedestrians and bicyclists across the state of California and in 
major urban areas. Such a system could also provide valuable information about the traffic 
flow once implemented and calibrated. 

 
With the advancement of technology, automated traffic monitoring has been gaining attention 
over the past decades. In particular, several methods have been proposed for pedestrian 
detection in the past couple of years (Dalal and Triggs 2005, Dollar et al. 2011, Benenson et al. 
2014). These methods have used different techniques including image and video processing 
algorithms, as well as machine learning techniques to detect human targets (pedestrian) 
through images or video. Most of these contributions have used standard datasets including 
images or videos to evaluate the performance of the algorithm (Benenson et al. 2014). 
Two of the well-known pedestrian datasets include Daimler pedestrian benchmark dataset 
(Enweiler 2009), and Penn-Fudan database for pedestrian detection (Wang et al. 2007). 

 
Dollar et al. (Dollar et al. 2011) and Beneson et al. (Benenson et al. 2014) performed extensive 
evaluations of the state of practice. They put together the most popular and well-annotated 
pedestrian detection datasets, and evaluated the performance of the most promising 
pedestrian detectors across several datasets. They have shown that despite significant 
progress in the past few years, there is much room for improvement. In particularly, the 
pedestrian detection results are disappointing at low resolution images and/or videos as 
well as for occluded pedestrians in images (Dollar et al. 2011). 

 
Implementing pedestrian/bicyclist detection algorithms in practice, on real-life video streams 
captured by regular traffic cameras, can be different from ideal settings. There are challenges 
and difficulties associated with the process when applying the algorithm to a populated 
urban area. Some of these challenges include: 

 
• poor quality of video streams due to low resolution, light conditions, disturbed and 

disoriented lens, or weather conditions; 
 

• dealing with stretched, convex, or squeezed images collected by existing traffic 
cameras and wide-angle lenses; 

 
• undesired angles, locations, and the direction of cameras; 
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a) 

b) 

c) 

 

• vibration of cameras due to wind or the passing of heavy vehicles; 
 

• light distortion at night time; 
 

• inconsistent lighting during the daytime and shadow effects; and 
 

• moving or stationary objects that may block the view of the target. 
 

Figure 1 illustrates some examples of these difficult situations from traffic cameras. In 
Figure-1a, the pedestrian is partially visible and the view is blocked by the wall. Figure-1b 
shows an example of poor and inconsistent lighting condition in which it is even difficult 
to detect the pedestrian with the human eye. Furthermore, the image is stretched and 
convex, as the gutter alignment is completely distorted. Figure-1c shows a condition where 
the pedestrian is hardly visible because of shadowing and low lighting. 

 

 

 

Figure 1. Examples of Extreme Visibility Conditions in Traffic Video Images 
 
 

In this project, the AI and Data Science Research Lab at California State University Los 
Angeles has designed and developed an effective system to monitor, track, and count 
pedestrians and bicyclists based on computer vision and machine learning algorithms. The 
developed system includes algorithms for detecting the pedestrians and bicyclists, as well 
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as algorithms for tracking and counting the pedestrians. It is important to notice that in this 
project, we are not planning to install new cameras or add new components or sensors 
to the traffic operation infrastructure. The system can use the videos captured by existing 
traffic cameras operated by Caltrans. 

 
The rest of this report is organized as follows: Chapter 2 discusses the system 
architecture and the pipeline for detection, tracking, and counting. Chapter 3 discusses 
the preprocessing algorithms that we have developed to improve the quality of the input 
data, and consequently improve the outcome accuracy. Chapter 4 discusses the machine 
learning and deep learning algorithms that we have developed for pedestrian detection. 
Chapter 5 presents the developed algorithms for trajectory prediction, tracking and counting 
algorithms, and finally, Chapter 6 discusses the results and conclusion. 
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II. SYSTEM ARCHITECTURE 

In this project, we developed an end-to-end system including a series of image/video 
processing algorithms, computer vision algorithms, Machine Learning algorithms, and 
optimal state estimator algorithms that receive videos and monitor, recognize, track, and 
count pedestrians and cyclists in the video. 

 
Figure 2 shows the high-level system architecture. 

 

 
Figure 2. End-to-End System Architecture 

 
 

The next chapters describe the 3 main parts of the system: (1) raw video processing; (2) 
feature engineering and Machine Learning for object detection; and (3) trajectory prediction 
for traffic tracking and counting. 



  5  

Mineta Transportation Institute  

 

 

 

III. DATA PREPROCESSING 

The first step in our end-to-end traffic vision system is the raw video preprocessing, 
which includes a series of algorithms for quality enhancement, and brightness and 
contrast adjustment. 

 
The next step in background estimation and subtraction (we can also call it foreground 
detection or moving-object detection). In this framework, any moving object is considered as 
foreground, and any stationary object in a period of time (i.e., an object with fixed location in 
a number of sequential frames) is considered as background. We have tried several effective 
algorithms for background estimation/subtraction including frame differencing, mean filter, 
running Gaussian average, and mixture of Gaussian modeling (MOG) (Wang et al. 2018, 
Piccardi 2004, Bouwmans, El Baf, and Vachon 2008). It turned out that a mixture of Gaussian 
modeling (MOG) and mean filtering achieved the best results for background subtraction. 
Figure 3 shows the results of background subtraction (i.e., moving object detection) based 
on mean filtering. 

 
It is important to notice that the background continuously changes during the daytime 
because the sunlight direction and intensity changes. Figure 4 shows the estimated 
background of a video captured by a traffic camera at 7:06AM and another time at 7:19AM. 
As we see, the background has significantly changed in only 13 minutes. Thus, we need 
to continuously estimate and update the background in order to always have the best 
background subtraction performance. 

 
We have to notice that background removal can improve the performance and accuracy of 
the object recognition algorithm (i.e., the next step, which is the machine learning algorithm), 
and can also reduce the computational load of the object recognition algorithm by reducing 
the size of the area of interest. This can be even more important when we want to use 
computationally expensive machine learning algorithms, such as the Convolutional Neural 
Networks (ConvNet also known as CNN) (Krizhevsky, Sutskever, and Hinton 2012). 
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Figure 3. Background Subtraction: (a) Original Video Frame; (b) Estimated 
Background; and (c) Moving Objects After Background Subtraction 
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Figure 4. Background Change in Only 13 Minutes 
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IV. MACHINE LEARNING AND DEEP LEARNING FOR OBJECT 
DETECTION 

After data preprocessing, the next step is to extract and select the best set of computer vision 
features that can be used in machine learning algorithms for object detection. Depending 
on the type of machine learning algorithm, this step may include feature extraction, feature 
selection, and/or dimensionality reduction. We have tried many different types of features 
and machine learning algorithms for object recognition, “, which we will briefly discuss below, 
and more details are available in (Wang et al. 2018, Pourhomayoun et al. 2019). 

 
One of the most effective and popular features are the Histogram of Oriented Gradient (HOG) 
(Dalal and Triggs 2005), which   along with SVM classifier can form an effective method   
for pedestrian recognition (Dalal and Triggs 2005). HOG is a feature descriptor that counts 
occurrences of gradient orientation in localized portions of an image (Dalal and Triggs 2005). 
It has been proven to be one of the most effective hand-made features that can be used for 
object recognition. 

 
We have also tried deep learning methods, particularly the Convolutional Neural Networks 
(ConvNet), including the R-CNN (Region-based Convolutional Network) and YOLO (You 
Only Look Once) algorithms (Ren et al. 2015, Redmon et al. 2016, Zarchan and Musoff 
2000). A big advantage of ConvNet methods compared to other classic machine learning 
algorithms is that there is no need to generate and use hand-made features for ConvNet. 
The algorithm automatically learns to generate the best set of convolutional features that can 
best represent the image. However, ConvNet is computationally expensive and sometimes 
makes it more difficult to run in real-time on high-frame-rate videos. In addition, when the 
training dataset is not large enough, it is usually difficult to train a deep neural network. In this 
case, Transfer Learning methods that take advantage of a pre-trained neural network model 
on another dataset can be very helpful to ease and expedite the training process (Wang et 
al. 2018, Pourhomayoun et al. 2019). 

 
Figure 5-(a) shows the high-level general structure of a ConvNet, and Figure 5-(b) shows a 
specific design of ConvNet named AlexNet (Krizhevsky, Sutskever, and Hinton 2012). 

 
Figure 6-(a) shows our pedestrian detection results using HOG features and SVM classifier. 
Figure 6-(b) shows our results using YOLO algorithm. 
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Figure 5. (a) General Structure of a ConvNet and (b) AlexNet 



Machine Learning and Deep Learning for Object Detection 
  10  

Mineta Transportation Institute  

 

 

 
 

 
Figure 6. Pedestrian Detection Using Machine Learning Algorithms: (a) Using 

Hog Features and SVM Classifier, and (b) Using YOLO. 
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V. TRAJECTORY PREDICTION FOR TRAFFIC TRACKING AND 
COUNTING 

After detecting a target object (e.g., a pedestrian or bicyclist) in several sequential frames, 
we use Optimal State Estimator to estimate the Trajectory of each target object. Since 
several objects may exist in each frame at a time (e.g., several pedestrians walking together 
in the same direction or different directions), it is essential to estimate the trajectory of each 
object individually. 

 
To this end, we use the Kalman Filter (Zarchan and Musoff 2000) as an optimal state estimator 
to predict the next location of the object and estimate the trajectory of the object over time. 
This allows us to track each object individually during the video. For example, suppose that 
we want to track a pedestrian. We use the Kalman filter to predict the next location of the 
pedestrian in the next frame based on its previous locations and walking pace. Then, after 
receiving the next frame, we compare our prediction with the actual pedestrian detected in 
the next frame. This comparison tells us if this pedestrian was the same person as in the 
previous frame or, instead, a different person. If the predicted location and actual location 
match, we consider this pedestrian as being identical to the previous one, and then continue 
completing the trajectory of this pedestrian (see Figure 7). 

 
Using this approach, we can build a trajectory map including individual trajectories for all 
pedestrians in the video, and then track each pedestrian from the first frame they enter until 
the last frame when they move out. 

 
Every time we detect a pedestrian whose location does not match any of the previously 
predicted locations (i.e., the pedestrian is not located on any of the existing estimated 
trajectories), we consider that person as a new pedestrian and, consequently, add to the 
pedestrian counter. This will allow us to track and count each pedestrian everywhere in the 
video, and avoid double counting them in sequential frames. 
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Figure 7. Location Prediction and Trajectory Estimation 
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VI. RESULTS AND CONCLUSION 

The city of Los Angeles has one of the highest rates of traffic deaths among large U.S. 
cities. Fortunately, the city has launched the Vision Zero initiative as a strategy and 
commitment to reduce traffic fatalities. The main goal of LA’s Vision Zero is to eliminate 
all traffic fatalities by 2025. Since the most vulnerable components of traffic accidents  
are pedestrians and bicyclists, it is essential to develop intelligent transportation systems, 
and human-centered traffic approaches to protect pedestrians and bicyclists. This project 
introduced an effective end-to-end system based on computer vision and machine learning 
to detect, monitor, track, and count pedestrians and bicyclists. This approach particularly 
enables us to recognize and monitor busy intersections that are prone to traffic accidents, 
and allows us to control and manage traffic in those intersections to protect our pedestrians 
and bicyclists. 

 
Despite many practical challenges (as mentioned in Chapter 1), the developed system 
works very well with the existing regular traffic videos. This system may help increase 
safety and traffic flow through better traffic management and planning. 

 
We evaluated our developed system on 12 hours of real videos captured from actual 
traffic cameras. Figure 8 shows some of the results for pedestrian and bicyclist detection, 
tracking, and counting. Table 1 shows the pedestrian counting results on the video streams 
captured from an actual traffic camera for 12 hours (a view of the camera is shown in Figure 
8-b). The first column of Table 1 shows the hour number; the second column shows the 
number of pedestrians counted automatically by the developed system; the third column 
shows the actual number of pedestrians counted by a human expert as the ground truth; 
and the last column is the hourly percent error. 

 
We used the following equation to calculate the Percent Error: 

 
 

 
where A is the number of pedestrians counted automatically by the developed system, and 
B is the correct number of pedestrians counted by a human expert. 
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Figure 8. System Results on Real-Time Traffic Video Streams: (a) Bicyclist 
Tracking and Counting, (b) Pedestrian Tracking and Counting 

 
 

Table 1 presents the pedestrian count results from a traffic camera over 12 hours. The 
first column shows the hour number; the second column shows the number of pedestrians 
counted by the developed system; the third column shows the actual number of pedestrians 
counted by a human expert; and the last column is the percent hourly error. 



Results and Conclusion 
  15  

Mineta Transportation Institute  

 

 

 

Table 1. Pedestrian Counting Results for Actual Videos Captured from a Traffic 
Camera over 12 Hours (A View of the Camera is Shown in Figure 8-B) 

Hour No Automated Counted by 
Developed System 

Ground Truth Counted by 
Human 

 
Hourly Error 

 

1 89 86 % 3.5 
2 94 90 % 4.4 
3 101 107 % 5.6 
4 148 139 % 6.5 
5 120 110 % 9.1 
6 153 160 % 4.4 
7 217 210 % 3.3 
8 242 234 % 3.4 
9 222 229 % 3.1 

10 260 261 % 0.4 
11 331 324 % 2.2 
12 291 280 % 3.9 

Total 2268 2230  

Average of Hourly Errors = % 4.1 
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