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CHAPTER 1 Introduction 

The mission of the California Department of Transportation (Caltrans) is to provide a 
safe, sustainable, integrated and efficient transportation system to enhance Califor-
nia’s economy and liveability. Caltrans has 12 district offices throughout the state and 
a Headquarter office located in Sacramento (Figure 1). Caltrans employs nearly 20,000 
employees, including engineers and environmental planners. Caltrans must comply with 
several regulatory requirements when planning, constructing, and maintaining the State 
Highway System (SHS). Caltrans is often required to mitigate for unavoidable adverse 
impacts arising from the construction, operation and maintenance of the SHS, including 
when projects affect threatened and endangered species. 

In California, there are over 160 species and subspecies of herpetofauna (amphibians 
and reptiles). Herpetofauna are receiving increasing attention from conservation groups 
as many species have experienced precipitous declines in abundance globally and in the 
United States. Globally, it is estimated that 40% of amphibian species and 20% of reptile 
species are trending towards extinction. Herpetofauna populations face many threats, 
including habitat loss and degradation, habitat fragmentation, environmental pollution, 
introduced disease and the effects of a changing climate. 

In California, 24 out of 154 herpetofauna species (16 %) are currently listed as endan-
gered and threatened. Threats to these species include habitat loss and degradation, 
habitat fragmentation due to roadways, environmental pollution, introduced disease 
and the effects of a changing climate. Herpetofauna species occur in all eight ecoregions 
within the state (Figure 2). Herpetofauna species richness varies across the state, with 
the largest number being in the southwest portion of California (Figure 3). Those species 
considered to be at highest risk of roadway mortality tend to follow a similar pattern 
(see also Chapter 4 and maps in Appendix 1) and it is unfortunate that this is the most 
human populated area with most vehicles too. 

For some years, transportation agencies and others have sought to mitigate road im-
pacts by providing dispersal passage and barrier systems, often in an experimentalman-
ner. Although wildlife passages and barriers for herpetofauna have been constructed on 
roads, and to a limited extent for railroads, in many parts of North America and beyond, 
there are few technical guidelines that effectively summarize measures to prevent and 
reduce the effects of roadways on rare and vulnerable species. 

Chapter 9 - Page 8 



      

   
 

Figure 1: Caltrans Districts and State Highway System 
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Figure 2: California’s Eight Ecoregions. Credit: Caltrans, California Department of Fish, and Wildlife and U.S. 
Department of Transportation. 
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Figure 3: Species Density Map for High Risk Reptiles and Amphibians in CA. Credit USGS, ESRI, NOAA 
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Figure 4: Example of a Roads of Concern Map (USGS) using overlays of California Essential Habitat
Connectivity layers (see this chapter and chapters 4 & 5) Here for the California tiger salamander
(Ambystoma californiense) as an example. Credit USGS, ESRI, TANA 
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How to use this guidance 
This Best Management Practices and Technical Guidance (hereafter shortened to BMP) describes known best 
practices for retaining or improving habitat connectivity for amphibians and reptiles in the state of California. 
This guidance relates to the vulnerabilities of California herpetofauna species that are a function of their life cy-
cle needs and behaviors (Chapter 4). It shares current understanding at the time of writing of the performance 
of various passage mitigation measures in California and elsewhere. 

Road ecology research has increased over the years, but sufficient rigorously tested practices that are useful 
to transportation agencies are still largely lacking. The purpose of this BMP is to present severalmeasures that 
could be used by Caltrans and other practitioners to minimize the effects of roadways on herpetofauna. These 
measures, when implemented correctly,also presentthe best opportunity to reconnect bisected populations 
of rare species and to also reconnect habitats used for breeding,foraging,and sheltering. The toolspresented 
here include the identification of ‘Roads of Concern’ which are maps of roadways in California that overlap with 
the habitats and known occurrences of the state’smost sensitiveand threatenedspecies (Figure4). The guide 
includes several figures and tables documenting mitigation strategies from around the world. 

Technical guidelines are presented here for the planning, design, and evaluation of wildlife passages, barriers 
and their associated measures that facilitate the safe movement of herpetofauna across roads. This BMP de-
scribes how to increase the effectiveness of established designs and recommends ways to design for particular 
species groups in different California landscapes. The guidelines can be used for wildlife passages on roadways 
including but not limited to new or existing highways, highway expansion projects (e.g., upgrading from a 
2-lane to 4-lane facility) and culvert retrofitting and reconstruction projects. 

This BMP synthesizes information gleaned from scientific literature and practitioner knowledge. It is not in-
tended to be static as the body of knowledge on wildlife crossing designs and their efficacy continues to grow. 
The implementation and monitoring of crossings for amphibians and reptiles will serve to refine and advance 
understanding of the efficacy of different wildlife crossing designs around the world. At times in this document, 
the text shortens the terms ‘amphibians and reptiles’ and ‘herpetofauna’, to ‘herp’ and ‘herps’. While terminol-
ogy in this report refers mainly to roads, many aspects of this manual apply to railroads as well. 

Key Points 
•Amphibians and reptiles (herpetofauna) are receiving increasing attention as two groups declining global-

ly and in the U.S. Globally, an estimated 40% of amphibian species and 20% of reptile species are trending 
toward extinction. 

• In California, 24 out of 154 herpetofauna species (16%) are currently listed as endangered and/or threatened. 

•The highest density of herpetofauna species in California including those species most at risk due to roadway 
mortality occurs in the south and west portion of the state. 

•Technical guidelines and best management practices can help justify the implementation of protectivemea-
sures, which are much needed for California’sherpetofauna species and their habitats, as they are elsewhere. 

•Many new management tools are being developed and include GIS applications, such as ‘Roads of Concern’ 
maps. Examples show how areas that are known or expected to bring traffic and the habitats of the most 
sensitive and threatened species into contact can be identified using the newsystems. 

Chapter 9 - Page 13 
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Chapter 2 Regulatory requirements 

Federaland state transportation and natural resource managers havea broad range of federaland state laws and 
policies to consult. These provide support for the planning and design of wildlife passages, as deemed appropri-
ate during transportation project planning and delivery (Ament et al. 2015). A large part of the wildlife passage 
assessments, planning, design, and actions are motivated by laws designed to protect wildlife and its habitats. 

Example applicable laws that call for the implementation of measures: avoidance, minimization, and mitigation 
(including compensation) to protect and conserve wildlife and ecosystems includes federal laws such as the 
National Environmental Policy Act, the Endangered Species Act, and the Clean Water Act. Relevant state laws 
include the California Endangered Species Act (CESA) and California Fish and Game Code. 

Various federal and state policies call on transportation agencies to consider pertinent environmental data 
during project planning. These references might include forest and resource management planning docu-
ments; general plans and land use plans; long-range, metropolitan and rural transportation plans and more. 
Published guidance includes FHWA’s Eco-Logical: An Ecosystem Approach to Developing Infrastructure Proj-
ects, which is an ecosystem-based planning decision-support tool. Additionally, FHWA promotes the practice 
and implementation of Planning and Environmental Linkages, which enables transportation planners to consid-
er environmental factors and resources early during project planning and scoping. Habitat Conservation Plan-
ning for federally-listed species calls for the inclusion of wildlife passage improvements. In California, the State 
Wildlife Action Plan and Natural Community Conservation Plans also include reference to the need to improve 
roadway connectivity for threatened and endangered herpetofauna. 

Provided below is a short list of key references giving access points to illustrative federal and California state 
laws and policies surrounding aspects of the planning and design of herpetofauna passages during transporta-
tion planning and projects. 

Key References 
Policy and strategy 
• Ament, R. et al. 2015. Developmentof Sustainable Strategies SupportingTransportationPlanning and Conservation Priorities across 

the West. Report prepared for Federal HighwayAdministration & Western Governors’ Association, pursuant to Cooperative Agreement 
DTFH61-13-H-00005, Washington,DC., available at: https://www.westgov.org/images/editor/WGA_FHWA_FinalReport.pdf. 

Access to information and guidance 
• California Department of Fishand Wildlife (CDFW), Habitat Conservation Planning Branchwebsite: 

www.wildlife.ca.gov/Explore/Organization/HCPB 

• California Department of Fish and Wildlife (CDFW) Habitat Conservation Planning Branch website 
(https://www.wildlife.ca.gov/Explore/Organization/HCPB)summarizes state habitat conservation regulations, programs and plans 
governing activities that have the potential to adversely affect fish and wildlife species and habitats. 

• Federal Highway Administration, Eco-Logical: An Ecosystem Approach to Developing Infrastructure Projects and Planning and 
Environmental Linkages program. https://www.environment.fhwa.dot.gov/env_initiatives/eco-logical.aspx 

Principles and Practices 

• Rupp, S., A. Munoz, R. Lopez. 2013. Conservationplanning for wildlife and wildlife habitat. In: Wildlife management and 
conservation: Contemporary principles & practices. P. R. Krausman, J. W.Cain III (Eds.). Johns Hopkins Press. 

Laws and Regulations 
• National Forest Management Act, 1976 https://www.fs.usda.gov/main/planningrule/history 

• National Wildlife Refuge System Improvement Act 1997PL 105–57—OCT. 9 
https://www.fws.gov/refuges/policiesandbudget/hr1420_index.html 
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Chapter 3 Impacts of transportation infrastructure on amphibians and reptiles 

California has one of the largest road networks in the United States. Traffic and roadways in the state and else-
where contribute to air and water pollution; fragmented farmland and habitat, and losses in wildlife and biodi-
versity. The construction and operation of roads have a suite of effects on wildlife, some of which are related to 
the level of use of a roadway. For roads, the density of the network, traffic volume, the extent of road surface 
and other engineered features all affect the extent of the effects of a road on wildlife. 

Roads cut across California’s landscapes and intersect with many local ecosystems. In doing so, roads can block 
or filter water flow, wind erosion, and the movement of animals. Roads may compromise a herp population 
by passing along the interface between a wetland and upland habitat. Common examples are salamanders or 
turtles moving to lay eggs in permanent or seasonal wetland areas. In some cases, road verges can function as 
linear habitat corridors. Some animals live in them and move through them and this may be the only refuge for 
them in intensive agricultural areas. 

Impacts of roads and railways on herpetofauna 
Impacts on population dynamics result from stressors ranging from habitat loss to direct mortality on roads. 
Responses to them result from three major potential exposures: changes to habitat; changes in species move-
ment patterns; and direct mortality. 

Loss of habitat: Road construction and expansion can result in habitat loss by transforming natural habitats 
to pavement and cleared roadsides. Some herpetofauna are more vulnerable to habitat loss than others by 
virtue of their larger home ranges, life history traits, degree of specialization and rarity. 

Reduced habitat quality: Roads may cause a range of subtle or obvious alterations to microhabitats that result 
from the construction of new roads or lane expansion. These changes can cause a behavioural tendency for 
animals to avoid or move away from the road and near-road area. 

Improved habitat quality: Some species can be attracted to road corridors or the physical surface of roads, road 
shoulders and slopes, for example for basking. The attraction may be the result of the proximity of adjacent 
habitat (spawning/nesting, living space) or to food resources. 

Barrier effects: The home range sizes of herpetofauna vary considerably in size. Some species may travel hun-
dreds of feet and up to several miles in one day. Individuals may travel large distances to access habitat used 
for breeding, feeding or sheltering. These areas can become bisected by roads. Animals may avoid roads caus-
ing a barrier effect or not avoid roads resulting in reduced survivorship from road mortality. When roads act as 
barriers, this results in habitat fragmentation effects. 

Corridor function: Roads (and railroad routes) can limit movement for some taxa, but they can also potentially 
facilitate dispersal and range extensions of native and non-native species. Such changes may potentially bring 
significant onward impact over time. Vegetation changes along a road’s edge may provide habitat corridors for 
migratory species, for example it may link up patches of degraded landscapes with a strip of navigable habitat, 
better enabling dispersal. This may however, also facilitate the spread and introduction of invasive species. 
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The most obvious effects of roadways are direct mortality or injury to animals from vehicles. This is usually 
from contact with moving vehicles but can also result from rapid changes in air pressure under moving vehi-
cles, including trains. Mortality and injury may result from the entrapment of individuals in road drainage sys-
tems or as a result of contact with chemical residues. Mortality can be dramatic and noticeable at certain times 
of year such as when, for example frogs or snakes migrate in large numbers in response to seasonal conditions, 
such as spring rains or emergence from seasonal dormancy. Many turtle populations are male-biased, partly 
because females travel larger distances and are more likely to cross roads. Increased mortality may result in 
decreased survivorship (a population sink), ultimately leading to population decline. 

Road Effect Zone 
The ecological effects of roadways can extend far beyond the roadway surface and road’s edge. This area of 
impact is sometimes called the road effect zone (REZ). Areas of habitat near the roadway itself can be adverse-
ly affected by chemical or noise pollution, vibration, visual intrusion of moving traffic (Figure 5). 

Road residues from tires and roadside chemical treatments such as herbicides may reach into adjacent habitat 
according to factors such as prevailing wind patterns and elevation, whereas pollution to waterways may travel 
long distances. Other effects along the roadway may include altered physical and chemical soil conditions that 
result from construction and ongoing maintenance activities. Changes in hydrology can result from the addi-
tion of impervious or porous surface and base materials to the landscape bringing potential drainage or flood-
ing effects that may be undesirable. 

Figure 5: Schematic representation of influences within the Road Effect Zone (REZ). 

Within the REZ, beyond habitat loss and fragmentation from road building, wildlife suffer from road mortality 
and injury. Some wildlife species may also be influenced by factors such as noise and light, resulting in avoid-
ance of the road area, lower use of adjoining land and bring about population declines. The REZ can extend to 
considerable distance. With the desert tortoise (Gopherus agassizii), population depletion may be observed up 
to 0.25-mile (mi)/400 meters(m) from the edge of the road. Built passage and barrier measures together with 
habitat management can help remove, reduce or offset these potential impacts. 

Chapter 9 - Page 18 



      

                   
  

    
            

                   
  

       
     

    

   

       

       
    

         
    

    
      

 
                   

  

          

         
       

            

                    
                

 

 

 
 

 

                     
   

    
                    

   

   

    

     

       

                      
                    

        
     

  

Reducing on-road mortality and maintaining connectivity across a transportation corridor may still be required 
to minimize negative effects. Example measures may include the following: 

1. adding wildlife barriers to prevent mortality; 

2. constructing purpose-built passages to maintain genetic flow and population-level connectivity; and 

3. retrofitting existing drainage culverts to reduce on-road mortality and restore safepassage. 

The siting of mitigation measures will be described in subsequent chapters. What is built or implemented 
should be determined following the completion of pre-construction population studies and analyses of the ma-
jor risk factors facing a local population (potential mortality or fragmentation effects) and how best to mitigate 
those impacts. A range of specialists in herpetofauna ecology, passage design, engineering, and construction 
may be needed to achieve successful outcomes according to the species and habitats involved and the com-
plexity of the built and natural landscape along the route. 

Key Points 
•Traffic and roads can be major stressors to California biodiversity and are strongly implicated in many of the 

major environmental problems in the State today 

• Impacts of roads range from habitat loss and change to direct mortality on roads and populationfragmentation. 

•Many ecological effects of roads are spatially small or restricted. Most documented effects occur at the 
road-segment level, which includes the road and roadside described as the road effect zone. Population effects 
in this zone may be up to a quarter of a mile (400 m) or more from the road, for example for desert tortoise. 

•Road right-of-ways can have the effect of creating a linear strip of vegetation either side that is different to that 
present before the road was constructed, and this may potentially bring beneficial and or harmful effects. 

Key References 

General references 
• Andrews, K.M., Gibbons, J.W.and D. Jochimsen. 2006. Literature synthesis of the effectsof roads andvehicles onamphibians and 

reptiles. FHWA, US Dept. of Transportation, Report No. FHWA-HEP-08-005. WashingtonDC. 

• Andrews, K.M., Gibbons, J.W. and D. Jochimsen. 2008. Ecological effects of roads on amphibians and reptiles: a literature review. 
Pages 121-134 inR. Mitchell, J. Brown, B. Bartholomew (eds.), Urban herpetology, Society for the studyof amphibians andreptiles, 
Salt Lake City, UT. 

• Caltrans, 2017. California public road data: 2017. State of California, California Department ofTransportation. 

• Forman, R.T.T. 1995. Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge, U.K. 
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CHAPTER 4 Endangered status focus and road risk appraisal 

Passage and barrier structures built for wildlife or with accommodations for species in mind 
are important for maintaining the long-term viability of populations and natural commu-
nities. In order to prioritize these efforts for herpetofauna, species that are particularly 
threatened and most at risk of extirpation from road-related impacts should be highlighted 
early on in the planning process. With over 160 California herp species and a lack of detailed 
species-specific data for most species and areas, a quantified risk assessment method has 
been developed by USGS, based upon known road ecology science and life history documen-
tation. While Caltrans focuses on the most threatened and endangered species for roads and 
railroads within their jurisdiction, the measures described in this BMP can be used to address 
concerns anywhere on California’s road network. This may extend even beyond state high-
ways, where measures for species may be warranted, including for less threatened species 
that may be experiencing increased mortality levels and declines. 

Risk scores for the assessments were based upon a suite of life history, movement, and 
space-use characteristics associated with harmful road effects: 

• movement distances 

• movement frequency 

• speed 

• habitat preferences 

• movement behavior (territorial, non-territorial vs. migratory) 

• fecundity 

• range size 

• conservation status 
All California herpetofauna species (and some subspecies) were ranked into five relative cat-
egories of road-related risk and assigned scores in 20-point increments for both aquatic and 
terrestrial connectivity ranging from “very high” to “very low”. 

Road risk assessment 
For each species group, the percentage and number (in brackets) of reptiles and amphibians 
in California were assigned a score or ranking of “high” or “very high” risk due to the adverse 
effects of roads on herpetofauna populations: 
•100% or all turtle and tortoise species (4/4); 

•72% of snake species (36/50); 

•50% of frog and toad species (11/22); 

•18% of lizard species (8/38); 

•17% of salamander species (8/44) 
Results were largely consistent with local and global scientific literature in identifying those 
species most at risk due to roadway mortality (“species of conservation concern”). Overall, 
turtles, tortoises and snakes had the highest percentage of species ranked as “high risk” of 
potential harmful impacts of roads. This was due to a range of factors such as their having 
longer movement distances than other species. For instance, turtles, tortoises and snakes 
tend to have larger home ranges and/or are more migratory than other species; they may 
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lack road avoidance behavior; and have lower fecundity in comparison to other herp 
groups. This includes the desert tortoise Gopherus agassizi, a species that has been 
shown to suffer from high road mortality and reduced near-road abundance in for ex-
ample the Mojave Desert. Western pond turtles may travel up to a mile or more within 
perennial waters and intermittent aquatic habitats to forage and find mates. In addition, 
female turtles nest and lay eggs in adjacent terrestrial habitats which make roads that 
parallel aquatic habitat a threat to both females and hatchlings. 

Many large snakes and rattlesnakes were ranked as high risk. They may be attracted to 
paved road surfaces for thermoregulation (basking) but also have wide home ranges or 
move long distances between winter hibernacula and summer feeding grounds. Long 
foraging movements within aquatic habitats also contributed to the majority of garter 
snakes falling within the highest road risk categories. 

Approximately 50% of California frog and toad species were ranked at high risk of neg-
ative road effects. These include bufonid toads (generally; rough skinned toads with a 
pair of large glands on the back of their heads) and California red-legged frog that may 
move large distances within and between both aquatic and terrestrial habitat to satisfy 
their annual resource requirements. This is also the case with newts and severalAmbys-
tomid (often heavy-bodied and short limbed) salamander species whose populations 
annually migrate between aquatic and upland habitat. Only a few lizard species scored 
in the highest risk categories including the Gila monster, leopard lizards, and two-horned 
lizard species. This may relate not just to their relative rarity but to them having smaller 
home ranges. 

Within the range of a species there are populations that occupy areas with greatly dif-
fering road pressures. Therefore, the actual risk to local populations depends upon local 
road densities, road design, traffic levels, and road locations in relation to species habitat 
and movement corridors. 

Threats from roads to both terrestrial and aquatic connectivity means that semi-aquatic 
species have two risk scores. Some species were ranked as high risk for both the aquatic 
and terrestrial life stages, while others may have scored high in only one. This is import-
ant when evaluating the need for underpasses and other crossing structures for terres-
trial species or species with both aquatic and terrestrial habits compared to when plan-
ning for fish passage remediation projects and bridges. For example, passage and barrier 
structures (see Ch. 7 for full definition and purpose of barrier types) may be suitable for 
species with high terrestrial risk scores, such as tortoises, colubrid snakes, rattlesnakes 
and Ambystomid salamanders. Conversely, fish passage structures and bridges might 
be evaluated for species with high aquatic risk exposure; such as the giant gartersnake 
Thamnophis gigas, California red-sided gartersnake Thamnophis sirtalis infernalis, 
two-striped gartersnake Thamnophis hammondii, and Sonoran mud turtle Kinosternon 
sonoriense. Both terrestrial and aquatic crossings may be needed for species groups that 
ranked high in both categories; such as pond turtles, Bufonid toads, newts and California 
red-legged frog Rana draytonii. 

Buffer distances for terrestrial and aquatic habitats were calculated to encompass 95% 
of population level movements of all species. This can be helpful when determining 
whether a population is close enough to a road (within buffer distance) to warrant mea-
sures to reduce mortality impacts including the possible need for crossing systems to 
retain connectivity. 

Chapter 9 - Page 23 



      

  
      

       
  

 
      

 

GROUP  VERY HIGH RISK  HIGH RISK  
 
 
 
 

Toads  

Arroyo toad  
Anaxyrus californicusF,SSC  
Black toad  

 Anaxyrus exsulS 

Sonoran desert toad 
Incilius alvariusSSC  
Yosemite toad  
Anaxyrus canorusF,SSC  

 
 Great plains toad  

 Anaxyrus cognatus 
 Western spadefoot 

Spea hammondiiSSC  
Woodhouse’s toad  

 Anaxyrus woodhousii 

 
 
 
Frogs  

 

 
 California red-legged frog 

Rana draytoniiF,SSC  

Cascades frog 
Rana cascadaeSSC  

 Northern red-legged frog 
Rana auroraSSC  

  Oregon spotted frog 
Rana pretiosaF,SSC  

 
 
 
 
Salamanders  

 

  California newt 
TarichatorosaSSC   

  California tiger salamander 
 Ambystoma californienseF,S 

 Red-bellied newt 
Taricha rivularisSSC  

 Sierra newt 
Taricha sierrae  

 
  California giant salamander 

Dicamptodon ensatusSSC  
 Rough-skinned newt 

  Taricha granulosa 
 Santa-Cruz long-toed salamander 

 Ambystoma macrodactylum croceumF,S 

 Southern long-toed salamander 
Ambystoma macrodactylum sigillatumSSC  

Californian herpetofauna - high and very high road risk 
Very High and High road risk California amphibians and reptiles are listed by species group in Tables 1.a-1.c. 
The detailed approach taken, methods used, complete rankings and buffer distances for all species are provid-
ed in Brehme et al. (2018). 

Table 1a. High and very high road risk Californian amphibians, by species group. 
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GROUP  VERY HIGH RISK  HIGH RISK  
 Terrestrial  Alameda striped racer California lyresnake  

snakes   Masticophis lateralis euryxanthusF,S 

Baja California coachwhip  
Masticophis fuliginosusSSC  
Baja California ratsnake  
Bogertophis rosaliaeSSC  

 California glossy snake  
 Arizona elegansoccidentalisSSC  

Coachwhip 
Masticophis flagellum  
Coast patch-nosed snake  
Salvadora hexalepis virgulteaSSC    

  North American racer 
 Coluber constrictor  

Panamint rattlesnake  
 Crotalus stephensi 

San Joaquin coachwhip 
  Masticophis flagellum ruddocki 

 Striped racer 
 Masticophis lateralis 

 Trimorphodon lyrophanes 
Nightsnake  
Hypsiglena ochrorhyncha 
Desert nightsnake  
Hypsiglena chlorophaea 
Mojave rattlesnake  

 Crotalus scutulatus 
Red diamond rattlesnake  

 Crotalus ruberSSC 
Regal ring-necked snake  

 Diadophis punctatus regalisSSC  
 Sidewinder 

 Crotalus cerastes 
Sonoran lyresnake  
Trimorphodon lambda 
Speckled rattlesnake  

 Crotalus mitchellii 
Spotted leaf-nosed snake  

 Phyllorhynchus decurtatus
Western groundsnake  

 Sonora semiannulata 
Western diamond-backed rattlesnake  
Crotalus atrox  
Western patch-nosed snake  

 Salvadora hexalepis 
Western shovel-nosed snake  

 Sonora occipitalis 
Western rattlesnake  

 Crotalus oreganus 

Aquatic snakes  California red-sided gartersnake  
Thamnophis sirtalis infernalisSSC   

 Giant gartersnake  
 Thamnophis   gigasF,S 

 San Francisco gartersnake  
  Thamnophis sirtalis tetraaenaF,S 

Two-striped gartersnake  
Thamnophis hammondiiSSC  

Aquatic gartersnake  
 Thamnophis atratus 

Common gartersnake  
 Thamnophis sirtalis 

Northwestern gartersnake  
 Thamnophis ordinoides 

Sierra gartersnake  
 Thamnophis couchii 
 Western terrestrial gartersnake  
 Thamnophis elegans 

      

    
 

Table 1b. High and very high road risk Californian snakes, by species group. 
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Table 1c. High and very high road risk turtles, tortoises and lizards, by species group. 

GROUP VERY HIGH RISK HIGH RISK 

Freshwater Northwestern pond turtle 
turtles Actinemys marmorataSSC 

Southwestern pond turtle 
Actinemys pallidaSSC 

Sonora mud turtle 
Kinosternon sonoriense 

Tortoises Mohave desert tortoise 
Gopherus agassiziiF,S 

Lizards Banded gila monster 
Heloderma suspectum cinctumSSC 

Blunt-nosed leopard Lizard 
Gambelia silaF 

Cope’s leopard lizard 
Gambelia copeiiSSC 

Desert horned lizard 
Phrynosoma platyrhinos 
Flat-tailed horned lizard 
Phrynosoma mcalliiF,SSC 

Coastal whiptail
Aspidoscelis tigris stejnegeriSSC 

Long-nosed leopard lizard 
Gambelia wislizenii 
Switak’s banded gecko 
Coleonyx switakiS 

F= Federally Listed as Threatened or Endangered 

S= State Listed as Threatened or Endangered 

SSC= California Species of Special Concern 

State and Federal Regulatory Requirements 
Caltrans is required to safeguard state and federally listed herpetofauna species. The “California Species of 
Special Concern” list is updated by California Department of Fish and Wildlife from time to time and most 
recently in September 2020. 

Federal Endangered Species Act 

The Federal Endangered Species Act (FESA) provides a program for the conservation of threatened and endan-
gered plants and animals and the habitats in which they are found. The law prohibits any action that causes 
“take” of any listed species of endangered fish or wildlife and generally prohibits import, export, interstate, and 
foreign commerce of listed species. Under the provisions of Section 7(a)(2) of FESA, a federal agency that per-
mits, licenses, funds or otherwise authorizes a project activity must consult with USFWS to ensure that its ac-
tions would not jeopardize the continued existence of any listed species or destroy or adversely modify critical 
habitat. Pursuant to the Moving Ahead for Progress in the 21st Century Act (MAP-21), as described in the NEPA 
Delegation Pilot Program Memorandum Of Understanding between Federal Highway Administration (FHWA) 
and Caltrans, Caltrans has been designated the authority to conduct Section 7 consultation of the FESA. 
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California Endangered Species Act 

The California Endangered Species Act (CESA) is administered by CDFW and prohibits “take” of plant and ani-
mal species identified as either threatened or endangered in the state of California by the Fish and Game Com-
mission (Fish and Game Code Section 2050 to 2097). “Take” includes pursuit, hunt, kill, capture, or any other 
action that results in adverse impacts to listed species. Section 2091 and 2081 of CESA allow CDFW to autho-
rize exceptions to the “take” of the State-listed threatened or endangered plant and animal species for purpos-
es such as public and private development. CDFW requires formal consultation to ensure that its actions would 
not jeopardize the continued existence of any listed species or destroy or adversely modify critical habitat. 

California Species of Special Concern 

A Species of Special Concern (SSC) is a species, subspecies, or distinct population of an animal* native to Cal-
ifornia that currently satisfies one or more of the following criteria: 1) is extirpated from the State; 2) is listed 
as Federally threatened or endangered; meets the State definition of threatened or endangered but has not 
formally been listed; 3) is experiencing, or formerly experienced, serious (noncyclical) population declines or 
range retractions (not reversed) that, if continued or resumed, could qualify it for State threatened or endan-
gered status; and/or 4) has naturally small populations exhibiting high susceptibility to risk from any factor(s), 
that if realized, could lead to declines that would qualify it for State threatened or endangered status. CDFW 
requires consideration of impacts to SSC species during the California Environmental Quality Act (CEQA) envi-
ronmental review process. 

Key References 
•  Brehme, C.S., Hathaway,  S.A., and R.N. Fisher.  2018. An objective road risk assessment method for multiple species: ranking 166  

reptiles and amphibians in California. Landscape Ecology 33:911-935. https://doi.org/10.1007/s10980-018-0640-1  

•  State  of California. 2020. “Special Animals List” State and Federally listed endangered and threatened animals of California.  The  
Natural  Resources  Agency, Dept.  Fish  and  Wildlife,  Biogeographic  Data  Branch.  California  Natural  Diversity  Database.  January  2017  

•  Thomson,  R.C.,  Wright,  A.N.  and  H.B.  Shaffer.  2016.  California  Amphibian  and  Reptile  Species  of  Special  Concern.  University  of 
California  Press.  

•  [USFWS]  U.S.  Fish  and  Wildlife.  Updated  annually.  United  States  Species:  Endangered  and  Threatened  Wildlife  (50  CFR  17.11).  
https://www.fws.gov/endangered/species/us-species.html  
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CHAPTER 5 Getting passage and barrier systems built 

Roads and railways can affect herp populations in various ways, and many impacts are based on the type of 
transportation project involved. Project types may include new construction, road widening, lane expansion, 
road improvements (unpaved to paved; resurfacing), installation of solid barriers in medians and shoulders, 
and culvert or bridge retrofits. 

Planning of connectivity measures can be triggered in several ways, but usually by regulatory requirement to 
protect species and their habitats (Chapter 2). 

Project and system level planning 
Funding for road impact reduction measures such as wildlife crossing structures is most likely to originate from 
transportation projects that address specific multiple transportation management concerns. Mitigating road 
impacts is most economical and likely when it arises from these project-level improvement projects. 

Crossing systems may also emerge from a systems-levelanalysis of transportation management concerns and 
priorities over a much larger area than project-level improvements. It may be possible to develop ‘early op-
portunity and enhancement tables’ for key road segments thought to pose high risk to wildlife species. Risk 
assessments (see Ch. 4) identify species most vulnerable to road impacts. During appraisals if risk assessment 
maps are overlaid with State Transportation Improvement Program (STIP) data, road projects that may impact 
high and very high risk species can be identified. Further, for STIP short and long-range planning this informa-
tion enables a proactive data collection approach to identify high and very high risk species potentially impact-
ed by new projects. 

The systems-level analysis is a broad-scale planning and construction process that addresses stakeholder con-
cerns, prioritizes agency objectives, and incorporates landscape patterns and landscape processes. 

Mitigation hierarchy 
Transportation projects should be approached in a manner that fulfills the generally recognized international 
standards of the three distinct stages of the mitigation hierarchy (Figure 6). These are to (1) firstly avoid sensi-
tive wildlife habitat, (2) take steps to mitigate impacts including actions that minimize impacts such as barrier 
and passage system development and (3) compensate for any loss of wildlife habitat, such as restoring equiva-
lent (equal or greater) habitat or connectivity lost for the same species, as close to the impacted site as possi-
ble. This should be done in a way so that there is ‘no net loss’ of biodiversity and ideally ‘net gain’. Compensa-
tion or biodiversity offsetting is the third stage, referred to as ‘compensation mitigation’ by Caltrans. 

Avoidance 

Mitigation 

Compensation 

Any predicted biodiversity loss should be 
avoided by not building the project or by 
choosing alternatives. 

Unavoidable impacts should be mitigated 
by innovative connectivity designs and 
solutions to minimise the impacts. 

Any residual biodiversity loss impacts after mitigation 
should be compensated through adequate provision 
for species and habitats, offsite. 

Figure 6: Transportationpractitioners should use the ‘avoid,mitigate, compensate’ hierarchywhen planning for new 
infrastructure where threatened and endangered speciesoccur. Minimizing impacts is the main aim of mitigation. 

Chapter 9 - Page 28 



      

    
    

         
      

    
    

 
        

     
        

    

       
    

     
    

         
   

 
 
 

       
  

Most road construction projects in California today are Operation and Maintenance or Safety projects and fre-
quently involve lane expansions, so there may be limited opportunities to avoid sensitive wildlife habitats. 

If projects are unable to avoid or mitigate impacts fully or sometimes at all, then the compensation principle is 
applied, so there is no net loss of biodiversity within the definition of this concept. This principle is commonly 
applied in transportation projects throughout North America; through the California Environmental Quality Act 
(CEQA) and also the National Environmental Protection Act (NEPA). 

Resources 
Identifying the most suitable sites for avoiding and mitigating road impacts requires tools and resources. Typi-
cally a variety of approaches are used, including site-specific information on species being impacted by roads, 
species distributions and connectivity, and local or expert knowledge. These can help define where herpeto-
fauna are most impacted by roads and identify the most appropriate areas for measures. 

Site-specific data are most valuable when rigorously collected, information on species rates of mortality, 
barrier effects and habitat loss/alteration guides planning and design. However, focusing planning on road-kill 
hotspots may ignore populations that have been reduced by past traffic-related mortality. Road-kill analyses 
should therefore be used with caution when evaluating options or proactive restoration of linkages. Further, 
small populations of local importance may not show up well or at all in road-kill surveys, yet even low rates of 
mortality may have big impacts on population viability. 

Figure 7: Example of a data query from a USGS created geodatabase that users can use to identify where 
species most at risk of roadway mortality overlap with California highways. 
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Transportation projects also may address connectivity over long distances and landscape scales, to meet Wild-
life Linkages objectives such as those of the Caltrans and California Department of Fish and Wildlife commis-
sioned California Essential Habitat Connectivity Project; 

https://wildlife.ca.gov/Conservation/Planning/Connectivity/CEHC 

As a part of the California Sensitive Amphibian and Reptile Highway Crossings project (2014-2020) a unique 
geodatabase was prepared by the USGS that identified where very high and high road-risk species (Chapter 4.) 
intersect with California Essential Habitat Connectivity Lands and Caltrans highways. An example of the output 
from this is shown at Figure 7 where, in this case occupied desert tortoise (Gopherus agassizii) habitat inter-
sects (shown as red line) with roads within the California Essential Habitat Connectivity Project (areas shown in 
green) in southern California, east of Los Angeles. These highways cross areas that may be considered opportu-
nities for preserving and enhancing remaining corridors of wildlife habitat supporting endangered species. 

Mapping is also possible for medium and lower risk species. This planning tool will aid Caltrans in short and 
long-term planning of transportation projects and potential impacts to herps. Once road projects are identified 
that may impact species of risk, District biologists are then able to work proactively to drill down at the project 
level and investigate conditions and potential site-specific data that may be available. 

Some basic map and data resources to initiate the planning of safe crossing systems for herpetofauna include: 

•California herpetofauna road risk assessment 

•California Department of Fish and Wildlife. 2014. Guidance Document for Fine-Scale Wildlife Connectivity 
Analysis. 

•California Department of Fish and Wildlife. Areas of Conservation Emphasis (‘ACE’ depicts connectivity needs 
at a relatively fine scale). https://wildlife.ca.gov/Data/Analysis/ACE#523731769-overview 

•Aerial and satellite photography and images 

•Land cover-vegetation maps 

•Topographicmaps 

•Land ownership maps 

•Herpetofauna/other wildlife distribution and species-specific ecological data 

•Herpetofauna/other wildlife road-kill and live observation data 

•Road network data 
Use of these resources enables consideration of how planned Caltrans road projects may impact herpetofauna. 
Combining multiple resources will provide greater accuracy in identifying where road project conflicts do, or 
may potentially occur. 

Spotting opportunities and maximizing benefits 
While this BMP manual is focused on amphibians and reptiles, it is important to investigate how roads may im-
pact other wildlife (large and small) in these identified areas, as there may be synergies with other species needs 
and cost-sharing of project funding. For example, a road segment that blocks herp movement may coincide with 
a location where an underpass may be installed to reduce mule deer (Odocoileus hemionus) road-kill, or passing 
lanes installed, or where a bridge may be retrofitted. Such “piggy-backing” on larger transportation projects may 
be a low-cost means of mitigating roads for wildlife connectivity, particularly for herps and small mammals. 

Sound planning should identify early the specific measures needed for any project. In broad consideration 
these tend to fall into three categories. 

a) A large passage structure that enables movement across a road of all wildlife in an area; 

Chapter 9 - Page 30 

https://wildlife.ca.gov/Conservation/Planning/Connectivity/CEHC
https://wildlife.ca.gov/Data/Analysis/ACE#523731769-overview


      

        
    

                  
    

      
        

          
        

     

      
   

      
     

    
        
        

      
         

       
   

       
 

        
        

         
    

  
       

                    
   

   
     

       
     

       
       

     
        

     
        

      
        

    

     
     

     

b) Species-specific passages for one or more species, to enable high rates of seasonal movement with a popu-
lation using habitat on both sides of a road; 

c) Passages that allow for a lower level of movement that is nevertheless sufficient to prevent complete isola-
tion (demographic and genetic) of a population that is divided by a road. 

Failing to have clearly defined objectives and goals during the planning stages of a project can confound how 
well connectivity systems perform and how success or failure of a project is judged. Low levels of passage use 
(see above) may be sufficient in some situations where mass migration is not necessary. For such locations, if 
barriers are effective in reducing mortality, large passages may be a lesser priority. Measurement and evalua-
tion of chosen objectives are addressed in Chapter 8. 

Key Stages: please note these are generalized stages and specific Caltrans project planning and delivery are 
available elsewhere and may be subject to change. 

Stage 1. Project planning and design. Although highly desirable, the occurrence of high and very high risk 
species may not always be flagged early on in most projects and may simply emerge as the output of specific 
pre-construction planning before work begins. Communication between biologists and transportation planners 
early in the planning phase will allow for wildlife crossing considerations as project scopes are being devel-
oped. During this stage, input should be obtained from species experts, such as local naturalists and university 
researchers. Resources and readily available data should be leveraged where possible, and all species of her-
petofauna that occur in a project area should be considered. The ecological community as a whole should be 
addressed when planning for wildlife connectivity improvements. Initial passage system concept plans should 
be developed in collaboration with professional engineers. Timing of construction work in relation to seasonal 
behavior of species is important to minimize impacts on them and to establish lead-in periods prior to con-
struction starting. 

It is important to remember the temporal and spatial context of landscapes. Wildlife connectivity measures, 
including that completed to reduce the impact to herpetofauna and other wildlife, will often have a lifespan 
of decades or longer as culverts and bridges are generally designed to have a design life of 50 to 75 years. The 
planning of built measures for herps requires forecasting, visualization and understanding how to proactively 
integrate species-specific concerns into transportation projects and potentially rapidly changing landscape. 
Approaches need to ensure that crossing structures remain functional over time. Long-range planning needs 
to take into consideration not only likely future changes in land use but also how a changing climate may affect 
species and landscapes including increased fire risk. 

Stage 2. Construction Stewardship and Monitoring. Road project planning should include measures to protect 
existing habitat and populations during construction. Measures might include the installation and maintenance 
of temporary fencing and protocols for relocating species out of harm’s way. District biologists may work close-
ly with resident engineers and construction workers to develop environmental avoidance measures and imple-
ment them. This results in reciprocal training and skill sharing that can be used on future projects. Environmen-
tal monitoring during construction is critical for ensuring that design meets reality on the ground. 

Impact reduction measures can include a range of habitat manipulations and hard structure construction of 
varying type, size, and scale. In some cases, what is termed ‘substitute habitat’ may be created, replacing 
essential habitat features lost to road construction or confined to one side of it. This can be developed through 
careful habitat creation work. For example, artificial breeding ponds can be formed and placed on or near a 
new structure. Water drainage adjustments and features can be constructed to augment created ponds. Plac-
ing substitute habitats in proximity to a passage on one or both sides of a road may greatly enhance the level 
of their use, for example ponds at either side of a passage (see Ch. 6). 

Stage 3. Post-construction monitoring and performance evaluation. Sometimes it is only an afterthought, but 
monitoring of population reaction to disturbance needs to be part of the planning process by setting an initial 
baseline of population size and distribution and recording of passage system use once built. Several years of 
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Figure 8: Surveys and studies are often essential in order to update historic knowledge and to inform planning 
and assessment of outcomes. Credit: M Huijser. 

monitoring post-construction over 3-5 years or longer are necessary in order to determine whether investment 
in interventions is successful at meeting the pre-stated project objectives (Figure 8). 

Monitoring post-construction will also identify problems or issues requiring attention (blocked passages, main-
tenance, fence repairs etc.). This ensures that built measures are functional and effective over the long term 
(see Chapter 9). Chapter 8 covers crossing system performance assessment. 

Proactive and precautionary factors concerning herpetofauna 
Invasive species and associated diseases should be a consideration when planning for wildlife connectivity 
improvements. Overall, consideration should be given to those invasive species that are, or could be expected 
to be present in a project area. 

It has long been recognized that the spread of invasive species poses a significant threat to species biodiversity 
globally, including threatened and endangered herpetofauna. Consulting the California Aquatic Invasive Spe-
cies Management Plan will help identify non-native algae, plants crabs, clams, fish, and amphibians. Amphib-
ians such as American bullfrog Lithobates catesbeianus, (that displace native California red-legged frogs) and 
African clawed frog (Xenopus laevis), may impact native species populations. The non-native tiger salamander 
(Ambystoma tigrinum) may hybridize with the native California tiger salamander. 
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One example is on the lower Mad River in northern California where Caltrans built a permanent wetland fea-
ture that has become a bullfrog pond in the coastal zone. Efforts are underway to remedy this but it has been 
a very slow process. Features that facilitate invasive species spread should be a very early consideration in any 
potential project. Awareness of reptile disease pathogens such as Snake Fungal Disease (SFD) is also advised. 
Disease is a particular concern when temporary captivity, captive breeding and head-starting or translocation 
forms a part of a program. 

When present, a strategy should be developed to ensure that non-native species status is not enhanced by 
road building or through impact reduction or compensatory activities. Actions should, in most instances, be 
taken to remove them. The Declining Amphibian Task Force Fieldwork Code of Practice should also be con-
sidered in relation to working with non-native species to prevent accidental spread of disease pathogens to 
amphibians or other species on equipment or clothing. 

Key Points 
•Generally, across a district, look out for synergies with all road-related construction and maintenance projects 

that impact wildlife to find places where herp connectivity measures may be applied. Studies may be made 
of long road segments to consider a range of needs and opportunities. 

•A newly developed geo-spatial database that identifies road segments that may block the movement of her-
petofauna is one tool available to transportation practitioners. 

•Risk assessment is a valuable tool to identify road project impacts on herps in both short term and long-range 
transportation planning. 

•Site-specific data are needed for new crossing structures. Protocols to get a reporting system for amphibian 
and reptile road mortality ‘hotspots’ should be encouraged. However, use road-kill data with caution as it 
may not always be the best indicator of mitigation need and opportunity. 

•Required linkage retention or creation objectives need to be stated, agreed upon and recorded in the early 
planning stages of transportation projects. Environmental monitoring before and during construction is criti-
cal to ensure that design meets reality on the ground. Post-construction monitoring and research is the only 
way to determine whether performance objectives are met. 

•Building passage and barrier structures on roads to protect amphibians and reptiles may be most economical 
when part of a larger transportation project. 

•Build for multiple species or all resident wildlife species where possible, and as conditions and funding allow. 

•Consult and follow the recommendations in the California Aquatic Invasive Species Management Plan to 
prevent and limit the introduction or spread of non-native species and/or disease. 

Key References 
Connectivity Initiatives 
• Caltrans and CaliforniaDepartment of Fish andWildlife, California EssentialHabitat Connectivity Project. 

https://wildlife.ca.gov/Conservation/Planning/Connectivity/CEHC 

Technical guidelines, general reviews and information tools 

• Brehme, C.S., Hathaway, S.A., and R.N. Fisher. 2018. An objective road risk assessment method for multiple species: ranking 166 
reptiles and amphibians in California. Landscape Ecology 33:911-935.https://doi.org/10.1007/s10980-018-0640-1 

• California Aquatic Invasive Species Management Plan. https://wildlife.ca.gov/Conservation/Invasives/Plan 
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• California Department of Fish and Wildlife. 2014. Guidance Document for Fine-Scale Wildlife Connectivity 
Analysis. https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=93018&inline 

Note: CDFW provided a list of specific connectivity data sources in the 2018 Regional Conservation Investment Strategies guidelines. 
See Section 4.2.9.6. Habitat Connectivity (pages 4-23 through 4-25). 

• California Department of Fish and Wildlife. Climate science page (https://wildlife .ca.gov/Conservation/Climate-Science/Resources/ 
Vulnerability) includes resources and the RCIS guidelines include climate change assessment guidance in section 4.2.9.8 Climate 
Change Vulnerability Assessment (pages 4-26 through4-27) 

• California Department of Fish and Wildlife. Areas of ConservationEmphasis (depicts connectivityneeds at a relativelyfine scale). 
https://wildlife.ca.gov/Data/Analysis/ACE#523731769-overview 

• Clevenger, A.P. &M.P. Huijser. 2011. Wildlife Crossing Structure Handbook, Design and Evaluation in North America, Publication No. 
FHWA-CFL/TD-11-003. Department of Transportation, Federal Highway Administration, WashingtonD.C.,USA. 

• Iuell, B., Bekker, G.J., Cuperus, R., Dufek, J., Fry, G., Hicks, C., Hlavác, V., Keller, V., B., Rosell, C., Sangwine, T., Tørsløv, ˇN., Wandall 
and B. le Maire, (Eds.) 2003. COST 341 Habitat Fragmentation due to Transportation Infrastructure. Wildlife andTraffic: A European 
Handbook for Identifying Conflicts and Designing Solutions. KNVV 

• O.M.N.R.F. 2016OntarioMinistryof Natural Resources andForestry. 2016. Best Management Practices for Mitigating the Effects of 
Roads on Amphibians and Reptile Species at Risk in Ontario. Queen’s Printer for Ontario. 112 pp. 

• The Nature ConservancyOmniscape Connectivity WebMap. Online regionalhabitat connectivityfor plant and animal species whose 
movement is inhibited by developed or agricultural land uses. 

• Van der Ree, R., Smith, D. and C. Grilo. 2015. Handbook of roadecology.John Wiley, New York, NY. 

• Watson, E. and C.S. Brehme, 2020. Spatial Mapping-California Essential Habitat ConnectivityLands, Highways, and High-RiskSpecies 
in Brehme CS and RN Fisher. Chapter 3: Research to Inform Caltrans Best Management Practices for Reptile and Amphibian Road 
Crossings. USGS Cooperator Report to California Department of Transportation, Division of Research and Innovation,65A0553. 

Research findings and advisory documents 
• Arizona Game and Fish Department. 2006. Guidelines for Culvert Constructionto Accommodate Fishand Wildlife Movement and 

Passage. http://fwcg.myfwc.com/docs/wildlife_crossings_culvert_designs_AZDOT.pdf 

• California Department of Fish and Wildlife. Regional connectivityguidance 

• California Department of Fish and Wildlife. Regional Conservation Investment Strategy guidelines 

• California Department of FishandWildlife. Regional Conservation Investment Strategy pilot program (Program). The Program went 
into effect on January 1, 2017 and is administered by CDFW’s Habitat Conservation Planning Branch inSacramento. 

• Cunnington, GM., Garrah, E., Eberhardt, E. and L. Fahrig. 2014. Culverts alone do not reduce road mortality in anurans. Ecoscience 
21:69-78. 

• Federal Ministryof Transport (Germany), Building and Housing, RoadEngineering and Road Traffic.2000. Merkblatt zum 
Amphibienschutz an Straßen28 p. Germany [Guidelines for amphibianprotection on roads, In German language] 

• Grandmaison, D.D. 2011. Wildlife linkage research in Pima County: Crossing structures and fencing to reduce wildlife mortality. 
Chapter 3. Arizona Game and FishDepartment. Report prepared for Pima County Regional TransportationAuthority. Arizona USA 

• Jones, D. et al. 2011. Restoring habitat connectivity over the road: vegetation ona fauna land-bridge insoutheast Queensland. 
Ecological Management and Restoration12:76-79. 

• Spencer, W.D., Beier, P., Penrod, K., Winters, K., Paulman, C., Rustigian-Romsos, H., Strittholt, J., Parisi, M. and A. Pettler. 2010. 
California Essential Habitat Connectivity Project: A Strategy for Conserving a Connected California. Prepared for California 
Department of Transportation, California Department of Fishand Game, and Federal Highways Administration. 

• The Declining Amphibian Task Force Fieldwork Code of Practice. Amphibian Ark webpages. 
http://www.amphibianark.org/wp-content/uploads/2018/07/The-DAPTF-Fieldwork-Code-of-Practice.pdf 

Chapter 9 - Page 34 

https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=93018&inline
https://wildlife.ca.gov/Data/Analysis/ACE#523731769-overview
http://fwcg.myfwc.com/docs/wildlife_crossings_culvert_designs_AZDOT.pdf
http://www.amphibianark.org/wp-content/uploads/2018/07/The-DAPTF-Fieldwork-Code-of-Practice.pdf
https://wildlife.ca.gov/Conservation/Climate-Science/Resources/ Vulnerability


      

 
 

 
 

   
     

      
      

 
          

     
     

         
        

 

       
      

    
         

         
       

 
    

   
     

   

 
                

      
     

    
     

 

  
       

           
       

          
        

        
     

        
       

        
    

CHAPTER 6 Connectivity system design: passages 

Caltrans Best Management Practices 
Once project plans have been approved and objectives for the built system have been determined and agreed 
upon, work begins on detailed design. Because of the relatively small body size of amphibians and reptiles, 
past projects have focused mainly on smaller passage and barrier structures. Measures have been driven by 
regulatory requirements, often times geared toward a single endangered species. 

Passage design types 
Passages for animals mitigating roads and rails vary greatly in size and type, from large viaducts crossing can-
yons to small pipe and box culverts for small and medium-sized species. In the past, overpasses have been 
designed primarily for large wildlife in North America. 

Herps and small mammals use wildlife overpasses also but there has been little monitoring of this. Ideally pas-
sage design should be holistic, serving the wider wildlife community and restoring severed ecological connec-
tions and natural landscape linkages. 

Underpasses for the largest mammals that are involved in vehicle collisions are the most common pur-
pose-built wildlife passage type in North America. Like overpasses, these structures often accommodate 
passage for herpetofauna, small mammals and invertebrates less able to cross highways. At the opposite end 
of the spectrum, small (<3.3 feet(ft)/1.0meter (m) diameter) micro passages have been placed, in order to 
provide short-distance safe passage for target species. These are often in places where installation of a large 
structure over or under a road may not be technically feasible or achievable without large expenditure. 

Design for climate change 
In consideration of both a rapidly changing climate, climate adaptation needs and sustainable construction 
approaches, transportation agencies should consider developing less energy-intensive technologies. Alterna-
tives to concrete and steelshould be explored, that require less energy to manufacture and to build with such 
as lumber resources and recycled materials. 

Innovative materials 
Materials such as fiber reinforced polymers (FRPs) are increasingly being used for pedestrian bridges. FRPs are 
made of a fiber such as glass or organic material embedded within a plastic composite and have the poten-
tial to be used in the construction of wildlife passage structures. Overpasses have been over-engineered for 
decades, with load strengths designed for vehicles and trucks rather than wildlife. Currently there are investi-
gations aimed at reducing costs through innovation in materials, processes and design and construction ap-
proaches. 

Design criteria and variables 
The main objective of wildlife passage design is to provide conditions that minimize species passage ‘avoid-
ance’ responses. Because herps are ‘cold blooded’ and body temperature may be rapidly influenced by sur-
roundings, they can be highly sensitive to temperature change. Physical features of a passage may appear un-
familiar. Light levels can play a role, even for nocturnal species (many amphibians and some reptiles). Related 
to this are temperature and moisture gradients that may also influence behavior. A small passage may mimic 
the entry to a burrow or cave and this may induce rejection responses. The extent of use of a passage may be a 
balance between instinct or stimulus for directional movement versus resistance brought about by behavioral 
reaction to unusual conditions. Some species may avoid going into and moving along passages that are darker, 
drier or cooler than the surrounding environment, while others may not. Species may ‘explore’ for different 
distances before turning back. Given the lack of research for most species, practitioners should aim to design 
structures that best match ambient environmental conditions (Figure 9). 
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Figure 9: Abiotic conditions that influence passage use. Air movement and light levels may influence passage
temperature and humidity beyond the normal night and day fluctuations Soil or substrate type and near-
passage drainage design influences water flow and passage base moisture levels. 
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The type of substrate at the passage floor is important and should mimic the surrounding soil properties, 
including moisture and temperature. Untreated cast concrete can release efflorescence that can leach out and 
burn amphibian skin. A corrugated steelpassage without a substrate base is uneven and hard for some species 
to easily traverse. In addition, as metal is a good thermal conductor, it can become much colder and hotter 
than the surrounding air temperature, this may be harmful in some circumstances at certain times of day. Care 
in design when using different materials is essential. 

The maintenance of passage structures is an important consideration in the design process. Windblown soils, 
sand or debris such as leaves and roadside trash can accumulate inside. Vegetation may not grow far beyond 
the entrance in small to medium sized passages. Mammals that dig can disturb soil causing passage blockages. 
The cost of cleaning and maintaining structures in the long term should be factored into project planning and 
programming (see Chapter 9). Some of the smallest passages are designed with inert polymer surfaces and 
have no soil base. Passages may require assessment and adjustments in the early years following installation 
to provide attractive moisture levels. This may include adding drainage to reduce waterlogging or channeling 
rainwater to the passage to make it damper. 

Wildlife Connectivity Structure Categories 
The dimensions (length, width and height) of passages described in this BMP are as shown in Figure 10. Cross-
ing structure types No. 1-5 (large to small) are illustrated in Figure 11 and Figure 12 and described in more 
detail below. For crossing structure type 6: prototype micro-bridge structures see the end of this chapter. 

Figure 10: Dimensions of length, width and height of passages referred to in this BMP 
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Type 1A  
Mountain/  
Hill Tunnel  

Type 1B  
Viaducts/Open  

 Span  Bridges  

Type 1C  
Wildlife  
Overpass 
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Wildlife  
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Raised  
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Wildlife  Overpass 
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canal, farm)  

Type 2 
Smaller  Open  
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 than  120  ft  
Figure 11: Overview of passage categories Types 1-2 
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Figure 12: Overview of passage categories Types 3-5 
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Type 1A: Mountain/hill tunnel 
There are many examples of road and rail mountain tunnels that have been constructed worldwide over the 
last 150 years or so. Mountain tunnels minimize the extent of above ground environmental disturbance and 
leave habitats virtually intact other than at their openings. They provide for the least disturbed wildlife passage 
in proximity to transport routes. 

Roads entering mountains may block lateral (sideways) animal movement at the base of a steep or shear slope. 
Sometimes ledges, fences and strategically placed rocks and boulders are built around and along the top of the 
tunnel entrance to catch falling rocks and to provide access for lighting and ventilation equipment servicing. By 
extending tunnel entrances slightly with a ‘portal structure’ (Figure 13), greater wildlife provision may be made 
for wildlife moving around the base of a hillside. This is effectively a wildlife overpass along the side of a steep 
hill or cliff. 

Figure 13: ‘Portal structures’ may be formed at transport tunnel entrances to help retain lateral wildlife 
movement at the base of steep mountain cliffs and slopes. 

Examples of mountain tunnels protecting biodiversity in California include the Devil’s Slide Tunnel located on 
Highway 1 near Pacifica, south of San Francisco and the Caldecott Tunnel located on Highway 24, north of Oak-
land (Figure 14 to Figure 16). 

At Devil’s Slide, (District 4), a bypass route was built to alleviate an eroding section of coastal Highway 1. The 
project is located adjacent to McNee Ranch State Park in the Santa Cruz Mountains, San Mateo County and 
in an area of scenic coastal mountains. The area supports a patchwork of grassland and coastal scrub habitats 
and freshwater drainages. The shorter tunnelalternative left the area largely untouched and retained wildlife 
movements along a small valley where protected species are present compared to realigning the roadway 
inland and along a new overland route. The 4,600-ft twin road tunnel option that opened in 2013, provided an 
economically viable solution. The new tunnel is considered safer and shorter than a traditional winding road 
and the project resulted in less environmental damage. Amphibians and reptiles including California red-legged 
frog and San Francisco garter snake, both California Species of Special Concern, were factors in the environ-
mental considerations and decisions. 
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    © 2013 California Department of Transportation, all rights reserved. 
Figure 14: Devil’s Slide bridge and tunnel entrance on Highway 1 near Pacifica, California. An amphibian 
breeding pond is just beneath the bridge (light colored triangle shaped feature). Image: Caltrans District 4. 

© 2013 California Department of Transportation, all rights reserved. 
Figure 15: Devil’s Slide, Highway 1 near Pacifica, California. South entrance. Tunneling prevented the need for 
a longer, winding and more damaging overland route, while the old route is now a multi-use recreational cliff
path. Image: Caltrans District 4. 
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Figure 16: The Caldecott Tunnel is located on Highway 24, near Oakland, Caltrans in District 4. Tunneling for 
about 3,300 ft/1000 m, helped to protect the area known as the Caldecott Wildlife Corridor (East Bay Regional
Park District), preserving a movement corridor for wildlife between Oakland and Orinda. 
Image: Google Maps. 

Caltrans completed construction of the fourth bore of the Caldecott Tunnel in 2013. The threatened California 
red-legged frog and Alameda whipsnake were known to occur in the project area and the tunneling retained 
the above ground linkage for these protected species. Constructing a traditional highway would have blocked 
wildlife movement and interfered with foraging, mating, and dispersal. Loss of wildlife habitat was restricted to 
0.56 acre. 

Type 1B Viaducts and open span bridges 
Viaducts are larger steeland concrete structures that span wide valleys, floodplains and canyons and are often 
many hundreds of feet long. They are optimal wildlife passages by virtue of their size, often completely bridg-
ing aquatic and terrestrial habitats or otherwise set on multiple stilt support structures. They provide relatively 
intact habitat and adequate space underneath for animals to move safely under the road corridor. These struc-
tures are rarely built specifically for wildlife, but in most instances, they retain wildlife connectivity underneath. 
An example is The Yolo Causeway; a 3.2-mile long elevated highway viaduct on Interstate 80. 
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Type 1C Wildlife overpass 
Also called “green bridges” or “ecoducts”, over 200 wildlife overpasses have been built in Europe as part of 
national nature “defragmentation” (landscape linkage) strategies. ‘Cut and cover’ road tunnels (Figure 17) are 
similar and allow extensive wildlife and side road movement above. 

Today there are roughly two dozen wildlife overpasses in North America, varying from 15 – 200 ft/ 5.0 - 60 m 
in width, with plans for more in the future. None have been built with herpetofauna specifically in mind or as a 
major component. However, local soil and habitat components can be included in the design of overpasses so 
that these structures are conducive to all wildlife species, including amphibians, reptiles and even butterflies. 
Overpasses provide contiguous habitat for small species with smaller home ranges, as well as providing a move-
ment corridor for wider ranging species. 

Existing ground 

“Cut” is made in ground 

“Cover” isreinstated 

Figure 17: Cut and cover vehicle tunnels are built by totally or partially
excavating away the ground and a placing back a roof or ‘false’ cover to 
enable lateral movement above the new road. 

Chapter 9 - Page 43 



      

 

 

     
     

  
 

  
     

  
  

  
   

   
    

   
  

   
 

 
  

  

 
 
 
 

 
 

         
    

Figure 18: Design model for a large Type 1C multi-road wildlife overpass
crossing at Liberty Canyon (Agoura Hills, CA). Image: Simulations:
#SAVELACOUGARS & NATIONAL WILDLIFE FEDERATION 
Image: Tom Langton. 

Figure 18 shows a design model 
for a proposed large Type 1C 
multi (two-road) wildlife over-
pass crossing. This aims to re-
join habitat between the Santa 
Monica and Sierra Madre moun-
tains at Liberty Canyon (Agoura 
Hills, CA). The target species is 
mountain lion (Puma concolor); 
however,at least three species 
of herpetofauna consideredhigh 
or very high road risk; coach-
whip, striped racer and western 
rattlesnake may benefit from 
increased connectivity if the 
overpass is constructed. 

Figure 19: Type 1C wildlife overpass that is 150 ft/46 m wide and was constructed specifically for mule deer on 
Highway 93 north of Elko, Nevada. Image: Nevada Department of Transportation 
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Figure 20: Type 1C wildlife overpass with emphasis on amphibian connectivity (Netherlands). Features include a 
narrow wet strip along the length of the passage connecting small ponds at each end. Image: Rijkswaterstaat. 

Figure 21: Type 1C Wildlife overpass in forest area. Image Thibaud/Limba/FilmDroneProject 
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Figure 22: Root wads and tree branches are sometimes placed along the lengthof an overpass.These provide shelter
for herps and other wildlife that show a preference for closed cover within their habitats. Image: TomLangton 

Type 2: Smaller open bridges and viaducts less than 120 ft/36.5 m 
This category spans gaps of 60-120 ft/20-36.5 m. Small road bridges are probably the most common structure 
bridging natural habitat. These structures are generally designed to cross smaller floodplains, rivers, streams, 
small dry valleys and upland habitats. They consist of pre-cast or cast on-site single or multiple span beam 
structures. These small open bridges can benefit a range of wildlife species, including herps. Amphibians and 
reptiles may cross underneath if suitable water and land surfaces for movement are present. Although ani-
mals will continue to use the riparian corridor or other linear feature, individuals may not actually cross under 
the structure. There can still be upticks in wildlife mortality at the bridge ends where wildlife crosses the road 
most often. Directional fencing should be incorporated into the design of new or renewal projects to reduce 
or prevent this. 

Figure 23: Image shows a Type 2 bridge that is about 120 ft/36.5 m in length. This bridge is located over a 
stream at the junction of Campo Road with Honey Springs Road and Otay Lakes Road, San Diego County.
Image: Tom Langton 
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Figure 24: A Type 2 underpass in the Sonoran Desert in Arizona, constructed for passage by deer and bighorn 
sheep. The passage crosses under a 6-lane road with a median. It is a purpose-built, 50 ft wide, 12 ft high, and 
190 ft long (15.2 m wide, 3.6 m high and 58 m long) structure is located at Oracle Road, near Tucson, Arizona. 
Image: Tony Clevenger. 

Type 3: Smaller road underpasses less than 60ft/20 m wide 
Smaller underpasses include largely concrete and/or steel formed bridge structures. They can also be built of 
brick, rock or wood. Small bridges may be designed for wildlife only, but are mostly built to assist drainage with 
the additional benefit for wildlife. Small underpasses typically range from 10 to 60 ft /3.0-18.0 m in length and 
span waterways with ephemeral or intermittent water flow or those with permanent flows that also convey 
high flows during storm events. Other purposes for the construction of smaller underpasses may include ac-
cess for pedestrians and recreationists; agriculture and livestock; and forestry access. Some Type 3 structures 

Figure 25: An adult garter snake is using a Type 3 structure on State Route 152 in California. This bridge spans
Pacheco Creek near San Felipe Lake on the Pacheco Pass Highway near Gilroy. California quail (Callipepla 
californica) are also present. Image: Pathways for Wildlife, Santa Clara County, CA. 
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Figure 26: Image shows a 30 ft/9.1 m Type 3 concrete temporary stream bridge along Campo Road/Highway
94, San Diego County, south of San Diego. The bridge has three 10 ft × 10 ft concrete chambers and was built 
without specific wildlife goals. Image: Tom Langton 

Figure 27: From the same structure shown in Figure 26, one of the chamber dividing walls. These chambers can 
be scoured out by seasonalheavy stream flow and flash flooding, but may also be used by nesting birds as well
as mammals, such as the kangaroo rat (Dipodomys californicus) which has excavated soil in the base of this 
structure. Image: Tom Langton 
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may be designed with herpetofauna connectivity as a factor, while others have been purpose-built for them, 
and these are usually under 20 ft/6.0 m wide. Examples are the larger drainage culverts built under desert 
roads that were adapted for use by Desert tortoise and other desert animals. Such structures, may be retro-fit-
ted with wildlife fencing and other measures for safe-use passage. 

Type 4: Culverts less than 10 ft/3.0 m wide 
Type 4 passages used by herps are often drainage culverts made from concrete or galvanized steel, High Densi-
ty Polyethylene (HDPE) and other plastics. In cross section the open space formed can be square, rectangular, 
arched, round, half or three-quarter round These structures can be adapted for use by wildlife. Some may 
be completely or partly permanently flooded and serve to help balance surface water levels on either side of 

Figure 28: A new culvert built under State Route 58 in southern California (Hinkley Highway Re-alignment
Project, Caltrans District 8). Adjustments will be needed to join wire fencing to the entrance of the passages
and to make the rip-rap safe, so desert tortoises do not get trapped in it. 
Image: Cheryl Brehme 

Figure 29: With a large median and easements under a four-lane highway, desert culverts can be extremely
long (over 300 ft /90 m) and dark during the day. The view foreground here is lit by a camera flash. 
Image: Cheryl Brehme 
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Figure 30: This is a Type 4 cast concrete ‘bottomless’ or ‘stilt’ passage with side walls built on foundations in 
the Netherlands. It is constructed below a two-lane road with cycle path, particularly to enable rare lizard 
dispersal. The sandy base substrate is in contact with the natural water-table. Image: Tom Langton 

Figure 31: Located on the far side of the road shown in Figure 30 and either side of the cycle lane is a series of 
cast steel gratings placed within the roof of the wildlife passage to allow entry of light and moisture. Image: 
Tom Langton 
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Figure 32: Here two Type 4, 3 ft/90 cm concrete culverts are positioned to accommodate flood events at a 
desert drainage. Provisions like this might potentially be used by reptiles but many have not been built with 
directional fencing. They are potentially suitable for modification. Image: Cheryl Brehme 

Figure 33: Passages built on foundations are sometimes referred to as ‘bottomless’ or ‘stilt’ passages due to the 
open natural soil base and support on both sides. A free-draining interior may sometimes conform to moisture
levels of the surrounding area more than a closed culvert. 
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Figure 34: Simulation of three Type 4 (round and rectangular) passages that can be designed with substrate
placed at the base during construction. In Figure 34(a) concrete is poured in and sealed at the surface; in Figure 
34(b) soil and moisture-inert heavy tiles are placed at the bottom; and in Figure 34(c) a shallow dirt floor may 
be sufficient for some species. 

a road. Most are seasonal and prevent water from building up, or the road area from be-
coming waterlogged and flooded by storms. These culverts may have a natural substrate or 
purpose-lain soil to provide a flat and more natural surface to encourage animal movement. 
Rocks or rip-rap may be placed to reduce scouring, but this can present an issue for tortoises 
and turtles as animals may become trapped between gaps and die. Designs that do not trap 
tortoises are being investigated out of state. 

Passages can be designed with substrate placed at the base during construction. Examples 
are given in Figure 34, but there are multiple options for creating suitable passage floors. 
These are not always tied to the shape and size of the culvert. The behavioral needs of the 
target species involved may play a big part in passage floor design in particular moisture and 
humidity that can be extremely important where amphibians are being considered. 

Water may be a necessary feature and an important component of a passage structure for 
some species. A drainage system to divert the right volume of rain water may be incorpo-
rated into the design of a culvert and its surrounding land to provide a damp or wet channel 
(Figure 35) in important seasons of animal dispersal. 

Aquatic snakes and turtles will use a still or slow flowing aquatic environment. Project spec-
ifications will need to dictate how the drainage feature will be provided, such as through di-
verted surface water channels or ‘leaking pipe’ design. ‘Leaking pipe’, as used in horticultural 
situations, releases water slowly from a supply on higher ground, for example a rainwater 
drainage basin or pond or a stone surface trench with a perforated land drain that is placed 
along an embankment to intercept rainfall. 
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Figure 35: Water flow or a drainage system may be incorporated into the design of a culvert passage to provide
a wet channel or moist passage base. 

Figure 36: A Type 4 sized passage with dry ledges, in addition to a central wet channel is suitable for a range of 
species, shown here at a wildlife crossing in central Europe. Image: Silvia Zumbach, KARCH 
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Figure 37: A Type 4 purpose built passage with a light and air gap in the median and with wet and damp 
conditions suitable for amphibians and other wildlife that prefer damp conditions. Image: Andreas Meyer, KARCH 

The sowing and planting of vegetation and placement of natural structural materials such as boulders, rocks 
and logs should be considered very carefully. These features may help encourage more secretive or closed 
habitat specialists animals to the passage openings and particularly larger passages that span greater than two 
lanes of traffic. 

Without care, however, structure and vegetation may have the opposite effect and deflect animals away from 
the openings via effects such as altering the angle of approach to a barrier. For many, but not all species, a rela-
tively open passage base boosts the speed of travel into and through a passage. 

Vegetation that grows tall and creates shade may lower passage opening temperature. Designs should wherev-
er possible avoid creating places that encourage higher numbers of predators than usual. For the larger pas-
sages over and under roads, structural cover, whether living or inert materials (e.g. native shrubs, rock and log 
piles) may be placed along one side of the entire crossing structure to provide cover to closed habitat special-
ists. The exact design will relate not only to passage size but the systems objectives, the main target species 
involved and habitat type/s present. 

Passages under 6 ft/1.8 m span have restricted access for maintenance and closed-space regulations may 
prohibit entry without full safety training and equipment. The placement of cover items (e.g. rocks or logs) in 
a smaller passage may not hold an advantage as cover materials can shift and block light and air movement 
through a smaller passage. The topography and drainage characteristics of any passage location may dictate to 
some extent the potential for cover to be used. If a passage is installed both to convey drainage and provide for 
the safe passage of wildlife, the cover should be placed well outside the drainage area. 
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If a passage is there principally to enable rapid movement to either end, resting places may delay a journey 
and promote turn-arounds. Yet on the other hand they may provide shelter so that some species are more like-
ly to use them. So great care is required in the use of cover items inside and close to passage ends, as they may 
strongly influence system performance. Cover is particularly suitable for larger passages to enhance the use for 
most herpetofauna. 

Type 5: Micro passages less than 3 ft/0.9 m in diameter 
Micro passages can include both the smaller water drainage culverts and purpose-built passages for the 
movement of small wildlife species. Most culverts under roads are associated with ditches and slopes and are 
installed for the purposes of conveying surface water flow after rain. 

Figure 38: There are many small cross-road steel drainage culverts on California roads, such as this elliptical 
shaped steelculvert near San Diego. This culvert was built during the last century and is nearing time for 
refurbishment. This type of scenario offers an opportunity for culverts to be adapted for safe wildlife passage 
as well as for road drainage purposes. See also Chapter 9. Image: Tom Langton 

Most micro passages are 30-60 ft/10-20 m in length and span the width of a two-lane road, to a ditch or base 
of the embankment. Some wildlife passages may also have a drainage function by design. The position of the 
road in relation to the surrounding terrain (on embankment, at grade or in cutting) may dictate the type of pas-
sage selected and the way in which materials are built. 

There are approximately 50 crossing systems with over 150 passages in total that are designed exclusively or 
partly for amphibians or reptiles across the USA. Many are experimentaland installed due to road and hous-
ing development impacts to try to retain movements across habitat. In California, few systems are part of the 
State Highway System. At 11 known locations in California there are a total of at least 52 amphibian passages 
installed, with between 1 and 12 passages per location. These passages are mostly Type 5; less than 3 ft/0.9 m 
in diameter. These were built for the following target amphibian species: Western toad, California red-legged 
frog, California tiger salamander and Santa Cruz long-toed salamander (Table 2a). For reptiles, purpose built 
passages could only be located for Desert tortoise in the Mojave desert (Table 2b.). 
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Table 2a. Provisional checklist of recorded passage and/or barrier systems in California for amphibians. 

Target Species and Crossing
Location; (Road and County) 

Year/s
installed 

Approximate number & type of tunnels, barriers. 
General notes. 

Western Toad 
Pole Line Rd, Davis, Yolo County 

1995 1 no. ca. 12 inch/300 cm metal corrugated pipe, no fences. System not 
functional 

Santa Cruz long-toed salamander 
Ventana Way, Seascape Uplands, Santa 
Cruz, Santa Cruz County 

1999 5 no. ACO AT500 20 in/500 mm and 1.no. ACO Q200 8 in/200 mm polymer 
concrete slotted surface tunnel. Approximately 1000 ft/300 m of ACO plastic 
panels with 30 ft or so extensions to some barriers with silt fence on wood
post. For monitoring See Allaback, M.L. & D.M. Laabs. 2003 

Santa Cruz long-toed salamander 
Highway 1, Santa Cruz County 

1999 Barrier only 

California tiger salamander 
Junipero Serra Freeway (I-280), Stanford
Hills near Lake Lagunitas, near San Jose, 
Santa Clara County 

2001 & 
2003 

3 no. polymer concrete ACO 20 inch (500 mm) surface tunnel and 1 no. 
metal corrugated steel culvert. Plastic panel and mesh fence barriers. See 
Brehme et al. 2020. 

California tiger salamander 
Stony Point Road near Cotati,
Sonoma County 

ca.2013 3 no. 10 in/25 cm steel pipes with plastic pipe entrances. One 20 in elliptical 
concrete pipe. Range of fence types. See: Bain, T. 2014. 

California tiger salamander 
Portola Avenue, Cayetono Creek, Liver-
more, Alameda County 

2013 11 no. 8 in polymer concrete slotted surface drains(ACO HD 200) with bur-
ied plastic mesh and solid sheet barrier. 

California tiger salamander
Wilfred Avenue, Graton Resort and Casi-
no, Sonoma County 

2014 12 no. polymer concrete slotted surface tunnels (20 and 8 in types) Each 
tunnel has a circular pipe spanning a ditch before entering the main pas-
sage. Circa 3280 ft/1000 m of in places very low (8 in)fence. 

California red-legged frog 
California tiger salamander
Vasco Road, Livermore, 
Contra Costa County 

2015/16 8 no. concrete culverts 3x 48 in 3x 24 in round and 2x 5 ft square, 98-132 ft
long with wire mesh fencing on 1 mile segment. Use 2017/2018 by target 
species uncertain. Camera monitoring showed use by rattlesnake, kingsnake 
and gophersnake spp. 

California tiger salamander
State Road 246 
between Buellton and Lompoc,
Santa Barbara County 

2017 A 64 ft viaduct with six 6 ft round concrete passages with 14 in high con-
crete fencing – Data needed on what exactly built. California red-legged 
frog also present. 

Yosemite toad 
9S09 Road: Sierras, 
Fresno County 

2018 Elevated road segment 100 ft wide, 8 in high passage with 400 ft/120 m of
barrier fencing at each end on both sides (polymer mesh and solid) 

California tiger salamander
Santa Cruz long-toed salamander 
San Andreas Road, Santa Cruz County 

Not 
known 

1 no. Passage and barriers. Data needed. 

California Tiger Salamander
Orcutt Rd, between Orcutt & Santa Ma-
ria, Santa Barbara County 

Not 
known 

Dry box culverts. Data needed. 

Yosemite toad 
Highway 108, Humboldt-Toiyabe 
National Forest Mono County 

2020* *Experimental type 6. crossing and barrier systems recently constructed 
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Table 2b. Provisional checklist of recorded passage and/or barrier systems in California for Desert tortoise. 

Target Species and Crossing
Location; (Road and County) 

Year/s
installed 

Approximate number & type of 
tunnels, barriers. General notes. 

Desert tortoise 
Multiple culverts under Interstate 15 
(I-15) 
Mojave desert 
San Bernardino County 

1991-
1996 

Multiple steel and concrete culverts: round & rectangular, 
• Diameters: 3.0-11.0 ft/0.9-3.5 m 
• Lengths: 108-215 ft/33-66 m 
• Barrier:15 mi/24 kmof24 in/60 cmhigh, 0.5 in/1 cm galvanized hardware cloth, 
with 6 in/15 cm buried in the ground. Held on 5 ft/1.5 m wirestrand fence. 
See: Boarman and Sazaki 1996 

Desert tortoise 
Mojave desert 
San Bernardino County 

1994-
1995 

Corrugated metal pipe 215 ft/66 m long. 13 x 5 ft/4 x 1.6m. Metal aprons 
installed at entrances. Tortoises have been recorded passing through on 60 
occasions. 
See Boarman et al. 1999 

Desert tortoise 
Harper Lake Road (Solar Farm)
Lockhart 
San Bernardino County 

1997-
2009 

1 no. ca. 3 ft round pre-cast concrete culvert passage (2004) and 12 mi/19 
km fencing http://www.tortoise-tracks.org/wptortoisetracks/proj ects/harp-
er-lake-fencing/ 

Desert tortoise 
Interstate 58 near Hinkley
Mojave Barstow Highway 
Between miles markers 22 and 31 
San Bernardino County 

2017 8 no. wildlife tunnels were installed along an approximate 1 mile portion of 
the realignment. The box culvert passages range from approximately 246-
328 ft/75-150 m in length. 

The information gained from the installations is highly limited. Although most accommodate two-lane roads, 
they are all unique in terms of topography soil, vegetation and surrounding human disturbance and land uses. 
The designs in some cases were compromised and experimental and established without a clear baseline, suc-
cess criteria or detailed monitoring guidelines. This is changing as newer systems are built with greater atten-
tion to essential detail for critical appraisal that will aid in setting new standards. 

Other than for tortoises, there do not appear to be any passage systems built specifically for reptiles in Califor-
nia. However, standard and purpose built passages for other species are known from camera monitoring to be 
used by a wide variety of vertebrates, for example at Vasco Road (Table 2.a), passages were used on multiple 
occasions by California kingsnake, Northern Pacific rattlesnake and Pacific gophersnake. 

Elsewhere in North America, passages for freshwater turtles and snakes have been built. Generally, past moni-
toring of passage use has been absent or by way of short duration sampling. Monitoring of passage use is criti-
cal for assessing the efficacy passages. In recent years a number of new projects have been completed or are at 
the planning stage for endangered and road-sensitive herp species in California. No study has yet demonstrat-
ed what can be considered fully successful outcomes for a barrier and passage system and lack of monitoring 
remains a substantial issue. 

Many of the existing California type 5 micro-passage systems built for salamanders (Table 2a) are surface 
passages, formed from polymer concrete (resin bonded minerals) or otherwise are rounded metal or standard 
concrete. Because of their small size, standard plastic, metal or cast concrete structures (other than polymer 
concrete) must be buried relatively deep (to a depth of 3 ft or more) below the road surface to avoid damage 
and collapse caused by the heaviest vehicle loadings. 

Passages made from polymer concrete, are typically authorized to accommodate higher loads than stan-
dard concrete (Figure 39). Metal grates (e.g. cattle guards) similar to those used for larger livestock may also 
be strong enough, but use has been limited to lower-speed roads. Metal gratings in a highway setting for 
fast-moving traffic are being investigated. This is due to safety concerns and risk of failure, such as the grating 
becoming detached and loose on the highway. 
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Figure 39: Micro-surface passages flush with the road surface maximize exposure to ambient environmental
conditions and weather, including prevailing light and rainfall conditions. 

Figure 40: One of several purpose-built slotted polymer concrete surface passages (bottom left) built in 1999 for
the Santa Cruz long-toed salamander at Seascape Uplands, Santa Cruz. These were constructed along with short
sections (center,runningup slope) of one-way plastic panel fencing to try to minimize constructionimpacts on 
houses and the gardens that remain a part of the salamander’sterrestrialhabitat. Image: TomLangton 
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Figure 41: General alignment of three purpose-built polymer concrete slotted surface-passages with one-way
plastic panel fencing, (shown) and mesh (not shown). Passages show as narrow grey lines across the road.
These were built 2001 and 2003 next to Lake Lagunitas in Stanford, California, for California tiger salamander. 
Image: Tom Langton 

Passage sizing (Type 4) 
Deciding on the dimensions for a new passage structure and what is needed to carry a signif-
icant number or specific proportion of a population across a road is not an exact prescription. 
When the larger passages over or under a road are not practicable it may be a case of design-
ing in accordance with the existing landscape restrictions to see if likely outcomes could offer 
acceptable rates of crossing. Many installations are not used by a high proportion of potential 
users when animals ‘baulk’ at the entrance or turn around after a certain distance and this will 
vary with species and behaviors. 

Use of a passage may also vary between years and according to animals adapting to them, for 
example developing experience and following the olfactory trails of other passage users. Table 3 
provides a generalguide to minimum dimensions that should be considered for passages where 
amphibians and/or reptiles are the target species. The dimensions in the table are presented 
according to the size of the length of the road and embankment and different passage shapes. 

These dimensions are likely to result in some degree of acceptance by the target species but 
each species will vary in its requirements and so great caution is required. There is a tendency 
to build passages too small and for animals to turn back, especially in passages over 65 ft and 
even at 50 ft. 

These figures should be considered a minimum for at least some level of use to be expected. 
However each project will require a unique evaluation according to the total objectives of the 
system (built structure and habitat manipulations) to determine what will be sufficient in terms 
of passage size, the arrangement of barriers and the aim of the system in terms of population 
movements. 
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Table 3. Recommended minimum width and height (W/H) dimensions for different types of Type 4 (herp 
passages less than 10 ft / 3.0 m wide), according to passage length and the size (width) of a road. Note, at
smaller sizes, passages may only enable lower percentage of migrants to make a full crossing, especially under 
four or more lanes. 

   

 

 

 

  
 
 

 
 

 
 

 
 
 

 
 

 

 
 

 

 
 
 

 
  

 
 

 
 

 

 
 
 

 
 
 

 
  

   
 

 
 

 

 
 
 

 
 

 

   
 

 

  
 

 

 
 

 

 
 

 

Rectangular Circular 
Rectangular 
Bottomless 

Arch 
Bottomless 

Two lane 
Up to 66ft 3 ft 3”/2 ft 6” 

1000/750 mm 
3 ft 4” 
1000 mm 

3 ft 7”/2 ft 
1100/600 mm 

3 ft 3”/2 ft 4” 
1000/700 mm 

Four lane 
Up to 100ft 

5 ft/3 ft 4” 
1500/1000 mm 

4 ft 5” 
1400mm 

4 ft 11”/2 ft 8” 
1450/800 mm 

4 ft 5”/2 ft 4” 
1400/700 mm 

Four lane with median 
Up to 132ft 

5 ft 9 “/4 ft 1” 
1750/1250 mm 

5 ft 4” 
1600mm 

5 ft 11”/3 ft 3” 
1800/1000 mm 

5 ft 4”/3 ft 7” 
1600/1100 mm 

Eight lane with median 
Up to 170ft 

6 ft 6”/4ft 11” 
2000/1500 mm 

6 ft 8” 
2000mm 

6 ft 8”/3 ft 7” 
2000/1100 mm 

      

      
           

      
 

 

 

  
     

    
  

       
     

      
   

Type 6: Microbridges/raised roadways 
Innovative designs may be required to address unique situations 
according to the species involved and local land use challenges. 
One example of such an approach is the use of an elevated road 
segment (“low bridge”) design for use as a wildlife underpass. A 
low viaduct bridge forms part of the connectivity system at State 
Road 246 between Buellton and Lompoc (see Table 2a).However 
even smaller scale constructions are possible. 
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A small scale pilot study was made along unpaved road 9S09 in the Sierra National Forest of the movement of 
Yosemite toad towards and under a bridge structure during the breeding seasons of 2018 and 2019. The road bi-
sects a Yosemite toad breeding meadow and upland habitat. HALT (Hobbs Active Light Trigger) and Reconyx cam-
eras with time-lapse were placed under the elevated road segment during trials to monitor passage use. Cameras 
recorded toads approaching the structure successfully and using it for a full crossing. 

The forest and paved road setting is extensively used by recreational vehicle users; the peak use of the road-
way coincides with the migratory period of the toad (i.e. most sensitive time of the year). The low bridge was 
about 100 ft/30 m long, 16 ft/5.0 m wide and 8 in/0.2 m high (Figure 42). 

Made largely from a local sustainable material (timber) it was built together with directional fencing in order to al-
low toads and other small animals a safe passage without the needfor excavatingthe ground or bridging the road. 

This is not a state road environment but it demonstrates that positive measures are available that can be taken 
for a vehicle-impacted species. In some cases compensatory measures may include creating offsite structures 
to benefit a species. 

      

         
             

       
         

          

     
        

    

            
             

         
       

   
 
 
 

      
   

 
 

 

         
        

Figure 42: General schematic design for a micro-bridge or low elevation bridge structure. There may be some 
future potential for designs for use on paved roads. 

Figure 43: Experimentalraised micro-bridge for the Yosemite toad (Anaxyrus canorus) in the Sierra NationalForest.
Images show ‘safe space’and directional fencing to help guide animalsto the underpass. Images: Cheryl Brehme 
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CHAPTER 7 Connectivity system design: barriers 

Barriers are divided into two categories; guide wall and fence types, as described below. They prevent and 
help direct the movement of amphibians, reptiles and other small animals near hazardous areas. This may be 
just to keep them off roads or in addition to help direct them to a passage to cross a road safely. They may be 
built as the lower part of a general wildlife or livestock road safety barrier. 

For channeling the movement of smaller herp species these structures generally range in height from 12 to 28 
in/30 to 70 cm above ground and are, in addition buried underground, up to 12 in/30 cm. Buried fences may 
also be offset at 90 degrees underground, to help prevent animals from tunneling under them. Taller barri-
ers are needed for the more agile species, including some of the longer snakes. These may need to extend to 
heights of 60 in/150 cm tall. Many barriers have built-in overhangs or can be shaped and angled in the ground 
to reduce or prevent over-climbing. 

There is a wide range of wildlife barrier materials. Choice of barrier or fence material will vary according to 
the purpose of the barrier, local site and climatic conditions and expert judgment. One of the keys to greater 
passage use is helping migrating animals to locate the entrances and to enter. In many instances, this relates to 
the angle of approach, which is dictated by the alignment of the barrier with respect to an often fixed direction 
of approach. 

Migrating adults may turn back and not breed if barriers are not aligned at the correct angles to guide them to 
the crossing points. This may vary by species. Some may make return attempts to move in a particular direc-
tion, while others may give up after a single or few attempts and not breed that year. Some herps live for 20 
years or longer and have good directional senses. Weather patterns may also dictate the number of days that 
individuals are active and able to follow barriers to find and use passages. 

Spacing and maximizing barrier use 
Designing crossing systems often requires an early decision as to the best locations for passages. The number 
and type of passage/s required will relate to the need to retain existing, or to restore species’ dispersal pat-
terns and migratory behavior and the level of connectivity required to sustain populations long-term. 

The length of road requiring guide wall and/or fence measures may range from a few hundred feet to sever-
al miles long. Barriers are normally needed on both sides. There is a relationship between barrier angle and 
inter-passage distance (Figure 44). 

Passages in some circumstances can be close together, at around 60 ft/18.3 m apart and multiple passages 
may be needed to cover, for example a 600 ft/183 m migration route hotspot. When the aim is to allow the 
maximum numbers of animals and their young to make seasonal movements forwards and backwards across a 
road, passages must be close together so they are easily found and used by a high proportion of animals. 

If passages are positioned further apart due to physical constraint barriers should be angled to enable animals 
to perceive a degree of forwards trajectory as opposed to a flat wall that they may more readily turn back 
from. However, when barriers are angled they may make some near-road habitat inaccessible and also impose 
constraints on adjoining land-use that may be prohibitive. Such land may be effectively be ‘lost’ as habitat to 
target species and so placement of passages to prevent the need for heavily angled barriers is an important 
consideration. 

Passage entrance deflector boards are an important fine detail, in some cases curved and referred to as ‘swal-
lowtails’ are often needed to help animals to not move past them and to enter the passage system. These can 
be made from wood and other light materials and should not be positioned in a manner that blocks movement 
of animals exiting the passage from the other direction (Figures 45 and 46). They should extend into the pas-
sage a short distance. 
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Figure 44: Recommended angle of barriers leading to passages that are designed to maximize successful
migration crossings. At 60 ft/18.3 m or under, barriers can be installed parallel to the roadway, but if the
distance between passages increases, they must be installed at a suitable angle. 
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Figure 45: A small ‘bottomless’ or ‘stilt’ passage (cast concrete roof and sides on foundations, with a natural
soil base) under a 2-lane road. There is an extensive late-season leaf litter component that amphibians
shelter under. The barrier and deflection panel are made from galvanized sheet metal fence material with an 
overhang. Image: Tom Langton 

Figure 46: Passage entrance deflector boards, in some cases referred to as a ‘swallowtail’. These can be made 
from wood and other light materials and vary in their design. 
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 Species 
group  

 Smaller 
 sizes 

 Larger 
 sizes   Comments on barrier overhang requirement 

 Lizards  13”  30”  Needed for most species. 

 Snakes  25”  43”  Large rattlesnakes and whipsnakes may require substantial overhangs. 
Some studies show Snakes are more likely to negotiate vertical barriers if  

  the barriers are shorter than the body length of the snake. 

 Tortoises  18”  18”  Should not be needed for barrier material that cannot be climbed. 

 Turtles 
(freshwater)   

 15” 
 

 35”  Should not be needed for barrier material that cannot be climbed. 
 

Salamanders  
 and newts  

 15” 
 

 15” Needed  
 

Toads   18”  25” Needed  

Frogs   30”  38”  Needed for most species  

 
       

     
   

       
        

     
  

    
       

       
     

          
 

      
     

       
 

      
        

 
 
 

 

 

 

Barrier height 
It is difficult to generalize about how high a barrier should be, as recommended dimensions will vary, based on 
the target species of a road project and road safety provision for large mammals. For amphibians and reptiles 
alone, the following guide gives general recommended minimum heights from the ground to the top of the 
barrier. Some species have particular behaviors and climbing and jumping abilities, so it may be helpful to 
check with specialists familiar with the species concerned, to decide the best material to prevent over-climb-
ing. Barrier material choice is crucial in making successful barriers and needs detailed consideration as it also 
may influence barrier height. 

It is important to recall that vegetation growth rates differ across various climates, and that guide walls and 
fences can easily become overgrown with vegetation. Some may not need maintenance for several years while 
others may need vegetation cutting twice or more times a year. The environment around a barrier should be 
carefully considered; for example, fences in some woodlands may have low overgrowth but frequent falling 
branches that can break a fence or form a bridge that animals can climb across. Ease of fence repair is another 
consideration. 

Table 4 gives recommended minimum barrier heights for different groups of herpetofauna including the use of 
overhangs that may be necessary to prevent over-climbing by the more adept species. Horizontal overhangs 
may have a downward pointing edge, to make them more difficult to climb over. 

Table 4. Recommended minimum barrier height (in inches) for connectivity systems for different groups of
herpetofauna. Division of species into small and large categories is slightly arbitrary and varies between groups 
so expert advice may assist with final choice. 
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Barriers – species interactions 
The extent to which animals may use visual and olfactory cues from their environment, when 
navigating, makes barrier type (solid versus open mesh construction) a significant influence in 
terms of response when encountering them. 

Observations indicate that several species of Chelonians (turtles and tortoises) will tend to 
walk along barriers that they can see through but are more likely to move away from a barrier 
that is solid. Tortoises that follow open mesh fencing may dehydrate and even die from heat 
exhaustion in some circumstances if they do not find shade or cover. 

Studies done by USGS to inform this BMP found that for California tiger salamander (CTS) the 
‘transparency’ of barriers (mesh vs. solid) influenced the speed and time of travel along it. CTS 
moving along solid fencing moved at an average of almost twice the speed and were three 
times less likely to turn around and repeatedly move back and forth than with an open mesh 
fence. Open mesh fences without a visual barrier, for example types used for exclusion fenc-
ing during construction, are not suitable as directional fencing for crossing systems. 

Trials have demonstrated that frog, turtle and snake species are not only able to climb fences 
but spend significantly greater amounts of time interacting with hardware cloth mesh fencing 
than plastic solid barrier fencing. Such responses are considered likely also to occur in some 
species of salamander, newt, toad and lizard. Many amphibians, particularly juveniles, can 
climb vertical smooth surfaces readily in wet weather conditions. Risk of excessive barrier 
interaction can help practitioners in deciding the most effective barrier. 

Studies to inform this BMP showed that addition of a simple 6“ visual screen to the bottom of 
an open mesh fencing can help decrease the interactions between a species and fence mate-
rial. A solid barrier can also influence the speed at which animals travel along a fence. Add-
ing a visual screen to existing mesh or other see-through type of fence gives it many of the 
qualities of a solid barrier. Such provisions may be retro-fitted to existing fences for a certain 
number of species but to be fully operational the barrier needs to satisfy the prevention of 
under-digging and meet other needs for a successful barrier, for example, where needed an 
overhang. It must also be fixed very tightly and securely to prevent animals becoming wedged 
between the added material and the older fence. 

There are many reasons why hardware cloth, mesh, or solid barriers may be desirable in 
particular landscapes, habitats, and climates with considerations that include rain and wind 
permeability, durability, and aesthetics. Solid barriers are generally more expensive than those 
with gaps but may be more durable, depending on materials used. For each location, tem-
perature, light and moisture variation patterns will dictate barrier longevity. 
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Guide walls 
Guide walls are a more durable and permanent type of barrier. They often also have a soil/slope retention 
purpose on sloping ground. Made from concrete, zinc-coated (galvanized) steel or other metal alloy sheeting, 
or with polymer concrete, they are often built into the road embankment as an integral part of the road struc-
ture. On a steep bank or edge, walls may stop erosion from occurring in places where the aim is to maintain a 
platform for animals to move toward passage entrances. Guide walls often have the added benefit of being a 
‘one-way’ barrier allowing small animals caught on the road corridor to easily leave into the ‘safe’ side of the 
barrier. 

Overhang(varies) 

Safe 

Road embankment 

Foundation 

Figure 47: Backfilling behind the guide wall barrier allows unimpeded one-way animal movement from the 
direction of the road to prevent entrapment, as well as enabling lateral movement towards the passage 
entrances. An overhang may be required according to the type and size of animals. 

Guide walls are also more resistant than fences to factors such as damage by heavy snow and snowplow use. 
Solid guide walls may be more resilient than thinner plastic or mesh fence material and stand up better to 
being knocked over or damaged by debris falling from vehicles, or of highway (vegetation) maintenance equip-
ment. The hard surface at the base of the barrier may reduce vegetation overgrowth, reducing barrier mainte-
nance needs. 

Chapter 9 - Page 69 



      

 

       
      

      
 

 
 

     
         

      
  

        
  

         
     

         
     

Figure 48: Guide walls for small snakes and lizard species on a single lane road with cycle path. Attached to
a Type 5 (20 in/0.5 m wide) micro-passage, is a molded plastic barrier on the left hand side and a polymer
concrete barrier on the right hand side. Both barrier types are circa 20 in/0.5 m above ground. 
Image: Tom Langton 

Fencing 
Fencing categories include those that are temporary or semi-permanent in lifespan. These may be made of 
less durable material than guide walls, comprising a thin sheet material attached to support posts. Fences are 
often defined both by the material used and their life expectancy. Some are suitable for short term (temporary 
fencing) pre-construction species containment or exclusion work and for experimental work determining the 
spatial use of habitat, while others, are more durable and used if the fence is intended to last for the same 
design life of the road (permanent fencing). 

Fences may act as a wind break and provide shade. Vertical fences may also cause heating by sunlight of the 
near-fence soil. In some desert conditions solid materials can more easily catch and trap soil and windblown 
dust than wire fences and become buried. Normally solid materials allow no visibility through them. Fine mesh 
fences can also allow low visibility through them. 
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A general design for a temporary fence is shown in Figure 49. The thinner polythene/geotextile/plasticmaterial 
including woven polypropylene (silt cloth or shade cloth) may be used for temporary applications, but tends 
to lack strength and durability. These fence types are easily damaged or destroyed by seasonal weather event 
extremes or the actions of more powerful large mammals. Because of this, they require regular checks and 
repairs to retain their integrity. 

Where a fence traps moisture, amphibians may use the sides of buried barriers as places to shelter and great 
care may be needed when they are removed. 

Lifespan expectancy for semi-permanent barriers is up to 25 years and permanent fencing for 25-50 years or 
more. In some cases wood boards and posts can be used to make barriers. Ground moisture levels, soil char-
acteristics and presence of insects will dictate how long these more sustainable materials will last both with or 
without preservative treatment. Exclusion fences to isolate a development area and remove animals (Figure 
50) will not normally be suitable as a barrier for crossing systems. 

Figure 49: General construction of a temporary herp exclusion or enclosure fence, from thinner plastic
materials, supported on posts with staples, nails or cable ties. 
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Figure 50: A rigid monolithic plastic (HDPE) mesh fence with overhang. Fine holes of under 0.2 in/5 mm) give
a degree of visibility through them. These are often seen on construction sites but should not be confused with 
fences designed for permanent road and rail crossing systems. Image: Vince Morris 

Fences are sometimes made from 
thick plastic that is extruded in 
sheets. Plastic sheeting (polypro-
pylene/polyethylene) of up to 
one-tenth of an inch (1-3 mm) 
thick is commonly used, fixed 
vertically or at an angle on wood, 
plastic or metal posts. Sometimes 
plastic culverts have been cut 
in half to form a concave shape. 
Thicker injection-molded or sheet 
plastic purpose-made panels 
both straight and curved are also 
available. These can be held in 
place with plastic, wood or steel 
support posts, with partial earth 
covering on one side (Figure 51). 
Lifespan expectation is a few years 
for thinner material and 10-25 
years or more for thicker material 
according to site conditions. 

Backfill 

Safe 

Safe 

Figure 51: Examples of solid precast and bent plastic panel fences that may
have temporary, semi-permanent and if robust enough, permanent usage. 
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Thicker plastics may hold up better to physical stressors; for example, from the weight of light snow, from large 
mammal trampling or digging, such as can be done by badger (Taxidea taxus) or from human vandalism. Sheet 
and less stable solid plastics may become distorted through expansion, causing warping. Fixed joints that do 
not allow for daily expansion movement may crack open (Figure 52). Most plastics will degrade (harden, be-
come brittle and rip/split apart) due to heat and ultraviolet light exposure, especially in full sunlight. Coatings 
and UV retardants may slow this process, but pollution caused by material degradation (e.g. eroding, rusting 
and flaking) should be considered as a potential wider environmental hazard. 

Figure 52: Some types of cast plastic barrier may expand and contract in heat and sunlight, causing problems
for joints. Fixings should be constructed to allow space for such movements. 

Light-colored fencing has been used in areas that are exposed to overly sunny and windy conditions, such as 
desert environments and exposed hillsides. Lighter colors compared to dark or black material may reduce 
heating and drying the near-fence environment. In highly exposed areas, heating and drying along barriers may 
prove harmful or even lethal to amphibians and reptiles (see also Shelters). 
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Transparent or “see through” fences 
Galvanized steel and plastic mesh and plastic-coated steel mesh 
allow much of the natural movement of air and water and some 
windblown soil through them. Steel mesh fence is sometimes 
treated to make it a brown color, to prevent reflection and help 
it blend into the landscape. These fences may be most suitable 
in environments that are harsh and exposed, have high winds 
and/or poor soil drainage. 

However, as mentioned earlier, when herps can sense the en-
vironment beyond through a fence, they may lose energy due 
to pausing, poking, or pacing back and forth, and from trying to 
climb or dig under them. Some may be snared or caught up try-
ing to push through. This type of fencing is not recommended if 
trying to guide animals to a passage. For retrofitting, in some cir-
cumstances a solid visual barrier may be attached to it at ground 
level (see section above, Barriers - species interactions). 

Figure 53: Fine wire mesh tortoise fencing (barely
visible in photograph) on metal posts along Interstate
15 in San Bernardino County, located within desert
habitat at a culvert underpass. Image: Cheryl Brehme 
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Figure 54: Typical wire mesh and stock fencing on metal posts in desert tortoise habitat. Image: Dean Swensson 

Figure 55: Tortoises and turtles are adept climbers of wire mesh fence and so mesh fence alone may not
contain them. Image: Ken Holmes 
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Figure 56: A Yosemite toad at a monolithic 5 mm diameter 
HDPE fence. Herpetofauna generally spend more time attracted 
to permeable barrier material, probably gaining visual and 
olfactory information from the other side that is otherwise
screened by a solid barrier. This may influence travel times along
fencing, leaving species exposed to factors such as predation and 
dehydration. Image: Cheryl Brehme 

Figure 57: Dual purpose permanent barrier for deer and small 
animals. The tall deer mesh fence with metal support poles is
built together with a small galvanized steel animal guide wall
with an overhang. Image: ACO 
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Figure 58: Here, a free-standing metal fence and a large
mammal fence separate in order to go around a road over-
bridge that runs perpendicular to the main highway. Note a ‘stop
grid’ beneath the car. The deer fence also has a gate positioned 
in front of the point at which the car (and agricultural vehicles)
can enter the surrounding landscape. Image: Tom Langton 

Barrier installation and drainage 
As previously mentioned, in many instances the placement of a wildlife barrier in natural or semi-natural hab-
itat may impede surface water flow and drainage. This can lead to waterlogging and other undesirable effects 
such as subsidence. Some temporary (e.g. silt fence) and semi-permanent barriers may have perforations rep-
resenting up to 50% of their surface area, enabling unimpeded water passage. 

Solid fence material may cause increased moisture or waterlogging on one or both sides of the fence. They 
may need to be perforated at and below the ground surface. 

For more permanent barriers, drainage needs are resolvedby designing adequate1 ft/30 cm or more (deep and 
wide) stone-filled drainage channels that pass under the fence and that have sufficient capacity to collect and 
discharge to prevent flooding. These may be spaced roughly every 30-100 ft or so in places or according to the 
local intensity of ground and surface flow. With guide walls, the running of interception trenches on the roadside 
of the barrier can bring surplus rainwater to designed drainage discharge points that run under the barrier. 

Turn-arounds and Stop grids 
Turn-arounds 

The outer ends of barrier installations and the places where barriers/fences meet at side or access roads need 
careful consideration. Migrating or moving animals may arrive at a barrier and turn away from a passage en-
trance especially if it is not angled correctly. Without deflection boards, they may walk past it and towards the 
outer end of a barrier. Turn-arounds are a barrier than has been installed so that it reverses the direction of 
travel of animals back in the direction that they came from and towards a passage entrance. 
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These are effective in changing the direction of movement of many amphibians and reptile species. Inadequate 
length of guide wall or fence, or fence ends made without complete turn-arounds can result in individuals ‘es-
caping’ from or walking past the barrier system and onto the road surface (Figure 59). 

Studies to inform this BMP documented over 90% of a sample of herps (lizards, snakes, toads), as well as 69% 
of small mammals, change course back towards the direction of origin after leaving a turn-around of around 
4 ft/1.5 m length. Turn-arounds should be smooth curves, not angular and the turn-back should be at least3 
ft/0.9 m from the roadside barrier. Ideally it should be between 6ft/1.8 m and 15 ft/4.5 m in length, 6 ft/1.8 m 
wide and tapering slightly at its end back towards the main barrier to encourage ‘leavers’ to move towards the 
nearest passage entrance. Preferably the ends of barriers are at a transition point in habitat. In addition the 
barrier can be extended beyond the final turn-around to continue at a 90 degrees angle in a straight or curve 
alignment for a distance of around 30 ft, with a second turn-around at its end to further minimize risks of fence 
‘overshoot’. 

 
 

Figure 59: When barriers are not long enough and the associated turn-arounds are inadequate, a proportion 
of a population may find its way on to the road. A curved turn-around and a secondary curved turn-around to
catch wanderers, will also help minimize these risks. 

Installed barriers are sometimes not long enough to prevent ‘overshoot’ and need to be made with a safety 
margin if there is any uncertainty. Prior studies are often needed to detect the road area across which animals 
are likely to move. For amphibians, for a small to medium sized population, barriers with turn-arounds towards 
a single or small cluster of waterbodies should be placed a minimum of 160 ft/ 50 m from the ends of the 
outer passage in any system. Input from species experts should be considered in determining the appropriate 
length and the distance may need to be greater. Other strategies to prevent ‘escape’ onto the road at barrier 
ends include ending the barriers at natural landscape features, e.g. the base of a cliff or steep slope. Fencing 
may be run along the edge of side-roads, perpendicular to the main road but curving in shape to a distance of 
80-130 ft/25-50 m, with a turn-around at the end to help to minimize overshoot. 

Private and public access roads that open onto main roads are a particular fencing challenge. Small ‘cattle 
guard’ type designs, include purpose made ‘stop grids’ (Figure 60) that are effective to some extent for halting 
the movement of smaller species and juveniles of larger species according to the width of the grating, which 
needs to be as wide as possible. 
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Smaller animals drop down between the grating gaps and then move back along the main fence to a passage 
entrance or into adjacent habitat rather than cross the road surface. Stop grids may not have wide enough 
gaps for larger species and those that can jump. Larger steeland concrete constructions such as those de-
signed to retain horses and large stock from moving along a road into unsafe areas may be appropriate with 
larger gaps and similar design to prevent entrapment. 

Figure 60: A purpose-made ‘stop grid’, built where a side road approaches a main road in a herp migration 
location. Gratings may be made with wider gaps but must conform to road regulations. Image: ACO 

One other option that has been used to enable access through a small animal barrier is for access gates to be 
outfitted with a rubber flap at the base. The rubber flap is attached to the gate and made flush by including a 
12 inch wide hard material strip below the closed gate to ensure tight seal. Sometimes buried passages and 
turn-arounds can be installed along the side-roads to maximize safe movement along a fence line and enable 
movement under a side road. 
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Figure 61:  Typical  situation where stop grids may be used on a low-vehicle use side  road within a crossing 
system, to prevent animals from  using the  side road to enter the  main highway.  
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Jump-outs 
As with larger animals, amphibians and reptiles may, in difficult to design-for circumstances, get caught on the 
wrong side of a barrier, get trapped next to the road and remain in peril. In some cases with complex or com-
promised locations, it may be necessary or precautionary to install jump-outs for herpetofauna along barriers. 
The problem is addressed by one-way barriers that are angled inwards (away from the road) at a climbable an-
gle. Ramp jump-outs can also be built to the top of a vertical fencing section to allow animals to reach adjacent 
habitat (Figure 62). As with one-way fences, jump-outs may also be used to assist the ‘self-escape’ of animals 
on areas facing development as well as for roadways. 

Figure 62: A jump-out constructed within a section of solid HDPE sheet fence, constructed along a road edge.
The jump-out is outfitted with decaying logs to form a ramp for small turtle species and it directs them to the 
safe side of the barrier. Image: Animex fencing 

One BMP study found two jump-out types – earthen ramp and modified rectangular plastic mesh cone – al-
lowed small animals to move back into surrounding habitat. Cone jump-outs are sometimes used to aid the 
removal of animals from areas to be built on. See Figure 63. As a note of caution, however, larger herpetofauna 
species and small mammals may become trapped if they get stuck in narrow cones. They can be modified to 
prevent this and jump-outs must be designed so as not to snare the head or body of wildlife, including non-tar-
get species. 
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Figure 63: A gopher snake (Pituophis sp.) exiting a rigid monolithic HDPE mesh fence rectangular cone jump-out 
from an exclusion area. Image: Vince Morris. 

Shelters 
Studies indicate that under unusual or extreme climatic conditions (heat and cold) or when disorientated, 
wildlife can become stranded along long lines of fencing. This can also be attributed to a species’ behavioral 
response to a barrier, and this can cause excess use of energy, exhaustion, dehydration and ultimately death. 

Barriers may prevent particularly long-lived species from getting to places they ‘remember’ once their habitat 
has been fragmented. Shade shelters have been used along desert tortoise fencing to provide a resting place 
during periods of intense heat (Figure 64). Shade should be provided at regular intervals along the fence. These 
should be considered for areas with longer lengths of barrier in particular. 

Figure 64: This shade structure is made from a: 12-14 in PVC pipe tied to the fence. Tortoises may die from 
heat-stress when pacing a mesh fence line where no shade is available. Image: Cheryl Brehme. 
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Scuppers 
Highway median vehicle barriers may be comprised of cast concrete blocks (‘Jersey barriers’ or K-rail); solid 
metal or steel cable. These barriers are placed down the middle of roadways, between lanes of opposite-flow-
ing traffic. The decision on median barrier type varies according to a range of factors in particular the width of 
the median. Jersey barriers stand 3.2 ft/1.0 m or more high. Solid barriers in the median may be fixed in place 
or be free standing. 

Jersey barriers may be used on a temporary basis to divert traffic during construction or installed permanently 
to prevent cross-centerline accidents. They may also be placed on road edges as a safety measure, such as to 
prevent vehicles from leaving the roadway or for protecting fixed objects off the roadway but within the state 
right of way. 

These solid dividing barriers also further sever the connection of herpetofauna and most other animals from 
their required habitats. Solid barriers can be outfitted with “scuppers” or small openings and this may be done 
to prevent water build-up on one side. These also enable small animal passage. However, there are no stud-
ies to document whether they are used or effective. There is a need for greater consideration of the need for 
purpose-made gaps without compromising public safety. Modifying these types of solid barriers to better assist 
herp movement should be considered; however alone they will not improve connectivity for species and are 
not a substitute for under and over-road passages. 

Table 5. Examples of commercial manufactures and suppliers of wildlife barriers and passages and other
specialist materials and located in the southwestern United States. These suppliers may also provide more
detailed information on developments with guide wall and fencing materials and products. These listings do 
not represent any endorsement of product or services. 

Name US Headquarters Web Link to further Information 

ACO USA Phoenix, Arizona http://www.aco-wildlife.com/home/ 

Animex Wildlife Fencing San Francisco, Cali-
fornia 

https://animexfencing.com/ 

Ertec Environmental Systems Sacramento, 
California 

http://ertecsystems.com/Products/Wildlife-Exclusion-Fence---Special-Sta-
tus-Species-Protection 
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Key Points 
•Passage structures and their associated components, including barriers should be designed to last for the life 

of the roadway or railway. Anticipate that different materials have different purposes and will vary in their 
durability and life cycle. 

•Barriers comprise both solid guide walls that are often built into the road structure and free-standing fencing 
that may require periodic renewal. 

•Some projects may involve the installation of barriers only and no new structure if the sole objective is to 
prevent road-related mortality. 

•Material type is an important design consideration with barriers as species vary in their responses to the fab-
ric used. The barrier type chosen will influence species behavior and speed of travel along a barrier and solid 
barriers are preferred. 

•The relationship between inter-passage spacing and the angle of fence alignment will play a key role in deter-
mining the level of use of a passage system. 

•Anticipated maintenance requirements, including the need for periodic repairs must be built into the project 
as a whole or the system may fail at a later date. 

•Debris from the roadway is known to frequently damage crossing infrastructure. 

•Depending on climate and local rates of vegetation growth, trimming may be needed two or more times per 
year to prevent overgrowth that can enable animals to climb over barriers of low height. 
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CHAPTER 8 Crossing system performance assessment 

Assessing whether built connectivity systems are functional and meet their intended objectives is an import-
ant step in implementing best management practices (BMP). Most passage and barrier measures are costly 
to build and maintain, particularly large structures such as wildlife overpasses. Once transportation agencies 
have gone through the effort of planning, designing and funding measures, they need to know how well they 
perform. In the last 20 years, much research has been conducted on the performance of various measures to 
reduce collisions with large wildlife. However, herpetofauna have received relatively little attention. 

Evaluating the performance of measures taken can help improve future designs using an adaptive manage-
ment approach. Over time, as more measures are evaluated for a variety of herpetofauna and in different land-
scape contexts, more reliable information and insight will be obtained to support development of better BMPs. 
At present, inference may be taken from what works best for a few study species only, and more research on 
the efficacy of crossings built for herpetofauna is needed. 

Design goals 
Passage systems are designed to prevent or reduce mortality and to link populations by allowing safe move-
ment of animals across roads and railways. The criteria used to measure whether goals are achieved however, 
will depend on the intended purpose of the measures. These purposes might include decreases in road mor-
tality, support movements of migratory species and appropriate levels of gene flow, increase in the number of 
documented safe crossings, each way, and more. Preliminary guidelines have been developed to monitor how 
well measures perform and contribute to conservation value. Goals can range from simple measures focused 
on a single target species to ones that focus on restoring and maintaining complex ecological processes and 
functions and helping to preserve landscape connectivity. 

The fact that passage structures are used by animals does not necessarily guarantee that they are effective. 
Equally, low levels of use can sometimes be sufficient for particular objectives, such as ensuring a minimum level 
of genetic interchange.Assessing effectiveness can be complicated, as there are many interpretations of function-
al mitigation and impact reduction. Stating the goals precisely, both in a descriptive and quantitative way from 
the start will set the baseline against which future assessment and management decisions can bemade. 

Performance objectives 
After determining the objectives of the measures, a second critical step is to design a monitoring approach that 
applies appropriate methods of data collection and analyses. Performance assessment of passages and barri-
ers requires robust sampling designs and adequate resource allocation to conduct a proper evaluation. 

Study design 
Designing a research framework including study design requires information on the recommended duration of 
data collection to sufficiently answer management questions. Sampling is an important part of the design that 
takes into account seasonal variations and inter-annual variability. Understanding and determining appropri-
ate sample sizes will help ensure that monitoring data collection and analyses are robust. Understanding the 
appropriate duration of the study and the amount of available funding is a critical firststep. 

Study designs should be able to test for impact-mediated changes by comparing levels of target species occur-
rences before and after passages and barriers are installed. Understanding population size/s from the start is 
often essential to interpret findings. Impacts of concern generally consist of: 1) mortality rates and 2) move-
ment rates. Effective measures should result in positive changes (reduced or prevented mortality rates and/or 
sustained or increased movement/connectivity) after the measures have been put in place. 

Examples of many study designs testing for these changes can be found in published literature (Roedenbeck et 
al. 2007; Rytwinski et al. 2015; van der Grift et al. 2013). 
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Some common designs assessing impacts (I) include collecting data: 

a) before (B) and after (A) measures with control studies (C) areas: (Before-After Control-Impact BACI), often 
considered the best design where feasible 

b) before and after measures with no control areas (BA); and 

c) post-measures, with control study areas (AC) 

However, in many cases of real-time installations, the simple monitoring of numbers of target species ap-
proaching barriers and passages and their levels of use is often the most critical information to obtain. These 
numbers can then be tied back to an index of population persistence such as the relative abundance of adults 
or breeding numbers using standardized counting. They can also be used to compare with future trends. 

Factors affecting built system performance 
In evaluating passage and barrier measures it is also important to determine what variables might be affecting 
results and ultimately system performance. Factors may include human disturbance, fencing defects or unre-
paired damage or vegetation overgrowth that allow herps to enter the right-of-way, or passages blocked by 
debris. Such factors should be monitored (and managed) in order to ensure evaluations take into consideration 
how these influence herp mortality and movement within and around a passage and/or barrier structure. 

Figure 65: Post-construction monitoring may involve a wide range of methods used to estimate population size
and passage use, created habitat use and impacts of gene flow. Image: Marcel Huijser 
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Figure 66: Cameras have become an integral part of small wildlife passage studies. In this passage, a short-
focusing camera with night vision has a wide-angle infrared time-lapse. It takes four pictures per minute as a 
sampling technique that misses few amphibians. Image: HCI Ltd. 

Figure 67: Telemetry (radio or satellite tracking technology) is becoming easier with lighter transmitters and 
can be used to help answer key questions about species movements and habitat use. Image Kathy Baumberger. 
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Figure 68: California kingsnake (Lampropeltis californiae) crossing a HALT wildlife monitoring apparatus in a 
small passage system at night, breaking a fine light beam to enable a photograph to be taken. 
Image: Michael Hobbs 

Figure 69: Lizard crossing a HALT wildlife monitoring apparatus during the day time, alongside a barrier system.
Image: Michael Hobbs 
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Table 5. Some methods of measuring the effectiveness of wildlife movement structures for amphibians and reptiles. 

Metric Methods Example references 

Changes in road-kill rates • Surveys 
• Encounter surveys
• Citizen science 
• Review of existing databases 

Consentino et al. 2014 
Helldin and Petrovan 2019 

Use of passage structures 
and barriers 

• Sign surveys
• Tracking beds 
• Camera traps 
• Video cameras 
• Sooted track plates 

Boarman and Sazaki 1996; 
Hobbs and Brehme 2017; 
Jarvis et al. 2019; 
Ottburg and Van der Grift2019; 
Woltz et al. 2008 

Movements and dispersal • Radio-telemetry 
• PIT system
• Camera-trapping without individual identification 
• Movement/behavioral observations 

Boarman et al. 1999; 
Carr and Fahrig 2001; 
Honeycutt et al. 2016; 
Jackson and Tyning 1989;
Pagnucco et al. 2012 

Genetic and demographic
connectivity 

• Cell sampling Cushman 2006; 
Herrmann et al. 2017; 
Marsh et al. 2008 

Changes in wildlife popula-
tions and demographics 

• Capture-mark-recapture Cushman 2006; 
Gibbs and Shriver 2005 

Figure 70: Inspection and assessment of built structures post-construction is an integral part of adaptive
management and the process of maintaining wildlife crossing systems in the long run. 
Image: Marcel Huijser. 
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Duration 
The length of study time will vary depending on the objectives. Changes in mortality rates before and after 
construction can be determined. Monitoring plans need to provide sufficient time and data to make strong 
inferences with regard to passage and barrier performance. 

It may take several years for habitats to settle and for wildlife to adapt and learn to use crossing structures. 
Ideally, monitoring should be conducted for a minimum of 3 to 4 years from first use. Longer term checking at 
ten year intervals is also desirable for determining outcomes. 

A variety of methods can be used to measure the performance of measures and the selection of the appropri-
ate method should consider resources available and the measurable outcomes needed to properly evaluate 
system performance. For example, surveys may check for change in rates of herp mortality; radio-telemetry 
tracks individual behaviors and movements; non-invasive genetic sampling and camera traps can identify levels 
of individual and genetic connectivity; and mark-recapture can be used to measure change in population size 
and distribution. 

Adaptive management 
An important reason to monitor amphibian and reptile passages and barriers is to understand their effective-
ness and to ensure the project objectives are met. Lessons can be learned regarding problems and successes 
that may be used to inform structural modifications and also to assist in future design and decision-making. 

On projects that are phased over longer periods of time in particular, coordination between research and proj-
ect management divisions will allow for timely changes to project design plans that reflect the most current 
insights from monitoring activities. 

Key Points 
•Clear criteria and performance monitoring measures that tie back to the objectives of the project should be 

developed at the design stage This will enable biologists to reliably assess achievement of success thresholds 
for the project. 

•Performance assessments of passages and barriers require robust sampling designs and adequate resource 
allocation. Sampling must take into account factors including seasonal variations and inter-annualvariability. 
Monitoring plans need to provide sufficient time and data to make strong inferences with regard to passage 
and barrier performance. 

•Lack of resource have been a major limitation in the past, especially for essential longer term evaluations. It 
is important to understand the sample sizes that will ensure robust analyses that can be used to inform any 
adjustments to the structure that might be needed. 

•Study designs should compare distribution and numbers of target species before and after passages and bar-
riers are installed with reference to control comparison sites if appropriate. 

• It is important to determine by periodic review and checks whether factors unrelated to the wildlife structure 
might be affecting results and performance. 

•Evaluating the performance of measures can help improve connectivity systems through an adaptive man-
agement approach by informing the need for potential improvements and also contributes to better future 
wildlife passage designs. 
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CHAPTER 9 Crossing system maintenance, retrofitting and enhancement of existing structures 

Maintenance 
As in many other detailed aspects of transportation projects, there are a number of features where, if one as-
pect fails the whole system may not operate correctly, with consequences. Crossing systems require a ’perfect’ 
approach during design and construction if they are to function well and justify the significant investment in 
their installation. This also applies to the post-construction or maintenance phase. This is the case with wildlife 
passages and barriers and with habitat measures such as breeding water provision and habitat restoration. 
Detailed attention must be paid with aftercare in order to achieve a long-lasting success. 

Passages 
Smaller passages such as culverts may become partly or completely blocked with washed sediment, wind-
blown soil, natural debris and discarded trash. Sometimes mammals may dig into soil in a bottomless passage, 
causing a blockage. Passages require regular checking during the year. Specialist equipment may be needed to 
reach into them to remove obstructions (Figure 71) and this includes items such as plastic bags that get lodged 
on camera and that may interfere with monitoring. 

Vegetation usually cannot grow other than at the entrances of smaller passages. Where possible and if the 
target species will tolerate it in the smaller passages, low depths of soil or no soil can make maintenance easier 
and less costly. This approach may also discourage predators to establish burrows or dens in passages. Pas-
sages may silt up completely in storm events and need substantial effort to clear. A high pressure hose may be 
needed to do this and is useful to refresh passages every few years or after a suspected road spillage, notably 
for slotted surface tunnels where oil, salts and other potentially harmful residues may accumulate on the pas-
sage floor. 

Figure 71: Blown leaves may in some locations fill and become compacted in a small passage thus reducing 
wildlife use. An extending pole device can clear them as shown in this slotted surface passage. 
Image: Michael Hobbs. 
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Barriers 
Possibly the most common and easiest way in which a crossing system can fail is if an animal breaches the 
barrier. This may be due to its poor construction, a lack of maintenance, or general material failure from expo-
sure to weather. The failure of materials contributes to the creation of gaps in barriers or renders the barrier 
climbable by wildlife. Structures are often neglected at which point vegetation overgrowth, debris and dust 
accumulation may occur. Infrastructure should be inspected after severe storm events as damage due to fallen 
trees and large branches and other debris. Damage from vehicle collision and materials falling or thrown from 
vehicles is also a threat to free-standing barriers. 

Areas with fences that are prone to vegetation over-growth require maintenance during the vegetation grow-
ing season to retain their structural integrity. In some wetter and warmer conditions, vegetation growth can 
overwhelm a barrier in a matter of weeks, making it easily climbed over. Keeping a clear path along at least one 
and ideally both sides of a barrier fence is always advantageous for efficient access and repairs. 

Long-term checks and repair schedules should be written for inclusion within the overall road maintenance 
plan, This is passed on and conveyed to road maintenance managers and crews following construction. Al-
though repair and renewal costs are hard to predict, adequate amounts of funding should also be set aside, 
possibly into an endowment, to ensure crews have enough resources to maintain connectivity structures in 
the long-term. Such funds and maintenance plans may be incorporated into vegetation control plans; roadside 
fire and hazard management plans; or the management of environmentally sensitive areas as appropriate. 

Common problems for modular barriers may stem from the lack of materials being able to expand and con-
tract due to changes in temperature; this can result in cracking and detachment. Damage and digging under-
neath by burrowing animals may be rare, but can be extensive when they happen. Mounding of soil dust by 
wind action and from invertebrates such as ants building mounds, extreme weather and human vandalism may 
need preventative or reactive remedies according to their type and likely frequency. A quick visual check of a 
system every few months is advisable particularly before and during anticipated seasonal movements of target 
species. In some cases movements can take place over just a few weeks of the year and be triggered by spe-
cific weather conditions. It is helpful to keep a modest amount of any specialized fence material in storage for 
repairs at the end of the installation, so that it is available to make rapid repairs. 

Repairs and retrofitting 
As well as for new construction, measures can be taken during repair and renewal work to improve or maintain 
a wildlife passage system. Improving conditions in large tubular and box shaped culverts to assist uninterrupt-
ed movement of fish or for larger mammals are well-established actions to restore and improve wildlife pas-
sages. These improvements may equally apply to herp species at many locations. These are described in the 
next two sections. 

Small passage structures 
It is often surprising how relatively straight forward it is to repair and even improve on an existing passage 
system where the barrier requires attention. However, maintenance crews are often overstretched and training 
and guidance may be needed to identify and remedy failing systems. 

Away from purpose-built structures, repair work to culverts that benefit wildlife generally can be where a 
drainage culvert discharges on a slope and over time, erosion has worn away the ground under the culvert 
end, preventing small wildlife movement in one or both directions (Figure 72). 
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Figure 72: Many existing culvert ends are eroded so much that the end hangs in mid-air. The incidental use 
of them by amphibians and reptiles, and other animals for safe passage is precluded or limited in one or both 
directions. Passage shown before and after improvement. 

Larger passage structures 
The maintenance of larger passage structures may involve the repairing of erosion around the base of hard 
structures, providing a smooth surface transition from the stream bed and along the base of an aquatic pas-
sage, both upstream and downstream. This is considered a significant priority. 

Where a water course flows strongly for long periods and prevents movement of target species that require dry 
land or slow water flow to move through, culvert side shelves (Figure 73) may be retrofitted along the inside of 
larger stream culverts for use as walkways for semi-aquaticand terrestrialspecies, less adapted to aquatic condi-
tions. If this is not feasible, a new side passage beside the main culvert can be provided (Figure 74). 

Retrofitting projects may include consideration for the addition of suitably positioned barriers at stream 
crossings to keep wildlife away from the road surface and to funnel individuals toward the culvert or newly 
installed wildlife passages. Smaller stream culvert and bridge headwalls often constitute a partial barrier to 
wildlife movement and connecting these to fences of around 150 ft/45 m in length, positioned at a slight angle 
towards the passage, may capture a large proportion of animals that might otherwise cross the road surface 
close to the structure. 
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Figure 73: Some culverts and bridges over fast-flowing waterways are suitable for the installation of dry or
high ledges that can provide safe passage for wildlife during periods of peak flow. For amphibians and reptiles
a ledge formed by cast concrete or gabion baskets 16 in/0.4 m wide and with an outer height clearance of 24
in/0.6 m should be sufficient. A lip at the shelf edge will help hold substrate (native strata) placed on the ledge. 

Figure 74: Circular culverts (left) spanning riparian corridors, where fixing a shelf is not feasible, a dry side
passage may be provided. With arched culverts (right), the size of the structure may be large enough for fixing 
a self-supporting ledge or shelf along the inside wall of the culvert. 
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Wildlife passage may happen by chance in similar circumstances. For example,within a fish passage structure 
installed by Caltrans under Highway 101 north of Willits on Ryan Creek (District 3), winter flow deposits a ‘bench’ 
of fine sediments, including a bench suitable for wildlife passage by small medium and large vertebrates. 

Small improvements to existing bridge abutments can greatly enhance herp connectivity, such as in the exam-
ple (Figure 75) where two ledges are constructed within the existing bridge rip-rap lined embankment. Many 
smaller bridges with rip-rap protection on their upper slopes may be slightly modified to enable wildlife pas-
sageways to be formed. Flat, vegetated paths are more suitable for facilitating wildlife movement, helping to 
prevent animals from climbing up to cross via the road surface. Additional improvements, such as the use of 
barriers with turn-arounds, should also be considered. These turn-arounds serve to discourage access to the 
roadway and promote return to the river corridor. 

Before After 

Figure 75: Small improvements to existing bridge abutments can greatly enhance herp connectivity. 

Enhancements 
There is a variety of enhancements that can be made to existing culverts or other structures to improve ease of 
use by amphibians and reptiles. These improvements include repairing the eroded ends of culverts and install-
ing dry or high ledges (see earlier). Further, the lining of culvert bases with a non-hazardous flat surface may 
ease passage. Improvements also include habitat restoration/enhancement at the ends of passage structures 
so that suitable habitat is provided right up to the passage end on both sides. 

Opportunities to improve existing systems may require scoping studies. These might look at the capacity for ex-
isting structures to be improved and a cost-benefit analysis. Sometimes land habitats are left bare next to the 
road and these can be restored with native soil and planted (Figure 77) or left to colonize naturally. Placing or 
constructing ponds that amphibians can use for breeding close to passage structures can help sustain the pop-
ulation and augment usage of the new structure and ensure genetic interchange as long as suitable permanent 
barriers are in place. Care should be taken if these are created adjacent to roadways and within Caltrans right 
of ways where amphibians and reptiles are not impacted by routine maintenance such as mowing. 
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Figure 76: Corrugated culverts without a flat base may be difficult to navigate for some species. Here a foothill 
yellow-legged frog (Rana boylii) can be seen at the side of a corrugated metal passage under Highway 70 at
the Shady Rest Area, Butte County, California. Image: Garcia and Associates. See: Garcia and Associates. 2008. 

Figure 77: Planting next to a span bridge underpass. Image: Sally Brown. 
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Figure 78: Often smallexisting or created pools placed near a passage and barrier system result in the attraction of a 
range of animals to the location, making passage use more likely. For some herp species, and especially amphibians,
breeding in such pondsraises the probability ofbothadults andjuveniles movingto the other side of the road. 
Image: Tom Langton 

Figure 79: A cast-in-place concrete stream passage with a mammal shelf, that could be enhanced for use by
herpetofauna with addition of directional fencing. Image: Tony Clevenger 
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Key Points 
•Barrier construction is as important as that of the passage. Materials may expand and contract, become 

warped and form gaps that animals can move through. Sunlight may break down barriers in exposed loca-
tions. Plan for barriers to last as long as the life of the road or to need periodic renewal as well as intermit-
tent repair. 

•Crossing systems require careful maintenance if they are to function properly and justify the significant in-
vestment in road mitigation and compensation actions. 

•Passages and barriers require regular and frequent inspections. Damage due to storm events or extremeweath-
er is common as wellas the accumulation of leaf litter and other debris in smaller culverts and passages. 

•Barriers may be compromised at any time by vehicles and loose cargo leaving the road. They may be over-
grown by vegetation and damaged by falling branches. The need for regular inspections and repairs should 
be anticipated. 

•The most common way in which a crossing system can fail is if an animal breaches the barrier or climbs over 
one due to the lack of maintenance. 

•Long-term checks and repairs should be written into a maintenance plan that is then passed on to road main-
tenance crews. An endowment or long-term maintenance fund should also be established to ensure routine 
maintenance of passage structures. 

•During roadway construction or retrofit jobs, repairs or enhancements can be completed to better accom-
modate herp and wildlife passage and improve system effectiveness. Examples are culvert side shelves 
fitted along the inside of larger culverts for use as walkways or dry ledges during periods of high flow for 
semi-aquatic and terrestrial species. 
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APPENDIX 1 Density of ‘very high’ and ‘high’ risk road assessment herpetofauna in California 

Maps showing the densities of ‘very high’ and ‘high’ road risk species were created by USGS. Maps were 
produced by overlaying species ranges identified as being at “high” or “very high” risk of negative road impacts 
in the California amphibian and reptile road risk assessment. Color-coded densities reflect the number of at 
risk species across California presented within general taxonomic groups (frogs, toads, salamanders, aquatic 
snakes, lizards, and terrestrial snakes). Greater densities indicate areas of concern where roads are predicted 
to impact higher numbers of species. A density map over all herpetofauna species was shown in Chapter 1. 

Reference: Watson, E. and C.S. Brehme, 2020. Spatial Mapping-California Essential Habitat Connectivity Lands, 
Highways, and High-Risk Species in Brehme CS and RN Fisher. Chapter 3: Research to Inform Caltrans Best Man-
agement Practices for Reptile and Amphibian Road Crossings. USGS Cooperator Report to California Depart-
ment of Transportation, Division of Research and System Innovation, 65A0553 
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    Figure 80: Density of High and Very High Risk Species - Frogs 
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    Figure 81: Density of High and Very High Risk Species - Salamanders 
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Figure 82: Density of High and Very High Risk Species - Aquatic Snakes 

Appendix 2 - Page 107 



      

    
 

Figure 83: Density of High and Very High Risk Species - Lizards 
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Figure 84: Density of High and Very High Risk Species - Terrestrial Snakes 

Appendix 2 - Page 109 



      

    
 

Figure 85: Density of High and Very High Risk Species - Toads 
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Figure 86: Density of High and Very High Risk Species - Tortoise 
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Figure 87: Density of High and Very High Risk Species - Turtle 

Appendix 2 - Page 112 



      

    
 

Figure 88: Density of High and Very High Risk Species - All Groups 
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APPENDIX 2 Desert tortoise fencing construction specification (Caltrans 2018) 
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APPEN
DIX 3 Frog escape ladder design for drop-inlet culverts to prevent entrapm

ent 

Caltrans  engineering drawing  for drop-inlet culverts on intermittent or perennial  drainages  for  small  animal  escape purposes:  the ‘frog  tube’.  
The  frog  ladder variant also enables  amphibians to escape  if they  become  entrapped in the  drainage structure.  
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APPENDIX 4 Glossary of terms 

Barrier a general term used to describe a structure that blocks or guides herp movement and includes all types 
of permanent guide walls and fencing types 

Breeding pond Normally in respect of amphibians this is the freshwater bodies where amphibians spawn or 
lay eggs, tadpoles develop and metamorphose. Egg laying reptiles may also lay eggs in soil on moist wetland 
margins & small islands of wetlands/ponds. 

Bottomless culvert (Stilt passage, open bottom culvert) A passage formed as a small bridge where the con-
struction is an inverted U shape with each side supported on foundations. The central ground area is left as 
natural or deposited substrate to retain a more natural environment for wildlife use. 

Cast in place (cast in situ) A construction made from poured materials often with steel reinforcement, the 
shape being formed by temporary shuttering. 

Connectivity The degree to which the landscapes facilitates or impedes movement of individuals among re-
source patches. 

Compensation Wildlife provision to rebalance the losses from developments if minimization mitigation is not 
possible or is insufficient to sustain equivalent wildlife value. 

Cover board (survey tile, tin or sheet) A flat or corrugated square or rectangle made from a variety of materials 
such as wood and metal that attract additional heat or moisture under different weather conditions and times 
of day. Placed along a barrier they may assist in survey, trapping or for shelter of amphibians and reptiles. 

Crossing system The combined design of passage and barriers together with habitat restoration, construction 
or enhancement measures created to mitigate or compensate for transport corridor wildlife impacts. 

Culvert A mostly pre-cast water channel normally round, elliptical or rectangular (box culvert) that may be 
adapted as a wildlife passage. Normally concrete, galvanized steel or plastic. Some culverts are cast in-place. 
Type 4 wildlife passage category: over 3.3. ft/1.0 m diameter/height but under 10 ft/3.0 m. 

Culvert shelf A board made from durable material, placed on supporting structures or attached on rods the 
sides of culverts to facilitate movement of small non-aquatic animals, when a watercourse is in full flow. 

Culvert side-passage A passage built alongside and parallel with a water drainage culvert where the size or 
intensity of drainage water prevents placement of side shelves for wildlife to use it when high flow periods 
coincides with a species peak movement seasons.s 

Curb (kerb) Vertical edge that is concrete or stone where tarmac joins a sidewalk, May be of angled shape to 
form a drop curb preventing a barrier to small animal movement. 

Deflection board (swallowtail) Vertical board either straight or curved, placed at the entrance/exits of passages 
to increase the probability of an animal entering the passage. 

Denning area Habitat, often rocky land where reptiles, notably snakes may spend several months in winter or 
in drought at high density as a place of retreat. 

Directional fencing A fenceangled to encourageanimals to move in a particular direction towards a crossing point. 

Dormant period This includes aestivation (during hot and dry weather) and hibernation during cold/freezing) 
weather for periods weeks or months. 

Drop-inlet culvert A usually rectangular or square chamber with a steelgrating, formed with concrete, collect-
ing surface water on one side of a road for discharge often on the other side via a culvert under the road. It’s 
silt trap function may entrap herpetofauna and other small animals. 
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Dual purpose barrier A guide wall or fence with a higher component designed to prevent movement of the 
largest wild mammals and livestock and with a lower component designed to prevent movement of smaller 
animals. 

Entrance unit A built structure made from wood, plastic or other material occasionally used at the ends of 
surface passages, that serves to join the passage and barrier and to help reduce animals walking past a passage 
entrance. May also provide shade from sunlight. 

Escape ramp A hard structure, often narrow, placed in a drainage trap to enable animals to climb out. May also 
be made from soft woven plastic fiber (climb cloth) or perforated stainless steel. 

Fencing a general term for barriers that are free standing and not built into the side of a hard road structure or 
embankment. (See Guide wall). 

Fencing (temporary) A lower cost barrier, normally involving support posts made from usually thin plastic ma-
terial such as polythene, with a life expectancy of 5-10 years but often less. Recyclable semi-permanent fencing 
may also be used as temporary fencing. 

Fencing (semi-permanent) A barrier involving support posts or free standing often made from polypropylene, 
injection molded, extruded sheets and meshes, or metal mesh, with a life expectancy of 15 -25 years, occa-
sionally more in sheltered conditions (woodland). 

Fencing (permanent) A barrier created with a life expectancy of 30 years or longer. 

Fiber reinforced Plastic (FRP) (also fiber-reinforced polymer) Strong lightweight material made from fine 
strands or particulates of a wide range of materials including glass (GRP) carbon and synthetic materials that 
have use in innovative crossing system design. 

Gate barrier A flap (rubber) mesh or hard material attached to the bottom of a service gate in order to main-
tain the continuity of a barrier where vehicle or pedestrian access is required. Often a concrete pad is below 
the gate when closed to ensure a close fit. 

Generation time The average length of time that a species takes to complete its life cycle. Often used in assess-
ment of the viability of meta-populations or artificially fragmented populations.. 

Guide wall A solid barrier, built into the side of the road structure/embankment or free standing, made from 
hard materials with a normal life expectancy of 50 years or more. Typically made from concrete, polymer con-
crete or metal. 

Hardware cloth (wire mesh) Fencing made from normally steelwire made into square or rectangular grids. 
Different mesh sizes can be obtained from fine ‘rodent’ mesh up to 1 x 2 inch. 

Habitat re-connection (Habitat defragmentation) The physical process of re-joining fragmented habitat, 
through habitat restoration, reconstruction (Recreation)/rewilding usually involving soil, water and vegetative 
management with crossing structures. 

Herpetofauna Scientific name for reptiles and amphibians. Herpetology is the study of reptiles and amphibi-
ans. This may be shortened to Herp or Herps for frequent use. 

Hibernacula A refuge for small animals from cool or frozen seasons but may be used at other times. Can be 
natural such as rock piles and rock, tree and shrub root fissures & adopted mammal burrow areas. Often con-
structed in schemes to enhance habitat for particular species. Made from rock and log material, often with soil 
and turf components. Normally designed so as not to become waterlogged. 

Infra-red camera A remote battery powered camera used for wildlife monitoring that ilIuminates at night using 
Infra Red LED source to give a viewable still or video images of nocturnal as well as daylight and crepuscular 
amphibian and reptile movement. 
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Jump-out (Escape structure) A device or adjustment (ramp/funnel/gate) fitted to a wildlife fence that enables 
animals to pass through or over it, but not to return in the other direction. For example, to enable animals to 
self-remove from unsafe areas (such as roads) into a safer environment. 

Landscape bridge A road built across a river or dry gulch or canyon to enable shortest access and to prevent 
excessive and environmentally damaging construction of a longer road to navigate steep hillsides. Allows unim-
peded wildlife passage. Type 1B passage 

Mass migration Synchronized often seasonal and sudden movement of a large proportion of breeding adults 
or new young between habitats of different type within their home range. 

Median (central or center median) Strip of land dividing traffic moving in opposite directions. 

Median barrier (Jersey barrier) A concrete low center of gravity safety wall built in sections positioned in the me-
dian (also sometimes placed in the road and side for temporary diversions) to separate traffic lanes and particu-
larly in permanent installations to help prevent vehicle crossing ontooncoming traffic from the other direction. 

Median refuge An area open to the air in the median acting as a refuge with the aim of encouraging increased 
use of a long underpass. 

Median skylight An area in the median with a grating that enables light to enter longer underpasses with the 
aim of increasing passage illumination. 

Meta-population A population made up of sub-populations fragmented in habitat patches, that is dependent 
upon dispersal of individuals between subpopulations to be viable over the long term. 

Mesh fence (metal) (hardware cloth) A fence grid made from metal wire with square or rectangular gaps, often 
¼ or ½ inch square or 1 x 2 inch that can limit movement of animals over a certain size. Animals may see light 
and habitat on the other side. May be climbable by species with digits and claws. 

Mesh fence (plastic) An extruded fine fence made from plasticwith holes that can vary from verysmall to up to 2 
mm. Animals may see some light and habitat on the other side. May be climbableby specieswith digits and claws. 

Micro-passage (Micro underpasses, micro tunnel) Smaller culverts and purpose made passages under three-
foot span (<3.0ft/0.9 m) diameter/height. A Type 5 crossing structure. 

Micro-bridge A low raised surface bridge supported by heavy timber, placed on an existing track or road with 
spaces below for small animals to move through. A Type 6 crossing structure. 

Mitigation Specific action taken to try to reduce and remove the likely impacts of change caused by transport 
route construction and operation. 

Mountain/hill tunnel A major excavation through solid ground for road, rail and waterways that leaves the 
surface vegetation largely undisturbed and so allows unimpeded wildlife passage. Type 1A passage 

Multi-span overpass An overpass with more than one span, sometimes crossing two roads, a road and a rail 
line or canal and other linear features including private land access routes. 

One-way barrier A guide wall or fence that enables unrestricted movement of target animal/s in one direction 
but prevents movement in the other direction. 

Overwintering area A location in the habitat where herpetofauna may spend several months in winter as a 
place of retreat from cold, often giving birth to young close to the burrows or cavities. 

Passage (wildlifepassage,wildlifecrossing structure) General term for a structure or methodof transportroute con-
struction that enables totalor partial dispersal and movement of wildlifeacross a linear transport infrastructure. 

Pitfall trap A buried bucket or container designed to catch animals for survey or translocation purposes very 
carefully monitored and regulated to ensure high welfare standards. 
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Pitfall trap ladder A stick or manufactured device enabling mammals to escape from a pitfall trap for herpeto-
fauna, where they may starve or cause mortality in trapped amphibians and small reptiles. 

Portal structure A passage built over or underneath (portal bridge) a road entering a mountain/hill tunnel, 
designed to enable safer lateral movement of animals around a steep slope or cliff. 

Plastic fence (temporary) A low (under 3.3 ft) fence made from very thin plastic usually polythene, used for 
very short-term guidance including pitfall trap drift fencing and short-term enclosure or exclosure of small ani-
mals. polyethylene or polypropylene by extrusion as sheet or panel material or from injection mold fabrication. 

Plastic fence (semi-permanent) A fence, normally temporary or semi-permanent made from polyethylene 
(often High-density polyethylene HDPE) or polypropylene, by extrusion as sheet or panel material or injection 
molding to intricate shapes. 

Population Viability Analysis Mathematical approach to assessing the conditions when genetic variety (het-
erozygosity) is maintained by minimum levels of (meta-) population connectivity. Often expressed in respect of 
movement of one breeding animal in each direction per generation time. 

Rip rap Boulders or broken rock placed near road and drainage structures to reduce or prevent scouring and 
erosion during peak flow and storm events. Gaps between boulders may entrap turtles in freshwater, terrestri-
al and marine environments. 

Road Effect ZoneArea each side of the road where fauna and flora distribution, abundance, or behavior is modi-
fied directly or indirectly over the short or long term as a result of transport corridor construction or operation. 

Road Risk Ranking of species for the risk of extirpation from road-related impacts, according to life history and 
behavioral traits. 

Road segment A uniform section of road that is identified separately in an asset register. 

Scupper (basal cut-out) A gap under 30 cm high at the base of Median barriers; the strong often reinforced 
concrete blocks that separate lanes of traffic moving mostly in opposite directions on multilane highways. 
Scuppers normally formed to allow surface water flow, may be used by smaller animals so they are not trapped 
against highway fast lanes. 

Shade shelter an arch shaped single piece device, designed to provide shade cover for reptiles moving along 
fences in hot arid habitats (notably tortoises) in order to reduce stress and potential mortality. 

Shoulder Paved or unpaved lane at the side of the road, generally for emergency use. 

Silt cloth (mono-filament plastic mesh) A temporary barrier material made from geotextiles such as woven 
polypropylene often used for retaining sediment and controlling erosion on construction sites and that can be 
used to control wildlife movements on a temporary basis. 

Slots Small spaces in the top of a micro-passage that make the passage inside similar to the road environ-
ment above. 

Stop-grid (stop channel) A channel with a metal grating, placed where a side road joins with a main road, used 
to prevent wildlife access across a break in fencing. They allow smaller amphibians and reptiles to avoid cross-
ing a road by dropping down into the channel and moving towards ‘safe’ habitat or crossing structures. Stop-
grids are a small type of ‘In-roadway’ barrier (deer/cattle guard) . 

Substitute habitat Critical component of a species range that is constructed by natural or artificial means on 
one or both sides of a road. E.g. substitute pond, substitute den. 

Surface passage (surface tunnel) Smaller wildlife passage with a slotted or grated top allowing external water, 
air, heat and light rapid ingress. Designed to minimize passage length. 
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Turn-around The placement of a wildlife barrier usually in a U-shape, so that animals are encouraged to turn 
back towards their direction of approach and to prevent access to a hazardous transport route environment. 

Turtle Terrapin living in fresh or brackish waters 

Viaduct Long multi-span bridge. May sometimes be used to describe smaller structures that bridge habitat. 

Wildlife overpass (also: overcrossing, green bridge, biobridge, landbridge) General term for a structure that 
passes over a road or railway. Type 1C passage 

Wildlife underpass (also: culvert, tunnel) General term for a wildlife passage structure that crosses under a 
road, railway embankment or other obstruction. Type 3 passage 

APPENDIX 5 Acronyms 

ACE Areas of Conservation Emphasis  
(CDFW)  

AASHTO American Association of  State  
Highway  and Transportation Officials  

BACI Before-After Control-Impact  

BMPTG Best  Management Practices  and  
Technical Guidance  

BLM Bureau of Land  Management  

CALTRANS California Department  of  
Transportation  

CDFFP Calif  Dept of Forestry & Fire Protection  

CDFW Calif  Dept of Fish &  Wildlife  

CEHCP California Essential  Habitat  
Connectivity Project  

CAISMP California  Aquatic Invasive Species  
Management  Plan  

CEQA California Environmental Quality Act  

CESA California Endangered Species  Act  

CNDDB California  Natural Diversity Database  

CSSC California  Species of  Special Concern 

DAPTF Declining Amphibian  Populations  
Task Force  

DOT Department of  Transportation  

DRISI Division  of Research, Innovation and 
System Information.  (CALTRANS)  

EIA Environmental Impact Assessment 

ESA Endangered Species Act (US) 

FHWA Federal Highway Administration 

FRP Fiber-Reinforced Plastic 

HALT Hobbs Active Light Trigger 

HDPE High DensityPolyethylene 

ICOET International Conference on  
Ecology and  Transportation  

IENE Infra Eco NetworkEurope 

MSU Montana State University 

NEPA National Environmental ProtectionAct 

REZ Road Effects Zone 

USFS U.S. Forest Service 

USFWS U.S. Fish & Wildlife Service 

USGS U.S. Geological Survey 

WERC Western  Ecological  Research  
Center  (USGS)  

WTI The  Western Transportation Institute  
(Montana State  university)  
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Figure 15: Devil’s Slide, Highway 1 near Pacifica, California. South entrance. Tunneling prevented the 
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Figure 20:   Type    1C  wildlife   overpass   with  emphasis   on  amphibian  connectivity  (Netherlands).     
Features  include  a  narrow  wet  strip  along  the  length  of  the  passage  connecting  small  ponds  
at  each end.  Image:  Rijkswaterstaat.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  45  

Figure 21:  Type 1C  Wildlife  overpass in forest area. Image Thibaud/Limba/FilmDroneProject  .  .  .  .  .  45  

Figure  22:  Root  wads  and  tree  branches  are  sometimes  placed  along  the  length  of  an  overpass.  These    
provide shelter  for  herps and other wildlife that show a preference  for  closed cover within     
their habitats.  Image:  Tom  Langton. . . .  . . . . . .  . . . . . .  .  .  .  46  

Figure 23:  Image shows a Type  2 bridge that is about  120 ft/36.5 m  in length. This bridge  is  located    
over a stream at the junction of Campo Road with Honey Springs Road and Otay Lakes     
Road, San  Diego County. Image: Tom Langton.  . . . . .  . . . . . .  . .  .  .  46  

Figure  24:  A  Type  2  underpass  in  the  Sonoran  Desert  in  Arizona,  constructed  for  passage  by  deer  and    
bighorn  sheep.  The  passage  crosses  under  a  6-lane  road  with  a  median.  It  is  a  purpose-built,    
50 ft wide, 12 ft high, and 190 ft  long (15.2 m wide,  3.6 m high and 58 m long) structure  is  
located  at Oracle  Road, near  Tucson,  Arizona. Image:  Tony  Clevenger.  . . .  .  .  .  .  .  .  47  

Figure 25:  An adult garter  snake  is using a  Type  3 structure on State Route 152  in California. This     
bridge  spans  Pacheco  Creek  near  San  Felipe  Lake  on  the  Pacheco  Pass  Highway  near  Gilroy.     
California  quail  (Callipepla  californica)  are  also  present.  Image:  Pathways  for  Wildlife,  Santa  
Clara County,  CA.  . . . .  . . . . .  . . . . . .  . . . . . .  .  .  .  47  

Figure 26:  Image shows a  30 ft/9.1 m  Type  3 concrete temporary stream bridge along Campo Road/     
Highway  94,  San  Diego  County,  south  of  San  Diego.  The  bridge  has  three  10 ft  ×  10  ft  concrete     
chambers and  was built  without specific  wildlife  goals. Image:  Tom  Langton .  . . .  .  .  .  48  

Figure 27:  From the same structure shown in Figure  26, one of the chamber dividing walls.  These     
chambers can be scoured out by seasonal heavy stream flow and flash flooding, but may     
also be used by nesting birds  as well as mammals, such as the kangaroo  rat (Dipodomys  
californicus) which has excavated soil  in the base of this structure. Image: Tom  Langton .  .  .  48  

Figure 28:  A new culvert built under State Route 58 in southern California (Hinkley Highway Re-    
alignment Project, Caltrans District 8). Adjustments  will be needed to  join wire fencing to     
the entrance of the passages and to make the rip-rap safe, so desert tortoises do not  get  
trapped in  it. Image: Cheryl Brehme . . . .  . . . . .  . . . . . .  .  .  .  49  

Figure 29:  With a  large median and easements under a  four-lane  highway,  desert culverts can be     
extremely  long  (over  300  ft  /90  m)  and  dark  during  the  day.  The  view  foreground  here  is  lit     
by a  camera flash.  Image:  Cheryl  Brehme  . .  . . . . . .  . . . . . .  .  .  .  49  

Figure 30:  This is a  Type 4 cast concrete ‘bottomless’ or ‘stilt’ passage with side walls built on     
foundations in the Netherlands. It is constructed below a two-lane road with cycle path,     
particularly to enable  rare  lizard dispersal.  The sandy base substrate  is  in contact with the  
natural water-table. Image:  Tom  Langton  . . . . .  . . . . . .  . . . .  .  .  50  

Figure 31:  Located on the far side of the road shown in Figure 30 and either side of the cycle lane  is     
a  series  of  cast  steel  gratings  placed  within  the  roof  of  the  wildlife  passage  to  allow  entry  of     
light and moisture.  Image:  Tom  Langton  . . . . .  . . . . . .  . . .  .  .  .  50  

Figure  32:  Here  two  Type  4,  3 ft/90 cm  concrete  culverts  are  positioned  to  accommodate  flood  events     
at a desert drainage. Provisions  like  this might potentially be used by reptiles but many     
have  not  been  built  with  directional  fencing.  They  are  potentially  suitable  for  modification.  
Image: Cheryl Brehme . . . . .  . . . . . .  . . . . . .  . .  .  .  .  51  

Figure  33:  Passages  built  on  foundations  are  sometimes  referred  to  as  ‘bottomless’  or  ‘stilt’  passages    
due to the  open natural soil base and support on both sides. A  free-draining interior may     
sometimes  conform  to  moisture  levels  of  the  surrounding  area  more  than  a  closed  culvert.  .  .  51  
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Figure  34:  Simulation  of  three  Type  4  (round  and  rectangular)  passages  that  can  be  designed  with     
substrate placed at the base during  construction. In Figure  34(a) concrete is poured in and  
sealed at the surface; in Figure 34(b) soil and moisture-inert heavy tiles are placed at the     
bottom;  and in Figure 34(c) a  shallow dirt floor  may be  sufficient  for  some  species. .      .    .  .  .  52  

Figure  35:  Water  flow  or  a  drainage  system  may  be  incorporated  into  the  design  of  a  culvert  passage     
to provide a  wet  channel  or moist  passage base.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  53  

Figure 36:  A Type  4 sized passage with dry  ledges, in addition to  a   central  wet   channel   is      
suitable  for  a range of species, shown here at a wildlife crossing  in  central  Europe.     
Image: Silvia  Zumbach,  KARCH . . .  . . . . .  . . . . . .  . . .  .  .  .  53  

Figure 37:  A  Type 4 purpose- built passage with a  light and air gap in the median and with wet  and    
damp conditions suitable for amphibians and other wildlife that prefer damp conditions.     
Image: Andreas  Meyer,  KARCH  . . . . .  . . . . . .  . . . . .  . .  .  .  54  

Figure 38:  There are many small  cross-road steel drainage  culverts on California roads, such as this     
elliptical shaped steel culvert near San Diego. This culvert was built during the last  century     
and is nearing time for refurbishment. This type of scenario offers an  opportunity for     
culverts to be adapted for safe wildlife passage as well as for road drainage purposes. See  
also  Chapter 9.  Image: Tom Langton  . . . . .  . . . . .  . . . . . .  .  .  55  

Figure 39:  Micro-surface passages flush with the road surface maximize exposure  to ambient     
environmental  conditions and weather,  including  prevailing light and rainfall  conditions.  .  .  .  58  

Figure 40:  One  of  several  purpose-built  slotted  polymer  concrete  surface  passages  (bottom  left)  built     
in 1999 for  the Santa Cruz long-toed salamander at Seascape Uplands, Santa Cruz. These     
were constructed along with short sections  (center,  running up slope) of one-way plastic     
panel fencing to try to minimize  construction impacts on houses and the gardens that  
remain  a part  of the salamander’s terrestrial  habitat.  Image:  Tom  Langton  . . . .  .  .  .  58  

Figure 41:  General alignment  of  three  purpose-built  polymer  concrete  slotted  surface-passages  with     
one-way plastic panel fencing, (shown) and mesh (not shown). Passages show as narrow     
grey lines across the road. These were built 2001 and 2003 next to  Lake  Lagunitas in 
Stanford,  California,  for California  tiger  salamander.  Image:  Tom  Langton  . . . .  .  .  .  .  59  

Figure 42:  General schematic  design  for  a  micro-bridge  or  low  elevation  bridge  structure.  There  may     
be  some  future  potential  for  designs  for  use  on  paved  roads.    .  .  .  .  .  .  .  .  .  .  .  61  

Figure 43:  Experimental raised micro-bridge for the Yosemite toad (Anaxyrus canorus) in the Sierra     
National Forest. Images show ‘safe space’ and directional fencing to help guide animals to     
the underpass.  Images: Cheryl Brehme . . . . . .  . . . . .  . . . .  .  .  61  

Figure 44:  Recommended angle of barriers leading to passages that are designed to maximize     
successful migration crossings.  At 60 ft/18.3 m or  under,  barriers can be installed parallel     
to  the  roadway,  but  if  the  distance  between  passages  increases,  they  must  be  installed  at  a 
suitable  angle. . . . . .  . . . . .  . . . . . .  . . . . .  .  .  .  65  

Figure 45:  A small ‘bottomless’ or ‘stilt’ passage (cast concrete roof and sides on foundations,       
with a natural soil base) under a 2-lane road. There is an extensive late-season leaf litter     
component  that  amphibians  shelter  under.  The  barrier  and  deflection  panel  are  made  from  
galvanized  sheet metal  fence material  with  an  overhang. Image:  Tom  Langton . .  .  .  .  .  66  

Figure 46:  Passage entrance  deflector boards, in  some cases  referred  to as  a ‘swallowtail’.  These can     
be made from wood and other light  materials  and vary in their  design.  .  .  .  .  .  .  .  .  66  

Figure 47:  Backfilling behind the guide wall barrier allows unimpeded one-way animal movement     
from  the  direction  of  the  road  to  prevent  entrapment,  as  well  as  enabling  lateral  movement     
towards the passage entrances. An overhang may be required according to the type and 
size of animals.  . . .  . . . . .  . . . . . .  . . . . .  . .  .  .  .  69  
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Figure 48:  Guide  walls  for  small  snakes  and  lizard  species  on  a  single  lane  road  with  cycle  path.     
Attached to a  Type  5 (20 in/0.5 m wide) micro-passage, is a molded plastic barrier on the  
left  hand  side  and  a  polymer  concrete  barrier  on  the  right  hand  side.  Both  barrier  types  are     
circa  20  in/0.5  m above ground. Image:  Tom  Langton      .    .     .     .      .    .     .     .      .    .     .  .  .  70  

Figure 49:  General construction of a  temporary herp exclusion or enclosure fence,  from thinner     
plastic  materials,  supported  on  posts  with  staples,  nails  or  cable  ties.  .  .  .  .  .  .  .  .  .  71  

Figure 50:  A rigid monolithic plastic (HDPE) mesh fence with overhang. Fine holes of under  0.2 in/5     
mm)  give  a  degree  of  visibility  through  them.  These  are  often  seen  on  construction  sites  but     
should  not  be  confused  with  fences  designed  for  permanent  road  and  rail  crossing  systems.  
Image: Vince Morris  . . . .  . . . . . .  . . . . . .  . . . .  .  .  .  72  

Figure 51:  Examples of solid precast and bent plastic  panel fences  that may  have  temporary,  semi-    
permanent  and if robust enough,  permanent  usage..  .  .  .  .  .  .  .  .  .  .  .  .  .  72  

Figure 52:  Some  types of cast plastic  barrier  may expand and contract  in heat and sunlight,  causing     
problems  for  joints.  Fixings  should  be  constructed  to  allow  space  for  such  movements.  .  .  .  73  

Figure 53:  Fine wire mesh tortoise fencing (barely visible in photograph) on metal posts along     
Interstate  15  in  San  Bernardino  County,  located  within  desert  habitat  at  a  culvert  underpass.     
Image: Cheryl Brehme . . . . .  . . . . . .  . . . . . .  . .  .  .  .  74 

Figure  54:  Typical  wire  mesh  and  stock  fencing  on  metal posts  in  desert  tortoise  habitat.  Image:  Dean     
Swensson  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  75  

Figure  55:  Tortoises  and  turtles  are  adept  climbers  of  wire  mesh  fence  and  so  mesh  fence  alone  may     
not contain them. Image: Ken  Holmes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  75  

Figure  56:  A  Yosemite  toad  at  a  monolithic  5 mm  diameter  HDPE  fence.  Herpetofauna  generally  spend     
more time attracted to permeable barrier material, probably gaining visual  and olfactory     
information from the other side that is otherwise screened by a solid barrier.  This may     
influence travel times along fencing, leaving species exposed to factors  such as predation  
and dehydration. Image: Cheryl Brehme . . . . .  . . . . .  . . . .  .  .  .  76  

Figure 57:  Dual purpose permanent barrier for deer  and small animals.  The tall deer mesh fence     
with metal support poles is built together with a small galvanized steel animal guide wall     
with an  overhang.  Image: ACO .  . . . . . .  . . . . . .  . . . . .  .  .  76  

Figure 58:  Here, a free-standing metal fence and a large mammal fence separate in order to go     
around a  road over-bridge that runs perpendicular to the main  highway.  Note a  ‘stop  grid’    
beneath  the  car.  The  deer  fence  also  has  a  gate  positioned  in  front  of  the  point  at  which  the  
car  (and agricultural  vehicles)  can enter the  surrounding  landscape. Image:  Tom  Langton  .  .  .  77  

Figure 59:  When barriers  are not  long enough and the associated turn-arounds are inadequate, a     
proportion of a population may find its way on to the road. A  curved turn-around and a     
secondary curved turn-around to catch wanderers,  will  also  help minimize  these  risks.  . .  .  .  78  

Figure 60:  A purpose-made ‘stop grid’, built where a side road approaches a main road in a herp    
migration location. Gratings may be made with wider gaps but must  conform to road     
regulations.  Image:  ACO .  . . . . .  . . . . . .  . . . . . .  . .  .  .  79  

Figure 61:  Typical  situation where  stop grids  may be used on a  low-vehicle use  side  road within a     
crossing  system,  to prevent animals  from using  the  side road to enter the  main highway.  .  .  .  80  

Figure 62:  A jump-out  constructed within  a section of solid  HDPE sheet fence, constructed along      
a road edge. The jump-out is outfitted with decaying logs to form a ramp for  small turtle     
species  and it directs them  to the  safe  side of the  barrier.  Image: Animex fencing .  .  .  .  .  81  

Figure 63:  A gopher  snake  (Pituophis sp.)  exiting  a  rigid monolithic  HDPE  mesh fence rectangular     
cone jump-out  from an  exclusion area. Image: Vince  Morris.  .  .  .  .  .  .  .  .  .  .  .  82  
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Figure  64:  This  shade  structure  is  made  from  a:  12-14  in  PVC  pipe  tied  to  the  fence.  Tortoises  may  die     
from  heat-stress  when  pacing  a  mesh  fence  line  where  no  shade  is  available.  Image:  Cheryl 
Brehme.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  82  

Figure 65:  Post-construction monitoring may involve a wide range of methods used to estimate     
population size and passage use, created habitat use and impacts of gene  flow. Image:     
Marcel  Huijser . . .  . . . . .  . . . . . .  . . . . . .  . .  .  .  87  

Figure  66:  Cameras  have  become  an  integral  part  of  small  wildlife  passage  studies.  In  this  passage,  a    
short-focusing camera with night vision has a wide-angle infrared time-lapse. It  takes four    
pictures per  minute as  a sampling technique  that misses  few  amphibians. Image: HCI  Ltd. .  .  .  88  

Figure 67:  Telemetry (radio or satellite  tracking technology)  is becoming easier with  lighter     
transmitters and can be used to help answer key questions about species movements and     
habitat  use.  Image Kathy Baumberger. . . .  . . . . . .  . . . . .  . .  .  .  88  

Figure 68:  California kingsnake (Lampropeltis californiae) crossing a  HALT wildlife monitoring     
apparatus in a small passage system at night, breaking a fine light beam to enable a     
photograph to  be  taken. Image: Michael  Hobbs . . .  . . . . . .  . . . .  .  .  89  

Figure 69:  Lizard crossing a  HALT  wildlife monitoring apparatus during the  day time,  alongside  a     
barrier  system. Image:  Michael  Hobbs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  89  

Figure 70:  Inspection and assessment of built structures post-construction is an integral part of     
adaptive  management  and  the  process  of  maintaining  wildlife  crossing  systems  in  the  long     
run. Image: Marcel  Huijser.  .  . . . .  . . . . . .  . . . . .  . .  .  .  .  90  

Figure 71:  Blown leaves may in some locations fill and become compacted in a small passage thus     
reducing wildlife use.  An extending pole device can clear them as shown in this slotted     
surface passage. Image:  Michael  Hobbs.  . . . . . .  . . . . . .  . . .  .  .  95  

Figure  72:  Many  existing  culvert  ends  are  eroded  so  much  that  the  end  hangs  in  mid-air.  The  incidental     
use  of  them  by  amphibians  and  reptiles,  and  other  animals  for  safe  passage  is  precluded  or    
limited in one  or both directions. Passage  shown before  and after  improvement. .  .  .  .  .  97  

Figure 73:  Some culverts and bridges over fast-flowing  waterways  are suitable  for  the installation of     
dry or high ledges that can provide  safe  passage  for  wildlife during periods of peak  flow.    
For amphibians and reptiles a ledge formed by cast concrete or gabion baskets 16 in/0.4     
m wide and with an outer height  clearance of 24  in/0.6 m  should be sufficient. A lip at the  
shelf edge  will  help hold substrate (native  strata)  placed on the  ledge. . . . .  . .  .  .  98  

Figure  74:  Circular  culverts  (left)  spanning  riparian  corridors,  where  fixing  a  shelf  is  not  feasible,  a  dry     
side  passage  may  be  provided.  With  arched  culverts  (right),  the  size  of  the  structure  may  be     
large  enough  for  fixing  a  self-supporting  ledge  or  shelf  along  the  inside  wall  of  the  culvert.  .  .  98  

Figure 75:  Small  improvements  to  existing bridge abutments can greatly  enhance herp connectivity.  .  .  99  
Figure  76:  Corrugated  culverts  without  a  flat  base  may  be  difficult  to  navigate  for  some  species.  Here    

a foothill yellow-legged frog (Rana boylii)  can be seen at the side of a corrugated metal    
passage under Highway  70 at the Shady Rest Area, Butte  County,  California. Image: Garcia  
and Associates. See:  Garcia  and Associates. 2008.  .  . . . . . .  . . . .  .  .  .  100  

Figure 77:  Planting next  to  a span bridge underpass.  Image:  Sally Brown.  .  .  .  .  .  .  .  .  .  .  100  
Figure  78:  Often  small  existing  or  created  pools  placed  near  a  passage  and  barrier  system  result  in  the    

attraction of a range of animals to the  location, making passage use more  likely.  For some    
herp species, and especially amphibians, breeding in such ponds raises the probability of  
both adults  and juveniles  moving  to the other side of the  road.  Image:  Tom  Langton .  .  .  .  101  

Figure  79:  A  cast-in-place  concrete  stream  passage  with  a  mammal  shelf,  that  could  be  enhanced  for   
use by herpetofauna  with addition of directional  fencing.  Image: Tony  Clevenger  .  .  .  .  .  101  
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