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EXECU TIVE SUM M ARY

The main objective of this study has been to examine the predictive capabilities of various 
pseudo-static analytic methods of analysis in capturing key response parameters for culvert 
structures under seismic loads. These methods rely on several simplifying assumptions and 
consequently bear errors. State-of-the-art versions of these simplified methods of seismic 
analysis for buried/embedded structures were most recently articulated in the “NCHRP 
611” report, and comparisons of their predictions to experimental data are made in the 
present study. Experiments comprised centrifuge tests on two specimens—one relatively- 
stiff rectangular and one relatively-flexible circular culvert—embedded in dense dry sand. 
Dimensions and properties of these specimens were representative of two large culverts 
selected from the “Caltrans Standard Plans.” Both specimens and the soil media were well- 
instrumented, and were subjected to a series of harmonic, as well as low, moderate, and 
high amplitude broadband (earthquake) base excitations. Comparisons revealed various 
shortcomings of the NCHRP 611 methods. The most important issue was found to be the 
sensitivity of model results to the estimated soil shear strain, which represents the seismic 
demands on the culverts. Depending on the particular algorithmic branch of the NCHRP 
611 methods adopted, some of the structural strains were over-predicted while others were 
under-predicted. Such inaccuracies should not necessarily lead to catastrophic results for 
culverts, but they nonetheless reduce the margins of safety and economy in their designs. 
Overall a “refined” version of the NCHRP 611 method, which used maximum shear strains 
obtained through a one-dimensional site response analysis, produced acceptable results for 
the rigid (rectangular) culvert specimen. For the flexible (circular) culvert, the results 
appeared fairly inaccurate.

Comparisons of experimental data were also made with predictions from a two-dimensional 
(plane-strain) finite element (FE) model. Material properties of this model were calibrated 
using data collected from accelerometer readings made by the centrifuge specimens’ free- 
field arrays—i.e., part of the same data that were used for estimating the shear strain 
demands on the specimen culverts using the NCHRP 611 methods. Predictions made using 
this FE model were superior and exhibited acceptable errors.

Given the aforementioned findings, various detailed recommendations are made for future 
work in the final chapter of this report. The test data are archived at DesignSafe.org, and a 
Jupyter notebook is developed to serve as a front-end, providing easy access to data by other 
researchers. Additionally, the nonlinear soil model used in the finite element simulations 
is implemented as a user material subroutine (UMAT) for ABAQUS, and is also made 
publicly available.
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Chapter 1

Introduction

1.1 Motivation and objectives 
 

Seismic response of underground structures is a complex soil-structure interaction (SSI) 
problem in which two fundamental mechanisms are at play. Differences in motion between 
the free-field soil and the foundation system in the absence of excess or deficient mass 
between the two that are due to their stiffness contrast are collectively referred as Kinematic 
Interaction (KI) effects. Inertial Interaction (II) effects are, therefore, complementary, 
and are concerned with the soil reactions that develop to resist inertial forces associated 
with accelerations of the foundation-structure system relative to the soil. The kinematic 
component is generally considered to be more significant for buried structures due to their 
modest mass and their confinement by soil.

Limit equilibrium methods (e.g. Mononobe and Matsuo, 1929) are not appropriate for 
the seismic design of buried structures because their formulation does not reflect the SSI 
processes that are responsible for the formation of interface pressures. As such, a number 
of researchers (e.g., Wang, 1993a) proposed pseudo-static deformation-based approaches 
to take the effects of SSI into account for the seismic design of underground structures, 
followed by Penzien (2000b) and Hashash et al. (2001). In the said approaches, analytical 
elasticity-based formulations are provided to compute the seismic bending moments and 
hoop forces in circular structures. Methods proposed for computing internal seismic forces 
for rectangular structures, on the other hand, are based on static frame analysis.

More recently, Katona (2010) presented a finite element approach to obtain the seismic 
responses of buried culverts and cut-and-cover tunnels, by specifying quasi-static displace- 
ment profiles at the soil boundaries. These profiles taken as the products of free-field ground 
strains and the height of the modeled soil domain. As a result, the frequency content of
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the ground motion—which, in turn, controls the wavelength—is indirectly represented in 
these methods through their impact on the shear strain. It should be noted that pseudo- 
static methods described in Wang (1993a) and Hashash et al. (2001) are very similar to the 
implementation in Katona (2010), so these are conceptually similar methods.

Limitations of the aforementioned methods are manifold: (1) They do not directly account 
for the broadband frequency content of seismic input excitations, as it is now well under- 
stood that seismic earth pressures vary with excitation wavelength (Brandenberg et al., 
2015); (2) By conditioning the analyses on shear strain, their results are impacted by the 
challenges and limitations of 1D ground response assumption (e.g. Stewart et al., 2014);
(3) The shear strain field is taken as uniform over the height of the buried structure, which 
may not be a valid assumption depending on the frequency of the seismic excitation, size of 
the underground structure, heterogeneity of the soil profile, and the mode of free-field wave. 
Finally, (4) these methods do not consider the relative inertia that can develop between the 
buried structure and the soil (that is, negative inertia that is caused by the culvert’s empty 
space).

Current seismic design practices—articulated in, for example, the NCHRP Report 611 
(Anderson et al., 2008)—are based on the procedures proposed by Wang (1993a) for circular 
and rectangular buried structures. During the last few years, a number of experimental (e.g. 
Cilingir and Madabhushi, 2011a,b; Lanzano et al., 2012, 2015; Tsinidis et al., 2015; Ulgen
et al., 2015; Abuhajar et al., 2015), numerical (e.g. Hashash et al., 2005; Kontoe et al., 2014; 
Lanzano et al., 2015; Tsinidis et al., 2016; Tsinidis, 2017) and analytical (e.g. Bobet et al., 
2008; Park et al., 2009; Bobet, 2010) studies have been conducted to explore the accuracy 
of the aforementioned simplified procedures. A non-exhaustive list of previously performed 
experimental studies on buried structures in dry sand is provided in Table 1.1.

We have undertaken here a centrifuge modeling program that is designed to extend the 
previous test results by (1) applying a wider range of ground motions spanning frequency 
contents where interaction effects are expected to range from significant to negligible; (2) 
applying a wider range of shaking amplitudes to investigate variable effects of soil non- 
linearity; and (3) deploying a relatively dense instrument configuration to enable detailed 
measurements of the culvert section responses as well as near- and far-field soils. The 
centrifuge tests were performed using the 9m-radius centrifuge at the Center for Geotech- 
nical Modeling (CGM) at UC Davis (Kutter et al., 1994). Specimens consisted of two 
representative structures that were selected per Caltrans Standard Plans A62E and A62F 
(Department of Transportation State of California, 2015), which were embedded in a gran- 
ular backfill.

The main objectives of this research project were (1) to compare the experimental findings 
with the design method described in NCHRP Report 611 (Anderson et al., 2008) in order to 
establish the validity (or lack thereof) of this method for the specific Caltrans configurations 
tested; (2) to formulate preliminary recommendations for Caltrans practice; and (3) to
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identify future research needs in this area, as needed.

Table 1.1: A list of previous experimental studies on buried structures in dry sand.

4.57 × 0.53
In the second  colum n, S and  C stand  for Square and  Circle, respectively.
In the third  colum n, d im ensions are in  w id th× thickness for square sections and  in d iam eter× thickness for circular sections. 
In the fourth colum n, H , E , and  SS stand  for H arm onic, E arthquake and  Sine Sw eep m otions, respectively.

1.2 Organization of the report 
 

In this report, we present all of the steps taken to achieve the objectives stated in §1.1.
We provide details of the centrifuge modeling effort in Chapter 2. Methods we used for 
data archiving and processing are provided in Chapter 3. A brief review of the portions 
of the NCHPR 611 report on quantifying the seismic demands in culvert structures are 
provided in Chapter 4. We compare the experimental results against those estimated using 
the NCHRP 611 method in Chapter 5. We go through the steps we took for numerical 
modeling of the performed experiments and the calibration and validation of those models 
using experimental data in Chapter 6. Conclusions and recommendations are provided in 
Chapter 7.

Authors Structure Input m ot ion Soil relative d ensity

Type Dimensions (m) Type P G A (g) Frequency (H z)

Cilingir and M adabhushi (2011a,b) S
C

5 × 0.061
5 × 0.155
5 × 0.088

H
E

0.08 − 0.32
0.22 − 0.62

0.8 − 1.2
1 − 3

45%

L an za n o et a l. (2012 , 2015) C 6 × 0.06 H 0.05 − 0.15 0.37 − 0.75 40% , 75%
T sin id is et a l. (2015) S 5 × 0.13 H , SS 0.02 − 0.24 0.6 − 1.2 90%

U lg en et a l. (2015) S 2 × 0.06 H 0.25 − 0.4 2 − 3.5 70%

A b uhajar et al. (2015) S 4.57 × 0.27 E 0.11 − 0.33 0.46 − 1.45 50% , 90%
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Chapter 2

Centrifuge modeling

2.1 Centrifuge modeling and scaling laws 
 

Scaling laws are used in centrifuge modeling so that the stress field at any point within the 
model is similar to what is expected in the prototype. As shown in Figure 2.1, if we scale 
down the size of the prototype by N , and increase the centrifugal acceleration by the same 
amount, the stress field in the model and the prototype—e.g., γH in Figure 2.1—will be 
similar. In other words, by using the aforementioned scaling law, we can capture the actual 
nonlinear and pressure-dependent behavior of the soil with the scaled model. Scaling laws 
for different parameters relevant to this research are listed in Table 2.1.

Table 2.1: Scaling laws (Madabhushi, 2014).

Parameter Model/Prototype  
Length  1/N

Area 1/N 2
Volume 1/N 3

Mass 1/N 3
Stress 1
Strain 1
Force 1/N 2

Moment 1/N 3
Time (dynamic) 1/N

Frequency N
Displacement 1/N

Velocity 1
Acceleration N
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Figure 2.1: Scaling law for the stress field (Abuhajar et al., 2014).

2.2 UC Davis centrifuge and model container 
 

We used the NEES@UCDavis Flexible Shear Beam Container 2 (FSB2), which has a number 
of aluminum shear rings as well as rubber shear layers to replicate free-field shear conditions 
in the soil deposit when no structure is present. The length, width, and height of this 
container are shown in Figure 2.2. After model construction and instrumentation, the filled 
container was mounted on the centrifuge arm to be spun. An illustrative example of a 
mounted model is shown in Figure 2.3.

2.3 Soil properties 
 
2.3.1 Mechanical properties of the Ottawa sand 

 
Ottawa sand, which is a pure quartz sand composed of naturally rounded grains, was used 
in the centrifuge experiments. Representative mechanical properties of the Ottawa sand 
are summarized in Table 2.2. 
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Figure 2.2: Geometry of the flexible shear beam container (FSB2).

Figure 2.3: Configuration of the instrumented container mounted on the 9m-radius centrifuge arm 
(CGM, personal communication).
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Table 2.2: Mechanical properties of the Ottawa sand (CGM, personal comunication).

Soil paeameter Value 
Specific gravity, Gs  2.673

Mean grain size, D50 0.2 mm 
Coefficient of uniformity, Cu  1.73
Coefficient of gradation, Cc 1.08

2.3.2 Air pluviation trials 
 

We sought to place the sand in a dense state to represent the compacted select granular fills 
utilized in Caltrans culvert construction practice. The properties of these fill materials were 
obtained through personal communications with Caltrans engineers. An additional benefit 
of testing dense sand is that loose sands tend to densify during shaking, thereby resulting 
in significant evolutions of relative density during testing, whereas dense sand tends not to 
experience significant changes of state when vibrated. This simplifies interpretation of the 
test results. Therefore, we pluviated the sand at an average relative density of 93%. Details 
of the trial tests conducted to achieve this relative density are provided in Esmaeilzadeh
Seylabi et al. (2017).

2.3.3 Shear wave velocity 
 

Shear wave velocity measurements were obtained by bender elements (see, e.g. Brandenberg
et al., 2006) at four positions in the soil profile—namely, near the bottom of the container, 
below the circular pipe, below the rectangular culvert, and close to the surface of the 
container. Figure 2.4 displays the array next to the box structure. Center-to-center distance 
between bender elements, which are piezoelectric transducers, were approximately 10 cm. 
In all these arrays, three bender elements were used (one source, and two receivers). The 
measurements were taken at 20g (during spinning). A high voltage step-wave motion was 
imposed on the source bender element, which causes the element to rapidly bend and 
induce a horizontally propagating shear wave with a vertical particle motion. Such a wave 
travels through the soil and deforms the receivers, and results in a recorded voltage signal. 
Shear wave velocity can then be estimated by measuring the time it takes for the waves to 
travel between the receivers. Details of the bender element signal processing is provided in 
Chapter 3.
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Figure 2.4: An array of the bender elements used for measuring shear wave velocity.

2.4 Culvert structures 
 
2.4.1 Mechanical properties of the culvert structures 

 
The Caltrans Standard Plans (Department of Transportation State of California, 2015) 
provide common configurations for culvert structures used in California. These culverts are 
typically either corrugated steel pipes or reinforced concrete box structures. The model 
structures, embedment depths, and soil properties adopted for the centrifuge models were 
selected to be consistent with these commonly used culvert types.

Pipe structure

The model specimen is a uniform seamless aluminum pipe with a thickness of 0.16 cm (0.065 
in) and inside diameter of 12.37 cm (4.87 in). It is made from Aluminum 6061-T6 with 
E = 68.95 GPa (107 psi), γ = 26.48 kN/m3 (0.0975 lb/in3), and ν = 0.33 (all based on 
manufacturer specifications rather than measurements). These dimensions were selected 
to match the static flexural stiffness of a representative prototype corrugated steel pipe 
structure (cf. Caltrans Standard Plans).
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Box structure

The specimen is a box tube with inside dimensions of 18.4cm 10.8cm (7.25in 4.25in) and 
uniform thickness of 0.95 cm (0.375 in). Like the other specimen, it is made of Aluminum 
6061-T6. These dimensions are selected to match the flexural stiffness of a representative 
reinforced concrete culvert structure (cf. Caltrans Standard Plans).

2.4.2 Strain gauges 
 

Strain gauges are used to measure the response demands in the specimens, which can also 
be used to evaluate dynamic increments of internal forces. Our preliminary numerical 
simulations, as explained in the next section, showed that both specimens would exhibit 
measurable strains during seismic loading. We measured in-plane bending and in-plane 
axial (hoop) strains using dense strain gauge arrays on the walls of each structure. 

 
Determination of ideal sensor positions

In order to determine the ideal positions for strain gauges, a numerical model was with 
a setting similar to the planned centrifuge experiments was developed, and analyses were 
carried out using an in-house finite element code to solve the wave equations in the frequency 
domain. The two-dimensional plane strain model was constructed with 8-node quadrilateral 
elements. Periodic boundaries were applied along the left and right sides of the model to 
mimic the behavior of the container walls. An elastic homogeneous soil with shear wave 
velocity of 198 m/s, unit weight of 17.5 kN/m3 and Poisson’s ratio of 0.3 were considered 
in all simulations. The properties of the box and pipe specimens were set as those for 
aluminum. Using this model, the steady-state response of the structures were obtained 
over frequency range of 0 to 25 Hz. Further details can be found in the data report by 
Esmaeilzadeh Seylabi et al. (2017). Figures 2.5 and 2.6 display the amplitude of the in- 
plane bending and hoop strain profiles for the pipe structure at three frequencies of 5,
14.5 and 25 Hz. These frequencies were chosen as the computed strain energy within the 
structure was more significant at frequencies close to the natural frequencies of the soil 
deposit— i.e., 4.95, 14.85, and 24.75 Hz for Vs = 198 m/s and layer thickness of 10 m. The 
results indicated that the maximum bending strains would occur at θ = 45, 135, 225, and 
315 degrees—a finding that enabled the optimal placement of the strain gauges.

Figure 2.7 displays the in-plane bending strain profile for the box structure at the selected 
frequencies. The strain profiles along the walls and roof visually appear to conform with 
linear or 2nd-order polynomial functions, whereas along the invert, strain profiles appear to 
be more compatible with 3rd-order polynomials. In-plane axial strains are not shown for the 
box structure, as they were very small in magnitude compared to the bending strain.
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Figure 2.5: Amplitude of the steady-state bending strain profile of the pipe structure.

Figure 2.6: Amplitude of the steady-state hoop strain profile of the pipe structure.

Figure 2.7: Amplitude of the steady-state bending strain profile of the box structure.
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“OMEGA KFH-6-350-C1-11L3M3R” strain gauges were used, which are linear-pattern 
prewired gauges with a nominal resistance of 350 Ω and three 3m leads. The gauge di- 
mensions are 10.5 mm 3.9 mm, and the gauge factor is 2.04. The gauge factor is defined 
as:

GF = ∆R/R
E

(2.1)

where R is the resistance of the strain gauge, ∆R is the change in the electrical resistance
and E is the measured strain. Using this gauge factor, the nominal sensitivity of the strain 
gauges can be obtained. Wheatstone full bridges were used to measure both bending and 
hoop (axial) strains. Therefore, for the bending strain Eb,

∆V

V
and for the hoop (axial) strain Eh,

∆V

= GFEb (2.2)

1 + ν
= GF

V
Eh . (2.3)

2

Therefore, for a Wheatstone full bridge configured to measure bending strain, the nominal 
sensitivity is 2.04, and for the hoop full strains, it is 1.36. The latter is obtained by 
multiplying the gauge factor by (1 + ν)/2, in which ν = 0.33 is the Poisson’s ratio of 
aluminum.

For the gauge bonding inside and outside of the box, we used an “ Omega TT300 complete
heat cure adhesive kit,” following a specific curing procedure of applying a uniform pressure 
of about 207 kPa (30 psi) for 2 hours at the temperature of 125◦C. In order to accelerate the 
process, the clamp mechanism shown in Figure 2.8 was used for installing multiple gauges 
simultaneously.

Affixing the strain gauges to the inside of the pipe was not straightforward due to the curved 
surface and small diameter of the pipe compared to the box. Applying the specified pressure 
for the required duration ruled out the use of the TT300 adhesive. As an alternative, we 
used the “instant Omega SG496 adhesive” to install the strain gauges manually, one pair 
at a time. This adhesive is not as durable as the TT300, resulting in a shorter design 
life for the pipe structure. However, we deemed the solution acceptable for a single test. 
Figure 2.9 shows the steps we took for installation. A camera was installed inside the pipe 
to aid alignment and placement of the strain gauges.

2.5 Model construction and instrumentation configurations 
 

Ottawa sand was pluviated in the model container in 2.5 cm thick layers, using the same 
procedure as that for trial air-pluviation (cf. §2.3.2). The surface of each layer was vacu- 
umed to make it even. The pipe and box structures were placed such that the soil cover

http://www.omega.com/pressure/pdf/KFH.pdf
https://www.omega.com/manuals/manualpdf/M2037.pdf
https://www.omega.com/manuals/manualpdf/M2037.pdf
https://www.omega.com/manuals/manualpdf/M1270.pdf
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Figure 2.8: The clamp used for installation of strain gauges inside the box.

Figure 2.9: Installation of strain gauges inside and outside of the pipe.
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for each was 15.24 cm (0.5 ft) and 3 cm (0.1 ft), respectively. These soil covers are in 
accord with the Caltrans Standard Plans. We used a hand-held vibrator to compact the 
soil around the specimen. Finally, a thin 0.5 cm layer of Monterey sand was placed above 
the last layer to prevent wind erosion during spinning. The top of the Monterey sand was 
sprayed with glue to create a crust.

Figure 2.10 displays an elevation view of the centrifuge model.

Sensors were placed in six stages at different elevations in the model, including 59 accelerom- 
eters. 43 of these were installed in soil or on the container while the rest were installed inside 
the specimens. A frame was mounted on top of the container to secure the LPs in order to 
measure the soil surface settlements and to capture the specimens’ vertical displacements. 
Another frame was used to attach Linear Potentiometers (LPs) to the container wall and 
to measure the associated lateral displacements (see Figure 2.10). All sensors used in the 
model were connected to a data acquisition system as shown in Figure 2.3. We used thin 
aluminum sheets to close the two-ends of each specimen in order to avoid intrusion of sand 
inside the specimens. The plan views of the centrifuge model at different elevations are 
shown in Figures 2.11-2.16. The configurations and labels of the sensors installed on the 
pipe and box structures are provided in Figure 2.17.

The IDs used for labeling the sensors, along with their positions and configurations, are 
provided in Table 2.3. X, Y , and Z are measured from the reference point located at the 
center and bottom of the south wall of the container. (i, j, k) indicate how the sensors 
are aligned. For ICPs (Integrated Circuit Piezoelectric sensors), LPs and bender elements, 
(+1, 0, 0) is the positive direction of X axis and (0, 0, +1) is the positive direction of Z 
axis. For strain gauges, (+1, 0, 0) represents in-plane axial strain and (0,+1,0) represents 
in-plane bending strain. The remaining columns respectively provide information on the 
serial numbers of the sensors in UC Davis’ inventory, the sensor sensitivities and their unit, 
the maximum values of the sensors’ range and their unit, the DAQ ranges and their unit, 
and the excitation values and their unit.



Elevation View ♦

1I
iolA B 5 2

LP221 3

1. 9

LP224 i4A37

11.9

LP232 iolA36 •

1 -0

A35
,

A34 7J°
A42 A41 AH39E

AH39W

All dimensions are in cm.

LEGEND
--  LP ► Horizontal ICP
= Bender element • Vertical ICP
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Figure 2.11: Plan view of the constructed model at z = 10 cm.

Figure 2.12: Plan view of the constructed model at z = 17.8 cm.
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Figure 2.13: Plan view of the constructed model at z = 21 cm.

Figure 2.14: Plan view of the constructed model at z = 27.1 cm.
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Figure 2.15: Plan view of the constructed model at z = 33.4 cm.

Figure 2.16: Plan view of the constructed model at z = 46.3 cm.



23

Section A (Bending strain gauge configuration) Section B (Axial strain gauge configuration) Section C (ICPs configuration)
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Figure 2.17: Layout of the instrumentation for the rectangular and circular specimens.
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Table 2.3: The list of the sensors used for model instrumentation.

Sensor 
(X D C R ) ID

X
(cm )

Y
(cm )

Z
(cm )

i j k Interface 
Channel

Serial 
Number

Sensitivity Sensitivity 
U nits

X D C R
Range

X D C R
U nits

DAQ
Range

DAQ
U nits

Excitation 
Value

E xcita tion  
U n its

H -E E ast shaker - - -1 0 0 IC P1-0 6025 52.4 mV/g 100 g 5 Volts 2 mA
H -W W est shaker - - -1 0 0 IC P 1-1 6021 53.6 mV/g 100 g 5 Volts 2 mA
AA1 27.5 0 10 -1 0 0 IC P 3-4 3166 106.5 mV/g 50 g 5 Volts 2 mA
AA2 45 -5 10 0 0 1 IC P 3-6 37003 48.8 mV/g 100 g 5 Volts 2 mA
AA3 55 0 10 -1 0 0 IC P 3-5 96937 101.7 mV/g 50 g 5 Volts 2 mA
AA4 65 -5 10 0 0 1 IC P 2-2 6023 52.2 mV/g 100 g 5 Volts 2 mA

AAH5 82.6 0 10 -1 0 0 IC P 2-4 3962 106.5 mV/g 50 g 5 Volts 2 mA
AA6 82.6 -5 10 0 0 1 IC P 2-3 37001 48.3 mV/g 100 g 5 Volts 2 mA

AAH7 110.1 0 10 -1 0 0 IC P 6-2 3164 106.6 mV/g 50 g 5 Volts 2 mA
AA8 110.1 -5 10 0 0 1 IC P 6-3 6020 52.3 mV/g 100 g 5 Volts 2 mA
AA9 137.7 0 10 -1 0 0 IC P 6-0 4523 104.9 mV/g 50 g 5 Volts 2 mA

ABH 10 110.1 0 17.8 -1 0 0 IC P 6-1 3162 108.1 mV/g 50 g 5 Volts 2 mA
A B 11 110.1 -5 17.8 0 0 1 IC P 7-2 6022 53.4 mV/g 100 g 5 Volts 2 mA
AC12 27.5 0 21 -1 0 0 IC P 3-7 107647 48.8 mV/g 100 g 5 Volts 2 mA
AC13 45 -5 21 0 0 1 IC P 1-5 37097 47.8 mV/g 100 g 5 Volts 2 mA
AC14 55 0 21 -1 0 0 IC P 1-7 99513 50.5 mV/g 100 g 5 Volts 2 mA
AC15 65 -5 21 0 0 1 IC P 2-6 6016 51.0 mV/g 100 g 5 Volts 2 mA
AC16 82.6 0 21 -1 0 0 IC P 2-0 21060 52.4 mV/g 100 g 5 Volts 2 mA
AC17 137.7 0 21 -1 0 0 IC P 6-4 5607 54.1 mV/g 100 g 5 Volts 2 mA
AD18 27.5 0 27.1 -1 0 0 IC P 1-3 107064 49.0 mV/g 100 g 5 Volts 2 mA
AD19 45 -5 27.1 0 0 1 IC P 1-4 36999 49.1 mV/g 100 g 5 Volts 2 mA
AD20 55 0 27.1 -1 0 0 IC P 3-2 107644 48.6 mV/g 100 g 5 Volts 2 mA
AD21 65 -5 27.1 0 0 1 IC P 3-1 37004 48.1 mV/g 100 g 5 Volts 2 mA
AD22 82.6 -5 27.1 0 0 1 IC P 2-1 6026 54.1 mV/g 100 g 5 Volts 2 mA

ADH23 82.6 0 27.1 -1 0 0 IC P 3-3 132245 48.3 mV/g 100 g 5 Volts 2 mA
AD24 137.7 0 27.1 -1 0 0 IC P 6-5 73964 53.2 mV/g 100 g 5 Volts 2 mA
AE25 27.5 0 33.4 -1 0 0 IC P 1-2 73959 52.2 mV/g 100 g 5 Volts 2 mA
AE26 82.6 0 33.4 -1 0 0 IC P 2-5 21048 51.3 mV/g 100 g 5 Volts 2 mA
AE27 137.7 0 33.4 -1 0 0 IC P 6-6 21044 53.1 mV/g 100 g 5 Volts 2 mA
A F28 27.5 0 46.3 -1 0 0 IC P 1-6 127803 50.3 mV/g 100 g 5 Volts 2 mA
A F29 82.6 -5 46.3 0 0 1 IC P 3-0 37002 48.2 mV/g 100 g 5 Volts 2 mA

AFH 30 82.6 0 46.3 -1 0 0 IC P 2-7 127802 49.9 mV/g 100 g 5 Volts 2 mA
A F31 110.1 -5 46.3 0 0 1 IC P 7-0 37006 47.9 mV/g 100 g 5 Volts 2 mA

AFH 32 110.1 0 46.3 -1 0 0 IC P 7-1 99511 50.4 mV/g 100 g 5 Volts 2 mA
A F33 137.7 0 46.3 -1 0 0 IC P 6-7 108848 50.0 mV/g 100 g 5 Volts 2 mA
A34 N orth Base 0 0 0 0 -1 IC P 8-3 97112 99.4 mV/g 50 g 5 Volts 2 mA
A35 N orth W all -5.5 7 -1 0 0 IC P8-0 3204 107.7 mV/g 50 g 5 Volts 2 mA
A36 N orth W all -0.7 19 -1 0 0 IC P 7-7 5602 53.8 mV/g 100 g 5 Volts 2 mA
A37 N orth W all -0.7 30.9 -1 0 0 IC P 7-6 107038 50.5 mV/g 100 g 5 Volts 2 mA
A38 N orth W all -0.3 41.8 -1 0 0 IC P 7-5 127804 50.5 mV/g 100 g 5 Volts 2 mA

AH 39E N orth Base - -2.5 -1 0 0 IC P 8-1 3160 108.0 mV/g 50 g 5 Volts 2 mA
AH39W N orth Base - -2.5 -1 0 0 IC P 8-2 3955 106.6 mV/g 50 g 5 Volts 2 mA

A40 South Base 0 0 0 0 -1 IC P 8-4 21321 50.9 mV/g 100 g 5 Volts 2 mA
A41 137.7 0 0 -1 0 0 IC P 7-4 127920 50.7 mV/g 100 g 5 Volts 2 mA
A42 27.5 0 0 -1 0 0 IC P 7-3 21067 54.1 mV/g 100 g 5 Volts 2 mA

1 45.8 0 45.35 -1 0 0 IC P 4-0 4435 105.8 mV/g 50 g 5 Volts 2 mA
2 45.8 0 45.35 0 0 1 IC P 4-1 5268 106.4 mV/g 50 g 5 Volts 2 mA
3 64.2 0 45.35 1 0 0 IC P 4-2 5274 105.3 mV/g 50 g 5 Volts 2 mA
4 64.2 0 45.35 0 0 1 IC P 4-3 3163 106.4 mV/g 50 g 5 Volts 2 mA
5 64.2 0 34.55 0 0 -1 IC P 4-4 97116 97.7 mV/g 50 g 5 Volts 2 mA
6 64.2 0 34.55 1 0 0 IC P 4-5 97113 98.5 mV/g 50 g 5 Volts 2 mA
7 45.8 0 34.55 -1 0 0 IC P 4-6 96938 100.9 mV/g 50 g 5 Volts 2 mA
8 45.8 0 34.55 0 0 -1 IC P 4-7 97115 99.7 mV/g 50 g 5 Volts 2 mA
9 110.1 0 33.25 0 0 1 IC P 5-0 3950 104.7 mV/g 50 g 5 Volts 2 mA
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Table 2.3: The list of the sensors used for model instrumentation.

Sensor 
(X D C R ) ID

X
(cm )

Y
(cm )

Z
(cm )

i j k Interface 
Channel

Serial 
Number

Sensitivity Sensitivity 
U nits

X D C R
Range

X D C R
U nits

DAQ
Range

DAQ
U nits

Excitation 
Value

E xcita tion  
U n its

10 110.1 0 33.25 -1 0 0 IC P 5-1 3948 105.8 mV/g 50 g 5 Volts 2 mA
11 116.3 0 27.05 0 0 1 IC P 5-2 96936 98.8 mV/g 50 g 5 Volts 2 mA
12 116.3 0 27.05 1 0 0 IC P 5-3 5267 103.8 mV/g 50 g 5 Volts 2 mA
13 110.2 0 20.85 0 0 -1 IC P 5-4 5276 104.6 mV/g 50 g 5 Volts 2 mA
14 110.2 0 20.85 -1 0 0 IC P 5-5 3203 102.9 mV/g 50 g 5 Volts 2 mA
15 104 0 27.05 0 0 1 IC P 5-6 4534 104.8 mV/g 50 g 5 Volts 2 mA
16 104 0 27.05 -1 0 0 IC P 5-7 3964 105.0 mV/g 50 g 5 Volts 2 mA

B T 1 62.7 5.25 46.3 0 1 0 B rid ge7-0 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
B T 2 59.6 5.25 46.3 0 1 0 B rid ge7-1 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
B T 3 56.5 5.25 46.3 0 1 0 B rid ge7-2 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
B T 4 53.5 5.25 46.3 0 1 0 B rid ge7-3 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
B T 5 50.4 5.25 46.3 0 1 0 B rid ge7-4 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
B T 6 47.3 5.25 46.3 0 1 0 B rid ge7-5 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
B L 7 44.8 5.25 43.8 0 1 0 B rid ge1-0 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
B L 8 44.8 5.25 41.2 0 1 0 B rid ge1-1 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
B L 9 44.8 5.25 38.7 0 1 0 B rid ge1-2 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts

BL 10 44.8 5.25 36.1 0 1 0 Bridge1-3 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
B B 11 47.3 5.25 33.6 0 1 0 B rid ge8-0 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
B B 12 50.4 5.25 33.6 0 1 0 B rid ge8-1 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
B B 13 53.5 5.25 33.6 0 1 0 B rid ge8-2 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
B B 14 56.5 5.25 33.6 0 1 0 B rid ge8-3 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
B B 15 59.6 5.25 33.6 0 1 0 B rid ge8-4 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
B B 16 62.7 5.25 33.6 0 1 0 B rid ge8-5 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
BL 17 65.2 5.25 36.1 0 1 0 Bridge1-4 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
BL 18 65.2 5.25 38.7 0 1 0 Bridge1-5 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
BL 19 65.2 5.25 41.2 0 1 0 Bridge1-6 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
BL 20 65.2 5.25 43.8 0 1 0 Bridge1-7 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A T1 47.3 -5.25 46.3 1 0 0 B rid ge3-3 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A T2 55 -5.25 46.3 1 0 0 Bridge3-4 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A T3 62.3 -5.25 46.3 1 0 0 B rid ge3-5 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
AR4 65.2 -5.25 43.8 1 0 0 B rid ge5-4 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
AR5 65.2 -5.25 39.95 1 0 0 B rid ge5-1 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
AR6 65.2 -5.25 36.1 1 0 0 B rid ge5-2 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A B7 62.3 -5.25 33.6 1 0 0 B rid ge5-3 - 0.7 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A B8 55 -5.25 33.6 1 0 0 B rid ge5-7 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A B9 47.3 -5.25 33.6 1 0 0 B rid ge5-6 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts

AL10 44.8 -5.25 36.1 1 0 0 B rid ge3-0 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
AL11 44.8 -5.25 39.95 1 0 0 B rid ge3-1 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
AL12 44.8 -5.25 43.8 1 0 0 B rid ge3-2 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts

A1 108.5 5.25 33.2 0 1 0 B rid ge2-0 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A2 105.6 5.25 31.6 0 1 0 B rid ge2-7 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A3 104 5.25 28.7 0 1 0 B rid ge2-2 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A4 104 5.25 25.4 0 1 0 B rid ge2-3 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A5 105.6 5.25 22.6 0 1 0 B rid ge2-4 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A6 108.5 5.25 20.9 0 1 0 B rid ge2-5 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A7 111.7 5.25 20.9 0 1 0 B rid ge9-0 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A8 114.6 5.25 22.6 0 1 0 B rid ge9-1 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A9 116.2 5.25 25.4 0 1 0 B rid ge9-2 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts

A10 116.2 5.25 28.7 0 1 0 Bridge9-3 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A11 114.6 5.25 31.6 0 1 0 Bridge9-4 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A12 111.7 5.25 33.2 0 1 0 Bridge9-5 - 2.0 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A13 108.5 -5.25 33.2 1 0 0 Bridge11-0 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A14 105.6 -5.25 31.6 1 0 0 Bridge11-1 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A15 104 -5.25 28.7 1 0 0 B rid ge11-2 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
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Table 2.3: The list of the sensors used for model instrumentation.

Sensor 
(X D C R ) ID

X
(cm )

Y
(cm )

Z
(cm )

i j k Interface 
Channel

Serial 
Number

Sensitivity Sensitivity 
U nits

X D C R
Range

X D C R
U nits

DAQ
Range

DAQ
U nits

Excitation 
Value

E xcita tion  
U n its

A16 104 -5.25 25.4 1 0 0 B rid ge11-3 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A17 105.6 -5.25 22.6 1 0 0 Bridge11-4 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A18 108.5 -5.25 20.9 1 0 0 Bridge11-6 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A19 111.7 -5.25 20.9 1 0 0 B rid ge4-0 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A20 114.6 -5.25 22.6 1 0 0 B rid ge4-1 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A21 116.2 -5.25 25.4 1 0 0 B rid ge4-6 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A22 116.2 -5.25 28.7 1 0 0 B rid ge4-3 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A23 114.6 -5.25 31.6 1 0 0 B rid ge4-4 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts
A24 111.7 -5.25 33.2 1 0 0 B rid ge4-5 - 1.4 m V /V olt 1 m ilistrain 25 mV 3.3 Volts

L P 301 55.1 24.25 49.8 0 0 -1 H O C  1-0 301 997.4 m V /V olt 3 inch 5 Volts 5 Volts
L P 435 24.4 -1.35 49.8 0 0 -1 H O C  1-1 435 995.5 m V /V olt 4 inch 5 Volts 5 Volts
L P 421 141.8 -2.05 49.8 0 0 -1 H O C  1-4 421 991.7 m V /V olt 4 inch 5 Volts 5 Volts
L P 305 110.1 -24.25 49.8 0 0 -1 H O C  1-5 305 991.3 m V /V olt 3 inch 5 Volts 5 Volts
L P 304 55.1 -24.25 49.8 0 0 -1 H O C  1-6 304 1029.6 m V /V olt 3 inch 5 Volts 5 Volts
L P 221 South W all - 41.9 1 0 0 H O C  1-7 221 987.2 m V /V olt 2 inch 5 Volts 5 Volts
L P 224 South W all - 30.5 1 0 0 H O C  2-0 224 982.7 m V /V olt 2 inch 5 Volts 5 Volts
L P 232 South W all - 19.1 1 0 0 H O C  2-1 232 982.5 m V /V olt 2 inch 5 Volts 5 Volts
L P 409 82.4 -1.75 49.8 0 0 -1 H O C  2-2 409 996.5 m V /V olt 4 inch 5 Volts 5 Volts
L P 302 110.1 24.25 49.8 0 0 -1 H O C  2-3 302 1004.3 m V /V olt 3 inch 5 Volts 5 Volts
M B 10 72.6 19.6 10 1 0 0 - - - - - - - - - -
M B 11 92.6 19.6 10 -1 0 0 - - - - - - - - - -
M B 12 82.6 19.6 10 1 0 0 - - - - - - - - - -

C5 110.1 19.6 17.8 1 0 0 - - - - - - - - - -
C6 100.1 19.6 17.8 -1 0 0 - - - - - - - - - -
B 1 45.4 19.4 27.1 1 0 0 - - - - - - - - - -
B 2 55.9 19.4 27.1 1 0 0 - - - - - - - - - -
B 3 66 19.4 27.1 -1 0 0 - - - - - - - - - -

M S7 72.6 20.2 46.3 1 0 0 - - - - - - - - - -
M S8 82.6 20.2 46.3 -1 0 0 - - - - - - - - - -
M S9 92.6 20.2 46.3 -1 0 0 - - - - - - - - - -
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2.6 Ground motions 
 

A total of 25 shaking events were applied at approximately N = 21g centrifugal acceleration. 
Shaking was applied transverse to the culverts’ long axes in the north-south direction. The 
sequence of the type of motions used to shake the model, including step-, earthquake-, and 
sinusoidal-functions are provided in Table 2.4.

Three earthquake ground motions are used in this study, which are obtained from the 
PEER ground motion database. The characteristics of these motions—i.e., target earth- 
quake motions—are provided in Table 2.5. Figure 2.18 shows the 5%-damped spectral 
accelerations and the Arias intensity time series of the target earthquake motions.

Since the shake table on the centrifuge cannot perfectly reproduce a target motion, some 
signal modification needs to applied. This is typically achieved by first computing a com- 
mand motion in which the high frequency content is increased relative to the target motion. 
This accounts for a loss of high-frequency content due to the mechanics of the shake table 
feedback control system. The achieved motion is then compared to the target motion, and 
the command motion is adjusted. Through an iterative process, the achieved base motions 
in the present tests were similar to, but not perfectly equivalent with, the target motions. 
For this reason, we suggest always using the measured base motions when interpreting the 
test data. The 5%-damped spectral accelerations and the Arias intensities of the measured 
base motions for the earthquakes (i.e., motions #03 to #11) are shown in Figure 2.19.

Sine-sweep motions were also used to shake the model the prototype frequencies of up to 
25 Hz. As mentioned before, it was expected that soil-structure interaction effects would 
be more significant at higher frequencies. Two types—namely, constant acceleration and 
constant-velocity—target motions were used. It was found that constant velocity motions 
provided command inputs with richer high-frequency energy content.

The model was also excited with stepped-sine signals with discrete frequencies of 1.25, 1.85, 
2.5, 3.75, 5, 7.5, 10, 17.5, and 25 Hz. At each iteration, the amplitudes of the stepped- 
sine functions at different frequencies were updated so that the amplitude of measured 
accelerations at the soil surface (as recorded by sensor AFH30) were nearly the same at 
all discrete frequencies considered. It should be noted that ideally a sine sweep function 
could be used for this purpose. However, calibration of the command input using sine 
sweep functions was not straightforward. This is why stepped sine functions were applied. 
Shaking the models with motions with the same surface acceleration amplitude permits 
observation of the frequency-dependence of the structural response.



Table 2.4: The sequence of the input motions used for shaking the model.

E ven t # Com m and input type A m p. factor applied  to target m otion Com mand input file name M easured data file name
1 Step function 0.6 01-Step .tx t 01_0114201614211314281446.5rp m
2 Step function 1.5 02-Step .tx t 02_0114201614211314462346.6rp m
3 E arthquake M UL279 0.1 03-R SN 953_N O R T H R _M U L 279.sh k 03_0114201614211315113246.3rp m
4 E arthquake SM T090 0.1 04-R SN 1077_N O R T H R _ST M 090.sh k 04_0114201614211315320546.3rpm
5 E arthquake H E C000 0.33 05-H E C000.shk 05_0114201614211315443346.2rp m
6 E arthquake M UL279 0.5 03-R SN 953_N O R T H R _M U L 279.sh k 06_0114201614211315504546.2rp m
7 E arthquake SM T090 0.5 04-R SN 1077_N O R T H R _ST M 090.sh k 07_0114201614211315555646.3rpm
8 E arthquake H E C000 1 05-H E C000.shk 08_0114201614211315592546.3rp m
9 E arthquake M UL279 1 03-R SN 953_N O R T H R _M U L 279.sh k 09_0114201614211316035346.3rp m

10 E arthquake SM T090 1 04-R SN 1077_N O R T H R _ST M 090.sh k 10_0114201614211316285946.5rp m
11 E arthquake H E C000 3 05-H E C000.shk 11_0114201614211316325346.5rp m
12 Sine sw eep 1 (constant acceleration) 1 12-in pu t_com m an d .tx t 12_0114201614211316452846.4rp m
13 Sine sw eep 1 (constant acceleration) 3 13-in pu t_com m an d .tx t 13_0114201614211316494946.4rp m
14 Sine sw eep 2 (constant acceleration) 1 14-sw -25to500-0.3g-iter00 14_0115201609420211375246.6rp m
15 Sine sw eep 3 0.5 15-sw -25to500-0.1g-iter01 15_0115201609420212001846.5rpm
16 Sine sw eep 3 0.1 16-sw -25to500-0.1g-iter01 16_0115201609420212184246.2rpm
17 Step p ed  sin e 1 (iteration  0) 1 17-sine-0.1g-iter00 17_0115201609420212531246.4rp m
18 Step p ed  sin e 2 (iteration  1) 1 18-sine-0.1g-iter01 18_0115201609420213453146.3rp m
19 Step p ed  sin e 3 (iteration  2) 1 19-sine-0.1g-iter02 19_0115201609420213580946.3rp m
20 Step p ed  sin e 4 (iteration  3) 1 20-sine-0.1g-iter03 20_0115201609420214370146.4rp m
21 Step p ed  sin e 5 (iteration  4) 3 21-sine-0.1g-iter04 21_0115201609420214545146.4rp m
22 Step p ed  sin e 6 (iteration  5) 3 22-sine-0.1g-iter05 22_0115201609420215145546.4rp m
23 Step p ed  sin e 7 (iteration  6) 5 23-sine-0.1g-iter06 23_0115201609420215231946.5rp m
24 Sine sw eep 4 (constant velocity) 0.5 24-ExponentialSineSw eep.shk 24_0115201609420215314346.3rp m
25 Sine sw eep 4 (constant velocity) 0.75 25-ExponentialSineSw eep.shk 25_0115201609420215411846.3rp m

Table 2.5: Characteristics of the earthquake ground motions used in this study.

Earthquake Year Station Component Magnitude Rjb (km) Vs30 (m/s)
Northridge 1994 Beverly Hills MUL279 6.69 9.44 355.81
Northridge 1994 Santa Monica City Hall STM090 6.69 17.28 336.20

Hector Mine 1999 Hector HEC000 7.13 10.35 726.00

28
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Figure 2.18: 5%-damped spectral acceleration and Arias intensity time series of the earthquake 
motions used in this study.

2.7 Known limitations 
 

After excavation, we noticed that one of the wires of the BT3 bridge was slightly damaged, 
which may have affected the recorded data. Moreover, BL8 and AR5 bridges were not 
wired correctly. We also noticed that 6 ICPs inside the pipe specimen—which were labeled 
as 11, 12, 13, 14, 15, and 16—were detached from the structure. However, after checking 
the signals visually, it seemed that these detachments had happened after the shaking 
events.

It should be noted that we have not excluded data from any sensors that did not function 
properly in the archived data.
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Figure 2.19: 5%-damped spectral acceleration and Arias intensity time series of the measured base 
motions for shake events #03 to #11.
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Chapter 3

Data archiving and processing

3.1 Data archiving and interactive data report 
 

Experimental data are often documented as static reports that present relevant metadata— 
such as model sketches, sensor lists, event sequences, etc.—and provide plots and tables 
of recorded data. Such reports provide guidance to researchers who wish to use the data, 
but the reports themselves do not provide any level of interaction that would enhance the 
utility of posted data.

The data report prepared for this project is an interactive report written up as a Jupyter 
notebook (e.g., Pérez and Granger, 2007) that is housed in DesignSafe.ci (Rathje et al., 
2017), which is the repository that also houses the data. Jupyter notebooks combine 
code blocks, in which the data may be opened, processed, interrogated, and plotted, with 
markdown blocks that contain descriptions of the data. The text and figures in the re- 
port are written in HTML and co-exist with Python code that directly interacts with the 
experimental data. Specific innovative features of the data report include:

1. An interactive data plotter with which users can select a specific event from a drop-down 
menu, and subsequently plot data from any desired sensor. Users can also zoom and 
pan desired portions of the data and click to extract specific data points of importance 
(e.g., the maximum value of a specific data quantity). Users can also directly save a 
PNG file to their computer of any desired data plot.

2. An interactive model sketch, which is embedded as an iframe object linked to an 
Autodesk 360 drawing object. Users can zoom in and out to see various portions 
of the model configuration and can measure desired dimensions using the interactive 
tools.
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3. Tables containing sensor lists, event sequences, etc., which are directly rendered 
from comma separated value files, and presented in HTML format using the jQuery 
javascript. This eliminates the potential for a mismatch between the data report and 
the table maintained by the research team.

The Jupyter notebook may be opened by any user with a DesignSafe.ci account to 
explore the dataset and may also be used as a template for users who wish to adapt it to 
their own datasets. A preview of the report is shown in Figure 3.1.

Figure 3.1: A preview of the interactive data report housed in DesignSafe.ci.
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CCxy(τ ) = lim
T→∞ T 0

3.2 Data processing 
 
3.2.1 Bender element signal processing 

 
Shear wave velocity is obtained by measuring the travel time of the wave between two bender 
elements. The travel time between the two receivers in each elevation was used herein, 
because peripheral sources of phase-lag cancel each other when making receiver-to-receiver 
measurements, whereas they may cause errors in source-to-receiver measurements (Lee 
and Santamarina, 2005). Obtaining good quality signals in large centrifuge experiments 
is complicated because mechanical vibrations often have larger amplitudes than the shear 
waves generated by the bender elements. These vibrations are reduced by digital filtering 
and signal stacking to improve signal-to-noise ratio (Brandenberg et al., 2006), and occur 
predominantly at frequencies lower than the bender element signals.

Three basic approaches have been identified for determining the shear wave travel time:
(i) observational techniques of the "start-to-start" and "peak-to-peak" signal in the source 
and receivers, (ii) cross-correlation (CC) of the signals, and (iii) a cross-power spectrum 
calculation of the signals (Yamashita et al., 2009). The last two approaches are techniques 
that are applied in time and frequency domains, respectively. The first technique involves 
visual selection of travel times, which is often subjective, particularly for source-to-receiver 
measurements. We apply the second (CC) technique to automate the travel time picks; 
and the continuous CC of two signals x(t) and y(t) can be computed as follows:

1 Z  T

where T is the signal time record and x(t) and y(t) are two received signals.

A sample signal of the four arrays and the procedure we used to process it is given in 
Figure 3.2. Figure 3.2a shows the recorded signals from the two receiver benders for one 
of the four element arrays installed in our model for a dataset close to the step function 
pulse imposed. The signals were truncated to 2N number of data points, so that a Fast 
Fourier Transform (FFT) could be performed. Four signals are plotted in Figure 3.2a, with 
two signals for each receiver bender element. The source bender element is pulsed with a 
positive step wave, then with a negative step wave and results for each are shown. High- 
amplitude, low-frequency noise is superposed on the bender element signals, because the 
centrifuge induces significant vibrations during spinning. Furthermore, the bender element 
voltages all exhibit a sudden increase when the source is excited due to electrical coupling. 
To reduce the influence of these factors, first the mean of positive and negative signals is 
computed for each bender element. Then, the initial portion of the signal associated with 
electrical coupling is truncated. Finally, the signals are baseline corrected by subtracting 
a seventh-order polynomial fit to the signal. The resulting post-processed signals used

x(τ )y(t + τ )dt (3.1)
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for cross-correlation are shown in Figure 3.2c, and the cross-correlation versus time-lag is 
shown in Figure 3.2d. The travel time is taken as the time-lag associated with the peak of 
the absolute value of the cross-correlation. It is possible for the negative peak to be larger 
than the positive peak depending on the orientation of the bender elements, which was not 
recorded in these experiments.

Figure 3.2: Example procedure to process bender element receivers’ data (C4, C5) below the pipe 
(C-array).

The cross-correlation procedure cannot always produce accurate travel times when the two 
received signals differ due to wave dispersion, or when there are differences in the responses 
of the bender elements. Thus, ad hoc procedures are often required. For example, travel 
time for the array of bender elements located below the rectangular box (B array) was 
selected in the present study visually by observing the peak-to-peak travel time, because the 
peak in the cross-correlation signal did not correspond to the correct offset. Furthermore, 
the shallow free-field bender element array (MS array) required special attention, because 
the bender elements do not function as well at low confining pressures. In this case, the 
signals were processed by a cosine taper, and were filtered using a high-pass Butterworth 
filter in lieu of baseline correction.
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Table 3.1 shows the obtained shear wave velocities at different depths of the container.
Shear wave velocity is known to be a function of mean effective stress (σ1 ) (see, e.g.,
Hardin and Drnevich, 1970) for granular soils. Agapaki et al. (2016) regressed the data 
using three different functions, two of which were power laws that resulted in Vs = 0 at

1 = 0 (Hardin and Drnevich, 1970; Roesler, 1979), and the third was a form that permits
Vs > 0 at σ1 = 0. The regressions are illustrated in Figure 3.3. The form that best fits the
data was given by

Vs(m/s) = 141.6 + 92.1
1 0.35
m

pa
. (3.2)

where pa is the atmospheric pressure.
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Figure 3.3: Relationship between Vs and σl .

Table 3.1: Shear wave velocities obtained from bender element arrays’ signal processing.

Bender element array Depth ratio (z/H) Vs (m/s) 
Array MS  0.061  182.8
Array B 0.450 216.9
Array C 0.639 222.6

Array MB 0.797 243.8

Proposed Equation
Modified Roesler (1979)
Modified Hardin & Drnevich (1970)
Measured V

σ
′ m
/p

a

σ
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3.2.2 Initial data processing 
 

The initial data processing was performed in two steps. First, we determined the initial 
offset (or the reference points) of all the sensors. To achieve this, we used the signals 
recorded during the spin-up, prior to any base shaking, while the centrifugal acceleration
was increased from 0 to about Ng = 21g. Plotting the measured signals against the total 
acceleration, i.e. at = 

√
(N 2 + 1), it was possible to extract the zero-crossing location of the

fitted curve with at = 0 , which was then taken as the initial offset for the measurement of
that sensor. An example of the developed Jupyter notebook is shown in Figure 3.4 where 
a 3rd-order polynomial was fitted first, and was extrapolated to the data range of sensor 
BL7 (measuring bending strain on the box structure). After this first step, we truncated 
the measured signals to extract their meaningful portions for further signal processing 
and data interpretation. An screenshot of the developed Jupyter notebook is shown in 
Figure 3.5.

3.2.3 Processing of the acceleration signals 
 

Generally, we needed to process acceleration time-series prior to data interpretation and 
numerical analyses. An screenshot of the developed Jupyter notebook for acceleration 
signal processing is shown in Figure 3.6. We considered three steps for acceleration signal 
processing:

1. Baseline correction: this was usually needed to remove constant, linear, or higher- 
order polynomial trends in the measured signals.

2. Tapering: this was needed to make sure that the measured signals tended to zero at 
the beginning and at the end of the time-series.

3. Filtering: this was needed to remove spurious frequencies from the measured signals. 
We used the band-pass Buttherworth filter in both forward and reverse directions to 
avoid altering the signals’ phases.

As shown in Figure 3.6, the polynomial order, the period of the taper function, the orders 
of the bandpass filter and its associated frequencies can be defined by the user; and the 
processed data can be saved for further analysis.

3.2.4 Processing of the strain signals 
 

For processing of the strain data, we considered the following steps: 

1. Static offset: as shown in Figures 3.7 and 3.8, the signal time-series did not start 
from zero. This was because that the specimens deformed statically under the soil
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Figure 3.4: An screenshot of the developed Jupyter notebook for reading the sensor’s initial offsets.
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Figure 3.5: An screenshot of the developed Jupyter notebook for signal truncation.
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Figure 3.6: An screenshot of the developed Jupyter notebook for signal processing of acceleration 
time series.



40

overburden pressure, even when no base shaking was applied. In order to determine 
the static offset at the beginning of each strain signal, we computed the mean value 
of the first 100 data points as shown in the figures.

2. Linear detrending and tapering:We first removed the linear trend in the signal. This 
was done to consider only the dynamic increments in the signals (the underlying 
linear trend was probably due to unknown sensor drift, or physical compaction of 
soil). Then, we applied a taper function to make sure that the signal reaches zero at 
the beginning and at the end of the time-series.

3. Filtering: again, we applied a bandpass Buttherworth filter in both forward and 
reverse directions to the strain data. We set the corner frequencies as 0.25 and 25 Hz 
in prototype scale.

Application examples of the aforementioned steps on strain data are shown in Figures 3.7
and 3.8.
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Figure 3.7: An example of strain signal processing performed on signals recorded on the rectangular 
structure during base shaking #9.
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Figure 3.8: An example of strain signal processing performed on signals recorded on the circular 
structure during base shaking #9.
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Vertically propagating shear wave front

Chapter 4

The NCHRP 611 approach

The current AASHTO LRFD Bridge Design Specifications do not cover the seismic re- 
sponse of buried structures; and only the recent National Cooperative Highway Research 
Program (NCHRP) Report 611—titled "Seismic Analysis and Design of Retaining Walls, 
Buried Structures, Slopes, and Embankments"—offers various recommendations on the 
topic. As culvert structures in transportation applications generally have a limited length, 
their potential failure modes are due to their transverse deformations under transient ground 
shaking—namely, ovaling and racking of circular and rectangular culverts, respectively (An-
derson et al., 2008)—, which are illustrated in Figure 4.1.

Figure 4.1: Ovaling and racking deformation of the circular and rectangular cross sections.

4.1 Ovaling of a circular culvert 
 

It is widely accepted that plane strain models provide reasonable approximations to the 
failure modes of circular culverts, as their most critical mode is the ovaling deformation
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mode (Kontoe et al., 2014). Transient ovaling effects in circular culverts can be quantified 
by the change in their diameters, which can then be used to obtain reasonable estimates 
of the peak seismically induced internal forces. For flexible culverts, buckling is the most 
critical failure mode, which is governed by the thrust force. For rigid culverts, on the other 
hand, the lining deformation, bending, thrust, and the resulting strains are all important 
parameters to evaluate (Anderson et al., 2008).

Currently, four analytical closed-form solutions are available (Wang, 1993b; Penzien, 2000a; 
Park et al., 2009; Bobet, 2010), which are all based on the assumption that, under seismic 
loading, the tunnel lining acts as an elastic beam subject to a uniform shear strain field 
of amplitude γmax, wherein the inertial soil-lining interaction effects are ignored. As enu- 
merated by Kontoe et al. (2014), the dynamic interaction can become important when (i) 
the dimensions of the tunnel cross-section is comparable to the wavelengths of the seismic 
loading, (ii) the tunnel is relatively shallow, and (iii) the structure is significantly stiffer 
than the surrounding soil.

The methodology provided in NCHRP Report 611 (Anderson et al., 2008) is based on the 
solution provided by Wang (1993b). An engineer needs to execute the following steps to 
determine the seismic demands due to ovaling of the circular culvert:

1. Estimate the free-field ground strains (γmax) at the top and bottom elevations of the 
culvert structure: For highway culverts with burial depths less than 50 ft, γmax may 
be estimated using the equation below: 

γmax =
τmax , τ 
Gm 

 
max = (PGA/g)σvRd (4.1)

where Gm is the effective-strain-compatible shear modulus of the surrounding soil, 
PGA is the peak ground acceleration, σv is the overburden pressure at the depth cor- 
responding to the invert of the culvert, and Rd is a depth-dependent stress reduction 
factor given by

R = 1 −  0.00233z z < 30ft
1.174 − 0.00814z 30ft ≤ z ≤ 75ft

(4.2)

and z is the depth to the midpoint of the culvert. One may also estimate γmax by 
performing free-field site response analysis.

2. Calculate of the flexibility and compressibility ratios: Compressibility (C 0 )  and flex- 
ibility (F 0 )  ratios are used to determine the relative stiffness of the culvert lining 
with respect to the surrounding ground (Wang, 1993b), and can be computed as:

F 0  =

C 0  =

Em(1 −  ν2)R3

6E1I1(1 + νm)
E m(1  −  ν 2)R 

E1A1(1 + νm)(1 − 2νm)

(4.3)

(4.4)
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− π

m

π

m

EQ 3 1

1

where Em is the strain-compatible elastic modulus, and νm is the Poisson’s ratio of 
the surrounding soil. The terms R, E1, ν1, A1, t and I1 respectively denote nominal 
radius, elastic modulus, Poisson’s ratio, cross-sectional area, thickness, and moment 
of inertia of the culvert lining. For F 0  < 1, the lining is considered to be stiffer than 
the surrounding soil while for F 0  > 1, it is expected that the lining deforms more 
than the free-field.

3. Estimate the lining deformation and seismic demands: For estimation of the lining 
diameter change (∆DEQ) and the resulting moment (M ), it is recommended to con- 
sider a full-slip interface assumption, which allows normal stresses without normal 
separation and tangential forces. On the other hand, for estimation of the resulting 
thrust (T ), a no-slip interface assumption is recommended. Therefore, 

 

∆D =  ±  
1 

k F 0γ  D (4.5) 
 
 

M 0  =  
1 
k 

6 
  Em  R2γ 

1 1 + νm 

 

 
max cos 2(θ + ) (full-slip) (4.6)

4

where

T 0  =  −k
Em

2 2(1 + ν ) 
Rγmax cos 2(θ + ) (no-slip) (4.7)

4

k = 12 
 1 −  νm  , (4.8)
2F 0  + 5 −  6νm

F 0(1 −  2νm)(1 −  C 0) −  0.5(1 −  2νm)2C 0 + 2
k2 = 1 + 

F 0[(3 − 2ν ) + (1 −  2νm )C0] + C0[2.5 −  8νm + 6ν2 ] + 6 −  8νm
. (4.9)

4.2 Racking of a rectangular culvert 
 

Contrary to circular culverts, no closed form solution is available for quantifying the racking 
deformations in rectangular culverts. The procedure provided in NCHRP Report 611 is 
based on the pseudo-static method proposed by Wang (1993b), which again does not take 
inertial interaction effects into account. The following steps are recommended therein to 
estimate the seismic demands due to racking of a rectangular culvert.

1. Estimate of the free-field ground strains (γmax) at the elevation of the culvert structure: 
γmax can be computed following the procedure provided for circular culverts in §4.1.

max

m
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□ 2F

Figure 4.2: Racking stiffness of the rectangular culvert.

2. Estimate the differential free-field relative displacement (∆freefield) at the corresponding 
top and bottom elevations of the rectangular structure. That is: 

∆freefield = Hγmax (4.10) 

where H is the height of the structure. As seen in Equation (4.10), it is assumed that 
the racking is due to a uniform shear strain field. This assumption is the same as 
that used for ovaling of circular culverts.

3. Calculate the racking stiffness (Ks) of the structure: This value can be computed 
through a simple structural frame analysis by applying a unit horizontal force at the 
roof of the structure, while its base is restrained as shown in Figure 4.2 and reading 
the resulting lateral displacement ∆. That is, 

1 
K s = . (4.11) 

∆

4. Calculate the flexibility ratio: The flexibility ratio F □ is the measure of the relative 
stiffness of the structure to the surrounding soil and can be estimated as follows. 

 

F □ = Gm W (4.12)
Ks H

where W is the width of the culvert structure as shown in Figure 4.2.

5. Estimate the racking ratio: The racking ratio R□ determines the ratio of the actual 
racking deformation of the structure with respect to the free-field racking deformation 
of the surrounding soil and can be defined as: 

 

□  
R  = 1 + F □ . (4.13) 
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Figure 4.3: Imposition of the racking displacement to determine the resulting internal forces and 
moments from structural frame analysis.

6. Estimate the racking deformation of the structure: Using the racking ratio and the 
free-field relative displacements, the racking deformation ∆s can be computed as 
follows: 

 

∆s = R□∆ freefield . (4.14) 
 

7. Determine the seismic demands: Internal forces and the resulting strains can be 
computed by imposing the racking deformation at the roof of the structure as shown 
in Figure 4.3, and by performing a structural frame analysis.
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Chapter 5

Comparison of centrifuge results with 
the NCHRP 611 method

In this chapter, comparisons of seismic demands obtained from centrifuge test data with 
those calculated using the NCHRP 611 method (see Chapter 4) are presented.

5.1 NCHRP 611 method 
 

In order to compute seismic demands using the NCHRP 611 methodology, we first need to 
estimate the free field maximum strain γmax in the soil deposit as well as the corresponding 
effective compatible shear modulus Gm. Then, the seismic demands can be computed 
following the steps outlined in Chapter 4.

5.1.1 Estimation of Gm at the elevation of the culvert structures 
 

In Chapter 3, we provided details of a signal processing procedure for obtaining shear 
wave velocities at different elevations of the soil deposit inside the container using bender 
element sensors. Esmaeilzadeh Seylabi et al. (2018) also used a Bayesian approach to infer 
the shear wave velocity profile using data measured by the far-field accelerometer array
{AA1,AC12,AD18,AE25,AF28} during low-amplitude earthquake motions (i.e., motions 
#3, #4, and #5) with maximum input acceleration of 0.015g. The resulting estimated 
shear wave velocity profile was given as,

V (m/s) = 16.905 + 192.976 
(  z )0.331 

, (5.1)
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s

∼

1 + (γ/γ )
(5.3)

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

-1
0 50 100 150 200 250

Vs (m/s)

Figure 5.1: Shear wave velocity profile obtained from post-processing of the bender element signals 
and from a Bayesian estimation method.

which is shown in Figure 5.1 along with the curve fitted through the data points obtained 
from bender element signal processing. As it will be shown in Chapter 6, using this new 
shear wave velocity profile will result in acceleration responses that are highly correlated 
with experimentally recorded ones. Therefore, in the subsequent analyses, we will use 
Equation (5.1) for computing the shear wave velocity associated with small soil strains. 
Then, one may also compute the maximum shear modulus Gmax as follows:

Gmax = ρV 2 (5.2)

where ρ is the density of the soil deposit, which is equal to 1733 kg/m3 for the present case.

The maximum shear modulus may be an appropriate representation of Gm for only low- 
amplitude motions for which the soil nonlinearity is negligible and the shear strains are very 
small (i.e., 10−5). Therefore, we also need to use a representative modulus reduction curve 
along with the computed Gmax to estimate the effective strain compatible shear modulus 
Gm at elevations of the tested culvert structures. Based on available soil properties for the 
Ottawa sand, one may use the empirical equations given by Menq (2003) to estimate the 
modulus reduction curve. That is,

G 1
= aGmax r

from bender element signal processing
Fitted curve
Seylabi et al. (2018)

z/
H
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H

free-field

γ r = 0.12C−0.6
1
m

pa

u 1
m

pa

where
(  

σ   
)0.5C−0.15 ( 

σ   
)

and Cu is the coefficient of uniformity, which, for Ottawa sand, is equal to 1.73. In order 
to decrease the uncertainties emanating from the use of empirical equations, Esmaeilzadeh
Seylabi et al. (2018) used an approach to estimate the modulus reduction curve from far- 
field acceleration data, which was similar to what was used for inferring the shear wave 
velocities from the same data. A multi-axial cyclic plasticity model by Borja et al. (2000) 
was used to model the nonlinear/inelastic behavior of the soil deposit. The mean value of 
the estimated soil model parameters are as follows 1.

h = 
1

0.107 + 0.474 
( z )4.581

1 
Gmax , m = 1.579, R = 0.0028 Gmax , H0 = 0 , (5.5)

Figure 5.2 displays the resulting modulus reduction curves from both approaches at the 
elevations of the rectangular and circular structures. Finally, with using the estimated 
G/Gmax curves and the Gmax profile, we can compute the effective-strain-compatible shear 
modulus Gm for a given maximum shear strain in each event.

5.1.2 Estimation of γmax at the elevation of the culvert structures 
 

For shallow structures one may use the procedure provided in Chapter 4 to estimate γmax. 
However, in order to use that procedure, we need to know the effective compatible shear 
modulus Gm, which itself is a function of γmax. Therefore, in order to use the NCHRP 611 
method, we need to obtain it iteratively as follows: 

1. To start the procedure (iteration i = 0), we need to have initial guesses for the 
maximum shear strains at the elevation of the rectangular and circular culverts. In 
order to compute the maximum strain at the elevation of the rectangular culvert, i.e. 
□  
max,0 , we use the acceleration measurements at AF28 and AE25, which correspond to

the elevations at the roof and invert levels of the culvert. The displacement responses 
at these elevations can be computed by double integration of the acceleration time-
series. Then, the relative free-field displacement history ∆u□ can be computed
as follows.

□
free-field (t) = uAF28(t) −  uAE25(t) . (5.6)

1Details of the nonlinear soil model and definitions of its parameters are provided later in Chapter 6. It 
should also be noted here that our prior studies on centrifuge experiments involving structures embedded 
in dry sands have demonstrated that this soil model exhibits very good performance in predicting the main 
features of soil and embedded structure responses under broadband/seismic excitations (Zhang et al., 2017).

u

γ

∆u

, a = 0.86 + 0.1 log (5.4)
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(a) At the elevation of the rectangular culvert, z/H = (b) At the elevation of the circular culvert, z/H =
0.19 0.46

Figure 5.2: Shear modulus reduction curves obtained from the empirical equations by (Menq, 
2003) and from the Bayesian estimation (Esmaeilzadeh Seylabi et al., 2018) at the elevations of the 
rectangular and circular culvert structures.

Since NCHRP 611 considers the purely uniform shear in estimation of the seismic
demands, γ□ can be computed dividing the maximum relative free-field displace-
ment, i.e. ∆□ , by the height of the culvert structure H. That is,

free-field

□  ∆ □
γmax,0 =   free-field . (5.7)

H

For the circular culvert, we use the acceleration measurements at AE27 and AC17 to 
determine the relative free-field displacement at the elevation of the structure. That 
is,

0
free-field (t) = uAE27(t) −  uAC17(t) . (5.8)

Again, the maximum strain at the elevation of the circular culvert can be computed
by dividing the maximum relative free-field displacement ∆0 by the height (di-
ameter) of the structure D. Therefore,

0  ∆ 0
γmax,0 =   free-field . (5.9)

2. For iteration i, we can predict Gm for the rectangular and circular culverts using 
γmax,i−1 and Figure 5.2. Then, we can correct the maximum shear strain γmax,i using 
Equation 4.1.

G
/G

m
ax

∆u
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G
/G

m
ax

| − |

max,1D

3. We need to repeat step 2 until γmax,i γmax,i−1 <= TOL for the predefined tolerance 
TOL.

Figures 5.3, 5.4 and 5.5 show the iterative procedure for base shakings #3, #6, and #9, 
respectively. The resulting maximum shear strains are also tabulated in Table 5.1. As 
shown, in all cases the use of the iterative procedure results in higher maximum shear 
strains compared to those obtained from dividing the relative free field displacements at 
elevations of the rectangular and circular structures by the height of the structure.

As mentioned before, NCHRP 611 also suggests using 1D site response analysis to compute 
the maximum shear strain. In order to investigate the accuracy of NCHRP 611 equa- 
tions against this refined procedure, we performed 1D wave propagation analysis, using 
the multiaxial cyclic plasticity model. The resulting maximum strain profiles for all nine 
input motions are shown in Figure 5.6 and the strain values at elevations of the culverts
are provided in Table 5.1 (i.e., γ□ 0

max,1D ). As shown, the shear profile is not
constant with depth (especially for medium and high amplitude motions) and its curva- 
ture is a function of soil behavior and input motion characteristics. Moreover, the values 
of maximum strain obtained from 1D wave propagation analysis are considerably smaller 
than those obtained from the iterative procedure and are close to those obtained from the 
experimental data (i.e., our initial guesses for the iterative procedure). The effect of this 
difference will be studied in the subsequent sections.
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Figure 5.3: Iterations for computing γmax at the elevation of the rectangular and circular structures 
when subjected to the base shaking #3. 
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Figure 5.4: Iterations for computing γmax at the elevation of the rectangular and circular structures 
when subjected to the base shaking #6. 
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Figure 5.5: Iterations for computing γmax at the elevation of the rectangular and circular structures 
when subjected to the base shaking #9. 

G
/G

m
ax

G
/G

m
ax



53

0

-0.2

0

-0.2

0

-0.2

-0.4 -0.4 -0.4

-0.6 -0.6 -0.6

-0.8 -0.8 -0.8

-1
0 2 4 6

-1
0 2 4 6

-1
0 2 4 6

0

-0.2

0

-0.2

0

-0.2

-0.4 -0.4 -0.4

-0.6 -0.6 -0.6

-0.8 -0.8 -0.8

-1
0 2 4 6

-1
0 2 4 6

-1
0 2 4 6

0

-0.2

0

-0.2

0

-0.2

-0.4 -0.4 -0.4

-0.6 -0.6 -0.6

-0.8 -0.8 -0.8

-1
0 2 4 6

-1
0 2 4 6

-1
0 2 4 6

γ
max (milistrain) γ

max (milistrain) γ
max (milistrain)

Figure 5.6: Maximum shear strain profile obtained from 1D wave propagation analyses.

Table 5.1: The computed maximum free field shear strains at the elevation of the rectangular and 
circular structures.

max,0 max max,1D max,0 max

Motion#03 Motion#04 Motion#05

Motion#06 Motion#07 Motion#08

Motion#09 Motion#10 Motion#11

z/
H

z/
H

z/
H

Motion # γ□

(milistrain)
γ□

(milistrain)
γ□

(milistrain)
γ 0

(milistrain)
γ 0

(milistrain)
γ 0

max,1D
(milistrain)

3 0.054 0.067 0.020 0.041 0.066 0.046
4 0.092 0.127 0.036 0.075 0.124 0.082
5 0.061 0.086 0.025 0.043 0.080 0.059
6 1.019 1.495 0.298 0.823 1.504 0.943
7 1.235 1.882 0.497 1.082 2.477 1.950
8 0.381 0.612 0.138 0.313 0.815 0.412
9 4.580 9.108 0.993 3.855 18.181 2.355
10 3.553 16.993 0.983 2.508 7.022 4.088
11 2.156 8.280 0.702 1.702 7.660 3.039
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1

b h

0

5.1.3 Seismic strains of the rectangular culvert 
 

As mentioned in Chapter 4, for determination of the flexibility ratio, we need to compute 
the racking stiffness Ks. To this end, we modeled the rectangular structure in ANSYS and 
analyzed it under the unit horizontal force. This resulted in Ks = 26882 kN/m. We consider 
W and H to be equal to 4.3 m and 2.7 m, respectively, in prototype scale. After computing 
the flexibility and racking ratios, we can compute the resulting racking displacement and 
impose it on top of the structure to obtain internal forces and moments from a simple frame 
analysis. We performed this analysis in ANSYS. 

 
5.1.4 Seismic strains of the circular culvert 

 
As mentioned in Chapter 4, we first need to determine the flexibility and compressibility 
ratios to determine the internal forces in the circular culvert (see Equations 4.3 and 4.4).
After obtaining Gm, one can compute the effective-strain-compatible Young’s modulus of 
the surrounding soil using the following equation

Em = 2Gm(1 + νm) (5.10)

where νm is the Poisson’s ratio of the soil and is equal to 0.3 for the present case. I1 and 
A1 are the moment of inertia and area of the cross-section, and are equal to 1/12t3 and 
t1, respectively, for the unit length of the circular culvert with the thickness of t1. After 
the determination of F 0  and C 0, we can calculate the internal forces and the resulting 
strains for each test. In-plane bending strain (E0) and in-plane axial (hoop) strain (E0)

b h
are related to the internal bending (M 0 )  and thrust (T 0 )  as follows:

E0 = M 0t1
2E I , E0 =

T 
. (5.11)A

1 1 1

5.2 Static and dynamic increments of measured strains 
 

As mentioned in Chapter 2, we use the full bridge arrangement to measure the in-plane 
bending and in-plane axial strains at different points along the edges of the structures. Prior 
to interpretation and comparisons, the strain data need to be processed, the procedural 
details of which are provided in §3.2.4 of Chapter 3.

In the following sections, we provide the strain results for both the static offset at the be- 
ginning of each base shaking and the corresponding dynamic increment. It should be noted 
that for the rectangular structure, the results for only the bending strains are provided. 
This is mainly because the recorded in-plane axial strains were too small, even for the large 
amplitude motions (see Figure 3.7).
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5.3 Comparison of the in-plane bending strains for the rect- 
angular culvert 

 
In order to compare the experimental bending strain data against those computed using 
the NCHRP 611 method, we need to obtain the maximum bending strain profiles. To this 
end, we use the processed strain data from each event to determine the maximum bending 
strain among all recorded bending strains on the rectangular structure as well as the time 
it occurs. Then, we read the value of bending strains at all locations at the time that the 
maximum bending strain has occurred. Figure 5.8 displays the bending strain comparisons 
for each base shaking. In each sub-figure, the static offset of the experimental strains 
at the beginning of the shaking is shown on the left. On the other hand, the maximum 
dynamic increment (red bars) along with those obtained from the NCHRP 611 method 
(blue bars) are shown on the right. It should be noted that different scaling factors are used 
among different events. Therefore, these figures provide only a qualitative understanding 
of differences between the experimental data and the NCHRP 611 analysis results.

In order to compare the actual bending strain values, we compute the maximum bending 
strain for each event. Table 5.2 summarizes the values of the important parameters in- 
cluding the flexibility and racking ratios, and the maximum bending strains. We observe 
that:

The application sequence of base shakings had negligible effects on the maximum 
value of the static strain offset. However, the static offset profile has slightly changed 
(specifically, along the invert and bottom sides of the culvert walls).

Since the box structure remained elastic, F □ is proportional to Gm. Therefore, as 
the surrounding soil becomes softer, the flexibility ratio—and therefore the racking 
ratio—decreases.

• In all cases, the NCHRP 611 method overestimates the maximum bending strain. 

The experimental bending strain profiles along the walls, roof, and invert vary almost 
linearly, and conform to the bending strain profile obtained from static frame analysis.

In order to have a closer look at how the maximum bending strain is related to different pa- 
rameters of interest (PoIs), we plot each PoI against the maximum bending strains obtained 
from the centrifuge data directly, and the NCHRP method. This is shown in Figure 5.7.
Although the range of ECentrifuge is different from the range of ENCHRP, visually they both

b b
follow similar trends, especially with respect to γmax and R.

•

•

•
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Figure 5.7: Variation of different PoIs with maximum bending strain of the rectangular structure.
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Table 5.2: Comparison of the maximum bending strains of the rectangular structure.

max b b b

Table 5.3: Comparison of the maximum bending strains of the circular structure.

max b b b

Table 5.4: Comparison of the maximum hoop strains of the circular structure.

m ax  h h  h
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Motion 
#

Input 
(g)

A F28
(g )

G m / G m ax Vs
(m /s)

γ
(m ilistrain)

F R E (milistrain) 
NCHRP

E (milistrain) 
Centrifuge, Static

E (milistrain) 
Centrifuge, Dynamic

eN C H R P/e C entrifuge
b b

3 0.015 0.033 0.954 125.8 0.07 1.63 1.24 0.0077 0.0337 0.0035 2.17
4 0.014 0.058 0.890 121.6 0.13 1.52 1.21 0.0141 0.0335 0.0064 2.21
5 0.015 0.041 0.934 124.5 0.09 1.59 1.23 0.0097 0.0334 0.0040 2.42
6 0.166 0.271 0.352 76.5 1.50 0.60 0.75 0.1034 0.0334 0.0362 2.86
7 0.198 0.299 0.309 71.6 1.88 0.53 0.69 0.1196 0.0328 0.0447 2.68
8 0.081 0.175 0.555 96.0 0.61 0.95 0.97 0.0549 0.0325 0.0223 2.46
9 0.470 0.524 0.112 43.1 9.11 0.19 0.32 0.2687 0.0324 0.0682 3.94

10 0.494 0.625 0.071 34.4 16.99 0.12 0.22 0.3401 0.0332 0.0756 4.50
11 0.423 0.510 0.120 44.6 8.28 0.20 0.34 0.2587 0.0331 0.0617 4.20

Motion 
#

Input 
(g)

A F33
(g )

G m / G m ax Vs
(m /s)

γ
(m ilistrain)

F E  (milistrain) 
NCHRP

E  (milistrain) 
Centrifuge, Static

E  (milistrain) 
Centrifuge, Dynamic

eN C H R P/e C entrifuge
b b

3 0.015 0.030 0.958 162.2 0.066 129.0 0.0041 0.1471 0.0024 1.72
4 0.014 0.054 0.905 158.9 0.122 123.7 0.0075 0.1489 0.0046 1.64
5 0.015 0.037 0.945 161.1 0.080 127.2 0.0049 0.1510 0.0026 1.89
6 0.166 0.262 0.362 99.8 1.504 48.8 0.0904 0.1542 0.0700 1.29
7 0.198 0.323 0.271 86.3 2.477 36.5 0.1473 0.2167 0.0824 1.79
8 0.081 0.196 0.500 117.2 0.815 67.3 0.0494 0.2356 0.0249 1.99
9 0.470 0.608 0.070 43.7 18.181 9.4 0.9640 0.2415 0.3604 2.67

10 0.494 0.466 0.138 61.6 7.022 18.6 0.4013 0.3311 0.2521 1.59
11 0.423 0.476 0.129 59.6 7.660 17.4 0.4355 0.3363 0.1528 2.85

Motion 
#

Input 
(g)

A F33
(g )

G m / G m ax Vs
(m /s)

γ
(m ilistrain)

C E  (milistrain) 
NCHRP

E  (milistrain) 
Centrifuge, Static

E  (milistrain) 
Centrifuge, Dynamic

eN C H R P/e C entrifuge
h h

3 0.015 0.030 0.958 162.2 0.066 0.1119 0.0019 0.0698 0.0020 0.96
4 0.014 0.054 0.905 158.9 0.122 0.1073 0.0034 0.0700 0.0038 0.90
5 0.015 0.037 0.945 161.1 0.080 0.1103 0.0023 0.0699 0.0024 0.96
6 0.166 0.262 0.362 99.8 1.504 0.0423 0.0167 0.0699 0.0298 0.56
7 0.198 0.323 0.271 86.3 2.477 0.0317 0.0207 0.0779 0.0290 0.72
8 0.081 0.196 0.500 117.2 0.815 0.0584 0.0124 0.0792 0.0112 1.11
9 0.470 0.608 0.070 43.7 18.181 0.0081 0.0404 0.0792 0.0782 0.52

10 0.494 0.466 0.138 61.6 7.022 0.0161 0.0303 0.0823 0.0632 0.48
11 0.423 0.476 0.129 59.6 7.660 0.0151 0.0310 0.0942 0.0443 0.70
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5.4 Comparison of the in-plane bending strains for the circu- 
lar culvert 

 
We use the same approach here for the circular culvert as we did for obtaining the bending 
strain of the rectangular structure. Figure 5.10 displays the static offset and dynamic in- 
crement of bending strain data recorded during different base shakings. Again, the bending 
strain data obtained from the NCHRP 611 method are included in the figures for compar- 
ison. As mentioned before, since the scaling factors that are used are not the same, these 
figures only provide a qualitative means of comparison as well as how the static and dynamic 
strain profiles vary with different motions. Table 5.3 summarizes the maximum values of 
the bending strains along with PoIs, and their relationships are illustrated in Figure 5.9.
We observe that:

The static strain offset increases as the model is subjected to more base shakings. 
This may be partially due to the densification of the soil around of the structure.

In all cases, the flexibility ratio is greater than 1; and its value decreases as the sur- 
rounding soil becomes softer. Therefore, for low-amplitude motions, ovaling should 
be the dominant mode of deformation of the structure. On the other hand, as F 0  
decreases, the relative stiffness of the structure with respect to the surrounding soil in- 
creases, which would result in more (dynamic) SSI effects and therefore more complex 
behavior. The bending strain profiles shown in the figures ascertain this observation.

• In general, the NCHRP method overestimates the bending strains.
• Again, although the range of ENCHRP and ECentrifuge differ, they vary similarly with

b b
PoIs, especially with F 0 and γmax,0.

5.5 Comparison of the hoop strains for the circular culvert 
 

We obtained the hoop strain profiles following the same procedure as before, which are 
shown in Figure 5.12. The summary of the PoIs and maximum hoop strain values are 
provided in Table 5.4 and Figure 5.11. We observe that:

The static hoop strain offset is less sensitive than the static bending strain to the 
application sequence of the base shakings.

The computed compressibility ratios are less than 1 in all cases. Again, as the soil 
becomes softer, the relative stiffness of the structure with respect to the surrounding 
soil increases, and therefore, the compressibility ratio decreases. This can lead to 
more complex hoop strain profiles under higher amplitude base shakings.

•

•

•

•
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(a) Motion #3 (b) Motion #4 (c) Motion #5

(d) Motion #6 (e) Motion #7 (f) Motion #8

(g) Motion #9 (h) Motion #10 (i) Motion #11

Figure 5.8: Comparison of the experimental in-plane dynamic bending strains in the rectangular 
culvert with those from the NCHRP 611 method.
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Figure 5.9: PoI correlation with maximum bending strain of the circular structure.
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(a) Motion #3 (b) Motion #4 (c) Motion #5

(d) Motion #6 (e) Motion #7 (f) Motion #8

(g) Motion #9 (h) Motion #10 (i) Motion #11

Figure 5.10: Comparison of the experimental in-plane dynamic bending strains in the circular 
culvert against those from the NCHRP 611 method.

Dynamic Dynamic Dynamic

Dynamic Dynamic Dynamic

Dynamic
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h h

In general, the NCHRP method underestimates the hoop strains. This is while the 
NCHRP analysis method suggests the use of the full-slip condition in computing the 
thrust as a conservative approach to take care of amplifications due to dynamic SSI 
effects. However, we observe that this conservative solution still underestimates the 
hoop strains in the circular structure.

• The variations of ENCHRP and ECentrifuge with PoIs are similar, especially with respect 
h h 
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Figure 5.11: PoI correlation with maximum hoop strain of the circular structure.

5.6 The racking of the rectangular structure 
 

As shown, the bending strains computed using the NCHRP 611 method have a direct 
relationship to the racking displacements imposed on the roof of the structure. In order to 
see how the computed ∆s differs from the actual racking of the tested structure, we also 
computed the experimental racking from the recorded accelerations on the structure. That

Po
I

•
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(a) Motion #3 (b) Motion #4 (c) Motion #5

(d) Motion #6 (e) Motion #7 (f) Motion #8

(g) Motion #9 (h) Motion #10 (i) Motion #11

Figure 5.12: Comparison of the experimental dynamic hoop strains in the circular culvert with 
those from the NCHRP 611 method.
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{ }

is,

□
s,left

∆ □
= u7(t) −  u1(t) (5.12)

= u3(t) −  u6(t) (5.13)
s,right

where ui(t) for i = 1, 3, 6, 7 are obtained from double integration of the processed acceler- 
ation data. Figure 5.13 displays the time series of the resulting racking deformations along 
the left and right walls of the structure along with the maximum racking deformations that 
we obtained through the NCHRP 611 method. As shown, the racking displacements along 
the left and right walls conform to each other and their maximum values are considerably 
smaller than the NCHRP ∆s.
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Figure 5.13: Comparison of the rectangular structure racking displacements obtained from recorded 
accelerations on the structure and from the NCHRP 611 method.
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11 + σ
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5.7 Comparison of the von Mises stresses 
 

In order to quantify the stress level in culvert cross sections, we also computed the von 
Mises equivalent stress. This stress invariant is a typical metric used in the strength- 
based design of metal components, and could also be applied to culverts. Using a scalar 
invariant such as von Mises stress for comparisons of different methods is desirable in that 
it combines discrepancies in all of the predicted-vs-measured stress/strain components into 
single measure.

Assuming a plane strain condition2:

σ11 = EE11, σ22 = 0, σ33 =

and therefore,

νE
(1 + ν)(1 − 2ν)

E11, σ12 = σ13 = σ23 = 0 , (5.14)

σvm = 
J
σ2 2 −  σ11σ33 . (5.15)

Using the above equation and considering ν = 1/3 and E = 68.95 GPa for Aluminum, 
Table 5.5 provides the resulting von Mises stresses σvm for each motion.

Table 5.5: Comparison of the Von Mises stress in the culvert structures.
M otion  σ (M P a) σ (M P a)  σ (M P a)  σ (M P a)  σ (M P a) σ (M P a)  σ v m  v m  v m

#  N C H R P  N CH RP-1D  C en trifu ge N C H R P  N CH RP-1D  C en trifu ge (1/ 3) (2/ 3) (4/ 6) (5/ 6)
(1 ) (2 ) (3 ) (4 ) (5 ) (6 ) (7 ) (8 ) (9 ) (10)

3 0.4 0.3 0.2 0.5 0.2 0.2 2.0 1.5 2.5 1.0
4 0.7 0.5 0.4 0.9 0.3 0.4 1.8 1.25 2.3 0.75
5 0.4 0.3 0.2 0.6 0.2 0.2 2.0 1.5 3.0 1.0
6 6.6 4.4 4.7 6.7 2.0 2.2 1.4 0.9 3.0 0.9
7 10.4 8.4 5.5 7.8 3.0 2.8 1.9 1.5 2.8 1.1
8 3.8 2.1 1.7 3.6 1.0 1.4 2.2 1.2 2.6 0.7
9 62.4 10.0 22.8 17.4 5.1 4.2 2.7 0.4 4.1 1.2

10 26.8 16.4 16.0 22.1 5.1 4.7 1.7 1.0 4.7 1.1
11 29.0 12.6 10.0 16.8 4.0 3.8 2.9 1.3 4.4 1.1

5.8 Effects of using γmax,1D for computing bending and hoop 
strains and racking displacements via the NCHRP 611 
method 

 
As shown in the previous sections, using the NCHRP 611 method with the iterative proce- 
dure to compute γmax resulted in the over-estimation of bending strains in both rectangular 

 

2It should be noted that in general σ22 is not zero and its effects should be considered in computing the 
von Mises stress. 

σ
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and circular culverts. We repeated the NCHRP 611 procedure using γmax,1D as the input. 
As mentioned before, we computed γmax,1D for each case by performing nonlinear 1D wave 
propagation analyses in ABAQUS using soil model parameters obtained form the Bayesian 
approach. We will use these parameters for our numerical simulations, as it will be discussed 
in detail in Chapter 6.

Figures 5.14, 5.15 and 5.16 provide the dynamic bending strain profiles for the rectangular 
culvert, dynamic bending strain profiles for the circular culvert, and the dynamic hoop strain 
profiles for the circular culvert, respectively. Figure 5.17 displays the comparison of the 
racking displacements in the rectangular culvert. As seen, using the more-refined procedure 
to compute maximum free field shear strain resulted in bending strain profiles that are closer 
to those measured in the centrifuge experiments, and tended to underestimate the profiles 
in many cases. This trend is even worse for the hoop strains. Table 5.6 summarizes the 
resulting maximum strain ratios compared to those we obtained using the NCHRP 611 
iterative procedure. Moreover, as shown in Figure 5.17, the racking displacements have 
also become in the same order of those computed from the experimental data. This shows 
the importance of the choice for γmax if/when we want to use the NCHRP 611 method to 
compute the seismic demands in culvert structures.

Table 5.6: Maximum bending and hoop strain ratio comparisons when we use the NCHRP 611 
iterative procedure and the more-refined 1D site response analysis to compute the free shear strain.

b b b b hMotion e D , u sin g γm ax e D , u s in g γm ax ,1D e   , using γm ax e , u sin g γm ax,1D e   , using γm ax e , u sin g γm ax,1Dh

3 2.17 0.65 1.72 1.19 0.96 0.71
4 2.21 0.65 1.64 1.09 0.90 0.61
5 2.42 0.72 1.89 1.38 0.96 0.71
6 2.86 0.84 1.29 0.82 0.56 0.45
7 2.68 1.04 1.79 1.42 0.72 0.65
8 2.46 0.68 1.99 1.01 1.11 0.75
9 3.94 1.15 2.67 0.39 0.52 0.26

10 4.50 1.03 1.59 0.95 0.48 0.40
11 4.20 0.99 2.85 1.18 0.70 0.51
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(a) Motion #3 
 

(b) Motion #4 
 

(c) Motion #5 
 
 

   
 
 

(d) Motion #6 
 

(e) Motion #7 
 

(f) Motion #8 
 
 

   
 
 

(g) Motion #9 (h) Motion #10 (i) Motion #11

Figure 5.14: Comparison of the experimental in-plane dynamic bending strains in the rectangular 
culvert against those from the NCHRP 611 method when γmax,1D is used as the input maximum 
free field shear strain.
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(a) Motion #3 (b) Motion #4 (c) Motion #5

(d) Motion #6 (e) Motion #7 (f) Motion #8

(g) Motion #9 (h) Motion #10 (i) Motion #11

Figure 5.15: Comparison of the experimental in-plane dynamic bending strains in the circular 
culvert against those from the NCHRP 611 method when γmax,1D is used as the input maximum 
free field shear strain.
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(a) Motion #3 (b) Motion #4 (c) Motion #5

(d) Motion #6 (e) Motion #7 (f) Motion #8

(g) Motion #9 (h) Motion #10 (i) Motion #11

Figure 5.16: Comparison of the experimental dynamic hoop strains in the circular culvert against 
those from the NCHRP 611 method when γmax,1D is used as the input maximum free field shear 
strain.
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Figure 5.17: Comparison of the rectangular structure racking displacement obtained from recorded 
accelerations on the structure and from the NCHRP 611 method using γmax,1D as the input.
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Chapter 6

Finite element modeling & analysis 
of the centrifuge tests

In this chapter, we provide details of direct numerical modeling of the conducted centrifuge 
experiments and investigate the predictive capabilities of the calibrated finite element model 
to capture the key response parameters.

6.1 Development of the numerical model 
 

In order to numerically study the dynamic SSI behavior of the centrifuge specimens, a 
two-dimensional (2D) finite element model was constructed in prototype scale based on the 
dimensions given in Figure 2.10. In experiments with earthquake excitations (i.e., motions 
3 to 11), the scaling factor N ranges from 20.7g to 21.1g. As such, we decided to use 
the same factor of N = 21g for all numerical simulations in this report. As shown in 
Figure 6.1, the input motion is applied along the bottom boundary of the model, where the 
vertical degrees of freedom are fixed. We did not model the container explicitly. Instead, we 
imposed periodic boundary conditions along horizontal degrees of freedom at the left and 
right vertical edges of the soil domain while their vertical degrees of freedom are fixed, since 
a flexible shear beam container is used for the experiments. It should be noted that this 
configuration is used in the dynamic loading steps of analyses. In order to set up the initial 
stress conditions appropriately, we also performed a static analyses under gravity loading 
prior to each dynamic analysis. During the static analyses, we fixed the horizontal degrees 
of freedom at the left and right vertical edges of the discretized model, while leaving the 
vertical degrees of freedom free.

We used bilinear plane-strain elements for modeling the soil and the rectangular structure
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and beam elements for modeling the circular structure. We also used frictional contact 
elements to model sliding at the soil-structure interface. Following Deng et al. (2016) and 
by considering the soil friction angle of φsoil = 35 degrees, the friction coefficient of the 
interface elements is computed as,

tan (φinterface) = 0.7 tan (φsoil) ≈ 0.33 . (6.1)

Contact elements

Periodic BCs Periodic BCs

Figure 6.1: Mesh configuration of the finite element model used in numerical analysis.

As the structures were expected to behave linear elastically in all of the experiments, we 
used linear elastic material models for both culverts using the properties of Aluminum 
T60-61, which are γ = 26.5 kN/m3, E = 68.9 GPa and ν = 0.33. On other hand, for 
capturing the nonlinear soil behavior, which is a relatively dense dry Ottawa sand, we used 
a multi-axial cyclic plasticity model. Details of this model are provided next.

6.2 Multiaxial cyclic plasticity soil model: formulation, im- 
plementation and validation 

 
It is well known that soil nonlinearity comes into effect even at very small strain levels 
(Dafalias and Popov, 1977). Therefore, it is generally necessary to model soil nonlinearity in 
any dynamic SSI analysis. One of the soil models that is widely used to capture the behavior 
of cohesionless soil deposits in numerical simulations is the pressure-dependent multi-yield- 
surface model by Yang et al. (2003). However, this model has too many parameters, which 
are required to capture the typical soils’ large strain and post-liquefaction behavior, and this 
makes its calibration a formidable task. Since our experiments were in relatively dense dry 
sand, we decided to use a simpler soil model derived in total stress space, which features 
a small number of parameters. This model was the bounding surface multi-axial cyclic 
plasticity soil model by Borja and Amies (1994); Borja et al. (2000), which has a vanishing 
elastic region and viscous terms, which enable taking small-strain damping into account at 
the material point level.



73

−

dσ 1

3− ⊗

ep

6.2.1 Formulation 
 

The total stress tensor σ of Borja’s model consists of two major—namely, the inviscid 
(σinv) and the viscous (σvis)—parts, as given by 

σ  = σ inv + σvis (6.2) 
 

where
σ inv = Ce : (E Ep),

σvis = D : E˙, 
(6.3)

and Ce and D are elastic stiffness and viscous damping tensors, respectively; E is the total 
strain tensor; Ep is the plastic strain tensor, and E˙ is the total strain rate. In this study, a 
linear stiffness-proportional damping is adopted (Borja et al., 2000), which can be devised 
by defining D as

D = 
2ξ0 Ce = a Ce (6.4)
ω0 

1

where ω0 is the frequency at which the small strain damping ratio is equal to ξ0. The inviscid 
part of Borja’s model is based on J2-bounding surface plasticity theory with a vanishing 
elastic region. The translation of the bounding surface with radius R is facilitated by the 
exponential hardening modulus

H1 = hκm + H0 (6.5)

where h and m are the exponential hardening parameters and for H0 > 0 the bounding 
surface also hardens kinematically (for further formulations details, see Borja and Amies, 
1994; Borja et al., 2000).

To achieve an optimal rate of convergence for the Newton’s method required in implicit 
dynamic time-stepping methods, the consistent tangent moduli are required (Simo and
Hughes, 2000). Borja and Wu (1994) derived this fourth-order tensor as,

inv ∂ψC inv = n+1 = K1 ⊗ 1 + ψIdev + ⊗ ∆E (6.6)
ep dEn+1 ∂En+1

where Idev = I 1 1 1, is the deviatoric identity tensor and K is the bulk modulus. The 
parameter ψ is defined through the equation ∆σ1 = ψ ∆E1, where ∆σ1 and ∆E1 denote the 
deviatoric stress and strain increments, respectively. The third term on the right-hand side 
of Eq. (6.6) renders Cinv to be non-symmetric in general. However, as demonstrated by 
Borja and Wu (1994), the symmetric part of this consistent tangent stiffness tensor is often 
adequate to produce accurate solutions at superlinear convergence rates. Incidentally, a 
symmetric tangent also facilitates significant savings in computer memory requirements as
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ep

well as in flops for solving the system-level equilibirum equations. Furthermore, one can 
relate the viscous stress increment to the total strain increment as follows:

which yields,

vis
n+1 = Cvis : dEn+1 = 

2ξ0 Ce : Ė
ω0

n+1 = 
 1 2ξ0 Ce : dE 
dt ω0

n+1 (6.7)

Cvis = 
 1 2ξ0 Ce . (6.8)

ep dt ω0

By only retaining the symmetric part of the consistent tangent of Borja’s model, we obtain 
the total consistent tangent stiffness moduli as,

Cep = Cinv + Cvis = K1 ⊗ 1 + ψIdev + 
 1 2ξ0 Ce (6.9)

ep,symm ep dt ω0

where dt is the time increment chosen for the time discretization of E˙n+1.

6.2.2 Implementation and validation 
 

We implemented all variants of the model—namely, plastic, plastic with viscous damp- 
ing, with symmetric or non-symmetric tangent, plane-strain, axisymmetric, and three- 
dimensional—in the commonly used commercial finite element analysis software ABAQUS 
(Hibbit et al., 2007), through its user-defined material (UMAT) subroutine interface.

For verification, we made comparisons of 1D wave propagation analysis results with those 
obtained using DEEPSOIL (Hashash et al., 2016), which is a well-known computer code 
for site response analysis that features linear, equivalent linear, and validated nonlinear soil 
models. Here, we opted to use its nonlinear module, which is based on a pressure-dependent 
hyperbolic model by Matasovic (1993). Reasonable—and otherwise unremarkable—soil 
and model parameters were chosen for these verification simulations: the height of the soil 
column was 28.9 m, Gmax = 8 MPa, h = Gmax, m = 0.5, R = 50 kPa, ω0 = 4π rad/s, 
ξ0 = 1%, and H0 = 0. Fig. 6.2 displays the acceleration time-series and the 5%-damped 
spectral accelerations obtained at the surface of the soil column, which was subjected to 
a Ricker wavelet with a central frequency that is equal to the natural frequency of the 
homogeneous soil layer considered. Fig. 6.3 displays the results obtained for the same soil 
column when it was subjected to an earthquake motion. As shown, for both cases, the 
results of the implemented soil model are in very good agreement with those obtained 
using DEEPSOIL, especially after adding the viscous damping term.

For studying the multi-axial capability of this soil model, we used a series of centrifuge 
experiments on buried reservoirs in dry Nevada sand and observed its superior performance 
against the nominally more complex pressure-dependent multi-yield surface soil model. 
Details of those comparisons are omitted for brevity and can be found in (Zhang et al., 
2017).

σ
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Figure 6.2: 1D site response analysis: (a) acceleration history and (b) 5%-damped spectral accel- 
eration subjected to the Ricker wavelet input.
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Figure 6.3: 1D site response analysis: (a) acceleration history and (b) 5%-damped spectral accel- 
eration subjected to earthquake input.
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H

H

+
Gmax 2γ

s

0

6.3 Calibration of the soil parameters from centrifuge data 
 

Borja’s model can be defined by small strain shear wave velocity profile, modulus reduction 
curves, small strain damping, and shear strength of the soil deposit at hand. It can be 
shown that under the simple shear test condition, the following relationship exists between 
the normalized shear modulus G/Gmax and shear strain γ using Borja’s model (Chao and
Borja, 1998).

G   3 
  2Giγ 1 ( 

R/
√

2 + Gγ −  τ 
)m 1−1

Therefore, for the given G/Gmax curve, one can obtain the unknown parameters h, m, R 
and H0 by solving a series of nonlinear equations or via the least squares method (Zhang
et al., 2017). As mentioned earlier in Chapter 5, we used a Bayesian approach to infer the 
shear wave velocity, G/Gmax and the small strain viscous damping coefficient a1 from free 
field acceleration measurements. Assuming a power function for the shear wave velocity 
profile and the hardening parameter h resulted in

and

V (m/s) = 16.905 + 192.976 
(  z )0.331 

(6.11)

h = 
1

0.107 + 0.474 
( z )4.581

1 
Gmax (6.12)

along with other parameters estimated as

m = 1.579, R = 0.0028 Gmax, a1 = 0.0031 . (6.13)

We also assumed that H0 = 0. Figure 6.4 displays the resulting calibrated shear wave 
velocity profile and the G/Gmax curves for different depths, which are used in various 
numerical analyses of this report.

6.4 Numerical analyses 
 

We used the calibrated soil model in finite element models of the centrifuge tests and 
performed numerical simulations using the earthquake excitations as input motions. To 
examine the predictive capabilities of the finite element models, we present the measured 
and numerically computed accelerations at various locations within the soil and on the 
specimen structures, the bending strains along the rectangular structure, and the bending 
and hoop strains along the circular structure in the following subsections.

τ + H0 dτ − 1 = 0. (6.10)h
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Figure 6.4: Calibrated shear wave velocity profile and G/Gmax curves over the depth.

6.4.1 Comparison of horizontal accelerations in soil 
 

Figures 6.5-6.13 display comparisons of horizontal acceleration time-series and Fourier am- 
plitudes for the left/southern acceleration array (i.e., locations AA1, AC12, AD18, AE25 
and AF28). Figures 6.14-6.22 display similar data for the middle array (i.e., locations 
AAH5, AC16, ADH23, AE26 and AFH30). For the reader’s convenience, we recall here 
that the motions 3-5 were low-amplitude, 6-8 were moderate amplitude, and 9-11 were high 
amplitude excitations (see Figure 2.19). As shown, the finite element models generally cap- 
ture the time-series and the Fourier amplitude spectra of the measured accelerations for all 
motion amplitudes. It should be noted that we used only the left array acceleration data 
from motions #3 and #9 for calibrating the soil constitutive model parameters. Moreover, 
as shown, ICP AAH5 was only functional during motions 3, 4, and 5.

6.4.2 Comparison of horizontal accelerations of culvert specimens 
 

Figures 6.23-6.31 display the comparisons for the time series and Fourier amplitude spectra 
of horizontal accelerations for the rectangular (locations 7 and 1) and circular (locations 
16 and 14) culverts. Again, the agreement between the numerical and experimental results 
for all motions are generally very good.

Seylabi et al. (2018)
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Figure 6.5: Time series and Fourier amplitude spectra of the accelerations recorded at the left array 
(AA1, AC12, AD18, AE25 and AF28) for motion #3.
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Figure 6.6: Time series and Fourier amplitude spectra of the accelerations recorded at the left array 
(AA1, AC12, AD18, AE25 and AF28) for motion #4.
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Figure 6.7: Time series and Fourier amplitude spectra of the accelerations recorded at the left array 
(AA1, AC12, AD18, AE25 and AF28) for motion #5.
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Figure 6.8: Time series and Fourier amplitude spectra of the accelerations recorded at the left array 
(AA1, AC12, AD18, AE25 and AF28) for motion #6.
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Figure 6.9: Time series and Fourier amplitude spectra of the accelerations recorded at the left array 
(AA1, AC12, AD18, AE25 and AF28) for motion #7.
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Figure 6.10: Time series and Fourier amplitude spectra of the accelerations recorded at the left 
array (AA1, AC12, AD18, AE25 and AF28) for motion #8.
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Figure 6.11: Time series and Fourier amplitude spectra of the accelerations recorded at the left 
array (AA1, AC12, AD18, AE25 and AF28) for motion #9.

0.5

0

-0.5

-1
10 11 12 13 14 15 16 17 18 19 20

1

0

-1
10 11 12 13 14 15 16 17 18 19 20

1

0

-1
10 11 12 13 14 15 16 17 18

0.5

0

-0.5

-1
10 11 12 13 14 15 16 17 18

1

0

-1
10 11 12 13 14 15 16 17 18 19 20

Time (sec)

0.2

0.1

0

0.2

0.1

0

0.2

0.1

0

0.2

0.1

0

0.2

0.1

0

2

2

2

2

0 2 4 6 8 10
Frequency (Hz)

Figure 6.12: Time series and Fourier amplitude spectra of the accelerations recorded at the left 
array (AA1, AC12, AD18, AE25 and AF28) for motion #10.
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Figure 6.13: Time series and Fourier amplitude spectra of the accelerations recorded at the left 
array (AA1, AC12, AD18, AE25 and AF28) for motion #11.
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Figure 6.14: Time series and Fourier amplitude spectra of the accelerations recorded at the middle 
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #3.
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Figure 6.15: Time series and Fourier amplitude spectra of the accelerations recorded at the middle 
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #4.
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Figure 6.16: Time series and Fourier amplitude spectra of the accelerations recorded at the middle 
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #5.
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Figure 6.17: Time series and Fourier amplitude spectra of the accelerations recorded at the middle 
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #6.
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Figure 6.18: Time series and Fourier amplitude spectra of the accelerations recorded at the middle 
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #7.
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Figure 6.19: Time series and Fourier amplitude spectra of the accelerations recorded at the middle 
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #8.
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Figure 6.20: Time series and Fourier amplitude spectra of the accelerations recorded at the middle 
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #9.
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Figure 6.21: Time series and Fourier amplitude spectra of the accelerations recorded at the middle 
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #10.
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Figure 6.22: Time series and Fourier amplitude spectra of the accelerations recorded at the middle 
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #11.
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Figure 6.23: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on 
the specimen structures (7, 1, 16 and 14) for motion #03.
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Figure 6.24: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on 
the specimen structures (7, 1, 16 and 14) for motion #04.
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Figure 6.25: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on 
the specimen structures (7, 1, 16 and 14) for motion #05.
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Figure 6.26: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on 
the specimen structures (7, 1, 16 and 14) for motion #06.
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Figure 6.27: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on 
the specimen structures (7, 1, 16 and 14) for motion #07.
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Figure 6.28: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on 
the specimen structures (7, 1, 16 and 14) for motion #08.
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Figure 6.29: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on 
the specimen structures (7, 1, 16 and 14) for motion #09.
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Figure 6.30: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on 
the specimen structures (7, 1, 16 and 14) for motion #10.
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Figure 6.31: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on 
the specimen structures (7, 1, 16 and 14) for motion #11.

6.4.3 Comparison of in-plane bending strains for rectangular culvert 
 

To compare the maximum bending strain profiles, we used the processed strain data of 
each event to determine the maximum in-plane bending strains among all the recorded 
data on the rectangular structure and the time it occurred. Then, we read the value of 
bending strains at all locations at that particular time. We followed the same procedure 
to extract the bending strain profile from the numerical simulations. Figures 6.32-6.49
display the comparisons for the time series and Fourier amplitude spectra of the dynamic 
bending strains for the rectangular culvert, and Figures 6.50-6.58 display the comparisons 
for both static and dynamic bending strain profiles. Again, as shown, the numerical model 
was successful in capturing bending strain data for all (low, medium, high amplitude) base 
shaking events.
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Figure 6.32: Comparison of the time series of the dynamic bending strains of the rectangular 
structure for motion #03.
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Figure 6.33: Comparison of the Fourier amplitude spectra of the rectangular structure for motion 
#03.
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Figure 6.34: Comparison of the time series of the dynamic bending strains of the rectangular 
structure for motion #04.
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Figure 6.35: Comparison of the Fourier amplitude spectra of the rectangular structure for motion 
#04.
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Figure 6.36: Comparison of the time series of the dynamic bending strains of the rectangular 
structure for motion #05.
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Figure 6.37: Comparison of the Fourier amplitude spectra of the rectangular structure for motion 
#05.
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Figure 6.38: Comparison of the time series of the dynamic bending strains of the rectangular 
structure for motion #06.
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Figure 6.39: Comparison of the Fourier amplitude spectra of the rectangular structure for motion 
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Figure 6.40: Comparison of the time series of the dynamic bending strains of the rectangular 
structure for motion #07.
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Figure 6.41: Comparison of the Fourier amplitude spectra of the rectangular structure for motion 
#07.
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Figure 6.42: Comparison of the time series of the dynamic bending strains of the rectangular 
structure for motion #08.
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Figure 6.43: Comparison of the Fourier amplitude spectra of the rectangular structure for motion 
#08.
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Figure 6.44: Comparison of the time series of the dynamic bending strains of the rectangular 
structure for motion #09.
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Figure 6.45: Comparison of the Fourier amplitude spectra of the rectangular structure for motion 
#09.
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Figure 6.46: Comparison of the time series of the dynamic bending strains of the rectangular 
structure for motion #10.
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Figure 6.47: Comparison of the Fourier amplitude spectra of the rectangular structure for motion 
#10.
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Figure 6.48: Comparison of the time series of the dynamic bending strains of the rectangular 
structure for motion #11.
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Figure 6.49: Comparison of the Fourier amplitude spectra of the rectangular structure for motion 
#11.
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Figure 6.50: Comparison of the maximum static and dynamic bending strain profiles of the rect- 
angular structure for motion #03.

Figure 6.51: Comparison of the maximum static and dynamic bending strain profiles of the rect- 
angular structure for motion #04.

Figure 6.52: Comparison of the maximum static and dynamic bending strain profiles of the rect- 
angular structure for motion #05.
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Figure 6.53: Comparison of the maximum static and dynamic bending strain profiles of the rect- 
angular structure for motion #06.

Figure 6.54: Comparison of the maximum static and dynamic bending strain profiles of the rect- 
angular structure for motion #07.

Figure 6.55: Comparison of the maximum static and dynamic bending strain profiles of the rect- 
angular structure for motion #08.
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Figure 6.56: Comparison of the maximum static and dynamic bending strain profiles of the rect- 
angular structure for motion #09.

Figure 6.57: Comparison of the maximum static and dynamic bending strain profiles of the rect- 
angular structure for motion #10.

Figure 6.58: Comparison of the maximum static and dynamic bending strain profiles of the rect- 
angular structure for motion #11.
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6.4.4 Comparison of in-plane bending strains for circular culvert 
 

Similarly, Figures 6.59-6.76 display the comparisons for the time series and Fourier ampli- 
tude spectra of the dynamic bending strains for the circular culvert, and Figures 6.77-6.85
display the comparisons for both static and dynamic bending strain profiles. As shown, 
the numerical model approach is again successful in general to capture bending strain time 
series. However, agreements are not perfect at all locations. Moreover, although the nu- 
merical model is successful in capturing the dynamic strain profile, it was unable to do so 
for the static case. This can be partially attributed to the fact that we are not modeling 
the soil densification in our numerical simulations and the initial condition is the same for 
all experiments. This is while in the actual centrifuge experiment we possibly had some soil 
densification around the circular structure as it was difficult to pluviate soil uniformly, and 
we had to use a hand vibrator to increase soil densification around it prior to the test. It 
is likely that this effort was not entirely successful. That said, the static strains are much 
smaller than the dynamic strains, and are incidentally more difficult to measure.
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Figure 6.59: Comparison of the time series of the dynamic bending strains of the circular structure 
for motion #03.

6.4.5 Comparison of hoop strains for circular culvert 
 

Figures 6.86-6.103 display the comparisons for the time series and Fourier amplitude spectra 
of hoop strains for the circular culvert, and Figures 6.104-6.112 show comparisons for both 
the static and dynamic hoop strain profiles. In general, the range of hoop strains are
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Figure 6.60: Comparison of Fourier amplitude spectra of the circular structure for motion #03.
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Figure 6.61: Comparison of the time series of the dynamic bending strains of the circular structure 
for motion #04.
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Figure 6.62: Comparison of the Fourier amplitude spectra of the circular structure for motion #04.
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Figure 6.63: Comparison of the time series of the dynamic bending strains of the circular structure 
for motion #05.
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Figure 6.64: Comparison of the Fourier amplitude spectra of the circular structure for motion #05.
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Figure 6.65: Comparison of the time series of the dynamic bending strains of the circular structure 
for motion #06.
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Figure 6.66: Comparison of the Fourier amplitude spectra of the circular structure for motion #06.
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Figure 6.67: Comparison of the time series of the dynamic bending strains of the circular structure 
for motion #07.
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Figure 6.68: Comparison of the Fourier amplitude spectra of the circular structure for motion #07.
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Figure 6.69: Comparison of the time series of the dynamic bending strains of the circular structure 
for motion #08.
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Figure 6.70: Comparison of the corresponding Fourier amplitude spectra of the circular structure 
for motion #08.
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Figure 6.71: Comparison of the time series of the dynamic bending strains of the circular structure 
for motion #09.
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Figure 6.72: Comparison of the Fourier amplitude spectra of the circular structure for motion #09.
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Figure 6.73: Comparison of the time series of the dynamic bending strains of the circular structure 
for motion #10.
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Figure 6.74: Comparison of the Fourier amplitude spectra of the circular structure for motion #10.

200

100

0

-100

-200
5 10 15

200

100

0

-100
5 10 15

200

100

0

-100
5 10 15

200

100

0

-100

-200
5 10 15

200

100

0

-100

-200
5 10 15

200

100

0

-100

-200
5 10 15

200

100

200

100

200

100

0 0 0

-100

100

50

0

-50

-100

5 10 15

5 10 15
Time (Sec)

-100

100

0

-100

-200

5 10 15

5 10 15
Time (Sec)

-100

100

0

-100

-200

5 10 15
Time (Sec)

5 10 15
Time (Sec)

Figure 6.75: Comparison of the time series of the dynamic bending strains of the circular structure 
for motion #11.
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Figure 6.76: Comparison of the Fourier amplitude spectra of the circular structure for motion #11.

Figure 6.77: Comparison of the maximum static and dynamic bending strain profiles of the circular 
structure for motion #03.
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Static Dynamic

Static Dynamic

Figure 6.78: Comparison of the maximum static and dynamic bending strain profiles of the circular 
structure for motion #04.

Figure 6.79: Comparison of the maximum static and dynamic bending strain profiles of the circular 
structure for motion #05.

Figure 6.80: Comparison of the maximum static and dynamic bending strain profiles of the circular 
structure for motion #06.
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Static Dynamic

Static Dynamic

Figure 6.81: Comparison of the maximum static and dynamic bending strain profiles of the circular 
structure for motion #07.

Figure 6.82: Comparison of the maximum static and dynamic bending strain profiles of the circular 
structure for motion #08.

Figure 6.83: Comparison of the maximum static and dynamic bending strain profiles of the circular 
structure for motion #09.
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Static Dynamic

Figure 6.84: Comparison of the maximum static and dynamic bending strain profiles of the circular 
structure for motion #10.

Figure 6.85: Comparison of the maximum static and dynamic bending strain profiles of the circular 
structure for motion #11.
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smaller than the bending strains, and as such, they inherently have inherently lower signal- 
to-noise ratios. Not surprisingly, therefore, we could achieve better agreements between 
experimental hoop strain data and FE results for higher amplitude motions. Although 
the agreement is not uniformly good at all locations, the numerical model could capture 
very similar static and dynamic hoop strain profiles in general; and interestingly, the static 
profile agreement is much better than what was observed for the static in-plane bending 
strains shown previously.
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Figure 6.86: Comparison of the time series of the dynamic hoop strains of the circular structure for 
motion #03.

6.4.6 Maximum dynamic deformation profiles of culvert specimens 
 

In order to investigate the dominant mode of deformation in both structures when the 
bending strain is maximum, we read the dynamic displacements of different nodes along 
the edge of the structure at the same time that we obtained the bending strain profiles. 
Figures 6.113 and 6.114 display the maximum deformation profiles for both the rectangular 
and the circular structure under all 9 motions. It should be noted that in both figures the 
resulting deformations are magnified 100 times.
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Figure 6.87: Comparison of the Fourier amplitude spectra of the circular structure for motion #03.
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Figure 6.88: Comparison of the time series of the dynamic hoop strains of the circular structure for 
motion #04.
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Figure 6.89: Comparison of the Fourier amplitude spectra of the circular structure for motion #04.
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Figure 6.90: Comparison of the time series of the dynamic hoop strains of the circular structure for 
motion #05.
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Figure 6.91: Comparison of the Fourier amplitude spectra of the circular structure for motion #05.
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Figure 6.92: Comparison of the time series of the dynamic hoop strains of the circular structure for 
motion #06.
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Figure 6.93: Comparison of the Fourier amplitude spectra of the circular structure for motion #06.
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Figure 6.94: Comparison of the time series of the dynamic hoop strains of the circular structure for 
motion #07.
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Figure 6.95: Comparison of the Fourier amplitude spectra of the circular structure for motion #07.
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Figure 6.96: Comparison of the time series of the dynamic hoop strains of the circular structure for 
motion #08.
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Figure 6.97: Comparison of the Fourier amplitude spectra of the circular structure for motion #08.
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Figure 6.98: Comparison of the time series of the dynamic hoop strains of the circular structure for 
motion #09.
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Figure 6.99: Comparison of the Fourier amplitude spectra of the circular structure for motion #09.
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Figure 6.100: Comparison of the time series of the dynamic hoop strains of the circular structure 
for motion #10.
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Figure 6.101: Comparison of the Fourier amplitude spectra of the circular structure for motion 
#10.
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Figure 6.102: Comparison of the time series of the dynamic hoop strains of the circular structure 
for motion #11.

St
ra

in
(µ
ǫ)

St
ra

in
(µ
ǫ)

St
ra

in
(µ
ǫ)

St
ra

in
(µ
ǫ)

FA
(µ
ǫ

.s
)

FA
(µ
ǫ

.s
)

FA
(µ
ǫ

.s
)

FA
(µ
ǫ

.s
)



126

Static Dynamic

20

15

10

5
0

2 4 6 8 10

15

10

5

0
2 4 6 8 10

8

6

4

2
0

2 4 6 8 10

8

6

4

2
0

2 4 6 8 10

15

10

5

0
2 4 6 8 10

30

20

10

0
2 4 6 8 10

30

20

10

0
2 4 6 8 10

15

10

30

20

10

0
2 4 6 8 10

30

20

8

6

4

2
0

2 4 6 8 10
Frequency (Hz)

30

20

5 10 10

0
2 4 6 8 10

Frequency (Hz)

0
2 4 6 8 10

Frequency (Hz)

0
2 4 6 8 10

Frequency (Hz)

Figure 6.103: Comparison of the Fourier amplitude spectra of the circular structure for motion 
#11.

Figure 6.104: Comparison of the maximum static and dynamic hoop strain profiles of the circular 
structure for motion #03.
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Static Dynamic

Static Dynamic

Figure 6.105: Comparison of the maximum static and dynamic hoop strain profiles of the circular 
structure for motion #04.

Figure 6.106: Comparison of the maximum static and dynamic hoop strain profiles of the circular 
structure for motion #05.

Figure 6.107: Comparison of the maximum static and dynamic hoop strain profiles of the circular 
structure for motion #06.
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Static Dynamic

Static Dynamic

Figure 6.108: Comparison of the maximum static and dynamic hoop strain profiles of the circular 
structure for motion #07.

Figure 6.109: Comparison of the maximum static and dynamic hoop strain profiles of the circular 
structure for motion #08.

Figure 6.110: Comparison of the maximum static and dynamic hoop strain profiles of the circular 
structure for motion #09.
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Static Dynamic

Figure 6.111: Comparison of the maximum static and dynamic hoop strain profiles of the circular 
structure for motion #10.

Figure 6.112: Comparison of the maximum static and dynamic hoop strain profiles of the circular 
structure for motion #11.
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Figure 6.113: Maximum deformation plot for rectangular structure.
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Figure 6.114: Maximum deformation plot for circular structure.
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6.4.7 Error analysis 
 

In order to summarize the capability of the calibrated numerical model in predicting differ- 
ent response parameters studied in this report, we compute the relative root-mean-square 
error (RMSE) for each response parameter as follows: 

    
1  n rexp − rnum 2

 
 

 

Relative RMSE =
n k=1 k
   

1  n rexp

k
× 100% (6.14)

n k=1 k

where n is the total number of time steps considered in the response time-series; and rexp 
and rnum are the experimental and numerical response time-series, respectively. Considering 
each data point in the response time-series as different predictions in the dataset, the relative 
RMSE can be interpreted as the coefficient of variation, i.e. σ/|µ|, where σ is the standard 
deviation and |µ| is the absolute mean value.

Figures 6.115 and 6.123 display the relative RMSE for all base shakings used in this report. 
We recall that AA1, AD18, AF28, AC16, AE26, and AFH30 are the ICPs measuring 
horizontal accelerations at the left and middle arrays in the soil; 7 and 1 are the ICPs at 
the bottom and top of the left wall of the rectangular structure; BT1, BL7, BB16, and 
BL17 are the bending strain bridges at corners of the rectangular culvert; 16 and 14 are 
the ICPs measuring the horizontal accelerations at θ=180 and 270 degrees, respectively, of 
the circular culvert; A11, A2, A5, and A8 are the bending strain bridges at θ=45, 135, 225, 
315 degrees; and A23, A14, A17, and A20 are the hoop strain bridges at θ=45, 135, 225, 
315 degrees. As shown, RMSE is less for higher amplitude motions in general, which is due 
to inherently higher signal-to-noise ratios in those experiments.

Finally, Table 6.1 summarizes the resulting maximum bending strain ratios for the rectan- 
gular culvert, maximum bending and hoop strain ratios for the circular culvert, and von 
Mises stress for both culverts, compared to those we obtained using the finite element model 
(FEM).

2
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Table 6.1: Maximum bending and hoop strain ratios, and von Mises stress ratios between experiment 
and FE model predictions.

M otion e□ e 0  e 0  σ□ σ 0

b b h vm vm

3 0.89 1.37 0.98 0.89 1.29
4 0.81 1.14 0.81 0.81 1.17
5 0.77 1.26 0.87 0.77 1.26
6 1.05 0.86 0.49 1.05 0.89
7 1.17 1.33 0.63 1.17 1.15
8 0.83 0.87 0.88 0.83 0.91
9(a) 1.07 0.63 0.34 1.07 0.59

(a) Only motion 9 is used for calibrating parameters of the noninear 
soil model for all analyses.
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Figure 6.115: Relative RMSE for motion #03.
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11 1.13 1.23 0.53 1.13 1.22
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Figure 6.116: Relative RMSE for motion #04.
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Figure 6.117: Relative RMSE for motion #05.
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Figure 6.118: Relative RMSE for motion #06.
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Figure 6.119: Relative RMSE for motion #07.
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Figure 6.120: Relative RMSE for motion #08.
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Figure 6.121: Relative RMSE for motion #09.
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Figure 6.122: Relative RMSE for motion #10.
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Figure 6.123: Relative RMSE for motion #11.
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Chapter 7

Conclusions & recommendations

Details of the centrifuge experiments and data processing were provided in Chapters 2 and
3. Details of the NCHRP 611 method of analysis and comparison of predictions from these 
methods with test data were provided in Chapters 4 and 5. Finally, details of the numerical 
(i.e., finite element) modeling approach and its results against test data were provided in 
Chapter 6. In the following two sections the main findings and conclusions from these 
comparisons are presented along with potential caveats, and recommendations are made 
for future work.

7.1 Conclusions & Recommendations 
 

NCHRP 611 Method : In this method, choosing a proper value for the maximum shear 
strain, which controls the seismic demand, plays the most critical role in the prediction of 
critical structural responses.

When we used the iterative procedure described in Chapter 5 to estimate the maximum 
shear strain, the bending strains in both the rectangular and circular culverts were over- 
predicted (see, Table 5.6). The predicted values for the rectangular box ranged from being
2.17 times (for a low amplitude motion) to 4.50 times (for a high amplitude motion) the 
measured value. The situation was better for the circular culvert, with predicted values 
being 1.29 times (for a medium amplitude motion) to 2.85 times (for a high amplitude 
motion) the measured values. These appeared to be severe inaccuracies for the NCHRP 
611 method in predicting the bending strains.

The hoop strains in the circular culvert computed using the same method were generally
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≈

under-predicted1, which was the case even when the NCHRP 611-recommended no-slip 
condition was used for computing the soil thrust—an option that provides higher values 
than the full-slip condition. The predicted hoop strains were as low as 0.48 times (for a 
high amplitude motion) and as high as 1.11 times (for a medium amplitude motion) the 
measured values.

The NCHRP 611 report recommends the use of more refined approaches—namely, one- 
dimensional site response analyses—to obtain better estimates of the maximum shear strain 
at the elevation of the culvert structures. As seen in Table 5.6, the use of this more refined 
approach resulted in improvement of the bending strain estimates for both structures, but 
further deterioration of the hoop strains for the circular culvert. The bending strains for 
the rectangular culvert were generally underestimated for the low and medium amplitude 
motions, and were generally overestimated for the high amplitude motions. That said, the 
NCHRP 611 method produced its best results for the latter (i.e., high amplitude motion) 
case, for which the bending strains were 1.15, 1.03, and 0.99 times the measured values 
for the three high amplitude base excitations. Unfortunately, while the bending strain 
estimate improved for the circular culvert, the hoop strains have deteriorated, which had 
considerable magnitudes.

Given these results, it can be concluded that using one-dimensional site response analysis 
in predicting the maximum shear strain should be preferred over obtaining this value (iter- 
atively) from the modulus reduction curves, when using the NCHRP 611 methods.

Between the two structures, it was observed that the NCHRP 611 methods were more 
successful in capturing the relatively stiff structure’s (i.e., the rectangular culvert’s) re- 
sponses than the flexible (circular) one. That said, it was observed that the NCHRP 
611 method generally under-predicted the bending strains (especially for low and medium 
amplitude motions). For the circular structure, both the bending and hoop strains were 
under-predicted in general for all base excitations; and the worst cases of these inaccuracies 
were encountered for the high-amplitude base excitations.

Another important response measure considered was the von Mises stresses, which is a typi- 
cal quantity used in strength-based design. The von Mises stresses (see Table 5.5) exhibited 
trends that were similar to the strains. Namely, (i) they were more accurate when obtained 
using the one-dimensional site response analyses; (ii) they were more accurate for the stiff 
(i.e., rectangular) structure than they were for the flexible (circular) one. It appeared that 
for most cases, the von Mises stresses obtained using the refined NCHRP approach provided 
adequate estimates, as the NCHRP-to-experiment ratios von Mises stresses ranged between
0.7 to 1.2. This implies that a strength-based design would require a safety factor of at 
least 1/0.7 1.43 just to handle uncertainties in input motions and the model features 
related to ground motions—henceforth collectively referred to as epistemic uncertainties.

1The analogous (hoop) strains for the rectangular culvert were negligible in all experiments.
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On the other hand, the same ratios were bracketed from 0.4 to 1.5 for the circular culvert, 
implying an factor of safety of 2.5, which is quite large.

Given these observations, it appears that the use of NCHRP 611 methods of analysis on 
flexible structures may not produce adequately safe designs. It is likely that the situa- 
tion will be worse for structures with higher relative flexibility and for higher amplitude 
motions.

On the other hand, predictions obtained using the refined NCHRP approach for rigid cul- 
verts appear acceptable. It should be noted here that the use of the refined NCHRP 
approach requires one-dimensional site response analyses for every ground motion consid- 
ered.

Finite Element (FE) Approach: Comparison of the numerical and experimental results 
showed that by using only a few sets of recorded free-field accelerations to calibrate the soil 
constitutive relationship, the finite element model was more systematically successful in 
predicting the key response parameters of both culvert specimens compared to the NCHRP 
611 methods (see, §6.1, for details). As shown in Table 6.1, for both the rectangular and 
circular structures, the bending strain ratios are closer to one compared to those computed 
using the NCHRP methods. For the hoop strain, on the other hand, using the finite element 
approach resulted in ratios that are closer to those obtained using the NCHRP iterative 
method for the low amplitude motions, and closer to those obtained using the NCHRP 
refined approach for the moderate and high amplitude motions. As such, it is concluded 
that the finite element approach performed better in predicting bending strains regardless 
of the structure flexibility, while its accuracy in capturing the hoop strains decreased for 
cases in which the soil behaves more nonlinearly.

For the rigid (rectangular) culvert the ratio of predicted-to-experimental von Mises stresses 
ranged from 0.77 to 1.19, implying an epistemic factor of safety of 1/0.77 1.30 (as 
compared to 1.43 for the refined NCHRP method). For the circular culvert, the same 
ratio ranged from 0.59 to 1.29, implying an epistemic factor of safety of 1/0.59 1.70 (as 
compared to 2.5 for the refined NCHRP method). As such, it can be concluded that the 
FE method can handle rigid as well as flexible culverts equally well, and generally better 
than the NCHRP method.

It is also important to note that the soil model in the FE calculations was calibrated 
only once, using the centrifuge free-field array records during motion #9. It is, therefore, 
reasonable to expect that the FE model predictions could be made better overall, if its soil 
model was calibrated using free-field motions from multiple tests.
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7.2 Caveats & Recommended Future Studies 
 

In this report, the focus was to investigate the predictive capabilities of the “NCHRP 611” 
method as well as a direct numerical (i.e., a finite element) model in capturing the key 
response parameters of two rectangular and circular culvert structures subject to earth- 
quake base shakings, by considering the results of the centrifuge experiments as the “true” 
response. This study suggest the following steps need to be taken in order to gain better 
insights on the predictive capabilities of the aforementioned methodologies. 

1. Due to technical difficulties of sensors calibration, especially the strain bridges, the 
nominal sensitivity factors were used in signal processing. This is likely the primary 
source of various existing discrepancies reported in Chapters 5 and 6. It would be 
informative to explore the possibility of using an advanced (e.g., a machine-learning) 
algorithm to identify and exclude this source of measurement error from centrifuge 
data.

2. As it was observed that the accuracy of the NCHRP 611 method depended critically 
on the estimation of the maximum shear strain, it appears important to improve the 
models that predict this quantity. For example, future studies could be directed to 
improving Eq. 4.1 and Eq. 1. These equations yield the peak shear strain estimate, 
based on peak ground acceleration and its assumed variation with respect to depth. 
It may be possible to improve these predictions with more sophisticated methods of 
wave propagation and soil domains models.

3. Two main ingredients for the calibration of the soil model in this study has been 
the maximum shear modulus and the modulus reduction curves. Moreover, the soil- 
structure interface is modeled by using an interface element with a nominally chosen 
friction coefficient. It would be useful to perform numerical analyses to determine 
how sensitive the key response parameters are to variations in the numerical model 
parameters. The same study should be carried out on the NCHRP 611 method. Such 
a study would enable identification of the most influential parameters, and therefore 
to systematically improve the NCHRP 611 methodology as well as the numerical 
modeling approach.

4. Only earthquake base shakings were studied in this report. In order to have better un- 
derstanding on behavior of the culvert structures over the wider range of frequencies, 
the sine-sweep and stepped-sine data should be studied in similar fashion.

5. Only two culvert structures were examined numerically. It is possible to use the FE 
model calibrated (and subsequently validated) here, to perform parametric studies 
using a broad range of ground motions, soil properties, structural geometries and 
properties to bracket that acceptable range of applicability of the NCHRP 611 method 
and to possibly improve it for flexible structure, by adding higher modes to it. This
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appears especially important for tunnels, which will exhibit far higher flexibilities 
than the average culvert structure.

6. It appears possible to develop a FE-based analysis and design tool for culvert struc- 
tures, which could take basic inputs from the user and can compute responses for 
any culvert geometry, soil profiles and properties, under any free-field motion. Given 
recent advances in cloud computing, such a tool would provide efficient aid to the 
design engineer.

7. The present study focused primarily on the dynamic responses of culverts. As cen- 
trifuge testing is well known to be unsuitable in general to obtain static (or quasi- 
static) behaviors from soil-structure specimens. As such, it is recommended to carry 
out field tests and use data from instrumented culverts in the field to examine static 
earth pressures that develop around them.
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