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Abstract 

We study capacity models and routing behavior in transportation networks with mixed 

autonomy, that is, networks in which a fraction of the vehicles on each road are equipped 

with autonomous capabilities such as adaptive cruise control that enable reduced headways and 

increased road capacity. In this report, we consider a mixed traffic profile where a fraction 

of vehicles are smart and able to form platoons, and the remaining are regular and manually 

driven. We develop two models for road capacity under mixed autonomy that are based on 

the fundamental behavior of autonomous technologies such as adaptive cruise control. We then 

consider transportation networks in which the delay on each road or link is an affine function of 

two quantities: the number of vehicles with autonomous capabilities on the link and the number 

of regular vehicles on the link. 

We particularly study the price of anarchy for such networks, that is, the ratio of the total 

delay experienced by selfish routing to the socially optimal routing policy. Unlike the case when 

all vehicles are of the same type, for which the price of anarchy is known to be bounded, we first 

show that the price of anarchy can be arbitrarily large for such mixed autonomous networks. 

Next, we define a notion of asymmetry corresponding to the maximum possible travel time 

improvement due to the presence of autonomous vehicles. We show that when the degree of 

asymmetry of all links in the network is bounded by a factor less than 4, the price of anarchy 

is bounded. We also bound the bicriteria, which is a bound on the cost of selfishly routing 

traffic compared to the cost of optimally routing additional traffic. These bounds depend on 

the degree of asymmetry and recover classical bounds on the price of anarchy and bicriteria in 

the case when no asymmetry exists. Further, we show with examples that these bound are tight 

in particular cases. Finally, we detail some simulation studies validating two mixed autonomy 

road capacity models, and provide some basic knowledge of the microscopic traffic simulator 

SUMO used to validate the models. 
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1 INTRODUCTION 

Automobiles are increasingly equipped with autonomous and semi-autonomous technologies such 

as adaptive cruise control and automated lane-keeping. These technologies are often marketed 

to consumers as safety or convenience features, but it is apparent that increasing numbers of 

these smart vehicles will have dramatic impact on network-level mobility factors such as traffic 

congestion and travel times [1]. A primary mechanism whereby such autonomous capabilities can 

improve mobility is by enabling platooning of groups of smart vehicles along the roadway. A platoon 

consists of two or more vehicles which are able to automatically maintain short headways between 

them using, e.g., adaptive cruise control (ACC), which allows a vehicle to use radar or LIDAR to 

automatically maintain a specified distance to the preceding vehicle, or cooperative adaptive cruise 

control (CACC) which augments ACC with vehicle-to-vehicle communication. 

When all vehicles in the system are smart, platooning has the potential to increase network ca-

pacity by as much as three-fold [2]. Platooning can help to smooth traffic flow and avoid shockwaves 

of slowing vehicles [3, 4, 5, 6, 7, 8], and at signalized intersections, platoons can synchronously ac-

celerate at green lights [2, 9]. However, in a mixed autonomy setting—where only a fraction of the 

vehicles are smart and the remainder are regular, human-driven vehicles—the benefits of platooning 

are less clear. On freeways, simulation results suggest that high penetration rates of smart vehicles 

are required to realize significant improvement in traffic flow [10, 11, 12, 13, 14, 15]. 

In this work, we develop capacity models for roads with mixed autonomy in order to study 

routing behavior on transportation networks. We make the assumption that the additional travel 

time caused by congestion on a road is inversely related to capacity and proportional to the total 

number of vehicles on the road. Given a network of roads leading from origins to destinations, 

selfish vehicles will choose the route that minimizes total delay, achieving a Wardrop equilibrium 

[16, 17]. It has long been known that a Wardrop equilibrium may be suboptimal in the sense that 

a social planner is able to prescribe routes that achieve a lower total delay for all vehicles in the 

network. The ratio of the socially optimal delay to the worst possible Wardrop equilibrium is called 

the price of anarchy [18, 19]. For affine separable cost functions, when only one type of vehicle is 

3 



2 

present (i.e., no smart vehicles), it is known that the price of anarchy cannot exceed 4/3 [20]. 

In a mixed autonomy setting, however, a social planner is able to route smart vehicles differently 

than regular vehicles to maximize capacity. In this paper, we first show that this increased flexibility 

leads, remarkably, to an unbounded price of anarchy. Next, we make the assumption that the 

possible travel time improvement due to the presence of autonomous vehicles is bounded by a 

factor k < 4. We call this factor the degree of asymmetry of the network. Under this assumption, 
4we prove that the price of anarchy cannot exceed 4−k , which recovers the classical bound when 

k = 1, i.e., the case when smart vehicles do not enable any improvement in travel time. We show 

via examples that this bound is tight for k = 1 and k = 2. 

Next, we provide a bound on the cost of selfish routing relative to the cost of optimally routing 

additional traffic, called the bicriteria bound [20], [21]. We prove that traffic at a Wardrop Equi-

librium will not exceed the cost of optimally routing 1 + k as much traffic of each type, where k is4 

the degree of asymmetry in the network. We demonstrate by example that the bicriteria bound is 

tight for k = 4. Similar to the price of anarchy, when the asymmetry is unbounded we show that 

the bicriteria is unbounded as well. This runs counter to the case of single-type traffic where the 

bicriteria is bounded by 2 for any separable continuous and nondecreasing cost function in which 

the delay on a road depends only on the traffic on that road [20]. 

PREVIOUS WORKS 

In this section, we address related models in the literature and highlight the difference between 

these and our model. Due to the breadth of the field, we give a limited overview of the literature 

on the price of anarchy – see [22] for a broader survey of literature related to Wardrop equilibria 

and [23] for a wider background on the price of anarchy in transportation networks. For definitions 

of the terms used in this section see Section 4.3. 

Roughgarden and Tardos [20] bound price of anarchy and bicriteria for separable monotonic 

cost functions, and Roughgarden [24] gives a more general method for determining price of anarchy 

in the separable case. 
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Chau and Sim [25] bound the price of anarchy for symmetric cost operators with convex social 

cost for both nonelastic and elastic demands. Perakis discusses nonseparable, asymmetric, nonlinear 

costs in [26], though only for monotone latencies i.e. satisfying the property 

hc(z) − c(v), z − vi ≥ 0 , (1) 

where h·, ·i denotes the inner product of two vectors. 

Correa et. al [27] present a unified framework for deriving price of anarchy and bicriteria for 

nonseparable monotone functions. Sekar et. al [28] analyze the price of anarchy when users have 

different beliefs about the delay on a road, but experience the same actual cost, dictated by a 

monotone cost function. 

Unlike these previous works, we present a price of anarchy and bicriteria bound for a class 

of nonmonotone and pairwise separable affine cost functions. We show that our bound simplifies 

to the classic bounds for affine monotone cost functions in [20], [25], and [27] when there is no 

asymmetry in how the vehicle types affect congestion. 

Modeling Mixed Autonomy 

The Highway Capacity Manual defines the capacity of a road as the maximum possible flow rate 

on the road in vehicles per hour [29]. Capacity is primarily limited by the average headway that 

vehicles maintain while traveling on the road, and the HCM recommends a nominal saturation 

flow rate of 1900 vehicles per hour (vph) per lane to capture typical behavior of drivers, which 

corresponds to a headway of 3600/1900 = 1.89 seconds (s). 

With the emergence of semiautonomous driving technology such as cooperative adaptive cruise 

control (CACC), it is projected that the headway can be reduced to approximately 0.8 s, which 

corresponds to a road capacity of 4500 vph [30]. However, to achieve this nearly 2.5-fold increase in 

capacity requires every vehicle to maintain shorter headways. What happens when only a fraction of 

vehicles are equipped with the required technology to achieve reduced headway? In this section, we 

consider two possible models for reduced headways and increased capacity in this mixed autonomy 
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setting. We say a vehicle is smart if it is equipped with semiautonomous driving capabilities that 

enable reduced headways, and regular otherwise. 

3.1 Capacity Model 1 

We first consider a scenario in which each smart vehicle is able to maintain reduced headway with 

any preceding vehicle, regardless of whether that vehicle is also equipped with driver assistance 

technology. This scenario is plausible when smart vehicles are able to accurately localize any 

surrounding vehicle without communication. At the moment, it is unclear whether a sufficiently 

sophisticated sensor suite for this task will be omnipresent on autonomous vehicles. Indeed, the 

sensors likely required to achieve this feat, such as lidar, are currently prohibitively expensive for 

mass adoption. On the other hand, companies such as Tesla have focused on enabling autonomous 

technology by relying primarily on cameras [31]. 

Suppose that m is the capacity of the road when fully utilized by regular vehicles, and M is 

the capacity when fully utilized by smart vehicles, where M > m. Let α be the average fraction 

of smart vehicles on the road. We call α the autonomy level of the road. Define C(α) to be the 

capacity of the road under autonomy level α. We propose the following approximation: 

−1)−1C(α) = (αM−1 + (1 − α)m . (2) 

Here is a justification for (2). First, assume that every smart vehicle follows the preceding vehicle 

M−1(whether it is smart or regular) with time gap of t2 = . Second, assume that each regular 

vehicle follows the preceding vehicle with time gap of t1 = m−1 where t1 > t2. Finally, since 

a fraction α of vehicles are smart, the effective headway of the road with autonomy level α is 

αt2 + (1 − α)t1, which implies (2). Note that this approximation is valid regardless of how the 

smart vehicles are distributed among the regular vehicles, so long as the autonomy level is α. 

In Figure 1, we plot road capacity as a function of the fraction of smart vehicles α, assuming 

that the capacity when there are no smart vehicles (α = 0) is 1900 vph and when there are only 

smart vehicles (α = 1) is 4500 vph. 
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Figure 1: Road capacity as a function of the autonomy level α, i.e., the ratio of smart vehicles on the road. In Model 
1 (dark/blue), it is assumed that smart vehicles are able to maintain shorter headways with any preceding vehicle. In 
Model 2 (light/orange), it is assumed that smart vehicles are only able to maintain a shorter headway if the preceding 
vehicle is also smart, with results in decreased capacity. 

3.2 Capacity Model 2 

We now consider an alternative model in which a smart vehicle is only able to maintain a short 

headway if the preceding vehicle is also smart. As above, suppose that m (respectively, M) is the 

capacity of the road when fully utilized by regular (respectively, smart) vehicles, and again let α 

be the average fraction of smart vehicles on the road. 

Unlike the previous model, the capacity of the road now depends on the distribution of smart 

vehicles among regular vehicles. For example, consider a single-lane road with n vehicles, and 

suppose n/2 are regular and n/2 are smart. In the extreme case that the smart and regular 

vehicles are perfectly interleaved such that every smart vehicle is preceded by a regular one, then 

the capacity is m and no gain is achieved. In the other extreme case that a platoon of n/2 

smart vehicles precedes n/2 regular vehicles, the throughput of the road becomes the same as (2). 

Therefore, a proper definition of the capacity of the road depends on the stochastic process of the 

vehicles traversing the road. 

Here, we propose to model vehicle type as a Bernoulli process, i.e., each vehicle is smart with 

probability α and regular with probability 1 − α independently. In this case, the capacity of the 

7 



road is approximated as 

−1)−1C(α) = (α2M−1 + (1 − α2)m . (3) 

To derive (3), note that the time gap between two vehicles is t2 = M−1 if they are both smart and 

t1 = m−1 otherwise. Thus, one needs to count the fraction of pairs of smart vehicles, which is α2 . 

This implies that the average headway is α2t2 + (1 − α2)t1. Figure 1 also plots the capacity model 

(3). 

4 MOTIVATION AND MATHEMATICAL FORMULATION 

In this section we motivate our cost function for traffic in mixed autonomy. In Section 4.1, we 

show that the price of anarchy and bicriteria are unbounded for congestion games with affine cost 

functions in mixed autonomy, described in Section 4.2. Prompted by our negative result, in Section 

4.3 we describe a pairwise separable cost function that is parameterized by the degree of asymmetry, 

as well as a more general class of nonseparable cost function. 

4.1 Motivation 

We provide a brief example of unbounded price of anarchy and bicriteria for congestion games 

under mixed autonomy. This example is similar in design to Pigou’s example, as in [20], [32], and 

[23]. 

Example 1. Consider the traffic network in Fig. 2, in which 1 unit of regular traffic and 1 unitζ 

of smart traffic need to travel from node s to node t, where ζ ≥ 1. The cost on road i, or the delay 

a car experiences from traveling on that road, is denoted ci(x, y). 

The routing with all traffic on the bottom road is at Wardrop Equilibrium, with a price of 

CEQ 1 = (1 ζ)(1 +1) = +1. The optimal routing has the regular traffic on the top and smart traffic ζ ζ ζ 

1 1 on the bottom with a cost of COP T = · 1 + 1 · 0 = ζ . This results in a price of anarchy of ζ + 1.ζ 2 

aFor the bicriteria, consider a situation in which we have a mass of ζ units of smart cars and 

a units of regular cars to route. We want to find the a that corresponds to, under optimal routing, 
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c1(x, y) = 1 

s t 

c2(x, y) = ζx 

Figure 2: Example of a road network with price of anarchy and bicriteria that grow unboundedly with ζ. 

a 1 a cost equaling that of CEQ above. The optimal routing will have cost ζ , which equals + 1 whenζ 

a = ζ + 1. 

Here we see that both the price of anarchy and the bicriteria bound grow unboundedly with ζ. 

Due to this result, we state the following proposition: 

Proposition 1. The price of anarchy and bicriteria are unbounded for networks of mixed autonomy 

with pairwise separable affine functions. 

Because of this negative result, to provide a bounded price of anarchy and bicriteria in mixed 

autonomy we develop a class of cost functions with bounded asymmetry. 

4.2 Affine Congestion Game Overview 

Consider a network of n roads, with m origin-destination pairs, each with an associated mass of 

regular vehicles of volume αi and mass of smart vehicles of volume βi. Since we are considering a 

nonatomic congestion game, each user controls an infinitesimally small portion of that mass. We 

denote X as the set of feasible strategies which result in the entirety of each mass being routed 

from its origin to its destination, without violating conservation of flow (see [33] for a more detailed 

explanation). 

The vector of all flows on the n roads is denoted by 

� �T 
z = x1 y1 x2 y2 . . . xn yn , 

where xi and yi represent the mass of regular and smart vehicles, respectively, on road i. In this 

paper, we consider affine cost functions, meaning the cost on the roads resulting from a routing 
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z ∈ X can be written as 

c(z) = Az + b , 

� �T 
where A ∈ R2 

≥ 
n 
0 and b = b1 b1 b2 b2 . . . bn bn . This yields social cost 

C(z) = hc(z), zi = (Az + b)T z , 

and the social cost at optimal routing is then COP T = infz∈X C(z). Vector b contains the constant 

terms; matrix A is the Jacobian of the road cost operator, and is not in general positive semidefinite, 

so the optimization is not convex. 

4.3 Separability and Monotonicity 

Having described the basic structure of the congestion game with affine costs, we describe the 

separability and monotonicity of our model. To do so, we define three notions of separability. 

Definition 1. A cost function c(z) = Az + b is separable if A is a diagonal matrix. 

Definition 2. A cost function c(z) = Az + b is pairwise separable if A is a blockwise diagonal 

matrix with 2x2 blocks. 

Definition 3. A cost function is nonseparable if it is neither separable nor pairwise separable. 

It is clear that separable costs do not model mixed autonomy if regular and smart cars affect 

delay differently but experience it identically. The slightly more general class of pairwise separable 

costs does provide a useful model, which we motivate as follow, using a capacity model similar to 

those in [9], [34], [35]: 
yConsider a road with regular car flow x and smart car flow y and autonomy level α = x+y . We 

use Capacity model 1 in (2), and propose a road cost function in which delay is an affine function 

of vehicles on the road: 

x + y −1 c(x, y) = b + r = b + rM−1 y + rm x. 
C(α) 
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Here b represents the time it takes to traverse a road in free-flow traffic and r determines how 

congestion scales as road utilization increases with respect to capacity. 

To capture a notion of asymmetry in how the types of vehicles affect traffic, we can rewrite the 

cost on road i as follows: 

ci(xi, yi) = bi + kiaixi + aiyi . (4) 

This leads to a cost function of the following form: 

⎤⎡ 

c(z) = Az + b = 

⎢⎢⎢⎢⎢⎢⎢⎣ 

A1 0 . . . 0 

0 A2 . . . 0 
. . . 

. . . . . . . . . 

0 0 . . . An 

⎥⎥⎥⎥⎥⎥⎥⎦ 

z + b 

⎤⎡ 

where A is a block-diagonal matrix with blocks Ai = ⎢⎣ 
kiai ai⎥⎦ . 
kiai ai 

The parameter ki allows us to represent the degree of asymmetry between the effect of regular 

and smart traffic on congestion on a specific road. Since in [35], [30], and [2], we see that vehicles 

not in a platoon require approximately 2.5 times more headway than vehicles in a platoon, we allow 

ki to differ between roads, but generally expect it to be in the range ki ∈ [1, 4]. 

We find it useful to parameterize a class of cost functions by its maximum degree of asymmetry, 

as follows: 

1Definition 4. Let Ck denote the class of pairwise separable cost functions for which max(ki, ki 
) ≤ k 

∀i for some constant k. We call k the maximum degree of asymmetry of this class of cost functions. 

In the more general model explored in Section 5.3, the delay on one road may depend on the 

flows on other roads. For example, if one road is fully congested, the roads feeding it will have 

additional delay. If this is the case, then (4) does not hold and the matrix A is not of block-diagonal 

form. In Section 5.3 we provide a bound for this model under certain conditions. 
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Throughout this paper, we deal with cost functions that satisfy element-wise monotonicity, 

defined as follows: 

Definition 5. A class of cost functions C is elementwise monotone if for all cost functions c(v) 
∂cjdrawn from C, ∂vi 

(v) ≥ 0 ∀i, j. 

In other words, a cost function is element-wise monotonic if increasing any flow of vehicles will 

not decrease the delay on any road. This will be the case for a class of cost functions of the form 

c(z) = Az + b for which A has only nonnegative entries. Note that this is different from the general 

notion of monotonicity described in Section 21 . 

5 BOUNDING THE PRICE OF ANARCHY 

In this section we present bounds for the price of anarchy and bicriteria. We proceed along the 

lines proposed in [27], reviewing that work in Section 5.1 and highlighting the differences that arise 

for a nonmonotone cost function. We then derive our bounds for nonmonotone pairwise separable 

costs in Section 5.2, and give a bound for nonseparable costs in Section 5.3. 

5.1 Preliminaries 

Smith [36] shows that any flow zEQ at Wardrop equilibrium – in which all users sharing an origin 

and destination use paths of equal cost and no unused path has a smaller cost – satisfies the 

variational inequality for any feasible flow z: 

hc(zEQ), zEQ − zi ≤ 0 . (5) 

A simple proof of this is provided in [33]. 

Correa et. al. [27] use this result to develop a general tool for finding price of anarchy and � � 
3 1 � �T1Our case is not in general monotone: consider a single road with c(z) = z, with x = 1 0 and �T 
3 1� 

y = 0 2 . This results in hc(x) − c(y), x − yi = −1. 
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bicriteria. To that end, they introduce the following parameters: 

hc(v) − c(z), zi 
β(c, v) := max , 

z∈R2n hc(v), vi ≥0 

β(C) := sup β(c, v) , 
c∈C,v∈X 

where 0/0=0 by definition, C represents a class of cost functions, and X is the set of feasible 

routings. 

In the following theorem, we adapt Correa et. al ’s Theorem 4.2 [27] to when the cost function 

is not monotone. In the nonmonotone case β(C) can be greater than 1, leading to an unbounded 

price of anarchy. For completeness, we overview the proof of Theorem 4.2 in [27]. 

Theorem 1. Let zEQ be an equilibrium of a nonatomic congestion game with cost functions drawn 

from a class C of nonseparable nonmonotone but elementwise monotone cost functions. 

OPT EQ) ≤ (1−β(C))−1C(zOP T ).(a) If z is a social optimum for this game, and β(C) < 1, then C(z 

OP T (b) If w is a social optimum for the same game with 1 + β(C) times as many players of each 
EQ) ≤ C(wOP T ).type, then C(z 

Proof. To prove part (a), 

hc(zEQ), zi = hc(z), zi + hc(zEQ) − c(z), zi 

EQ)hc(z EQi≤ hc(z), zi + β(c, z EQ), z 

EQ)≤ C(z) + β(C)C(z (6) 

and C(zEQ) ≤ hc(zEQ), zi. Completing the proof requires that β(C) ≤ 1. 
OP T To prove part (b), element-wise monotonicity implies the feasibility of (1 + β(C))−1w , and 

using (5), 

OP T i .hc(zEQ), zEQi ≤ hc(zEQ), (1 + β(C))−1 w (7) 
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Then, 

EQiC(zEQ) = (1 + β(C))hc(zEQ), z 

EQi− β(C)hc(zEQ), z (8) 

OP T i≤ (1 + β(C))hc(zEQ), (1 + β(C))−1 w 

EQi− β(C)hc(zEQ), z (9) 

OP T ) ,≤ C(w (10) 

where (9) uses (7) and (10) uses (6). 

5.2 Pairwise Separable Costs 

We now present a bound for the price of anarchy and bicriteria for the pairwise separable affine 

cost function when k, the maximum degree of asymmetry of the cost function, is bounded. In 

particular, when k < 4, the price of anarchy is bounded, and the bicriteria is bounded for any k. 

This is formalized as follows: 

Theorem 2. Let zEQ be an equilibrium of a nonatomic congestion game with cost functions drawn 

from a class Ck of affine, pairwise separable, nonmonotone, elementwise monotone cost functions, 

where k parameterizes the maximum degree of asymmetry in the cost functions. 

OPT EQ) ≤ 4 OP T ).(a) If z is a social optimum for this game, and k < 4, then C(z 4−k C(z 

OP T (b) If w is a social optimum for the same game with 1+ k times as many players of each type, 4 

EQ) ≤ C(wOP T ).then C(z 

Proof. To prove this, we will show β(Ck) ≤ k and then apply Theorem 1. For ease of notation, let � � 4 

EQ ∗ ∗ ∗ ∗ ∗ ∗ z , x y x y . . . x y .
1 1 2 2 n n 

Without loss of generality, and with a slight abuse of notation, we order the roads such that for 

1 ≤ i ≤ `, ci(xi, yi) = kiaixi + aiyi and for roads ` < i ≤ n, ci(xi, yi) = aixi + kiaiyi, where ki ≥ 1. 
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Then, 

hc(z ∗) − c(z), zi 
β(c, z ∗ ) = max 

z∈R2n hc(z ∗), z ∗i ≥0 

maxz∈R2n hA(z ∗ − z), zi 
≤ ≥0 

hAz∗ , z ∗i P` ∗ ∗ 
i=1 ai maxxi,yi≥0(ki(x − xi) + (y − yi))(xi + yi)i i = 

hAz∗ , z ∗iP n ∗ ∗ 
i=`+1 ai maxxi,yi≥0((x − xi) + ki(y − yi))(xi + yi) 

+ i i . (11)
hAz∗ , z ∗i 

We will bound the first term in (11), and the same can be done for the second term as well. 
∗ ∗Denote the inner term γ, so γ(xi, yi) = (ki(x −xi)+(y −yi))(xi +yi). This term is not concave, but i i 

is concave with respect to both xi and yi individually. Then, we use f(xi) to denote the function 

that maximizes γ with respect to yi by solving ∂γ (xi, yi) = 0, and g(yi) to denote the function∂yi 

∂γ that maximizes γ with respect to xi by solving ∂xi 
(xi, yi) = 0. This yields 

∗ ∗ 
f(xi) = 

kixi + yi ki + 1 
xi ,− 

2 2 
∗ ∗kix ki + 1 i + yi g(yi) = − yi . 
2ki 2ki 

Then, for any fixed xi, the optimal yi is determined by yi = f(xi), and for any fixed yi, the optimal 

xi is determined by xi = g(xi). Then, define x̃i and ỹi as follows: 

ỹi = argmax γ(g(yi), yi) 
yi≥0, g(yi)≥0 

x̃i = argmax γ(xi, f(xi)) . 
xi≥0, f(xi)≥0 

We see that γ(g(yi), yi) and γ(xi, f(xi)) are convex, and γ(g(ỹi), ỹi) ≥ γ(x̃i, f(x̃i)), where ỹi = 
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∗ ∗kix +yi 
2 

i . Therefore, 

∗ ∗(kixi + y )2 
max γ(xi, yi) = γ(g(ỹi), ỹi) = i . 

xi≥0,yi≥0 4 

After applying a similar analysis for roads ` < i ≤ n, 

β(c, z ∗ ) P` P n∗ ∗ ∗ ∗ 1 ρi(kixi + yi ) + σi(xi + kiyi )i=1 i=`+1≤ P` P
4 ∗ ∗ n ∗ ∗ 

i=1 ρi(xi + y ) + σi(xi + y )i i=`+1 iP` P n∗ ∗ ∗ ∗ k ρi(kixi + yi ) + σi(xi + kiyi )i=1 i=`+1 = PP` n4 ρi(kx∗ 
i + ky∗) + σi(kx∗ 

i + ky∗)i=1 i i=`+1 i 
k ≤ , (12)
4 

P 
∗ ∗ ∗ ∗ i=1 wiwhere ρi , ai(kix + yi ) and σi , ai(x + kiyi ). The fact that P 

n

n ≤ 1 when 0 ≤ wi ≤ vii i 
i=1 vi 

implies Equation (12), since k ≥ ki ≥ 1 ∀i. We apply Theorem 1 to find a price of anarchy bound 

of 4− 
4 
k and bicriteria bound of 1 + k 

4 . 

5.3 Nonseparable costs 

Having discussed pairwise separable costs (Definition 2), where the delay on each road depends only 

on the vehicles on that road, we now consider nonseparable costs (Definition 3). As an example, 

consider a series of roads, each one feeding into the next; if one road is fully congested, this will 

increase the delay on the roads feeding it, resulting in cascading congestion. Another scenario of 

nonseparable costs is when intersecting streets affect the traffic on each other [22], such as in a 

signalized intersection that senses traffic and adjusts its duty cycle accordingly. In that case, the 

volume of traffic on a road will affect the delay on the perpendicular road. 

To put this in more concrete terms, consider a road feeding into another narrower road. We 

model the congestion on the second road as comparatively affecting that on the first road by a 
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factor of µ. This results in a cost function of 

⎤⎡ 

c(z) = 

⎢⎢⎢⎢⎢⎢⎢⎣ 

k1a1 a1 µk2a2 µa2 

k1a1 a1 µk2a2 µa2 

0 0 k2a2 a2 

0 0 k2a2 a2 

⎥⎥⎥⎥⎥⎥⎥⎦ 

z + b . 

With this motivation, we consider the affine cost functions c(x) = Ax + b, where A is no longer 

a 2x2 block-diagonal matrix. We consider the case that A can be written as the sum of Q, a 

(2x2) block diagonal matrix with strictly positive block diagonal entries, and P , a positive definite 

matrix.2 

We describe the bounds we can establish under these conditions in the following theorem: 

Theorem 3. Let zEQ be an equilibrium of a nonatomic congestion game with cost function c(z) = 

Az + b. Suppose A can be split into Q, which is a (2x2) block diagonal matrix with strictly positive 

entries on the block diagonal, and P , which is positive definite, such that A = Q + P . Let k be the 

maximum degree of asymmetry for the cost function defined by Q. 

OPT EQ) ≤ ( 4 OP T ),(a) If z is a social optimum for this game, and if k < 4, then C(z + η2)C(z4−k 

where η2 = λmax(S
−1/2P T S−1PS−1/2) and S = (P + P T )/2. 

OP T (b) If w is a social optimum for the same game with 2+ k times as many players of each type, 4 

EQ) ≤ C(wOP T ).then C(z 
2 1 P 
Note that if P is a diagonal dominant mapping, i.e. Pii > 6 |Pij + Pji|, then it is positive definite [33]. In

2 j=i 
this case, in order to also guarantee that the block diagonal components of Q have strictly positive entries, we require X1 

Aii > |Aij + Aji| for i even ,
2 

j 6=i,i−1 X1 
Aii > |Aij + Aji| for i odd . 

2 
j 6=i,i+1 

This, however, is a sufficient but not necessary condition. 
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Proof. For part (a), we split the price of anarchy into two components, as 

CEQ (AzEQ EQ + b)T z 
= sup

COP T 
z∈X (Az + b)T z 

EQ EQ ((Q + P )z + b)T z 
= sup 

z∈X ((Q + P )z + b)T z 
EQ EQ (QzEQ + b)T z (PzEQ)T z ≤ sup + sup (13) 

z∈X (Qz + b)T z z∈X (Pz)T z 

≤ 
1

+ η2 (14)
1 − β(Ck) 

β( )c, v = max 
n 
≥ 

=
4

+ η2 . (15)
4 − k 

Inequality (13) follows from all latencies being nonnegative, (14) follows from [27] and [26] (see 

the comment on page 2 about the price of anarchy for costs with no constant term), and the (15) 

is proved in the proof of Theorem 2. 

For part (b), we use the same notion of β(C) as in the proofs for Theorems 1 and 2, as follows: 

hc(v) − c(z), zi 
z∈R2

0 hc(v), vi 
h(Q + P )(v − z), zimax n 

≥z∈R2 

= 0 

h(Q + P )v + b, vi 
hQ(v − z), zi hP (v − z), zimax max n 

≥ 
n 
≥z∈R2 z∈R2 
0 0 

+ 
h(Q + P )v + b, vi h(Q + P )v + b, vi 

≤ 

hQ(v − z), zi hP (v − z), zimax max n 
≥ 

n 
≥x∈R2 z∈R2 
0 0 

+ 
hQv + b, vi hPv + b, vi 

≤ 

= β(c1, v) + β(c2, v) 

Here c1 and c2 represent cost functions drawn from Ck and C̃, respectively, where k is the maximum 

˜degree of asymmetry of the cost function c(z) = Qz + b and C denotes the set of monotone cost 

functions. 

De Palma and Nesterov [33] show that a cost function c(z) is monotone if c0(z) is positive 

definite. Furthermore, Correa et. al. show that a class C consisting of monotone cost functions has 
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6 

c1(x, y) = kx + y 

s t 

c2(x, y) = x + ky 

Figure 3: Example of a road network with two-sided asymmetry. 

β(C) ≤ 1. This is easily demonstrated as follows. Using (1) with z, v ∈ R2 
≥ 
n 
0, 

hc(v) − c(z), zi hc(v) − c(z), zi 
1 ≥ ≥ ≥ β(c, v) . 

hc(v) − c(z), vi hc(v), vi 

Because of this, 

β(C) = sup β(c, v) 
c∈C,v∈X 

≤ sup β(c, v) + sup β(c, v) 
c∈Ck,v∈X c∈ ̃C,v∈X 

k ≤ + 1 . 
4 

Here C̃  denotes monotone cost functions. Applying Theorem 1 completes the proof. 

TIGHTNESS OF THE BOUND 

In this section, we discuss the tightness of the bound derived in Section 5.2. In Section 6.1 we 

provide two examples: Example 2 shows that our price of anarchy is tight for k = 2 and our 

bicriteria bound is tight for k = 4 when there can be two-sided asymmetry, i.e. ki can be greater 

or less than 1. In a more realistic scenario, we expect autonomous vehicles to result in the same 

amount or less congestion than regular cars for all roads. In light of this, we provide Example 2 

of one-sided asymmetry, in which ki ≥ 1 ∀i. In Section 6.2, we discuss the tightness of the bound 

with respect to both of these scenarios. 
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c1(x, y) = 1 

s t 

√ k √ 1 c2(x, y) = x + y
k+1 k+1 

Figure 4: Example of a road network with one-sided asymmetry. 

6.1 Examples 

Example 2. Consider the traffic network in Fig. 3, which is parameterized by the degree of asym-

metry, k. We wish to transport 1 unit regular traffic and 1 unit smart traffic across the network. 

The worst-case Nash equilibrium has all regular traffic on the top link and all the smart traffic 

on the bottom link, for a cost of CEQ = 2k. The optimal routing has this routing reversed, for a 
CEQ 

cost of COP T = 2. This gives us 
COP T = k. 

We find the bicriteria by finding how much traffic we could optimally route for a cost of 2k. 

Consider p units regular and p units of smart vehicles, which would have optimal routing cost 2p2 . 
√ 

Setting 2p2 = 2k, we find the bicriteria is k. 

Example 3. Consider the traffic network in Fig. 4, which is parameterized by k. Here we wish to 

transport √1 units regular traffic and 1 unit smart traffic across the network. 
k 

At the Wardrop Equilibrium, all traffic will take the bottom route for a delay of 1, which gives 
1 us cost CEQ = √ + 1. In optimal routing we have regular traffic on top and smart traffic on the 
k 

1 √ 1 kbottom. This gives us COP T = √ + , giving us a PoA of 1 + √ . 
k k+1 2 k+1 

We find the bicriteria by setting the cost of routing p times as much traffic optimally equal to 
√ √ √ 

(−1+ 1+4 k)(1+ k)the original cost at equilibrium. This gives us p = √ . 
2 k 

6.2 Discussion 

4We begin by discussing the price of anarchy. Our bound for price of anarchy is 4−k , and example 

2 shows a price of anarchy of k and example 3 shows a price of anarchy of 1 + √k . For the 
2 k+1 √ 

bicriteria, our bound is 1 + k 
4 . Example 1 provides a bicriteria of k and example 2 has a bicriteria 

20 



1 2 3 4 5 6 7
k

1

2

3

4

5

6

7

Pr
ic

e 
of

 A
na

rc
hy

Price of Anarchy Bound Tightness Analysis

Price of Anarchy upper bound
Example 1 Price of Anarchy
Example 2 Price of Anarchy

1 2 3 4 5 6 7
k

1

1.5

2

2.5

3

Bi
cr

ite
ria

Bicriteria Bound Tightness Analysis

Bicriteria upper bound
Example 1 Bicriteria
Example 2 Bicriteria

Figure 5: Tightness of the bounds for price of anarchy and bicriteria. The PoA bound is tight for k = 1, 2 and the 
bicriteria bound is tight for k = 4. 
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that scales with k1/4 . 

When k = 1, price of anarchy bound recovers the classical bound found in [20]. Further, the 

examples show that the price of anarchy bound is tight for k = 2 and the bicriteria bound is tight 

for k = 4. 

Figure 5 illustrates these comparisons. In both cases, our upper bound diverges from these 

lower bounding examples for large k. Therefore, it is unknown if our bound is tight in that regime. 

However, realistic circumstances lead to k ≈ 2.5, which is in the near-tight region for both price of 

anarchy and bicriteria. 

It is worth noting that under the construction in [27] and in Theorem 1, there can be no bound 

on the price of anarchy for networks with k ≥ 4. Observe that in Example 2 for k = 4, the bicriteria 

is 2. This means that β(Ck=4) ≥ 1, so the bound on the price of anarchy does not hold. 

7 NUMERICAL STUDIES 

7.1 Revisiting Capacity Models 

To have a more accurate capacity model, we first revisit the results derived in Equations (2) and 

(3). In capacity model 1, an autonomous vehicle is indiscriminate in reducing its headway when 

following other vehicles. Let m be the capacity of the road when fully utilized by regular vehicles, 

and M be the capacity of the road when fully utilized by autonomous vehicles. Let α be the 

average proportion of smart vehicles on the road. As mentioned before, the capacity of the road 

under autonomy level α is approximated by 

1 
C(α) = −1 . (16)

αM−1 + (1 − α)m 
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Note that, for a single lane road of length d, where regular vehicles assume headway hr and 

autonomous vehicles assume headway hs, we have M = d/hs and m = d/hr. Let the length of 

every vehicle be l. We can then express a more accurate capacity model as 

d 
C(α) = . (17)

αhs + (1 − α)hr + l 

The physical significance of hr and hs can be appreciated below in Fig. 6. 

Figure 6: A representation of car interactions in SUMO according to capacity model 1. In this model, an autonomous 
vehicle will always follow with a distance hs to the car in front of it. A regular vehicle will follow with headway hr. 

In capacity model 2, an autonomous vehicle adjusts its headway according to the technology 

of the car it is following; it only reduces its headway when following another autonomous vehicle. 

Using the same notation as above, we find that 

1 d 
C(α) = −1 = . (18)

α2M−1 + (1 − α2)m α2hr + (1 − α2)hs + l 

The physical significance of hr and hs can be appreciated in Fig. 7 below. 

Figure 7: A representation of car interactions in SUMO according to capacity model 2. In this model, an autonomous 
vehicle will only follow with a distance hs to the car in front of it if that car is also autonomous. A regular vehicle 
will always be followed with distance hr . 
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7.2 Validation of Models In SUMO 

In this subsection, we discuss the SUMO validation and configurations.3 

The most basic road network was used to validate the capacity models - a single-lane road in a 

straight line. Below, we outline the basic configuration files needed to define this scenario. 

1. /single_road/network/single.net.xml 

• This file defines the road graph, including the locations of vertices in a plane, the edges 

between vertices, and the speed limit along those edges. 

2. /single_road/network/single.rou.xml 

• Types of vehicles are defined here according to a car following model, color, acceleration 

parameters, impatience, length of vehicle, maximum speed, minimum gap from vehicle 

immediately in front, and headway. 

• Instances of these vehicles on the road are also defined here. This can be done in multiple 

ways, but for this study it was useful to define a “flow,” where a proportion of different 

vehicle types is specified and the traffic is generated from this distribution. 

3. /single_road/network/single.det.xml 

• This file defines sensors on the road, including the locations of the sensors on specific 

edges of the road graph, the frequency of detection, and the output files. Note that the 

output files weren’t necessary, as an interface from Python was available to directly talk 

to these sensors. 
3All source files can be found in https://github.com/davidrower/collaboration pedarsani. 
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An example of a sensor in the graphical rendering of SUMO is presented in Fig. 8. 

Figure 8: A sensor as displayed in the GUI of SUMO. The yellow box is the sensor, which can be listened to directly 
through a Python script. The red triangle represents a car. 

Overview of TraCI. In order to gather data quickly and effectively from SUMO, TraCI, a 

”Traffic Control Interface,” was released. TraCI allows you to directly observe and manipulate 

instances of SUMO via several supported programming languages, including Python. This was 

used to automate the running of several instances of SUMO, and to collect data from each of those 

instances. 

Our Scenario. A single-lane road in a straight line was defined, and two sensors were defined 

along the road. One sensor was placed roughly 1/5 of the way down the road, the other was placed 

near the end of the road (but not at the end, as this led to a bug). The first sensor was placed 

such that the traffic flow from the source node would equilibrate before reaching the sensor. The 

number of cars which passed each sensor could be counted, and the number of cars on the patch of 

road between the two sensors could be calculated from the difference between the sensor counts. 

Methodology. This number of cars on the patch between the sensors was recorded several times 

over the duration of a simulation, and the average and standard deviation were computed. The 

average number of cars on the road was plotted against the road capacity for a sampling of autonomy 

levels for two scenarios: parameterizations matching the descriptions of capacity models 1 and 2. 

These results are plotted in Fig. 9 and Fig. 10. 
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Figure 9: Road capacity as a function of autonomy level with parameterization of capacity model 1. In this model, 
autonomous vehicles are indiscriminate in reducing their headway. There is a very strong agreement between the 
model and the measurements. 

Discussion. There are two common features in these studies. The standard deviation of the road 

capacity is a maximum when the traffic is very mixed. It takes on low values when the traffic tends 

to be very regular or very autonomous. The second common feature is an artifact of the finite 

length of the road and only affects the simulations for autonomy level α = 1. 

As vehicles are added to the road, they need to accelerate to catch up to the (infinite) platoon 

in front of them. Over time, the gap between a newly injected vehicle and the vehicle injected 

before it grew too large to be overcome by the acceleration of the vehicles. This problem wasn’t 
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Figure 10: Road capacity as a function of autonomy level with parameterization of capacity model 2. In this model, 
autonomous vehicles only reduce their headway if the leading car is also autonomous. There is a very strong agreement 
between the model and the measurements. 

present in simulations with lower values of α since regular vehicles would be injected often enough 

to keep this gap from growing too large. 

CONCLUSIONS 

In this report, we developed capacity models for transportation networks with mixed autonomy. 

Using these models, we presented pairwise separable and nonseparable cost functions for traffic 
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networks under mixed autonomy. We demonstrated that the price of anarchy and bicriteria is 

unbounded without constraints on the asymmetry in the difference in how the additon of smart 

and regular vehicles affects congestion. We then established bounds for the price of anarchy and 

bicriteria, parameterized by the degree of asymmetry of the network, for both the case of pairwise 

separable and nonseparable costs, under certain conditions. We analyzed the tightness of the 

bounds for the pairwise separable case and demonstrate that they are tight for certain degrees of 

asymmetry of the network. Finally, we presented simulations results via SUMO that showed tight 

agreement between our theoretical models and practice. 
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	Abstract 
	We study capacity models and routing behavior in transportation networks with mixed autonomy, that is, networks in which a fraction of the vehicles on each road are equipped with autonomous capabilities such as adaptive cruise control that enable reduced headways and increased road capacity. In this report, we consider a mixed traﬃc proﬁle where a fraction of vehicles are smart and able to form platoons, and the remaining are regular and manually driven. We develop two models for road capacity under mixed a
	We particularly study the price of anarchy for such networks, that is, the ratio of the total delay experienced by selﬁsh routing to the socially optimal routing policy. Unlike the case when all vehicles are of the same type, for which the price of anarchy is known to be bounded, we ﬁrst show that the price of anarchy can be arbitrarily large for such mixed autonomous networks. Next, we deﬁne a notion of asymmetry corresponding to the maximum possible travel time improvement due to the presence of autonomou
	INTRODUCTION 
	INTRODUCTION 
	Automobiles are increasingly equipped with autonomous and semi-autonomous technologies such as adaptive cruise control and automated lane-keeping. These technologies are often marketed to consumers as safety or convenience features, but it is apparent that increasing numbers of these smart vehicles will have dramatic impact on network-level mobility factors such as traﬃc congestion and travel times [1]. A primary mechanism whereby such autonomous capabilities can improve mobility is by enabling platooning o
	When all vehicles in the system are smart, platooning has the potential to increase network capacity by as much as three-fold [2]. Platooning can help to smooth traﬃc ﬂow and avoid shockwaves of slowing vehicles [3, 4, 5, 6, 7, 8], and at signalized intersections, platoons can synchronously accelerate at green lights [2, 9]. However, in a mixed autonomy setting—where only a fraction of the vehicles are smart and the remainder are regular, human-driven vehicles—the beneﬁts of platooning are less clear. On fr
	-
	-

	In this work, we develop capacity models for roads with mixed autonomy in order to study routing behavior on transportation networks. We make the assumption that the additional travel time caused by congestion on a road is inversely related to capacity and proportional to the total number of vehicles on the road. Given a network of roads leading from origins to destinations, selﬁsh vehicles will choose the route that minimizes total delay, achieving a Wardrop equilibrium [16, 17]. It has long been known tha
	present (i.e., no smart vehicles), it is known that the price of anarchy cannot exceed 4/3 [20]. 
	In a mixed autonomy setting, however, a social planner is able to route smart vehicles diﬀerently than regular vehicles to maximize capacity. In this paper, we ﬁrst show that this increased ﬂexibility leads, remarkably, to an unbounded price of anarchy. Next, we make the assumption that the possible travel time improvement due to the presence of autonomous vehicles is bounded by a factor k< 4. We call this factor the degree of asymmetry of the network. Under this assumption, 
	4
	we prove that the price of anarchy cannot exceed , which recovers the classical bound when k = 1, i.e., the case when smart vehicles do not enable any improvement in travel time. We show via examples that this bound is tight for k = 1 and k = 2. 
	4
	−k 

	Next, we provide a bound on the cost of selﬁsh routing relative to the cost of optimally routing additional traﬃc, called the bicriteria bound [20], [21]. We prove that traﬃc at a Wardrop Equilibrium will not exceed the cost of optimally routing 1 + as much traﬃc of each type, where k is
	-
	k 

	4 
	the degree of asymmetry in the network. We demonstrate by example that the bicriteria bound is tight for k = 4. Similar to the price of anarchy, when the asymmetry is unbounded we show that the bicriteria is unbounded as well. This runs counter to the case of single-type traﬃc where the bicriteria is bounded by 2 for any separable continuous and nondecreasing cost function in which the delay on a road depends only on the traﬃc on that road [20]. 

	PREVIOUS WORKS 
	PREVIOUS WORKS 
	In this section, we address related models in the literature and highlight the diﬀerence between these and our model. Due to the breadth of the ﬁeld, we give a limited overview of the literature on the price of anarchy – see [22] for a broader survey of literature related to Wardrop equilibria and [23] for a wider background on the price of anarchy in transportation networks. For deﬁnitions of the terms used in this section see Section 4.3. 
	Roughgarden and Tardos [20] bound price of anarchy and bicriteria for separable monotonic cost functions, and Roughgarden [24] gives a more general method for determining price of anarchy in the separable case. 
	Chau and Sim [25] bound the price of anarchy for symmetric cost operators with convex social 
	cost for both nonelastic and elastic demands. Perakis discusses nonseparable, asymmetric, nonlinear costs in [26], though only for monotone latencies i.e. satisfying the property 
	hc(z) − c(v),z − vi≥ 0 , (1) 
	where h·, ·i denotes the inner product of two vectors. 
	Correa et. al [27] present a uniﬁed framework for deriving price of anarchy and bicriteria for nonseparable monotone functions. Sekar et. al [28] analyze the price of anarchy when users have diﬀerent beliefs about the delay on a road, but experience the same actual cost, dictated by a monotone cost function. 
	Unlike these previous works, we present a price of anarchy and bicriteria bound for a class of nonmonotone and pairwise separable aﬃne cost functions. We show that our bound simpliﬁes to the classic bounds for aﬃne monotone cost functions in [20], [25], and [27] when there is no asymmetry in how the vehicle types aﬀect congestion. 

	Modeling Mixed Autonomy 
	Modeling Mixed Autonomy 
	The Highway Capacity Manual deﬁnes the capacity of a road as the maximum possible ﬂow rate on the road in vehicles per hour [29]. Capacity is primarily limited by the average headway that vehicles maintain while traveling on the road, and the HCM recommends a nominal saturation ﬂow rate of 1900 vehicles per hour (vph) per lane to capture typical behavior of drivers, which corresponds to a headway of 3600/1900 = 1.89 seconds (s). 
	With the emergence of semiautonomous driving technology such as cooperative adaptive cruise control (CACC), it is projected that the headway can be reduced to approximately 0.8 s, which corresponds to a road capacity of 4500 vph [30]. However, to achieve this nearly 2.5-fold increase in capacity requires every vehicle to maintain shorter headways. What happens when only a fraction of vehicles are equipped with the required technology to achieve reduced headway? In this section, we consider two possible mode
	setting. We say a vehicle is smart if it is equipped with semiautonomous driving capabilities that 
	enable reduced headways, and regular otherwise. 
	3.1 Capacity Model 1 
	3.1 Capacity Model 1 
	We ﬁrst consider a scenario in which each smart vehicle is able to maintain reduced headway with any preceding vehicle, regardless of whether that vehicle is also equipped with driver assistance technology. This scenario is plausible when smart vehicles are able to accurately localize any surrounding vehicle without communication. At the moment, it is unclear whether a suﬃciently sophisticated sensor suite for this task will be omnipresent on autonomous vehicles. Indeed, the sensors likely required to achie
	Suppose that m is the capacity of the road when fully utilized by regular vehicles, and M is the capacity when fully utilized by smart vehicles, where M >m. Let α be the average fraction of smart vehicles on the road. We call α the autonomy level of the road. Deﬁne C(α) to be the capacity of the road under autonomy level α. We propose the following approximation: 
	−1−1
	)

	C(α)=(αM+ (1 − α)m. (2) 
	−1 

	Here is a justiﬁcation for (2). First, assume that every smart vehicle follows the preceding vehicle 
	−1
	M

	(whether it is smart or regular) with time gap of t= . Second, assume that each regular vehicle follows the preceding vehicle with time gap of t= mwhere t>t. Finally, since a fraction α of vehicles are smart, the eﬀective headway of the road with autonomy level α is αt+ (1 − α)t, which implies (2). Note that this approximation is valid regardless of how the smart vehicles are distributed among the regular vehicles, so long as the autonomy level is α. 
	2 
	1 
	−1 
	1 
	2
	2 
	1

	In Figure 1, we plot road capacity as a function of the fraction of smart vehicles α, assuming that the capacity when there are no smart vehicles (α = 0) is 1900 vph and when there are only smart vehicles (α = 1) is 4500 vph. 
	Road capacity, veh. per hour (vph) 
	4,000 
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	α, fraction of smart vehicles 
	Figure 1: Road capacity as a function of the autonomy level α, i.e., the ratio of smart vehicles on the road. In Model 1 (dark/blue), it is assumed that smart vehicles are able to maintain shorter headways with any preceding vehicle. In Model 2 (light/orange), it is assumed that smart vehicles are only able to maintain a shorter headway if the preceding vehicle is also smart, with results in decreased capacity. 

	3.2 Capacity Model 2 
	3.2 Capacity Model 2 
	We now consider an alternative model in which a smart vehicle is only able to maintain a short headway if the preceding vehicle is also smart. As above, suppose that m (respectively, M) is the capacity of the road when fully utilized by regular (respectively, smart) vehicles, and again let α be the average fraction of smart vehicles on the road. 
	Unlike the previous model, the capacity of the road now depends on the distribution of smart vehicles among regular vehicles. For example, consider a single-lane road with n vehicles, and suppose n/2 are regular and n/2 are smart. In the extreme case that the smart and regular vehicles are perfectly interleaved such that every smart vehicle is preceded by a regular one, then the capacity is m and no gain is achieved. In the other extreme case that a platoon of n/2 smart vehicles precedes n/2 regular vehicle
	Here, we propose to model vehicle type as a Bernoulli process, i.e., each vehicle is smart with probability α and regular with probability 1 − α independently. In this case, the capacity of the 
	road is approximated as 
	−1−1
	)

	C(α)=(αM+ (1 − α)m. (3) 
	2
	−1 
	2

	To derive (3), note that the time gap between two vehicles is t= Mif they are both smart and t= motherwise. Thus, one needs to count the fraction of pairs of smart vehicles, which is α. This implies that the average headway is αt+ (1 − α)t. Figure 1 also plots the capacity model (3). 
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	4 MOTIVATION AND MATHEMATICAL FORMULATION 
	4 MOTIVATION AND MATHEMATICAL FORMULATION 
	In this section we motivate our cost function for traﬃc in mixed autonomy. In Section 4.1, we show that the price of anarchy and bicriteria are unbounded for congestion games with aﬃne cost functions in mixed autonomy, described in Section 4.2. Prompted by our negative result, in Section 
	4.3 we describe a pairwise separable cost function that is parameterized by the degree of asymmetry, as well as a more general class of nonseparable cost function. 
	4.1 Motivation 
	4.1 Motivation 
	We provide a brief example of unbounded price of anarchy and bicriteria for congestion games under mixed autonomy. This example is similar in design to Pigou’s example, as in [20], [32], and [23]. 
	Example 1. Consider the traﬃc network in Fig. 2, in which unit of regular traﬃc and 1 unit
	1 

	ζ 
	of smart traﬃc need to travel from node s to node t, where ζ ≥ 1. The cost on road i, or the delay a car experiences from traveling on that road, is denoted ci(x, y). 
	The routing with all traﬃc on the bottom road is at Wardrop Equilibrium, with a price of 
	EQ 
	C
	1 

	=(ζ)(+1) = +1. The optimal routing has the regular traﬃc on the top and smart traﬃc 
	1 
	1 

	ζζ ζ 
	1 
	1

	on the bottom with a cost of C= · 1+ · 0= . This results in a price of anarchy of ζ +1.
	OP T 
	1 
	ζ 

	ζ 2 a
	For the bicriteria, consider a situation in which we have a mass of units of smart cars and a units of regular cars to route. We want to ﬁnd the a that corresponds to, under optimal routing, 
	ζ 

	c(x, y)=1 
	1

	s t c2(x, y) = ζx 
	Figure 2: Example of a road network with price of anarchy and bicriteria that grow unboundedly with ζ. 
	a 
	1 

	a cost equaling that of Cabove. The optimal routing will have cost , which equals +1 when
	EQ 
	ζ 

	ζ 
	a = ζ +1. 
	Here we see that both the price of anarchy and the bicriteria bound grow unboundedly with ζ. Due to this result, we state the following proposition: 
	Proposition 1. The price of anarchy and bicriteria are unbounded for networks of mixed autonomy with pairwise separable aﬃne functions. 
	Because of this negative result, to provide a bounded price of anarchy and bicriteria in mixed autonomy we develop a class of cost functions with bounded asymmetry. 

	4.2 Aﬃne Congestion Game Overview 
	4.2 Aﬃne Congestion Game Overview 
	Consider a network of n roads, with m origin-destination pairs, each with an associated mass of regular vehicles of volume αi and mass of smart vehicles of volume βi. Since we are considering a nonatomic congestion game, each user controls an inﬁnitesimally small portion of that mass. We denote X as the set of feasible strategies which result in the entirety of each mass being routed from its origin to its destination, without violating conservation of ﬂow (see [33] for a more detailed explanation). 
	The vector of all ﬂows on the n roads is denoted by 
	..z = xyxy... xn yn , 
	T 
	1 
	1 
	2 
	2 

	where xi and yi represent the mass of regular and smart vehicles, respectively, on road i. In this paper, we consider aﬃne cost functions, meaning the cost on the roads resulting from a routing 
	z ∈X can be written as 
	c(z)= Az + b, 
	..
	T 

	where A ∈ Rand b = bbbb... bb. This yields social cost 
	2 
	≥ 
	n 
	0 
	1 
	1 
	2 
	2 
	n 
	n 

	C(z)= hc(z),zi =(Az + b)z, 
	T 

	and the social cost at optimal routing is then C= infz∈X C(z). Vector b contains the constant terms; matrix A is the Jacobian of the road cost operator, and is not in general positive semideﬁnite, so the optimization is not convex. 
	OP T 


	4.3 Separability and Monotonicity 
	4.3 Separability and Monotonicity 
	Having described the basic structure of the congestion game with aﬃne costs, we describe the separability and monotonicity of our model. To do so, we deﬁne three notions of separability. 
	Deﬁnition 1. A cost function c(z)= Az + b is separable if A is a diagonal matrix. 
	Deﬁnition 2. A cost function c(z)= Az + b is pairwise separable if A is a blockwise diagonal matrix with 2x2 blocks. 
	Deﬁnition 3. A cost function is nonseparable if it is neither separable nor pairwise separable. 
	It is clear that separable costs do not model mixed autonomy if regular and smart cars aﬀect delay diﬀerently but experience it identically. The slightly more general class of pairwise separable costs does provide a useful model, which we motivate as follow, using a capacity model similar to those in [9], [34], [35]: 
	y
	y

	Consider a road with regular car ﬂow x and smart car ﬂow y and autonomy level α = . We use Capacity model 1 in (2), and propose a road cost function in which delay is an aﬃne function of vehicles on the road: 
	x+y 

	x + y 
	−1 
	c(x, y)= b + r = b + rMy + rm x. 
	−1 

	C(α) 
	Here b represents the time it takes to traverse a road in free-ﬂow traﬃc and r determines how congestion scales as road utilization increases with respect to capacity. 
	To capture a notion of asymmetry in how the types of vehicles aﬀect traﬃc, we can rewrite the cost on road i as follows: 
	ci(xi,yi)= bi + kiaixi + aiyi . (4) 
	This leads to a cost function of the following form: 
	⎤
	⎡ 
	c(z)= Az + b = 
	⎢⎢⎢⎢⎢⎢⎢⎣ 
	A0 ... 0 0 A... 0 
	1 
	2 

	. . . 
	. . . 
	. . . 
	. . . 
	. . . 
	. . . 

	0 
	0 
	0 
	. . . 
	An 


	⎥⎥⎥⎥⎥⎥⎥⎦ 
	z + b 
	⎤
	⎡ 
	where A is a block-diagonal matrix with blocks Ai = 
	⎢⎣ 
	kiai ai
	⎥⎦
	. 
	kiai ai The parameter ki allows us to represent the degree of asymmetry between the eﬀect of regular and smart traﬃc on congestion on a speciﬁc road. Since in [35], [30], and [2], we see that vehicles not in a platoon require approximately 2.5 times more headway than vehicles in a platoon, we allow ki to diﬀer between roads, but generally expect it to be in the range ki ∈ [1, 4]. We ﬁnd it useful to parameterize a class of cost functions by its maximum degree of asymmetry, as follows: 
	1
	1

	Deﬁnition 4. Let Ck denote the class of pairwise separable cost functions for which max(ki, ) ≤ k ∀i for some constant k. We call k the maximum degree of asymmetry of this class of cost functions. 
	k
	i 

	In the more general model explored in Section 5.3, the delay on one road may depend on the ﬂows on other roads. For example, if one road is fully congested, the roads feeding it will have additional delay. If this is the case, then (4) does not hold and the matrix A is not of block-diagonal form. In Section 5.3 we provide a bound for this model under certain conditions. 
	Throughout this paper, we deal with cost functions that satisfy element-wise monotonicity, deﬁned as follows: 
	Deﬁnition 5. A class of cost functions C is elementwise monotone if for all cost functions c(v) 
	∂cj
	∂cj

	drawn from C, (v) ≥ 0 ∀i, j. 
	∂v
	i 

	In other words, a cost function is element-wise monotonic if increasing any ﬂow of vehicles will not decrease the delay on any road. This will be the case for a class of cost functions of the form c(z)= Az + b for which A has only nonnegative entries. Note that this is diﬀerent from the general notion of monotonicity described in Section 2. 
	1 



	5 BOUNDING THE PRICE OF ANARCHY 
	5 BOUNDING THE PRICE OF ANARCHY 
	In this section we present bounds for the price of anarchy and bicriteria. We proceed along the lines proposed in [27], reviewing that work in Section 5.1 and highlighting the diﬀerences that arise for a nonmonotone cost function. We then derive our bounds for nonmonotone pairwise separable costs in Section 5.2, and give a bound for nonseparable costs in Section 5.3. 
	5.1 Preliminaries 
	5.1 Preliminaries 
	Smith [36] shows that any ﬂow zat Wardrop equilibrium – in which all users sharing an origin and destination use paths of equal cost and no unused path has a smaller cost – satisﬁes the variational inequality for any feasible ﬂow z: 
	EQ 

	hc(z),z− zi≤ 0 . (5) 
	EQ
	EQ 

	A simple proof of this is provided in [33]. Correa et. al. [27] use this result to develop a general tool for ﬁnding price of anarchy and 
	.. 
	31 ..T
	Our case is not in general monotone: consider a single road with c(z)= z, with x =10 and 
	1

	31
	.
	T 

	. 
	y = 0 2 . This results in hc(x) − c(y),x − yi = −1. 
	bicriteria. To that end, they introduce the following parameters: 
	hc(v) − c(z),zi 
	β(c, v) := max , 
	z∈Rn hc(v),vi 
	2

	≥0 
	β(C) := sup β(c, v) , 
	c∈C,v∈X 
	where 0/0=0 by deﬁnition, C represents a class of cost functions, and X is the set of feasible routings. 
	In the following theorem, we adapt Correa et. al’s Theorem 4.2 [27] to when the cost function is not monotone. In the nonmonotone case β(C) can be greater than 1, leading to an unbounded price of anarchy. For completeness, we overview the proof of Theorem 4.2 in [27]. 
	Theorem 1. Let zbe an equilibrium of a nonatomic congestion game with cost functions drawn from a class C of nonseparable nonmonotone but elementwise monotone cost functions. 
	EQ 

	OPT EQ−1OP T 
	) ≤ (1−β(C))
	C(z
	).

	(a) If z is a social optimum for this game, and β(C) < 1, then C(z 
	OP T 
	(b) If w is a social optimum for the same game with 1+ β(C) times as many players of each EQOP T 
	) ≤ C(w
	).

	type, then C(z 
	Proof. To prove part (a), 
	hc(z),zi = hc(z),zi + hc(z) − c(z),zi EQEQ
	EQ
	EQ
	)hc(z 
	i

	≤hc(z),zi + β(c, z ),z EQ
	EQ
	)

	≤ C(z)+ β(C)C(z (6) 
	and C(z) ≤hc(z),zi. Completing the proof requires that β(C) ≤ 1. 
	EQ
	EQ

	OP T 
	To prove part (b), element-wise monotonicity implies the feasibility of (1 + β(C))w , and using (5), 
	−1

	OP T 
	i .

	hc(z),zi≤hc(z), (1 + β(C))w (7) 
	EQ
	EQ
	EQ
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	Then, 
	EQ
	i

	C(z) = (1+ β(C))hc(z),z EQ
	EQ
	EQ
	i

	− β(C)hc(z),z (8) OP T 
	EQ
	i

	≤ (1 + β(C))hc(z), (1 + β(C))w EQ
	EQ
	−1 
	i

	− β(C)hc(z),z (9) OP T 
	EQ
	) ,

	≤ C(w (10) 
	where (9) uses (7) and (10) uses (6). 

	5.2 Pairwise Separable Costs 
	5.2 Pairwise Separable Costs 
	We now present a bound for the price of anarchy and bicriteria for the pairwise separable aﬃne cost function when k, the maximum degree of asymmetry of the cost function, is bounded. In particular, when k< 4, the price of anarchy is bounded, and the bicriteria is bounded for any k. This is formalized as follows: 
	Theorem 2. Let zbe an equilibrium of a nonatomic congestion game with cost functions drawn from a class Ck of aﬃne, pairwise separable, nonmonotone, elementwise monotone cost functions, where k parameterizes the maximum degree of asymmetry in the cost functions. 
	EQ 

	OPT EQOP T 
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	(a) If z is a social optimum for this game, and k< 4, then C(z C(z 
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	EQOP T 
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	then C(z 
	Proof. To prove this, we will show β(Ck) ≤ and then apply Theorem 1. For ease of notation, let 
	k 
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	z , xyxy...x y .
	11 22 nn 
	Without loss of generality, and with a slight abuse of notation, we order the roads such that for 1 ≤ i ≤ `, ci(xi,yi)= kiaixi + aiyi and for roads `<i ≤ n, ci(xi,yi)= aixi + kiaiyi, where ki ≥ 1. 
	Then, 
	hc(z ) − c(z),zi 
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	β(c, z ) = max 
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	z∈Rn hc(z ),z i 
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	hAz,z i
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	ai maxx,y≥0((x − xi)+ ki(y − yi))(xi + yi) 
	i=`+1 
	i
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	hAz,z i 
	∗ 
	∗

	We will bound the ﬁrst term in (11), and the same can be done for the second term as well. 
	∗∗
	Denote the inner term γ, so γ(xi,yi)=(ki(x −xi)+(y −yi))(xi +yi). This term is not concave, but 
	ii is concave with respect to both xi and yi individually. Then, we use f(xi) to denote the function that maximizes γ with respect to yi by solving (xi,yi) = 0, and g(yi) to denote the function
	∂γ 

	∂yi 
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	that maximizes γ with respect to xi by solving (xi,yi) = 0. This yields 
	∂x
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	f(x
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	g(yi)= − yi . 
	2ki 2ki 
	Then, for any ﬁxed xi, the optimal yi is determined by yi = f(xi), and for any ﬁxed yi, the optimal xi is determined by xi = g(xi). Then, deﬁne x˜i and y˜i as follows: 
	y˜i = argmax γ(g(yi),yi) yi≥0,g(yi)≥0 
	x˜i = argmax γ(xi,f(xi)) . xi≥0,f(xi)≥0 
	We see that γ(g(yi),yi) and γ(xi,f(xi)) are convex, and γ(g(˜yi),y˜i) ≥ γ(˜xi,f(˜xi)), where y˜i = 
	∗∗
	kix +y
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	xi≥0,yi≥0 4 
	After applying a similar analysis for roads `<i ≤ n, 
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	implies Equation (12), since k ≥ ki ≥ 1 ∀i. We apply Theorem 1 to ﬁnd a price of anarchy bound of and bicriteria bound of 1 + . 
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	(b) If w is a social optimum for the same game with 1+ times as many players of each type, 
	(b) If w is a social optimum for the same game with 1+ times as many players of each type, 
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	5.3 Nonseparable costs 
	5.3 Nonseparable costs 
	Having discussed pairwise separable costs (Deﬁnition 2), where the delay on each road depends only on the vehicles on that road, we now consider nonseparable costs (Deﬁnition 3). As an example, consider a series of roads, each one feeding into the next; if one road is fully congested, this will increase the delay on the roads feeding it, resulting in cascading congestion. Another scenario of nonseparable costs is when intersecting streets aﬀect the traﬃc on each other [22], such as in a signalized intersect
	To put this in more concrete terms, consider a road feeding into another narrower road. We model the congestion on the second road as comparatively aﬀecting that on the ﬁrst road by a 
	factor of µ. This results in a cost function of 
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	With this motivation, we consider the aﬃne cost functions c(x)= Ax + b, where A is no longer a 2x2 block-diagonal matrix. We consider the case that A can be written as the sum of Q,a (2x2) block diagonal matrix with strictly positive block diagonal entries, and P , a positive deﬁnite matrix.
	2 

	We describe the bounds we can establish under these conditions in the following theorem: 
	Theorem 3. Let zbe an equilibrium of a nonatomic congestion game with cost function c(z)= Az + b. Suppose A can be split into Q, which is a (2x2) block diagonal matrix with strictly positive entries on the block diagonal, and P , which is positive deﬁnite, such that A = Q + P . Let k be the maximum degree of asymmetry for the cost function deﬁned by Q. 
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	Note that if P is a diagonal dominant mapping, i.e. Pii > |Pij + Pji|, then it is positive deﬁnite [33]. In
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	this case, in order to also guarantee that the block diagonal components of Q have strictly positive entries, we require 
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	This, however, is a suﬃcient but not necessary condition. 
	Proof. For part (a), we split the price of anarchy into two components, as 
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	Inequality (13) follows from all latencies being nonnegative, (14) follows from [27] and [26] (see the comment on page 2 about the price of anarchy for costs with no constant term), and the (15) is proved in the proof of Theorem 2. 
	For part (b), we use the same notion of β(C) as in the proofs for Theorems 1 and 2, as follows: 
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	Here cand crepresent cost functions drawn from Ck and C, respectively, where k is the maximum ˜
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	degree of asymmetry of the cost function c(z)= Qz + b and C denotes the set of monotone cost functions. 
	De Palma and Nesterov [33] show that a cost function c(z) is monotone if c(z) is positive deﬁnite. Furthermore, Correa et. al. show that a class C consisting of monotone cost functions has 
	0
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	Figure 3: Example of a road network with two-sided asymmetry. 
	β(C) ≤ 1. This is easily demonstrated as follows. Using (1) with z, v ∈ R, 
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	Here Cdenotes monotone cost functions. Applying Theorem 1 completes the proof. 
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	TIGHTNESS OF THE BOUND 
	TIGHTNESS OF THE BOUND 
	In this section, we discuss the tightness of the bound derived in Section 5.2. In Section 6.1 we provide two examples: Example 2 shows that our price of anarchy is tight for k = 2 and our bicriteria bound is tight for k = 4 when there can be two-sided asymmetry, i.e. ki can be greater or less than 1. In a more realistic scenario, we expect autonomous vehicles to result in the same amount or less congestion than regular cars for all roads. In light of this, we provide Example 2 of one-sided asymmetry, in whi
	c(x, y)=1 
	1

	s t 
	√ k √ 1 
	√ k √ 1 

	c(x, y)= x + y
	2

	k+1 k+1 
	Figure 4: Example of a road network with one-sided asymmetry. 
	6.1 Examples 
	6.1 Examples 
	Example 2. Consider the traﬃc network in Fig. 3, which is parameterized by the degree of asymmetry, k. We wish to transport 1 unit regular traﬃc and 1 unit smart traﬃc across the network. 
	-

	The worst-case Nash equilibrium has all regular traﬃc on the top link and all the smart traﬃc on the bottom link, for a cost of C=2k. The optimal routing has this routing reversed, for a 
	EQ 
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	cost of C=2. This gives us OP T = k. 
	OP T 
	C

	We ﬁnd the bicriteria by ﬁnding how much traﬃc we could optimally route for a cost of 2k. Consider p units regular and p units of smart vehicles, which would have optimal routing cost 2p. 
	2 

	√ 
	Setting 2p=2k, we ﬁnd the bicriteria is . 
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	Example 3. Consider the traﬃc network in Fig. 4, which is parameterized by k. Here we wish to transport units regular traﬃc and 1 unit smart traﬃc across the network. 
	√
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	At the Wardrop Equilibrium, all traﬃc will take the bottom route for a delay of 1, which gives 
	1 
	us cost C= +1. In optimal routing we have regular traﬃc on top and smart traﬃc on the 
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	bottom. This gives us C= + , giving us a PoA of 1+ √ . 
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	We ﬁnd the bicriteria by setting the cost of routing p times as much traﬃc optimally equal to 
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	√√ (−1+ 1+4 )(1+ )
	k
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	the original cost at equilibrium. This gives us p = √ . 
	2 
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	6.2 Discussion 
	6.2 Discussion 
	4
	We begin by discussing the price of anarchy. Our bound for price of anarchy is , and example 2 shows a price of anarchy of k and example 3 shows a price of anarchy of 1 + √. For the 
	4
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	bicriteria, our bound is 1 + . Example 1 provides a bicriteria of and example 2 has a bicriteria 
	k 
	4 
	k 

	Figure
	Figure 5: Tightness of the bounds for price of anarchy and bicriteria. The PoA bound is tight for k =1, 2 and the bicriteria bound is tight for k = 4. 
	that scales with k. 
	1
	/4 

	When k = 1, price of anarchy bound recovers the classical bound found in [20]. Further, the examples show that the price of anarchy bound is tight for k = 2 and the bicriteria bound is tight for k = 4. 
	Figure 5 illustrates these comparisons. In both cases, our upper bound diverges from these lower bounding examples for large k. Therefore, it is unknown if our bound is tight in that regime. However, realistic circumstances lead to k ≈ 2.5, which is in the near-tight region for both price of anarchy and bicriteria. 
	It is worth noting that under the construction in [27] and in Theorem 1, there can be no bound on the price of anarchy for networks with k ≥ 4. Observe that in Example 2 for k = 4, the bicriteria is 2. This means that β(Ck=4) ≥ 1, so the bound on the price of anarchy does not hold. 


	7 NUMERICAL STUDIES 
	7 NUMERICAL STUDIES 
	7.1 Revisiting Capacity Models 
	7.1 Revisiting Capacity Models 
	To have a more accurate capacity model, we ﬁrst revisit the results derived in Equations (2) and (3). In capacity model 1, an autonomous vehicle is indiscriminate in reducing its headway when following other vehicles. Let m be the capacity of the road when fully utilized by regular vehicles, and M be the capacity of the road when fully utilized by autonomous vehicles. Let α be the average proportion of smart vehicles on the road. As mentioned before, the capacity of the road under autonomy level α is approx
	1 
	C(α)= . (16)
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	αM
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	22 
	Note that, for a single lane road of length d, where regular vehicles assume headway hr and autonomous vehicles assume headway hs, we have M = d/hs and m = d/hr. Let the length of every vehicle be l. We can then express a more accurate capacity model as 
	d 
	C(α)= . (17)
	αhs + (1 − α)hr + l The physical signiﬁcance of hr and hs can be appreciated below in Fig. 6. 
	Figure
	Figure 6: A representation of car interactions in SUMO according to capacity model 1. In this model, an autonomous vehicle will always follow with a distance hs to the car in front of it. A regular vehicle will follow with headway hr. 
	In capacity model 2, an autonomous vehicle adjusts its headway according to the technology of the car it is following; it only reduces its headway when following another autonomous vehicle. Using the same notation as above, we ﬁnd that 
	1 d 
	C(α)= = . (18)
	−1 

	The physical signiﬁcance of hr and hs can be appreciated in Fig. 7 below. 
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	Figure
	Figure 7: A representation of car interactions in SUMO according to capacity model 2. In this model, an autonomous vehicle will only follow with a distance hs to the car in front of it if that car is also autonomous. A regular vehicle will always be followed with distance hr . 

	7.2 Validation of Models In SUMO 
	7.2 Validation of Models In SUMO 
	In this subsection, we discuss the SUMO validation and conﬁgurations.
	3 

	The most basic road network was used to validate the capacity models -a single-lane road in a straight line. Below, we outline the basic conﬁguration ﬁles needed to deﬁne this scenario. 
	1. /single_road/network/single.net.xml 
	• This ﬁle deﬁnes the road graph, including the locations of vertices in a plane, the edges between vertices, and the speed limit along those edges. 
	2. /single_road/network/single.rou.xml 
	• 
	• 
	• 
	Types of vehicles are deﬁned here according to a car following model, color, acceleration parameters, impatience, length of vehicle, maximum speed, minimum gap from vehicle immediately in front, and headway. 

	• 
	• 
	Instances of these vehicles on the road are also deﬁned here. This can be done in multiple ways, but for this study it was useful to deﬁne a “ﬂow,” where a proportion of diﬀerent vehicle types is speciﬁed and the traﬃc is generated from this distribution. 


	3. /single_road/network/single.det.xml 
	• This ﬁle deﬁnes sensors on the road, including the locations of the sensors on speciﬁc edges of the road graph, the frequency of detection, and the output ﬁles. Note that the output ﬁles weren’t necessary, as an interface from Python was available to directly talk to these sensors. 
	All source ﬁles can be found in pedarsani. 
	3
	https://github.com/davidrower/collaboration 

	An example of a sensor in the graphical rendering of SUMO is presented in Fig. 8. 
	Figure
	Figure 8: A sensor as displayed in the GUI of SUMO. The yellow box is the sensor, which can be listened to directly through a Python script. The red triangle represents a car. 
	Overview of TraCI. In order to gather data quickly and eﬀectively from SUMO, TraCI, a ”Traﬃc Control Interface,” was released. TraCI allows you to directly observe and manipulate instances of SUMO via several supported programming languages, including Python. This was used to automate the running of several instances of SUMO, and to collect data from each of those instances. 
	Our Scenario. A single-lane road in a straight line was deﬁned, and two sensors were deﬁned along the road. One sensor was placed roughly 1/5 of the way down the road, the other was placed near the end of the road (but not at the end, as this led to a bug). The ﬁrst sensor was placed such that the traﬃc ﬂow from the source node would equilibrate before reaching the sensor. The number of cars which passed each sensor could be counted, and the number of cars on the patch of road between the two sensors could 
	Methodology. This number of cars on the patch between the sensors was recorded several times over the duration of a simulation, and the average and standard deviation were computed. The average number of cars on the road was plotted against the road capacity for a sampling of autonomy levels for two scenarios: parameterizations matching the descriptions of capacity models 1 and 2. These results are plotted in Fig. 9 and Fig. 10. 
	] 
	Figure 9: Road capacity as a function of autonomy level with parameterization of capacity model 1. In this model, autonomous vehicles are indiscriminate in reducing their headway. There is a very strong agreement between the model and the measurements. 
	Discussion. There are two common features in these studies. The standard deviation of the road capacity is a maximum when the traﬃc is very mixed. It takes on low values when the traﬃc tends to be very regular or very autonomous. The second common feature is an artifact of the ﬁnite length of the road and only aﬀects the simulations for autonomy level α = 1. 
	As vehicles are added to the road, they need to accelerate to catch up to the (inﬁnite) platoon in front of them. Over time, the gap between a newly injected vehicle and the vehicle injected before it grew too large to be overcome by the acceleration of the vehicles. This problem wasn’t 
	As vehicles are added to the road, they need to accelerate to catch up to the (inﬁnite) platoon in front of them. Over time, the gap between a newly injected vehicle and the vehicle injected before it grew too large to be overcome by the acceleration of the vehicles. This problem wasn’t 
	present in simulations with lower values of α since regular vehicles would be injected often enough to keep this gap from growing too large. 

	Figure
	Figure 10: Road capacity as a function of autonomy level with parameterization of capacity model 2. In this model, autonomous vehicles only reduce their headway if the leading car is also autonomous. There is a very strong agreement between the model and the measurements. 
	Figure 10: Road capacity as a function of autonomy level with parameterization of capacity model 2. In this model, autonomous vehicles only reduce their headway if the leading car is also autonomous. There is a very strong agreement between the model and the measurements. 




	CONCLUSIONS 
	CONCLUSIONS 
	In this report, we developed capacity models for transportation networks with mixed autonomy. Using these models, we presented pairwise separable and nonseparable cost functions for traﬃc 
	networks under mixed autonomy. We demonstrated that the price of anarchy and bicriteria is 
	unbounded without constraints on the asymmetry in the diﬀerence in how the additon of smart and regular vehicles aﬀects congestion. We then established bounds for the price of anarchy and bicriteria, parameterized by the degree of asymmetry of the network, for both the case of pairwise separable and nonseparable costs, under certain conditions. We analyzed the tightness of the bounds for the pairwise separable case and demonstrate that they are tight for certain degrees of asymmetry of the network. Finally,
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