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EXECUTIVE SUMMARY 
 

California’s Senate Bill-743 signed by the Governor on September 27, 2013 advocated the promotion of 

“active” transportation including bicycling, walking, etc. Despite the numerous potential advantages of 

indulging in multiple modes of transport, such as elevation of health and environment along with mitigation 

of congestion, the cyclists and pedestrians are a vulnerable segment of traveling public which is exposed to 

safety risks. To realize the goal of safer traffic environment, safety of commuters for all modes of transport 

is of paramount importance. The significance of incorporating multiple user modes of road transport in 

traffic safety is further catalyzed by the ongoing efforts reflected by Caltrans’ Statewide Highway Safety 

Plan and Active Transportation Program. However, insufficient protective infrastructures or deficiency of 

efficient tools to evaluate the safety and economic impacts of transport facilities on pedestrians and 

bicyclists is the main deterrent to such active transportation. In response to this issue, the main objective of 

the proposed research is to develop new multivariate crash frequency models for different modes which 

account for the spatial, temporal correlations, and their interactions.  

For the attainment of a safer driving environment, the traffic safety management process initiates 

with network screening, or, hotspot identification (HSID), followed by problem diagnosis, countermeasure 

identification, and project prioritization. The foremost step of HSID is particularly crucial to extract the 

most benefit from the limited financial resources allocated towards crash remediation. Numerous methods 

have been proposed in the past for the purpose of HSID, ranging from the traditional ones relying on crash 

count and crash rate, to the more sophisticated Bayesian methods which corrected the regression-to-the-

mean (RTM) bias and accommodating correlation structures usually associated with empirical crash data. 

Reaching towards the goal of implementation of multimodal approach, several studies investigated the 

factors impacting non-motorist safety on roadways such as roadway design, driver and non-motorist 

inebriation, low-light conditions, vehicle speed, and so on. However, these studies separately modeled the 

factors for cyclist, pedestrian, and motor-vehicle injury occurrence and few attempts have been made to 

combine these into a multimodal approach. To account for the unobserved heterogeneity shared by various 

transportation modes, it is essential to develop multivariate crash frequency models which can estimate 

crash risk of multiple modes simultaneously. Similarly, it is also necessary to accommodate the spatial and 

temporal correlations which are generally observed in crash data. Ignorance of such correlation structures 

has been illustrated to reduce the efficiency of the model due to lesser precise parameters. Recent studies 

have attempted to develop crash prediction models by incorporating such correlations. However, there is 

still no or very little research addressing traffic safety issues by employing the multivariate spatial-temporal 

modeling. To fill this research gap, the authors proposed different spatial-temporal models to analyze the 
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modal crash data. Moreover, the performance of alternative models was evaluated using different criteria 

of varying complexity. Overall, the analyses of crash data from different levels of roadway network by 

employing multiple spatiotemporal models is anticipated to enhance the understanding of safety impacts 

from the interaction of various modes and promote the idea of active transportation. Also, it will 

demonstrate the use of sophisticated multivariate spatial-temporal models for research community and 

Caltrans engineers.  

 This report is structured in six chapters, where Chapter 1 offers discussion pertaining to the 

background of crash prediction models, Chapters 2-5 present a detailed account of the objectives, 

methodology, and results of the four studies conducted by the authors, and Chapter 6 offers their summary 

and conclusions for easier reader comprehension and comparison. Overall, the primary focus was on 

development of different crash prediction models which incorporate the spatial and temporal correlations 

by employing different specifications. Different spatial levels of roadway network were used as the areas 

of focus to present a relatively robust demonstration for implementation of models. The inferences from all 

four chapters strongly suggested the implementation of proposed methods to fully realize the power of 

statistical models for achieving better predictive accuracy and generate more precise estimates for causal 

factors. The discussion of results offers the theoretical and practical implications of proposed models and 

offer recommendations from planning and engineering perspectives.  
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CHAPTER 1: LITERATURE REVIEW 
 

Traffic Safety Models 
Roadway crashes have caused an immense burden on society with respect to emotional and financial losses. 

Researchers are entrusted to develop analytic approaches to gain a better understanding of the causal factors 

for crash occurrence and develop more accurate crash prediction models to formulate road-safety policies 

and engineering solutions for mitigation of crashes. However, the accuracy of inferences drawn from the 

statistical analysis of crashes is highly dependent on the robustness of crash data and an array of potential 

influential factors such as roadway geometric (number of lanes, lane width, radius of horizontal curve, etc.), 

traffic flow (vehicle density, volume, real-time speed, speed deviations, etc.), environment (lighting, 

weather), driver characteristics and mental state (gender, response time, age, etc.), among others. 

Unfortunately, the crash related data collected by safety agencies may be inadequate or unavailable for 

detailed investigation (Lord and Mannering, 2010). Hence, the researchers managed to handle this issue to 

study the significant factors by virtually enhancing the quantity of dataset by disaggregation over some 

geographical space (micro or macro level) and some specified time period (e.g. division of five year 

accumulated crash data into five individual subsets). The crash-frequency data are obtained in the form of 

non-negative integers allowing the application of count-based regression models. 

These regression models (or, crash prediction models) have been used in research and practice for 

determination of influential factors, planning purposes, or site ranking. Models of varying complexity have 

been employed, ranging from very basic to sophisticated. The traditional approach to analyzing roadway 

crashes employed generalized linear models (McCullagh and Nelder, 1989; Zeger and Karim, 1991) to 

establish a linear relationship between explanatory variables and log-transformed outcomes such as crash 

frequencies of different severities or vehicle modes. This allowed for clear interpretation of inferences 

drawn from model estimates. To handle over-dispersion commonly associated with crash data, over-

dispersed generalized linear models such as Poisson mixtures (e.g., negative binomial or Poisson-gamma, 

Poisson-lognormal, etc.) were introduced (Persaud, 1994; Hauer, 1997; Milton and Mannering, 1998; 

Karlaftis and Tarko, 1998). These models may not fully incorporate the unobserved heterogeneity as in 

count-data models, the overdispersion may be attributed to various factors, such as the grouping of data 

over space (segments, neighborhood, cities, regions, etc.), unaccounted temporal correlation, and model 

miss-specification (Gourieroux and Visser, 1997; Poormeta, 1999; Cameron and Trivedi, 1998). 
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Temporal 
The traditional modeling approach often disaggregated the crash counts into small time intervals with 

different reasons such as enlarging the dataset which can circumvent the issue of small sample size or 

incorporating the information of time-varying factors. The disaggregation of crash data over specified time 

periods lead to temporal correlation as those datasets may share unobserved effects which remain constant 

over time. To remove the potential bias of estimated model parameters, some researchers addressed the 

serial correlation in crash data by employing different temporal treatments such as linear and/or quadratic 

trend (Andrey and Yagar, 1993; Hay and Pettitt, 2001), autoregressive correlation structure with a time step 

of one year (lag-1) (Huang et al., 2009; Wang et al., 2013), fixed-over-time and independent-over-time 

random effects (Aguero-Valverde, 2013; Jiang et al., 2014), and time-varying model coefficients and 

intercepts (Cheng et al., 2017b), and so on. The safety literature is replete with studies pertaining to different 

treatments of the temporal aspect of crash data. Wang et al. (2013) modeled temporal correlation for 

longitudinal crash data of 208 intersections. The longitudinal data were comprised of rear-end collisions at 

intersections over a 3-year period. Generalized estimating equations with negative binomial link function 

were utilized for the development of four models with four different types of temporal treatment: 

independent, exchangeable, autoregressive (AR), and unstructured. The independent approach assumed 

non-dependency among crash observations of an intersection over a period; the exchangeable one assumed 

constant correlation among two observations of an entity; the AR-1 one weighed the dependency among 

observations separated by a lag of one prior year; and the unstructured treatment disregarded the presence 

of a specific correlation and assumed different dependency among two random observations at an 

intersection. The comparison of different correlation structures by the method of cumulative residuals 

demonstrated the superior fit associated with the autoregressive structure with an estimated correlation of 

0.4454 for each successive two years and the highest p-value of 0.86. Huang et al. (2009) proposed the Full 

Bayesian (FB) hierarchical approach for identification of hot spots by employing the same AR-1 model, 

along with five other models for intersection crash data. Three criteria were employed for assessment of 

model performance from different approaches: DIC (deviance information criterion); MAD (mean absolute 

deviance); and MSPE (mean-squared predictive error). The significant serial correlation coefficient (0.775) 

reflected the existence of autocorrelation for crash rate. The best fit of AR-1 model assessed by the three 

criteria demonstrated the benefit of inclusion of serial correlation to capture time-dependent safety effect 

which may have escaped from the model. The segment-level study by Aguero-Valverde (2013) compared 

the fixed-over-time and independent-over-time random effects based on the precision of crash frequency 

estimates. The notable advantage at model fit (assessed by DIC and posterior mean deviance (Pd)), more 

precise estimates, and consistent site ranking performance associated with fixed-over-time indicated that 

such temporal treatment allowed more flexibility for model parameters to ‘pool strength’ from the 
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neighboring years for segment data. The subsequent study by El-Basyouny and Kwon (2012) explored the 

temporal aspect by developing four models which include with and without linear time trend, yearly-

varying intercept, and yearly-varying coefficients. The last model demonstrated the best performance with 

the lowest DIC score.  

 

Spatial 
Apart from the aforementioned studies focused on temporal correlation, another dimension of crash 

prediction models incorporated spatial correlation structures to account for the spatial dependency of crash 

counts among neighboring sites (Song et al., 2006; Abdel-Aty and Wang, 2006; Guo et al., 2010). Such 

correlation structures improve crash estimation by allowing the flexibility to “pool strength” from 

neighboring entities (Aguero-Valverde and Jovanis, 2008) and also act as a surrogate for the unmeasured 

spatial confounding factors which are not incorporated in the model (Chiou et al., 2014). Motivated by the 

benefits of incorporation spatial random effects, an array of spatial levels have been explored which may 

be broadly classified under micro- and macro-level, where micro-level pertains to intersections, road 

segments, corridors, and macroscopic level comprises of areas such as block group, census tracts, traffic 

analysis zones (TAZs), or counties. Comparatively speaking, the microscopic analysis is primarily centered 

on investigating geometric or traffic characteristics which influence the safety on a network. On the other 

hand, macroscopic safety analysis concentrates on quantifying the impact of socioeconomic and 

demographic characteristics, transportation demand and network attributes so as to provide 

countermeasures from a planning perspective such as enactments of traffic rules, police enforcements, 

safety campaigns, and area-wide engineering treatments. These studies observed the superiority of inclusion 

of spatial correlation in crash prediction models as demonstrated by significant improvement of model fit, 

crash prediction, and site ranking performance.  

Aguero-Valverde and Jovanis (2008) explored the effect of spatial correlation in models of crash 

frequency at segment level by using a Full Bayesian (FB) approach with conditional autoregressive (CAR) 

effects. Three adjacency-based weight matrices were developed for first, second, and third order neighbors, 

which showed a significantly better fit than the Poisson lognormal model which considered only 

heterogeneity. Guo et al. (2009) developed models to incorporate the spatial proximity at corridor level 

between intersections due to similarity in road design and environmental characteristics. The modeling 

results demonstrated that the Poisson spatial model provided the best fit. Recently, Aguero-Valverde et al. 

(2016) used a multivariate spatial model to account for spatial correlation among adjacent sites (road 

segments) to enhance model prediction for different crash types. The multivariate conditional 

autoregressive (MCAR) model was used with the first order adjacency-based weight matrix which was 
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observed to have best fit due to spatial and multivariate correlation. Among the macro-level studies, Best 

et al. (2001) investigated the risk of leukemia in children at three different levels of data aggregation: Local 

Authority Districts, census wards, and 1 km2 grid squares. They examined adjacency versus distance-based 

neighborhood spatial weights for each of analysis. Rhee et al. (2016) used GIS-developed spatial variables 

to prepare a database of traffic crashes at TAZ level to explore the significant variables influencing the 

crashes. The Rook adjacency-based weight matrix was used for analysis of spatial component of crash 

heterogeneity. Results showed that the spatial error model was better than the spatial lag model. Aguero-

Valverde and Jovanis (2006) applied univariate space-time model to analyze county-level crash counts. The 

first-order adjacency matrix was utilized for the CAR error term. The results demonstrated the existence of 

spatial correlation in crash data. Huang et al. (2010) proposed a Bayesian spatial model to account for 

county-level variations of crash risk in Florida. A CAR prior was specified to accommodate for the spatial 

autocorrelations of adjacent counties. The results exhibited little difference in safety effects of risk factors 

on all crashes and severe crashes. 

 

Space and time 
Building on the advantages of spatial and temporal correlation structures to address the issue of unobserved 

heterogeneity, some studies incorporated temporal dimension for spatial models as the crash analysis is not 

curbed to a single time period. The study by Wang and Abdel-Aty (2006) incorporated independent spatial 

and temporal correlations for rear-end crashes among intersections for the 3-year longitudinal crash data. 

The modeling results revealed the presence of high correlations between the longitudinal (0.4454 for each 

successive two years) and spatially correlated (0.6316 for two nearest intersections) rear-end crashes. The 

study by Blazquez and Celis (2013) did a spatial and temporal analysis of child pedestrian crashes occurring 

during a period of nine years. The spatial autocorrelation analysis indicated that the responsibility of 

pedestrians is the major contributing factor for the generation of child pedestrian crashes with a tendency 

to cluster in space and time. Also, spatial clustering distribution of crashes in terms of time of the day was 

also observed. A recent study by Cheng et al. (2017) developed two spatiotemporal models, one with linear 

time trend and another with time-varying coefficients, for hot spot identification of intersections based on 

six different crash types over a ten-year period. Statistically significant spatial correlation was observed 

among crash types of intersections. With respect to the temporal treatment, the time-varying coefficient 

model performed better at model fit (DIC) but the relatively less complex linear trend model was superior 

at the crash prediction as assessed by the evaluation criteria of RSS (residual sum of squares), Cohen’s 

Kappa, MCT (method consistency test), and TRD (total rank difference).  
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While these studies treated spatial and temporal correlations independently, some studies noted that 

vehicle crashes tend to cluster both spatially and temporally, hence space-time interaction specification was 

employed at different spatial scales. Based on the formulation proposed by Bernardinelli et al. (1995), 

Aguero-Valverde and Jovanis (2006) applied a spatiotemporal model to county-level fatal and injury 

crashes with the interaction of linear time trend and spatial correlation. This model allowed the flexibility 

of independent temporal trends for different entities. The random effect terms for spatial correlation, time 

trend, and space-time interactions were observed to be statistically significant for the injury crashes. 

Another spatiotemporal study by Dong et al. (2014) for hot spot identification at TAZ level analyzed the 

area-specific crash trends. The space-time interaction model (linear trend with spatial) significantly 

outperformed the independent space-time model (AR-1 with spatial) due to its capability to account for the 

space-time variations which deviate from expected stable patterns. A more recent study by Ma et al. (2017) 

explored a finer temporal scale of daily crash data for estimation of injury severity levels of segment 

crashes. The proposed spatiotemporal models were observed to be superior to other alternate models which 

accounted only for heterogeneity among crash types and spatial correlations.  

 

Multimodal 
Urban mobility and safety for all modes of transportation are key elements in the development of safer 

traffic environment. This goal may be realized with the implementation of multimodal approaches which 

allows the flexibility to simultaneously determine the injury risk of different travel modes: motorists and 

non-motorists. Non-motorists are defined as road users not in or upon a motor vehicle and consist of walking 

pedestrians, bicyclists, individuals in wheelchairs or motorized personal conveyances, skateboarders and 

others (NHTSA, 2012). They are a vulnerable segment of the traveling public due to the lack of a protective 

structure and difference in body mass between them and motor vehicles, which renders them prone to 

heightened injury susceptibility in case of a collision (Williams, 2013). On the other hand, active 

transportation provides enormous benefits for addressing the issues of congestion, health, and environment 

(Berrigan et al., 2006; Frank et al., 2010; Furie and Desai, 2012; Giles et al., 2010; Insall, 2013; Wanner et 

al., 2012). Therefore, encouraging individuals to indulge in active transportation, involving walking and 

bicycling, brings with it a societal obligation to protect them. In response, the traffic safety research has 

addressed the concerns pertaining to multimodal transportation by investigating the non-motorized crash 

modes (Lee and Abdel-Aty, 2005; Moudon et al., 2011; Beck et al., 2007; Wardlaw, 2002). Some studies 

explored the inter-relationship of pairs of motorized and non-motorized crash modes for the better 

understanding of influential factors and eventually design better safety improvement program, such as 

vehicle and pedestrian crashes (Shankar et al., 2003; Lee and Abdel-Aty, 2005; Pulugurtha and Sambhara, 



13 
 

2011), bicycles and vehicles (Wang and Nihan, 2004; Schepers et al., 2011; Strauss et al., 2013) and 

multiple vehicle crashes (Abdel-Aty and Radwan, 2000; Wang and Huang, 2016). However, the realization 

of safer traffic environment from the multimodal perspective demands joint estimation of multiple modes 

of crashes as an effort to account for the inter-relationship among crash modes. This unobserved 

heterogeneity may be addressed by the development of multivariate crash prediction models which reduce 

the bias associated with the ignorance of such correlation structures (Huang et al., 2017). The multivariate 

models have been extensively employed for the joint estimation of vehicle crashes on crash types (Ye et 

al., 2009; El-Basyouny et al., 2014; Aguero-Valverde et al., 2016; Cheng et al., 2017a) or severity levels 

(Park and Lord, 2007; El-Basyouny and Sayed, 2009; Aguero-Valverde and Jovanis, 2009; Gill et al., 

2017a). However, the use of these models has been considerably scarce in the multimodal literature. 

The study by Convay et al. (2013) employed a bivariate model to investigate the locations of 

conflict occurrence between bicycles and other mode users such as pedestrians, freight, passenger cars, and 

cabs. The study area was an urban setting as the interactions among such multiple modes are relatively 

more common. The characteristics which influenced the conflicts between these modes were also explored. 

This study recommended the development of a multivariate regression model for prediction of multimodal 

conflicts provided the availability of robust crash data and explanatory variables. Recently, the study by 

Huang et al. (2017) employed a multivariate Poisson lognormal model to jointly analyze the occurrence of 

motor vehicle, bicycle, and pedestrian crashes at urban intersections. This model specification allowed the 

flexibility to account for the unobserved heterogeneity due to the correlation among different modes 

involved in crashes at individual intersections. The results confirmed the presence of significant correlations 

among heterogeneous residuals among the crash risk of three modes considered in the study.  

Similar to the multivariate specification which allows correlations among crash modes (also crash 

types and severity levels), spatial and serial correlations have also been explored in crash data. 

Accommodation of spatially unstructured (serial) correlations has been found to enhance the model fitness 

and precision by numerous research studies focused on vehicle crashes (Andrey & Yagar, 1993; Hay & 

Pettitt, 2001; Cheng et al., 2017b). Likewise, the significance of incorporating spatial correlations was also 

highlighted by many studies (Guo et al., 2010; Abdel-Aty & Wang, 2006) which noticed consistently 

superior performance of the spatial models over those accounting for heterogeneity random effect only.  

Some multimodal studies incorporated the spatial correlations among entities for improved estimation of 

crash risk as such correlation structures render the capability to “pool strength” from neighboring entities 

(Aguero-Valverde and Jovanis, 2008) and also act as surrogate for the unmeasured spatial confounding 

factors related to sites of interest which are not incorporated in the model (Chiou et al., 2014). Cai et al. 

(2016) incorporated the spatial spillover effects to develop dual-state models for analysis of pedestrian and 

bicycle crashes at the macro-level of Traffic Analysis Zones (TAZs). It was observed that consideration of 
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spatial effects improved the performance of model while highlighting the impact of certain traffic, roadway 

and sociodemographic characteristics on bicycle and pedestrian crashes at the planning level. The study by 

Tasic and Porter (2016) incorporated spatial random effects on the level of census tracts within the negative 

binomial model to evaluate the relationship multimodal infrastructure and traffic safety outcomes. A 

significant association was observed between motorized and non-motorized crashes, and variables 

pertaining to socio-economic, land use, road network, travel demand. Amoh-Gyimah et al. (2016) employed 

the CAR (conditional autocorrelation) specification into the negative binomial model for estimation of 

pedestrian and bicycle crashes at the macro-level of statistical area. The study by Wang et al. (2017) focused 

on the motor vehicle, bicycle, and pedestrian crashes at the intersection level but incorporated the zonal 

factors (TAZ level) as a measure of spatial dependence. It was observed that the inclusion of zonal factors 

elevated the performance of the model in case of non-motorized crashes while their omission resulted in 

biased parameters, which indicates the role of macro-level factors for estimation of crash risk for non-

motorized crash modes.  

It should be noted that aforementioned multimodal spatial studies mostly focused on the macro-

level as such higher levels of spatial entities better fits to account for the area-wide explanatory factors for 

the safety of multimodal environment (Tasic and Porter, 2016). However, the above multimodal studies did 

not employ a previously discussed multivariate model for simultaneous estimation of multiple crash modes 

although such multivariate spatial models have been employed to estimate various crash severities or 

outcomes (Aguero-Valverde, 2013; Cheng et al., 2017a). The recent paper by Huang et al. (2017) proposed 

a spatial multivariate Poisson lognormal model for joint modeling of three transportation modes at 

intersection level, namely: motor vehicle, bicycle, and pedestrian crashes. It was observed that the proposed 

model outperformed the univariate spatial and the multivariate models which accounted only for spatial 

correlation among sites and correlation among modes, respectively. The variance estimates for spatial 

correlation of the three modes were noted to be statistically significant.  

Similar to the incorporation of spatial and temporal correlation structures, some studies in traffic 

safety observed the superiority of nonparametric and/or semiparametric models to address the unobserved 

heterogeneity (Heydari et al., 2016; Shirazi et al., 2016). Regarding research dedicated to active 

transportation, the recent study by Heydari et al. (2017) proposed the Dirichlet process mixture (Ohlssen et 

al., 2007) to develop a flexible latent class model for joint analysis of pedestrian and cyclist injuries at the 

micro-level of intersections. The authors observed that the flexible approach was advantageous as it 

demonstrated superior predictive performance and better capability to capture the correlated crash data 

which eventually provided more accurate interpretation of influential factors for improvement of safety 

environment.  
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CHAPTER 2: MULTIMODAL MULTIVARIATE SPACE-TIME MODELS 

WITH ALTERNATE SPATIOTEMPORAL INTERACTIONS 
 

INTRODUCTION 
Enhancement of safety for all transportation mode users plays an essential role in the implementation of 

multimodal transportation systems. As discussed in the literature review, the sophisticated space-time 

models, which combine the immense benefits associated with spatial and temporal correlations, are scarce 

in studies focused on vehicle crashes and virtually non-existent in multimodal literature. To fill this research 

gap, the authors aim to develop three multivariate spatial-temporal models to analyze the modal crash data 

at the macro-level of counties. The three alternate models share the common aspects of the multivariate 

spatial specifications but differ on the assignment of temporal trends and spatiotemporal interaction. The 

model formulations are presented in order of complexity: (1) the linear time trend with fixed spatial; (2) the 

quadratic time trend with fixed spatial; and the more sophisticated (3) the time-varying spatial model. Given 

that the external influential factors may not have an equal impact on different modes, the mode-varying 

intercept and model parameters, rather than fixed ones, were chosen which allow the flexibility to estimate 

different coefficients for each of the four modes (motor-vehicle only, pedestrian-involved, bicyclist-

involved and motorcyclist-related). This study serves two broad objectives: (a) to examine the benefits of 

alternative models associated with model fit and goodness-of-fit, which is assessed by employing DIC 

(deviance information criterion), and LPML (log pseudo marginal likelihoods), and (b) to quantify the 

transferability of better model fitness and crash estimation to site ranking, which is evaluated by employing 

SCT (site consistency test) and MCT (method consistency test) at different threshold levels. 

 

METHODOLOGY 
This chapter analyzed four different transportation mode users-involved crashes aggregated at the 58 

counties of California over a period of eight years. The models were developed assuming the Poisson-

lognormal distribution, unlike the alternate Negative Binomial, as the heavier tails associated with the 

lognormal distribution renders the capability of better handling the small sample size (Lord and Miranda-

Moreno, 2008) and overdispersion (Lord and Mannering, 2010) in crash data. To reduce the bias associated 

with the ignorance of dependency within crash modes, the multivariate error term was incorporated in the 

models for simultaneous estimation of crash rates for all four modes (Park and Lord, 2007). Finally, the 

random effects were incorporated to account for the spatial correlations and spatiotemporal interactions 

from different perspectives. To account for the unobserved heterogeneity from different perspectives, the 

Full Bayesian (FB) framework was employed due to its flexibility and effectiveness to incorporate complex 
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correlations with a hierarchical structure of data (Pawlovich et al., 2006; Miranda-Moreno, 2006). The 

traditional approach of maximum likelihood estimation relies on the point estimates for sampling while the 

FB approach provides a posterior distribution of parameters from Markov-chain Monte Carlo (MCMC) 

simulation which samples the variables as random. This approach has been widely used for crash prediction 

models due to the multilevel and correlated nature of data. The three alternate models are similar based on 

the multivariate spatial specifications but differ on the assignment of temporal trends and spatiotemporal 

interaction. The model formulations are presented in order of complexity: (1) the linear time trend with 

fixed spatial; (2) the quadratic time trend with fixed spatial; and the more sophisticated (3) the time-varying 

spatial model. The following sections first explain the basic model structure and then introduce the specific 

formulations for the three models developed over the basic structure. (Note: the equation numbers hereafter 

are for within-chapter reference and they restart each chapter. There is no referencing across chapters for 

the equations in this report. To eliminate the cumbersome reference across chapters, each chapter’s 

methodology is stand-alone) 

 

Model Specification 
At the first step, the FB Poisson lognormal model assumes that crash counts (yijt) at a given county i for a 

particular travel mode j of year t obey the Poisson distribution, while the corresponding observation specific 

error term εij follows a multivariate normal distribution at the second level: 

                                                                   𝑦𝑖𝑗𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜃𝑖𝑗𝑡𝑒𝑖𝑡)                                                             (2.1) 

Where 𝜃𝑖𝑗𝑡 is the Bayesian estimated Poisson crash rate for a mode j of year t at location i obtained by using 

offset of traffic exposure (𝑒𝑖𝑡) at county i, year t. In this case, the Daily Vehicle Miles Traveled (DVMT) 

was utilized as the exposure term for the calculation of crash rate, which can be expressed as follows: 

                                                                 ln(𝜃𝑖𝑗𝑡) = 𝛽0𝑗 + 𝑋𝑖𝑗
′ 𝛽𝑗 + 𝜀𝑖𝑗                                                       (2.2) 

Where 𝛽0𝑗 is the mode-varying intercept, X’ is the matrix of influential factors, β is the mode-varying vector 

of model parameters, and εij is the independent random error which captures the extra-Poisson heterogeneity 

among locations. Given that the external influential factors may not have an equal impact on different 

modes, the mode varying intercept and model parameters, rather than fixed ones, were chosen which allow 

the flexibility to estimate different coefficients for each of the four modes. This variable coefficient 

approach may be regarded as random parameters in terms of modes and is expected to generate relatively 

precise estimates which would result in more informed inferences. The random error term (εij) also renders 

flexibility to the model by accounting for the interdependency among the four crash modes and follows a 

multivariate normal distribution: 

                                                               𝜀𝑖𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 (0, ∑)                                                                  (2.3) 



17 
 

Where                          𝜀𝒊𝒋 = (

𝜀𝑖
1

𝜀𝑖
2

𝜀𝑖
3

𝜀𝑖
4

 

)                   ,        ∑ = (

𝜎11 ⋯ 𝜎14

⋮ ⋱ ⋮
𝜎41 ⋯ 𝜎44

)                                              (2.4)   

Where ∑ is called the covariance matrix. The diagonal element 𝛔𝐣𝐣 in the matrix represents the variance of 

𝛆𝐢𝐣, where the off-diagonal elements represent the covariance of crash counts of four crash modes 

considered in this study. As a normal third level of multivariate Bayesian analysis, the precision matrix may 

be obtained from the inverse of the covariance matrix and has the following distribution: 

                                                                     ∑−1~𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝐼, 𝐽)                                                               (2.5) 

Where ∑−1 is the symmetric positive definite matrix representing the precision, I is the scaler matrix with 

J x J dimensions (Congdon, 2006), and J is the degree of freedom. In this case, the degree of freedom was 

assumed to be equal to four (J=4), representing 4 crash outcomes corresponding to four different modes. 

The adopted values of the identity matrix were 0.1 and 0.005 for diagonal and off-diagonal elements, 

respectively, as recommended by Carlin and Louis (1996) and Gelman et al. (2003). 

To incorporate the spatial correlation among the counties, a multivariate spatial random effect term 

was introduced over the model represented in Equation 2. The resultant model was obtained with the 

following formulation: 

                                                         ln(𝜃𝑖𝑗𝑡) = 𝛽0𝑗 + 𝑋𝑖𝑗
′ 𝛽𝑗 + 𝜀𝑖𝑗 + 𝑢𝑖𝑗                                                   (2.6) 

Where uij is the spatially structured random effect term fit by a zero-centered multivariate conditional 

autoregressive (MCAR) formulation (Mardia, 1988) which has a conditional normal density as follows:  

                                                          𝑢𝑖|𝑢𝑘 , ∑ 𝑖  ~𝑁𝑗(∑ 𝐶𝑖𝑘𝑘~𝑖 , 𝑢𝑘 , ∑ 𝑖  )                                                 (2.7) 

Subscripts i and k refer to a county and its neighbor, respectively, and k ε Ni where Ni represents the set of 

neighbors of county i. The MCAR formulation allows the identification and number of neighbors for a 

particular county and incorporates the weights which may be assigned based on different approaches. This 

approach has been popularly employed in safety research which accommodates spatial correlation 

structures (Amoh-Gyimah et al., 2016; Aguero-Valverde, 2013; Cheng et al., 2017a; Huang et al., 2017). 

As evident from Equation 7, estimation of the risk in any site is conditional on risks in neighboring locations 

and the impact may be assessed by calculation of weights. In the past studies (Aguero-Valverde and Jovanis, 

2010; Xu and Huang, 2015), weight structures including various adjacency-based, distance-based models, 

and semi-parametric geographically weighted, and so on, have been explored at different types of roadway 

entities. The current study employs the distance-based structure to explore the spatial correlation, which 

represents the pure-distance weight structure among the variety of distance-based structures (Gill et al., 

2017b). The following formulation was adopted for the weight structure: 

                                                                       𝑤𝑖𝑗 =
1

𝑑𝑖𝑗
                                                                                                                        (2.8) 
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Where wij is the weight between counties i and j, and dij is the distance between counties i and j. With this 

weight structure, it is known that more weightage was assigned to the counties which are relatively close. 

It is noteworthy that distance-based weight matrix gives a continuous output for weight based on the mutual 

distance among the neighboring counties. This structure contrasts with the adjacency-based ones where the 

output is a binary weight governed by the proximity among sites of interest. The continuous nature of output 

from the distance-based approach is expected to render more flexibility for weight assignment. Equation 6 

serves as the base for the three proposed models, which share the same error term and spatially structured 

heterogeneity and differ only in the temporal treatment and spatiotemporal interactions. The following 

subsections present the details of each model in order.   

Model 1: Linear time trend with linear spatiotemporal interaction 

In this model, the temporal aspect is accommodated by introducing a linear trend where time is regarded as 

a potential influential factor. Also, the interaction term was incorporated to account for the spatial-temporal 

interactions. Equation 6 assumes the following form: 

                                                ln(𝜃𝑖𝑗𝑡) = 𝛽0𝑗 + 𝑋𝑖𝑗
′ 𝛽𝑗 + 𝜀𝑖𝑗 + 𝑢𝑖𝑗 + (𝛼𝑗 + 𝛿𝑖𝑗) ∗ 𝑇                                 (2.9) 

Where 𝛼𝑗 is the mode-varying scalar parameter for linear yearly trend T (T=1 to 8) and the product of 𝛿𝑖𝑗 

and T represents the spatiotemporal interaction as 𝛿𝑖𝑗 is the spatial term which follows the MCAR 

specification given in Equation 7. 

Model 2: Quadratic time trend with linear spatiotemporal interaction  

In this model, a non-linear impact of time is considered. Equation 9 takes the following form: 

                               ln(𝜃𝑖𝑗𝑡) = 𝛽0𝑗 + 𝑋𝑖𝑗
′ 𝛽𝑗 + 𝜀𝑖𝑗 + 𝑢𝑖𝑗 + (𝛼𝑗 + 𝛿𝑖𝑗) ∗ 𝑇 + 𝛾𝑗 ∗ 𝑇2                                (2.10) 

Where 𝛾𝑗 is the coefficient for the quadratic trend. It is expected that this model will allow more subtle 

approach compared to the linear trend as it allows flexibility to fit the crash data by virtue of its additional 

quadratic term. 

The aforementioned linear and quadratic time trend models represent the temporal treatments from 

an array of approaches adopted in safety literature (Cheng et al., 2017). The linear trend has been the popular 

choice for studies pertaining to space-time interaction while the quadratic trend has been observed to be 

superior to fit the crash data due to the more flexible approach. at model fit with a linear trend.  

Model 3: Time-varying spatial 

Model 3 combines above-mentioned linear time trend and spatiotemporal interaction into time-varying 

spatial random effects. In comparison with Model 1 and 2, this model allows more flexibility to the spatially 
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structured random effect term as the spatial correlation within the segments is allowed to vary with time. 

Equation 6 is then modified to the following form: 

                                                ln(𝜃𝑖𝑗𝑡) = 𝛽0𝑗 + 𝑋𝑖𝑗
′ 𝛽𝑗 + 𝜀𝑖𝑗 + 𝛿𝑖𝑗

 𝑡                                                             (2.11) 

Where 𝛿𝑖𝑗
 𝑡  is the spatial correlation for each of the eight years of crash dataset considered in this study. The 

addition of temporal dimension to the identification of spatial patterns addresses the possibility of having 

different spatial trends in crash risk over different time periods.  

 It is worth mentioning that the current study incorporates random effects to account for the 

unobserved heterogeneity. This approach is based on the assumption that unobserved heterogeneity for 

individual roadway entities is completely unrelated to vector of covariates (Mannering et al., 2016). This 

approach has been extensively utilized in the safety literature dealing with panel data (Mitra and 

Washington, 2012; Yu et al., 2013; Deublein et al., 2013; Yu and Abdel-Aty, 2013; Aguero-Valverde, 

2013; Mohammadi et al., 2014; Xie et al., 2014; Liu and Sharma, 2017; Huang et al., 2017). However, the 

random effects approach may be considered as a special restrictive case of a more flexible approach of full 

random parameters, which allows the flexibility to accommodate the site-specific unobserved heterogeneity 

where each entity may be assigned its own coefficient for explanatory variables (refer Mannering et al. 

(2016) for review of studies employing random parameters). 

  

Evaluation Criteria for Predictive Accuracy and Goodness-of-Fit of the Models 
The following sections illustrate the multiple criteria for assessment of predictive accuracy and goodness-

of-fit of the three alternative models. 

The Deviance Information Criterion (DIC) developed by Spiegelhalter et al. (2003) was employed 

to assess the complexity and fit of the models. The DIC is computed as the sum of the posterior mean 

deviance and estimated effective number of parameters: 

                                                                      𝐷𝐼𝐶 = 𝐷̅ + 𝑃𝐷                                                                  (2.12) 

Where D̅ is the sum of the posterior mean deviance which measures how well the model fits the data; the 

smaller the D̅, the better the fit. PD represents the effective number of parameters. In general, D̅ will decrease 

as the number of parameters in a model increase. Therefore, the PD  term is mainly used to compensate for 

this effect by favoring models with a smaller number of parameters. Based on the model-selection decision 

criteria suggested by Lunn et al. (2012):  the models with DIC value less than 5 of the 'best' model are also 

strongly supported (provided they do not make very different inferences), values within 5 and 10, weakly 

supported, and models with a DIC greater than 10 are substantially inferior. D̅ may be regarded as the 

measure of training errors while DIC is the measure of indirect assessment of the test errors as it accounts 

for the bias due to overfitting usually resulting from more parameters (James et al., 2013). 
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However, due to some limitations of DIC suggested by some studies (Carlin and Louis, 2008), it 

may not be a true indicator of model performance due to its sensitivity towards different parameterizations 

(Geedipally et al., 2014). Hence, this study employed a relatively more robust conditional predictive 

ordinate (CPO) (Gelfand, 1996) for cross-validation based on predictive densities. Contrary to the 

traditional approaches of cross-validation which are prone to selection bias associated with division of data 

into subsets (one subset for making posterior inference and another for validation of previous estimates), 

the current study calculated the CPO by implementing a CV-1 (leave-one-out) technique which circumvents 

the issue of selection bias by employing a continuous approach of selecting all data points, except one, for 

model development and the left out data point to verify the prediction accuracy of the calibrated model. 

Under the MCMC framework, the estimate of CPO for each observation i can be calculated as: 

                                                            𝐶𝑃𝑂 = (
1

𝑇
∑

1

𝑓(𝑌𝑖|𝛽(𝑡))
𝑇
𝑡=1 )

−1
                                                       (2.13)  

Where Yi is the ith observation (i = 1, 2, 3, . . ., n) for all counties and β is the vector of estimated model 

parameters. This harmonic mean of density (CPO) may be extended to calculate the goodness-of-fit of 

models by computing the product of CPOs over all observations, which is known as the pseudo marginal 

likelihood. For computational convenience, the log pseudo marginal likelihoods (LPML) is calculated: 

                                                              𝐿𝑃𝑀𝐿 = 𝑙𝑜𝑔 ∏ 𝐶𝑃𝑂𝑖
𝑛
𝑖=1                                                           (2.14)  

LPML may be regarded as the measure for direct assessment of test errors.  

 

Evaluation of Site Ranking Performance 
To quantify the transferability of better model fitness and crash estimation to site ranking, the models were 

evaluated for relative site ranking performance. As demonstrated by previous studies (Cheng and 

Washington, 2005; Huang et al., 2009; Jiang et al., 2014; Dong et al., 2016), a set of tools have been 

proposed to assess the detection performance of various methods. The present study employed two of the 

most popular criteria which are based on the site consistency and method consistency, respectively. The 

details of each criterion are presented in the following subsections. 

Site Consistency 

Cheng and Washington (2008) first proposed the Site Consistency Test (SCT) which is used to measure the 

ability of a hot spot identification (HSID) method to consistently identify a site as high risk over subsequent 

observation periods. The underlying assumption is that a site identified as high risk during previous time 

period should also reveal inferior safety performance in a subsequent time period, given that no significant 

countermeasure treatments have been implemented at the site and given that the site is indeed high risk. 

Hence, the sites detected by the superior method in the before period tend to demonstrate higher crash 
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counts or rates compared with those screened out by other methods. In equation form, SCT can be expressed 

as follows: 

                                                            𝑆𝐶𝑇𝑖,𝑗 = ∑ 𝐶𝑅𝑘,𝑀𝑒𝑡ℎ𝑜𝑑=𝑗,𝑖+1
𝑛
𝑘=𝑛−𝑛𝛼                                          (2.15) 

where, n is the total number of sites being compared, CR is the crash rate for site ranked site k, α is the 

threshold of identified high risk sites (e.g. α = 0.05 corresponds with top 5% of n sites identified as high-

risk, and nα is the number of identified high risk sites), j = HSID method being compared (e.g. j = 1 could 

be Model 1, j = 2 Model 2, etc.), and i is observation period (the competing models are applied to before 

period, i to identify hazardous sites, and the crash rate of the same sites in period i +1 are summed and 

compared). In this test, the method j that identifies sites in a future period with the highest crash rate is the 

most consistent method for identifying underlying safety problems.  

Method Consistency 

Aside from the site consistency, method consistency is another HSID evaluation method which also 

assumes that sites are in the similar underlying operational and their expected safety performance remains 

virtually unchanged over the adjacent time periods. Under this homogeneity assumption, a superior HSID 

method will identify the same set of hot spots across two different periods. The more the common hot spots 

that are identified in both periods the more reliable and consistent is the performance of HSID method. 

Specifically, the criterion for this test, MCT, can be calculated using the following equation: 

                                 𝑀𝐶𝑇𝑖𝑗 = {𝑘𝑛−𝑛𝛼, 𝑘𝑛−𝑛𝛼+1, … , 𝑘𝑛}𝑖,𝑗 ⋂{𝑘𝑛−𝑛𝛼, 𝑘𝑛−𝑛𝛼+1, … , 𝑘𝑛}𝑖+1,𝑗                 (2.16) 

Where, terms are as defined previously. Note that only sites identified in the top threshold  are 

compared.  

Basically, MCT represents the intersection of ranked sites k identified in subsequent time periods i 

and i + 1 that are high risk. Even though such test is easy to implement, it has one limitation of focusing 

merely on the high-risk sites, while the sites that are consistent safe are ignored. To address this issue, the 

present paper borrows the concepts of specificity and sensitivity (Elvik, 2007) which can measure the 

consistency of method in identifying both safe and unsafe sites. 

Under these concepts, if we assume the high-risk sites identified by Method j based on data of 

period i are considered as the “truly” unsafe sites, the number of common unsafe sites identified by the 

same method in the subsequent time period (i+1) can be considered as correct positives (CP). Likewise, the 

number of common safe sites flagged out in Period i+1 is considered as correct negatives.  With such 

information given, sensitivity and specificity can be easily computed with the following form:  



22 
 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐶𝑃 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

𝑇𝑃 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
  

    

(2.17) 

 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝐶𝑁 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

𝑇𝑁 (𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
   (2.18) 

Where, CP: number of truly hazardous sites correctly identified in the subsequent period as hazardous 

(which is equal to MCT in Equation 16); TP: total number of truly hazardous sites based on before time 

period; CN: number of truly safe sites identified in the subsequent period as safe; and TN: total number of 

truly safe sites based on before time period.  

 

DATA PREPARATION 
This macro-level study focused on the crashes occurring in the 58 counties of California over an eight-year 

period (2006-2013). The segregated collision counts over a relatively long period were considered to closely 

assess the impact of different temporal treatments for crash prediction models. The multivariate 

specification of FB models allowed the incorporation of collisions for four modes of roadway transport: 

motor vehicle, pedestrian, bicycle, and motorcycle. These multimodal collision counts served as the 

dependent variables and were collected from Statewide Integrated Traffic Records System (SWITRS). The 

models were developed for estimation of crash rate, where the crash counts were offset by Daily Vehicle 

Miles Travel (DVMT), which is a main exposure-related factor at the macro-level (Miaou et al., 2003) and 

was collected from Highway Performance Monitoring System (HPMS) for the corresponding eight years. 

HPMS also provided the data for independent variables linked with roadways and traffic conditions such 

as maintain miles and travel time for work trips, respectively. The other independent variables comprised 

of various demographic, socioeconomic, and land use data which were expected to impact the multimodal 

activity in the counties and influence the collisions. The main demographic factor, population, along with 

other factors depicting the socioeconomic activity such as retail sales, household income, per capita income, 

and percent of people in poverty, employment, and land area were obtained from the California Department 

of Finance and the US Census Bureau, respectively. In addition, the data for the geometric centroid distance 

among the counties were provided by Southern California Association of Governments (SCAG), which 

was utilized for calculation of distance-based weights for accommodating the spatial aspect of models. 

As evident from the nature of explanatory variables, DVMT is the only predictor which represents 

the exposure for multiple modes. The authors acknowledge that DVMT directly relates to the vehicle 

activity and may not be perceived as the appropriate exposure measure for other modes. It is worth 

mentioning that the DVMT has been utilized due to the unavailability of multimodal exposure data. Since 

motorized vehicles are generally the major contributors for crashes pertaining to active modes, it is hoped 
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that the DVMT would capture the multimodal activity to some degree. Secondly, another indicator of 

multimodal activity, i.e. population, has been incorporated as an explanatory variable to account for other 

modes. Finally, it is expected that the random effect terms would reduce the errors caused due to 

unavailability of multimodal exposure data. Many studies focused on the analysis of multimodal crashes 

have adopted such practices to circumvent the issue of deficient exposure data (Haque et al., 2010; Flask & 

Schneider, 2013; Flask et al., 2014; Gabauer and Li, 2015; Lee et al., 2015; Zhang et al., 2015; Amoh-

Gyimah et al., 2016). 

Table 2.1 illustrates the summary information for all dependent and independent variables 

considered for model development. It should be noted that this study incorporated a mix of time-varying 

(yearly) and constant variables which account for the temporal trends and spatial-only covariates, 

respectively. This dataset replicates the real-world scenario where the possibility for the collection of a 

continuous set of some variables is not feasible at the macro-level. The continuous data for the given period 

were available for multimodal crashes, DVMT, population, and roadway miles, while rest of the variables 

were mostly obtained from average of data over some period. In consideration of non-varying influential 

factors, the authors acknowledge that the study area must have witnessed some developments during the 

eight-year period which may not be reflected by such factors. But due to the limited accessibility of such 

data, a strong assumption was made that no significant change happened during this period. Similar 

assumption has been adopted in literature focused on crashes as it is difficult to procure such information 

at the macro-level and incorporate the changes within the models (Li et al., 2007; Matkan et al., 2013). The 

studies which focus on crash counts on yearly-basis may be prone to erroneous inferences due to the bias 

induced in the model estimates by the excessive amount of zero crash counts present in the data. This issue 

may pose significant drawbacks for crash prediction models developed for micro-level roadway entities 

(intersections or segments) where crash occurrence for multiple modes in a single year is relatively less 

common. The current study circumvents this major issue by aggregating the multimodal collisions at a 

macro-level which allows significant minimization of the presence of zero crash counts for any of the four 

modes. As shown in Table 2.1, only the pedestrian and bicycle collisions were noted to have zero counts in 

a given year, with an average of two or three counties with zero collisions across the eight-year period. The 

significant deviation in the statistics for most of the variables represents the diversity of California counties 

mostly based on size and population.  

As evident from the nature of independent variables, some variables were observed to be correlated 

and filtered out using two techniques before incorporating during the model development for crash 

estimation. First, the correlation tests were conducted using the Harrell Miscellaneous package in R 

software which allowed the calculation of Pearson correlation coefficient. The variables observed to be 

correlated with a significance level of 0.05 were eliminated in multiple steps using engineering judgment 
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to prevent exclusion of any potential influential variables which would result in loss of precision of 

estimated parameters. In other words, the selection procedure strived to maintain a balance of omitted 

variable bias and multicollinearity. Second, the simulated values of all parameters were monitored using 

the correlation tool under the inference menu of WinBUGS which provided intuitive scatter plots and 

produced a matrix of cross-correlations. The second step was implemented during the model development 

stages where the freeware statistical software, WinBUGS (Lunn et al., 2000), was employed to generate 

MCMC samples for Bayesian posterior inferences.  

 

TABLE 2.1. Descriptive Statistics of Collected Data of Various Counties 

Variables Description Year Minimum Maximum Median Mean S.D. 

Collision Motor Vehicle 

2006 23 48,107 757 2,791 6,767 

2007 10 46,558 698 2,671 6,515 

2008 15 41,794 631 2,389 5,841 

2009 20 40,197 611 2,289 5,612 

2010 18 39,560 537 2,249 5,531 

2011 14 38,933 576 2,184 5,430 

2012 16 38,477 560 2,171 5,388 

2013 21 38,855 544 2,140 5,436 

Collision Pedestrian 

2006 0 5,118 43 231 690 

2007 0 5,305 39 234 716 

2008 0 5,199 41 231 702 

2009 0 5,097 41 224 687 

2010 0 4,730 36 218 641 

2011 0 4,748 37 218 644 

2012 0 5,024 35 228 684 

2013 0 4,932 38 213 667 

Collision Bicycle 

2006 0 2,935 52 179 422 

2007 0 2,929 54 183 422 

2008 0 3,348 46 203 481 

2009 0 3,747 48 208 531 

2010 1 4,226 49 219 587 

2011 0 4,788 51 236 662 

2012 0 4,955 44 241 685 

2013 0 4,682 51 230 647 
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Collision Motorcycle 

2006 6 2,246 54 175 341 

2007 5 2,877 54 194 414 

2008 7 3,048 66 205 436 

2009 3 2,802 60 181 399 

2010 2 2,711 60 171 388 

2011 5 3,112 57 189 443 

2012 4 3,349 54 200 483 

2013 3 3,614 65 208 516 

DVMT 
Daily Vehicle Miles 

Traveled (miles) 

2006 180 217,443 5,092 15,577 32,178 

2007 162 218027 5146 15607 32,261 

2008 168 214,971 5,005 15,387 31,617 

2009 170 214,236 4,836 15,317 31,469 

2010 169 211,876 5,448 15,482 31,148 

2011 164 214,458 4,761 15,353 31,594 

2012 166 214,482 4,551 14,768 31,478 

2013 165 215,817 4,462 14,924 31,747 

Pop Population 

2006 1,247 10,205,955 169,480 619,777 1,456,447 

2007 1,247 10,205,955 169,480 619,777 1,456,447 

2008 1,214 10,347,422 180,923 656,696 1,469,310 

2009 1,194 10,398,067 182,519 662,962 1,478,749 

2010 1,177 9,840,555 179,588 644,265 1,408,182 

2011 1,113 9,866,172 179,134 647,470 1,413,526 

2012 1,088 9,923,806 180,800 652,028 1,422,391 

2013 1,078 10,002,804 181,150 657,967 1,434,566 

MM Maintained Miles 

2006 287 21,247 1,994 2,935 3,262 

2007 287 21,362 2,009 2,950 3,282 

2008 287 21,686 2,009 2,974 3,329 

2009 266 21,678 2,012 2,963 3,333 

2010 266 21,746 2,012 2,967 3,341 

2011 266 360,857 2,008 9,128 47,113 

2012 270 21,694 2,021 3,026 3,432 

2013 265 21,858 1,921 3,017 3,428 

Retail Total Retail Sales ($1,000) 2012 576 121,389,378 1,859,337 8,306,904 18,251,399 

Travel 

Time 

Mean Travel Time to Work 

(minutes) 
2014 13 34 25 24 4 
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HH Income 
Median Household Income 

(dollars) 
2014 35,997 35,997 35,997 35,997 35,997 

Income 
Per Capita Income for past 

year (dollars) 
2014 16,409 58,004 26,190 27,604 8,198 

Poverty 
Persons in Poverty 

(percentage) 
2014 7 28 16 16 5 

Employed  Total Employment 2014 211 3,932,904 44,911 232,458 573,978 

Firms All Firms 2012 125 1,146,701 13,613 61,845 160,522 

Area Land Area (Square miles) 2010 46 20,056 1,535 2,685 3,102 

Distance 
Distance among centroids of 

counties (miles) 
N/A 25 962 227 273 176 

Note: S.D. represents standard deviation; N/A means Not Applicable 

RESULTS 
 

Variable Estimates 
The three alternate models were run using a statistical freeware WinBUGS package (Spiegelhalter et al., 

2003) using an MCMC algorithm. For calibration of the model, first 30,000 iterations were discarded as 

burn-in and further 110,000 iterations were regarded for parameter estimation. To ensure convergence of 

models, the sample MC errors were recorded to be less than 6% of the associated standard deviation.  

It should be noted that for all three models, the spatial and temporal components captured the 

underlying global unobserved heterogeneity across county and years (Huang et al., 2017). All three models 

explicitly account for the spatial and temporal effects, but this approach may not be able to completely 

capture the temporal instability. Even though this study utilized the crash data aggregated at yearly-basis (a 

relatively short time period), some studies have found statistical evidence for the presence of temporal 

instability even in crash data aggregated at short time periods (Malyshkina and Mannering, 2010; Xiong et 

al., 2014; Behnood and Mannering, 2015; Venkataraman et al., 2016). The recent paper by Mannering 

(2018) extensively discusses the issue of temporal instability in crash data, which stems from the 

“individual driver decision-making and the potential evolution of driver decision-making over time”. It is 

known that the unobserved heterogeneity models developed in this study (where the random effects 

approach of this study may also be considered as heterogeneity models, given random effects is a special 

case of random parameters) may not be able to capture the distinction between impact of global time trend 

on crashes and the impact of other sources which may or may not be incorporated in model development 

(such as human behavior and physiology, vehicle and roadway characters, driving environment and so on). 



27 
 

The temporal instability may play a vital role in this study as the area of focus is an eight-year period (2006-

2013) for multimodal crashes aggregated at county level. This period may be highly susceptible to temporal 

instability due to significant changes in terms of economics and changing accident rates, since the 2007–

2009 years witnessed the global recession and some studies have found significant temporal instability 

during such economic downturns (Maheshri and Winston, 2016; Behnood and Mannering, 2016). However, 

the temporal instability has limitations for heterogeneity models as well as the data driven models even 

though advanced methodologies are adopted to explicitly account for temporal elements (Mannering, 

2018). Hence, careful consideration should be exercised during interpretation of results from parameter 

estimates so as to refrain from making erroneous conclusions regarding the impact of causal factors.  

For all models, most of the explanatory variables were observed to be statistically significant, as 

indicated by the absence of zero at the 95% posterior credible region. As shown in Table 2.2, the estimated 

coefficients for influential variables are observed to be dissimilar across the four modes, which is intuitively 

reasonable as the external factors may not be expected to have an equivalent impact on the collisions of 

different modes. For example, the population of a county has a weaker association with vehicle crashes, 

compared to other modes, which seems logical as population is mostly regarded as a surrogate to reflect the 

activity of other modes. Apart from the varying quantitative impact, a particular explanatory variable may 

have a contrasting correlation with crashes of different modes. For example, the median house income of a 

county tends to increase the crash risk for motorcycle and bicycles while an opposite trend is observed for 

other two modes. This suggests that areas with higher median income may have population more inclined 

towards motorcycle and bicycle driving, which directly translates to higher crash risk.   

These findings justify the employment of mode-varying coefficients for the covariates as more 

intuitive and meaningful inferences may be drawn by investigating the segregated impact of factors on 

different crash modes. The study included two time-varying parameters, population and maintain miles, 

which are observed to be statistically significant for majority of the cases. This validates the employment 

of temporal models for the crash dataset at county level. 

The statistically significant correlation of linear trend with all crash modes may suggest the 

presence of temporal instability. Even though this study did not incorporate time-varying coefficients, 

nevertheless, the significant time trend indicates that the coefficients of explanatory variables may be 

shifting over time, as expected in the case of an economic downturn. Additionally, the temporal trend may 

also be capturing the heterogeneity of unobserved factors pertaining to variations in driving behavior or 

human response in selection of different modes. The heterogeneity models employed in this study, and in 

general, are limited in establishing a distinction between the unobserved heterogeneity due to temporal 

variations or due to other factors not incorporated in the model (Mannering, 2018).    
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TABLE 2.2. Model Estimated Coefficients Statistics 

Crash Mode Variable Coefficient 
Model 1 Model 2 Model 3 

Mean SD Mean SD Mean SD 

Motorcycle 

Intercept -5.8550 1.4370 -4.2510 0.3128 -8.5980 0.6589 

Population 0.0926 0.0329 0.0801 0.0362 -0.0179 0.0234 

Maintain Mile -0.1828 0.0612 -0.2213 0.0450 0.0012 0.0689 

Total Retail Sales -0.1683 0.0297 -0.1441 0.0203 -0.1296 0.0207 

Mean Travel Time 0.7039 0.0941 0.7852 0.1689 0.5989 0.0760 

Median House Income 0.1898 0.1138 0.0293 0.0421 0.4070 0.0661 

Linear Trend -0.0173 0.0048 -0.0247 0.0219 NA NA 

Quadratic Trend NA NA 0.0008 0.0024 NA NA 

Bicycle 

Intercept -7.9690 0.3718 -7.5560 0.9123 -6.2290 0.5310 

Population 0.0766 0.0173 0.0694 0.0262 0.1026 0.0214 

Maintain Mile -0.5867 0.0623 -0.6074 0.0528 -0.6502 0.0564 

Total Retail Sales 0.3313 0.0277 0.3480 0.0221 0.3825 0.0363 

Mean Travel Time -0.9509 0.1225 -0.8535 0.1310 -0.9905 0.0775 

Median House Income 0.4547 0.0573 0.3820 0.0922 0.2544 0.0544 

Linear Trend 0.0006 0.0044 0.0437 0.0200 NA NA 

Quadratic Trend NA NA -0.0047 0.0022 NA NA 

Pedestrian 

Intercept -6.4660 0.2939 -5.1650 0.6163 -3.1250 0.7451 

Population 0.0952 0.0227 0.0931 0.0399 0.0884 0.0227 

Maintain Mile -0.4849 0.0738 -0.5467 0.0910 -0.5517 0.0896 

Total Retail Sales 0.3130 0.0370 0.3479 0.0229 0.3772 0.0404 

Mean Travel Time 0.2324 0.1836 0.3874 0.1291 -0.2362 0.1045 

Median House Income -0.0909 0.0655 -0.2592 0.0479 -0.3002 0.0755 

Linear Trend -0.0244 0.0046 -0.0083 0.0221 NA NA 

Quadratic Trend NA NA -0.0016 0.0023 NA NA 

Vehicle 

Intercept -1.8600 0.1181 -2.2250 0.3285 -1.8890 0.1443 

Population 0.0578 0.0115 0.0906 0.0141 0.0683 0.0172 

Maintain Mile -0.0742 0.0166 -0.0810 0.0266 -0.1045 0.0319 

Total Retail Sales 0.0464 0.0130 0.0151 0.0084 0.0386 0.0226 

Mean Travel Time 0.1175 0.0972 0.1634 0.1104 0.1384 0.1141 

Median House Income -0.1100 0.0329 -0.0734 0.0117 -0.1097 0.0278 

Linear Trend -0.0393 0.0025 -0.0840 0.0140 NA NA 
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Quadratic Trend NA NA 0.0049 0.0015 NA NA 

Notes: 1. The estimates in italics represent the variables which were nonsignificant at 95% level.  

2. NA refers to Not Applicable 

3. SD refers to Standard Deviation 

 

Model Evaluation 
As previously mentioned, DIC is a penalized criterion which balances the model complexity and posterior 

deviance to eventually give a measure of overall fit of the model. It is worth mentioning that Model 1 and 

Model 2 differ based on the temporal treatment while Model 3 differs from the former two models by the 

assignment of spatiotemporal interaction. The results shown in Table 2.3 demonstrate that the essential 

differences in model specifications are carried over to their performance at model fit. Model 3 leads to the 

best fit with the lowest value of Dbar at 13,685, which is recorded to be lower from Model 2 and Model 1 

by a difference of almost 100 points, as latter two models have minor score difference. This significant 

difference may be attributed to the inclusion of varying spatial term for each year that allows the flexibility 

to capture the interactions. However, such immense benefit at fit is accompanied by a significant increase 

in the complexity due to the addition of effective number of parameters, as reflected by the highest value 

of Pd=1,455. The model complexity is sufficiently high (with a difference of 220 and 239 points from 

Model 1 and Model 2, respectively) that the performance of Model 3 at good fit (Dbar) is not able to 

compensate the remarkable difference of complexity. This eventually leads to the worst performance at 

DIC (which reflects overall fit), with a difference of 133 points from the best performing Model 2 

(DIC=15,007). These findings suggest that the inclusion of varying spatiotemporal interaction term renders 

greater flexibility to fit the crash data (compared to linear and quadratic trends), but this superiority comes 

at the cost of increased complexity which translates to increased computational effort and inferior 

performance at overall fit (DIC). The model complexity tends to be the governing factor for assessment of 

overall fit while comparing the models with alternate specifications. In comparison among the linear and 

quadratic trend models, Model 2 is mostly observed to be superior with lower values of Pd (19-point 

difference) and DIC (12-point difference), with the exception of Dbar (6-point difference). The 

comparatively less difference for Dbar values reflects that both models have similar posterior deviance, 

while the difference for the value of Pd reflects that model complexity serves to be the influential criterion 

for overall fit of the model as Model 2 is noted the least value of DIC (15,004) highlighting its superiority. 

These findings point towards the advantages associated with the inclusion of a quadratic trend over the 

linear as it allows the flexibility to fit the crash data better due to a subtler approach without sacrificing the 

computational ease as the complexity was even lower than the linear model.     
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TABLE 2.3. Goodness-of-fit Criteria Results 

Criterion Model 1 Model 2 Model 3 

Dbar 13,784.4 13,790.7 13,685.8 

Pd 1,235.27 1,216.58 1,455.09 

DIC 15,019.7 15,007.3 15,140.9 

LPML -6,857 -6,860 -6,822 

Note: The bold cells represent the best performance for that criterion 

The LPML was adopted as a cross-validation measure for assessment of the goodness-of-fit of the 

models. The higher value of LPML reflects relative superiority at model fit property. As shown in Table 

2.3, Model 3 is observed to have the highest value of LPML (-6,822) followed by Model 2 and Model 1. 

The difference of LPML values among two competing models is referred to as log pseudo Bayes factors 

(LPBF) (Basu and Chib, 2003), where an LPBF greater than 5 points for a particular model indicates its 

superior fit (Ntzoufras, 2009). The best performing model (Model 3) is observed to have an average LPBF 

of 37 points from the other models which reflects the exceptional advantage associated with the 

incorporation of time-varying spatiotemporal interaction. Unlike the comparison between Model 3 and 

temporal trend models (Model 1 and Model 2), the difference of model fit is not so pronounced in case of 

comparison among temporal trend models as reflected by the LPBF of 3 points which is lower than the 

threshold of 5 points. This indicates that the inclusion of quadratic trend allows relatively more flexibility 

to fit the data but may not replicate the significant improvement in model fit which is contributed by the 

inclusion of time-varying spatiotemporal interactions. It is worth mentioning that the superior performance 

of such complex specification (Model 3) at model fit points towards similar advantage at cross-validated 

predictive performance (CPO), which formed the basis for computation of LPML.   

Site Ranking Performance Evaluation Results  
In order for the implementation of the previously mentioned SCT and MCT, the data were divided into two 

groups of equal time period, Period 1 (2006-2009, “before” period) and Period 2 (2010-2013, “after” 

period). The three models were used to sort the sites (or, counties) in descending order in terms of crash 

rate.  

Site Consistency Test Results 

The larger SCT score in the After Period indicates that the HSID method is better in screening out the 

counties that consistently demonstrate the inferior performance. To represent different real-life budgeting 

scenarios, both top 5% and 10% ranked counties were filtered for further analysis. The detailed test results 
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associated with each model are shown in Table 2.4 which represent the accumulated results of the four 

transportation modes. 

TABLE 2.4: The Accumulated SCT Results of Four Transportation Modes  

Sites Model 1 Model 2 Model 3 

Top 5% Counties 7.541 7.513 7.554 

Top 10% Counties 13.717 13.717 13.717 

 

Table 2.4 exhibits the sum of crash rates of the four transportation modes for both top 5% and top 10% 

identified counties. In case of top 5%, the counties identified by Model 3 yield the largest total crash rates 

(7.554), followed by Model 1 and Model 2. However, in case of top 10%, the three models show exactly 

the same performance. Overall, based on the two cases combined, it is concluded that Model 3 possesses 

slightly better performance given the small difference across all models.  

Method Consistency Test Results 

In addition to the site consistency, the study also checked the method consistency of competing models in 

identifying the same safe or unsafe sites across adjacent time periods. To yield more reliable trend of result 

findings, the authors employed a continuous set of thresholds which performed the sensitivity/specificity 

analysis in steps (with 5% as the interval), starting with top 5% of sites and progressing towards the lower 

bound of top 50% of all counties as hotpots for different transportation modes. The detailed results are 

graphically illustrated in Figures 2.1 and 2.2, respectively.   
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FIGURE 2.1: Sensitivity of Identifying Truly Hazardous Counties in the Subsequent Period for 

Various Models 

 

FIGURE 2.2: Specificity of Identifying Truly Hazardous Counties in the Subsequent Period for 

Various Models 

Inspection of Figure 2.3 illustrates that Model 3 has the dominant best performance in consistently 

identifying top 5%, 10% and 15% counties in both time periods. However, with the threshold of identifying 
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the high-risk sites being dropped, Model 3 tends to have mixed performance compared with other two 

models. Out of the remaining seven cases, Model 3 shows the best or better performance in 4 situations 

while performs the worst in detecting top 20%, 25%, and 50%, respectively.  In case of specificity analysis, 

Model 3 exhibits the similar trend by claiming the first place in the first three cases while performing 

slightly better than other two in the remaining seven cases when lower threshold values are used.  

In all, Model 3 appears to have the best performance in consistently identifying the both high and 

low risk counties across the adjacent time periods and perform slightly better than the other two models in 

terms of site consistency. In other words, the superiority of the model’s predictive performance can be 

transferred to yield more accurate result of site ranking.  
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CHAPTER 3: BIVARIATE DIRICHLET PROCESS MIXTURE SPATIAL 

MODEL FOR ACTIVE MODES CRASHES 
 

INTRODUCTION 

This chapter presents the comprehensive analysis of bivariate Dirichlet process mixture spatial 

model for estimation of pedestrian and bicycle crash counts. The literature review presented many 

studies which observed the advantages associated with accommodation of different structured and 

unstructured correlations such as spatial, temporal, and multivariate, for estimating multimodal 

crashes. Conversely, it also illustrated the limited use of semi- or non-parametric models for 

simultaneous analysis of active transportation mode crashes. In effect, to the knowledge of the 

authors, the research for comprehensive analysis of flexible multivariate spatial models focusing 

on active transportation is non-existent in the safety literature. To fill this research gap, the authors 

adopted semi-parametric formulation that accounts for the unobserved heterogeneity by combining 

the strengths of incorporating bivariate specification of dependency among crash modes 

(pedestrian and bicyclists), spatial random effects for the impact of neighboring areas, and 

Dirichlet process mixture for random intercepts. Four alternate models were developed for 

comparison based on the goodness-of-fit and predictive accuracy. The models were evaluated by 

employing different criteria, namely: LPML (log pseudo marginal likelihood), MSPE (mean-

squared predictive error), the Rp
2 statistic, the G2 statistic, and RSS (residual sum of squares).  

  

METHODOLOGY 

Model Specification 

The Full Bayesian (FB) framework was employed for estimation of six-year bicyclist and 

pedestrian crashes aggregated at the Traffic Analysis Zone (TAZ) level. The FB approach has been 

widely used for crash prediction models due to its capability to handle the multilevel and correlated 

nature of crash data. Four crash frequency models were developed. The general functional form of 

the models is given in the following subsections while progressing from simple to sophisticated. 
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Model 1: Bivariate 

This model assumes that crash count of certain modal crash j at a given location i, yij, obeys 

Poisson distribution, while the corresponding observation specific error term εij follows a bivariate 

normal distribution: 

                                                          𝑦𝑖𝑗|𝜆𝑖𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖𝑗)                                             (3.1) 

                                                           ln(𝜆𝑖𝑗) = 𝑋𝑖𝑗
′ 𝛽 + 𝜀𝑖𝑗                                                          (3.2) 

                                                             𝜀𝑖𝑗~𝑀𝑉𝑁 (0, ∑)                                                           (3.3) 

Where        𝑦𝑖𝑗 = (
𝑦𝑖1
𝑦𝑖2  

) ,           𝜆𝑖𝑗 = (
𝜆𝑖1
𝜆𝑖2  

) ,          𝜀𝑖𝑗 = (
𝜀𝑖1
𝜀𝑖2  

)  ,          ∑ = (
𝜎11 𝜎12

𝜎12 𝜎22
)           (3.4)        

In above equations, X’ is the matrix of risk factors, β is the vector of model parameters, εij is the 

independent random effect which captures the extra-Poisson heterogeneity among locations. ∑ is 

called the covariance matrix. The diagonal element σjj in the matrix represents the variance of εij, 

where the off-diagonal elements represent the covariance of crash counts of different modes. The 

inverse of the covariance matrix represents the precision matrix and has the following distribution: 

                                                                     ∑−1~𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝐼, 𝐽)                                              (3.5) 

Where I is the J x J identity matrix (Congdon, 2006), and J is the degree of freedom, J=2 herein 

representing two crash outcomes corresponding to bicyclist and pedestrians crashes.  

 

Model 2: Bivariate Spatial 

Under Model 2, the spatial random effects were incorporated over the model represented in 

Equation 2. The final model takes the following form to account for spatial correlations among the 

TAZs: 

                                                                 ln(𝜆𝑖𝑗) = 𝑋𝑖𝑗
′ 𝛽 + 𝜀𝑖𝑗 + 𝑢𝑖𝑗                                         (3.6) 

Where uij is the spatially structured random effect which follows the MCAR (multivariate 

conditional autoregressive) (Mardia, 1998) formulation to incorporate the spatial correlation 

among crashes occurring at neighboring TAZs.  

                                                          𝑢𝑖|𝑢𝑘, ∑ 𝑖  ~𝑁𝑗(∑ 𝐶𝑖𝑘𝑘~𝑖 , 𝑢𝑘, ∑ 𝑖  )                                   (3.7) 

Where each  ∑  𝑖  is a positive definite matrix representing the conditional variance matrix, and the 

adjacency matrix Cij is of the same dimension with ∑  𝑖 (Jonathan et al., 2016). The precision matrix 

∑  −1
 follows the Wishart distribution as shown in Equation 5.  
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As we can see from the above equations, estimation of the risk in any site is conditional on 

risks in neighboring locations. Subscripts i and k refer to a TAZ and its neighbor, respectively, and 

k belongs to Ni where Ni represents the set of neighbors of TAZ i. Besides the identification of 

neighbors, the assigned weights also affect the risk estimation. In the past studies (Aguero-

Valverde and Jovanis, 2009; Xu and Huang, 2015), weight structures including various adjacency-

based, distance-based models, and semi-parametric geographically weighted, and so on, have been 

explored. The current study employs the commonly used distance-based structure to explore the 

spatial correlations with the following formulation: 

                                                                          𝑤𝑖𝑗 =
1

𝑑𝑖𝑗
                                                                                             (3.8) 

Where wij is the weight between TAZ i and j, and dij is the distance between TAZ i and j. With this 

weight structure, it is known that more weightage was assigned to TAZs which are relatively close. 

 

Model 3: Bivariate Dirichlet Process Mixture  

The parametric model specification of the aforementioned models assumed the distribution of the 

parameters to be specific (normal in this study) across all concerned sites. However, the 

nonparametric specification removes such constraints by employing a flexible approach of the 

Dirichlet process that allows the incorporation of unknown random density for the parameters. The 

current study employs a semi-parametric approach which relaxes the restrictive distributional 

assumption for the intercept only, instead of all of the parameters. The removal of constraints for 

the intercept to follow a specific distribution represents a plausible scenario where the TAZs are 

not expected to have a normal distribution. This flexible approach is expected to capture the extra 

variability which may escape the error terms introduced in parametric models. Equation 2 was 

modified to use Dirichlet process mixture over the intercept as follows (Heydari et al., 2016):       

                                               ln(𝜆𝑖𝑗) = 𝛽0𝑟𝑗 + 𝑋𝑖
′𝛽                                            (3.9)                                                                                                                                                                                                                                                                                                                                                                                   

     𝛽0𝑟𝑗 ≈ ∑ 𝑝𝑛𝐼𝜃𝑧𝑖

𝐶
𝑛=1 ~𝑇𝐷𝑃 (𝑘𝐺0𝑗),   𝑧𝑖 = 𝑛 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑝𝑛                     (3.10)                                                                                                           

                                                                    𝐺0~𝑀𝑉𝑁 (𝜇𝐺0𝑗
, ∑)                                             (3.11) 

Where 𝛽0𝑟𝑗 is the intercept for cluster r (r ranges from 1 to C) of mode j, k is the precision 

parameter, and 𝐺0 is the baseline distribution for 𝛽0𝑟which follows a bivariate normal distribution 

with mean 𝜇𝐺0
 and variance ∑, which also follows the Wishart distribution. 𝛽0𝑟𝑗 essentially 

represents a vector of probabilities over the space of concerned entities (203 TAZs) and follows a 
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Truncated Dirichlet Process (TDP) with a vector of parameters represented by 𝑘𝐺0𝑗. The precision 

parameter k indicates the variability of the Dirichlet process around G0j. The intercept draws 

random points (𝜃𝑍𝑖
) and the associated probabilities (𝑝𝑛) can be obtained through the stick-

breaking procedure (Heydari et al., 2016; Ohlssen et al., 2007). If one cluster is occupied, the 

indicator function (𝐼𝜃𝑧𝑖
) at 𝜃𝑍𝑖

 will take the value of 1, otherwise it would be 0. The number of 

latent clusters (r) in 𝛽0𝑟𝑗 could range from 1 to infinity, which requires immense computational 

effort. To reduce the computational complexity by obtaining finite dimensional approximation, a 

truncated Dirichlet process is utilized to fix the maximum number of possible clusters to C, where 

C is governed by the precision parameter k and is estimated by 5k+2 (Ohlssen et al., 2007). As the 

prior distribution for precision parameter k was assumed to be k ~ uniform (0.3, 9), so eventually 

the number of clusters were limited to be maximum of 47. The value of C used in the study can be 

considered in a normal range given the different C values utilized previously such as 5 (Ghosh and 

Norris, 2005), 10 (Erkanli et al., 2006), and 52 (Heydari et al., 2017).   

 

Model 4: Bivariate Dirichlet Process Mixture Spatial 

Model 4 is distinct from Model 3 by incorporating the spatial random effects to account for the 

correlation among the neighboring TAZs. The model in Equation 9 takes the following form:  

                                                         ln(𝜆𝑖𝑗) = 𝛽0𝑟𝑗 + 𝑋𝑖
′𝛽 +  𝑢𝑖𝑗                                              (3.12) 

Where all terms are defined as previously.        

 

Comparison of Models Based on Cross-Validation  

Many traditional approaches of cross-validation are prone to overestimation due to double usage 

of data, once during model development and then again for model checking. The approach of 

cross-validatory predictive densities was proposed to tackle this issue (Gelfand et al., 1992) where 

the full set of data was divided into two subsets (one subset for development and the other for 

checking). However, the splitting of two subsets posed a major problem as the selection of different 

subsets provides varying results. This was resolved by implementing a CV-1 (leave-one-out) 

technique to estimate the cross-validatory conditional predictive ordinate (CPO) (Gelfand, 1996). 

This technique removed the selection bias by employing a continuous approach of selecting all 

data points, except one, for model development and the left out data point to verify the prediction 
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accuracy of the calibrated model. Under the MCMC (Markov Chain Monte Carlo) framework, the 

estimate of CPO for each observation i can be calculated as: 

                                                         𝐶𝑃𝑂 = (
1

𝑇
∑

1

𝑓(𝑌𝑖|𝛽(𝑡))
𝑇
𝑡=1 )

−1

                                               (3.13)  

Where Yi is the ith observation (i = 1, 2, 3, . . ., n) for all 203 TAZs and β is the vector of estimated 

model parameters. This harmonic mean of density (CPO) may be extended to calculate the 

goodness-of-fit of models by computing the product of CPOs over all observations, which is 

known as the pseudo marginal likelihood. For computational convenience, the log pseudo marginal 

likelihoods (LPML) is calculated (Heydari et al., 2016; Cheng et al., 2018): 

                                                         𝐿𝑃𝑀𝐿 = ∑ log(𝐶𝑃𝑂𝑖)
𝑛
𝑖=1                                                    (3.14) 

 

Evaluation Criteria for Predictive Accuracy  

In this study, the four competing models were also evaluated based on some criteria used from 

previous studies: MSPE (mean-squared predictive error, Narayanamoorthy et al., 2013), the G2 

statistic (Cheng and Washington, 2005), the Rp
2 statistic (Washington et al., 2003), the Chi-squared 

Residual Sum of Square (RSS, Earnest et al., 2007). The details of each criterion are shown in the 

following subsections. 

 

MSPE 

As indicated by the name, such criterion is related with the average squared deviations, or, the 

predictive errors. Specifically, the MSPE was calculated as follows:  

                                                       MSPE =
1

n
∑ (𝜆𝑖 − 𝑦𝑖)

2n
i=1                                                     (3.15) 

Where 𝜆𝑖 is the Bayesian estimated crash frequency for zone i while 𝑦𝑖 is the observed crash counts 

of the same zone. The smaller MSPE is preferred which indicates a better prediction performance.  

 

RSS 

MSPE is based on the deviations. A potential issue is that the larger estimated count of one zone 

might mask the smaller ones of multiple TAZs. To address this issue, we also calculated the chi-

squared residual sum of squares to determine the deviation standardized by the estimated number 

of crash counts: 
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                                                                 𝑅𝑆𝑆 = ∑
(𝜆𝑖−𝑦𝑖)2

𝜆𝑖

𝑛
𝑖=1    (3.16) 

The model with a smaller value of RSS tends to have more predictive capabilities. 

 

The Rp
2 Statistic 

The typical R-square in ordinary linear regression cannot be directly applied to the crash frequency 

model due to the nonlinearity of conditional mean (E[y|X]) and heteroscedasticity associated with 

the Poisson models. Therefore, we adopted an equivalent measure, Rp
2, which is based on 

standardized residuals: 

                                                           𝑅𝑝
2 = 1 −

∑ [
𝑦𝑖−𝜆𝑖

√𝜆𝑖
]

2
𝑛
𝑖=1

∑ [
𝑦𝑖−𝑦̅

√𝑦̅
]

2
𝑛
𝑖=1

                                                      (3.17) 

 

Where 𝑦̅ represents the mean value of the observed counts. Similar to R-square, a smaller Rp
2value 

indicates the inferior performance. 

 

The G2 Statistic 

The sum of model deviances, G2, is zero for a model with a perfect fit. The G2 statistic is given as: 

                                                         𝐺2 = 2 ∑ 𝑦𝑖𝐿𝑁𝑛
𝑖=1 (

𝑦𝑖

𝜆𝑖
)                                                     (3.18) 

A large G2 deviating from zero indicates that the model fits poorly as compared to the saturated 

model. 

 

DATA PREPARATION 
Pedestrian and bicyclist crashes which occurred in the City of Irvine from 2007 to 2012 were 

analyzed for the study. Like many other research studies, TAZs were selected as the base units, 

and the crash data were aggregated at the TAZ-level. Overall, there are 203 TAZs in the City. The 

map in Figure 3.1 displays the distribution of all TAZs and associated crash counts. The two 

transportation mode-related crashes were collected from SWITRS (California Statewide 

Integrated Traffic Records System) Shape file of TAZ boundary and TAZ characteristics were 

provided by SCAG (Southern California Association of Governments).  
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FIGURE 3.1. TAZ map with crash distributions in the city of Irvine, California. 

 

The variables used for model development and the associated descriptive statistics are 

shown in Table 3.1. The six-year aggregated pedestrian and bicyclist crashes were used as the 

dependent variables. DVMT acted as a measure of exposure. The explanatory variables were the 

predictors commonly used in previous regional safety analyses which include socioeconomic, 

transportation-related, and environment-related factors, and so on. It is worth mentioning that the 

data from 2008 were available for explanatory variables due to less frequent collection by the 

agencies and hence it is used for model development. Also, the distance matrix containing 

distances among various TAZ centroids were also collected from SCAG for the estimation of 

distance-based spatial random effect. Their descriptive statistics can be found in Table 3.1 as well.  

 

TABLE 3.1. Summary Statistics of Variables for TAZ’s of the City of Irvine 

Variables Description Mean SD Minimum Maximum 
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Bike Total bike-involved crashes (2007-

2012) 

1.82 2.45 0 12 

Ped Total pedestrian-involved crashes 

(2007-2012) 

0.81 1.33 0 8 

DVMT Daily vehicle miles traveled 5,4262.44 56,156.84 112.57 276,079.90 

Acre TAZ Area in acre 282.90 431.75 0.69 5,062.95 

Median Median house income ($) 48,440.78 50,635.10 0 183,347 

Pop_den Population density by area 6.18 7.96 0 32.40 

HH_den Household density by area 2.34 3.15 0 13.62 

Emp_den Employment density by area 10.34 17.43 0 121.10 

Ret_den Retail job density 0.79 2.02 0 17.45 

% age 5_17 % of population age 5-17 8.64% 8.78% 0 27% 

% age 18_24 % of population age 18-24 5.79% 7.42% 0 40% 

% age 24_64 % of population age 24-64 38.35% 36.12% 0 95% 

% age 65+ % of population age 65 or older 6.25% 10.21% 0 83% 

K12 K12 student enrollment  0.39 1.00 0 5.52 

College College student enrollment 0.11 1.00 0 12.59 

Int34_den Intersection density (3- and 4- legs) 0.12 0.12 0 0.62 

BKlnACC Bike lane access (1=if a TAZ has 

bike lane) 

0.92 0.28 0 1 

BL_den Bike lane density 3.40 1.80 0 7.26 

Rail 1=at least one rail station in a TAZ 0.01 0.10 0 1 

TTbus_D Total Bus Stop Density 0.05 0.09 0 0.53 

Exbus_D Stop density for Express Bus and 

BRT 

0.002 0.007 0 0.06 

HFLbus_D High-Frequency Bus Stop Density 

(local bus headway <= 20 mins) 

0.001 0.004 0 0.03 

WalkAcc Walk Accessibility  3.87 9.46 0 74.53 

% Arterial Percent of main arterial (45-

55mph) of TAZ  

10.61% 17.33% 0 80% 

Distance Distance among TAZ centroids (in 

miles) 

4.06 2.09 0.16 11.78 

Note: SD refers to standard deviation. 

 

RESULTS 
The crash prediction models were estimated with the freeware statistical package WinBUGS 

(Spiegelhalter et al., 2003). A total of 10,000 MCMC iterations were utilized for parameter 

estimation after discarding first 1,000 iterations as burn-in. The convergence was ensured by 
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employing different approaches such as visual inspection of history plots, trace plots, and Gelman-

Rubin diagram (Gelman and Rubin, 1992). The Pearson correlation coefficient was calculated and 

the covariates correlated at a significance level of 0.05 were subsequently eliminated.  

 

Modeling Results 

As shown in Table 3.2, the posterior inferences for influential factors for all four models 

demonstrate their robustness to fit the multimodal crash data at the TAZ spatial scale. All four 

models identify similar significant factors that affect crash frequency for a particular mode. In the 

case of bicycle crashes, three variables are observed to be statistically significant, namely: K12 

student enrollment, percentage of arterials, and bike-lane density for the TAZ. The TAZs with 

higher K12 student enrollment increases the crash risk as the instances of interaction of bicyclists 

with other modes increases due to more exposure. However, the similar positive correlation for 

bike-lane density seems counter-intuitive since the presence of bike lanes is expected to facilitate 

more usage of bicycles due to lower perceived risk of interaction with other modes. The possible 

rationale for this finding may be explained by the lower perceived risk which may encourage 

bicyclists to ride more in such areas, while conversely increasing the crash risk due to higher 

exposure of bicyclists to vehicular traffic. The negative relationship among percentage of arterial 

roads and bicycle crashes indicates that maybe the bicyclists tend to travel less in areas with more 

arterials. For the crashes pertaining to pedestrians, the college enrollment is also observed to be 

influential, along with other three factors shared with bicycle crashes. The increase in student 

population in the colleges of TAZs is noted to be negatively linked with pedestrian crashes, though 

the increased pedestrian activity usually associated with the presence of college students was 

expected to increase crash occurrence. The probable justification may be that the known presence 

of students influences the vehicle drivers to be more cautious and drive sensitively, or the vehicular 

activity may be minimal in such areas which may help significantly reduce the possibility of 

interaction with pedestrians. The common significant factors (K12 student enrollment, percentage 

of arterials, and bike-lane density) responsible for bicycle and pedestrian crashes support the joint 

estimation of such modes which are most vulnerable and impacted by similar characteristics. As 

shown in Table 3.3, the heterogeneity error term demonstrates the presence of statistically 

significant correlation among the bicycle and pedestrian crashes which further justifies the 

employment of bivariate structure for joint estimation of crashes. However, the spatial random 
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effect term exhibits the absence of a significant correlation, as indicated by the covariance matrix. 

It may be possible that the explanatory variables incorporated for model development are 

sufficiently robust to account for the spatial characteristics that influence crash occurrence for the 

particular modes.  

 

TABLE 3.2. Posterior Inference for Bicyclist and Pedestrian-involved Crash Counts 

Count Type Variables Model 1 Model 2 Model 3 Model 4 

Bicyclist Intercept -10.860 (0.243) -10.880 (0.246) -10.780 (0.248) -10.790 (0.234) 

 % age 65+ 1.532 (0.922) 1.467 (0.895) 1.413 (0.830) 1.401 (0.798) 

 K12 0.203 (0.088) 0.203 (0.091) 0.213 (0.079) 0.211 (0.074) 

 College -0.013 (0.078) -0.015 (0.077) -0.014 (0.079) -0.012 (0.075) 

 WalkAcc -0.007 (0.010) -0.008 (0.010) -0.006 (0.010) -0.007 (0.010) 

 % Arterial -3.517 (0.674) -3.529 (0.685) -3.472 (0.691) -3.399 (0.655) 

 BL_den 0.260 (0.056) 0.271 (0.057) 0.245 (0.056) 0.246 (0.056) 

Pedestrian Intercept -12.390 (0.326) -12.430 (0.357) -12.360 (0.340) -12.380 (0.346) 

 % age 65+ 1.205 (1.145) 1.192 (1.101) 1.097 (1.074) 1.131 (1.009) 

 K12 0.280 (0.104) 0.280 (0.106) 0.291 (0.095) 0.291 (0.094) 

 College -0.976 (0.567) -0.968 (0.563) -0.962 (0.562) -0.957 (0.558) 

 WalkAcc 0.009 (0.010) 0.008 (0.010) 0.010 (0.010) 0.009 (0.010) 

 % Arterial -3.826 (0.989) -3.805 (0.985) -3.727 (0.991) -3.658 (0.996) 

 BL_den 0.384 (0.068) 0.397 (0.075) 0.374 (0.069) 0.375 (0.074) 

Notes: 1. Intercept for Dirichlet Process models indicates the intercept mean from mixture points. 

2. Refer to Table 3.1 for detailed description of variables. 

3. Numbers in parentheses represent uncertainty estimates, or, posterior standard deviations. 

4. The statistically significant variable coefficients are shown in bold. 

5. Model 1: bivariate; Model 2: bivariate spatial; Model 3: bivariate dirichlet process mixture; Model 4: 

bivariate dirichlet process mixture spatial. 

 

TABLE 3.3. Covariance Matrices for the Four Alternative Models  

Models Modes Heterogeneity (εij) Spatial (uij) 

  Bicycle Pedestrian Bicycle Pedestrian 

Model 1 Bicycle 0.896 (0.166) 0.854 (0.166)   

 Pedestrian 0.854 (0.166) 0.890 (0.237)   

Model 2 Bicycle 0.860 (0.168) 0.827 (0.153) 0.001 (2.2x10-4) 6.7x10-5 (1.5x10-4) 

 Pedestrian 0.827 (0.153) 0.856 (0.213) 6.7x10-5 (1.5x10-4) 0.001 (2.2x10-4) 
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Model 3 Bicycle 0.602 (0.200) 0.538 (0.182)   

 Pedestrian 0.538 (0.182) 0.561 (0.226)   

Model 4 Bicycle 0.507 (0.231) 0.461 (0.234) 0.001 (2.1x10-4) 7.4x10-5 (1.5x10-4) 

 Pedestrian 0.461 (0.234) 0.503 (0.270) 7.4x10-5 (1.5x10-4) 0.001 (2.2x10-4) 

Notes: 1. Numbers in parentheses represent posterior standard deviations. 

2. The statistically significant covariance values are shown in bold.  

3. Model 1: bivariate; Model 2: bivariate spatial; Model 3: bivariate dirichlet process mixture; Model 4: 

bivariate dirichlet process mixture spatial 

 

Evaluation Results 

As previously stated, the four models are evaluated from different perspectives using five 

evaluation criteria. Unlike the traditional parametric models which usually employ DIC (deviance 

information criterion) for model comparison, LPML is adopted in this study as DIC is not 

generated by the WinBUGS due to its sensitivity to different parameterizations (28,49). The higher 

value of LPML is desirable as it reflects relatively superior model fit property and a difference of 

more than 5 points among two competing models help identify the model of interest (50). As 

shown in Table 3.4, the LPML values of all four models are close enough to not cross the threshold 

of 5 points for identification of the model of interest. However, the sample size also impacts the 

numerical value of LPML. Hence it may be worthwhile to record the model with highest LPML 

value and compare the observation with other criteria. As evident from the evaluation results, 

Model 3 demonstrates the best fit based on relatively large LPML (-474.433), closely followed by 

Model 4. A similar trend is observed for all other criteria suggesting the strong correlation among 

the capability of a model to fit crash data and its performance at crash predictive accuracy.  

Further inspection of the evaluation results reveals that the models which account for 

spatial correlations (Models 2 and 4) have consistently inferior performance to those with spatially 

unstructured heterogeneity (Models 1 and 3). Such phenomenon suggests that the inclusion of 

spatial correlation structures raises the model complexity without notable advantage at crash 

prediction, which is usually expected in such cases as reduced posterior deviance compensates the 

increased complexity. The potential reason might be due to the insignificant spatial dependency 

among the two modal crashes as shown in Table 3.3. Clearly, the Dirichlet models (Models 3 and 

4) outperform the non-Dirichlet ones (Model 1 and 2) based on all five criteria suggesting the use 

of such flexible framework.  
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Apart from the above findings, the logical aspect of employing the flexible approach should 

also be given consideration. For a given crash dataset, the parametric approach assumes a 

restrictive stationary distribution of explanatory variables across all the sites under focus. As 

discussed in previous studies of semi-parametric models (25, 26), the Dirichlet formulation allows 

the examination of the adequacy of standard parametric assumption. As clearly shown in Figure 

3.2, the kernel posterior density plots of Dirichlet precision parameter k illustrate the closeness of 

the peak towards zero which reflects that the unknown density (G) of non-parametric intercept is 

far from the baseline distribution (G0). Similar plots for both Dirichlet models suggest their 

robustness and indicate that the normal assumption of intercept associated with traditional 

parametric models does not hold true for the TAZ level crash dataset of the current study. This 

indicates that the 203 intercepts associated with the TAZs are not normally distributed and the 

standard parametric approach does not hold true for the concerned pedestrian and bicycle crashes 

at the planning level. This finding seems plausible since the safety mechanisms which impact the 

pedestrian and bicycle crashes may vary across different TAZs due to diverse factors (such as 

driving behavior, road environment, and so forth) which may not be captured in the explanatory 

variables. These findings also suggest the presence of distinct subpopulations among the crash data 

which was confirmed from the histogram of posterior number of latent clusters with a median of 

2 clusters for most of the data. This capability of Dirichlet models to identify the latent 

subpopulations may prove highly beneficial for the safety agencies to investigate similarities in 

the safety issues among different sites and allocate funding for dedicated countermeasures (26). 

This is achieved by calculating the expected probabilities of sites to fall into same clusters, which 

allows detection of the degree of similarity or dissimilarity among sites based on the crash risk 

(25).    

The aforementioned advantages justify the use of Dirichlet process mixture with a flexible 

intercept as such model specification helps more precise estimation leading to better inferences. 

Contrary to the parametric models which restrict the priors to a specific distribution fixed across 

all entities, the latent clusters capture the multimodality due to unconstrained nature.  

 

TABLE 3.4. Evaluation Results for Alternative Models 

Model LPML MSPE Rp2 G2 RSS 

Model 1 -476.753 0.690 0.786 177.995 272.367 
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Model 2 -477.492 0.691 0.781 179.544 278.749 

Model 3 -474.433 0.682 0.823 169.137 225.018 

Model 4 -474.831 0.687 0.823 169.998 225.291 

Notes: Model 1: bivariate; Model 2: bivariate spatial; Model 3: bivariate dirichlet process mixture; Model 

4: bivariate dirichlet process mixture spatial. 

 

 

(a) Kernel densities for Dirichlet Spatial (Model 4) 

 

(b) Kernel Densities for Dirichlet without Spatial (Model 3) 

FIGURE 3.2. Kernel density plots for precision parameter and latent clusters. 
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CHAPTER 4: COMPREHENSIVE ASSESSMENT OF TEMPORAL 

TREATMENTS IN CRASH PREDICTION MODELS 
 

INTRODUCTION 
As evident from the literature review, as an important feature associated with crash data, the temporal 

correlation issue in the crash frequency models has been the focus of a fairly large number of studies. 

Although some studies attempted the comparison among few temporal models, a comprehensive 

comparison of temporal treatments of crash data is not well documented and hence much needed. To this 

end, the authors proposed different models which represent alternate ways of addressing the serial 

correlations in the crash prediction models. Specifically, the models were classified into nine groups: (1) 

independent-over-time random effect (serving as the base); (2) linear time trend; (3) quadratic time trend; 

(4) yearly-varying intercept; (5) Autoregressive-1 (AR-1); (6) Autoregressive-2 (AR-2); (7) moving 

average-1 (MA-1); (8) moving average-2 (MA-2); and (9) time adjacency. These models (except the last 

one) were selected as representative of the temporal models commonly employed in the safety literature. It 

is important to note that the time adjacency model is first proposed in the traffic safety field, which is 

borrowed from a previous disease mapping study (Abellan et al., 2008). This model marks the innovative 

contribution of this study towards the field of traffic safety and is proposed with the intention to compare 

its performance relative to the prevailing temporal models. Essentially, it contributes a novel approach to 

incorporate the temporal aspect of crash data by employing CAR (conditional autoregressive) specification 

for assigning different weights, an approach usually employed to obtain weight matrices for correlations in 

spatial models. Additionally, since the serial correlations have been handled in different situations in terms 

of spatial dependency, the research also developed three types of models for each temporal treatment group 

which contains: (1) temporal correlation only; (2) independent temporal and spatial correlations without 

spatiotemporal interactions; (3) temporal and spatial correlations with their interactions. Overall, there are 

27 models being developed for the assessment purpose. Furthermore, in order to the reveal the modeling 

performance from different angles, ten different evaluation criteria were utilized which include: (1) 𝐷̅  (the 

posterior mean deviance); (2) 𝑃𝐷(the effective number of parameters); (3) DIC (Deviance Information 

Criterion, which is the sum of 𝐷̅ and 𝑃𝐷); (4) LPML (log pseudo marginal likelihood); (5) MAD (Mean 

Absolute Deviation); (6) MSPE (Mean Square Predictive Error); (7) The Rp
2 statistic; (8) The G2 statistic; 

(9) Chi-squared Residual RSS (Sum of Squares); (10) TRD (Total Rank Difference). The array of 

evaluation criteria have been implemented in previous studies and are anticpated to demonstrate the models’ 

capabilities from various aspects. However, there are very few studies dedicated to the correlation among 

these criteria. Building upon the large numer of models proposed (twenty seven), the study also intends to 
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explore the dependency among the selected evaluation measures. It is hoped that such correlation analysis 

would equip safety professionals with more confidence when selecting the models based on certain 

assessment criteria. Finally, all models and evaluations were performed on county-level collision data in 

California using Bayesian hierarchical framework.  

 

METHODOLOGY 
One of the benefits of the modern Monte Carlo Markov Chain (MCMC) sampling methods is the ease with 

which full marginal densities of parameters may be obtained. Based on the iterative MCMC methods, 

Bayesian techniques substantially improve on traditional multiple integrations or analytical approximation 

methods that are infeasible with a large number of parameters (Congdon, 2005). As a result, the use of 

Bayesian methods for the analysis of data has grown significantly in areas such as traffic safety where a 

wide range of modeling formulations have been proposed in the past. Specifically, for crash frequency data, 

various analytical approaches including Poisson, Poisson-Gamma, Negative Binomial, Poisson-lognormal, 

Poisson-Weibull models, and so on, have been implemented. This present study chose Bayesian 

Hierarchical Poisson-Lognormal model given its capability of better handling of small sample size due to 

the heavier tails associated with Lognormal distribution.   

As mentioned before, there are 27 models (nine groups and three types) being implemented which 

allow comprehensive evaluation of different ways of treating serial correlations in the crash frequency 

models. For ease of description, the following subsections first present the general model specification for 

the Bayesian Hierarchical model, then cover the details of groups of temporal treatments, followed by 

difference of the three types of models with respect to spatial dependency. Finally, the analytics of various 

evaluation criteria are outlined.   

 

Bayesian Hierarchical Model Specification 
In the Bayesian Hierarchical Poisson Lognormal framework, at the first level, the authors defined a Poisson 

model for the within-county variability of crash counts: 

                                                                      𝑦𝑖𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑒𝑖𝑡𝜆𝑖𝑡)                                                  (4.1) 

Where yit is the observed crash count for county i and year t, 𝜆𝑖𝑡 is associated mean expected crash rate, and 

𝑒𝑖𝑡 is the corresponding exposure, which is the total daily vehicle-miles (DVMT) by county in this study. 

At the second level, λit can be split into portions explained by overall risk (𝛽0), main temporal 

effects (ξt) and spatial effects (π𝑖, applies merely to Model Types 2 & 3), space-time interactions (υit, applies 

only to Model Type 3) and random errors (𝜀𝑖𝑡), which can be assumed with the noninformative normal 

priors. As a result, λit can be expressed as follows: 
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                                                             {  
ln(𝜆𝑖𝑡) = 𝛽0 + ξ𝒕 + π𝑖 + υ𝑖𝑡 + 𝜀𝑖𝑡

𝜀𝑖𝑡~𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜏2 )
                                             (4.2) 

The detailed distributions of ξt,, π𝑖, and υit are provided in subsections of Nine Groups of Temporal 

Treatments and Three Type of Models. It should be noted that usually the model development incorporates 

some potential influential factors. However, the model in this study does not incorporate any covariates 

with multiple reasons. First, the major focus of this study is to investigate the impact of different ways of 

addressing temporal effects on modeling performance, the inclusion of various factors might blur such 

comparison. Second, some spatial-only covariates (e.g. the geographic areas which are constant throughout 

time) would have different impacts on the models with and without spatially structured random effects and 

thus potentially yield biased comparative results. Third, the exclusion of covariates would allow enough 

heterogeneity to support the estimation of various random effects, especially the space-time interaction one. 

At the third level, the variance parameters that are involved in the equation of second-level 

(Equation 2) are generally treated with unknown and hyper-prior distributions. As with many other 

Bayesian analyses, the authors chose inverse gamma for 𝜏2 with parameters 0.5 and 0.0005. 

 

Nine Groups of Temporal Treatments 
As previously stated, there are many ways of addressing the main temporal effects (ξt) of the crash data. 

The study explores nine different temporal treatments and the associated model formulations are presented 

in order of complexity, from the independent-over-time random effect to more sophisticated ones.  

 

Group 1: Independent-over-time Random Effect (Base) 

In this group, all crash counts of different years are assumed to be independent of each other, without any 

applicable serial trends or correlations (28). Under this condition, Equation 2 is reformed using the 

following expression and would serve as the “base” scenario for other temporal treatments. 

                                                              ln(𝜆𝑖𝑡) = 𝛽0 + π𝑖 + υ𝑖𝑡 + 𝜀𝑖𝑡                                                        (4.3) 

 

Group 2: Linear Trend 

Under this group, a global linear temporal trend is applied to crash counts of all counties. Equation 2 is 

modified to the following form: 

                                                             ln(𝜆𝑖𝑡) = 𝛽0 + β𝒕𝟏𝑡 + π𝑖 + υ𝑖𝑡 + 𝜀𝑖𝑡                                             (4.4) 

Where β𝒕𝟏 is the the scalar parameter for linear yearly trend, and  𝑡 represents various years. The crash 

counts of counties are anticipated to be decreased or increased with the same rate with time going. 
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Group 3: Quadratic Trend 

Within this group, an additional quadratic term is applied to crash counts in addition to the linear trend. The 

underlying premise is that the quadratic term can capture some heterogeneity which escapes from the linear 

term. The resulting expression is shown as follows. 

                                                     ln(𝜆𝑖𝑡) = 𝛽0 + β𝒕𝟏𝑡 + β𝒕𝟐𝑡2 + π𝑖 + υ𝑖𝑡 + 𝜀𝑖𝑡                                       (4.5) 

Where β𝒕𝟐 is the scalar parameter for quadratic yearly trend. 

 

Group 4: Time-varying Intercepts 

This group assumes that the crashes of differing years have a time-changing overall risk (intercepts). The 

corresponding formulation is expressed in Equation 6: 

                                                                 ln(𝜆𝑖𝑡) = 𝛽0𝑡 + π𝑖 + υ𝑖𝑡 + 𝜀𝑖𝑡                                                   (4.6) 

Where 𝛽0𝑡 is the vector of yearly varying intercepts. Essentially, it can be regarded as a “random parameter” 

model in terms of intercepts. It is worth mentioning that other covariates are not utilized. Otherwise, the 

associated variable coefficients might be time-varying as well.  

 

Group 5: First-order Autoregressive Process (AR-1) 

This group takes into the consideration the autoregressive safety effect by relating the crashes of current 

year (t) to the ones from previous year (t-1) with one certain coefficient. The study chose AR-1 based on 

the assumption of stationarity restriction. Under this formulation, the distributions of 𝜀𝑖𝑡 in Equation 2 are 

given by:       

                                                              {
𝜀𝑖𝑡~𝑛𝑜𝑟𝑚𝑎𝑙 (0,

𝜎𝑖𝑡
2

(1−∅1
2)

   

 

)

𝜀𝑖𝑡~𝑛𝑜𝑟𝑚𝑎𝑙(∅1𝜀𝑖,𝑡−1, 𝜎𝑖𝑡
2 ), 𝑡 > 1

                                              (4.7) 

Where ∅1is the autocorrelation coefficient with the range of -1 < ∅1 < 1 (39). 

 

Group 6: Second-order Autoregressive Process (AR-2) 

Different from AR-1, AR-2 assumes that the crashes of the present year are dependent on the ones of two 

previous years. Correspondingly, the distributions of 𝜀𝑖𝑡 are shown in the following expression:      
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                                                     {
𝜀𝑖𝑡~𝑛𝑜𝑟𝑚𝑎𝑙 (0,

𝜎𝑖𝑡
2

(1−∅2)2−∅1
2 ∙

1−∅2

1+∅2
   

 

)

𝜀𝑖𝑡~𝑛𝑜𝑟𝑚𝑎𝑙(∅1𝜀𝑖,𝑡−1 + ∅2𝜀𝑖,𝑡−2, 𝜎𝑖𝑡
2), 𝑡 > 2

                                      (4.8) 

Where ∅1 and ∅2 are the autocorrelation coefficients. An AR-2 process is stationary provided | ∅2| <

1, 𝑎𝑛𝑑 | ∅1| + ∅2 < 1 (Jung et al., 2006).                                          

 

Group 7: First-order Moving Average Process (MA-1) 

Under this group, the crashes of the present year are a linear function of errors of past year. In specific, 

MA-1 takes the form as follows: 

                                                        {
ln(𝜆𝑖𝑡) = 𝛽0 + π𝑖 + υ𝑖𝑡 + 𝜀𝑖𝑡 + 𝜃1 ∙ 𝜀𝑖,𝑡−1

𝜀𝑖𝑡 , 𝜀𝑖,𝑡−1~𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎2 )
                                       (4.9) 

Where 𝜃1 is the coefficient associated with error of past year. The error terms of current and past years are 

assumed to be independently distributed with a normal distribution with mean zero and a constant variance 

𝜎2. MA-1 process is invertible provided | 𝜃1| < 1 (Barron, 1992). 

 

Group 8: Second-order Moving Average Process (MA-2) 

An MA-1 process can be easily extended to MA-2 where crashes of present year are related with errors of 

past two years. The resultant expression is shown as below: 

                                            {
ln(𝜆𝑖𝑡) = 𝛽0 + π𝑖 + υ𝑖𝑡 + 𝜀𝑖𝑡 + 𝜃1 ∙ 𝜀𝑖,𝑡−1 + 𝜃2 ∙ 𝜀𝑖,𝑡−2

𝜀𝑖𝑡 , 𝜀𝑖,𝑡−1, 𝜀𝑖,𝑡−2~𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎2 )
                             (4.10) 

Where 𝜃1 and 𝜃2 are the coefficients associated with errors of past two years. Again, the error terms of 

current and past two years are assumed to be independently distributed with a normal distribution with 

mean zero and a constant variance 𝜎2. MA-2 process is invertible provided | 𝜃𝑗| < 1, 𝑗 = 1,2 (Barron, 

1992). 

 

Group 9: Time Adjacency 

As indicated by the name, this group assumes strong influence of the adjacent years on crash risk, similar 

to the dependency of adjacent roadway entities in the case of spatial correlation. Compared to the AR or 

MA models which capture the impact of crash risk of the year(s) prior to the concerned time, this model 

also accounts for the potential impact of the subsequent year(s). To the best knowledge of authors, such 

formulation has not been applied in the traffic safety field yet. Such treatment is borrowed from a previous 



52 
 

study regarding public health issues (Abellan et al., 2008) with the intention to explore its capabilities in 

analyzing safety data.  

Similar to many other spatial correlation studies, the authors estimated temporal effects (ξt) in 

Equation 2 by applying CAR (conditional autoregressive) formulation which incorporates the temporal 

correlation among crashes occurring at neighboring years. The details of CAR can be found in the following 

subsection. It is important to note that the relatively small sample size (t=8) might harm the performance 

of this group to some degree. 

 

Three Types of Models 
Aside from the temporal treatment, the 27 models can also be divided into three types in terms of different 

ways of handling the spatial correlations among counties. Each of the model types is applied to all groups 

of temporal treatments. The detailed description is provided below in order. 

 

Type 1: Temporal Correlation only 

This type of models assumes that the spatial feature of the crash risk at other counties has ignorable impacts 

on the crashes of concerned county. In response, Equation 2 is modified by removing the terms of π𝑖 and 

υit: 

                                                                      ln(𝜆𝑖𝑡) = 𝛽0 + ξ𝒕 + 𝜀𝑖𝑡                                                        (4.11) 

        

Type 2: Space-Time Model without Spatiotemporal Interactions 

Different from Type 1, this model type also accounts for the spatial correlations among the crash risks of 

counties, but the associated spatial and temporal interactions are not considered. Hence, the updated 

Equation 2 is shown as below for this type. 

                                                                    ln(𝜆𝑖𝑡) = 𝛽0 + ξ𝒕 + π𝑖 + 𝜀𝑖𝑡                                                 (4.12) 

Alternative autoregressive models were used to estimate the spatially structured random effect such 

as the conditional autoregressive model (CAR) and the simultaneously autoregressive model (SAR, Wall, 

2004). In this study, the authors selected the commonly used CAR in the safety field with the distance-

based weight structure. The specific formulation is shown in Equation 13: 

                                   𝜋𝑖~𝑁 (
𝜋𝑖̅̅ ̅,1

𝜏𝑖
)        𝜋𝑖̅ =

∑ 𝜋𝑘𝑤𝑖𝑘𝑖≠𝑘

∑ 𝑤𝑖𝑘𝑖≠𝑘
      𝜏𝑖 =

𝜏𝑐

∑ 𝑤𝑖𝑘𝑖≠𝑘
    𝑎𝑛𝑑     𝑤𝑖𝑗 =

1

𝑑𝑖𝑗
                     (4.13) 

Where 𝑤𝑖𝑗 is the proximity weight matrix, 𝜏𝑐 is the precision parameter in the CAR prior, and 𝑑𝑖𝑗 is the 

distance between counties. As shown in the above equation, estimation of the risk in any county is 
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conditional on risks in other locations. Subscripts i and k refer to a county and its neighbor, respectively, 

and k 𝜀 Ni, where Ni represents the set of neighbors of county i. The current study employs the distance-

based structure to explore the spatial correlation, where all other counties are considered neighboring 

counties and relative influence is inversely related with distances in between. It is noteworthy that, for the 

serial correlation in Time Adjacency Group, the authors chose Adjacency-based weight structure where the 

weights are given by (wij) = 1 if counties i, j are adjacent, and 0 otherwise. Such weight matrix gives a 

dichotomous output for weight with only two responses, zero for non-neighbors and one for neighbors. 

Hence, the proximity of immediate neighbors establishes a temporal dependency while more distant years 

are considered not to have a significant impact. 

Once π𝑖 is estimated, it is also interesting to calculate the percentage of extra-Poisson variability 

that is due to spatial clustering: 

                                                                          α =
𝑠𝑑 (𝜋)

𝑠𝑑 (𝜋)+𝑠𝑑(𝜀)
                                                              (4.14) 

Where 𝛼 is defined as fraction, and 𝑠𝑑 is the marginal standard deviation function. The larger the fraction 

value, the more variability explained by the spatially structured random effects. 

 

Type 3: Space-Time Model with Spatiotemporal Interactions 

Type 3 is distinct from Type 2 with the inclusion of interactions between temporal and spatial correlations. 

Different formats of interactions have been found in the literature which includes linear, time-varying 

spatial (Lawson et al., 2003) and the one represented by mixed components (Abellan et al., 2008). This 

research chose the linear interaction that has been used in the previous safety study (Aguero-Valverde and 

Jovanis, 2006). In this case, Equation 2 is changed with the following form: 

                                                        ln(𝜆𝑖𝑡) = 𝛽0 + ξ𝒕 + π𝑖 + 𝛿𝑖 ∙ 𝑻 + 𝜀𝑖𝑡                                                (4.15) 

Where T is the vector representing various time periods and 𝛿𝑖 represents the interacted spatial correlations 

which are also estimated with CAR formulation. The interaction term allows different temporal trend in 

crash risk for different spatial locations. 

 

Analogously, the updated formula for fraction is shown in Equation 16. 

                                                                        α =
sd (π)+sd (δ)

sd (π)+sd (δ)+sd(ε)
                                                     (4.16) 

The fraction, in this case, indicates the proportion of crash variability explained by both spatial effects: 

π𝑖and δ𝑖. 
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Evaluation Criteria  
In addition to various groups of temporal treatment and types of models, the study also assesses the model 

performance by using ten different evaluation criteria which were found in the past research. The authors 

intend to evaluate the performance of the array of models from varying angles, and also to explore whether 

there exist strong correlations among various criteria. The brief background and analytics of each criterion 

are provided as follows.   

 

Criteria 1~3: DIC and Its Components 

Similar to Akaike information criterion (AIC), the Deviance Information Criterion (DIC) is a penalized fit 

criterion developed by Spiegelhalter et al. (2003). Compared with AIC and BIC, the DIC is more easily 

calculated from the samples generated by an MCMC simulation. Usually, the estimation of DIC can be 

conducted through the following expression. 

                                                             {
𝐷𝐼𝐶 = 𝐷̅ + 𝑃𝐷

𝐷(𝜃) = −2 ∙ log (𝑝(𝑦|𝜃))

𝐷̅ = 𝐸𝜃[𝐷(𝜃)],   𝑃𝐷 = 𝐷̅ − 𝐷(𝜃̅) 

                                          (4.17) 

Where, y are the data; 𝜃 are the unknown parameters of the model; 𝑝(𝑦|𝜃) is the likelihood function; 𝜃̅ is 

the expectation of 𝜃; 𝐷̅ is the posterior mean deviance, or the expectation of the deviance, 𝐷(𝜃); 𝐷̅ measures 

how well the model fits the data; the smaller the 𝐷̅, the better the fit. 𝑃𝐷 represents the effective number of 

parameters. In general,  𝐷̅ decreases as the number of parameters in a model increases. Therefore, 

the 𝑃𝐷  term is mainly used to compensate for this effect by favoring models with a smaller number of 

parameters. Usually, smaller values of DIC are preferred. Some general guidelines are also suggested by 

Lunn et al. (2012): models with DIC values within 5 of the 'best' model are comparable and also strongly 

supported, values within 5 and 10, weakly supported, and models with a DIC greater than 10 are 

substantially inferior. Therefore, it could be misleading to only report the model with lowest or highest 

DIC. For clarification, 𝐷̅, 𝑃𝐷, and DIC are considered as criterion 1, 2, and 3, respectively.  

 

Criterion 4: Log Pseudo Marginal Likelihoods (LPML) 

Such criterion checks the predictive capability of models based on a special case of cross-validation, leave-

one-out cross-validation, where the number of folds equals the number of instances in the dataset. It has the 

benefit of avoiding selection bias in the sense that it treats each of the data observation as a single-item test 

set, while using all other instances as a training set. This process is closely related to the statistical method 
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of jack-knife estimation (Efron, 1982). In general, Under the MCMC framework, calculation of LPML can 

be done through the following expression: 

                                                                     {𝐶𝑃𝑂 = (
1

𝑇
∑

1

𝑝(𝑌𝑖|𝛽(𝑡))
𝑇
𝑡=1 )

−1

𝐿𝑃𝑀𝐿 = ∑ log(𝐶𝑃𝑂𝑖)𝑛
𝑖=1

                                               (4.19) 

Where CPO is conditional predictive ordinate; Yi is the ith observation (i = 1, 2, 3, . . ., n) for all counties; 

β is the vector of estimated model parameters; 𝑝(𝑌𝑖|𝛽(𝑡)) is the likelihood; t represents interation. The larger 

the LPML value, the better the predictive performance tends to be.  

 

Criterion 5: Mean Absolute Deviation (MAD) 

MAD is also frequently used by researchers to check the fitness of data irrespective of the data distribution. 

It is simply based on the model deviation or residue. The corresponding expression is shown in Equation 

20. 

                                                                     𝑀𝐴𝐷 =
1

𝑛
∑ |𝑌𝑖 − 𝑂𝑖| 𝑛

𝑖=1                                                       (4.20) 

Where 𝑌𝑖 is the Bayesian-estimated crash frequency and 𝑂𝑖 is the observed crash count for county i by a 

model during the same time period. The smaller the MAD value, the better fitness to the data. 

 

Criterion 6: Mean Square Predictive Error (MSPE) 

MSPE differs from MAD by calculating the square of deviation, rather than the corresponding absolute 

value. Specifically, MSPE assumes the form shown as below: 

                                                                     𝑀𝑆𝑃𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑂𝑖)2𝑛

𝑖=1                                                    (4.21) 

Where terms are as defined previously. It is expected that MSPE assigns more penalties to the counties 

whose deviations are larger due to the squared deviation. Again, the larger MSPE indicates an inferior 

performance. 

 

Criterion 7: The Rp
2 statistic 

A Poisson regression model is usually associated with the nonlinearity of conditional mean (E[y|X]) and 

heteroscedasticity (Washington et al., 2003). Therefore, R-square in ordinary linear regression cannot be 

directly applied to the crash frequency model. Instead, the present research chose an equivalent measure, 

Rp
2, which is based on standardized residuals and computed as follows: 
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                                                                            𝑅𝑝
2 = 1 −

∑ [
𝑂𝑖−𝑌𝑖

√𝑌𝑖
]

2
𝑛
𝑖=1

∑ [
𝑂𝑖−𝑂̅

√𝑂̅
]

2
𝑛
𝑖=1

                                                     (4.22) 

 

Where 𝑌𝑖 and 𝑂𝑖 are as defined previously, and 𝑂̅ represents the mean value of the observed counts. Similar 

to R-square, a larger Rp
2value is preferred. 

 

Criterion 8: The G2 statistic 

The sum of model deviances, G2, gives a test of whether the model gives an adequate explanation of the 

data relative to the saturated model (Cheng and Washington, 2005). The G2 statistic is given as: 

                                                                       𝐺2 = 2 ∑ 𝑂𝑖𝐿𝑁𝑛
𝑖=1 (

𝑂𝑖

𝑌𝑖
)                                                       (4.23) 

A large G2 indicates that the model fits poorly as compared to the saturated model. 

 

Criterion 9: Chi-squared Residual Sum of Squares (RSS) 

RSS is defined as: 

 𝑅𝑆𝑆 = ∑
(𝑂𝑖 − 𝑌𝑖)2

𝑌𝑖

𝑛

𝑖=1
 

      

(4.24) 

Under MAD and MSPE, the larger counties are expected to subject to more penalties due to greater counts 

and residues. RSS  tends to remove such bias by calculating the squared residual relative to the estimated 

number of crashes. A particular model is considered more reliable if smaller RSS value is observed. 

 

Criterion 10: Total Rank Difference (TRD) 

Finally, rather than use the magnitude of residue value, TRD accounts for the rank deviations based on the 

observed and estimated crash counts (Cheng et al., 2017). The rank difference is calculated by using the 

following equation. 

                                                            𝑇𝑅𝐷 = ∑ |𝑅(𝑖𝑜) − 𝑅(𝑖𝑌)|𝑛
𝑖=1                                                        (4.25) 

Where 𝑅(𝑖𝑜) is the observed data rank at county i and 𝑅(𝑖𝑌) is the rank based on estimated crash counts 

for the same time period. A model is considered superior if smaller TRD value is revealed, which signifies 

that the specific model assigns rankings close to the observed crash counts.  
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DATA PREPARATION 
As previously stated, for ease of comparison of various temporal treatments and types of models, only the 

number of fatal and injury vehicle-involved collisions and a main exposure-related yearly-varying factor of 

county safety performance, that is, Daily Vehicle Miles Travel (DVMT), were collected for analysis. The 

first one was obtained from the website of TIMS, which provides tools for accessing and mapping collision 

data from the California Statewide Integrated Traffic Records System (SWITRS). The information of 

DVMT was collected from Highway Performance Monitoring System (HPMS). Eight-year of data were 

used for both variables which span from 2006 to 2013. In addition, for implementation of distance-based 

CAR priors for spatial correlations, a matrix containing distances among centroids of all counties in 

California were developed based on the information provided by SCAG (Southern California of Association 

of Governments). Since the State has 58 counties, so the distance matrix has the size of 58x57 with a mean 

of 273 miles. The descriptive statics of variables are illustrated in Table 4.1.  

 

TABLE 4.1 Descriptive Statistics of Variables for Various Counties in California 

 
Variables Description Year Min Max Median Mean S.D. 

Collision 

Total Annual 

Fatal and 

Injury Vehicle-

involved 

Collisions 

2006 23 48,107 758 2,791 6,767 

2007 10 46,558 699 2,672 6,515 

2008 15 41,794 631 2,389 5,841 

2009 20 40,197 611 2,290 5,612 

2010 18 39,560 538 2,249 5,531 

2011 14 38,933 576 2,185 5,430 

2012 16 38,477 560 2,171 5,389 

2013 21 38,855 544 2,141 5,437 

DVMT 

Daily Vehicle 

Miles 

Travelled (in 

thousand) 

2006 180 217,444 5,092 15,577 32,178 

2007 162 218,027 5,146 15,608 32,261 

2008 168 214,971 5,005 15,387 31,894 

2009 171 214,237 4,837 15,318 31,744 

2010 169 211,877 5,449 15,483 31,421 

2011 165 214,458 4,762 15,353 31,871 
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2012 167 214,482 4,789 15,438 31,927 

2013 165 215,818 4,791 15,549 32,162 

Distance 

Distance 

among 

Centroids of 

Counties        

(unit: miles) 

N/A 25 962 227 273 176 

Note: S.D. represents standard deviation; min refers to minimum; max refers to maximum; N/A means 

Not Applicable 

 

RESULTS 
The three sets and nine groups of models were implemented in freeware WinBUGS package which employs 

an MCMC algorithm for estimation of parameters. For the model calibration, two Markov chains were 

utilized to visually inspect trace plots of posterior estimates for convergence, where a wide range of burn-

in iterations (5,000 to 15,000) and total interactions (20,000 to 25,000) was used in the calculation of 

posterior estimates due to the varying complexity of different models. The convergence was further checked 

by using the Gelman-Rubin convergence statistic (51) and ensuring the sample Monte Carlo errors to be 

less than 5% of the associated standard deviation. It is important to reiterate that all models did not 

incorporate any covariates as the primary focus was on the comparison of temporal treatment, with and 

without spatial correlations, though DVMT was used to represent traffic exposure and offset the crash 

frequency.  
 

Modeling Results 
The posterior mean and standard deviation for the different model coefficient estimates are illustrated in 

Table 4.2. The intercept term (𝛽0) was observed to be statistically significant for all the groups, and the 

impact of inclusion of spatial correlations may be noted on closer scrutiny with the standard deviation for 

𝛽0 consistently decreasing across all groups for Type 2 and Type 3, compared with Type 1. The proportion 

of variability due to spatial clustering was also estimated to further study the impact of inclusion of spatial 

correlation. The fraction α signified the heterogeneity explained by the spatial random effects and was 

observed to be statistically significant for all spatiotemporal models which reflected the presence of spatial 

clustering of crashes. This also bolsters the loss of precision noticed for intercept of Type 1 across all 

groups. Apart from the spatial correlation, the time dependency appeared to be statistically significant as 

well by observation of the different temporal treatment model terms such as βt1, βt2, φ1, φ2, θ1,θ2 , etc. It 

illustrated the strong serial correlation among crashes of successive years and the tendency of crashes to 
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cluster both spatially and temporally as reflected by the space-time interaction of Type 3. The importance 

of accounting for temporal changes was also evident from the time-varying intercept models (Group 4) 

which demonstrated the different magnitude of intercepts for eight years. The parameter values in Table 

4.2 can also be used to predict the annual crash counts of various counties. For example, the eight-year 

DVMT (in thousand) for Amador County are (1193.12, 1223.70, 1204.87, 1201.17, 1067.05, 1058.22, 

1027.92, 1035.65), and the associated observed crash counts are (265, 233, 203, 204, 212, 180, 161, 142). 

Under the Type 1, Group 1 Model, β0 =-2.068, the predicted crash counts (𝐷𝑉𝑀𝑇 ∗ 𝑒𝛽0) would be (150.9, 

154.8, 152.4, 152.0, 135.0, 133.9, 130.0, 131.0). However, if the estimated independent-over-time random 

effect, 𝜀𝑖𝑡= (0.5384, 0.3885, 0.2696, 0.2767, 0.4273, 0.2772, 0.1978, 0.0716), is also included for 

calculation, the predicted values (𝐷𝑉𝑀𝑇 ∗ 𝑒(𝛽0+𝜀𝑖𝑡)) would be (258.5, 228.7, 200.1, 200.9, 207.4, 177.1, 

158.9, 141.2), which are much closer to the observed counts. Such phenomenon indicates the importance 

of random effect for crash count estimation.  

 

TABLE 4.2. Parameter Estimates and associated Standard Deviation for Various Models 

 
Parameters Type 1 Type 2 Type 3 

Group 1: Independent-over-time random effect (Base) 

β0 -2.068 (0.0140) -2.072 (0.0068) -2.114 (0.0119) 

α  0.678 (0.0082) 0.654 (0.0095) 

Group 2: Linear Trend 

β0 -1.893 (0.0304) -1.902 (0.0111) -1.901 (0.0109) 

βt1 -0.0379 (0.0061) -0.0379 (0.0022) -0.0382 (0.0020) 

α  0.754 (0.0075) 0.754 (0.0076) 

Group 3: Quadratic Trend 

β0 -1.871 (0.0368) -1.825 (0.0207) -1.838 (0.0186) 

βt1 -0.053 (0.0167) -0.084 (0.0107) -0.076 (0.0097) 

βt2 0.002 (0.0018) 0.005 (0.0012) 0.004 (0.0011) 

α  0.759 (0.0075) 0.781 (0.0106) 

Group 4: Time-varying Intercept 

β01 -1.907 (0.0383) -1.914 (0.0132) -1.913 (0.0127) 

β02 -1.941 (0.0386) -1.950 (0.0129) -1.950 (0.0124) 

β03 -1.941 (0.0386) -1.950 (0.0129) -1.950 (0.0124) 

β04 -2.053 (0.0384) -2.069 (0.0137) -2.070 (0.0132) 

β05 -2.115 (0.0410) -2.153 (0.0144) -2.152 (0.0132) 

β06 -2.113 (0.0374) -2.123 (0.0134) -2.123 (0.0131) 

β07 -2.134 (0.0384) -2.143 (0.0143) -2.144 (0.0128) 

β08 -2.169 (0.0422) -2.187 (0.0137) -2.189 (0.0129) 
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α  0.763 (0.0075) 0.787 (0.0109) 

Group 5: AR-1 

β0 -2.028 (0.0147) -2.057 (0.0064) -2.052 (0.0132) 

φ1 -0.401 (0.0221) -0.491 (0.0384) -0.456 (0.0392) 

α  0.677 (0.0078) 0.618 (0.0161) 

Group 6: AR-2 

β0 -2.093 (0.0203) -2.051 (0.0118) -2.075 (0.0116) 

φ1 1.013 (0.0519) 1.103 (0.0438) 1.191 (0.0239) 

φ2 -0.527 (0.0242) -0.418 (0.0438) -0.540 (0.0294) 

α  0.631 (0.0438) 0.621 (0.0219) 

Group 7: MA-1 

β0 -2.065 (0.0171) -2.071 (0.0089) -2.122 (0.0146) 

θ1 0.924 (0.0530) 0.700 (0.0915) 0.849 (0.0765) 

α  0.721 (0.0122) 0.728 (0.0119) 

Group 8: MA-2 

β0 -2.049 (0.0182) -2.067 (0.0106) -2.135 (0.0189) 

θ1 0.976 (0.0219) 0.830 (0.0787) 0.955 (0.0331) 

θ2 0.627 (0.0449) 0.428 (0.0700) 0.514 (0.0394) 

α  0.728 (0.0126) 0.753 (0.0126) 

Group 9: Time Adjacency 

β0 -2.068 (0.0160) -2.073 (0.0093) -2.084 (0.0062) 

α  0.762 (0.0075) 0.786 (0.0101) 

Notes: 1. the shaded cell indicates non-significant coefficient at 95% confidence level. 

2. The standard deviations are shown in the parentheses. 

3. Refer to Methodology Section for details of various parameters and groups/types of models. 

 

Evaluation Results 
An array of evaluation criteria was employed to assess the performance of models from different 

perspectives. Generally speaking, 𝐷̅, LPML, MAD, MSPE, RP
2, G2, RSS, and TRD are akin to each other 

as they are centered on the predictive accuracies of models, while Pd is mainly focused on the model 

complexity. DIC is the penalized criterion which considers the combined effects of both modeling 

prediction and complexity.  Table 4.3 demonstrated the evaluation results of each of the 27 individual 

models. For ease of description, G#T# will be used hereafter to denote the model of certain group and type. 

For example, G3T2 represents model of Group 3 and Type 2. Inspection of Table 4.3 reveals some 

interesting findings: (1) In terms of the prediction-pertinent criteria, G6T1 appeared to have the worst 

performance while G5T3 tended to be ranked first in most cases. (2) In terms of model complexity (Pd), 

G6T1 performed the best while G1T3 was placed last. (3) In terms of the penalized criterion (DIC), G6T2, 
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G6T3 and G9T2 were observed with the superiority while G6T1 had the disadvantage compared with 

others. Such phenomena indicated that (a) the various measures for prediction accuracies tended to be 

highly correlated with each other; (b) the models’ predication capabilities may be inconsistent with their 

efficiency in reducing the effective number of parameters; (c) under the DIC which combines both effects, 

the models with spatial random effects (either independent or interactive ones) seemed to have better 

performance than the ones with temporal random effects only under most conditions.   

For easier understanding the impact of temporal treatment and spatial correlations, Table 4.4 

demonstrates the aggregated model performance based on two perspectives: across different temporal 

treatments and the three model types. In the case of aggregation by types, the proposed Group 9 models 

recorded the lowest DIC value (4753.36) while Group 8 models exhibited the worst fit. The base models 

may be expected to demonstrate the overall best predictions with the best rankings in most prediction-

related measures, but the model complexity turned out to be the governing factor, which was the highest, 

resulting in overall inferior performance. This finding may indicate another perspective to quantify the 

impact of the inclusion of temporal treatment as compared to the base group in the sense that the other 

model groups exhibited considerably lower complexity. The best performance of Group 9 (albeit with a 

low sample of 8 years) in terms of DIC suggested that this kind of temporal treatment is worth further 

exploration in the safety field in the future. The possible explanation for best predictions associated with 

the base models might be due to the myriad of influential factors of the safety (e.g., policy, population, 

weather, etc.) in the large spatial unit, county, which makes it difficult to predict the county-level crashes 

by using a universal temporal trend or correlation.     

In the case of aggregation by temporal treatments, Type 2 models were observed to have best 

overall fit as reflected by the lowest DIC (4759.82), followed by Type 3 while Type 1 recorded the highest 

DIC. Once again, the governing factor was the model complexity which was significantly decreased by the 

inclusion of spatial correlation structures. These findings suggest that inclusion of space and time at the 

same time provides substantial efficiency in reducing the number of effective parameters, which also 

indicates the tendency of crash data to cluster spatially as well as temporally. It is noteworthy to mention 

that among the spatiotemporal models (Types 2 and 3), the space-time interaction tends to increase the 

complexity due to the addition of more effective parameters which eventually corresponds to increase in 

DIC. With respect to the prediction capabilities, Type 1seemed to enjoy the best performance in most of 

the pertinent criteria (except MSPE). It follows that it might be difficult to predict the crashes of the large 

spatial unit by using a certain type of spatial correlation (distance-based in our case) applicable to all 

counties due to the enormous impacts from a very large number of factors. 

In summary, under the predictive evaluation criteria, both aggregated results indicated the best 

performance associated with the simpler modeling formulation (without spatial and/or temporal 
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correlations). It is possible that the counties, compared to smaller spatial units, are subject to much more 

influential safety factors which render the difficulty of predicting county-level crashes via certain types of 

temporal or spatial random effects. However, the results of individual models illustrated that G5T3 was 

superior to others in 5 out of 7 prediction cases.  Such phenomenon suggests that it is still worth utilizing 

the certain serial or spatial random effects for better prediction, even though care should be taken for 

selection of the temporal treatment as different treatments lead to a large variability in terms of prediction. 

In terms of Pd and DIC, the spatio-temporal models (earth Type 2 or 3) exhibited the best performances in 

most cases based on both aggregated and individual modeling results.  

Finally, some of the previous notable trends within the results motivated the authors to conduct a 

correlation analysis of the ten criteria. It is expected that such correlation result would shed some light on 

the modeling selection for safety professionals especially when the limited safety resources or man hours 

deter the comprehensive evaluation of models. As shown in Table 4.5, statistically significant correlations 

were observed among a set of evaluation criteria including 𝐷̅, LPML, MAD, MSPE, RP
2, G2, RSS and TRD. 

Such finding is illuminating given that these measures check predictive capabilities using different ways 

based on cross validation, ranking difference, and deviation relative to the estimated crash counts, and so 

on. Pd seemed to have strong reverse correlations with all these prediction-related criteria. As a combination 

of Pd and 𝐷̅, DIC did not demonstrate strong correlations with all criteria for predictive capabilities, except 

for MSPE and TRD. Given that DIC and Pd have a statistically significant positive correlation (0.38), it 

appears that Pd has a heavier weight for the determination of the DIC for the county situation, as also 

observed in the previous discussion of evaluation results. To summarize, these trends suggest that model 

complexity (Pd) may have a strong influence on the overall goodness-of-fit (DIC), and 𝐷̅ could be regarded 

as an excellent indication for the crash prediction capability because it is consistently correlated with all 

other prediction criteria (LPML, MAD, MSPE, RP
2, G2, RSS & TRD).   

 

TABLE 4.3. Evaluation Results of Various Models under Different Criteria 

 
Group Type 𝑫̅ Pd DIC LPML MAD MSPE Rp2 G2 RSS TRD 

1 1 4328 443.5 4771 -2090.0 2.611 10.814 0.994 27.2 37.1 382 

 2 4342.3 426.4 4768 -2094.4 4.755 42.192 0.989 35.4 68.5 571 

 3 4328.5 465.3 4793 -2088.6 2.284 18.359 0.998 22.2 12.3 216 

2 1 4331.3 442.2 4773 -2091.1 2.684 11.780 0.993 11.3 41.7 399 

 2 4360.1 392.4 4752 -2102.2 5.974 76.870 0.982 102 116.7 862 
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 3 4369.6 393.4 4763 -2106.2 5.992 76.448 0.982 111 116.2 862 

3 1 4331.5 442.3 4773 -2091.2 2.685 11.763 0.993 26.8 41.8 402 

 2 4358.9 389.3 4748 -2102.0 6.119 80.481 0.982 99.8 118.5 864 

 3 4373.0 390.1 4763 -2106.0 6.202 87.479 0.98 182.1 130.5 918 

4 1 4331.2 442.2 4773 -2091.0 2.697 11.855 0.993 61.1 41.1 401 

 2 4358.3 388.6 4746 -2101.9 6.263 83.228 0.981 112.7 119.0 871 

 3 4370.4 387.7 4758 -2105.4 6.327 90.072 0.98 70.9 131.3 908 

5 1 4350.7 450.3 4801 -2092.0 2.685 14.752 0.994 9.3 39.5 383 

 2 4355.1 420.4 4775 -2094.2 5.464 57.852 0.989 102 72.6 611 

 3 4322.8 451.2 4774 -2084.2 1.858 15.378 0.998 53.1 6.9 163 

6 1 4491.1 332.7 4823 -2142.7 16.41 2727.5 0.956 274.1 286.6 1097 

 2 4397.9 337.3 4735 -2110.2 9.429 215.03 0.971 131.6 188.4 1079 

 3 4388.4 346.9 4735 -2106.8 8.865 193.64 0.974 155.9 167.8 1033 

7 1 4346.1 413.4 4759 -2091.7 3.897 29.842 0.99 26.2 65.3 586 

 2 4384.1 394.3 4778 -2103.2 6.242 82.645 0.982 117.8 117.9 821 

 3 4365.8 429.9 4795 -2095.1 4.370 44.389 0.991 55.7 58.2 577 

8 1 4361.6 398.4 4760 -2092.4 4.342 41.117 0.987 -8.4 80.6 676 

 2 4405.6 386.7 4792 -2105.4 6.405 93.739 0.979 108 132.3 861 

 3 4377.7 434.5 4812 -2094.3 3.967 39.525 0.991 27 58.7 563 

9 1 4330.7 442.3 4773 -2090.9 2.690 11.878 0.993 96.3 40.6 394 

 2 4354.1 385.7 4739 -2100.9 6.161 81.223 0.982 62 118.1 867 

 3 4364.8 382.2 4747 -2104.1 6.277 88.442 0.98 130.1 130 902 

Notes: 1. The shaded cells indicate the worst performance of models under different evaluation criteria. 

2. The bold fonts indicate the best performance of models under different evaluation criteria.  

3. There are three models sharing the best performance in terms of DIC since the associated difference in 

DIC is less than 5.  

4. Refer to Table 4.2 for Group names. 

 

TABLE 4.4. Aggregated Evaluation Results under Different Criteria 
 𝑫̅ Pd DIC LPML MAD MSPE Rp2 G2 RSS TRD 

Models Aggregation by Nine Groups of Temporal Treatments 
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1 4355.8 423.0 4778 -2097.04 4.52 319.04 0.989 58.259 74.96 524 

2 4368.5 391.2 4759 -2101.64 6.31 90.36 0.982 96.854 116.94 823 

3 4362.3 409.0 4771 -2099.01 5.12 72.63 0.986 89.835 90.27 682 

Groups Aggregation by Three Types of Models 

1 4332.9 445.1 4778 -2091.0 3.21 23.78 0.994 28.325 39.35 389 

2 4353.7 409.3 4763 -2099.8 4.88 55.03 0.986 74.817 91.59 707 

3 4354.5 407.2 4761 -2099.8 5 59.90 0.985 102.935 97.01 728 

4 4353.3 406.2 4759 -2099.4 5.09 61.71 0.985 81.618 97.19 726 

5 4342.8 440.6 4783 -2090.1 3.33 29.32 0.994 54.858 39.7 385 

6 4425.8 338.9 4764 -2119.9 11.57 1045.41 0.967 187.263 214.3 1069 

7 4365.4 412.5 4777 -2096.6 4.83 52.29 0.988 66.625 80.49 661 

8 4381.6 406.5 4788 -2097.4 4.90 58.12 0.986 42.231 90.59 700 

9 4349.8 403.4 4753 -2098.6 5.04 60.51 0.985 96.175 96.31 721 

Notes: 1. The shaded cells indicate the worst performance of models under different evaluation criteria. 

2. The bold fonts indicate the best performance of models under different evaluation criteria.  

 

TABLE 4.5. The Estimate of the Correlation Coefficients among Various Evaluation Criteria 

 
 𝑫̅ Pd DIC LPML MAD MSPE Rp2 G2 RSS TRD 

𝑫̅ 1.00          

Pd -0.79 1.00         

DIC 0.26 0.38 1.00        

LPML -0.93 0.85 -0.08 1.00       

MAD 0.93 -0.90 -0.01 -0.97 1.00      

MSPE 0.80 -0.50 0.42 -0.83 0.81 1.00     

Rp2 -0.90 0.96 0.15 0.96 -0.98 -0.70 1.00    

G2 0.77 -0.76 -0.04 -0.87 0.85 0.67 -0.85 1.00   

RSS 0.90 -0.96 -0.15 -0.96 0.98 0.70 -1.00 0.85 1.00  

TRD 0.75 -0.96 -0.38 -0.82 0.84 0.39 -0.92 0.73 0.92 1.00 

Notes: 1. The text in italics signifies non-significance at 95% level. 
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CHAPTER 5: SPATIOTEMPORAL MODELS WITH MIXTURE 

COMPONENTS FOR SPACE-TIME INTERACTIONS 
 

INTRODUCTION 
The literature review illustrated notable benefits at various fronts associated with inclusion of spatial and 

temporal correlations and their interactions. However, in comparison with other types of models, a very 

limited body of research dedicated to spatiotemporal models exists in the field of traffic safety. Moreover, 

most of the current limited spatiotemporal models in the field assume a linear temporal trend and linear 

space-time interaction which may be seen as a restrictive assumption (Lawson and Clark, 2002; Lawson et 

al., 2003). For example, the temporal random effects may take on nonlinear shape or have autocorrelation 

with previous crash counts. In addition, the temporal trend might have a non-linear change across the spatial 

units. To add to the current literature with more spatiotemporal models, this chapter aimed to develop four 

alternative spatial-temporal models which employ different temporal treatments with the varying 

complexity of random effects: (I) linear time trend; (II) quadratic time trend; (III) Autoregressive-1 (AR-

1); and (IV) time adjacency. Furthermore, instead of using linear space-time interaction, the authors 

borrowed a flexible two-component-mixture interaction from one previous disease-mapping study (Abellan 

et al., 2008). Such mixture can easily capture the space-time trends that depart from the predictable patterns 

of overall temporal and spatial risk surface as it allows the smoothness as well as discontinuities in the 

space-time variations within the roadway entities. The interested readers can be referred to this study for 

more details of the mixture components. The study results demonstrated a number of benefits associated 

with the proposed mixture model. However, the performance of the mixture model in traffic safety area is 

unknown and is therefore worth studying. In addition, in order for a comprehensive comparison of the 

predictive accuracy of the four models, five evaluation criteria were utilized which include log pseudo 

marginal likelihoods (LPML), mean square predictive error (MSPE), mean absolute deviation (MAD), 

residual sum of squares (RSS), and total rank difference (TRD). LPML assesses the predictive capability 

using cross-validation while the rest utilize the same dataset for model development. Three different 

approaches (model replicated, model predicted, and Bayesian estimated) were used to generate the crash 

dataset for evaluation as an effort to quantify the prediction performance and understand the benefits of 

concerned models from different perspectives. Finally, a residual analysis was also performed to observe 

the impact of the inclusion of random effects on the prediction accuracy.   
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METHODOLOGY 
This section is divided into two main subsections: Model Development and Evaluation Criteria. The former 

subsection first describes the formulation of Poisson lognormal model which was employed for the 

estimation of crash counts; then introduces the Base model specification which is usually employed in 

conventional safety studies focused on space-time interaction and discusses the advantage of Mixture model 

over the Base; and finally, four different types of temporal treatments are introduced which represent the 

temporal specifications employed in different studies. In the second subsection (Evaluation Criteria), 

different criteria are discussed which were used for assessment of model goodness-of-fit and comparison 

of models’ predictive accuracy based on the cross-validation for out-of-sample and in-sample crash data.   

 

Model Specification 
The Full Bayesian (FB) framework was employed to estimate the crash frequency of vehicles at the segment 

level. To account for the unobserved heterogeneity from different perspectives, the FB approach is 

preferable due to its flexibility and effectiveness to incorporate complex correlations with a hierarchical 

structure of data. FB approach provides a posterior distribution of parameters from Markov-chain Monte 

Carlo (MCMC) simulation which samples the variables as random, unlike the point estimates generated by 

the traditional approach of maximum likelihood estimation. This approach has been widely used for crash 

prediction models due to the multilevel and correlated nature of data (refer Lord and Mannering, 2010 for 

detailed review). Under the FB approach, to account for the overdispersion usually associated with crash 

data, the basic model formulation was usually adopted from the traditional approach of generalized linear 

models with a random error term to account for the overdispersion. Instead of using the Negative Binomial 

model, the present study chose Poisson-Lognormal model given its capability of better handling of low 

sample mean and small sample size due to the heavier tails associated with Lognormal distribution (Lord 

and Miranda-Moreno, 2008). This model assumes that crash count (yi) at a given segment i, obeys Poisson 

distribution, while the corresponding observation specific error term εi follows a normal distribution: 

                                                                 𝑦𝑖|𝜆𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖)                                                               (5.1) 

Where λi is the expected Poisson count for location i, and can be expressed as follows: 

                                                                 ln(𝜆𝑖) = 𝛽0 + 𝑋𝑖
′𝛽 + 𝜀𝑖                                                            (5.2) 

Where 𝛽0 is the intercept, X’ is the matrix of risk factors, β is the vector of model parameters, εi is the 

independent random effect which captures the extra-Poisson heterogeneity among locations. εi can be 

assumed with the following noninformative normal priors: 
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                                                                    𝜀𝑖~𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜏2 )                                                               (5.3) 

Where τ2 is the variance of the normal distribution for εi. The inverse of τ2 is called precision and it can be 

modeled using the following gamma prior with prior mean equal to one and its prior variance large (equal 

to one thousand), representing high uncertainty or prior ignorance: 

                                                             𝜏2−1
~𝐺𝑎𝑚𝑚𝑎(0.001, 0.001)                                                      (5.4) 

The model presented in Equation 2 serves as the basic formulation for crash prediction in most safety 

studies. The current study also employs this model as the basis for development of spatiotemporal models. 

Two Groups of Models  
This section first introduces the Base model specification which serves to represent the assignment of 

spatial, temporal, and space-time interactions by conventional traffic safety studies. The limitation 

associated with such specification is discussed and then the mixture model specification is introduced.  

 

Base 

As previously mentioned, the spatial random effects were incorporated over the model represented in 

Equation 2. The subsequent model which accounts for the spatial correlation among neighboring segments 

is obtained with the following formulation: 

                                                                 ln(𝜆𝑖) = 𝛽0 + 𝑋𝑖
′𝛽 + 𝜀𝑖 + 𝑢𝑖                                                     (5.5) 

Where ui is the spatially structured random effect which follows the CAR (conditional autoregressive) 

formulation to incorporate the spatial correlation among crashes occurring at neighboring segments.  

                                             𝑢𝑖~𝑁 (
𝑢𝑖̅̅ ̅,1

𝜏𝑖
)        𝑢𝑖̅ =

∑ 𝑢𝑘𝑤𝑖𝑘𝑖≠𝑘

∑ 𝑤𝑖𝑘𝑖≠𝑘
      𝜏𝑖 =

𝜏𝑐

∑ 𝑤𝑖𝑘𝑖≠𝑘
                                           (5.6) 

Where 𝑤𝑖𝑘 is the proximity weight matrix and 𝜏𝑐 is the precision parameter in the CAR prior. As evident 

from the above equation, estimation of the risk in any site is conditional on risks in neighboring locations. 

Subscripts i and k refer to a segment and its neighbor, respectively, and k 𝜀 Ni, where Ni represents the set 

of neighbors of segment i. Besides the identification of neighbors, the assigned weights also affect the risk 

estimation. In the past studies (Aguero-Valverde and Jovanis, 2010; Xu and Huang, 2015), weight 

structures including various adjacency-based, distance-based models, and semi-parametric geographically 

weighted, and so on, have been explored for incorporating the spatial correlations at different levels of 

roadway entities. The current study employs the adjacency-based structure to explore the spatial correlation, 

which is commonly used for a micro-level entity of segments. The weights for the adjacency matrix are 
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given by (wik) = 1 if segments i, k are adjacent, and 0 otherwise. It is noteworthy that this adjacency-based 

weight matrix gives a dichotomous output for weight with only two responses, zero for non-neighbors and 

one for neighbors, hence the proximity of immediate neighbors establishes a spatial dependency while the 

impact of more distant neighbors is assumed to be negligible. 

If temporal treatment also needs to be considered, then Equation 5 can be easily modified and extended to 

account for serial correlations and associated space-time interaction. The resultant formulation can be 

expressed in Equation 7.   

                                                               ln(𝜆𝑖𝑡) = 𝛽0 + 𝑋𝑖
′𝛽 + 𝑓(𝑡) + 𝑢𝑖 + 𝑣𝑖𝑡                                       (5.7) 

Where 𝑓(𝑡) is the temporal treatment, and  𝑣𝑖𝑡 is the space-time interaction parameter. 𝑣𝑖𝑡 can take different 

forms such as linear (Aguero-Valverde and Jovanis, 2006) and time-varying spatial correlation (Lawson et 

al., 2003). However, the existing space-time interaction models have a limitation in the essence that they 

assume all the sites under focus experience a global space-time pattern where the error (i.e. the part not 

accounted by isolated spatial and temporal terms) falls into one distribution common to all sites. This may 

be interpreted as the inefficiency to distinguish between the stable and unstable underlying risk pattern, 

where the stable (or predictable) patterns are represented by the overall time trend (𝑓(𝑡)) and spatial crash 

risk (𝑢𝑖), and unstable (or unpredictable) patterns are the atypical departures from the stable pattern. This 

study introduces the mixture component for accommodating the large fluctuations of the space-time 

interaction which allows the identification of unstable locations which do not conform to the global crash 

risk pattern of space and time variability.     

 

Mixture 

The mixture component for space-time interaction was introduced by Abellan et al., (2008) to “uncover the 

full space-time profile of risks” for an epidemiologic study. The concerned study proposed a 2-component 

mixture which combines variabilities of different levels to represent the space-time interaction. The 

accommodation of different levels of variabilities is required to distinguish the stable and unstable pattern. 

Specifically, 𝑣𝑖𝑡 from Equation 7 takes the following form: 

                                                       𝑣𝑖𝑡~ 𝑝Normal(0, 𝜏1
2) + (1 − 𝑝)Normal(0, 𝜏2

2)                                 (5.8) 

The prior for p is uniform on [0, 1] through a Dirichlet distribution. This varied prior distribution renders 

the flexibility to accommodate discreet and continuous space-time variations in crash data, where the 

discreet variations refer to the outstanding or outlier sites in the plan of space-time interaction which deviate 

from the continuous global pattern of space-time variations. The first component captures the small residual 
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noise which is generally adequately captured by the overall time trend and spatial component. The second 

component serves the purpose of capturing the “true” departure from global pattern by accommodating the 

large fluctuations which indicate the higher risk relative to other sites. Half-normal hyper-prior distributions 

for the standard deviations 𝜏𝑘
 , (k = 1, 2), are specified which reflect that 𝜏1

  (corresponding to “stable” risk 

pattern) has to be small to effect shrinkage so as to capture the noise, whereas the prior for 𝜏2
  (corresponding 

to “unstable” risk pattern) allows a large range of values for this parameter to capture the large fluctuations. 

The different range of variance is shown in the following equations: 

                                                         𝜏1
  ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 0.01). I(0,+∞)                                                          (5.9) 

                                       𝜏2
  ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 0.01). I(0,+∞) + 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 100). I(0,+∞)                            (5.10) 

Based on both simulation data and real case study, the authors revealed a number of benefits of the mixture 

model in terms of interpretation and potential for detection of localized excess for diseases. As a result, the 

present study borrowed such structure for the space-time interaction and tested its capability in addressing 

the prediction accuracy for the traffic crash data. Additionally, another characteristic of the current research 

lies in the different ways of handling temporal treatment (i.e., 𝑓(𝑡) in Equation 7).  

Four Types of Temporal Treatments 
The following subsections present the corresponding model formulations in order of complexity, from the 

linear time trend to more sophisticated ones. These models were developed using both the Base and Mixture 

specifications. It is noteworthy that all models vary on the basis of the assignment of different temporal 

treatments over the Poisson lognormal models which incorporate the spatial correlation and space-time 

interaction.  

Model 1: Linear time trend  

In this model, a linear trend is introduced where time is regarded as a potential influential covariate and the 

model estimates the coefficient for the trend. Equation 7 assumes the following form: 

                                               ln(𝜆𝑖𝑡) = 𝛽0 + 𝑋𝑖
′𝛽 + 𝑢𝑖 + 𝑣𝑖𝑡 + 𝛽𝑡 

∗ 𝑇                                                   (5.11) 

Where 𝛽𝑡 is the scalar parameter for linear yearly trend T (T=1 to 6 in the present study). It is expected that 

the passage of time will impact the crash risk on the segments which would be captured by the model. 

Model 2: Quadratic time trend 

In this model, a non-linear impact of time is considered. Equation 7 takes the following form: 

                                  ln(𝜆𝑖𝑡) = 𝛽0 + 𝑋𝑖
′𝛽 + 𝑢𝑖 + 𝑣𝑖𝑡 + 𝛽𝑡 

∗ 𝑇 + 𝛽𝑡2 
∗ 𝑇2                                             (5.12) 
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Where 𝛽𝑡2 
is the coefficient for the quadratic trend term. It is expected that this model will allow more 

subtle approach compared to the linear trend as it allows flexibility to fit the crash data by virtue of its 

additional quadratic trend. 

Model 3: Autoregressive-1 (AR-1) 

This model accounts for the autoregressive safety effect by specifying the distribution of 𝜀𝑖𝑡 as a lag-1 

dependence in errors, where lag-1 means that the time is varying yearly. It incorporates the weighted sum 

of the past one year of values together with a random term. It is important to note that, in addition to AR-

1, there are a large number of models involving autoregressive error process (Miaou and Song, 2005), such 

as higher order AR model AR(p), autoregressive–moving-average (ARMA), Integer valued autoregressive 

(INAR), Autoregressive Conditional Heteroscedastic (ARCH), and Generalized Autoregressive 

Conditional Heteroscedastic (GARCH), and so on. The authors opted for the popular AR-1 specification to 

represent such models based on the assumptions of stationarity restriction. Under this model, Equation 7 

assumes the following form: 

                                            ln(𝜆𝑖𝑡) = 𝛽0 + 𝑋𝑖
′𝛽 + 𝜀𝑖𝑡 + 𝑢𝑖 + 𝑣𝑖𝑡                                                           (5.13) 

The weighted sum is fixed and the random terms change at every time step following the same distribution, 

which means this model is homoscedastic. The distributions are given by:                                                                

 𝜀𝑖𝑡~𝑛𝑜𝑟𝑚𝑎𝑙 (0,
𝜎𝑖𝑡

2

(1 − 𝛾2)
   

 

) 
 

(5.14) 

                                                𝜀𝑖𝑡~𝑛𝑜𝑟𝑚𝑎𝑙(𝛾𝜀𝑖,𝑡−1, 𝜎𝑖𝑡
2 )      for t >1 (5.15) 

Where 𝛾 is the autocorrelation coefficient with the range of 0 < 𝛾 < 1. This model addresses the potential 

correlation between successive time periods and is expected to deliver a more precise estimation of the 

model parameters.   

Model 4: Time Adjacency 

In this model, a CAR formulation is employed for the temporal aspect of the data, similar to the spatial 

aspect discussed previously. In this case, Equation 7 assumes the following form: 

                                                         ln(𝜆𝑖𝑡) = 𝛽0 + 𝑋𝑖
′𝛽 + 𝑢𝑖 + 𝑣𝑖𝑡 + 𝛼𝑡

 
 
                                               (5.16) 

Where 𝛼𝑡
 

 
is the temporal correlation term which follows the CAR formulation given in Equation 6. The six 

year time period of this study assumes strong influence of the adjacent years on crash risk, similar to the 

dependence of adjacent segments in case of spatial correlation. Compared to the AR-1 model which 

captures the impact of one year prior to the concerned time, this model also accounts for the potential impact 
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of the subsequent year. The similar formation of such temporal treatment can be found in a previous study 

(Abellan et al., 2008). 

Evaluation Criteria 
This study assessed the model performance by employing different evaluation criteria which were found in 

the past research. The authors intend to evaluate the model performance from different perspectives such 

as goodness-of-fit (while accounting for complexity), and in-sample and out-of-sample cross validation 

predictive accuracy for crash counts. The brief background and analytics of each criterion are provided as 

follows.   

 

DIC and Its Components 

The Deviance Information Criterion (DIC) (Spiegelhalter et al., 2003) served as the measure for assessment 

of goodness-of-fit for the models. It is a penalized fit criterion which can be calculated from the samples 

generated by an MCMC simulation. Usually, the estimation of DIC can be conducted through the following 

expression. 

                                                              {
𝐷𝐼𝐶 = 𝐷̅ + 𝑃𝐷

𝐷(𝜃) = −2 ∙ log (𝑝(𝑦|𝜃))

𝐷̅ = 𝐸𝜃[𝐷(𝜃)],   𝑃𝐷 = 𝐷̅ − 𝐷(𝜃̅) 

                                         (5.17) 

Where, y are the data; 𝜃 are the unknown parameters of the model; 𝑝(𝑦|𝜃) is the likelihood function; 𝜃̅ is 

the expectation of 𝜃; 𝐷̅ is the posterior mean deviance, or the expectation of the deviance, 𝐷(𝜃); 𝐷̅ measures 

how well the model fits the data; the smaller the 𝐷̅, the better the fit. 𝑃𝐷 represents the effective number of 

parameters. Usually, smaller values of DIC are preferred. Some general guidelines are also suggested by 

Lunn et al. (2012): models with DIC values within 5 of the 'best' model are comparable and also strongly 

supported, values within 5 and 10, weakly supported, and models with a DIC greater than 10 are 

substantially inferior.  

 

Comparison of models based on out-of-sample cross-validatory predictive density  

This study employed the conditional predictive ordinate (CPO) (Gelfand, 1996) for cross validation based 

on predictive densities. To prevent potential bias due to random selection of data division into subsets (one 

subset for development and another for checking), the current study calculated the CPO by implementing 

a CV-1 (leave-one-out) distribution which removed the selection bias by employing a continuous approach 

of selecting all data points, except one, for model development and the left out data point to verify the 

prediction accuracy of the calibrated model. Such implementation also has benefits over traditional 
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modeling evaluations which are prone to overestimation due to double usage of data (once during model 

development and then again for model checking). Under the MCMC framework, the estimate of CPO for 

each observation i can be calculated as: 

                                                                         𝐶𝑃𝑂 = (
1

𝑇
∑

1

𝑓(𝑌𝑖|𝛽(𝑡))
𝑇
𝑡=1 )

−1
                                            (5.18)  

Where Yi is the ith observation (i = 1, 2, 3, . . ., n) for all segments and β is the vector of estimated model 

parameters. This harmonic mean of density (CPO) may be extended to calculate the goodness-of-fit of 

models by computing the product of CPOs over all observations, which is known as the pseudo marginal 

likelihood. For computational convenience, the log pseudo marginal likelihoods (LPML) is calculated: 

                                                                      𝐿𝑃𝑀𝐿 = ∑ log(𝐶𝑃𝑂𝑖)𝑛
𝑖=1                                                     (5.19)  

Evaluation criteria for predictive accuracy based on the same dataset 

In this study, to obtain a more comprehensive comparison of four alternate models, the traditional 

evaluation criteria such as MSPE, MAD, RSS, and TRD were also calculated to assess the crash prediction 

accuracy of the models while treating the observed crash counts as the reference. These criteria are expected 

to quantify the variability in the prediction performance of models, which will help understand the benefits 

of concerned models from different perspectives. The evaluation was conducted by employing three 

different approaches, essentially governed by the selection of datasets for comparison with the observed 

crash counts. In the first case, the Bayesian estimated crash frequency was utilized which was obtained 

from Equations 11, 12, 13, and 16 for corresponding models. The difference of Bayesian estimated and 

observed crash counts is referred as Bayesian residuals (Lawson et al., 2003). In the second case, the model 

predicted crash frequency was compared with the observed counts. To obtain the model predicted counts, 

Equation 7 may be modified as follows: 

                                                                          ln(𝑃𝐷𝑖𝑡) = 𝛽0 + 𝑋𝑖
′𝛽                                                      (5.20) 

Where 𝑃𝐷𝑖𝑡 is regarded as the model predicted crash count. The comparison of model predicted and 

observed crash counts is referred as normal residuals. This predicted count differs from the Bayesian 

estimated as no random effect terms are incorporated, hence the comparison of Bayesian and normal 

residuals is expected to quantify the variability in predictive performance of models without the impact of 

spatial and temporal correlation structures. In the third case, the model replicated crash counts are utilized 

for comparison with observed counts. The replicated counts were generated from the posterior predictive 

distribution by introducing a simple step in MCMC sampler as follows: 

                                                                    𝑦(𝑟𝑒𝑝)𝑖|𝜆(𝑟𝑒𝑝)𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖)                                           (5.21) 
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Where 𝜆(rep) refers to the expected crash counts estimated based on the assumption that adopted model 

truly fits the observed crash data. The closeness of 𝜆(rep) and 𝜆𝑖 signifies that the model was able to 

precisely replicate the crash counts based on the observed ones and hence may be employed for accurate 

representation of crash risk in the future (Lawson et al., 2003). For the sake of simplicity in the description 

of evaluation criteria in the subsequent paragraph, the word “estimated” will be used for Bayesian 

estimated, model predicted, and model replicated crash counts. 

As previously stated, four evaluation criteria were employed to assess prediction accuracy of the four 

competing models from different perspectives based on three cases discussed above, namely: mean square 

predictive error (MSPE), mean absolute deviation (MAD), residual sum of squares (RSS), and total rank 

difference (TRD). Specifically, the MSPE was calculated as follows:  

                                                                    𝑀𝑆𝑃𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑂𝑖)2𝑛

𝑖=1                                                      (5.22) 

Where 𝑌𝑖 is the estimated crash frequency and 𝑂𝑖 is the observed crash count for entity i by a model during 

the same time period. The smaller value of MSPE for a model indicates that the discrepancy between the 

estimated crash counts for the sites is relatively lower which demonstrates the accuracy of the model at 

prediction. The second criterion that was employed for assessment of prediction accuracy is MAD, which 

is defined as: 

                                                                     𝑀𝐴𝐷 =
1

𝑛
∑ |𝑌𝑖 − 𝑂𝑖| 𝑛

𝑖=1                                                       (5.23) 

Where terms are as defined previously. The third criterion, Chi-squared RSS (Residual Sum of Squares) is 

defined as: 

 𝑅𝑆𝑆 = ∑
(𝑂𝑖 − 𝑌𝑖)2

𝑌𝑖

𝑛

𝑖=1
 

 

(5.24) 

Finally, TRD was employed as a more sensitive criterion to account for the rank deviations based on the 

observed and estimated crash counts (Cheng et al., 2017). The rank difference is calculated by using the 

following equation. 

                                                                    𝑇𝑅𝐷 = ∑ |𝑅(𝑖𝑜) − 𝑅(𝑖𝑒)|𝑛
𝑖=1                                               (5.25) 

Where 𝑅(𝑖𝑜) is the observed data rank at entity i and 𝑅(𝑖𝑒) is the rank based on estimated crash counts of 

each of the three approaches for the same time period. A particular model is considered more reliable if 

smaller TRD value is observed, which signifies that the specific model assigns rankings close to the 

observed crash counts.  
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DATA PREPEARATION 
The data used for this study were provided by HSIS (Highway Safety Information System) which collected 

the data in form of different raw files from California TASAS (Traffic Accident Surveillance and Analysis 

System) and NHTSA (National Highway Traffic Safety Administration). The data from each year had four 

files pertaining to different types of data linked with Road, Occupancy, Vehicle, and Crash characteristics. 

The information extracted from these four files had crash number along with other factors like geometric 

(lane width, number of lanes, median type), traffic (Average Annual Daily Traffic), design speed, and so 

on. The crash data for 279 segments in one rural roadway section of California (State Route 23) was 

considered for model development over a period of six years (2007-2012). The 11- mile roadway section 

runs from the City of Moorpark at the south to the City of Fillmore at the north. The roadway has 2-lane in 

each direction and mainly follows within a mountainous area. This relatively long period was required to 

fully incorporate the temporal trends and correlation structures for different treatments of time in four 

alternate models. The summary statistics of crash counts and roadway pertinent covariates are shown in 

Table 5.1.  

TABLE 5.1. Summary Statistics of Variables for segments. 

Variable  Mean SD Minimum Maximum 

Total vehicle crash counts per year 0.34 0.81 0 8 

Lane width 9 and 10 feet (yes or no) 0.33 0.47 0 1 

Lane width 11 feet (yes or no) 0.10 0.30 0 1 

Lane width 12 feet (yes or no) 0.47 0.50 0 1 

Lane width greater than 12 feet (yes or no) Ref    

Speed limit 25-40 mph (yes or no) 0.247 0.431 0 1 

Roadway surface width (ft) 23.35 3.22 20 48 

Speed limit 45 mph (yes or no) 0.616 0.486 0 1 

Speed limit 50-65 mph (yes or no) Ref    

Left Shoulder width (ft) 2.824 2.163 0 12 

Right Shoulder width (ft) 2.800 2.270 0 12 

AADT  3,149.80 3,818 610 21,241 

Plain cement concrete Bridge Deck (yes or no) 0.12 0.32 0 1 

Asphalt concrete 7 inches thick (yes or no)  0.34 0.47 0 1 

Asphalt Concrete (Oiled Earth-Gravel) (yes or no) Ref    

Notes: 1. SD refers to standard deviation 

2. Ref signifies the variables which act as reference for dummy variables 
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RESULTS 

Modeling Results 

The models were developed in the statistical software WinBUGS (Lunn et al., 2000) to generate MCMC 

samples for Bayesian posterior inferences. For the model calibration, two chains of 13,500 iterations were 

set up. Convergence was ensured by visual inspection of chains and observing the desired threshold 

condition of MC errors to be lower than 5% of the standard deviation of parameters. After ensuring the 

convergence, first 9,000 samples were discarded as adaptation and burn-in and rest of the samples were 

used to draw parameter estimates. The model complexity was observed to have a direct impact on model 

running time and this criterion may influence the selection of models by safety agencies in terms of the 

trade-off between efficiency and precision. AR-1 (Model 3) and time adjacency (Model 4) took the highest 

running time for the same number of iterations, which was almost 7% higher than the most efficient model 

(Model 1). In case of the independent variables incorporated for model development, it is important to note 

that indicator variables (categorical) were used for lane width, speed limit, and surface type, with the 

baseline or reference as lane width more than 12 feet, speed limit 50-65 mph, and Asphalt Concrete (Oiled 

Earth-Gravel), respectively. The variables selected for model development were checked for multi-

collinearity and correlation issues and only the satisfying variables were incorporated as an effort to arrive 

at potentially less biased inferences drawn from relatively more precise estimates. The right shoulder width 

was therefore excluded from model development due to its high correlation with the left should width, so 

was roadway surface width due to high collinearity with lane width. As shown in Table 5.2, all four models 

identified the vehicle volume (AADT) to be statistically significant along with Speed limit of 25-40 mph 

for two models and width of left shoulder and Plain cement concrete Bridge Deck type for Model 4. The 

parameter estimates illustrate the robustness of the developed models while employing different 

specifications of temporal aspect of crash data. In specific, the larger AADT would lead to more crash 

occurrences, while the narrower left shoulder width tends to increase crash probabilities. Interestingly, in 

comparison with the reference speed limit (50-65 mph), the segments with smaller speed limits (such as 

25-40 mph, 45 mph) are inclined to generate vehicle crashes. The potential explanation might be due to 

worse driving conditions (e.g., sharp curves, limited visions) associated with the segments of lower speed 

limits in the mountainous area. It should be noted that the focus of the current study is on the model 

comparison based on predictive accuracy rather than the ability to filter influential factors, hence the 

explanation of results is focused in that direction hereafter.  
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TABLE 5.2. Statistics of estimated model parameters 

Model Variable Coefficient Mean SD MC error 2.50% 97.50% 

Model 1 Intercept -6.734 0.5839 0.0473 -7.888 -5.662 

 Lane width 9 and 10 feet 0.0903 0.2444 0.0148 -0.3561 0.6136 

 Lane width 11 feet 0.0096 0.2546 0.0138 -0.4578 0.5429 

 Lane width 12 feet -0.1744 0.2232 0.0114 -0.5953 0.2797 

 Speed limit 25-40 mph 0.4311 0.1939 0.0094 0.0611 0.8273 

 Speed limit 45 mph 0.1452 0.1838 0.0093 -0.1954 0.5268 

 Left Shoulder width -0.0242 0.0259 0.0011 -0.0769 0.0248 

 AADT 0.8724 0.0699 0.0057 0.7392 1.0200 

 Plain cement concrete Bridge Deck -0.1862 0.3201 0.0172 -0.8171 0.4323 

 Asphalt concrete 7 inches thick -0.0032 0.2107 0.0110 -0.4280 0.4028 

 Linear trend -0.0309 0.0288 0.0011 -0.0895 0.0237 

 P1 0.74 0.118 0.009 0.49 0.97 

 P2 0.25 0.11 0.009 0.02 0.5 

Model 2 Intercept -6.6830 0.7520 0.0627 -8.1280 -5.4420 

 Lane width 9 and 10 feet 0.0981 0.2497 0.0144 -0.3734 0.5923 

 Lane width 11 feet 0.0069 0.2603 0.0140 -0.4874 0.5036 

 Lane width 12 feet -0.2159 0.2360 0.0126 -0.6474 0.2825 

 Speed limit 25-40 mph 0.3429 0.1853 0.0067 -0.0148 0.7016 

 Speed limit 45 mph 0.0710 0.1757 0.0087 -0.2740 0.4136 

 Left Shoulder width -0.0217 0.0254 0.0011 -0.0727 0.0276 

 AADT 0.8486 0.0760 0.0063 0.7064 0.9906 

 Plain cement concrete Bridge Deck -0.1082 0.3083 0.0159 -0.7176 0.4813 

 Asphalt concrete 7 inches thick 0.0157 0.2045 0.0104 -0.3860 0.4203 

 Linear trend term 0.1472 0.1426 0.0114 -0.1145 0.4175 

 Quadratic trend term -0.0254 0.0201 0.0016 -0.0639 0.0118 

 P1 0.68 0.18 0.015 0.29 0.9 

 P2 0.31 0.18 0.015 0.08 0.7 

Model 3 Intercept -7.1500 0.6263 0.0519 -8.1440 -5.7500 

 Lane width 9 and 10 feet 0.1459 0.2327 0.0136 -0.2932 0.6201 

 Lane width 11 feet 0.1094 0.2459 0.0132 -0.3539 0.6080 

 Lane width 12 feet -0.0883 0.2137 0.0108 -0.5102 0.3393 

 Speed limit 25-40 mph 0.3721 0.1820 0.0082 0.0167 0.7380 

 Speed limit 45 mph 0.1264 0.1687 0.0079 -0.1999 0.4653 

 Left Shoulder width -0.0336 0.0249 0.0010 -0.0826 0.0159 

 AADT 0.9138 0.0736 0.0061 0.7486 1.0340 

 Plain cement concrete Bridge Deck -0.2443 0.3006 0.0144 -0.8394 0.3468 

 Asphalt concrete 7 inches thick 0.0138 0.1963 0.0090 -0.3756 0.3844 
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 P1 0.58 0.15 0.013 0.37 0.94 

 P2 0.41 0.15 0.013 0.05 0.62 

Model 4 Intercept -6.6440 1.6520 0.1419 -9.4350 -3.5490 

 Lane width 9 and 10 feet 0.5564 0.3060 0.0203 0.0103 1.1950 

 Lane width 11 feet 0.2971 0.3034 0.0173 -0.2715 0.9211 

 Lane width 12 feet 0.5269 0.3245 0.0211 -0.0917 1.1900 

 Speed limit 25-40 mph 0.5439 0.3546 0.0252 -0.2143 1.2060 

 Speed limit 45 mph 0.1020 0.3401 0.0248 -0.6385 0.7376 

 Left Shoulder width -0.0803 0.0350 0.0019 -0.1516 -0.0140 

 AADT 0.8001 0.2074 0.0178 0.3885 1.1320 

 Plain cement concrete Bridge Deck -0.7369 0.3883 0.0203 -1.5300 -0.0213 

  Asphalt concrete 7 inches thick -0.0322 0.2465 0.0140 -0.5198 0.4533 

 P1 0.89 0.09 0.008 0.68 0.99 

 P2 0.1 0.09 0.008 0.005 0.31 

Notes: Bold text refers to statistically significant variables at 95% confidence level. 

Goodness-of-fit  
This study employed DIC and its components for assessment of goodness-of-fit of alternate models. DIC 

was selected for the model comparison as it is a penalized criterion which acts as a trade-off between model 

complexity and model fit which are represented by the effective number of parameters (Pd) and posterior 

deviance (𝐷̅). It was expected that mixture models will generate better fit for the crash data due to the 

addition of more parameters compared to the Base model. However, the advantage of model fit was 

expected to be coupled with higher complexity. As shown in Table3, the mixture models consistently 

exhibited higher complexity for each model, as demonstrated by the variation in values of Pd. The highest 

difference was depicted by Model 1 where the Pd value seems to indicate that effective number of 

parameters employed by the mixture model may be three times the corresponding Base model (Pd for 

mixture was 174 while for Base it was 54). The least discrepancy between complexity of Base and mixture 

was observed for Model 4, which also demonstrated the only case of comparable DIC (difference of only 

1 point). The understandable higher complexity associated with the mixture models was compensated by 

the significantly lower (relative to Base) posterior deviance across all models which subsequently resulted 

in the consistently lower DIC values. These findings clearly demonstrate that the addition of mixture 

component for spatiotemporal models provides the advantage of superiority at fitting the observed crash 

data. The significant differences in the DIC values of mixture and Base models, which were the largest for 

the simplest Model 1 and slowly reduced which progression of model complexity (Model 4), clearly 

conveys the flexibility of mixture components. In terms of comparison between different temporal 

treatments, Model 4 demonstrated the best overall fit with the lowest DIC value of 2,043, which was 84 

points lower than Model 3 (2,127). Even though the Pd value for Model 4 indicates the higher complexity 
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but the significant superiority for posterior deviance generated the advantage at overall fit. This may be 

explained by the fact that AR-1 employs the lag-1 technique to borrow information from the past year which 

may not be as efficient as consideration of temporal correlation among all years due to the time matrix 

employed by Model 4. Based solely on the goodness-of-fit criteria, the time-matrix specification for 

addressing the temporal aspect performed the best, followed by linear trend and quadratic, while the AR-1 

specification demonstrated the worst performance.     

TABLE 5.3. Goodness-of-fit of alternate models 

Temporal Types Model Types 𝑫̅ Pd DIC 

Model 1 (linear) Base 2121 54 2175 

 
Mixture 1891 174 2065 

Model 2 (quadratic) Base 2040 94 2134 

 
Mixture 1888 184 2072 

Model 3 (AR) Base 2122 52 2175 

 
Mixture 1996 131 2127 

Model 4 (time matrix) Base 1953 90 2044 

  Mixture 1883 160 2043 

 

Predictive Accuracy 

Out-of-Sample Cross-Validation 

The cross-validation was adopted as one approach to compute the conditional predictive ordinate (CPO) 

and eventually calculate log pseudo marginal likelihood (LPML) for comparison of model fit. The higher 

value of LPML reflects relatively superior model fit property. The difference between the LPML values of 

two concerned models is referred to as the log pseudo Bayes factor (LPBF) (Basu and Chib, 2003), where 

a LPBF greater than 5 reflects the superiority of the model of interest (Ntzoufras, 2009). As shown in Table 

5.4, Model 1 was observed to have the best performance with the highest value of LPML (-862.86), which 

indicates that consideration of time as a linear covariate offers the best fit with crash data coupled with the 

benefit of least computational effort. This superior performance by Model 1 was followed by Model 4 (-

876.08) and Model 2 (-886.05). The worst performance was exhibited by Model 3 which employed the AR-

1 specification with an LPML value of -918.06, which had a very significant LPBF of 55.2 when measured 

against the best performing Model 1. It was expected that Model 3 would borrow information from the 

prior one year for estimation of crash risk for the concerned time period but the results seem to demonstrate 

that such advantage, when used along with 2-component mixture for space-time interaction, may not be 

transferred to cross-validated predictive performance (CPO), which served as the basis for computation of 

LPML. In terms of comparison between mixture and Base models, the mixture models consistently 
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demonstrated superior prediction accuracy across all models. The largest discrepancy of 127 points of 

LPML was observed for Model 1 where the Base model has (-989) while mixture model was superior with 

(-862). These findings corroborate the previously observed trends in case of model fit, hence indicating that 

the advantages of mixture models at model fit are transferable to superior performance at prediction of 

crash counts.  

In-Sample Cross-Validation 

Apart from the out -of-sample cross-validation evaluation, four criteria (MAD, MSPE, RSS, and TRD) 

were employed to evaluate the alternate models for predictive accuracy based on the same dataset that was 

utilized for model development. As shown in Table 5.4, the best performing model at cross-validation 

predictive capability (Model 1) was also advantageous for nine out of twelve cases, except two cases of 

RSS and one case of MAD. This phenomenon indicates the high correlation between cross evaluation and 

the typical evaluations. Comparatively speaking, the other three models had similar performance, but all 

performed much worse than Model 1 with each of them claiming the leading position in just one or two 

situations. This finding is somewhat counterintuitive as Model 1 actually has the simplest temporal 

treatment. The potential reason might be due to the flexible mixture spatiotemporal interaction which can 

efficiently absorb the residual variability escaping from the predictable part of the model (Abellan et al., 

2008). Such fact might help explain why Model 1 even performed worst when normal residual (i.e., 

Predicted vs. Observed) was used for MAD, while it performs best under all four criteria when random 

effects were included for Bayesian residual (i.e., Bayesian vs. Observed). In other words, the powerful 

mixture components might offset the mediocre performance associated with the less sophisticated temporal 

treatment such as linear one. Overall, the trends discussed above warrant the sensitive consideration of 

inferences drawn from the evaluation criteria which are employed for assessment of prediction capabilities 

as the advantages of certain model specifications may not be fully exploited for varied crash datasets. For 

example, the possible justification for inferior performance of Model 4 may be attributed to the inclusion 

of a small sample size with respect to the number of years of crash data which eventually resulted in a 

relatively small matrix (6 x 6) for the temporal CAR specification. 

In terms of comparison between the Base and mixture models, the previously discussed goodness-of-fit and 

predictive accuracy based on the out-of-sample data clearly established the consistent superiority of mixture 

models. The authors were also interested to see if such advantage also extends to the prediction accuracy 

based on the in-sample crash data. Hence, the Base models were also evaluated for prediction accuracy and 

the results are summarized in Table 5.4. The dominance of the mixture models is evident from the observed 

results as they consistently generated more precisive crash estimates across all temporal models as well as 

three different datasets.   
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The authors were also interested in quantifying the influence of the inclusion of random effects at predictive 

accuracy. The impact of incorporation of random effects to account for spatial and temporal correlation 

structures, and the flexibility of 2-component mixture may be observed by comparing the Bayesian 

residuals (Bayesian vs Observed) and normal residuals (Predicted vs Observed), which reflect the predictive 

performance of random effect models and normal models, respectively. Table 5.4 demonstrates the 

significant superiority of sophisticated models which employed random effects as the Bayesian residuals 

exhibited consistently more accurate predictions of crash counts for all competing models as determined 

through the four evaluation criteria. The Bayesian residuals exhibited lower value for each evaluation 

criterion, though the differences were subtle or dramatic depending on the nature of criterion. In the case 

of MAD, the maximum difference observed was 0.7 for Model 1 while MSPE demonstrated a maximum 

difference of almost double points in case of Model 1 where normal residuals (0.46) recorded a 0.21 points 

difference from Bayesian residuals (0.25). A similar difference of 0.21 points was also observed for Model 

5 where the Bayesian and normal residuals were relatively high compared to Model 1 and Model 2. The 

disparity of predictive performance was notably more in the case of TRD but very significant deviations 

were recorded for RSS where the Bayesian residuals exhibited eight or nine times lesser values. This 

consistent superior trend of random effect models reinforces the advantages of incorporation of spatially 

structured and unstructured correlations to account for the unobserved heterogeneity which benefits the 

model accuracy at the prediction of crash counts.  

 

TABLE 5.4. Evaluation results of predictive performance of alternate models 

Evaluation 

Criteria 

Comparison 

Dataset 

Model 1 Model 2 Model 3 Model 4 

Mixture Base Mixture Base Mixture Base Mixture Base 

LPML NA -862.86 -989.2 -886.65 -932.3 -918.06 -1007 -876.08 -929.45 

MAD 
Replicated vs. 

Observed 
0.32 0.37 0.33 0.35 0.33 0.37 0.34 0.35 

 
Predicted vs. 

Observed 
0.39 0.43 0.37 0.39 0.38 0.40 0.38 0.39 

 
Bayesian vs. 

Observed 
0.32 0.37 0.33 0.35 0.33 0.37 0.33 0.35 

MSPE 
Replicated vs. 

Observed 
0.26 0.41 0.29 0.38 0.28 0.41 0.31 0.37 

 
Predicted vs. 

Observed 
0.46 0.52 0.46 0.50 0.47 0.50 0.49 0.51 

 
Bayesian vs. 

Observed 
0.25 0.40 0.28 0.38 0.29 0.41 0.28 0.37 
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RSS 
Replicated vs. 

Observed 
814.32 4530.6 814.02 1777.71 813.15 7057.45 813.74 1766.99 

 
Predicted vs. 

Observed 
7334.60 4912.7 9043.77 5685.39 7898.23 6092.34 7056.49 6689.79 

 
Bayesian vs. 

Observed 
813.74 4548.9 847.92 1769.50 4467.75 5259.25 912.78 1670.22 

TRD 
Replicated vs. 

Observed 
546652 591886 554405 579092 556374 598923 567821 579691 

 
Predicted vs. 

Observed 
618411 622451 618623 627074 618563 623069 621886 636765 

 
Bayesian vs. 

Observed 
546128 591852 554587 579114 559146 598809 555804 578820 

Note: 1. Bold text represents the best performance for that category. 

2. Bold text in Italics represents the best performance for the Base models among that category. 

3. To prevent the infinity value obtained for RSS, a small value of 10^-4 was added to the denominator in 

Equation 24 for RSS. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 
 

This report has presented the four chapters pertaining to different study objectives. Within each chapter, 

the specific objectives were introduced and the contributions to the safety literature were stated. This was 

followed by description of model specifications and the data utilized for model development. Finally, the 

discussion for observed model estimates and comparison between alternative models was offered. This 

chapter summarizes the previous chapters and offers conclusions and recommendations.    

 

Conclusions for Chapter 2 
This study focused on the comparison of goodness-of-fit of three alternate spatiotemporal models. The 

models were developed for estimation of crash rate for four modes of travel: vehicle, motorcycle, bicycle, 

and pedestrian. Full Bayesian framework was employed while assuming Poisson lognormal distribution for 

the crash counts aggregated at the macro-level of counties. The daily vehicle miles traveled was utilized as 

the traffic exposure for estimation of crash risk based on crash rate for all four modes. All three models 

incorporated different types of structured and unstructured correlations to account for the unobserved 

heterogeneity that may escape the explanatory variables incorporated for model development. In terms of 

unstructured correlations, a multivariate error term was incorporated for all models to obtain more precise 

estimates by removing the potential bias associated with the ignorance of correlation among different crash 

modes. In terms of spatially structured correlation, random effects were incorporated into all models which 

accounted for the distance-based dependency of crash risk among neighboring counties. The 

aforementioned specifications were common to all three models while the treatment of temporal aspect and 

the spatiotemporal interaction essentially distinguished them. The first model (Model 1) assigned a linear 

trend with a spatiotemporal interaction which remained fixed throughout the time period considered; the 

second model (Model 2) enhanced the former by inclusion of a quadratic trend; and the third model (Model 

3) developed over the first model by allowing the flexibility to incorporate a yearly-varying spatiotemporal 

interaction term. To obtain robust understanding regarding the implications of the different treatments of 

time and its interaction with space, an eight-year period was considered for the crashes aggregated at the 

58 counties of California, and different socioeconomic and traffic-related influential variables were 

incorporated.    

The model estimates justified the use of mode-varying coefficients for explanatory variables as the impact 

of these factors varied across different crash modes. Largely a similar set of influential covariates was 

generated by the three models which indicate their robustness. However, notable differences were observed 
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from the assessment of goodness-of-fit criteria employed in the study. In case of comparison between the 

model with time-varying spatial interactions (Model 3) and temporal trend models (Model 1 and Model 2), 

the flexibility of Model 3 to capture the unobserved heterogeneity and spatially structured correlation 

allowed superior performance at posterior deviance (Dbar), and LPML. Model 3 was penalized for the 

increased complexity which was a consequence of the addition of eight different spatial random effects 

corresponding to the time period of this study. Due to this significant increase in the effective number of 

parameters that were utilized for model development, Model 3 was inferior to competing models at DIC. It 

is worth mentioning that Model 3 was significantly better than competing models as assessed by the 

aforementioned criteria. This is contrary to the marginally better performance of Model 2 over Model 1 in 

case of comparison among the temporal trend models. Another important finding from the goodness-of-fit 

criteria was the correlation between the posterior deviance (Dbar) of a model and its performance at rest of 

the criteria which incorporated the random effects. Clearly, Model 3 exhibited remarkably lower posterior 

deviance which was transferred to equivalent superior performance across other criteria. This correlation 

illustrated the advantages of yearly-varying space-time interaction which increased the model complexity 

but provided a significant improvement in model fit, as assessed by different criteria employed in the study. 

For comparison of site ranking performance, overall, Model 3 appears to have the best performance in 

consistently identifying the both high and low risk counties across the adjacent time periods and perform 

slightly better than the other two models in terms of site consistency. In other words, the superiority of the 

model’s predictive performance can be transferred to yield more accurate result of site ranking.  

Although the research here reflects an improved understanding of how various multivariate space-time 

models perform, further work is still needed. First, the results here depended on county-level multimodal 

crashes over a period of eight years. The crash counts of other spatial units such as traffic analysis zone, 

roadway segment, intersection, etc. might lead to different findings as compared with the current study. 

Second, all three models were developed by using vehicle DVMT as the exposure for all four modes. The 

models may benefit with the inclusion of mode-specific exposure variables and future research is 

recommended to incorporate such surrogates of multimodal activity if available. Third, for the temporal 

aspect, linear and quadratic trends were employed to fit the crash counts. Other temporal treatments such 

as time-varying coefficients, autoregressive error process, moving average, and others, are also worth 

exploring. Future studies are also advised to place careful considerations for drawing inferences from model 

estimates due to the presence of temporal instability, which may be more pronounced depending on the 

explanatory variables and time period of study. Fourth, the spatial correlation was incorporated using the 

MCAR specification. Future studies may explore more sophisticated approaches such as spatial 

autoregressive lag structure, which accommodates spatial dependency by allowing for varying spatial 

autoregressive parameters across count or mode categories (Bhat et al., 2017). Fifth, the alternative models 
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evaluated here follow the typical parametric models which restrict the priors to a specific distribution fixed 

across all entities. It is possible to improve upon the models by using flexible multivariate latent class 

approaches. Such an approach may be combined with random parameters (if the crash data shows 

significant differences for parameters across sites) to better account for unobserved heterogeneity 

(Mannering et al., 2016).   

 

Conclusions for Chapter 3 
The current study contributes to the safety literature by proposing a bivariate Dirichlet process mixture 

spatial model and comparing its performance for crash predictions with other three competing models. The 

proposed semi-parametric model accounted for the unobserved heterogeneity by combining the strengths 

of incorporating bivariate specification to accommodate correlation among crash modes, spatial random 

effects for the impact of neighboring TAZs, and Dirichlet process mixture for random intercept. The present 

model structure allowed the flexibility to infer stochastic parameter from the crash data instead of a 

prespecified distribution.  

All four models shared similar influential factors across both crash modes which indicated the robustness 

of the models. For crashes pertaining to bicycles, K12 student enrollment, percentage of arterials, and bike-

lane density for the TAZ were observed to be statistically significant at the 95% confidence interval. The 

positive correlation of K12 student enrollment with crash risk suggests the increased risk due to higher 

chances of physical interactions of bicyclists/pedestrians with other modes due to more exposure. However, 

the perceived risk appears to be the governing factor in the case of positive correlation for bike-lane density, 

which seems counter-intuitive. The lower perceived risk may encourage bicyclists to ride more in such 

areas and therefore yield higher chances of the exposure of bicyclists to vehicular traffic. A negative 

correlation was observed for percentage of arterial roads and bicycle crashes which suggests a lesser 

tendency of bicyclists to travel in areas with more arterials, hence reducing the exposure to possible 

interactions. The pedestrian crashes were observed to reduce with an increase in student population in the 

colleges of TAZs. This may be justified by the policies implemented in these areas for reduced vehicular 

traffic which eventually reduces the possibility of interaction with pedestrians.  

The heterogeneity error term demonstrated the presence of statistically significant correlation among the 

bicycle and pedestrian crashes while the spatial random effect term exhibited the absence of a significant 

correlation, which might explain why models considering the spatial random effects did not yield the 

expected advantages compared with their non-spatial counterparts.  In the comparison between Dirichlet 

and non-Dirichlet models, the former ones were consistently superior to typical bivariate ones under all 



85 
 

criteria. These findings demonstrate the advantages associated with consideration of flexible approach, 

Dirichlet process mixture in the current study, based on the goodness-of-fit and predictive accuracy of 

estimated crash counts. Moreover, the Dirichlet models exhibited the capability to identify the latent distinct 

subpopulations and suggested the that the normal assumption of intercept associated with traditional 

parametric models does not hold true for the TAZ level crash dataset of the current study. These findings 

justify the development of sophisticated flexible models which generate more precise estimate due to the 

unrestrictive approach which eventually leads to better inferences.  

Based on the results, this study recommends careful consideration of spatial correlations at the macro-level 

of TAZs as they increased the complexity without any significant advantage at model fit or predictive 

accuracy. The authors also recommend exploring other spatial levels and observe if the results of the current 

study hold true or if the spatial random effects prove beneficial. Similar to other studies that focus on crashes 

pertaining to modes of active transportation, it should be noted that both the pedestrian and bicycle crashes 

have been modeled by utilizing the exposure of vehicles, rather than pedestrians and bikes, due to the 

unavailability of exposure data for the concerned modes. It is recommended that novel methods may be 

explored to account for the exposure data such as using bike mode share, or calibrating the exposure from 

socio-economic factors related to such modes (e.g. number of employees walking or cycling to work). 

Finally, the crash dataset utilized for model development was aggregated for a six-year period and future 

studies may incorporate temporal correlations and adopt disaggregated crash counts (51). 

 

Conclusions for Chapter 4 
The primary objective of this study was the comprehensive comparison of temporal crash prediction models 

from different perspectives. Nine groups of methodological approaches were employed which differed on 

the basis of treatments of serial correlations. A novel approach of time-adjacency was borrowed from the 

medical field to analyze the crash data and compare its performance with the prevalent temporal models in 

traffic safety research. Moreover, three types of models were proposed for each group to assess the 

modeling performance under various conditions in terms of spatial random effects. Finally, ten different 

evaluation criteria were utilized for modeling assessment. It is worth mentioning that the multiple temporal 

models (except for the time adjacency models) and performance-checking criteria selected for the study 

were not exhaustive but rather a representation of the models and measures commonly employed in safety 

literature. The Full Bayesian framework was employed for the accommodation of complex correlations 

structures.  
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The posterior model estimates demonstrated the notable impact of inclusion of spatial correlation on 

improving the precision of intercept across all groups of temporal treatments. Both spatial and temporal 

random effects were noted to be statistically significant reflecting the presence of spatial clustering and 

temporal dependency of crash counts which accounted for the variability in models. The changing 

coefficients of intercept for the random intercept model further demonstrated the impact of serial changes 

on crash risk.  

In terms of prediction capabilities, the aggregation results by model types reveal that the base model without 

considering serial correlations outperforms others, while the aggregated results by temporal treatments 

indicate the top-ranked performance associated with Type 1, or, the one without considering spatial 

dependency. Such phenomena suggest that, due to the myriad of influential factors, it is difficult to predict 

county-level crash counts by using a certain type of temporal and spatial correlations applicable to all 

counties, even though such correlations are statistically significant. However, the individual modeling 

results show the profound predictive benefits associated with G5T3. It follows that it is still worth 

addressing the serial and spatial dependency for the crash prediction of the large spatial unit, county, while 

caution should be exercised as there is large variability of predictive capabilities among the different 

temporal treatments. Although the simpler model specifications are desirable for practitioners due to 

computational challenges posed by sophisticated models, but given the advantages associated with more 

complex approach of AR-1 space-time interaction, it would be beneficial to employ such a model for the 

given crash dataset which exhibit spatiotemporal clustering.   

In review of Pd, both aggregated and individual results indicate the spatial-temporal models (either Type 2 

or Type 3) seem to be more efficient in reducing the effective number of parameters than Type 1, and the 

models accounting for temporal dependency appear to perform better than the base models in most 

scenarios. Interestingly, similar trends are found in the criterion of DIC, which suggest that Pd tends to have 

a larger impact on the DIC than does 𝐷̅. It is noteworthy that, based on aggregation result, Group 9 (time 

adjacency models) are observed to have the best performance in terms of DIC compared with other groups. 

Hence, it is recommended that this group should be further explored in the safety field.  

Building upon the large number of models being developed, the correlation analysis among all ten criteria 

confirms that Pd exerts more influence on DIC than does 𝐷̅, while the latter one demonstrates the statistically 

significant correlations with a set of criteria which checks the predictive accuracy from different aspects.  

It is anticipated that such correlation analysis should render safety researchers or practitioners more 

confidence for modeling selection, especially when the safety resources are limited which prevent a 

comprehensive evaluation of models.  
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The results observed in this paper require some caveats. First, only DVMT was included in the modeling 

development which allows an easier comparison of the wide range of models. The results with other 

covariates being included might be different. Second, eight years of data being utilized seem to be adequate 

for safety study since the objective was the comprehensive comparison of temporal models and eight-year 

period seemed optimum to replicate the safety literature (52). However, the sample size of 8 might be 

relatively small for some models especially the time adjacency ones and therefore impact their 

performances to some degree. Future research may be focused on different time-adjacency models with a 

greater time period. Third, the aggregated and individual modeling results demonstrate different 

characteristics with respect to the prediction-related criteria. The discrepancy might be due to the myriad 

of safety factors influencing the counties. Studies focusing on smaller spatial units (such as intersections, 

segments, Traffic Analysis Zones, census tracts, Local Authority Districts) are highly recommended for 

verification of the results. Since the crash-related factors may interact differently at smaller spatial levels, 

some deviations from the performance of current models is anticipated. Finally, only the distance-based 

weight structures were used for implementing the spatial priors. Other types of spatial correlations merit 

further exploration.     

 

Conclusions for Chapter 5 
This study introduced the mixture models for space-time interaction in the safety research. The models with 

the mixture component allow the accommodation of global space-time patterns, which are referred as 

“stable”, while also capturing the atypical departures from the stable pattern which may not be captured by 

the conventional spatiotemporal models in safety research. This was possible by incorporating two 

components for the space-time interaction term where one component allowed the accommodation of noise 

to convey stable pattern while the second component captured the larger fluctuations. The mixture 

component was explored by collaboration with four different temporal treatments and the models were 

evaluated based on the goodness-of-fit, and in-sample and out-of-sample cross-validation for predictive 

accuracy. Full Bayesian framework was employed to build Poisson lognormal models where conditional 

autoregressive specification was employed to incorporate spatially structured random effects using 

adjacency-based weight matrix, and the space-time interaction term was allowed the flexibility to capture 

the discrete and continuous space-time variations of the crash data that may have escaped from the 

predictable patterns of overall temporal and spatial risk surface. This flexible framework served as the base 

for development of four models which differed on the treatment of temporal aspect: (I) linear time trend; 

(II) quadratic time trend; (III) Autoregressive-1 (AR-1); and (IV) time adjacency. Moreover, five evaluation 

criteria were employed for assessment of the predictive capability of alternate models from different 
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perspectives. The Base models were also developed to serve as a reference for demonstrating the advantages 

of mixture models associated with model fit and prediction capabilities. 

Using six-year crash data from various roadway segments of one state route in California, the modeling 

results demonstrated the robustness of the proposed modeling framework with the vehicle volume being 

identified as statistically significant for all four models. Plus, Speed limit of 25-40 mph, width of left 

shoulder and Plain cement concrete Bridge Deck type were also flagged out as highly influential factors of 

crash occurrence for some of the models. The penalized criterion of DIC was employed for assessment of 

goodness-of-fit while accounting for the model complexity. Understandably, the mixture models depicted 

larger complexity associated with the incorporation of higher number of parameters due to the two-

component specification. However, due to the remarkable reduction in posterior deviance, the mixture 

models subsequently demonstrated lower (compared to corresponding Base models) values of DIC across 

all four models. The discrepancy of DIC values among Base and mixture models was observed to be largest 

for the simplest temporal model (linear trend) and experienced constant reduction as the complexity of 

temporal treatment increased, with the least discrepancy for the time matrix model. The assessment of 

model fit clearly established the advantages associated with the mixture models.  Considering the temporal 

treatment, the model with time matrix was the best as it seemed to borrow strength from the neighboring 

years for fitting the crash data. 

For comprehensive comparison of predictive accuracy of model estimated crash counts, this study 

employed an array of evaluation measures based on out-of-sample and in-sample cross validation. In the 

former case, leave-one-our cross-validation (CV-1) technique was utilized to avoid the potential bias of 

results due to different splits of data. The resultant value of log pseudo marginal likelihood (LPML) 

illustrated that Model 1 (i.e., the model with the linear time trend treatment) was the best model, whose log 

pseudo Bayes factor (LPBF) values against competing ones ranged from 4.2 to 55.2. Four different 

evaluation criteria, including MAD, MSPE, RSS, and TRD, were used for the typical in-sample validation. 

Under each criterion, the corresponding statistics were obtained by comparing the observed crash counts 

with three different types of data, respectively, which contain Bayesian estimated counts (or, the predication 

with random effects), the normal predicted counts (the prediction without random effects), and the model 

replicated ones. Out of the 12 scenarios, Model 1 again claimed the first place in 9 of them, indicating 

somewhat high correlation between cross validation and typical validation results. The remaining three 

models demonstrated similar performance even though mixed rankings were observed under different 

conditions. Further examination of results illustrated that Model 1 was placed 2nd and last for two cases 

when the prediction without random effects was used for evaluation, while its superior performance is 

consistent across all situations involving prediction with random effects. Such phenomenon indicated that 
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the least sophisticated temporal treatment, linear one, exhibited merely mediocre performance when only 

the predictable part of the models were considered. However, such limitation was masked when the 2-

component-mixtrure spatiotemporal interaction was employed. Indeed, the inclusion of such mixture 

rendered Model 1 the leading positions in most cases, which might attest to the high efficiency of the 

mixture components in capturing the unobserved heterogeneity escaping from the risk explained by the 

covariates and temporal treatment. Moreover, the residual analysis revealed the consistent superior trend of 

random effect models which bolsters the incorporation of spatially structured and unstructured correlations 

to account for the unobserved heterogeneity which benefits the model accuracy at prediction of crash 

counts. In terms of comparison between Base and mixture models on the basis of predictive accuracy for 

both in-sample and out-of-sample data, the mixture models demonstrated consistent superiority across all 

models and crash datasets. This finding supplements the dominance of mixture models observed for model 

fit and establishes them to be beneficial from different perspectives required in studies of traffic safety 

(superior fit to crash data and higher precision for crash estimation).  

The present study conducts a comprehensive evaluation of four spatiotemporal models with different 

temporal treatments. However, the results observed in this paper require some caveats. First, the roadway 

segment crash data are subject to a low-sample mean issue, even though the chosen Poisson-Lognormal 

model could better handle low sample mean and small sample size as mentioned previously. The data 

collected from larger spatial units such as traffic analysis zone, census tract, city, or county, are 

recommended to verify the results obtained hereby. Second, the mixture components are employed for the 

space-time interactions. The relative performances of models might change when other forms of 

interactions are used which include linear, quadratic, and time-varying spatial correlation, and so on. Third, 

only six years of data are used for performance evaluation of various models. It is, therefore, worth 

exploring longer time periods which might lead to different findings, especially for time adjacency model 

which is subject to limited sample size in terms of the number of years in the study. Fourth, the comparison 

is done on the basis of univariate models. The analysis is also recommended for the multivariate settings. 

Finally, the promising results demonstrated by the mixture models at goodness-of-fit and predictive 

accuracy warrant the need for exploring their advantages at another important use of crash prediction 

models, i.e. site ranking or hot spot identification. Since the mixture component allows the detection of 

higher fluctuations (variability) in the space-time profile of sites under focus, hence it will be beneficial at 

identification of sites which deviate from the global space-time pattern observed for all the sites. Such high-

risk sites may remain hidden in the traditional spatiotemporal models. The practical applications at the 

segment level could be the detection of sites with underlying risk which might not be incorporated directly 

from the data. The possible examples could be some short-term change in traffic behavior such as a musical 

concert which attracted more activity pertaining to pedestrians, the impact of sun glare during specific 
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months on a section of roadway which may increase crash risk, the construction work for repair of pavement 

or new construction which may not be evident in data, the issues with line of sight for drivers due to the 

presence of some obstruction such as a tree, and so on. The mixture model may help highlight such sites 

with underlying crash risk, which may not be evident in traditional models.  
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