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Chapter 1 

Introduction 

1.1 Overview of Report Contents 
Predictive models of urban mobility can help alleviate traffic congestion prob-
lems in future cities. State-of-the-art in travel demand forecasting is mainly 
concerned with long (months to years ahead) and very short term (seconds 
to minutes ahead) models. Long term forecasts aim at urban infrastructure 
planning, while short term predictions typically use high-resolution freeway 
detector/camera data to project traffic conditions in the near future. In this 
report, we present a medium term (hours to days ahead) travel demand fore-
cast system. Our approach is designed to use cellular data that is collected 
passively, continuously and in real time to predict the intended travel plans 
of anonymized and aggregated individual travelers. The traffic conditions 
derived through traffic simulation can overcome the data sparsity for short 
term prediction. The data resolution, prediction tolerance and accuracy for 
medium term travel demand forecast are compromises between those of long 
term forecast and short term prediction. 

To do so we developed a variety of generative sequence learning methods 
to train activity models from cellular data. Experimental results show that 
input-output hidden Markov models (IOHMMs) used in a semi-supervised 
manner perform well for location prediction while long short term memory 
models (LSTMs) are better at predicting temporal day structure patterns 
thanks to their continuous hidden state space and ability to learn long term 
dependencies. We validated our predictions by comparing predicted versus 
observed (1) individual activity sequences; (2) aggregated activity and travel 
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demand; and (3) resulting traffic flows on road networks via a hyper-realistic 
microsimulation of the predicted travel itineraries. This report covers re-
search results in developing machine learning based methods used to produce 
activity-based travel demand models from locational data available to cellular 
telecommunication operators in a form of Call Detail Records (CDRs). 

The report is organized as follows. Chapter 2 reviews related work on 
long term travel demand forecast models (Chapter 2.1) and short term traf-
fic prediction models (Chapter 2.2). Urban mobility models are also reviewed 
in Chapter 2.3. Chapter 3 depicts the framework of medium term travel de-
mand forecast. Chapter 4 presents our processing pipeline of the raw cellular 
data . Chapter 5 improves the state-of-the-art deep generative urban mobil-
ity models using co-training input-output hidden Markov models (IOHMM) 
(Chapter 5.2) and long short term memory (LSTM) (Chapter 5.3). Tech-
nical details on sequence completion from partially observed sequence are 
presented in Chapter 6. In Chapter 7, we report on experiments, model 
selection, and validation results. We conclude the present work and offers 
discussions in Chapter 8. 

1.2 Problem Statement 
Travel demand forecast has been an integral part of most Intelligent Trans-
portation Systems research and applications [50]. Long term forecast (days, 
months, or even years ahead) provides the basis for transportation planning 
and scenario evaluation. For example, transportation planers may need to 
answer the question of: how many people will be affected if a new subway 
line is introduced? How will travel patterns be changed if a major bridge is 
upgraded? The tolerance to these forecasts is usually high due to the long 
forecast horizon - days, months, or even years ahead. These studies typically 
use data collected from travel surveys that are infrequent, expensive, and 
reflect changes in transportation only after significant delays, which are not 
able to provide accurate predictions for short term or real time. 

On the other hand, short term prediction (seconds to hours ahead) studies 
traffic conditions in a transportation network based on its past behavior, 
which is critical for many applications such as travel time estimation, real 
time routing, etc. The tolerance to these predictions is usually low due to 
the short forecast horizon - seconds to hours ahead. These studies use high-
resolution data, usually collected from sensors and detectors on freeways. 
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However, one main concern is that these studies are limited to regions where 
high-resolution data is available. Moreover, such forecasts can only inform 
local operations such as adapting traffic light timing in response to growing 
queues. 

One missing element of comprehensive transportation systems optimiza-
tion systems is medium term forecasting (hours to days ahead), which, for 
example, could answer the question: based on observations of early morning 
or noon traffic, what will traffic be like during the evening commute? This 
could be a critical piece of knowledge used in the design of demand-responsive 
congestion mitigation interventions. 

1.3 Research Objectives 
In this report, we propose a medium term travel demand forecasting system 
to fill this gap. The idea is that given a large volume of partially observed 
user traces derived from cellular data 1 available at different times of day 
(e.g., 3:00 am, 9:00 am, 3:00 pm, etc.), we complete the individual daily ac-
tivity sequences for the remaining period with pre-trained generative mobility 
models. The spatial-temporal resolution of cellular data makes it a perfect 
source for medium term travel demand forecast, whose target tolerance is in 
between of the long term and short term forecasts. This framework can also 
be used as an objective testbed for comparing the performance of different 
urban mobility models. 

To validate the predictions, we can compare (1) at individual level: the 
discrepancies (e.g. differences in number of activities, travel distance, Ham-
ming distance, etc.) between predicted sequences and ground truth sequences 
(observed by the end of a day) per individual; (2) at aggregated level: the 
hourly travel demand - number of activities, travel distances from all users; 
and (3) the resulting traffic volumes on all the major freeways within the 
region of study from predicted sequences and ground truth sequences. 

1We emphasize that no personally identifiable information (PII) was gathered or used 
in conducting this study. The mobility data that was analyzed was anonymous and ag-
gregated in strict compliance with the carrier’s privacy policy. CDR (call detailed record) 
raw locations are converted into highly aggregated location features before any modeling 
takes places. 
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1.4 Significance of the Study 
The main contributions of this report lie in three aspects: 

• We proposed and solved a medium term travel demand forecast system 
which fills the gap between mainstreams of long term travel demand 
forecast and short term traffic state prediction. This system uses cellu-
lar data which will not suffer from the expensive data collection cycle 
for manual survey, or the data availability problems for short term 
traffic prediction. 

• We improved and compared the state-of-the-art deep generative urban 
mobility models. Lessons learned from training different types of urban 
mobility models are summarized for future researchers. 

• We explored the predictability of human mobility with parametric se-
quence learning models as related to using individualized non-parametric 
“nearest neighbor” approach. 
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Chapter 2 

Related Work 

2.1 Long Term Travel Demand Forecast 
Long term travel demand models are the main tools for evaluating how travel 
demand changes in response to different input assumptions, scenarios and 
policies [14]. For example, how will the national, regional, or even local 
transportation system perform 30 years into the future? What policies or 
investments could influence this performance? 

Earlier efforts on travel demand models has focused on trip-based ap-
proaches which comprises of four steps: trip generation, trip distribution, 
mode split, and route assignment [26, 6]. In the recent decades, such fore-
casts performed by activity-based models for demographic projections of a 
population have drawn more attention. 

Activity-based travel model derives travel demand from people’s needs 
and desires to participate in activities [14]. It models how people make 
decisions about activity participation in the presence of constraints, including 
decisions about what activity to participate, where to participate, when to 
participate, how to get there and with whom. Agents can adapt and change 
their decisions by learning from their behavior [38].The major advantages 
of the activity-based model over traditional trip-based models lie in four 
aspects: (1) consistency and integrity among sub-models; (2) behavioural 
realism; (3) disaggregated nature; and (4) more detailed performance metrics 
[41]. 

Activity scheduling is the central task of an activity-based model. Three 
main approaches for activity scheduling (constrains-based, utility-based, and 
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rule-based) all require detailed activity diaries data (activity start time, du-
ration, location, transportation mode, etc.) as input [3]. However, the data 
collection is usually performed through travel surveys that are infrequent, 
expensive, and reflect the changes in transportation with significant delays. 
For example, the National Household Travel Survey (NHTS), the data source 
that is typically the crux of travel demand models, is conducted every 5 
years, and carries a total cost of millions of dollars. Thus travel demand 
models are mainly targeted at “typical day” travel demand forecast in the 
long term future. The tolerance to the forecast error is also high. As smart 
phone data become ubiquitous, developing a conceptual framework using al-
ternative data, to frequently update activity-based models provides a new 
opportunity to make the near-term travel demand “nowcasting” more accu-
rate. 

2.2 Short Term Traffic Forecasting 
With growing availability of data, short-term traffic forecasting became a 
very developed research area. It concerns predictions of traffic conditions 
made from seconds to hours into the future based on current and past traffic 
information. Most of the effort has focused on modeling traffic characteristics 
such as volume, density, speed, and travel times [50]. Vlahogianni thoroughly 
summarized the available literature and categorize reports mainly based on 
(1) What is the study area (motorway or arterial); (2) What is the study 
predicting (traffic volume, speed, density, or travel time); (3) What is the 
prediction algorithm (statistical time series model, machine learning model 
or hybrid). 

However, there are certain limitations in short term traffic prediction. 
First, most of the studies use detectors or camera video (AVI) data. These 
data are mainly available on freeways and arterials, but not on the whole 
network. Thus, traffic predictions are mainly available for area where de-
tectors/AVI data is available. To enrich the source of data, GPS of probe 
vehicles has been used in travel time and speed prediction. Zheng and Van 
Zuylen predicted complete link travel times based on the information col-
lected by probe vehicles using three-layer neural network model [56]. Ye 
et, al. further introduced acceleration information and information from 
adjacent segments to improve the prediction of the travel speed of current 
forecasting segment [53]. Second, the prediction horizon usually ranges from 
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a few seconds to a few hours. This will limit the use cases for the traffic pre-
diction. For example, people may plan their afternoon trips in the morning 
based on traffic predictions more than a few hours ahead. 

2.3 Human Mobility Modeling and Predic-

tion 
Urban mobility models characterize multiple aspects of individuals’ travel 
patterns. Large amount of works focus on the activities (trip purpose), such 
as the spatial (location, [47, 4, 17, 39]) - temporal (start time and duration, 
[44]) choices of a single activity, or activity patterns (daily/weekly activity 
scheduling, [19, 21, 35, 57, 45, 5, 9, 12, 51, 54]). Another branch of re-
search considers trips linking these activities, studying trajectories [32, 48, 
37], travel mode [60, 11, 42, 58, 24, 7], by applying map matching and route 
choice [49, 15]. 

State-of-the-art can also be classified by the data sources used to model 
individual urban mobility. Early studies mainly used travel surveys [9, 12, 7]. 
In the recent decade, with the mobile phone data more available, passively 
collected data such as GPS [36, 35, 4, 60, 55, 34, 57, 39, 44, 49, 32, 5, 11, 31, 
42, 58, 15, 24, 48], CDR (call detailed record) [25, 46, 19, 21, 18, 17, 40, 45, 
51, 13, 54, 37] and location-based social networks (LBSN) data [16, 52] has 
provided grounds for new approaches in urban mobility studies. GPS data is 
granular in both spatial and temporal resolution. However, the availability 
of such granular data is usually limited to hundreds of travelers. LBSN data 
is exact in locations, and may provide additional social relation, comments 
and reviews on the venues for larger samples of travelers. However, LBSN 
data is limited by its discontinuity and sparsity in time. CDR data provides 
a trade-off between spatial-temporal resolution and ubiquity, while covering 
millions of travelers. 

Studies that are not concerned with predictive or generative methods 
fall into two categories: first category tends to purely understand generic 
human mobility laws using descriptive statistics [25, 46, 34, 13], the other 
category focuses on the problem of recognition (activity, travel mode, [36, 40, 
49, 45, 11, 31, 15]) rather than prediction. The studies of second category 
are mainly conducted on mobile phone data since activity type and travel 
mode are not explicitly observed from the data itself. For studies that do 
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focus on predictive (generative) power, most works focus on predicting only 
next location (or duration) since it is a well formulated task that is also 
easier to validate. Some researchers make prediction by assuming Markov 
properties [47, 4, 52, 18]; other researchers treat prediction of next location as 
a classification (regression) problem using supervised learning [17]; and some 
researchers use trajectory matching techniques to make the prediction [55, 
39]. However, not much research has been done on models that are capable 
of predicting a sequence of activities with locations and durations for the full 
day or longer. 

Another observation is that most of the previous studies focus on only one 
aspect of urban mobility (such as location, duration, travel mode), or model 
these several aspects separately. Not many studies have focused on modeling 
daily activity patterns and scheduling that fuse activity type, location and 
duration together, which enables the model to generate a sequence of samples. 
Eagle and Pendland [19], Farrahi and Gatica-Perez [21], and Zheng et al. [57] 
used unsupervised techniques such as PCA and topic models to cluster daily 
activity patterns. However, they only included primary activity types such as 
“home” and “work”, all other activities are categorized as “other”. Liao et al. 
unified the process of map matching, place detection, and significant activity 
inference through a hierarchical conditional random field (CRF) using GPS 
data [35]. However, their model is discriminative in nature and is most 
suitable for recognition, rather than generating new sequences. Widhalm et 
al. [51] used an undirected relational Markov network to infer urban activities 
with CDR data. However, they did not model activity transitions due to the 
lack of cliques for consecutive activities. 

To summarize, existing literature has focused on long term travel demand 
and short term traffic state forecasts, while current methods of urban mobility 
modeling have got limitations that make them only partly useful for medium-
term forecasting. In this report, we fill this gap with sequence learning 
methods applied to build generative urban mobility models from cellular 
data. 
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Chapter 3 

Modeling Framework 

The developed data processing and modeling pipeline is presented in Fig. 3.1. 
Anonymized historical CDR data are processed to unlabeled historical activ-
ity sequences [54]. Urban mobility models are built upon these historical 
activity sequences. In this report, we improved the state-of-the-art urban 
mobility models including interpretable IOHMM models, as detailed in Chap-
ter 5.2, and deep LSTM models, as detailed in Chapter 5.3. 

On a target day, we receive streaming CDR data at different time of day 
(e.g. 3:00 am, 9:00 am, 3:00 pm, etc.), which are then processed to par-
tially observed activity sequences. These partially observed sequences, along 
with the pre-trained parametric urban mobility models, are sent to the se-
quence predictor. The sequence predictor predicts and completes the activity 
sequences for the rest of the day based on the observed information, as de-
tailed in Chapter 6. The completed activity sequences are sent to MATSim, a 
state-of-the-art agent-based traffic micro-simulation tool that performs traf-
fic assignment. MATSim generates the predicted traffic conditions for the 
day. 

By the end of the day, full day CDR are observed and processed to ground 
truth activity sequences. These ground truth activity sequences are validated 
against the predicted activity sequences at both individual level and aggre-
gated level at different times of day. We also validate the resulting traffic 
from predicted activity sequences versus ground truth sequences, as detailed 
in Chapter 7. Finally, historical CDR database is updated with the new day’s 
CDR, and urban mobility models can be updated and re-trained overnight. 
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Figure 3.1: Modeling framework diagram. The left column represents the 
input to the algorithms and the right column represents the model com-
ponents. Our key contribution of improved deep urban mobility models, 
sequence predictor, and validation are shown in shaded yellow. 
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Chapter 4 

Data Processing 

4.1 Introduction 
Cellular Data such as CDR logs does not give us information about activities 
directly. Raw CDR data contains a timestamped record for each communi-
cation of anonymous user’s devices served by the cellular network. Due to 
positioning errors and connection oscillations, it is not straightforward to 
extract features to perform activity recognition from raw CDR sequences. A 
pre-processing step is first performed to convert the records to a sequence 
of stay location clusters that may correspond to distinct yet unlabeled ac-
tivities, as shown in Fig. 4.1. The clustering can be seen as a first layer of 
hashing locations, which preserves privacy. Attributes of each activity, such 
as the start time, duration, location features, and the context of the activity 
(whether this activity happens during a home-based trip, work-based trip, 
or a commute trip), is also extracted as a result of this processing. 

From the activity sequences, primary activities such as home and work 
can be inferred1 . Detecting home and work location features are useful in 
many respects: first, this allows us to perform dynamic population estima-
tion. Second, with home and work inferred, we can identify specific groups 
of users by a set of predefined decision rules. One of the most simple rules 
is to group users by their geographical area. This makes it possible to train 

1Note that once the pre-processing and home/work inference steps are applied, only 
features associated with location clusters are used for modeling, such as distances to home 
and work. This can be seen as a second layer of anonymization of user’s locations, since 
no specific location cluster IDs are associated with any user at any time in the modeling 
process itself. 
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CDR Log CDR Trace Stay History 

Time Lat Loo Time Clusler Duration 

P1 T1 l at1 Loo1 
A1 T1 C1 D1 

P2 T2 Lat2 Loo2 
A1 T2 C2 D2 

Pn Tn Latn Loon 
An Tn en Dn 

Figure 4.1: Call Detail Records (CDR) data processing. The table at left 
represents the raw CDR format, i.e., time stamped record of communications. 
A stay points detection algorithm is used to convert the raw CDR data to 
a sequence of stay locations with start time, duration and location ID, as 
represented in the table at right. 

separate models for users residing in a specific neighborhood or a Transporta-
tion Analysis Zone (TAZ) since people living in different geographical zones 
might show different travel behaviors. Moreover, we can train separate mod-
els for regular commuters/part-time/unemployed groups of residents within 
a community. The model structures are expected to be significantly different 
within each group. Finally, home and work inference for anonymized cellular 
users adjusted to the full population provides daytime/nighttime population 
density estimates, as shown in Fig. 4.3. 

With the activity sequences (including home and work anchor activities) 
identified, we can understand the daily activity structure of travelers that 
are traditionally available solely via manual surveying. They include: (1) the 
distribution of number of tours before going to work, during work and after 
getting back home; (2) the distribution of number of stops during each type of 
tour (home-based, work-based and commute tours); and (3) the interactions 
in stop-making across different times of day (e.g. how making an evening 
commute stop will affect the decision in making a post-home stop) [9]. 

4.2 Processing Pipeline 

4.2.1 Stay points detection in CDR 
The goal of stay location recognition is to turn CDR logs into a list of se-
quential stay location identifiers with start time and duration for each user, 
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as illustrated in Fig. 4.1. Each record of raw CDR logs contains the times-
tamp and the approximated latitude and longitude of events recorded by 
the data provider. This is a CDR-specific step that requires fine-tuning of 
several threshold parameters. Note that once the pre-processing steps and 
the following are applied, only features associated with clusters locations are 
used, such as distances to home and work. This can be seen as a layer of 
anonymization of user’s locations, since no specific location cluster IDs are 
further associated with any user at any time in the activity modeling process 
itself. The main steps of the algorithm are as follows: 

(1) Cluster CDR records. The first step in stay location detection is 
filtering out positioning errors. This is achieved by spatial clustering. For 
GPS data, accuracy ranges of 10-100m are used in many studies that use 
GPS to detect stay locations [20]. The distance thresholds for GPS stay-
location clustering is much smaller than the thresholds for CDR records. For 
example, a roaming distance of 300 meters [29] and 1000 meters [51] was used 
to cluster points to reflect the spatial measurement accuracy of the CDRs. 
For our stay-location detection, we use a density based clustering with similar 
parameters. At the end of the clustering step, consecutive data points with 
the same cluster ID are combined into a single record with start time equal 
to the timestamp of the first of the consecutive events at that cluster, and 
end time equal to the time stamp of the last of the consecutive events at that 
location cluster. 

(2) Construct and process an oscillation graph. Consecutive CDR records 
may have nearly identical timestamps, but different location IDs. Such os-
cillations occur because the cell phone is communicating with multiple cell 
towers. These instantaneous location jumps may occur because of traveling 
users whose cell phone have just come in contact with a new cell tower along 
the way, but often such location jumps are observed even though users are 
standing still. In the latter case a user’s location appears to oscillate back 
and forth between two clusters. 

When a user’s location is simultaneously reported in two location clusters, 
an edge between these two clusters is added to the oscillation graph. Edges in 
the oscillation graph connect clusters that are suspicious for oscillations. An 
example oscillation graph described in that section is shown in Figure 4.2. 
Each node in the graph represents a location cluster. There is an edge if 
oscillation has been observed between two clusters. The thicker the edge, 
the more oscillations have been observed. 

(3) Filter oscillation points. With cluster-pairs transformed into an oscil-
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Figure 4.2: Sample oscillation graph 

lation graph, one can discern oscillations from travel based on the pattern of 
location cluster sequences. Suppose the locations of two consecutive records 
are location cluster A and location cluster B, respectively. If edge (A, B) 
exists in the oscillation graph, and if the user visits cluster A, then B, back 
and forth, the visit to B is determined to be an oscillation - the points are 
combined into a single record with a duration determined by the combined 
time spent in A and B. We assign the location of these records to cluster A 
if the user spends more time in A than B, else it is assigned to cluster B. 

(4) Filter locations with short durations. At this point, positioning noise 
and oscillation noise are removed. Now we have a sequential list of location 
cluster visits, each with a start and end time. Some of these cluster visits 
are stay locations, and others are pass-by points. The accepted threshold for 
stay locations varies widely. The threshold was set to 20 minutes in [59], 15 
minutes in [51] and 10 minutes in [29]. Several GPS applications use stay 
durations ranging from 90 seconds to 10 minutes. We chose a threshold of 
5 minutes, because in the activity based modeling context, 5 minutes is an 
appropriate threshold for an activity location, as opposed to a way-point. 

4.2.2 Home and Work Location Inference 
We recognize the importance of long-term recurrent stay points such as 
“home” and “work” that enforce a structure in the users’ daily mobility. 
Various strategies have been used for home and work location detection. A 
mixture of Gaussians is a popular method to model locations centered on 
home and work [16]. Another suggested definition of “home” was the loca-
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tion where the user spends more than 50% of time during night hours with 
night hours defined as 8pm to 8am [33]. Similarly, work hours can be defined 
as the area where the user spends more than 50% of time during day hours. 

We adopt accepted methods in order to simplify processing and, most 
importantly, infer “anchor” points in the daily sequences that provide space-
time context that is crucial to build a generative model of secondary activi-
ties. A range of travel choices, such as mode of transportation and destination 
choice, depend on the overall structure of the day. Moreover, early identifi-
cation of home and work allows pre-clustering users into groups with similar 
behaviors by using heuristic decision rules (employed/unemployed/part-time 
worker, etc). 

Our detection of the home and work locations is similar to the method 
of [33]. We identify home as the location where the user spends the most 
stay hours during home hours, and we identify work as the location where 
the user spends the most hours during the work hours. However, we define 
home and work hours to be much narrower time windows than the 8am-8pm 
criteria used in [33]. Borrowing from [29], the hours from midnight to 6am 
are defined as home activity hours, and 1pm to 5pm on weekdays are defined 
as working hours because they capture the core set of working hours for both 
early and late workers [28]. 

4.3 Description of Data 
The data used in these studies comprise a month of anonymized and aggre-
gated CDR logs collected in Summer 2015 by a major mobile carrier in the 
US, serving millions of customers in the San Francisco Bay Area. No per-
sonally identifiable information (PII) was gathered or used for this study. As 
described previously, CDR raw locations are converted into highly aggregated 
location features before any actual modeling takes places. 

4.4 Data Processing Results 
We pre-process the data following the aforementioned steps. The home and 
work locations are identified during the pre-processing step. For further 
modeling purpose, we focus on regular commuters that: 
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• showed up for more than 21 days a month at their identified “home” 
place; 

• showed up for more than 14 days a month at their identified “work” 
place; 

• have home and work not at the same location. 

These criteria identify regular working commuters with a day structure con-
taining both distinct Home and Work. 

4.4.1 Home/Work Inference results 

Figure 4.3: Density map of inferred home and work locations for San Fran-
cisco residents, aggregated at the census tract level (left), and an overall 
geographical scope of analysis with work locations density (right). 

Fig. 4.3 shows the density map of inferred home and work locations for 
San Francisco residents (individuals with home in San Francisco city), aggre-
gated at the census tract level. As shown in the right of Fig. 4.3, the work 
locations are spread in the SF Bay Area. The highest density occurs in San 
Francisco, Oakland, and some South Bay cities. Focusing on work locations 
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in San Francisco, many of the inferred work locations are in Downtown San 
Francisco, the Financial District, and SoMA - three San Francisco neighbor-
hoods with high employment density [30]. As expected, the home locations 
are more spread out throughout the city. 

4.4.2 Number of Daily Activities 

(b) Weekend 

Figure 4.4: Empirical distributions of the average number of daily activities 
of San Francisco subscribers on a weekday (left) and on a weekend (right), 
after pre-processing. 

Empirical distributions of the average number of daily activities for this 
population is shown in Fig. 4.4. The median number of activities is 4.4 
per weekday and 4.0 per weekend. This is consistent with the California 
Household Travel Survey, reporting a number of 4 activities per day [1]. 
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Chapter 5 

Urban Mobility Models from 
Cellular Data 

With the processed activity sequences and inferred primary activities from 
previous chapter, we can train the urban mobility models that we can use to 
predict the user activities. To validate the recognition results and to direct 
the learning process, we collected a small set of ground truth activities based 
on short range antennas which have relatively high spatial resolution. Point 
of interests (POI) data are joined with these short range antennas to identify 
the possible activities performed there and a set of rules are used to help us 
collect labeled activities. With the model coefficients and a set of sampled 
home and work locations of the total population, we can generate activity 
sequences and produce synthetic travel plans required by a microscopic traffic 
simulator. 

5.1 Collection of Ground Truth Activities 
Considering the choices for activity types, one would like to set a high number 
that encompasses a wide variety of travel purposes, however, data quality and 
availability limits the number of feasibly identifiable activities. Moreover, 
an ambiguity in semantic meaning of activity types (consider “leisure” vs 
“recreation”) asks for limiting the number of hidden states that show useful in 
practical applications. We describe here an empirical procedure for collecting 
ground truth data on activity types that provide useful insights on these 
modeling choices. The number of hidden states of the IOHMM model are 
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set according to the labels of these ground truth activities. For CDR, it is 
usually hard to collect ground truth activities due to its low spatial resolution. 
However, there is a set of short range antennas that serve only a small range 
of area, which have relatively high spatial resolution. These short range 
antennas provide us the opportunity to collect “ground truth” activities. 

Short Range Distributed Antenna Systems (DASs) 

A common component of a cellular networks is a set of distributed antenna 
systems (DASs) that are short ranged, including Indoor DASs (IDASs) and 
Outdoor DASs (ODASs). IDASs are usually installed in large commercial 
buildings such as shopping malls to ensure better signal coverage. And 
ODASs are usually installed at high occupancy outdoor venues such as stadi-
ums or concert arenas. These antennas are set up to maximize signal strength 
for the users located in the building or stadium served by a given DAS, en-
suring more precise localization. Fig. 5.1 illustrates the times and durations 
of connections established by users served by three particular DASs. The 
patterns are structured in time, indicating the activities performed there are 
quite regular and their purpose can be inferred from domain knowledge with 
high confidence. 

Designation of Rules for Ground Truth 

IDASs are often installed in large mixed-use commercial buildings. For ex-
ample, one commercial building with IDAS installed could have bakeries, 
restaurants, taxi stands, gym and fitness centers, retail stores, as well as 
other businesses such as accounting and financial services. We designed a 
set of spatial-temporal decision rules to label a set of activities that can be 
considered as the ground truth. For instance, if a user is connected to a DAS 
in a food court at noon for one hour, this is most likely to be indicative of 
a lunch activity. Although we do not have complete certainty that this is 
indeed the activity type, the event is indistinguishable from a lunch break in 
terms of its mobility footprint, and with high likelihood we interpret this as 
a food activity. 

We first acquired place information from POI databases such as Google 
places API and Factual Global Places API. Then, we joined this informa-
tion with the locations of the DASs in order to extract activities that could 
be performed at each DAS. The place information provides listings of local 
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(a) DAS in a major train station used by suburban commuters. 

(b) DAS in a fitness center with multiple recreational health studios. 

(c) DAS in a business district building with a large food court. 

Figure 5.1: Structural patterns of empirical data collected at short range 
DASs well explain the activity performed around the DASs: the number of 
activities start times within a course of a week (left) and an empirical joint 
distribution plot of the visit duration vs start times (right). 

20 



Table 5.1: Rules of labeling secondary activities based on activity spatial-
temporal features 

Activity Duration 
(hours) 

Start 
hour 

Context Location 
category 

Lunch 0.25 - 1 11-12 Food 
Dinner 0.25 - 2 17-18 Food 

Shop 0.25 - 1 
7-9 
14-15 
20-21 

Home based or during 
evening commute Shop 

Transport < 0.25 Commute Transport 

Recreation 1-4 7-21 Home based or during 
evening commute Recreation 

Personal any 7-21 Personal 
Travel any any Out of the region 

business and point of interest (POI) at most given locations. Since multiple 
activities can happen at the same location, we need some additional rules 
based on the spatial-temporal features of activities, as shown in Table 5.1. 
The “location category” column of the table indicates that the category is 
among the category labels returned from the APIs. 

Note that the rules used to label activities as reported in Table 5.1 are 
restrictive. Given that the main purpose of these labels is to validate the 
proposed models, our goal is to be very confident in the activities we label. 
Thus, these rules are designed to pursue high precision rather than high 
coverage. 

5.2 IOHMM Based Urban Mobility Models 

5.2.1 IOHMM Architecture   
This section introduces main parametric mobility module shown in Fig. 3.1. 

Given the user stay history, that is, a list of stay location features with 
start times and durations, we would like to convert it into a sequence of 
activities enriched with semantic labels (“shopping”, “leisure”, etc.). We 
would also like to understand the activity pattern of the users, which can 
then be used to generate new sequences. To be more specific, the activity 
patterns can be defined by: (1) Spatial and temporal profiles such as location 
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choice, start time, and duration. (2) A heterogeneous context-dependent 
probability model for transitions between activities. 

Figure 5.2: IOHMM Architecture. The solid nodes represent observed infor-
mation, while the transparent (white) nodes represent latent random vari-
ables. The top layer contains the observed input variables ut; the middle 
layer contains latent categorical variables zt; and the bottom layer contains 
observed output variables xt. 

Hidden Markov Models (HMMs) have been extensively used in the con-
text of action recognition and signal processing. However, standard HMMs 
assume homogeneous transition and emission probabilities. This assumption 
is overly restrictive. For instance, if a user engages in a home activity on 
a weekday, and departs for the next activity in the morning, she is likely 
going to work. If she departs in the evening, the trip purpose is likely to 
be recreation or shopping. Therefore, we propose to use the IOHMM archi-
tecture that incorporates contextual information to overcome the drawbacks 
of the standard HMM. In Fig. 5.2, the solid (blue) nodes represent observed 
information, while the transparent (white) nodes represent latent random 
variables. The top layer contains the observed contextual variables ut, such 
as time of day, day of the week, and information about activities in the past 
(such as the number of hours worked on that day). Note that the values of 
the input variables ut used to represent the context have to be known prior to 
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a transition. The middle layer contains latent categorical variables zt corre-
sponding to unobserved activity types. The bottom layer contains observed 
variables xt that are available during training of the models (but not when 
generating activity sequences), such as location features and duration of the 
stay. 

Likelihood of a data sequence under this model is given by: X� 
L (θ, x, u) = Pr (z1 | u1; θin) · 

z 
TY 

Pr (zt | zt−1, ut; θtr) · 
t=2 
TY � 

Pr (xt | zt, ut; θem) . (5.1) 
t=1 

IOHMM architecture has been well described in [8]. The difference be-
tween IOHMM and semi-supervised IOHMM lies in the forward-backward 
algorithms. If we have ground truth activity (hidden states z) for timestamp 
t, then we will use Ij,t to replace ϕij,t where Ij,t is 1 if the hidden state zt = j 
at timestamp t in the labeled data, 0 otherwise, since Pr (zt = j | zt−1 = i) 
reduces to Pr (zt = j) with observed information. A summary of the differ-
ences between HMM, IOHMM and semi-supervised IOHMM is presented in 
TABLE 5.2. 

Parameter Estimation 

IOHMM includes three groups of unknown parameters: initial probability 
parameters (θin), transition model parameters (θtr), and emission model 
parameters (θem). Expectation-Maximization (EM) is a widely used ap-
proach to estimate the parameters of IOHMM. The EM algorithm consists 
of two steps. 

E step: Compute the expected value of the complete data-log likelihood, 
given the observed data and parameters estimated at the previous step. 

M step: Update the parameters to maximize the expected data likelihood 
given by: 
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� � X 
Q θ, θk = γi,1 log Pr (z1 = i | u1; θin) 

i=1 
TXXX 

+ ξij,t log Pr (zt = j | zt−1 = i, ut; θtr) 
t=2 i j 

TXX 
+ γi,t log Pr (xt | zt = i, ut; θem) . (5.2) 

t=1 i � � 
In the above, Q θ, θk is the expected value of the complete data log 

likelihood; k represents the EM iteration; T is the total number of timestamps 
in each sequence; ut, zt and xt are the inputs, hidden states, and observations 
at step t; and θ are the model parameters to be estimated. The meaning of 
other variables is given in the first column of Table 5.2. 

Transition and Emission models 

The parameter estimation procedure of IOHMM described above implies 
that any supervised learning model that supports gradient ascent on the log 
probability can be integrated into the IOHMM. For example, in Equation 5.2, 
each of the model parameters (θ) can be estimated with neural networks. A 
neural network with a softmax layer can be used to learn the initial prob-
ability parameters (θin) through back-propagation, another neural network 
with a softmax layer for learning the transition probability parameters (θtr), 
and a third with customized layers for estimating emission model parameters 
(θem). 

Note that the EM algorithm can be naturally implemented in a MapRe-
duce framework, a programming model and an associated implementation 
for processing large data sets on computing clusters. The Expectation step 
can be fit into the Map step, calculating the posterior state probability γ and 
posterior transition probability ξ in parallel for each training sequence. The 
estimated posterior probabilities γ and ξ are collected in the Reduce step. 
The source code of an implementation developed as a part of this research is 
available from https://github.com/Mogeng/IOHMM. 
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5.2.2 Semi-Supervised Co-Training 
Supervised learning of activity types requires data with labeled ground truth. 
In urban mobility, the ground truth activities are derived by either manually 
labeled [35], or collected for a small group of participants from a survey ac-
companying GPS data [31]. Privacy concerns and spatial resolution of CDR 
data precludes us from obtaining extensive ground truth labels. While fully 
unsupervised models can be used to cluster activities with similar temporal 
and spatial profiles, the recognized activities may not correspond to conven-
tional activity types. In this subsection, we propose to use semi-supervised 
learning to reach a compromise – we use a small set of ground truth activities 
based on short range distributed antenna systems (DASs) to direct the learn-
ing process. As we have mentioned, short range antennas usually serve only 
a small range of area, which have relatively high spatial resolution. These 
short range antennas provide us the opportunity to label “ground truth” 
activities with Point of Interest (POI) information and domain knowledge. 

Traditionally, semi-supervised learning is used to improve classifier per-
formance, that is, to use “cheap” unlabeled data to assist training of labeled 
data. In our work, we adopt another view of semi-supervised approach, that 
is, we use labeled data to help direct the pattern recognition from unlabeled 
data. Zhu [61] did a thorough literature review on semi-supervised learn-
ing methods, including self-training, co-training, graph-based methods and 
Expectation-Maximization (EM) in generative models. In our work, we took 
the advantage of EM in generative models and co-training to improve the 
activity pattern recognition performance. 

The idea behind co-training is that one uses two views of a sample that 
inform the learning algorithms by teaching one another. Ideally each sample 
is represented by two independent sets of features, which is however unlikely 
to exist [22]. Co-training can also be applied by using the same set of features 
but two different classifiers, which has been proven to perform well by [23]. 
It is expected to be less sensitive to mistakes than self-training. 

In this work, we choose to use a semi-supervised IOHMM with EM al-
gorithm as the generative classifier, and a decision tree (DT) classifier as its 
discriminative counterpart. With this combination, we have both the classi-
fication power of discriminative model and the generative power of IOHMM 
models. 

The difference between IOHMM and semi-supervised IOHMM lies in the 
forward-backward algorithms. If we have ground truth activity (hidden states 
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Algorithm 1 Co-training of urban activities 
Input: Labeled data L, unlabeled sequences S, confidence thresholds θ1 and 

θ2. 
Output: IOHMM model m1 and DT model m2. 

Initialization: L1 = L2 = L 
1: while L1, L2 changes do 
2: Train semi-supervised IOHMM m1 from S and L1. 
3: Train DT model m2 from L2. 
4: Classify the unlabeled data with m1 and m2 separately. 
5: Add data labeled by m1 with confidence ≥ θ1 to L2. 
6: Add data labeled by m2 with confidence ≥ θ2 to L1. 
7: end while 
8: return m1, m2. 

z) for timestamp t, then we will use Ij,t to replace ϕij,t where Ij,t is 1 if the 
hidden state zt = j at timestamp t in the labeled data, 0 otherwise, since 
Pr (zt = j | zt−1 = i) reduces to Pr (zt = j) with observed information. A 
summary of the differences between HMM, IOHMM and semi-supervised 
IOHMM is presented in TABLE 5.2. 

5.2.3 Model Specifications 
As we have mentioned, there are two components in the co-training process, 
one is the semi-supervised IOHMM with EM, and the other is the decision 
tree classifier. We will present our specifications (features) in this section. 

Semi-Supervised IOHMM Model with EM 

Input-Output Variables 
In practice, models of simple structure (linear, multinomial logistic, Gaus-
sian) with interpretable variables and parameters are preferred. For example, 
in an application below, we include the following input variables ut: (1) a 
binary variable indicating whether the day is a weekend; (2) five binary vari-
ables indicating the time of day that the activity starts, morning (5 to 10am), 
lunch (10am to 2pm), afternoon (12 to 2pm), dinner (4 to 8pm) or night (5pm 
to midnight); and (3) for the users with identified work location, the num-
ber of hours the user has spent at work this day. This variable contains 
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accumulated knowledge on the past activities. 
The IOHMM model also includes the following outputs xt at each times-

(1)tamp t: (1) x , the distance between the current stay location and the user’s 
(2)home; (2) x , the distance between the current stay location and the user’s 

(3) (4)work place; (3) x , the duration of the activity; and (4) x , whether the 
user has visited this stay location cluster previously. 

The selection of the inputs and outputs is guided by common knowledge. 
The activity start time is relevant for differentiating activity types. The 
number of hours worked in a day is a strong indicator of a person’s likelihood 
to return to work (after a midday activity, for example). The model inputs 
contain information that is known at the start of the transition to a new 
activity. In contrast, the output features contain information that is not 
available at the transition to a new activity. For example the duration and 
the location or land-use in the vicinity of a new activity is unknown at the 
time of the transition. In other words, output variables can be observed 
when training the models, but must be inferred when sampling sequences of 
activities from the model. 

The model outputs have a strong dependence on the activity type. For 
example, the distance that a person is willing to travel from home for a leisure 
trip may be longer than the distance that a person is willing to travel for a 
shopping trip. The duration depends both on the activity type, activity start 
time, and on the previous activities in the day. e.g., the expected duration 
of a work activity will decrease if a person has already worked in the day. 

Initial, Transition and Emission Models 
Multinomial logistic regression models are used as the initial probability 

model and transition probability models. Note that for succinctness, we use 
θ in each of the following equations to represent the θin,tr,em in Equation 
5.2. The first term of Equation 5.2 can be written as: 

θiute 
Pr (z1 = i | u1; θ) = P . (5.3)

θkutek 

The θ for initial probability model is a matrix with the ith row (θi) being 
the coefficients for the initial state being in state i. The second term of 
Equation 5.2 can be written as: 

j
θi ute 

Pr (zt = j | zt−1 = i, ; θ) = P . (5.4)
θkutiek 
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The θ for transition probability models is a set of matrices with the jth 

row of the ith matrix (θi
j ) being the coefficients for the next state being in 

state j given the current state being in state i. 
To gain interpretability, we use linear models for the outputs represented 

as continuous random variables. We assume a Gaussian distribution for the 
distance to home and work variables x(1) and x(2) and the activity duration 

(3) (1) and xvariable x . Where x (2) depend only on the hidden activity type, the 
duration variable x(3) depends on the hidden activity and also the contextual 
input variables. The third term of Equation 5.2 can be written as: 

(xt−θi ·ut)
2 

1 − 
Pr (xt | zt = i, ut; θi) = √ e 2σ

i 
2 

, (5.5)
2πσi 

The θ for one such output emission model is a set of arrays where θi 
and σi denote the coefficients and the standard deviation of the linear model 

(1),(2),(3)when the hidden state is i. While we chose to represent outputs x 
as Gaussian random variables, Gamma regression could be applied to dura-
tion x(3) to capture the non-negative, continuous, and right-skewed nature of 
these response variables. Moreover, response variables x(1) and x(2) could be 
modeled simultaneously using multivariate linear regression to capture the 
correlations between distance to home and distance to work. 

Output x(4) is a binary variable, and we used logistic regression model as 
the output model. The probability in the third term of Equation 5.2 can be 
written as: 

1 
Pr (xt = 1 | zt = i, ut; θi) = . (5.6)

1 + e−θi ·ut 

Decision Tree Counterpart 

Decision trees are interpretable classifiers that are capable of generating ar-
bitrarily complex decision boundaries. They have been used successfully in 
many diverse areas [43]. In this work, we use CART (Classification and Re-
gression Trees) classifier. The features we include are the combination of 
input and output features in IOHMM. 

5.2.4 Model Selection 
Model selection for co-training includes the choice of hidden states. The 
choice should come directly from the collection of ground truth activities. 
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Figure 5.3: Joint distribution plot of duration and start hour for home (left) 
and work (right). 

As we collected ground truth activities for “Food/Shop”, “Stop in Transit”, 
“Recreation”, “Personal Business”, and “Travel”, we include these five sec-
ondary activities in the hidden states. 

We further noticed a significant heterogeneity within home and work ac-
tivities. Temporal profile of home activities in Fig. 5.3a has two major clus-
ters. The upper cluster indicates regular overnight home activities (H1) and 
the lower cluster indicates short stay at home before going to some other 
activities (H2). The temporal profile of work activities in Fig. 5.3b has three 
clusters. The upper cluster indicates regular “9 to 5” work activities without 
a break (W1). The lower left cluster represents the morning work activi-
ties (W2) and the lower right cluster represents the afternoon work activities 
(W3). Considerably, the transition probability from H2 to work is lower, and 
the transition probability from W2 to “Food/Shop” should be higher but 
to “Recreation” should be lower than the transition probability from W1 or 
W3. By separating home and work activities into sub-activities, we expect 
to get better contextual-dependent transition probabilities. A more rigorous 
definition of sub-activities is: 

1. H1: cross day home activity that starts before 3:00 am and end after 
3:00 am. 
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Figure 5.4: Deep LSTM Urban Mobility Architectures. The solid nodes rep-
resent observed information, while the transparent (white) nodes represent 
latent random variables. The top layer contains the observed input variables 
ut; the middle layer contains categorical variables zt (latent in IOHMM since 
we include secondary activities while observed in LSTM since we only include 
“home”, “work”, and “other”); and the bottom layer contains observed out-
put variables xt. ht are LSTM cells in the LSTM architecture. 

2. H2: other home activities. 

3. W1: work activity if it is the only work activity in a day. 

4. W2: first work activity if there are more than one. 

5. W3: second work activity if there are more than one. 

6. W4: other work activities. 

We compare experimentally the basic and extended specifications (one 
with 7 activities and the other with 11 activities) in Chapter 7.1. 

5.3 LSTM Based Urban Mobility Models 
LSTM models have been extensively used for modeling complex sequences, 
including natural language, videos and handwriting trajectories. We design 
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a 2-layer LSTM model structure for modeling activity sequences as shown in 
Fig. 5.4. 

The top layer models activity transitions between “home”, “work”, and 
“other” (we treat all secondary activities as “other” since we do not have 
full ground truth labels for all secondary activities). ut represents the input 
contextual features similar to the ones specified in IOHMM models. The only 
difference is that we include the observed previous activity (one of “home”, 
“work”, and “other”) in this feature vector. The reasons are (1) in LSTM 
models, the previous activity type is observed prior to transition to a new 
activity, and (2) for generating new activity based on the previous activity, 
we need to include this previous activity in the training phase. Note that 
in IOHMM models, we use dynamic programming to get the probabilities of 
previous activity, as detailed in Chapter 6.1. ht 

1 represent the first layer of 
LSTM cells and zt represents the observed current activity type. The loss 
function for this top layer is: 

XT X � � 
h1L1 (θ1) = − (zt = j) · log φ ; θ1t j 

t=1 j 

where φ is the softmax function, θ1 is the collection of parameters for this 
LSTM neural network, and j belongs to one of the activity types “home”, 
“work” and “other”. 

The bottom layer is a mixture density network (MDN) which models the 
distributions of spatial (location) and temporal (duration) variables xt as-
sociated with each activity type zt. MDN was first described in [10] and 
was further developed for handwriting synthesis tasks [27]. The contextual 
vector ut, first layer LSTM cells h1 

t , second layer LSTM cells from previous 
timestamp h2 

t−1, and the current activity type zt are the inputs to the second 
layer LSTM cells h2 

t , which generates the coefficients of the mixture distribu-
tions (in our task we assume Gaussian distribution for each output feature) 
{π̂, µ̂dh 

, µ̂dw , µ̂st, µ̂dur, σ̂ dh , σ̂ dw , σ̂st, σ̂dur, ρ̂st, dur}. At each timestamp t, π̂t 
is an M by 1 array representing the mixture component weights, M is the 
number of mixture components. ˆ ˆ µ̂st,t, and ˆ are M by 1µdh,t

, µdw ,t, µdur,t 
arrays representing the component means of the distance to home, distance 
to work, start time, and duration. σ̂ dh,t, σ̂ dw ,t, σ̂ st,t, and σ̂dur,t are M by 
1 arrays representing the component standard deviations of the distance to 
home, distance to work, start time, and duration. ρ̂st, dur,t represents the 
correlation between start time and duration. This second layer mixture net-
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works is meant to divide “home”, “work”, and “other” activities into smaller 
and finer components, each has its local spatial-temporal distributions. The 
loss function for this bottom layer is: 

T MX X 
L2 (θ2) = − log πiN (xt|µ̂t

i , σ̂t
i , ρ̂i)t t 

t=1 i 

where θ2 is the collection of parameters of the neural network used to generate 
the mixture density distribution coefficients {π̂, µ̂, σ̂ , ρ̂}, i is the index of the 
mixture component. N is the Gaussian probability density function. 

This two-layer structure extends Lin et al. [37] as we moved the modeling 
of activity types into the first layer. Otherwise we keep the same model 
specifications and loss functions as in that report. 
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Chapter 6 

Urban Mobility Prediction 

The problem we are solving in this section is to predict the activity sequence 
of the rest of day, given partially observed sequences at a cut time (e.g. 9:00 
am). This problem can be tackled by breaking it into two inferential sub-
problems: (1) what an individual has done; and (2) what he/she is likely 
to do. We will show how these two sub-problems are tackled using IOHMM 
model and LSTM model, respectively. 

6.1 Prediction using IOHMM models 

6.1.1 Filtering 
The first step is calculating Pr (zt−1 = i | u1,...,t−1, x1,...,t−1). Since the next 
activity to be generated depend on the contextual variables such as time of 
day and day of week information, as well as the previous hidden activity, we 
need to understand what is the last observed activity. There are two cases: 

1. By the cut time, the last observed activity is completed. That is, the 
person is traveling to the next activity location. This case is simple 
since we can use standard forward algorithm to estimate the posterior 
probability Pr (zt−1 = i | u1,...,t−1, x1,...,t−1) of the last observed activ-
ity. One thing to note is that we need to sample a travel time that 
are longer than the observed travel time from the complete of the last 
activity to respect the fact that no new activities happened before the 
cut time. 
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2. By the cut time, the last observed activity is not completed. In this 
case, we apply a modification to the forward algorithm: the emission 
probability of duration of last activity is a survival function: Pr (xt > do | zt = i, ut),t 
where dot is the observed duration of the last activity until the cut time. 
After the filtering, we sample a new duration with the truncated dis-
tribution whose lower bound is dot to respect the fact that the activity 
ends after the cut time. 

6.1.2 Activity generation 
With the last activity inferred, the activity generation algorithm is same as 
follows: at the end of this activity the relevant context information ut is 
updated and the next activity is selected given the newly obtained transition 
probabilities. Next, the activity duration is sampled from the conditional 
distribution given the activity type and the start time. Next, the activity 
location is selected - if the activity is a home or work activity, the exercise 
is trivial. If not, we calculate the probability of choosing each cluster in 
the user’s historical location clusters based on the conditional distribution of 
x(1) distance to home and x(2) distance to work given the activity type. By 
adopting the historical location clusters of the user, we reduce the variance 
of the location choice. The process continues until the full daily sequence of 
activities is generated. 

Due to the nature of IOHMM, we must filter out and discard unrealistic 
activity chains generated in this process. We determine unrealistic activity 
chains to be chains that do not end the day at home and activity chains where 
3 or more of the same activity type occur in a row. These filters constrain the 
overall structure of the day to be aligned with a feasible/conventional day 
structure. For simulation purposes we also filter activity chains that include 
long-distance travel out of the Bay Area. 

6.2 Prediction using LSTM models 
The procedure is straightforward based on Fig. 5.4. The LSTM model first 
calculates h1

1,..,t−1, h2
1,..,t−1 based on observed u1,..,t−1 and z1,..,t−1. To generate 

the next activity at timestamp t, we first update the contextual vector ut 
and top LSTM layer h1 

t . The softmax outputs of the top layer is used for 
sampling the new activity type zt. zt, along with ut, h1 

t , ht 
2 
−1 are used in the 
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bottom layer of the model. The sampling of the output variables distance 
to home, distance to work, and duration from the distributions of mixture 
density network (MDN) is similar to the ones described in [37, 27]. The 
rest of the generation process is similar to the generation process of IOHMM 
model. 
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Chapter 7 

Experimental Results 

In this section, we describe two regional experiments of medium term travel 
demand forecast at different times of day. The master data used in these 
studies comprise a month of anonymized and aggregated CDR logs collected 
in Summer 2015 by a major mobile carrier in the US, serving millions of cus-
tomers in the San Francisco Bay Area. No personally identifiable information 
(PII) was gathered or used for this study. As described previously, CDR raw 
locations are converted into highly aggregated location features before any 
actual modeling takes places. 

The first experiment use the City of San Francisco for model selection. 
We evaluate the prediction performance of different models and validate the 
predictions at individual and aggregated level. The second experiment scales 
to whole San Francisco Bay Area where we predict the traffic conditions 
based on trained models for commuters from each of the 34 super-districts. 
We evaluate the resulting traffic from micro-simulation and validate it against 
the resulting traffic of observed ground truth data. 

We choose a typical weekday June 10, 2015 as the target day. For each 
regular commuter with available data on that day, we slice the data by differ-
ent cut time (e.g. 3:00 am, 4:00 am, ..., 11:00 pm) and predict the activities 
for the rest of the day based on the observed information by the cut time. 

7.1 Model Comparison 
In this subsection, we evaluate the performance of different models and meth-
ods. 
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1. NN: Nearest Neighbor model, the benchmark model and the expected 
upper bound of the performance. NN is a fully personalized model 
that match the observed trajectory with the trajectory history of the 
user, and use the matched trajectory as prediction for the rest of day. 
The distance features we used are (1) difference in day type (weekday or 
weekend, 0 if equal and 1 if not), and (2) the Hamming distance between 
observed partial sequence and each historical sequence by cut time. We 
calculate the Hamming distance by segmenting each sequence into 15-
minutes segments. For each 15-minutes segment, we set the distance 
as 0 if the location clusters in two sequences are same (in most of the 
15 minutes) and 1 if not. The total Hamming distance is the sum of 
each segment. We give the day type feature a high weight (in this case 
100) so that NN will search the matching sequence within the same day 
type. Note that NN model is only used for trajectory matching and 
does not provide insights and interpretability as other activity models. 

2. IOHMM-unsupervised-7: The IOHMM model with 7 hidden states, 
with the input and output features specified in Chapter 5.2.3. 

3. IOHMM-co-training-7: The co-training IOHMM model specified in 
Chapter 5.2.2. In this model we treat home and work as two activities, 
thus with 5 secondary activities there are 7 states in total. The thresh-
old parameters for both semi-supervised IOHMM model with EM (θ1) 
and Decision Tree (θ2) are 0.9. This threshold is chosen based on liter-
ature and validation accuracies on secondary activity recognition. 

4. IOHMM-co-training-11: In this model we separate “home” and 
“work” to 6 sub-activities defined in Chapter. 5.2.4. Thus there are 
11 states in total. 

5. LSTM-3: The LSTM model specified in Chapter 5.3. We used 64 
hidden units in each LSTM cell and 40 mixture components in the 
mixture density network (MDN). 

6. LSTM-7: In this model we separate “home” and “work” to 6 sub-
activities thus there are 7 activity types including “other”. 

In Fig. 7.1, we plot how the two validation metrics, (1) median travel 
distance error (left), and, (2) median Hamming distance (right) change for 
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Figure 7.1: Models comparison. Two validation metrics are used: median 
travel distance error (left) and median Hamming distance (right). The x-axis 
is the prediction hour (cut hour) and the y-axis is the validation error. Each 
series of points represents the performance of a model. 

different cut hours using different models. The travel distance error is cal-
culated as the difference between the observed daily travel distance and pre-
dicted daily travel distance. The median error of all users are used in the 
plot. The travel distance error mainly captures the spatial location choice 
performance of models. The Hamming distance is calculated as in NN models 
by segmenting the daily sequence into 96 discrete 15-minutes segments. The 
median error of all users are used in the plot. The Hamming error mainly 
captures the temporal day structure performance of models. From Fig. 7.1, 
we can see that: (1) NN models performs best among all models because it is 
a fully personalized non-parametric model; (2) IOHMM models are better at 
spatial performance than LSTM models since we used co-training to direct 
the learning of secondary activity profiles. This is also proven by comparing 
the unsupervised model performance with the co-training results; (3) LSTM 
models are better at capturing the day structures. Hamming error captures 
the performance of day structures such as “home”, “work”, and important 
secondary activities. LSTM models slightly outperforms IOHMM models in 
this metric because it is more flexible and deeper in modeling activity tran-
sitions and long term dependencies; (4) By separating “Home” and “Work” 
into smaller sub-activities, we get better spatial-temporal performance in 
both IOHMM models and LSTM-models. This proved our assumption that 
by separating these primary activities, we can better learn the activity tran-
sitions between primary activities and between primary activities and sec-
ondary activities; (5) We can explore the limit of the predictability of human 
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mobility. The median travel distance error at the beginning of the day using 
fully personalized model is about 3 miles, and this number is about 5 miles 
using non-parametric group models. The median Hamming error is 20 at 
the beginning of the day using fully personalized model, that is, 5 hours of 
wrongly predicted activities within a day. This error is mainly due to the 
shift in home and work hours. Since different people has different start hour 
of work and preferences on the time of going back home, fully personalized 
model is better at capturing this based on the individual’s history. 

7.2 Aggregated Level Evaluation 
We validate the predicted versus observed hourly aggregated travel behav-
ior in this subsection. We adopt the IOHMM-co-training-11 as our urban 
mobility model. The aggregated pattern is very similar between the best 
performed IOHMM and LSTM models. 

Fig. 7.2a shows the average number of activities (y-axis) starting in each 
hour (x-axis). To make it more informative, we decompose the total number 
of activities into “home”, “work” and “other”. We can see that the predicted 
number of activities of each type is quite comparable to the ground truth 
observed at the end of the day. The same peak of work activities in the 
morning and home activities in the evening are observed in all predictions and 
ground truth. The main difference between our predictions and the ground 
truth is that we tend to under-predict the number of “other” activities. 

Fig. 7.2b shows the average travel distance in miles (y-axis) in each hour 
(x-axis). One observation is that the travel distance of “to work” in the 
morning peak and “to home” in the evening peak are low compared to “to 
other”. This is because some people go for secondary activities before arriv-
ing at work and home, as shown in Fig. 7.2a. The other observation is that 
though the predicted number of secondary activities is lower, the travel dis-
tances to these locations are higher in our predictions. This indicates some 
inefficiencies in our secondary location choice - people select most convenient 
locations for secondary activities, and points towards possible improvements 
in location choice model for secondary activities. 
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Figure 7.2: Predicted aggregated travel demand. The average number of 
activities (top) and travel distance in miles (bottom) (y-axis) starting in 
each hour (x-axis). Each of the four subplot represents the prediction at 
hour 3:00 am, 9:00 am, 3:00 pm, and the observed ground truth. 

Figure 7.3: The MATSim Cycle [2] 
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7.3 Evaluation via Traffic Micro-simulation 
In this subsection, we span the scope of the study to the 34 super-districts 
as defined by the San Francisco Metropolitan Transportation Commission 
(MTC) to validate the predicted resulting traffic in a region with 7.5M citi-
zens. Since most of the short range DASs are located in urban area such as the 
City of San Francisco, the ground truth secondary activities are rarely avail-
able for other super-districts in Bay Area. Thus we train 34 semi-supervised 
IOHMM model with “home” and “work” as ground truth, one for each super-
district. For each regular commuter with data available on June 10, 2015, we 
predict his/her activities for the rest of day based on the activities observed 
by a cut time. Traffic micro-simulation is a conventional approach in studying 
performance and evaluating transportation scenarios. The MATSim (Multi-
Agent Transport Simulation) platform is an agent-based activity model that 
performs microscopic modeling of traffic (using link performance functions) 
and agent decision making [2]. The MATSim run cycle, as shown in Fig-
ure 7.3, is an iterative process whereby agents make adaptations to routing, 
activity timing, and other optional choices until convergence is reached. As 
input, each agent is assigned an activity chain (initial demand), complete 
with activity types, timing and location. During the mobility simulation 
(mobsim), the agents travel the network, interact, and experience congestion 
which lowers their overall utility scores for the day. During the replanning 
phase, a subset of agents may adapt their routes and activity timings. For 
our simulations, we restricted replanning adaptation to random selection of 
10% of the population during each iteration. Many other forms of adaption 
are possible with MATSim, but for this project we have restricted adaptation 
to timing and routing. Agents incur a negative penalty for deviating from 
their original activity timings, so dramatic shifts in activity start and end 
times are not possible. Rerouting agents are allowed to update their routes 
to the new shortest path, based on the loaded network conditions in the most 
recent mobility simulation. 

The MATSim road network was created using OpenStreetMap (OSM) 
road network data, downloaded in July, 2015. The user-generated OSM data 
offers very complete coverage in major metropolitan regions as well as rich 
feature sets including: link distance, number of lanes, speed limit, and hier-
archical road classification. A manual inspection of dozens of freeway links 
in California found the OSM features to be accurate. 

42 



The data was clipped and filtered using Osmosis, an open source Java 
application for editing OSM data. The OpenStreetMap Standards and Con-
ventions define tags for classifying roads hierarchically. There are 14 tags 
which encompass nearly all road links in the dataset. These range from “mo-
torway” and “trunk” down to “residential” and smaller hierarchical classes. 
We found that for the Bay Area, the “residential” links constitute 74% of 
all links in the network. By filtering out the “residential” links, we were 
able to greatly improve the computational running time of MATSim with-
out compromising regional-scale demand patterns. It is possible to maintain 
“residential” links for a localized area for future studies which require accu-
rate neighborhood-level traffic reproduction. However, other limiting factors, 
such as the realism of MATSim’s queueing, traffic signal, and physics engines 
call into question the efficacy of including the lowest hierarchy links in the 
network. 

Once filtered, the geometry was simplified to a straight-line network to 
improve simulation speeds. Each intersection is a node, and a straight edge 
represents the road link connecting two intersections. To maintain realistic 
travel time skims, attributes of the original geometry network are preserved 
as attributes of link objects: length and free-flow travel speed. The final 
network used in the Smart Bay studies includes 564,368 links, and 352,011 
nodes. 

Our experiment is as follows: For each cut time (e.g. 3:00 am, 9:00 am, 
3:00 pm, 9:00 pm), we compared the results of the flows produced on the Bay 
Area network containing all freeways and primary and secondary roads (a 
total of 24’654 links) from the predicted activity sequences with the ground 
truth activity sequences. The fit score (1) adjusted R2; (2) mean absolute 
percentage error (MAPE, %) are summarized in TABLE 7.1. Fig. 7.4 plots 
the volume profiles of two freeway locations, one near the entrance of bay 
bridge in the eastbound and the other near the crossing of I-880 and US-101. 
For each location, 4 subplots shows the predictions (in blue) at 3:00 am, 9:00 
am, 3:00 pm and 9:00 pm vs the ground truth profiles (in orange). We can 
see that (1) the predictions get closer to the ground truth volumes with more 
observed data in the day and (2) our predictions tend to generate slightly 
higher traffic volumes than ground truth traffic. This is consistent with our 
previous discussion on the inefficiencies in secondary location choices. 

TABLE 7.1 proves that we can use observed information of the day to 
improve traffic volume prediction. The coefficient of determination increase 
and the MAPE decrease with the prediction hour. When we make prediction 
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3 6 9 12 15 18 21 24 
1 0.864 0.881 0.876 0.890 0.891 0.924 0.896 

3 
(0) (38.1) (16.2) (18.0) (19.1) (14.2) (14.5) (19.7) 
- - 0.997 0.977 0.947 0.931 0.934 0.937 

9 
- - (2.9) (9.0) (14.1) (10.8) (13.4) (15.1) 
- - - - 0.995 0.962 0.960 0.955 

15 
- - - - (4.4) (8.8) (11.1) (13.0) 
- - - - - - 0.999 0.998 

21 
- - - - - - (2.1) (3.8) 

Table 7.1: The coefficient of determination (R2) and mean absolute percent-
age error (MAPE, %, in the parenthesis) of the predicted versus ground truth 
resulting traffic counts on 600 locations on the Bay Area road network. The 
row index is the prediction hour and the column index is the predicted hour. 
No scores are reported under diagonal because the traffic in the predicted 
hour is already observed by the prediction hour. 

at the beginning of each hour, we can improve the coefficients of determi-
nation in that hour to be greater than 0.99 and the MAPE less than 5%. 
The artifact of perfect prediction of 3:00 am is because we defined the start 
of the day as 3am, there should be few traffic occurring during that hour. 
If we predict three hours ahead (e.g. prediction of 6:00 pm traffic at 3:00 
pm), the coefficients of determination are greater than 0.96 and the MAPEs 
are less than 10% (except for the prediction for 6:00 am). The lower pre-
dictability at off-peak hours (e.g. 6:00 am and 12:00 am) is consistent with 
the observations in [54] of higher variability in travel choices for secondary 
activities. 
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Figure 7.4: A fragment of the SF Bay Area road network. Inlet graphs 
illustrate two sample hourly vehicle volume profiles for observed (orange) 
and predicted (blue) at 3am, 9am, 3pm, and 9pm. 
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Chapter 8 

Conclusion and 
Recommendations 

In this report, we proposed a medium term travel demand nowcasting system. 
It predicts daily travel demand and traffic conditions at different times of 
day with partially observed user traces from cellular data and pre-trained 
urban mobility models. This solution bridges the gap between long term 
forecast (days, months to years ahead) and short term prediction (seconds to 
hours ahead), which are the two mainstreams of literature in travel demand 
forecasting. 

We improved the state-of-the-art deep generative parametric mobility 
models using co-training in IOHMM and LSTMs. We provided partially ob-
served user traces at different times of day to these models and generated the 
complete daily sequences. We validated the results with the ground truth 
sequences based on (1) individual level discrepancies; (2) aggregated level 
hourly travel demand; and (3) the resulting traffic through micro-simulation. 
A non-parametric individualized nearest neighbor model was explored as the 
practical limit of predictability of individual’s daily travel. We demonstrated 
that parametric models trained at aggregated group level (due to privacy 
concern) can approach this limit in terms of prediction accuracy. Among 
the generative models we compared, IOHMM models are interpretable and 
has the power of activity recognition as a range of travel choices might de-
pend on the activity types. Co-training applied to IOHMM models performs 
better at secondary activity location choices since we used the ground truth 
activities to direct the learning process. LSTM models are better at learning 
day structures since they use continuous hidden state space and are expected 
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to be better at learning long term dependencies. Future research will focus 
on incorporating activity types in LSTM models and using existing ground 
truth labels to direct the learning process of LSTM models. 

We consider San Francisco residents as a group in the first experiment 
and each super-district as a group in the second experiment. We trained 
one urban mobility model for each group. However, certain heterogeneity in 
activity patterns exists among different sub-groups. Correctly partitioning 
the population into sub-groups should help us better approach the limit of the 
predictability in human mobility. We acknowledge it as a current limitation 
of the report. 

In terms of traffic volumes, our experiments show promising results of 
medium term forecast. We have reached a MAPE of less than 5% one hour 
ahead and 10% three hour ahead. Results also show that we can improve the 
prediction accuracy by incorporating more of the observed data by the time 
of prediction. Our prediction of traffic conditions is available not only for 
freeways and arterial where high-resolution detectors data are available from 
direct observations. Our system provides accurate prediction for the whole 
network, detailed in terms of activities and travel itineraries of citizens, pro-
viding an actionable model to improve performance of regional transporta-
tion systems and inform interventions towards reducing negative impacts of 
congestion. 
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	Chapter 1 

	Introduction 
	Introduction 
	1.1 Overview of Report Contents 
	1.1 Overview of Report Contents 
	Predictive models of urban mobility can help alleviate traﬃc congestion problems in future cities. State-of-the-art in travel demand forecasting is mainly concerned with long (months to years ahead) and very short term (seconds to minutes ahead) models. Long term forecasts aim at urban infrastructure planning, while short term predictions typically use high-resolution freeway detector/camera data to project traﬃc conditions in the near future. In this report, we present a medium term (hours to days ahead) t
	-
	-

	To do so we developed a variety of generative sequence learning methods to train activity models from cellular data. Experimental results show that input-output hidden Markov models (IOHMMs) used in a semi-supervised manner perform well for location prediction while long short term memory models (LSTMs) are better at predicting temporal day structure patterns thanks to their continuous hidden state space and ability to learn long term dependencies. We validated our predictions by comparing predicted versus 
	To do so we developed a variety of generative sequence learning methods to train activity models from cellular data. Experimental results show that input-output hidden Markov models (IOHMMs) used in a semi-supervised manner perform well for location prediction while long short term memory models (LSTMs) are better at predicting temporal day structure patterns thanks to their continuous hidden state space and ability to learn long term dependencies. We validated our predictions by comparing predicted versus 
	demand; and (3) resulting traﬃc ﬂows on road networks via a hyper-realistic microsimulation of the predicted travel itineraries. This report covers research results in developing machine learning based methods used to produce activity-based travel demand models from locational data available to cellular telecommunication operators in a form of Call Detail Records (CDRs). 
	-


	The report is organized as follows. Chapter 2 reviews related work on long term travel demand forecast models (Chapter 2.1) and short term trafﬁc prediction models (Chapter 2.2). Urban mobility models are also reviewed in Chapter 2.3. Chapter 3 depicts the framework of medium term travel demand forecast. Chapter 4 presents our processing pipeline of the raw cellular data . Chapter 5 improves the state-of-the-art deep generative urban mobility models using co-training input-output hidden Markov models (IOHMM
	-
	-
	-
	-


	1.2 Problem Statement 
	1.2 Problem Statement 
	Travel demand forecast has been an integral part of most Intelligent Transportation Systems research and applications [50]. Long term forecast (days, months, or even years ahead) provides the basis for transportation planning and scenario evaluation. For example, transportation planers may need to answer the question of: how many people will be aﬀected if a new subway line is introduced? How will travel patterns be changed if a major bridge is upgraded? The tolerance to these forecasts is usually high due t
	-

	On the other hand, short term prediction (seconds to hours ahead) studies traﬃc conditions in a transportation network based on its past behavior, which is critical for many applications such as travel time estimation, real time routing, etc. The tolerance to these predictions is usually low due to the short forecast horizon -seconds to hours ahead. These studies use high-resolution data, usually collected from sensors and detectors on freeways. 
	However, one main concern is that these studies are limited to regions where high-resolution data is available. Moreover, such forecasts can only inform local operations such as adapting traﬃc light timing in response to growing queues. 
	One missing element of comprehensive transportation systems optimization systems is medium term forecasting (hours to days ahead), which, for example, could answer the question: based on observations of early morning or noon traﬃc, what will traﬃc be like during the evening commute? This could be a critical piece of knowledge used in the design of demand-responsive congestion mitigation interventions. 
	-


	1.3 Research Objectives 
	1.3 Research Objectives 
	In this report, we propose a medium term travel demand forecasting system to ﬁll this gap. The idea is that given a large volume of partially observed user traces derived from cellular data available at diﬀerent times of day (e.g., 3:00 am, 9:00 am, 3:00 pm, etc.), we complete the individual daily activity sequences for the remaining period with pre-trained generative mobility models. The spatial-temporal resolution of cellular data makes it a perfect source for medium term travel demand forecast, whose tar
	1 
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	To validate the predictions, we can compare (1) at individual level: the discrepancies (e.g. diﬀerences in number of activities, travel distance, Hamming distance, etc.) between predicted sequences and ground truth sequences (observed by the end of a day) per individual; (2) at aggregated level: the hourly travel demand -number of activities, travel distances from all users; and (3) the resulting traﬃc volumes on all the major freeways within the region of study from predicted sequences and ground truth seq
	-

	We emphasize that no personally identiﬁable information (PII) was gathered or used in conducting this study. The mobility data that was analyzed was anonymous and aggregated in strict compliance with the carrier’s privacy policy. CDR (call detailed record) raw locations are converted into highly aggregated location features before any modeling takes places. 
	1
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	1.4 Signiﬁcance of the Study 
	1.4 Signiﬁcance of the Study 
	The main contributions of this report lie in three aspects: 
	• 
	• 
	• 
	We proposed and solved a medium term travel demand forecast system which ﬁlls the gap between mainstreams of long term travel demand forecast and short term traﬃc state prediction. This system uses cellular data which will not suﬀer from the expensive data collection cycle for manual survey, or the data availability problems for short term traﬃc prediction. 
	-


	• 
	• 
	We improved and compared the state-of-the-art deep generative urban mobility models. Lessons learned from training diﬀerent types of urban mobility models are summarized for future researchers. 

	• 
	• 
	We explored the predictability of human mobility with parametric sequence learning models as related to using individualized non-parametric “nearest neighbor” approach. 
	-



	Chapter 2 


	Related Work 
	Related Work 
	2.1 Long Term Travel Demand Forecast 
	2.1 Long Term Travel Demand Forecast 
	Long term travel demand models are the main tools for evaluating how travel demand changes in response to diﬀerent input assumptions, scenarios and policies [14]. For example, how will the national, regional, or even local transportation system perform 30 years into the future? What policies or investments could inﬂuence this performance? 
	Earlier eﬀorts on travel demand models has focused on trip-based approaches which comprises of four steps: trip generation, trip distribution, mode split, and route assignment [26, 6]. In the recent decades, such forecasts performed by activity-based models for demographic projections of a population have drawn more attention. 
	-
	-

	Activity-based travel model derives travel demand from people’s needs and desires to participate in activities [14]. It models how people make decisions about activity participation in the presence of constraints, including decisions about what activity to participate, where to participate, when to participate, how to get there and with whom. Agents can adapt and change their decisions by learning from their behavior [38].The major advantages of the activity-based model over traditional trip-based models li
	Activity scheduling is the central task of an activity-based model. Three main approaches for activity scheduling (constrains-based, utility-based, and 
	Activity scheduling is the central task of an activity-based model. Three main approaches for activity scheduling (constrains-based, utility-based, and 
	rule-based) all require detailed activity diaries data (activity start time, duration, location, transportation mode, etc.) as input [3]. However, the data collection is usually performed through travel surveys that are infrequent, expensive, and reﬂect the changes in transportation with signiﬁcant delays. For example, the National Household Travel Survey (NHTS), the data source that is typically the crux of travel demand models, is conducted every 5 years, and carries a total cost of millions of dollars. T
	-
	-
	-



	2.2 Short Term Traﬃc Forecasting 
	2.2 Short Term Traﬃc Forecasting 
	With growing availability of data, short-term traﬃc forecasting became a very developed research area. It concerns predictions of traﬃc conditions made from seconds to hours into the future based on current and past traﬃc information. Most of the eﬀort has focused on modeling traﬃc characteristics such as volume, density, speed, and travel times [50]. Vlahogianni thoroughly summarized the available literature and categorize reports mainly based on 
	(1) What is the study area (motorway or arterial); (2) What is the study predicting (traﬃc volume, speed, density, or travel time); (3) What is the prediction algorithm (statistical time series model, machine learning model or hybrid). 
	However, there are certain limitations in short term traﬃc prediction. First, most of the studies use detectors or camera video (AVI) data. These data are mainly available on freeways and arterials, but not on the whole network. Thus, traﬃc predictions are mainly available for area where detectors/AVI data is available. To enrich the source of data, GPS of probe vehicles has been used in travel time and speed prediction. Zheng and Van Zuylen predicted complete link travel times based on the information coll
	However, there are certain limitations in short term traﬃc prediction. First, most of the studies use detectors or camera video (AVI) data. These data are mainly available on freeways and arterials, but not on the whole network. Thus, traﬃc predictions are mainly available for area where detectors/AVI data is available. To enrich the source of data, GPS of probe vehicles has been used in travel time and speed prediction. Zheng and Van Zuylen predicted complete link travel times based on the information coll
	-
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	a few seconds to a few hours. This will limit the use cases for the traﬃc prediction. For example, people may plan their afternoon trips in the morning based on traﬃc predictions more than a few hours ahead. 
	-



	2.3 Human Mobility Modeling and Prediction 
	2.3 Human Mobility Modeling and Prediction 
	-

	Urban mobility models characterize multiple aspects of individuals’ travel patterns. Large amount of works focus on the activities (trip purpose), such as the spatial (location, [47, 4, 17, 39]) -temporal (start time and duration, [44]) choices of a single activity, or activity patterns (daily/weekly activity scheduling, [19, 21, 35, 57, 45, 5, 9, 12, 51, 54]). Another branch of research considers trips linking these activities, studying trajectories [32, 48, 37], travel mode [60, 11, 42, 58, 24, 7], by app
	-

	State-of-the-art can also be classiﬁed by the data sources used to model individual urban mobility. Early studies mainly used travel surveys [9, 12, 7]. In the recent decade, with the mobile phone data more available, passively collected data such as GPS [36, 35, 4, 60, 55, 34, 57, 39, 44, 49, 32, 5, 11, 31, 42, 58, 15, 24, 48], CDR (call detailed record) [25, 46, 19, 21, 18, 17, 40, 45, 51, 13, 54, 37] and location-based social networks (LBSN) data [16, 52] has provided grounds for new approaches in urban 
	Studies that are not concerned with predictive or generative methods fall into two categories: ﬁrst category tends to purely understand generic human mobility laws using descriptive statistics [25, 46, 34, 13], the other category focuses on the problem of recognition (activity, travel mode, [36, 40, 49, 45, 11, 31, 15]) rather than prediction. The studies of second category are mainly conducted on mobile phone data since activity type and travel mode are not explicitly observed from the data itself. For stu
	Studies that are not concerned with predictive or generative methods fall into two categories: ﬁrst category tends to purely understand generic human mobility laws using descriptive statistics [25, 46, 34, 13], the other category focuses on the problem of recognition (activity, travel mode, [36, 40, 49, 45, 11, 31, 15]) rather than prediction. The studies of second category are mainly conducted on mobile phone data since activity type and travel mode are not explicitly observed from the data itself. For stu
	focus on predictive (generative) power, most works focus on predicting only next location (or duration) since it is a well formulated task that is also easier to validate. Some researchers make prediction by assuming Markov properties [47, 4, 52, 18]; other researchers treat prediction of next location as a classiﬁcation (regression) problem using supervised learning [17]; and some researchers use trajectory matching techniques to make the prediction [55, 39]. However, not much research has been done on mod

	Another observation is that most of the previous studies focus on only one aspect of urban mobility (such as location, duration, travel mode), or model these several aspects separately. Not many studies have focused on modeling daily activity patterns and scheduling that fuse activity type, location and duration together, which enables the model to generate a sequence of samples. Eagle and Pendland [19], Farrahi and Gatica-Perez [21], and Zheng et al. [57] used unsupervised techniques such as PCA and topic 
	To summarize, existing literature has focused on long term travel demand and short term traﬃc state forecasts, while current methods of urban mobility modeling have got limitations that make them only partly useful for medium-term forecasting. In this report, we ﬁll this gap with sequence learning methods applied to build generative urban mobility models from cellular data. 
	Chapter 3 


	Modeling Framework 
	Modeling Framework 
	The developed data processing and modeling pipeline is presented in Fig. 3.1. Anonymized historical CDR data are processed to unlabeled historical activity sequences [54]. Urban mobility models are built upon these historical activity sequences. In this report, we improved the state-of-the-art urban mobility models including interpretable IOHMM models, as detailed in Chapter 5.2, and deep LSTM models, as detailed in Chapter 5.3. 
	-
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	On a target day, we receive streaming CDR data at diﬀerent time of day 
	(e.g. 3:00 am, 9:00 am, 3:00 pm, etc.), which are then processed to partially observed activity sequences. These partially observed sequences, along with the pre-trained parametric urban mobility models, are sent to the sequence predictor. The sequence predictor predicts and completes the activity sequences for the rest of the day based on the observed information, as detailed in Chapter 6. The completed activity sequences are sent to MATSim, a state-of-the-art agent-based traﬃc micro-simulation tool that p
	-
	-
	-
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	By the end of the day, full day CDR are observed and processed to ground truth activity sequences. These ground truth activity sequences are validated against the predicted activity sequences at both individual level and aggregated level at diﬀerent times of day. We also validate the resulting traﬃc from predicted activity sequences versus ground truth sequences, as detailed in Chapter 7. Finally, historical CDR database is updated with the new day’s CDR, and urban mobility models can be updated and re-trai
	-

	Figure
	Figure 3.1: Modeling framework diagram. The left column represents the input to the algorithms and the right column represents the model components. Our key contribution of improved deep urban mobility models, sequence predictor, and validation are shown in shaded yellow. 
	Figure 3.1: Modeling framework diagram. The left column represents the input to the algorithms and the right column represents the model components. Our key contribution of improved deep urban mobility models, sequence predictor, and validation are shown in shaded yellow. 
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	Data Processing 
	Data Processing 
	4.1 Introduction 
	4.1 Introduction 
	Cellular Data such as CDR logs does not give us information about activities directly. Raw CDR data contains a timestamped record for each communication of anonymous user’s devices served by the cellular network. Due to positioning errors and connection oscillations, it is not straightforward to extract features to perform activity recognition from raw CDR sequences. A pre-processing step is ﬁrst performed to convert the records to a sequence of stay location clusters that may correspond to distinct yet unl
	-
	-

	From the activity sequences, primary activities such as home and work can be inferred. Detecting home and work location features are useful in many respects: ﬁrst, this allows us to perform dynamic population estimation. Second, with home and work inferred, we can identify speciﬁc groups of users by a set of predeﬁned decision rules. One of the most simple rules is to group users by their geographical area. This makes it possible to train 
	1 
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	Note that once the pre-processing and home/work inference steps are applied, only features associated with location clusters are used for modeling, such as distances to home and work. This can be seen as a second layer of anonymization of user’s locations, since no speciﬁc location cluster IDs are associated with any user at any time in the modeling process itself. 
	1

	Figure
	Figure 4.1: Call Detail Records (CDR) data processing. The table at left represents the raw CDR format, i.e., time stamped record of communications. A stay points detection algorithm is used to convert the raw CDR data to a sequence of stay locations with start time, duration and location ID, as represented in the table at right. 
	Figure 4.1: Call Detail Records (CDR) data processing. The table at left represents the raw CDR format, i.e., time stamped record of communications. A stay points detection algorithm is used to convert the raw CDR data to a sequence of stay locations with start time, duration and location ID, as represented in the table at right. 


	separate models for users residing in a speciﬁc neighborhood or a Transportation Analysis Zone (TAZ) since people living in diﬀerent geographical zones might show diﬀerent travel behaviors. Moreover, we can train separate models for regular commuters/part-time/unemployed groups of residents within a community. The model structures are expected to be signiﬁcantly diﬀerent within each group. Finally, home and work inference for anonymized cellular users adjusted to the full population provides daytime/nightti
	-
	-

	With the activity sequences (including home and work anchor activities) identiﬁed, we can understand the daily activity structure of travelers that are traditionally available solely via manual surveying. They include: (1) the distribution of number of tours before going to work, during work and after getting back home; (2) the distribution of number of stops during each type of tour (home-based, work-based and commute tours); and (3) the interactions in stop-making across diﬀerent times of day (e.g. how ma
	4.2 Processing Pipeline 
	4.2.1 Stay points detection in CDR 
	The goal of stay location recognition is to turn CDR logs into a list of sequential stay location identiﬁers with start time and duration for each user, 
	The goal of stay location recognition is to turn CDR logs into a list of sequential stay location identiﬁers with start time and duration for each user, 
	-

	as illustrated in Fig. 4.1. Each record of raw CDR logs contains the timestamp and the approximated latitude and longitude of events recorded by the data provider. This is a CDR-speciﬁc step that requires ﬁne-tuning of several threshold parameters. Note that once the pre-processing steps and the following are applied, only features associated with clusters locations are used, such as distances to home and work. This can be seen as a layer of anonymization of user’s locations, since no speciﬁc location clust
	-


	(1) 
	(1) 
	(1) 
	Cluster CDR records. The ﬁrst step in stay location detection is ﬁltering out positioning errors. This is achieved by spatial clustering. For GPS data, accuracy ranges of 10-100m are used in many studies that use GPS to detect stay locations [20]. The distance thresholds for GPS stay-location clustering is much smaller than the thresholds for CDR records. For example, a roaming distance of 300 meters [29] and 1000 meters [51] was used to cluster points to reﬂect the spatial measurement accuracy of the CDRs.

	(2) 
	(2) 
	Construct and process an oscillation graph. Consecutive CDR records may have nearly identical timestamps, but diﬀerent location IDs. Such oscillations occur because the cell phone is communicating with multiple cell towers. These instantaneous location jumps may occur because of traveling users whose cell phone have just come in contact with a new cell tower along the way, but often such location jumps are observed even though users are standing still. In the latter case a user’s location appears to oscilla
	-



	When a user’s location is simultaneously reported in two location clusters, an edge between these two clusters is added to the oscillation graph. Edges in the oscillation graph connect clusters that are suspicious for oscillations. An example oscillation graph described in that section is shown in Figure 4.2. Each node in the graph represents a location cluster. There is an edge if oscillation has been observed between two clusters. The thicker the edge, the more oscillations have been observed. 
	(3) Filter oscillation points. With cluster-pairs transformed into an oscil
	(3) Filter oscillation points. With cluster-pairs transformed into an oscil
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	lation graph, one can discern oscillations from travel based on the pattern of location cluster sequences. Suppose the locations of two consecutive records are location cluster A and location cluster B, respectively. If edge (A, B) exists in the oscillation graph, and if the user visits cluster A, then B, back and forth, the visit to B is determined to be an oscillation -the points are combined into a single record with a duration determined by the combined time spent in A and B. We assign the location of t

	Figure
	Figure 4.2: Sample oscillation graph 
	Figure 4.2: Sample oscillation graph 


	(4) Filter locations with short durations. At this point, positioning noise and oscillation noise are removed. Now we have a sequential list of location cluster visits, each with a start and end time. Some of these cluster visits are stay locations, and others are pass-by points. The accepted threshold for stay locations varies widely. The threshold was set to 20 minutes in [59], 15 minutes in [51] and 10 minutes in [29]. Several GPS applications use stay durations ranging from 90 seconds to 10 minutes. We 
	4.2.2 Home and Work Location Inference 
	4.2.2 Home and Work Location Inference 
	We recognize the importance of long-term recurrent stay points such as “home” and “work” that enforce a structure in the users’ daily mobility. Various strategies have been used for home and work location detection. A mixture of Gaussians is a popular method to model locations centered on home and work [16]. Another suggested deﬁnition of “home” was the loca
	We recognize the importance of long-term recurrent stay points such as “home” and “work” that enforce a structure in the users’ daily mobility. Various strategies have been used for home and work location detection. A mixture of Gaussians is a popular method to model locations centered on home and work [16]. Another suggested deﬁnition of “home” was the loca
	-

	tion where the user spends more than 50% of time during night hours with night hours deﬁned as 8pm to 8am [33]. Similarly, work hours can be deﬁned as the area where the user spends more than 50% of time during day hours. 

	We adopt accepted methods in order to simplify processing and, most importantly, infer “anchor” points in the daily sequences that provide space-time context that is crucial to build a generative model of secondary activities. A range of travel choices, such as mode of transportation and destination choice, depend on the overall structure of the day. Moreover, early identiﬁcation of home and work allows pre-clustering users into groups with similar behaviors by using heuristic decision rules (employed/unemp
	-
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	Our detection of the home and work locations is similar to the method of [33]. We identify home as the location where the user spends the most stay hours during home hours, and we identify work as the location where the user spends the most hours during the work hours. However, we deﬁne home and work hours to be much narrower time windows than the 8am-8pm criteria used in [33]. Borrowing from [29], the hours from midnight to 6am are deﬁned as home activity hours, and 1pm to 5pm on weekdays are deﬁned as wor


	4.3 Description of Data 
	4.3 Description of Data 
	The data used in these studies comprise a month of anonymized and aggregated CDR logs collected in Summer 2015 by a major mobile carrier in the US, serving millions of customers in the San Francisco Bay Area. No personally identiﬁable information (PII) was gathered or used for this study. As described previously, CDR raw locations are converted into highly aggregated location features before any actual modeling takes places. 
	-
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	4.4 Data Processing Results 
	4.4 Data Processing Results 
	We pre-process the data following the aforementioned steps. The home and work locations are identiﬁed during the pre-processing step. For further modeling purpose, we focus on regular commuters that: 
	• 
	• 
	• 
	showed up for more than 21 days a month at their identiﬁed “home” place; 

	• 
	• 
	showed up for more than 14 days a month at their identiﬁed “work” place; 

	• 
	• 
	have home and work not at the same location. 


	These criteria identify regular working commuters with a day structure containing both distinct Home and Work. 
	-

	4.4.1 Home/Work Inference results 
	4.4.1 Home/Work Inference results 
	Figure
	Figure 4.3: Density map of inferred home and work locations for San Francisco residents, aggregated at the census tract level (left), and an overall geographical scope of analysis with work locations density (right). 
	Figure 4.3: Density map of inferred home and work locations for San Francisco residents, aggregated at the census tract level (left), and an overall geographical scope of analysis with work locations density (right). 
	-



	Fig. 4.3 shows the density map of inferred home and work locations for San Francisco residents (individuals with home in San Francisco city), aggregated at the census tract level. As shown in the right of Fig. 4.3, the work locations are spread in the SF Bay Area. The highest density occurs in San Francisco, Oakland, and some South Bay cities. Focusing on work locations 
	Fig. 4.3 shows the density map of inferred home and work locations for San Francisco residents (individuals with home in San Francisco city), aggregated at the census tract level. As shown in the right of Fig. 4.3, the work locations are spread in the SF Bay Area. The highest density occurs in San Francisco, Oakland, and some South Bay cities. Focusing on work locations 
	-

	in San Francisco, many of the inferred work locations are in Downtown San Francisco, the Financial District, and SoMA -three San Francisco neighborhoods with high employment density [30]. As expected, the home locations are more spread out throughout the city. 
	-



	4.4.2 Number of Daily Activities 
	4.4.2 Number of Daily Activities 
	Figure
	Figure 4.4: Empirical distributions of the average number of daily activities of San Francisco subscribers on a weekday (left) and on a weekend (right), after pre-processing. 
	Figure 4.4: Empirical distributions of the average number of daily activities of San Francisco subscribers on a weekday (left) and on a weekend (right), after pre-processing. 


	(a) Weekday (b) Weekend 
	Empirical distributions of the average number of daily activities for this population is shown in Fig. 4.4. The median number of activities is 4.4 per weekday and 4.0 per weekend. This is consistent with the California Household Travel Survey, reporting a number of 4 activities per day [1]. 
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	Urban Mobility Models from Cellular Data 
	Urban Mobility Models from Cellular Data 
	With the processed activity sequences and inferred primary activities from previous chapter, we can train the urban mobility models that we can use to predict the user activities. To validate the recognition results and to direct the learning process, we collected a small set of ground truth activities based on short range antennas which have relatively high spatial resolution. Point of interests (POI) data are joined with these short range antennas to identify the possible activities performed there and a 
	5.1 Collection of Ground Truth Activities 
	5.1 Collection of Ground Truth Activities 
	Considering the choices for activity types, one would like to set a high number that encompasses a wide variety of travel purposes, however, data quality and availability limits the number of feasibly identiﬁable activities. Moreover, an ambiguity in semantic meaning of activity types (consider “leisure” vs “recreation”) asks for limiting the number of hidden states that show useful in practical applications. We describe here an empirical procedure for collecting ground truth data on activity types that pro
	Considering the choices for activity types, one would like to set a high number that encompasses a wide variety of travel purposes, however, data quality and availability limits the number of feasibly identiﬁable activities. Moreover, an ambiguity in semantic meaning of activity types (consider “leisure” vs “recreation”) asks for limiting the number of hidden states that show useful in practical applications. We describe here an empirical procedure for collecting ground truth data on activity types that pro
	set according to the labels of these ground truth activities. For CDR, it is usually hard to collect ground truth activities due to its low spatial resolution. However, there is a set of short range antennas that serve only a small range of area, which have relatively high spatial resolution. These short range antennas provide us the opportunity to collect “ground truth” activities. 

	Short Range Distributed Antenna Systems (DASs) 
	A common component of a cellular networks is a set of distributed antenna systems (DASs) that are short ranged, including Indoor DASs (IDASs) and Outdoor DASs (ODASs). IDASs are usually installed in large commercial buildings such as shopping malls to ensure better signal coverage. And ODASs are usually installed at high occupancy outdoor venues such as stadiums or concert arenas. These antennas are set up to maximize signal strength for the users located in the building or stadium served by a given DAS, en
	-
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	Designation of Rules for Ground Truth 
	IDASs are often installed in large mixed-use commercial buildings. For example, one commercial building with IDAS installed could have bakeries, restaurants, taxi stands, gym and ﬁtness centers, retail stores, as well as other businesses such as accounting and ﬁnancial services. We designed a set of spatial-temporal decision rules to label a set of activities that can be considered as the ground truth. For instance, if a user is connected to a DAS in a food court at noon for one hour, this is most likely to
	-

	We ﬁrst acquired place information from POI databases such as Google places API and Factual Global Places API. Then, we joined this information with the locations of the DASs in order to extract activities that could be performed at each DAS. The place information provides listings of local 
	-

	Figure
	(a) DAS in a major train station used by suburban commuters. 
	Figure
	(b) DAS in a ﬁtness center with multiple recreational health studios. 
	Figure
	(c) DAS in a business district building with a large food court. 
	Figure 5.1: Structural patterns of empirical data collected at short range DASs well explain the activity performed around the DASs: the number of activities start times within a course of a week (left) and an empirical joint distribution plot of the visit duration vs start times (right). 
	Table 5.1: Rules of labeling secondary activities based on activity spatial-temporal features 
	Table 5.1: Rules of labeling secondary activities based on activity spatial-temporal features 
	Table 5.1: Rules of labeling secondary activities based on activity spatial-temporal features 

	Activity 
	Activity 
	Duration (hours) 
	Start hour 
	Context 
	Location category 

	Lunch 
	Lunch 
	0.25 -1 
	11-12 
	Food 

	Dinner 
	Dinner 
	0.25 -2 
	17-18 
	Food 

	Shop 
	Shop 
	0.25 -1 
	7-9 14-15 20-21 
	Home based or during evening commute 
	Shop 

	Transport 
	Transport 
	< 0.25 
	Commute 
	Transport 

	Recreation 
	Recreation 
	1-4 
	7-21 
	Home based or during evening commute 
	Recreation 

	Personal 
	Personal 
	any 
	7-21 
	Personal 

	Travel 
	Travel 
	any 
	any 
	Out of the region 


	business and point of interest (POI) at most given locations. Since multiple activities can happen at the same location, we need some additional rules based on the spatial-temporal features of activities, as shown in Table 5.1. The “location category” column of the table indicates that the category is among the category labels returned from the APIs. 
	Note that the rules used to label activities as reported in Table 5.1 are restrictive. Given that the main purpose of these labels is to validate the proposed models, our goal is to be very conﬁdent in the activities we label. Thus, these rules are designed to pursue high precision rather than high coverage. 

	5.2 IOHMM Based Urban Mobility Models 
	5.2 IOHMM Based Urban Mobility Models 
	5.2.1 IOHMM Architecture 
	5.2.1 IOHMM Architecture 
	This section introduces main parametric mobility module shown in Fig. 3.1. 
	Given the user stay history, that is, a list of stay location features with start times and durations, we would like to convert it into a sequence of activities enriched with semantic labels (“shopping”, “leisure”, etc.). We would also like to understand the activity pattern of the users, which can then be used to generate new sequences. To be more speciﬁc, the activity patterns can be deﬁned by: (1) Spatial and temporal proﬁles such as location 
	Given the user stay history, that is, a list of stay location features with start times and durations, we would like to convert it into a sequence of activities enriched with semantic labels (“shopping”, “leisure”, etc.). We would also like to understand the activity pattern of the users, which can then be used to generate new sequences. To be more speciﬁc, the activity patterns can be deﬁned by: (1) Spatial and temporal proﬁles such as location 
	choice, start time, and duration. (2) A heterogeneous context-dependent probability model for transitions between activities. 

	Figure
	Figure 5.2: IOHMM Architecture. The solid nodes represent observed information, while the transparent (white) nodes represent latent random variables. The top layer contains the observed input variables ut; the middle layer contains latent categorical variables zt; and the bottom layer contains observed output variables xt. 
	Figure 5.2: IOHMM Architecture. The solid nodes represent observed information, while the transparent (white) nodes represent latent random variables. The top layer contains the observed input variables ut; the middle layer contains latent categorical variables zt; and the bottom layer contains observed output variables xt. 
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	Hidden Markov Models (HMMs) have been extensively used in the context of action recognition and signal processing. However, standard HMMs assume homogeneous transition and emission probabilities. This assumption is overly restrictive. For instance, if a user engages in a home activity on a weekday, and departs for the next activity in the morning, she is likely going to work. If she departs in the evening, the trip purpose is likely to be recreation or shopping. Therefore, we propose to use the IOHMM archit
	Hidden Markov Models (HMMs) have been extensively used in the context of action recognition and signal processing. However, standard HMMs assume homogeneous transition and emission probabilities. This assumption is overly restrictive. For instance, if a user engages in a home activity on a weekday, and departs for the next activity in the morning, she is likely going to work. If she departs in the evening, the trip purpose is likely to be recreation or shopping. Therefore, we propose to use the IOHMM archit
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	a transition. The middle layer contains latent categorical variables zt corresponding to unobserved activity types. The bottom layer contains observed variables xt that are available during training of the models (but not when generating activity sequences), such as location features and duration of the stay. 
	-


	Likelihood of a data sequence under this model is given by: 
	X. 
	L (θ, x, u) = Pr(z| u; θin) · 
	1 
	1

	z 
	T
	Y 
	Pr (zt | zt−1, ut; θtr) · 
	t=2 T
	Y. 
	Pr (xt | zt, ut; θem) . (5.1) 
	t=1 
	IOHMM architecture has been well described in [8]. The diﬀerence between IOHMM and semi-supervised IOHMM lies in the forward-backward algorithms. If we have ground truth activity (hidden states z) for timestamp t, then we will use Ij,t to replace ϕij,t where Ij,t is 1 if the hidden state zt = j at timestamp t in the labeled data, 0 otherwise, since Pr (zt = j | zt−1 = i) reduces to Pr (zt = j) with observed information. A summary of the diﬀerences between HMM, IOHMM and semi-supervised IOHMM is presented in
	-
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	Parameter Estimation 
	IOHMM includes three groups of unknown parameters: initial probability parameters (θin), transition model parameters (θtr), and emission model parameters (θem). Expectation-Maximization (EM) is a widely used approach to estimate the parameters of IOHMM. The EM algorithm consists of two steps. 
	-

	E step: Compute the expected value of the complete data-log likelihood, given the observed data and parameters estimated at the previous step. 
	M step: Update the parameters to maximize the expected data likelihood given by: 
	Table 5.2: Highlights of comparison between an HMM vs. IOHMM vs.semi-supervised IOHMM (ut, zt, xt denote input, hidden and output variables respectively, i is an index of a hidden state, t is a sequence j,t is 1 if the hidden state zt = j at timestamp t in the labeled data, 0 otherwise). 
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	transition probability ϕij,t 
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	emission probability δ i,t 
	emission probability δ i,t 
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	forward variable αi,t 
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	In the above, Q θ, θis the expected value of the complete data log likelihood; k represents the EM iteration; T is the total number of timestamps in each sequence; ut, zt and xt are the inputs, hidden states, and observations at step t; and θ are the model parameters to be estimated. The meaning of other variables is given in the ﬁrst column of Table 5.2. 
	k 

	Transition and Emission models 
	The parameter estimation procedure of IOHMM described above implies that any supervised learning model that supports gradient ascent on the log probability can be integrated into the IOHMM. For example, in Equation 5.2, each of the model parameters (θ) can be estimated with neural networks. A neural network with a softmax layer can be used to learn the initial probin) through back-propagation, another neural network with a softmax layer for learning the transition probability parameters (θtr), and a third w
	-
	ability parameters (θ
	(θ

	Note that the EM algorithm can be naturally implemented in a MapReduce framework, a programming model and an associated implementation for processing large data sets on computing clusters. The Expectation step can be ﬁt into the Map step, calculating the posterior state probability γ and posterior transition probability ξ in parallel for each training sequence. The estimated posterior probabilities γ and ξ are collected in the Reduce step. The source code of an implementation developed as a part of this res
	-
	https://github.com/Mogeng/IOHMM


	5.2.2 Semi-Supervised Co-Training 
	5.2.2 Semi-Supervised Co-Training 
	Supervised learning of activity types requires data with labeled ground truth. In urban mobility, the ground truth activities are derived by either manually labeled [35], or collected for a small group of participants from a survey accompanying GPS data [31]. Privacy concerns and spatial resolution of CDR data precludes us from obtaining extensive ground truth labels. While fully unsupervised models can be used to cluster activities with similar temporal and spatial proﬁles, the recognized activities may no
	-
	-
	-

	Traditionally, semi-supervised learning is used to improve classiﬁer performance, that is, to use “cheap” unlabeled data to assist training of labeled data. In our work, we adopt another view of semi-supervised approach, that is, we use labeled data to help direct the pattern recognition from unlabeled data. Zhu [61] did a thorough literature review on semi-supervised learning methods, including self-training, co-training, graph-based methods and Expectation-Maximization (EM) in generative models. In our wo
	-
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	The idea behind co-training is that one uses two views of a sample that inform the learning algorithms by teaching one another. Ideally each sample is represented by two independent sets of features, which is however unlikely to exist [22]. Co-training can also be applied by using the same set of features but two diﬀerent classiﬁers, which has been proven to perform well by [23]. It is expected to be less sensitive to mistakes than self-training. 
	In this work, we choose to use a semi-supervised IOHMM with EM algorithm as the generative classiﬁer, and a decision tree (DT) classiﬁer as its discriminative counterpart. With this combination, we have both the classiﬁcation power of discriminative model and the generative power of IOHMM models. 
	-
	-

	The diﬀerence between IOHMM and semi-supervised IOHMM lies in the forward-backward algorithms. If we have ground truth activity (hidden states 
	Algorithm 1 Co-training of urban activities 
	and θ. 
	Input: Labeled data L, unlabeled sequences S, conﬁdence thresholds θ
	1 
	2

	and DT model m. 
	Output: IOHMM model m
	1 
	2

	Initialization: L1 = L2 = L 
	Initialization: L1 = L2 = L 
	Initialization: L1 = L2 = L 

	1: 
	1: 
	while L1, L2 changes do 

	2: 
	2: 
	Train semi-supervised IOHMM m1 from S and L1. 

	3: 
	3: 
	Train DT model m2 from L2. 

	4: 
	4: 
	Classify the unlabeled data with m1 and m2 separately. 

	5: 
	5: 
	Add data labeled by m1 with conﬁdence ≥ θ1 
	to L2. 

	6: 
	6: 
	Add data labeled by m2 with conﬁdence ≥ θ2 
	to L1. 

	7: 
	7: 
	end while 

	8: 
	8: 
	return 
	m1, m2. 


	z) for timestamp t, then we will use Ij,t to replace ϕij,t where Ij,t is 1 if the hidden state zt = j at timestamp t in the labeled data, 0 otherwise, since Pr (zt = j | zt−1 = i) reduces to Pr (zt = j) with observed information. A summary of the diﬀerences between HMM, IOHMM and semi-supervised IOHMM is presented in TABLE 5.2. 

	5.2.3 Model Speciﬁcations 
	5.2.3 Model Speciﬁcations 
	As we have mentioned, there are two components in the co-training process, one is the semi-supervised IOHMM with EM, and the other is the decision tree classiﬁer. We will present our speciﬁcations (features) in this section. 
	Semi-Supervised IOHMM Model with EM 
	Input-Output Variables 
	In practice, models of simple structure (linear, multinomial logistic, Gaussian) with interpretable variables and parameters are preferred. For example, in an application below, we include the following input variables ut: (1) a binary variable indicating whether the day is a weekend; (2) ﬁve binary variables indicating the time of day that the activity starts, morning (5 to 10am), lunch (10am to 2pm), afternoon (12 to 2pm), dinner (4 to 8pm) or night (5pm to midnight); and (3) for the users with identiﬁed 
	-
	-
	-

	accumulated knowledge on the past activities. The IOHMM model also includes the following outputs xt at each times
	-

	(1)
	tamp t: (1) x , the distance between the current stay location and the user’s 
	(2)
	home; (2) x , the distance between the current stay location and the user’s 
	(3) (4)
	work place; (3) x , the duration of the activity; and (4) x , whether the user has visited this stay location cluster previously. 
	The selection of the inputs and outputs is guided by common knowledge. The activity start time is relevant for diﬀerentiating activity types. The number of hours worked in a day is a strong indicator of a person’s likelihood to return to work (after a midday activity, for example). The model inputs contain information that is known at the start of the transition to a new activity. In contrast, the output features contain information that is not available at the transition to a new activity. For example the 
	The model outputs have a strong dependence on the activity type. For example, the distance that a person is willing to travel from home for a leisure trip may be longer than the distance that a person is willing to travel for a shopping trip. The duration depends both on the activity type, activity start time, and on the previous activities in the day. e.g., the expected duration of a work activity will decrease if a person has already worked in the day. 
	Initial, Transition and Emission Models 
	Multinomial logistic regression models are used as the initial probability model and transition probability models. Note that for succinctness, we use θ in each of the following equations to represent the θin,tr,em in Equation 
	5.2. The ﬁrst term of Equation 5.2 can be written as: 
	θi
	ut
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	Pr (z= i | u; θ)= P . (5.3)
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	θk
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	The θ for initial probability model is a matrix with the irow (θ) being the coeﬃcients for the initial state being in state i. The second term of Equation 5.2 can be written as: 
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	Pr (zt = j | zt−1 = i, ; θ)= P . (5.4)
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	The θ for transition probability models is a set of matrices with the jrow of the imatrix (θ) being the coeﬃcients for the next state being in state j given the current state being in state i. 
	th 
	th 
	i
	j 

	To gain interpretability, we use linear models for the outputs represented as continuous random variables. We assume a Gaussian distribution for the distance to home and work variables xand xand the activity duration 
	(1) 
	(2) 

	(3) 
	(1) 
	and x

	variable x . Where x depend only on the hidden activity type, the duration variable xdepends on the hidden activity and also the contextual input variables. The third term of Equation 5.2 can be written as: 
	(2) 
	(3) 

	(xt−θi ·ut)
	(xt−θi ·ut)
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	1 

	Pr (xt | zt = i, ut; θi)= √ e i , (5.5)
	2
	σ
	2 
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	The θ for one such output emission model is a set of arrays where θi 
	and σi denote the coeﬃcients and the standard deviation of the linear model (1),(2),(3)
	when the hidden state is i. While we chose to represent outputs x as Gaussian random variables, Gamma regression could be applied to duration xto capture the non-negative, continuous, and right-skewed nature of these response variables. Moreover, response variables xand xcould be modeled simultaneously using multivariate linear regression to capture the correlations between distance to home and distance to work. 
	-
	(3) 
	(1) 
	(2) 

	Output xis a binary variable, and we used logistic regression model as the output model. The probability in the third term of Equation 5.2 can be written as: 
	(4) 

	1 
	Pr (xt =1 | zt = i, ut; θi)= . (5.6)
	1+ e
	1+ e
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	Decision Tree Counterpart 
	Decision trees are interpretable classiﬁers that are capable of generating arbitrarily complex decision boundaries. They have been used successfully in many diverse areas [43]. In this work, we use CART (Classiﬁcation and Regression Trees) classiﬁer. The features we include are the combination of input and output features in IOHMM. 
	-
	-


	5.2.4 Model Selection 
	5.2.4 Model Selection 
	Model selection for co-training includes the choice of hidden states. The choice should come directly from the collection of ground truth activities. 
	Figure
	Figure 5.3: Joint distribution plot of duration and start hour for home (left) and work (right). 
	Figure 5.3: Joint distribution plot of duration and start hour for home (left) and work (right). 


	(a) Home (b) Work 
	As we collected ground truth activities for “Food/Shop”, “Stop in Transit”, “Recreation”, “Personal Business”, and “Travel”, we include these ﬁve secondary activities in the hidden states. 
	-

	We further noticed a signiﬁcant heterogeneity within home and work activities. Temporal proﬁle of home activities in Fig. 5.3a has two major clusters. The upper cluster indicates regular overnight home activities (H) and the lower cluster indicates short stay at home before going to some other activities (H). The temporal proﬁle of work activities in Fig. 5.3b has three clusters. The upper cluster indicates regular “9 to 5” work activities without a break (W). The lower left cluster represents the morning w
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	1. H: cross day home activity that starts before 3:00 am and end after 
	1

	3:00 am. 
	Figure
	Figure 5.4: Deep LSTM Urban Mobility Architectures. The solid nodes represent observed information, while the transparent (white) nodes represent latent random variables. The top layer contains the observed input variables ut; the middle layer contains categorical variables zt (latent in IOHMM since we include secondary activities while observed in LSTM since we only include “home”, “work”, and “other”); and the bottom layer contains observed output variables xt. ht are LSTM cells in the LSTM architecture. 
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	2. 
	2. 
	2. 
	H: other home activities. 
	2


	3. 
	3. 
	W: work activity if it is the only work activity in a day. 
	1


	4. 
	4. 
	W: ﬁrst work activity if there are more than one. 
	2


	5. 
	5. 
	W: second work activity if there are more than one. 
	3


	6. 
	6. 
	W: other work activities. 
	4



	We compare experimentally the basic and extended speciﬁcations (one with 7 activities and the other with 11 activities) in Chapter 7.1. 
	5.3 LSTM Based Urban Mobility Models 
	LSTM models have been extensively used for modeling complex sequences, including natural language, videos and handwriting trajectories. We design 
	a 2-layer LSTM model structure for modeling activity sequences as shown in Fig. 5.4. 
	The top layer models activity transitions between “home”, “work”, and “other” (we treat all secondary activities as “other” since we do not have full ground truth labels for all secondary activities). ut represents the input contextual features similar to the ones speciﬁed in IOHMM models. The only diﬀerence is that we include the observed previous activity (one of “home”, “work”, and “other”) in this feature vector. The reasons are (1) in LSTM models, the previous activity type is observed prior to transit
	t 
	1 

	X
	X Ł. 
	T 

	h
	h
	1

	L(θ)= − (zt = j) · log φ ; θ
	1 
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	tj t=1 j 
	where φ is the softmax function, θis the collection of parameters for this LSTM neural network, and j belongs to one of the activity types “home”, “work” and “other”. 
	1 

	The bottom layer is a mixture density network (MDN) which models the distributions of spatial (location) and temporal (duration) variables xt associated with each activity type zt. MDN was ﬁrst described in [10] and was further developed for handwriting synthesis tasks [27]. The contextual vector ut, ﬁrst layer LSTM cells h, second layer LSTM cells from previous timestamp h, and the current activity type zt are the inputs to the second layer LSTM cells h, which generates the coeﬃcients of the mixture distri
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	arrays representing the component means of the distance to home, distance to work, start time, and duration. σˆ d,t, σˆ d,t, σˆ st,t, and σˆdur,t are M by 1 arrays representing the component standard deviations of the distance to home, distance to work, start time, and duration. ρˆrepresents the correlation between start time and duration. This second layer mixture net
	arrays representing the component means of the distance to home, distance to work, start time, and duration. σˆ d,t, σˆ d,t, σˆ st,t, and σˆdur,t are M by 1 arrays representing the component standard deviations of the distance to home, distance to work, start time, and duration. ρˆrepresents the correlation between start time and duration. This second layer mixture net
	h
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	works is meant to divide “home”, “work”, and “other” activities into smaller and ﬁner components, each has its local spatial-temporal distributions. The loss function for this bottom layer is: 

	TM
	XX 
	L(θ)= − log πN (xt|µˆ, σˆ, ρˆ)
	2 
	2
	i
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	t
	i 
	i

	tt t=1 i 
	where θis the collection of parameters of the neural network used to generate the mixture density distribution coeﬃcients {πˆ, µˆ, σˆ , ρˆ}, i is the index of the mixture component. N is the Gaussian probability density function. 
	2 

	This two-layer structure extends Lin et al. [37] as we moved the modeling of activity types into the ﬁrst layer. Otherwise we keep the same model speciﬁcations and loss functions as in that report. 
	Chapter 6 



	Urban Mobility Prediction 
	Urban Mobility Prediction 
	The problem we are solving in this section is to predict the activity sequence of the rest of day, given partially observed sequences at a cut time (e.g. 9:00 am). This problem can be tackled by breaking it into two inferential subproblems: (1) what an individual has done; and (2) what he/she is likely to do. We will show how these two sub-problems are tackled using IOHMM model and LSTM model, respectively. 
	-

	6.1 Prediction using IOHMM models 
	6.1 Prediction using IOHMM models 
	6.1.1 Filtering 
	6.1.1 Filtering 
	The ﬁrst step is calculating Pr (zt−1 = i | u,...,t−1, x,...,t−1). Since the next activity to be generated depend on the contextual variables such as time of day and day of week information, as well as the previous hidden activity, we need to understand what is the last observed activity. There are two cases: 
	1
	1

	1. 
	1. 
	1. 
	By the cut time, the last observed activity is completed. That is, the person is traveling to the next activity location. This case is simple since we can use standard forward algorithm to estimate the posterior probability Pr (zt−1 = i | u,...,t−1, x,...,t−1) of the last observed activity. One thing to note is that we need to sample a travel time that are longer than the observed travel time from the complete of the last activity to respect the fact that no new activities happened before the cut time. 
	1
	1
	-


	2. 
	2. 
	By the cut time, the last observed activity is not completed. In this case, we apply a modiﬁcation to the forward algorithm: the emission probability of duration of last activity is a survival function: Pr (xt >d| zt = i, ut),
	o 



	t where dis the observed duration of the last activity until the cut time. After the ﬁltering, we sample a new duration with the truncated distribution whose lower bound is dto respect the fact that the activity ends after the cut time. 
	o
	t 
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	o
	t 


	6.1.2 Activity generation 
	6.1.2 Activity generation 
	With the last activity inferred, the activity generation algorithm is same as follows: at the end of this activity the relevant context information ut is updated and the next activity is selected given the newly obtained transition probabilities. Next, the activity duration is sampled from the conditional distribution given the activity type and the start time. Next, the activity location is selected -if the activity is a home or work activity, the exercise is trivial. If not, we calculate the probability o
	(1) 
	(2) 

	Due to the nature of IOHMM, we must ﬁlter out and discard unrealistic activity chains generated in this process. We determine unrealistic activity chains to be chains that do not end the day at home and activity chains where 3 or more of the same activity type occur in a row. These ﬁlters constrain the overall structure of the day to be aligned with a feasible/conventional day structure. For simulation purposes we also ﬁlter activity chains that include long-distance travel out of the Bay Area. 


	6.2 Prediction using LSTM models 
	6.2 Prediction using LSTM models 
	The procedure is straightforward based on Fig. 5.4. The LSTM model ﬁrst calculates h, hbased on observed u,..,t−1 and z,..,t−1. To generate the next activity at timestamp t, we ﬁrst update the contextual vector ut and top LSTM layer h. The softmax outputs of the top layer is used for t. zt, along with ut, h, hare used in the 
	The procedure is straightforward based on Fig. 5.4. The LSTM model ﬁrst calculates h, hbased on observed u,..,t−1 and z,..,t−1. To generate the next activity at timestamp t, we ﬁrst update the contextual vector ut and top LSTM layer h. The softmax outputs of the top layer is used for t. zt, along with ut, h, hare used in the 
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	sampling the new activity type z
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	bottom layer of the model. The sampling of the output variables distance to home, distance to work, and duration from the distributions of mixture density network (MDN) is similar to the ones described in [37, 27]. The rest of the generation process is similar to the generation process of IOHMM model. 
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	Experimental Results 
	Experimental Results 
	In this section, we describe two regional experiments of medium term travel demand forecast at diﬀerent times of day. The master data used in these studies comprise a month of anonymized and aggregated CDR logs collected in Summer 2015 by a major mobile carrier in the US, serving millions of customers in the San Francisco Bay Area. No personally identiﬁable information (PII) was gathered or used for this study. As described previously, CDR raw locations are converted into highly aggregated location features
	-

	The ﬁrst experiment use the City of San Francisco for model selection. We evaluate the prediction performance of diﬀerent models and validate the predictions at individual and aggregated level. The second experiment scales to whole San Francisco Bay Area where we predict the traﬃc conditions based on trained models for commuters from each of the 34 super-districts. We evaluate the resulting traﬃc from micro-simulation and validate it against the resulting traﬃc of observed ground truth data. 
	We choose a typical weekday June 10, 2015 as the target day. For each regular commuter with available data on that day, we slice the data by diﬀerent cut time (e.g. 3:00 am, 4:00 am, ..., 11:00 pm) and predict the activities for the rest of the day based on the observed information by the cut time. 
	-

	7.1 Model Comparison 
	7.1 Model Comparison 
	In this subsection, we evaluate the performance of diﬀerent models and methods. 
	-

	1. NN: Nearest Neighbor model, the benchmark model and the expected upper bound of the performance. NN is a fully personalized model that match the observed trajectory with the trajectory history of the user, and use the matched trajectory as prediction for the rest of day. The distance features we used are (1) diﬀerence in day type (weekday or weekend, 0 if equal and 1 if not), and (2) the Hamming distance between observed partial sequence and each historical sequence by cut time. We calculate the Hamming 
	-

	100) so that NN will search the matching sequence within the same day type. Note that NN model is only used for trajectory matching and does not provide insights and interpretability as other activity models. 
	2. 
	2. 
	2. 
	IOHMM-unsupervised-7: The IOHMM model with 7 hidden states, with the input and output features speciﬁed in Chapter 5.2.3. 

	3. 
	3. 
	IOHMM-co-training-7: The co-training IOHMM model speciﬁed in Chapter 5.2.2. In this model we treat home and work as two activities, thus with 5 secondary activities there are 7 states in total. The threshold parameters for both semi-supervised IOHMM model with EM (θ) and Decision Tree (θ) are 0.9. This threshold is chosen based on literature and validation accuracies on secondary activity recognition. 
	-
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	4. 
	4. 
	IOHMM-co-training-11: In this model we separate “home” and “work” to 6 sub-activities deﬁned in Chapter. 5.2.4. Thus there are 11 states in total. 

	5. 
	5. 
	LSTM-3: The LSTM model speciﬁed in Chapter 5.3. We used 64 hidden units in each LSTM cell and 40 mixture components in the mixture density network (MDN). 

	6. 
	6. 
	LSTM-7: In this model we separate “home” and “work” to 6 sub-activities thus there are 7 activity types including “other”. 


	In Fig. 7.1, we plot how the two validation metrics, (1) median travel distance error (left), and, (2) median Hamming distance (right) change for 
	Figure
	Figure 7.1: Models comparison. Two validation metrics are used: median travel distance error (left) and median Hamming distance (right). The x-axis is the prediction hour (cut hour) and the y-axis is the validation error. Each series of points represents the performance of a model. 
	Figure 7.1: Models comparison. Two validation metrics are used: median travel distance error (left) and median Hamming distance (right). The x-axis is the prediction hour (cut hour) and the y-axis is the validation error. Each series of points represents the performance of a model. 


	diﬀerent cut hours using diﬀerent models. The travel distance error is calculated as the diﬀerence between the observed daily travel distance and predicted daily travel distance. The median error of all users are used in the plot. The travel distance error mainly captures the spatial location choice performance of models. The Hamming distance is calculated as in NN models by segmenting the daily sequence into 96 discrete 15-minutes segments. The median error of all users are used in the plot. The Hamming er
	diﬀerent cut hours using diﬀerent models. The travel distance error is calculated as the diﬀerence between the observed daily travel distance and predicted daily travel distance. The median error of all users are used in the plot. The travel distance error mainly captures the spatial location choice performance of models. The Hamming distance is calculated as in NN models by segmenting the daily sequence into 96 discrete 15-minutes segments. The median error of all users are used in the plot. The Hamming er
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	mobility. The median travel distance error at the beginning of the day using fully personalized model is about 3 miles, and this number is about 5 miles using non-parametric group models. The median Hamming error is 20 at the beginning of the day using fully personalized model, that is, 5 hours of wrongly predicted activities within a day. This error is mainly due to the shift in home and work hours. Since diﬀerent people has diﬀerent start hour of work and preferences on the time of going back home, fully 


	7.2 Aggregated Level Evaluation 
	7.2 Aggregated Level Evaluation 
	We validate the predicted versus observed hourly aggregated travel behavior in this subsection. We adopt the IOHMM-co-training-11 as our urban mobility model. The aggregated pattern is very similar between the best performed IOHMM and LSTM models. 
	-

	Fig. 7.2a shows the average number of activities (y-axis) starting in each hour (x-axis). To make it more informative, we decompose the total number of activities into “home”, “work” and “other”. We can see that the predicted number of activities of each type is quite comparable to the ground truth observed at the end of the day. The same peak of work activities in the morning and home activities in the evening are observed in all predictions and ground truth. The main diﬀerence between our predictions and 
	Fig. 7.2b shows the average travel distance in miles (y-axis) in each hour (x-axis). One observation is that the travel distance of “to work” in the morning peak and “to home” in the evening peak are low compared to “to other”. This is because some people go for secondary activities before arriving at work and home, as shown in Fig. 7.2a. The other observation is that though the predicted number of secondary activities is lower, the travel distances to these locations are higher in our predictions. This ind
	-
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	Figure
	(a) Predicted hourly number of activities 
	Figure
	(b) Predicted hourly travel distance in miles 
	Figure 7.2: Predicted aggregated travel demand. The average number of activities (top) and travel distance in miles (bottom) (y-axis) starting in each hour (x-axis). Each of the four subplot represents the prediction at hour 3:00 am, 9:00 am, 3:00 pm, and the observed ground truth. 
	Figure
	Figure 7.3: The MATSim Cycle [2] 
	Figure 7.3: The MATSim Cycle [2] 



	7.3 Evaluation via Traﬃc Micro-simulation 
	7.3 Evaluation via Traﬃc Micro-simulation 
	In this subsection, we span the scope of the study to the 34 super-districts as deﬁned by the San Francisco Metropolitan Transportation Commission (MTC) to validate the predicted resulting traﬃc in a region with 7.5M citizens. Since most of the short range DASs are located in urban area such as the City of San Francisco, the ground truth secondary activities are rarely available for other super-districts in Bay Area. Thus we train 34 semi-supervised IOHMM model with “home” and “work” as ground truth, one fo
	-
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	The MATSim road network was created using OpenStreetMap (OSM) road network data, downloaded in July, 2015. The user-generated OSM data oﬀers very complete coverage in major metropolitan regions as well as rich feature sets including: link distance, number of lanes, speed limit, and hierarchical road classiﬁcation. A manual inspection of dozens of freeway links in California found the OSM features to be accurate. 
	-

	The data was clipped and ﬁltered using Osmosis, an open source Java application for editing OSM data. The OpenStreetMap Standards and Conventions deﬁne tags for classifying roads hierarchically. There are 14 tags which encompass nearly all road links in the dataset. These range from “motorway” and “trunk” down to “residential” and smaller hierarchical classes. We found that for the Bay Area, the “residential” links constitute 74% of all links in the network. By ﬁltering out the “residential” links, we were 
	-
	-
	-
	-

	Once ﬁltered, the geometry was simpliﬁed to a straight-line network to improve simulation speeds. Each intersection is a node, and a straight edge represents the road link connecting two intersections. To maintain realistic travel time skims, attributes of the original geometry network are preserved as attributes of link objects: length and free-ﬂow travel speed. The ﬁnal network used in the Smart Bay studies includes 564,368 links, and 352,011 nodes. 
	Our experiment is as follows: For each cut time (e.g. 3:00 am, 9:00 am, 
	3:00 pm, 9:00 pm), we compared the results of the ﬂows produced on the Bay Area network containing all freeways and primary and secondary roads (a total of 24’654 links) from the predicted activity sequences with the ground truth activity sequences. The ﬁt score (1) adjusted R; (2) mean absolute percentage error (MAPE, %) are summarized in TABLE 7.1. Fig. 7.4 plots the volume proﬁles of two freeway locations, one near the entrance of bay bridge in the eastbound and the other near the crossing of I-880 and U
	2

	TABLE 7.1 proves that we can use observed information of the day to improve traﬃc volume prediction. The coeﬃcient of determination increase and the MAPE decrease with the prediction hour. When we make prediction 
	TABLE 7.1 proves that we can use observed information of the day to improve traﬃc volume prediction. The coeﬃcient of determination increase and the MAPE decrease with the prediction hour. When we make prediction 
	Table 7.1: The coeﬃcient of determination (R) and mean absolute percentage error (MAPE, %, in the parenthesis) of the predicted versus ground truth resulting traﬃc counts on 600 locations on the Bay Area road network. The row index is the prediction hour and the column index is the predicted hour. No scores are reported under diagonal because the traﬃc in the predicted hour is already observed by the prediction hour. 
	2
	-


	36 9 1215182124 
	1 
	1 
	1 
	0.864 0.881 0.876 0.890 0.891 0.924 0.896 

	(0) 
	(0) 
	(38.1) (16.2) (18.0) (19.1) (14.2) (14.5) (19.7) 


	3 
	--0.997 0.977 0.947 0.931 0.934 0.937 
	9 
	--(2.9) (9.0) (14.1) (10.8) (13.4) (15.1) 
	----0.995 0.962 0.960 0.955 
	15 
	----(4.4) (8.8) (11.1) (13.0) 
	------0.9990.998 
	21 
	------(2.1) (3.8) 
	at the beginning of each hour, we can improve the coeﬃcients of determination in that hour to be greater than 0.99 and the MAPE less than 5%. The artifact of perfect prediction of 3:00 am is because we deﬁned the start of the day as 3am, there should be few traﬃc occurring during that hour. If we predict three hours ahead (e.g. prediction of 6:00 pm traﬃc at 3:00 pm), the coeﬃcients of determination are greater than 0.96 and the MAPEs are less than 10% (except for the prediction for 6:00 am). The lower pred
	-
	-

	Figure
	Figure 7.4: A fragment of the SF Bay Area road network. Inlet graphs illustrate two sample hourly vehicle volume proﬁles for observed (orange) and predicted (blue) at 3am, 9am, 3pm, and 9pm. 
	Figure 7.4: A fragment of the SF Bay Area road network. Inlet graphs illustrate two sample hourly vehicle volume proﬁles for observed (orange) and predicted (blue) at 3am, 9am, 3pm, and 9pm. 
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	Conclusion and Recommendations 
	Conclusion and Recommendations 
	In this report, we proposed a medium term travel demand nowcasting system. It predicts daily travel demand and traﬃc conditions at diﬀerent times of day with partially observed user traces from cellular data and pre-trained urban mobility models. This solution bridges the gap between long term forecast (days, months to years ahead) and short term prediction (seconds to hours ahead), which are the two mainstreams of literature in travel demand forecasting. 
	We improved the state-of-the-art deep generative parametric mobility models using co-training in IOHMM and LSTMs. We provided partially observed user traces at diﬀerent times of day to these models and generated the complete daily sequences. We validated the results with the ground truth sequences based on (1) individual level discrepancies; (2) aggregated level hourly travel demand; and (3) the resulting traﬃc through micro-simulation. A non-parametric individualized nearest neighbor model was explored as 
	We improved the state-of-the-art deep generative parametric mobility models using co-training in IOHMM and LSTMs. We provided partially observed user traces at diﬀerent times of day to these models and generated the complete daily sequences. We validated the results with the ground truth sequences based on (1) individual level discrepancies; (2) aggregated level hourly travel demand; and (3) the resulting traﬃc through micro-simulation. A non-parametric individualized nearest neighbor model was explored as 
	-
	-

	to be better at learning long term dependencies. Future research will focus on incorporating activity types in LSTM models and using existing ground truth labels to direct the learning process of LSTM models. 

	We consider San Francisco residents as a group in the ﬁrst experiment and each super-district as a group in the second experiment. We trained one urban mobility model for each group. However, certain heterogeneity in activity patterns exists among diﬀerent sub-groups. Correctly partitioning the population into sub-groups should help us better approach the limit of the predictability in human mobility. We acknowledge it as a current limitation of the report. 
	In terms of traﬃc volumes, our experiments show promising results of medium term forecast. We have reached a MAPE of less than 5% one hour ahead and 10% three hour ahead. Results also show that we can improve the prediction accuracy by incorporating more of the observed data by the time of prediction. Our prediction of traﬃc conditions is available not only for freeways and arterial where high-resolution detectors data are available from direct observations. Our system provides accurate prediction for the w
	-
	-
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