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Abstract 

Driven by the necessity to meet changing public expectations in the wake of natural disasters, such 

as earthquakes, the structural engineering community is moving towards more rational, risk-

informed, and transparent approaches to structural design, amidst which probabilistic 

performance-based seismic design (PBSD) has emerged as the most scientific and promising one. 

However, performance-based earthquake engineering (PBEE), owing to its esoteric nature, has 

faced issues of impeded implementation in seismic design practice, especially in the area of bridge 

engineering. The main objective of this research is to lay the groundwork for the formulation of a 

simplified, yet rigorous, framework for risk-targeted PBSD of Ordinary Standard Bridges (OSBs) 

in California. Rooted in the formulation of this design framework is the PBEE assessment 

methodology, developed at the Pacific Earthquake Engineering Research (PEER) Center, 

integrating site-specific seismic hazard analysis, structural demand analysis, and damage analysis 

in a comprehensive and consistent probabilistic framework. Following an implementation of the 

PEER PBEE methodology, incorporating various improvements from the state-of-the-art literature 

related to its various steps, and an application of it for the damage hazard assessment of four 

distinct OSBs in California, a parametric full-blown probabilistic seismic performance assessment 

of the testbed bridges is carried out to investigate the effects of varying key, or primary, structural 

design parameters on the estimated damage hazard. The parametric study indicates irregular levels 

of conservativeness exhibited by the as-designed testbed bridges and illustrates the need for a 

PBSD framework for OSBs such that explicitly stated risk-targeted performance objectives are 

consistently satisfied by the population of OSBs in California. Finally, a simplified risk-targeted 

PBSD methodology is distilled out of this project which can be used to: (i) locate a feasible design 

point in the primary design parameter space of a bridge being designed for multiple risk-based 

performance objectives; and (ii) delineate a feasible design domain containing other acceptable 

design options in the primary design parameter space thereby facilitating risk-informed design 

decisions/adjustments. It is believed that the adoption of the proposed PBSD methodology, 

although non-traditional in its format, will be extremely beneficial in the medium and long-term. 

This initial venture will also prove to be crucial in supporting and fostering future research work 

and innovative technological developments in bridge infrastructure engineering. 
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1 Introduction 

1.1 Background 

Traditional seismic design philosophy for earthquake resistant structures permits them to deform 

beyond elastic limits and thereby yield, incur damage, and dissipate energy as long as collapse is 

prevented. The main requirements of such a design philosophy can be summarized as: 

(i) No, or unnoticeable damage to structural and non-structural elements should be incurred 

in the event of small earthquakes; 

(ii) Minor and repairable damage to structural and non-structural elements is admissible in the 

event of an earthquake of moderate intensity; and 

(iii) Severe structural damage is allowed for strong earthquakes, if collapse is prevented. 

With the above being the overarching requirement of seismic design codes to date, all design codes 

can be considered performance-based, although partially. The idea has always been to design 

structures such that a performance objective, usually that of collapse prevention, is achieved. 

Traditionally, this fulfilment of structural performance goals along with certain functional 

requirements has been carried out by means of prescriptive measures, primarily empirical. A 

deterministic approach to the design of structural systems, wherein loads and resistances are 

considered deterministically quantifiable without any uncertainty, has been predominant until 

recently. According to this approach, structural members are designed to have their capacities 

exceed the demands expected to be imposed on them by a certain margin. The capacity-to-demand 

ratio, also known as safety factor, is considered to be a measure of structural reliability. Experience 

and engineering judgment have dictated the prescription of values for structural loads/demands, 

capacities, and safety factors in codes of practice. 

The structural engineering profession’s realization of uncertainties inherent in structural loads and 

strengths has led to the advent of structural reliability and risk analysis in structural design. A 

reflection of this can be seen in the form of Load and Resistance Factor Design (LRFD) in newer 

design codes wherein partial safety factors are applied to characteristic values of uncertain loads 

and resistances to ensure the safety of a structural member. LRFD aims to ensure that a factored 
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load is less than or equal to the factored strength, where the partial safety factors are derived 

based on calibration to desired measures of reliability obtained by probabilistic methods. 

Due to the large uncertainty associated with seismic loads by virtue of random occurrence time 

and space (source-to-site distance), magnitude, seismic wave transmission path (seismic wave 

attenuation), local site/soil condition, etc., and hence the structural response under the same 

owing to uncertain structural properties (e.g., material and geometric properties) and structural 

capacity to withstand such loads, seismic design and evaluation of structures calls for the 

inclusion of methods of probability and statistics in order that these uncertainties be properly 

quantified, and their effects adequately taken into account. However, the handling of uncertain 

seismic loads to date has primarily been limited to the selection of design ground motion 

parameters based on a certain return period (i.e., seismic hazard level). Henceforth, the treatment 

becomes tacit by way of designing conservative structural systems to ensure that structural 

capacities are not exceeded by the demands. A lack of explicit consideration of the uncertainties 

prevalent in structural loads (which themselves depend on structural properties) and resistances 

deem such a design to be one of questionable reliability. 

Also, from experiences of severe damage and losses incurred during recent earthquakes, such as 

the 1994 Northridge, 1995 Kobe, 1999 Kocaeli Turkey and Chi-Chi Taiwan earthquakes, 2010 

Maule Chile, 2010 Canterbury and 2011 Christchurch New Zealand earthquakes, an urgent need 

to amend the seismic design framework has arisen (Wen 2004). An important observation from 

these recent earthquake events is that structures complying with seismic codes based on 

traditional design philosophy, although having performed satisfactorily as per their design 

objectives, did not perform equally well in terms of resiliency and public expectation, and 

thereby failed to serve the community (Günay and Mosalam 2013). This realization highlighted 

the need for refining the definition of performance goals such that they hold reliably well for the 

stakeholders and society as a whole. Societal expectations of structural performance can only be 

met by explicit statements of performance objectives in terms of the risk associated with well-

defined performance levels, rather than ambiguous and misleading statements of “collapse 

prevention” that is assumed, and not directly checked, to be engendered upon satisfaction of 

prescriptive measures. Performance objectives stated in terms of the risk associated with 

performance levels (e.g., exceedance of damage/limit-states and/or specific values of monetary 

loss/deaths etc.) will not only allow an active participation of the public/stakeholders in the 

design/decision making process thereby 2 



 

 
 

    

      

     

    

      

       

 

     

 

   

      

  

   

  

  

     

 

   

    

     

     

   

       

  

  

  

   

        

 

         

making it more rational, scientific, and transparent, but also lead to greater societal awareness of 

earthquake risk and consequences (May 2001). Consistent incorporation, quantification, and 

propagation of the inherent uncertainties involved at various stages of the design process are 

therefore inevitably called for. The necessity of having quantitative methods ensuring adequate 

performance of structures, i.e., satisfaction of multiple risk-targeted performance objectives within 

a confidence level, laid the path towards the development of performance-based earthquake 

engineering and design. 

Identification and filling of knowledge gaps in earthquake engineering, accelerated through 

advancement in technology and the availability of tremendous computational power has made it 

possible for researchers to make substantial progress in the domain of performance-based 

earthquake engineering and design whereby prescriptive measures have become more and more 

conceptual, rather than empirical. Fueled by the societal demands of improved life safety, economy 

and resiliency, the structural engineering community has made some considerable advancement in 

the realm of performance-based earthquake engineering over the last few decades, consistently 

improving over time and culminating in the fully probabilistic, rigorous and advanced assessment 

framework (Krawinkler and Miranda 2004; Moehle and Deierlein 2004; Porter 2003; etc.) 

developed by the researchers at the Pacific Earthquake Engineering Research (PEER) Center. 

The PEER performance-based earthquake engineering (PBEE) methodology has been mainly 

developed for analysis and assessment and not directly for design, except for some initial efforts 

(Cornell et al. 2002; Mackie and Stojadinović 2007), but has recently been recommended as a 

future alternative for bridge seismic design (NCHRP 2013). The inherent theoretical complexity 

of the full-blown PEER PBEE methodology also adds to its hampered implementation in 

engineering and design practice. The proposed research to be conducted in this project will thus 

focus on bridging the gap existing between the theoretical rigor of the PEER PBEE framework 

and its practical implementation in the design of bridges, which is also a less trodden area in terms 

of performance-based earthquake engineering applications as compared to building structures. 

1.2 Research Objectives and Scope 

This project is aimed to deliver performance-based seismic design (PBSD) guidance for Ordinary 

Standard Bridges (OSBs) in California. OSBs, i.e., conventional, multiple span, skewed reinforced 

concrete bridges, are the most common bridges in California. They are designed in-house by the 
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California Department of Transportation (Caltrans) and are chosen as bridge testbeds in this project 

to determine whether the reported benefits of using a performance-based design approach over the 

current bridge design procedure used by Caltrans are significant or not. 

Rooted in the formulation of the targeted PBSD framework is the four-step PEER PBEE 

assessment methodology integrating (1) site-specific seismic hazard analysis, (2) structural 

demand analysis, (3) damage analysis, and (4) loss analysis in a comprehensive and consistent 

probabilistic framework. This assessment methodology involves a sequential execution of the four 

above mentioned analytical steps pieced together (integrated) using the Total Probability Theorem 

of probability theory to arrive at an estimate of a performance measure, e.g., the mean annual rate 

(MAR) at which a damage/limit-state is exceeded, and/or the MAR at which a decision variable 

(e.g., monetary loss, deaths, etc.) exceeds a value of interest. Performance measures considered in 

this study are the MARs or, equivalently, their reciprocals which are the mean return periods (RPs) 

of limit-state exceedances for a selected set of limit-states. The task of probabilistically predicting 

the future seismic performance (in terms of damage) of a bridge is, therefore, broken down into 

the following three steps: Probabilistic Seismic Hazard Analysis (PSHA) in terms of a ground 

motion intensity measure ( )IM

( s)EDP

, Probabilistic Seismic Demand Hazard Analysis (PSDemHA) in 

terms of engineering demand parameters , and Probabilistic Seismic Damage Hazard 

Analysis (PSDamHA) for various limit-states of interest. It is noted that the fourth and final step 

of the PEER PBEE assessment methodology, i.e., probabilistic seismic loss hazard analysis, is 

kept outside the scope of this work. 

While moving towards accomplishing the central objective of a PBSD framework for OSBs, 

completion of the following tasks is achieved during this project: 

(i) Selection of testbed bridges for this study based on previous Caltrans funded research 

projects, revisiting inherited finite element models of these testbed bridges, and 

incorporation of improvements in the finite element modeling approach employed for these 

bridges. 

(ii) Incorporation of improvements of several aspects in the various stages of the state-of-the-

art PEER PBEE assessment methodology. This includes: (1) introduction of an improved 

earthquake to account for structural period elongation caused by damage during an 

earthquake, and the lack of certainty in identifying the period of the predominant mode of 
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vibration of a reinforced concrete OSB; (2) conditional mean spectrum-based hazard-

consistent site-specific ground motion selection for the ensemble nonlinear time-history 

analyses involved in the PSDemHA stage; (3) introduction of material strain-based 

which are better correlated to damage (Priestley et al. 2007) than are traditionally use

sEDP

sEDP

d 

displacement based (e.g., column drift, plastic hinge rotation); (4) identification of 

material strain-based limit-states of interest, viz., concrete cover crushing/spalling, 

initiation (onset) of longitudinal rebar buckling and initiation (onset) of longitudinal bar 

fracture, which are pertinent to the seismic evaluation of bridge structures and physically 

meaningful to practicing bridge engineers, and finally (5) development of strain-based 

normalized fragility functions, required in the PSDamHA stage, for the considered limit-

states through proper identification of previous experimental/numerical research programs, 

experimental/numerical data, and appropriate capacity prediction equations for 

normalization. 

(iii) Documenting a comprehensive treatise on the first three steps, i.e., PSHA, PSDemHA, and 

PSDamHA, of the PEER PBEE assessment methodology. This exposition of the PEER 

PBEE assessment framework revisited and applied to a set of testbed OSBs is expected to 

serve in the interest of the structural engineering community and bridge any knowledge 

gap, whatsoever, that is holding back a full-fledged PBSD method from being implemented 

in bridge design practice. 

(iv) A fully automated and portable (in terms of computational platform, i.e., easily scalable 

from a desktop computing environment to cloud-based supercomputing environments) 

implementation of the improved version of the PEER PBEE assessment methodology for 

probabilistic performance assessment of OSBs. 

(v) Numerical seismic performance-based assessment of the selected testbed bridges using the 

implemented improved PEER PBEE assessment methodology. 

(vi) Conceptualization of a generalized workflow for a full-blown parametric probabilistic 

seismic performance assessment applied to OSBs (i.e., probabilistic performance-based 

assessment of parametrically redesigned versions of the testbed OSBs) and a fully 

automated and computationally portable implementation of the same making use of high-

throughput computing to solve an embarrassingly parallelizable problem. 
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(vii) Development and formulation of a simplified, risk-targeted PBSD framework for OSBs 

accommodating multiple risk-based design objectives with target levels of risk to be 

specified based on risk tolerance of the engineering community and society. 

Risk-targeted performance-based design is undoubtedly the most advanced design methodology 

that will shape the seismic design philosophy of future design codes (Cornell and Krawinkler 2000; 

Ellingwood 2008; NCHRP 2013). PBSD also presents a novel way of approaching design and 

construction technologies, allowing the tailoring of structural design to meet changing public 

expectations in the wake of natural disasters such as earthquakes (Ellingwood 2008). The targeted 

PBSD framework will provide a more rational, scientific, consistent, and transparent design 

process, thus resulting in more reliable estimates of bridge safety against various limit-states of 

interest. It is believed that the adoption of the targeted PBSD framework will equip practicing 

bridge engineers with scientific and risk-informed approaches towards building economic and safe 

bridge structures, especially with regard to the seismic hazard. This will be extremely beneficial 

to Caltrans in the medium to long-term. This initial venture will also prove to be crucial in 

supporting and fostering future research work and innovative technological developments in 

bridge infrastructure engineering that might lead to significant financial savings in the long term. 

1.3 Organization of Report 

Details of this research work has been comprehensively documented in the form of this technical 

report which consists of eleven chapters. Brief accounts of the contents of these chapters are 

outlined below. 

Chapter 1 serves as an introduction by posing the need to revise the traditional seismic design 

philosophy and solve problems of structural design in a rigorous probabilistic, risk-targeted, 

performance-based context. The research objectives of this work are also outlined in this chapter. 

A thorough literature review on the history and development of performance-based engineering, 

particularly applicable to structural – and especially bridge – engineering practice is presented in 

Chapter 2. This chapter also familiarizes the reader with the PEER PBEE assessment 

methodology by succinctly going over each analytical step of this methodology. 
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Chapter 3 introduces four distinct ordinary standard bridge structures in California located in 

regions with disparate levels of seismicity. A brief description of these OSBs, selected as testbed 

structures for this project and the remainder of the report, is also presented in Chapter 3. 

Chapter 4 elaborates on the details of inherited and subsequently improved (during this project) 

nonlinear finite element computational models of the selected testbed OSBs and the analysis setup 

for nonlinear response-history analysis of these bridge models 

The following four chapters expound on the first three steps of the PEER PBEE framework 

revisited and applied to the set of selected testbed OSBs. Chapter 5 presents the details of 

Probabilistic Seismic Hazard Analysis which produces a probabilistic description of the seismic 

hazard at the site of each selected testbed bridge in terms of an improved ground motion intensity 

measure. Based on the results of PSHA, discrete seismic hazard levels of interest are identified 

and the probability structures of target ground motion response spectra corresponding to these 

seismic hazard levels are derived. A novel ground motion selection algorithm is then invoked to 

select ensembles of risk-consistent site-specific ground motion records corresponding to the 

seismic hazard levels of interest. 

Before moving on to Probabilistic Seismic Demand Hazard Analysis, deterministic seismic 

response analyses of the testbed bridge models are conducted, the details of which are discussed 

in Chapter 6. Results of nonlinear time-history analyses of the finite element models of these 

bridges subjected to a single ground motion record, rather than an ensemble of records, at a few 

seismic hazard levels are reported and compared. 

Probabilistic Seismic Demand Hazard Analysis, the second step of the PEER PBEE framework, 

is deliberated in Chapter 7. Practical limit-states of interest, which are pertinent to the seismic 

evaluation of bridge structures and meaningful to practicing bridge engineers, are identified and 

corresponding to each limit-state, a novel strain-/deformation-based engineering demand 

parameter is defined. Details of PSDemHA and the probabilistic characterization of the imposed 

seismic demand, in terms of the chosen engineering demand parameters, are presented. 

Chapter 8 describes the third step of the PEER PBEE framework, i.e., Probabilistic Seismic 

Damage Hazard Analysis, which is also the final step considered in this work. Predictive capacity 

models and fragility functions corresponding to the selected set of limit-states are defined and the 
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mean annual rates (or mean return periods (RPs)) of exceeding each of the limit-states of interest 

are evaluated for the considered testbed bridges. 

Chapter 9 elaborates on the assembly, implementation, and automation of a parametric full-blown 

probabilistic seismic performance assessment framework for OSBs in California. Parametric 

probabilistic seismic performance assessment of the testbed OSBs (i.e., probabilistic performance-

based assessment of parametrically redesigned versions of the testbed OSBs) are carried out to 

investigate the effects of varying key, or primary, structural design parameters on the mean RPs 

of LS exceedances. A two-dimensional design space is defined in terms of two primary design 

variables to which the exceedances of the selected set of limit-states are believed to be most 

sensitive. Feasible design domains, i.e., collection of design points in the two-dimensional design 

parameter space with mean RPs of limit-state exceedances higher than or equal to respective 

specified target mean RPs, are identified. Seismic performances of the as-designed versions of the 

considered testbed bridges are compared with those of the parametrically re-designed versions of 

these bridges. This framework forms the basis for the simplified risk-targeted performance-based 

seismic design procedure distilled out of this project (discussed in the next chapter) for OSBs in 

California. 

A simplified risk-targeted performance-based seismic design methodology is proposed in Chapter 

10 in lieu of the parametric full-blown method presented and discussed in Chapter 9. The purpose 

of the simplified methodology is to provide an alternative method to the full-blown one in 

obtaining: (1) a final design point in the primary design parameter space of a bridge being designed 

for multiple risk-targeted performance objectives, and (2) a feasible design domain in the primary 

design parameter space of the bridge, while requiring much lower and practicable computational 

cost than that of the full-blown parametric method. 

Finally, a concluding chapter, Chapter 11, summarizes the work performed, provides a highlight 

of the results obtained, and throws light on several avenues for future research work in this area. 
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2 Literature Review of Performance-based Design with Application 

to Bridge Engineering 

2.1 Introduction 

The Pacific Earthquake Engineering Research (PEER) Center is not the only organization that has 

worked towards the development of performance-based engineering, in general. The PEER 

performance-based earthquake engineering (PBEE) methodology is the culmination of years of 

research, implementation and progress made in multi-disciplinary branches of engineering by 

various researchers and numerous organizations. Performance-based engineering lies in the heart 

of all fields of engineering that entail decision making under uncertainties, risk analysis, and 

structural reliability. Whenever a system is to be designed or assessed in an environment where 

there is an uncertain hazard leading to uncertain demands on the system, which in turn has an 

uncertain resistance, thereby leading to uncertain levels of damage, performance-based 

engineering provides the most scientific and rational way towards a design and assessment process. 

Being rooted in the broader area of structural reliability and quantitative risk assessment, 

performance-based engineering is not restricted to earthquake engineering only. It has been in 

practice in the nuclear industry (Cornell and Newmark 1978; Kennedy et al. 1980; Kennedy and 

Ravindra 1984; Shinozuka et al. 1984; etc.), and offshore/marine engineering (De 1990; Guenard 

1984; Marshall 1969; Moan 1994; Moan and Holand 1981; etc.) for quite some time now, where 

quantitative risk assessment plays a significant role. Earlier works in probabilistic risk assessment 

of civil engineering facilities (Ellingwood 2001; Ellingwood and Ang 1974; etc.) are also worth 

mentioning in this regard. 

This Chapter provides a brief account of performance-based engineering, particularly as it relates 

to the history and current state-of-the-art of earthquake engineering assessment and design practice 

of structural systems, in general. The discussion in this Chapter is gradually narrowed down to the 

applicability of PBEE in the seismic design of the testbed structural systems to be considered in 

this research work, i.e., ordinary or conventional bridges in California. 
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2.2 History and Development of Performance-based Earthquake Engineering 

Before being shaped by PEER in its most scientific and rigorous form, performance-based seismic 

engineering had evolved over a period of decades in the building industry. Advancement in seismic 

hazard analysis (Cornell 1968) started showing up in the evolution process of PBEE as the seismic 

input began to be rationally and probabilistically considered, although partially, by way of 

introducing the concept of a design earthquake associated with a certain return period (ATC-3-06 

1978). Over a few years, the description of seismic input became more elaborate with the 

introduction of a more severe hazard level, viz. the Maximum Considered Earthquake (ASCE-7-

02 2002), however, the design and assessment of structures continued to be followed based on a 

deterministic structural behavior. The first generation PBEE, although implemented with the 

correct intention, thus fell short of a thorough and exhaustive quantitative implementation by 

disregarding the various uncertainties associated with the entire design and assessment process. 

A sudden and more recent (during early 90’s) spike in the advancement of PBEE occurred with 

the need to assess existing structures for safety. The Structural Engineering Association of 

California (SEAOC) came up with the Vision 2000 report where structural performance objectives 

were defined in terms of performance levels (see Figure 2.1), viz. Fully Operational, Operational, 

Life Safety, and Near Collapse at different levels of seismic hazard, for example, Frequent (43 yr. 

return period), Occasional (72 yr. return period), Rare (475 yr. return period) and Very Rare (970 

yr. return period). Other documents like FEMA-273 (1997) and FEMA-356 (2000) followed a 

similar approach to develop a performance-based framework by associating discrete levels of 

performance with discrete hazard levels, the difference with Vision 2000 (SEAOC 1995) lying in 

the definition of these levels. However, all throughout these stages of development of the 

framework, performance evaluation was primarily done deterministically by comparing element 

forces and deformation to prescriptive limits and acceptance criteria. These criteria were derived 

based on laboratory tests, simplified analytical models, or plain engineering judgment. 

Furthermore, element or component performance was assumed to be indicative of a global system 

performance which is not necessarily always true. Also, the performance measures, in terms of 

element forces and deformations, used in the 1st generation PBEE were not of direct interest to the 

stakeholders which led to a gap in the process of decision making between engineers and the 

public. 
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Figure 2.1 Vision 2000 (SEAOC 1995) performance matrix 

These shortcomings of the 1st generation PBEE were attempted to be resolved through the 

development of a more robust, and technically sound framework at PEER. The performance-based 

framework developed at PEER provides a more transparent process in which performance 

objectives are explicitly stated as measures of monetary losses, downtime, and deaths, that make 

more sense to stakeholders, and all pertinent sources of uncertainty are included in the analysis 

procedure. As the structural engineering community aims to move toward more rational, risk-

informed approaches to structural design and assessment, the paradigm of performance-based 

engineering is expected to provide technical support for this move and a novel way to tailor 

structural design to meet the changing public expectation after disasters (public’s risk tolerance). 

The placement of structural performance classification on the basis of acceptable risk is the key 

feature of this methodology developed at PEER. 

The PEER PBEE methodology has been used extensively by the United States Federal Emergency 

Management Agency (FEMA) and the Applied Technology Council (ATC) to develop a new 

generation of performance-based seismic design (PBSD) guidelines (FEMA-445 2006) for 

structural engineering practice. In recent years, PBEE has been followed in designing the seismic 

force resisting system of a number of tall buildings in the western U.S. (Ellingwood 2008). PBEE 

will continue to shape the core of future seismic design codes. Design methodologies for port 

structures are moving towards performance-based (PIANC 2001). This trend has also been 

followed by port owners and code developers who have issued design guidelines for seafront 
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structures (Johnson et al. 2013; Port of Long Beach 2009; Port of Los Angeles 2010) and has now 

reached a national level with the publication of the Seismic Design of Piers and Wharves Code 

issued by ASCE/COPRI (2014). This code incorporates elements of PBSD and, in prescriptive 

language, states performance objectives as well as damage limit-states. 

The PEER PBEE formulation has also been extended to other engineering fields such as blast 

engineering (e.g., Whittaker et al. 2003), fire engineering (e.g., Rini and Lamont 2008), tsunami 

engineering (e.g., Keon et al. 2016; Riggs et al. 2008), wind engineering (e.g., Augusti and 

Ciampoli 2008; Ciampoli and Petrini 2012; Ciampoli et al. 2011; van de Lindt and Dao 2009), 

hurricane engineering (e.g., Barbato et al. 2013; Masters et al. 2010), offshore engineering (e.g., 

Nezamian and Morgan 2014) and aerospace engineering (e.g., Gobbato et al. 2012; Gobbato et al. 

2014). 

2.3 PEER PBEE Assessment Framework 

This section aims to present the PEER PBEE framework in detail elucidating all the steps included 

therein (Krawinkler and Miranda 2004; Moehle and Deierlein 2004; Porter 2003; etc.). Firstly, the 

forward analysis/assessment side of the framework is presented followed by its application to 

design which is basically an inverse probabilistic performance-based assessment. 

2.3.1 Performance-based Analysis and Assessment of New and Existing Structures 

The PEER PBEE methodology breaks down the task of predicting probabilistically the future 

seismic performance of a structure into four analytical steps pieced together (integrated) using the 

Total Probability Theorem (TPT) as shown in Figure 2.2. These steps are: (1) probabilistic seismic 

hazard analysis in terms of a ground motion intensity measure ( )IM

( s)EDP

( s)DV

, (2) probabilistic seismic 

demand analysis given , in terms of engineering demand parameters , (3) probabilistic 

capacity analysis (or fragility analysis) and probabilistic damage analysis for various limit-states 

associated with the critical potential failure modes of the structure in concern, and (4) probabilistic 

loss analysis for decision variables , that are of great interest to stakeholders. 
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Figure 2.2 PEER performance-based earthquake engineering methodology (adapted from Porter 
(2003)). Notation: ( )| |X YG x Y y= X

( )IM x

1( , )aS T 

1( , )dS T 

{ }IM x

fltN =

= conditional complementary CDF of given Y

( )
iRf r

. 

2.3.1.1 Probabilistic Seismic Hazard Analysis (PSHA) 

The objective of PSHA is to compute for the site of the considered structure, the mean annual rate 

(MAR) (or annual probability) of exceeding any specified value x of a specified ground 

motion Intensity Measure ( )IM

i =

( )iM

. The latter is usually taken as a structure-independent ground 

motion parameter (e.g., peak ground acceleration (PGA), peak ground velocity (PGV), Arias 

intensity, Housner’s spectrum intensity) or more often as a structure-dependent ground motion 

parameter such as the first-mode pseudo-spectral acceleration, , or the spectral 

displacement at the expected predominant period. For a given site, PSHA integrates the 

contribution of all possible seismic sources to calculate the MAR of random events 

according to the TPT as 

( )   ( ) ( )
flt

1
| ,

i i

i i

N

IM i i i M R
i R M

x P IM x M m R r f m f r dm dr 
=

=  = =       (2.1) 

where number of causative faults; MAR of occurrence of earthquakes on fault (or 

seismic source) i

( )iR

. The functions ( )
iMf m and denote the probability density functions 

(PDFs) of the magnitude and source-to-site distance , respectively, given the occurrence 
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of an earthquake on fault i . The conditional probability  | ,i iP IM x M m R r = = in Eq. (2.1) is 

referred to as attenuation relationship (predictive relationship of 

M

( )IM x

given seismological variables 

and R ), is typically developed by applying statistical regression analyses to recorded 

earthquake ground motion data. The seismic hazard curve at a given site accounts for the 

uncertainty of due to the randomness of the time and spatial occurrences of future earthquakes 

affecting the site, as well as the uncertainties related to the seismic wave propagation path and the 

local site conditions. The random occurrence of earthquake in time is commonly modeled using 

the Poisson model. For small values of , typical of large earthquakes of interest to structural 

engineers, the value of the MAR and the corresponding annual probability of occurrence almost 

coincide. 

2.3.1.2 Probabilistic Seismic Demand Hazard Analysis (PSDemHA) 

The next step in the PEER PBEE methodology is to estimate in probabilistic terms the seismic 

demand that future possible earthquake ground motions will impose on the structure. The objective 

of PSDemHA is to compute the MAR, ( )EDP 

EDP

( , , )IEDP IM y EDP

y

I ( )EDP 

EDP

 |P EDP IM x =

 |P EDP IM x =

( )IM x

, that a given structural response parameter 

(referred to Engineering Demand Parameter, ) exceeds any specified value  as (Zhang 

2006) 

( ) ( ) ( ), , |EDP I IM
IM

P EDP IM IM x d x    =  =    y (2.2) 

where denotes the dependence of on the best estimates (expected values) 

of the system properties Y , the ground motion intensity measure , and the record-to-record 

variability . Thus, according to Eq. (2.2), the demand hazard curve is obtained as the 

convolution of the conditional complementary CDF (CCDF) of the given , 

, with the seismic hazard curve . The conditional CCDF 

is obtained through subjecting the FE model of the considered structure 

through ensembles of scaled earthquake records. 
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2.3.1.3 Probabilistic Seismic Damage Hazard Analysis (PSDamHA) 

The objective of the third step of the PEER PBEE methodology is to compute the MAR of 

LS , LSexceedance of a specified damage/limit-state . Although in reality, there is a continuous 

progression of physical damage in a structure subjected to a damaging load, we typically focus on 

discretely observed (Veletzos et al. 2008) or prescribed (ASCE 2013) damage-states. For example, 

discrete damage-states for reinforced concrete bridge piers include the onset of concrete cracking, 

concrete spalling, bar buckling, fracture of transverse and longitudinal reinforcement. The MAR 

of exceedance of a specified damage/limit-state can be obtained as (Conte and Zhang 2007; Zhang 

2006): 

  ( )|LS EDP
EDP

P LS EDP d   = =  (2.3) 

where  |P LS EDP = LS

EDP

 |P LS EDP =

LS , LS

 |P LS EDP = ( )EDP 

denotes the probability that the damage/limit-state is reached or 

exceeded given that the associated is equal to the specific value 



EDP

. This probability quantity, 

, viewed as a function of is referred to as a fragility function or fragility curve 

in the literature. Thus, according to Eq. (2.3), the MAR of exceedance of a specified damage/limit-

state , is obtained mathematically as the convolution of the corresponding fragility curve, 

, and the seismic demand hazard curve of the associated . A 

fragility curve is typically developed based on the joint use of a simplified (design code type) 

analytical, semi-analytical or empirical predictive capacity model for this limit-state and 

experimental data collected from an ensemble of specimens for this limit-state (e.g., Berry and 

Eberhard 2004; Berry and Eberhard 2005). In the absence of experimental data for a given limit-

state (e.g., structural system limit-states), fragility curves are obtained through numerical 

simulation of the structural response behavior using reliable (e.g., validated at the component 

level) FE structural models (e.g., Mackie and Stojadinović 2004; Nielson 2005) 

2.3.1.4 Probabilistic Seismic Loss Hazard Analysis (PSLHA) 

In the PEER PBEE methodology, the probabilistic performance assessment results reviewed above 

can be propagated further to decision variables ( s)DV that relate to loss of life, cost (direct and 

indirect), and downtime and are of great interest to property owners. The objective of probabilistic 
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seismic loss analysis is to assess sDV

sDV

( s)EDP

( )DV v

DV

probabilistically (e.g., compute the MAR that the total 

repair/replacement cost due to seismic damage exceeds any specified dollar amount) for a given 

structure at a given location. The probabilistic assessment of these , which are random 

variables, accounts for the uncertainties in the seismic hazard at the site or in 

v

TL

jL

TL

, in the seismic 

demand , in the structural capacity and damage/limit-states, and in the cost associated with 

the repair of individual structural components or replacement of the entire structure. The outcome 

of a probabilistic loss analysis is the seismic loss hazard curve , which expresses the MAR 

of the (e.g., total repair/replacement cost) exceeding any specified threshold value . 

In the case of global failure of the structure, a new structure will be constructed, and the total repair 

cost is defined by the construction cost of the new structure. In the case of “no global collapse”, it 

is assumed that all damage occurs at the component level and the total repair cost of the 

structure (in a year) is equal to the summation of the repair costs of all components damaged during 

that year, i.e., 

1

n

T j
j

L L
=

= (2.4) 

where is the repair cost of the thj damaged component, and n is the number of damaged 

components in the structure. The repair cost of a damaged component is generally associated with 

a specified repair scheme, which is associated with the damage state of the component. Basic 

ingredients to probabilistic loss assessment are repair actions and probability distributions of their 

costs given the component damage state. A multi-layer Monte Carlo simulation approach can be 

used to compute very efficiently the seismic loss hazard curve related to (Conte and Zhang 

2007; Zhang 2006). 

The loss hazard curve incorporates the effects of the uncertainties related to earthquake 

occurrences in space and time, ground motion intensity, ground motion time history (record-to-

record variability), structural capacity, damage/limit-states, and repair costs. The relative 

importance of these various sources of uncertainty in regard to the loss hazard results can be 

investigated through parametric studies. 
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2.4 Current Bridge Design Practice 

Current practices of seismic design for ordinary or conventional bridges primarily includes two 

design methodologies. The first is a force-based approach incorporated into the AASHTO LRFD 

Bridge Design Specifications (AASHTO 2012), while the second one is a displacement-based 

approach, originating partly from the Caltrans Seismic Design Criteria (SDC) version 1.4 (Caltrans 

2006), and on which the AASHTO Guide Specifications for Seismic Bridge Design (AASHTO 

2011) is predicated. Ordinary or conventional bridges are subjects of concern in this proposed 

research because these are the most common bridges designed in-house by Caltrans and it is aimed 

to determine whether the reported benefits of using a design approach corresponding to the PEER 

PBEE framework over the current design procedure used by Caltrans are significant. This section 

briefly discusses both methodologies with an aim to primarily highlight the weak points of the 

current seismic bridge design practice and how PBSD can serve to bolster it. 

2.4.1 Force-based Approach 

The force-based approach, with capacity design as its underlying philosophy, relies on providing 

adequate resistance to structural elements of the bridge that are selected to dissipate energy by way 

of yielding when subjected to an earthquake. This is done by selecting a design ground motion 

(with a probability of exceedance of 5% in 50 years or 1000-year return period) and subjecting a 

linear elastic model of the bridge to the same. The forces generated in the critical locations of the 

energy-dissipating (yielding) elements are obtained and these regions are designed to resist only a 

fraction (called design forces) of the originally calculated forces by multiplying response 

modification factors (called R-factors) to them. These R-factors are selected primarily based on 

structure geometry, and anticipated ductility. Adequate detailing is provided at the locations of 

yielding to get desired inelastic action through ductility. Having designed for ductility, all other 

members are then protected against overstrength forces so as to make sure that they remain linear 

elastic. 

Apart from the usual problem of incomplete incorporation of uncertainty by only considering it in 

determining the seismic hazard, that too for a single hazard level, this approach has the added 

disadvantage of assuming that prescriptive requirements of detailing will do their job of ensuring 

bridge performance without any firsthand scrutiny been made. 
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2.4.2 Displacement-based Approach 

The displacement-based approach differs from its force-based counterpart in that a direct check of 

the displacement capacity of the system is made. The present Caltrans SDC v1.7 (Caltrans 2013) 

uses this approach for the design of bridge systems. Still rooted in capacity design philosophy, this 

approach involves the selection of a trial design that is detailed for suitable inelastic action and 

ductility, followed by checking for the displacement capacity directly. The system displacement 

capacity is controlled by prescribing material strain limit states which can be related to global 

system displacements through element curvature and rotations. The inelastic displacement 

capacity is then compared to the elastic displacement demand generated due to the action of the 

design earthquake (with a probability of exceedance of 5% in 50 years or 1000-year return period). 

This approach has the merit of a firsthand quantitative check of displacement capacity being made. 

Additionally, it is welcoming of the complete PBSD framework, because it already follows a 

partial 1st generation performance-based procedure by allowing prescriptive strain limits (related 

to various damage states and hence performance levels) to control the system displacement 

capacity. However, it has the drawbacks, similar to that of the 1st generation PBEE procedures 

mentioned earlier, of having inadequately accounted for uncertainty only in the seismic input, that 

too for a single hazard level. Element performance evaluation is considered to be void of 

uncertainties and prescriptive strain limits, based on laboratory tests, simplified analytical models, 

and engineering judgment are assumed to be representative of system behavior. Also, metrics of 

structural performance being based on element forces and deformation, does not allow the public 

and/or owners to participate in risk-informed decision making, unlike what is promised by the 

PEER PBEE framework. 

Prescriptive design methodologies form the heart of current seismic bridge design practice in the 

US. With a latent objective of collapse prevention and life safety under a design earthquake event, 

these prescriptive measures do the job of evaluating the seismic performance of bridges only to a 

limited extent as there is no direct control over the seismic performance of bridges in the hands of 

the designer. Although this has proved to be a satisfactory design methodology for the bridge 

engineering profession till date (NCHRP 2013), the application of PBSD in bridge design, 

nonetheless, does not become less promising in this regard. With a significantly better 

comprehension and quantification of seismic demand and response of bridges due to the 
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incorporation of all the sources of inherent uncertainties, PBSD will allow designers and the 

owners/public to make collective and risk-informed decisions regarding the performance of 

bridges during a seismic event, thereby leading to a more efficient and rational design practice. 

2.5 Recent Performance-based Design Developments in Bridge Engineering 

The fully probabilistic PBSD is the most advanced design methodology and is expected to provide 

the foundation for future design codes (Cornell and Krawinkler 2000; Ellingwood 2008; NCHRP 

2013). Although not in its all-inclusive form, PBSD has already started to be implemented in 

practice (ASCE-7-10 2010; FEMA-445 2006; FHWA Retrofit Manual 2006; ICC-PC 2012; 

NCHRP 2013) by the structural engineering profession and several design and retrofit projects 

have also been undertaken by various organizations. Significant work has been done and progress 

is being made in both spheres of building and bridge engineering, albeit the latter has seen 

relatively less advancement as compared to the former (NCHRP 2013). 

A recent investigation (NCHRP 2013) led by the Transportation Research Board of the National 

Academies under the National Cooperative Highway Research Program (NCHRP) regarding the 

current state of seismic design practice in the area of bridge engineering, made the necessity and 

significance of the implementation of PBSD in bridge design quite evident. This synthesis brings 

out the fact that the current bridge design practice considers safety and risk associated with seismic 

performance of bridges as mere ramifications of the fulfillment of prescriptive measures. May’s 

argument (May 2001) of explicit consideration of safety and risk, in order that public and engineers 

participate in the decision-making process in tandem, is emphasized. This process of collective 

decision-making, however, will require an unambiguous definition of performance objectives that 

will facilitate its smooth working and will also help to keep post-hazard, performance-related, 

political and/or legal issues at bay. 

The synthesis also covers the 4 analytical stages of PEER PBEE framework discussed before 

highlighting the areas where special attention is the need of the hour as per the current state of 

practice in the bridge engineering profession. With the current tools of seismic hazard analyses 

and nonlinear structural analyses, the implementation of the first two steps of the framework seems 

to be a little less demanding and more feasible than the last two steps, via a probabilistic treatment 

of the seismic hazard and structural response. A noteworthy highlight of the synthesis is that the 

field of damage and loss prediction, in a rigorous probabilistic manner, has yet to see significant 
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advancement. The complexity of predicting the highly uncertain phenomenon of damage has so 

far been underestimated by its treatment based on deterministic strain-limits. A complete 

probabilistic treatment of damage requires extensive laboratory testing and analytical 

investigations (Berry and Eberhard 2004; Mackie and Stojadinović 2004), thereby leading to 

development of fragility functions which relate an engineering demand parameter or a response 

quantity to the probability of exceedance of a specific damage state. The final and the most 

important step, novel to the PEER PBEE framework, is the explicit probabilistic consideration of 

loss metrics, which are of interest to owners and stakeholders. Loss prediction, till date, has largely 

been qualitative and has lacked objectivity. Thus, the need to explicitly consider this, in a 

probabilistic manner, whereby the risk of incurring losses pertaining to decision variables, viz., 

deaths, dollars, downtime, etc., can be accurately evaluated is expressed. For this purpose, loss 

models (Baker and Cornell 2003; Mander et al. 2012; Miranda et al. 2004; Moehle and Deierlein 

2004, etc.) relating damage to the probability of exceeding various levels of losses are required. 

Once equipped with all the tools required for a rigorous implementation of the framework, wherein 

all sources of uncertainty are accounted for, it can be applied to the design (inverse assessment 

problem) of new bridges. As mentioned earlier, the works of Cornell and coworkers (2002) and 

Mackie and Stojadinović (2007) can be cited as premises to such an effort. 

More recently, research conducted at the University of Nevada, Reno, led to the development of 

the Probabilistic Damage Control Approach (PDCA) (Saini and Saiidi 2014) for seismic design of 

bridge columns. This research, funded by Caltrans, is a significant step forward toward the 

implementation of a probabilistic PBSD in the bridge engineering industry. In this approach, the 

uncertainties in seismic demand and structural response are taken into account explicitly. A 

displacement-based representative parameter of bridge-column response, called Damage Index 

(DI), defined as the ratio of plastic deformation demand to the plastic deformation capacity, is used 

to measure the seismic performance of columns. Fragility functions correlating Damage States 

(DSs) to DIs were used from a previous experimental study (Vosooghi and Saiidi 2012) at 

University of Nevada, Reno to come up with a probabilistic resistance/capacity model. The 

probabilistic load/demand model was developed using extensive analytical modeling of columns 

designed to have a desired probability of exceedance of a certain DS, and nonlinear time history 

analyses of the same subjected to a suite of ground motions conducted thereafter. In order to have 

a realistic load/demand model, uncertainties in seismic demand were incorporated through the 
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inclusion of different site classes, ground motion parameters, bent properties and earthquake return 

period. Structural performance was evaluated based on the reliability indices ( s) associated with 

different DSs. Finally, a non-iterative, approximate, yet direct design method is forwarded so as 

to design a column bent for a target DI in order that a desired reliability index is achieved for a 

specific damage state. 

Research studies and implementations of PBSD, as such, have served to expose the difficulties 

and challenges it entails, thereby helping to fill the knowledge gaps and move forward towards the 

goal of a convenient implementation of the framework in its most rigorous form. 
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3 Testbed Bridges 

3.1 Introduction 

For this study, four as built bridges located in California were selected for analysis and are 

described in this chapter. The selected bridges conform to the definition of ordinary standard 

bridges as described in Caltrans SDC and repeated in Section 3.2.1. Multiple testbed bridges are 

required to cover a spectrum of design characteristics of ordinary bridges in California to ensure 

the overall methodology utilized in this project can be reproduced for a variety of design scenarios. 

Each testbed bridge will be used to generate a corresponding design matrix where multiple key 

design parameters can be varied from the as-designed case. Practical combinations of design 

parameters encountered in the field and its effects on the performance of each bridge are analyzed 

using this design matrix. The utilization of these testbed bridges and subsequent findings are 

investigated and described more comprehensively later in this report. 

The testbed bridges selected for this study are based on bridges studied in recent research projects 

funded by Caltrans and PEER (Beckwith et al. 2015; Kaviani et al. 2012; Kaviani et al. 2014; 

Omrani et al. 2015). The selected set of testbed bridges comprises of representative modern 

Ordinary Standard Bridges (OSBs) in California constructed after year 2000, viz., Bridge A, 

Bridge B, Bridge C and Bridge MAOC. A comprehensive explanation behind the recommendation 

of these bridges are described in their respective reports. 

Bridge A is the Jack Tone Road Overcrossing in Ripon, California consisting of two spans with a 

single column bent. Bridge B is the La Veta Avenue Overcrossing in Tustin, California also 

consisting of two spans but supported on a two-column bent. Bridge C is the Jack Tone Road 

Overhead in Ripon, California (located adjacent to Bridge A) consisting of three spans on three-

column bents. The last bridge is the Massachusetts Avenue Overcrossing, Bridge MAOC, located 

in San Bernardino, California consisting of five spans on four-column bents. Selected 

characteristics of each of these bridges obtained from the National Bridge Inventory (NBI) 

database are listed in Table 3-1. A detailed description of the geometrical characteristics and 

structural properties of each bridge can be found in Section 3.2. 
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Table 3-1 Selected characteristics of testbed bridges in accordance with the 2017 archived NBI database 

NBI Item Name Bridge A Bridge B Bridge C Bridge MAOC 
Structure number 29 0320 55 0938 29 0318 54 1265 
Features intersected STATE ROUTE 99 STATE ROUTE 55 UPRR, SB99 ONRP, KAMPS WY INTERSTATE 215 & BNSF RY 
Facility carried by structure Jack Tone Road La Veta Avenue Jack Tone Road Massachusetts Avenue 
Location 10-SJ-099-2.34-RIP 12-ORA-055-13.20-TUS 10-SJ-099-2.32-RIP 08-SBD-215-9.03-SBD 
Latitude 37450851 33465032 37450217 34075676 
Longitude 121083108 117495371 121083077 117183123 
Year built 2001 2001 2001 2012 
Lanes on structure 1 4 4 2 
Lanes under structure 7 14 3 10 
Average daily traffic 20000 10000 5000 9000 
Skew 33 0 36 8 

Type of service 
11 (highway on 
bridge, highway 
w/wo pedestrian) 

51 (highway-pedestrian 
on bridge, highway 
w/wo pedestrian under 
bridge) 

18 (highway on bridge, highway-
waterway-railroad under bridge) 

54 (highway-pedestrian on 
bridge, highway-railroad under 
bridge) 

Number of spans in main unit 2 2 3 5 

Structure type, main 

606 (prestressed 
concrete continuous, 
box beam or girders 
- single or spread) 

605 (prestressed concrete 
continuous, box beam or 
girders - multiple) 

606 (prestressed concrete 
continuous, box beam or girders -
single or spread) 

205 (concrete continuous, box 
beam or girders - multiple) 

Deck (physical condition) 5 (fair condition, 
minor section loss) 8 (very good condition) 5 (fair condition, minor section 

loss) 
7 (good condition, minor 
problems) 

Superstructure (physical 
condition) 

7 (good condition, 
minor problems) 8 (very good condition) 7 (good condition, minor 

problems) 
7 (good condition, minor 
problems) 

Substructure (physical 
condition) 

5 (fair condition, 
minor section loss) 

7 (good condition, minor 
problems) 

5 (fair condition, minor section 
loss) 

7 (good condition, minor 
problems) 

Inspection date 1016 (October 2016) 0616 (June 2016) 1016 (October 2016) 1016 (October 2016) 
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3.2 Description of Selected Bridges 

Although specific requirements must be met for bridges to be classified as Ordinary Standard 

Bridges, as defined in Caltrans SDC v1.7 (repeated below), nevertheless considerable variations 

and combinations of designs are still possible. The selected testbed bridges, therefore, should 

attempt to cover a spectrum of design parameters commonly found in practice such that a range of 

possible designs can be accounted for to increase the robustness of the developed methodology. 

Such variations include the number of spans, columns per supporting bent, diameter of columns, 

height of columns, cap beam, skew, deck width and geometry, number of bearing pads shear key 

type etc. A detailed description of each bridge is given below focusing on the above-mentioned 

properties as well as derived geometrical and structural parameters pertinent for the construction 

of finite element models of these bridges (discussed in the next chapter). 

3.2.1 Definition of an Ordinary Standard Bridge per Caltrans SDC v1.7 (Caltrans 2013) 

A structure meeting all the following requirements below, where applicable, is classified as an 

Ordinary Standard Bridge (taken directly from Caltrans SDC, Version 1.7, April 2013): 

• Each span length is less than 300 feet. 

• Bridges with single superstructures on either a horizontally curved, vertically curved, or 

straight alignment. 

• Constructed with precast or cast-in-place concrete girder, concrete slab superstructure on 

pile extensions, column or pier walls, and structural steel girders composite with concrete 

slab superstructure which are supported on reinforced concrete substructure elements. 

• Horizontal members either rigidly connected, pin connected, or supported on conventional 

bearings. 

• Bridges with dropped bent caps or integral bent caps. 

• Columns and pier walls supported on spread footings, pile caps with piles or shafts. 

• Bridges supported on soils which may or may not be susceptible to liquefaction and/or 

scour. 

• Spliced precast concrete bridge system emulating a cast-in-place continuous structure • 

Fundamental period of the bridge system is greater than or equal to 0.7 seconds in the 

transverse and longitudinal directions of the bridge. 
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3.2.2 Jack Tone Road Overcrossing (Bridge A) 

The Jack Tone Road Overcrossing is located in Ripon, California (south of Sacramento), spanning 

over California State Route 99. The bridge was constructed in 2001 and consists of a single lane 

serving as an onramp to the main Jack Tone Road. The bridge consists of two spans at 108.58 ft 

and 111.82 ft for a total length of 220.4 ft and is supported on a single column bent. Each column 

is supported on 25 HP 305x79 steel piles. The column has a diameter of 5.51 ft and a longitudinal 

reinforcement ratio of 2.0%. The deck of the bridge is a three-cell continuous prestressed 

reinforced-concrete box girder with a total width of 27.13 ft. The bridge abutment is at a skew of 

33° and supported vertically on elastomeric bearings and restrained horizontally by monolithic 

shear keys. A detailed description of the Jack Tone Road Overcrossing can be found in Table 3-2. 

Figure 3.1 Profile and aerial overview of Bridge A on left (adjacent to main Jack Tone Road) 
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Table 3-2 Geometrical and structural properties of Bridge A 

Parameter/Feature Value/Description 

Number of spans 2 

Length of spans 108.58 ft (33.10 m) and 111.82 ft (34.08 m) 

Total length of bridge 220.4 ft (67.18 m) 

Total width of deck 27.13 ft (8.27 m) 

Depth of deck 4.64 ft (1.14 m) 

Deck cross-sectional properties (Area, 
Torsional constant, Second moments of 
area) 

= 97.55 ft2 (9.06 m 2); = 341 ft4 (2.94 m4); 
= 180.33 ft4 (1.56 m 4); = 3, 797.9 ft4 (32.78 m4) 

Height of each bent 19.68 ft (6.0 m) 

Number of columns in each bent 1 

Column cross-sectional properties 
(Diameter, Area, Torsional constant, 
Second moments of area) 

= 5.51 ft (1.68 m); = 23.84 ft2 (2.21 m 2); 
= 90.49 ft4 (0.78 m 4); = 45.24 ft4 (0.39 m 4); 

4)= 45.24 ft4 (0.39 m 

Column reinforcement details Longitudinal reinforcement (2.0%): 22×2#11 
Transverse reinforcement: Spiral, #6 @ 3.34 in c/c 

Column base hinge diameter No base hinge 

Concrete material properties of elastic 
superstructure (nominal) (Compressive 
strength, Elastic modulus) 

= 5 ksi (34.5 MPa) 
= 4, 030.5 ksi (27, 789.3 MPa) 

Concrete material properties of columns 
(nominal) (Compressive strength, 
Elastic modulus) 

= 5 ksi (34.5 MPa) 
= 4, 030.5 ksi (27, 789.3 MPa) 

Steel reinforcement material properties Grade 60, ASTM A706 

Bridge skew angle 33o 

Shear key type Non-isolated (monolithic) shear keys 

Number of bearing pads per abutment 4 elastomeric bearings 

Bearing pad dimensions (Height, Area) 2)= 2.56 in (.065 m); = 139.5 in2 (0.09 m 
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3.2.3 La Veta Avenue Overcrossing (Bridge B) 

The La Veta Avenue Overcrossing is located in Tustin, California (south of Los Angeles), 

spanning over California State Route 55. The bridge was constructed in 2001 and consists of two 

lanes in each direction running east-west. The bridge consists of two spans at 154.82 ft and 144.98 

ft for a total length of 299.8 ft and is supported on a two-column bent. Each column is supported 

by 20 23.6 in diameter cast-in-drilled hole (CIDH) piles. The columns have a diameter of 5.58 ft 

and a longitudinal reinforcement ratio of 1.95%. The deck of the bridge is a six-cell continuous 

reinforced-concrete box girder with a total width of 75.5 ft. The bridge abutment is supported 

vertically on elastomeric bearings and restrained horizontally by monolithic shear keys. There is 

no skew in the bridge abutment. A detailed description of the La Veta Avenue Overcrossing can 

be found in Table 3-3. 

Figure 3.2 Profile and aerial overview of Bridge B 
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Table 3-3 Geometrical and structural properties of Bridge B 

Parameter/Feature Value/Description 

Number of spans 2 

Length of spans 154.82 ft (47.19 m) and 144.98 ft (44.19 m) 

Total length of bridge 299.8 ft (91.38 m) 

Total width of deck 75.5 ft (23.01 m) 

Depth of deck 6.23 ft (1.9 m) 

Deck cross-sectional properties (Area, 
Torsional constant, Second moments of 
area) 

= 129.13 ft2 (12.0 m 2); = 2532 ft4 (21.85 m 4); 
4)= 791.76 ft4 (6.83 m 4); = 58, 352 ft4 (503.64 m 

Height of each bent 22 ft (6.71 m) 

Number of columns in each bent 2 

Column cross-sectional properties 
(Diameter, Area, Torsional constant, 
Second moments of area) 

= 5.58 ft (1.70 m); = 23.84 ft2 (2.21 m 2); 
= 90.49 ft4 (0.78 m 4); = 45.25 ft4 (0.39 m 4); 

4)= 45.25 ft4 (0.39 m 

Column reinforcement details Longitudinal reinforcement (1.95%): 22×2#11 
Transverse reinforcement: Spiral, #4 @ 6 in c/c 

Column base hinge diameter 3.94 ft (1.2 m) 

Concrete material properties of elastic 
superstructure (nominal) (Compressive 
strength, Elastic modulus) 

= 5 ksi (34.5 MPa) 
= 4, 030.5 ksi (27, 789.3 MPa) 

Concrete material properties of columns 
(nominal) (Compressive strength, 
Elastic modulus) 

= 5 ksi (34.5 MPa) 
= 4, 030.5 ksi (27, 789.3 MPa) 

Steel reinforcement material properties Grade 60, ASTM A706 

Bridge skew angle 0o 

Shear key type Non-isolated (monolithic) shear keys 

Number of bearing pads per abutment 7 elastomeric bearings 

Bearing pad dimensions (Height, Area) 2)= 3.74 in (.095 m); = 558.0 in2 (0.36 m 

28 



 

 
 

  

   

        

     

  

     

 

      

  

     

 

 

       

3.2.4 Jack Tone Road Overhead (Bridge C) 

The Jack Tone Road Overhead is located in Ripon, California (south of Sacramento), spanning 

over California State Route 99. The bridge was constructed in 2001 and consists of two lanes in 

each direction running north-south and is located adjacent to Bridge A. The bridge consists of three 

spans at 156.12 ft, 144 ft and 118.08 ft for a total length of 418.2 ft and is supported on three-

column bents. The columns have a diameter of 5.51 ft and a longitudinal reinforcement ratio of 

2.20%. Each column is supported on 24 HP 305x79 steel piles. The deck of the bridge is a seven-

cell continuous reinforced-concrete box girder with a total width of 77 ft. The bridge abutment is 

at a skew of 36° and supported vertically on elastomeric bearings and restrained horizontally by 

monolithic shear keys. A detailed description of the Jack Tone Road Overhead can be found in 

Table 3-4. 

Figure 3.3 Profile and aerial overview of Bridge C (right) 
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Table 3-4 Geometrical and structural properties of Bridge C 

Parameter/Feature Value/Description 

Number of spans 3 

Length of spans 156.12 ft (47.59 m), 144 ft (43.89 m), and 118.08 ft 
(36.0 m) 

Total length of bridge 418.2 ft (127.47 m) 

Total width of deck 77 ft (23.47 m) 

Depth of deck 6.3 ft (1.92 m) 

Deck cross-sectional properties (Area, 
Torsional constant, Second moments of 
area) 

= 131.65 ft2 (12.0 m 2); = 2563 ft4 (22.12 m 4); 
4)= 788.90 ft4 (6.81 m 4); = 59, 761 ft4 (515.80 m 

Height of each bent 24.6 ft (7.5 m) 

Number of columns in each bent 3 

Column cross-sectional properties 
(Diameter, Area, Torsional constant, 
Second moments of area) 

= 5.51 ft (1.68 m); = 23.84 ft2 (2.21 m 2); 
= 90.49 ft4 (0.78 m 4); = 45.25 ft4 (0.39 m 4); 

4)= 45.25 ft4 (0.39 m 

Column reinforcement details Longitudinal reinforcement (2.2%): 17×2#14 
Transverse reinforcement: Spiral, #6 @ 3.34 in c/c 

Column base hinge diameter 3.41 ft (1.04 m) 

Concrete material properties of elastic 
superstructure (nominal) (Compressive 
strength, Elastic modulus) 

= 5 ksi (34.5 MPa) 
= 4, 030.5 ksi (27, 789.3 MPa) 

Concrete material properties of columns 
(nominal) (Compressive strength, 
Elastic modulus) 

= 5 ksi (34.5 MPa) 
= 4, 030.5 ksi (27, 789.3 MPa) 

Steel reinforcement material properties Grade 60, ASTM A706 

Bridge skew angle 36o 

Shear key type Non-isolated (monolithic) shear keys 

Number of bearing pads per abutment 9 elastomeric bearings 

Bearing pad dimensions (Height, Area) 2)= 4.53 in (.115 m); = 327.98 in2 (0.212 m 
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3.2.5 Massachusetts Avenue Overcrossing (Bridge MAOC) 

The Massachusetts Avenue Overcrossing is located in San Bernandino, California (east of Los 

Angeles), spanning over Interstate 215. The bridge was constructed in 2012 and consists of two 

lanes running in the northeast-southwest direction. The bridge consists of five spans at 49.21 ft, 

94.49 ft, 91.86 ft, 99.74 and 78.08 ft for a total length of 413.39 ft and is supported on four-column 

bents. Each bent is supported on either 8 or 4 HP 360×132 steel piles. The columns have a diameter 

of 4.00 ft and a longitudinal reinforcement ratio of 1.90%. The deck of the bridge is a five-cell 

continuous reinforced-concrete box girder with a total width of 48.72 ft. The bridge abutment is at 

a skew of 8.1° and supported vertically on elastomeric bearings and restrained horizontally by 

isolated shear keys. A detailed description of Massachusetts Avenue Overcrossing can be found 

in Table 3-5. 

Figure 3.4 Profile and aerial overview of Bridge MAOC 

31 



 

 
 

    

  

  

   
    

     

     

     

 

         
         

       
   

  

 

        
         
     

   
    

  

  
 

  
  

 
 

  
  

  

  

  

   

         

 

( )totL

( )dw

( )dd

A J
yI zI

colD colA

colJ ,y colI

,z colI

cf 

cE

cf 

cE

bph bpA

Table 3-5 Geometric and structural properties of Bridge MAOC 

Parameter/Feature Value/Description 

Number of spans 5 

Length of spans 49.21 ft (15.0 m), 94.49 ft (28.8 m), 91.86 ft (28.0 m), 
99.74 ft (30.4 m), and 78.08 ft (23.8 m) 

Total length of bridge 413.39 ft (126.0 m) 

Total width of deck 48.72 ft (14.8 m) 

Depth of deck 4.49 ft (1.37 m) 

Deck cross-sectional properties (Area, 
Torsional constant, Second moments of 
area) 

= 72.44 ft2 (6.73 m 2); = 724 ft4 (6.25 m 4); 
4)= 210.87 ft4 (1.82 m 4); = 12, 698 ft4 (109.60 m 

Height of each bent 29.53 ft (9.0 m), 31.50 ft (9.6 m), 30.71 ft (9.4 m), and 
27.43 ft (8.4 m) 

Number of columns in each bent 4 

Column cross-sectional properties 
(Diameter, Area, Torsional constant, 
Second moments of area) 

= 4.00 ft (1.22 m); = 12.57 ft2 (1.17 m 2); 
= 22.34 ft4 (0.19 m 4); = 11.17 ft4 (0.096 m 4); 

4)= 11.17 ft4 (0.096 m 

Column reinforcement details Longitudinal reinforcement (1.9%): 22×#11 
Transverse reinforcement: Circular, #7 @ 5.91 in c/c 

Column base hinge diameter 2.13 ft (0.65 m) 

Concrete material properties of elastic 
superstructure (nominal) (Compressive 
strength, Elastic modulus) 

= 5 ksi (34.5 MPa) 
= 4, 030.5 ksi (27, 789.3 MPa) 

Concrete material properties of columns 
(nominal) (Compressive strength, 
Elastic modulus) 

= 5 ksi (34.5 MPa) 
= 4, 030.5 ksi (27, 789.3 MPa) 

Steel reinforcement material properties Grade 60, ASTM A706 

Bridge skew angle 8.1o 

Shear key type Isolated shear keys 

Number of bearing pads per abutment 6 elastomeric bearings 

Bearing pad dimensions (Height, Area) 2)= 3.54 in (.09 m); = 144.19 in2 (0.093 m 

32 



 

 
 

  

  

  

    

    

 

      

 

   

  

  

  

  

   

    

  

  

 

   

      

  

 

   

     

   

   

 

4 Computational Models of Testbed Bridges 

4.1 Introduction 

Earthquake-resistant structural design and/or assessment requires analysis of structural systems 

subjected to seismic loads to predict the induced internal forces and deformations. A well-posed 

structural analysis problem for a reliable prediction of the seismic response of a structural system 

requires: 

(i) An appropriate analytical/numerical model of the structure providing a realistic 

representation of the structure both at the component-level and at the system-level; 

(ii) An accurate representation of the earthquake ground motion and/or its effects; and 

(iii) A robust analytical/numerical procedure to construct and solve the governing equations 

Structural analysis can range from being simple to intricate depending on the level of 

sophistication implemented in each of the above three requirements. 

Prevailing approaches for the modeling of structural systems based on the principles of mechanics 

cover the gamut from being theoretical, computational, or experimental. Computational 

mechanics-based models are typically used for the simulation of large-scale real-world structural 

systems, such as bridges. Computational/numerical approaches to modeling of structural systems 

involve idealizations mainly distinguishable into either phenomenological (i.e., describing the 

empirical/observed relationships between phenomena in a way which is consistent with the 

relevant theory but not directly derived from it) or fundamental (i.e., based/derived directly from 

first principles). Fundamental approaches to modeling have become increasingly popular as ample 

computational power is made available with the advent of computers. Standing the test of 

accuracy, feasibility and practicability, finite element modeling has emerged as an effective tool 

for modeling and simulation of structural systems. 

An earthquake ground motion and/or its effects on structural systems are represented, typically in 

practice, by an equivalent lateral load, an earthquake ground motion response spectrum, or the 

ground motion history itself. Based on such a representation, and the assumption of the nature of 

relationship between forces and deformations in structures, several methods of analyses are used 

in the field of earthquake-resistant structural design and/or assessment. These methods include the 

relatively simple linear static analysis, linear response spectrum analysis, and linear dynamic 
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response history analysis, in one hand, while the somewhat involved nonlinear static analysis, and 

nonlinear dynamic response history analysis, on the other. 

The level of sophistication employed in this project for the structural analysis of Ordinary Standard 

Bridges (OSBs) is predicated on the purpose of the analysis. Keeping in mind the overarching goal 

of developing a simplified and practicable, yet rigorous, performance-based seismic design 

(PBSD) methodology for OSBs, achievement of a middle ground between accuracy, feasibility 

and practicability of the chosen structural analysis procedure is desirable. Thus, the analysis 

method implemented in this project involves nonlinear dynamic response history analyses of 

bridge models consisting of frame/beam-column elements combined with springs. A convenient, 

yet reasonably accurate, depiction of nonlinear structural behavior of OSBs can be obtained by 

using highly detailed fiber-section Euler-Bernoulli beam-column elements with distributed 

plasticity in conjunction with the /Corotational nonlinear geometric transformation. 

Analytical/empirical nonlinear force-deformation relationships can be used to represent the 

behavior of structural components modeled with springs. This type of modeling, common for both 

buildings and bridges in current earthquake engineering practice, is chosen to benefit from a finite 

element modeling technique that: 

(i) is reasonably accurate in terms of representing nonlinear structural behavior; 

(ii) is numerically robust to the implicit integration of the governing equation of motion for 

multiple seismic inputs; and 

(iii) leads to acceptable computational workload and runtime. 

To apply and evaluate the PEER PBEE assessment framework, lying at the heart of the proposed 

PBSD methodology, a set of four testbed OSBs, described in Chapter 3, are selected in this project. 

This chapter elaborates on the nonlinear finite element modeling technique and the response-

history analysis setup employed for the probabilistic seismic performance assessment of these 

selected testbed bridges. 

4.2 Finite Element Model Description 

The selected set of testbed OSBs is comprised of bridges with prestressed concrete box-girder 

decks supported by column-bent(s) and seat-type abutments. Three-dimensional nonlinear finite 

element models (consisting of beam-column elements and zero-length elements) of these bridges 
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are constructed in OpenSees (Mazzoni et al. 2006; McKenna 2011), the open-source finite element 

computational platform for research in PBEE developed at PEER. OpenSees has advanced 

capabilities for modeling and analyzing the nonlinear seismic response of structural systems using 

an abundant library of material models, elements, and solution algorithms. The software enables 

script-based automated execution of ensemble nonlinear response history analyses which can also 

be parallelized (across multiple-cores in a desktop computer or a supercomputer) thus providing 

resources deemed extremely valuable for probabilistic performance assessment of structures 

and/or parametric studies. 

Initially inherited Tcl input files of the OpenSees models of these bridges from previous 

Caltrans/PEER funded projects (Beckwith et al. 2015; Kaviani et al. 2014; Omrani et al. 2015) are 

revisited, parameterized, and improved based on experimental validation and/or literature review 

as required while adhering to the recommendations of Omrani et al. (2015) and the Caltrans 

Seismic Design Criteria (SDC) version 1.7 (Caltrans 2013). Schematic representations of the 

computational models of the four testbed bridges (Bridge A, Bridge B, Bridge C, and Bridge 

MAOC), with splines drawn along the section centroid of respective elements, are shown Figure 

4.1 through Figure 4.4. The following sections provide an in-depth account of the modeling 

technique employed for various components of the testbed OSBs including model attributes such 

as chosen material properties, inertial properties and damping model. 
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Figure 4.1 Schematic representation of the finite element model of Bridge A 
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Figure 4.2 Schematic representation of the finite element model of Bridge B 
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Figure 4.3 Schematic representation of the finite element model of Bridge C 
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Figure 4.4 Schematic representation of the finite element model of Bridge MAOC 
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4.2.1 Deck 

Bridge decks of the considered testbed bridges are designed as pre-stressed concrete box girders. 

Bridge decks are typically capacity-protected elements which are not meant to undergo flexural 

yielding and dissipate energy over the entire duration of the seismic ground motion input in the 

event of an earthquake. As such, the deck of a testbed bridge is modeled using elastic beam-column 

elements (implemented as elasticBeamColumn element in OpenSees) laid along the centroid of 

the deck section. To evenly capture the mass distribution across the entire length of a bridge deck 

via a lumped mass model, each span of the deck is further sub-divided in several (10) elements. 

Section properties, as per the original design drawings of the testbed bridges, and material 

properties, characteristic of normal-weight concrete, are assigned to the deck elements. The 

assigned material and section properties for the deck elements of each testbed bridge are given in 

Table 4-1. It is noted that to obtain realistic predictions of structural periods and seismic demands, 

cracked section properties are typically assigned to elastic elements. However, Caltrans SDC v1.7 

recommends that no stiffness reductions be applied for pre-stressed concrete box girder sections. 

Therefore, gross-section properties of the as-designed bridge decks are used in the 

elasticBeamColumn element definition in OpenSees. It is to be noted that the inherited model input 

files for Bridge C, in particular, used the gross area of the as-designed box girder deck section 

without excluding the areas of the hollow enclosed tubes. This is corrected in the current 

implementation of the finite element model of Bridge C in OpenSees. 

Table 4-1 Material and section properties for elastic bridge deck elements 

Modulus Area of Moment Moment TorsionalShear of cross 
Modulus of inertia of inertia constant Bridge Elasticity 

( )E , ( )G , 
section 

( )A , [ ]2ft ( )YI , 4[ ]ft ( )ZI , 4[ ]ft ( )J , 4[ ]ft

A 4262 1776 98 180 3798 341 
B 4262 1776 129 792 58352 2532 
C 4262 1776 132 789 59761 2536 
MAOC 4262 1776 72.4 211 12698 724 
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4.2.2 Bent Group Components 

Bent groups of the testbed bridges comprise of single (in case of Bridge A) or multiple (in case of 

Bridge B, Bridge C, and Bridge MAOC) columns supported on pile foundations. Schematic 

diagrams of the bent groups of the considered testbed bridges are shown (not to scale) in Figure 

4.5 through Figure 4.8 along with spline representations of their finite element models developed 

in this project. Modeling details of individual components of a bent group are presented next. It is 

to be noted that modeling of pile shafts and soil-structure interaction at/beneath the foundations of 

bent groups are kept outside the scope of this study. 
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Figure 4.5 Schematic diagram of the finite element model of the single-column bent of Bridge A 

Figure 4.6 Schematic diagram of the finite element model of the two-column bent of Bridge B 
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Figure 4.7 Schematic diagram of the finite element model of a three-column bent of Bridge C 

Figure 4.8 Schematic diagram of the finite element model of a four-column bent of Bridge MAOC 
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4.2.2.1 Bent Cap 

Columns of the testbed bridges are constructed monolithically with the deck. Hence, each column 

element in a bent is attached to the deck using a rigid link, implemented as rigidLink beam in 

OpenSees, to simulate the bent cap. This is done by slaving the top node of each column in a bent 

to a “master” node specific to that bent. The master node for a bent corresponds to the deck node 

at the location of the bent. The rigid link connecting a column to the deck, as shown in Figure 4.1 

through Figure 4.4 and Figure 4.5 through Figure 4.8, includes the vertical deck offset from the 

column top to the deck centroid and the horizontal offset (for multiple-column bents) from the 

deck center. 

4.2.2.2 Column 

Fiber-section Euler-Bernoulli force-based beam-column elements with distributed plasticity 

(implemented as forceBeamColumn element in OpenSees) are used to model the clear length of 

reinforced concrete columns of the considered testbed bridges. The force-based element 

formulation relies on the availability of a theoretically “exact” solution (based on the satisfaction 

of equilibrium between element-end forces and section forces) to a classical beam problem. The 

exactness of the force-based element formulation holds even in the range of material constitutive 

nonlinearity. Therefore, only one force-based element per bridge column is used which 

considerably reduces the total number of degrees of freedom (DOFs) in the structural model. 

Geometric nonlinearities due to large deformations (i.e., second-order effects) are accounted for 

using the P− geometric transformation. 

Element integrals, involved in the force-based element formulation (Neuenhofer and Filippou 

1998; Taucer et al. 1991), to compute element flexibility matrices and element-end displacement 

vectors are numerically evaluated with integration points (sections) placed along the length of the 

element. These elements allow highly detailed fiber-section definitions with cover concrete 

(unconfined), core concrete (confined), and reinforcing steel fibers. Associated with each fiber is 

a nonlinear hysteretic law relating uniaxial stresses and strains thereby modeling the coupled 

interaction of nonlinear axial and flexural behavior of a Euler-Bernoulli beam. 

The Kent-Scott-Park (Kent and Park 1971; Mander et al. 1988; Scott et al. 1982) concrete material 

stress-strain law with degraded linear unloading/reloading stiffness and no tensile strength is used 
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to model the cover and core concrete fibers of a column section. This material model is 

implemented in OpenSees as the uniaxial material object Concrete01. Table 4-2 and Table 4-3, 

respectively, show the expected constitutive material model parameters for cover (unconfined) and 

core (confined) concrete fibers used in the Concrete01 material definition in OpenSees. Confined 

concrete properties for the specific column designs of the considered testbed bridges are estimated 

using the theoretical stress-strain model for confined concrete by Mander et al. (1988). 

Reinforcing steel fibers of a column section are modeled using the uniaxial stress-strain law 

proposed by Menegotto and Pinto (1973) and extended by Filippou et al. (1983). This material 

model is implemented in OpenSees as the uniaxial material object SteelMPF. The expected 

constitutive material model parameters for steel reinforcing fibers used in the SteelMPF material 

definition in OpenSees are shown in Table 4-4. These parameters correspond to the properties (as 

suggested by Caltrans SDC v1.7) of ASTM A706 Grade 60 reinforcing steel used in the original 

design of the considered testbed bridges. 

Figure 4.9 through Figure 4.12 show the fiber-section definitions corresponding to the columns of 

each testbed bridge. Also shown in Figure 4.9 through Figure 4.12 are the concrete and reinforcing 

steel material hysteretic stress-strain laws assigned to respective fibers. Figure 4.13 shows the 

cyclic moment-curvature response of the bridge column sections under an axial load ratio of 10%, 

a rather conservative representation of the action of real-world gravity loads. 

The numerical evaluation of element integrals in the force-based element formulation is usually 

carried out by using the Gauss-Lobatto integration scheme. This is because it places the first and 

the last integration points at the element end sections which are typically the most-critical sections 

in flexure. A commonly encountered numerical localization issue with the implementation of the 

Gauss-Lobatto integration scheme in the force-based element formulation leads to non-objectivity 

of computed local/global structural response due to formation of plastic hinges, i.e., regions of 

concentrated plastic deformations at/near critical sections, in force-based elements. Depending on 

the section constitutive behavior, force-based elements are found to lose objectivity of plastic 

response. For elements with sections exhibiting softening behavior, the computed local/global 

response changes as a function of the total number of element integration points (i.e., sections) 

used. The latest OpenSees implementation of the forceBeamColumn element incorporates a 

numerically consistent regularized plastic hinge integration scheme (Scott and Hamutçuoğlu 2008) 
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C 

Compressive strength Strain at Crushing strength Strain at 
Bridge , ,, , 
A 6.5 0.002 1.3 0.006 
B 6.5 0.002 1.3 0.006 

6.5 0.002 1.3 0.006 
MAOC 6.5 0.002 1.3 0.006 

     
     
     
     

     

cef cuf( ) = 0.2cu cef f[ ]ksi( )cef[ ]ksi[ ]−( )cε[ ]−( )cuε

in order to get rid of such localization issues. Eight integration points per element along with the 

plastic hinge length ( )pL

L

bld

defined according to Eq. (4.1), proposed by Paulay and Priestley (1992) 

and shown in Figure 4.9 through Figure 4.12, are used in the regularized forceBeamColumn 

element definition in OpenSees. 

0.08 0.15 (in, ksi)p ye blL L f d= + (4.1) 

where, is the total length of the column, yef is the expected yield stress for A706 reinforcement, 

and is the nominal bar diameter of longitudinal column reinforcement. Ratios of plastic hinge 

lengths to the total lengths of the considered testbed bridge columns are shown in Table 4-5. 

Table 4-2 Expected material properties for unconfined concrete fibers 

Table 4-3 Expected material properties for confined concrete fibers 

Compressive strength Strain at ccf
( )ccε

( )yef

( ) = 0.2ccu ccf f
ccuf

( )sE
( )b

Crushing strength Strain at 
Bridge ( )ccf , ,, , 

 

 
 

   

       

     

 

    

    

   

 

     

     

     

 
 

   
 

  

    
    
    

    

     
     
     
     

     

A 8.4 0.003 1.68 0.06 
B 8.4 0.003 1.68 0.06 
C 8.4 0.003 1.68 0.06 
MAOC 8.36 0.003 1.67 0.06 

Table 4-4 Expected material properties for reinforcing steel fibers 

Yield strength , Modulus of Elasticity Post-yield stiffness ratio,Bridge 
, 

A 68.0 29000 0.02 
B 68.0 29000 0.02 
C 68.0 29000 0.02 
MAOC 68.0 29000 0.02 
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Table 4-5 Ratios of plastic hinge lengths to total lengths of testbed bridge columns 

Maximum Plastic hinge 
column Yield strength of Nominal rebar length as a 

Bridge length ( )L
[ ]ft

, rebar ( )yef , diameter, ( )bld [ ]in fraction of 
( )/ LpL

L 
, 

A 19.68 68.0 1.410 0.14 
B 22.0 68.0 1.410 0.14 
C 24.6 68.0 1.693 0.14 
MAOC 31.50 68.0 1.410 0.12 
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Figure 4.9 Details of force-based beam-column element for the column of Bridge A (a) Gauss-Lobatto integration points and fiber-section 
definition; Material hysteretic stress-strain laws (backbone curves in bold) for: (b) unconfined concrete fibers; (c) confined concrete fibers; and (d) 

reinforcing steel fibers 
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Figure 4.10 Details of force-based beam-column element for a column of Bridge B: (a) Gauss-Lobatto integration points and fiber-section 
definition; Material hysteretic stress-strain laws (backbone curves in bold) for: (b) unconfined concrete fibers; (c) confined concrete fibers; and (d) 

reinforcing steel fibers 
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Figure 4.11 Details of force-based beam-column element for a column of Bridge C: (a) Gauss-Lobatto integration points and fiber-section 
definition; Material hysteretic stress-strain laws (backbone curves in bold) for: (b) unconfined concrete fibers; (c) confined concrete fibers; and (d) 

reinforcing steel fibers 
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Figure 4.12 Details of force-based beam-column element for a column of Bridge MAOC: (a) Gauss-Lobatto integration points and fiber-section 
definition; Material hysteretic stress-strain laws (backbone curves in bold) for: (b) unconfined concrete fibers; (c) confined concrete fibers; and (d) 

reinforcing steel fibers 
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Figure 4.13 Normalized moment-curvature responses of testbed bridge column sections 

4.2.2.3 Column Base Hinge for Multiple-column Bents 

The bridge column in a single-column bent is monolithically attached to the foundation cap 

surface. The boundary condition of the column base in a single-column bent is therefore aptly 

modeled as a fixed-base connection. This technique is employed for Bridge A, the only testbed 

bridge with a single-column bent. However, a bridge column in a multiple-column bent is attached 

to the foundation cap surface, although monolithically, via a very short reduced section between 

the column base and the foundation cap. This is done to mimic a hinge at the column base thereby 

significantly lowering the moment demand on the foundation cap and, in turn, leading to economic 

design of foundations. Traditionally, the boundary condition of the column base in a multiple-

column bent is modeled as a pinned-base connection as the moment capacity of the base hinge, 

i.e., the reduced section between the column base and the foundation cap, is supposedly assumed 

to be negligible as compared to the original column section. This presumptive approach is 

supplanted by explicitly modeling, without any notable increase in complexity and/or 

computational cost, the base hinge using a fiber-section Euler-Bernoulli displacement-based 

beam-column element (implemented as dispBeamColumn element in OpenSees) for the testbed 

bridges with multiple-column bents (i.e., Bridge B, Bridge C, and Bridge MAOC). A single 
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nonlinear fiber-section displacement-based element is used to connect the column element to a 

fixed support representing the rigid foundation. Geometric nonlinearities are accounted for using 

the P− geometric transformation. 

Displacement-based beam-column elements, like their force-based counterpart, also admit the 

distribution of plasticity with highly detailed fiber-sections placed along the length of the element 

at integration point locations. Fiber-sections for base hinges are defined with concrete and 

reinforcing steel fibers with a nonlinear hysteretic uniaxial stress-strain law assigned to each fiber. 

The base hinge is highly confined by the rigid footing surface and the column core section. In the 

absence of available literature/data corroborating the estimation of confinement characteristics for 

such a section, concrete fibers of the base hinge section are assumed to have identical properties 

as that of the core (confined) concrete fibers of the respective column section. The Kent-Scott-

Park material model (Kent and Park 1971; Mander et al. 1988; Scott et al. 1982), i.e., Concrete01 

in OpenSees, is used to model the concrete fibers of the base hinge section. Expected confined 

concrete material properties as listed in Table 4-3 for the testbed bridges in question are used in 

defining the material model in OpenSees. Reinforcing steel fibers of the base hinge section are 

modeled, like those of the respective column section, using the material model by Menegotto and 

Pinto (1973) and extended by Filippou et al. (1983), i.e., SteelMPF in OpenSees with expected 

material properties and parameters as shown in Table 4-4. 

Figure 4.14 through Figure 4.16 show the fiber-section definitions corresponding to the column 

base hinges of the testbed bridges with multiple-column bents (i.e., Bridge B, Bridge C, and Bridge 

MAOC). Also shown in Figure 4.14 through Figure 4.16 are the concrete and reinforcing steel 

material hysteretic stress-strain laws assigned to the respective fibers. The cyclic moment-

curvature response of these base hinge sections under the influence of axial loads corresponding 

to the respective column-axial load ratio of 10% are shown in Figure 4.17. Comparison of the 

moment-curvature responses of these base hinge sections with that of the respective column 

sections indicate that the moment capacities of these reduced section base hinges are indeed not 

negligible as compared to that of the respective column sections. Thus, the explicit modeling of a 

column base hinge, in contrast to modeling the column base connection as a perfect pin, is deemed 

justified. 
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Unlike the “exact” formulation of the force-based element within classical beam theories, the 

displacement-based element formulation involves some simplifying theoretical approximations. 

Thus, many displacement-based elements per structural member are typically required to capture 

the structural response with a level of accuracy comparable to that achieved by a single “exact” 

force-based element. However, in this case, a single displacement-based element with 2 Gauss-

Lobatto integration points is used to model the base hinge of a column. This is firstly because the 

length of the base hinge is very small compared to the entire length of the column. Secondly, 

structural response, in case of displacement-based elements with sections exhibiting softening of 

constitutive behavior, localizes and loses objectivity at the element level rather than at the section 

(integration point) level as in case of force-based elements. Since the entire length of the base 

hinge is expected to undergo tremendous amounts of concentrated plastic deformations, an 

element-level localization (non-objectivity of response) is prevented by using a single 

displacement-based element along the entire region of concentrated plastic deformations. 
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Figure 4.14 Details of displacement-based beam-column element for a column base hinge of Bridge B: (a) Gauss-Lobatto integration points and 
fiber-section definition; Material hysteretic stress-strain laws (backbone curves in bold) for: (b) confined concrete fibers; and (c) reinforcing steel 

fibers 
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Figure 4.15 Details of displacement-based beam-column element for a column base hinge of Bridge C: (a) Gauss-Lobatto integration points and 
fiber-section definition; Material hysteretic stress-strain laws (backbone curves in bold) for: (b) confined concrete fibers; and (c) reinforcing steel 

fibers 
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Figure 4.16 Details of displacement-based beam-column element for a column base hinge of Bridge MAOC: (a) Gauss-Lobatto integration points 
and fiber-section definition; Material hysteretic stress-strain laws (backbone curves in bold) for: (b) confined concrete fibers; and (c) reinforcing steel 

fibers 
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(a) (b) 

(c) 

Figure 4.17 Normalized moment-curvature responses of testbed bridge column and base-hinge 
sections: (a) Bridge B; (b) Bridge C; and (c) Bridge MAOC 

4.2.2.4 Experimental Validation of Bent Group Modeling Technique 

Nada et al. (2003) conducted a series of tests on reinforced concrete bent group specimens with 

columns, architecturally flared, like the ones in the considered testbed bridges. The primary 

objective of this Caltrans sponsored study was to verify the seismic behavior of such bent groups 

detailed according to current Caltrans requirements relating to the design of architectural flares. 

To this end, the specimens were subjected to progressive dynamic shake table tests with 

increasingly scaled versions of the 1994 Northridge earthquake ground motion recorded at the 

Sylmar station. These tests were conducted in the Large-scale Structures Laboratory at the 

University of Nevada, Reno. 
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Four 1/5th scaled specimens, viz., LFCD1, LFCD2, SFCD1 and SFCD2, were constructed. The 

first two specimens had the same layout each with a column clear height of 64 in. However, 

different flare reinforcement details were called for in the design of these two specimens. The other 

two specimens, SFCD1 and SFCD2, had the same reinforcement detailing as LFCD1 and LFCD2, 

respectively, but with a shorter clear height of 39 in each. For a detailed description of the 

geometrical, material, and mechanical parameters of the experimental specimens and loading 

procedures involved in their testing, the reader is referred to the original report by Nada et al. 

(2003). Figure 4.18 shows details of the finite element models developed for these specimens. It 

is to be noted that accounting for the differences between specimens LFCD1 and LFCD2, and that 

between specimens SFCD1 and SFCD2, are beyond the scope of the modeling technique employed 

in this project. Hence, two distinct finite element models, one applicable to LFCD1 and LFCD2 

while the other to SFCD1 and SFCD2, are developed. 

Researchers of the original study provided successfully measured lateral load-displacement curves 

enveloping the accumulative lateral load-displacement responses of three (LFCD1, LFCD2, and 

SFCD2) out of the four tested specimens. These experimentally obtained envelope lateral load-

displacement curves are used to validate the numerical lateral load-displacement response of the 

finite element models of these specimens developed using the modeling technique outlined 

previously. A displacement-controlled pushover analysis, preceded by a load-controlled gravity 

analysis, is conducted to push each numerical model up to a value of lateral drift equal to 4% past 

which the gap between the column flare and the bent cap was found to close in the conducted 

experiments. It is to be noted that the numerical models of bent groups developed for this 

experimental validation study and this project, in general, are unable to capture any such gap 

closure. Figure 4.19 shows the comparison of experimental and numerical lateral load-

displacement responses for the specimens considered. Also shown in Figure 4.19 are the responses 

of numerical models of these specimens with the boundary condition at the column base modeled 

as perfect pinned-connections. 

It is noted from Figure 4.19 that explicitly modeling the base hinge as a displacement-based 

element, with coupled nonlinear axial-flexural interaction, does affect the lateral load-

displacement relationship of a bent group. Numerical models of column-bents with columns 

perfectly pinned at the base are found to underpredict the transverse pushover resistance of such 

bents when compared to experimental data for the same imposed lateral displacement time history. 
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Figure 4.18 Details of finite element models of experimental column bent specimens: (a) specimens LFCD1 and LFCD2; (b) specimens SFCD1 and 
SFCD2; Fiber-section definitions for: (c) column section; (d) column base hinge; Material hysteretic stress-strain laws (backbone curves in bold) for: 

(e) unconfined concrete fibers; (f) confined concrete fibers; and (g) reinforcing steel fibers 
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(a) 

(b) 

Figure 4.19 Comparison of experimental and numerical lateral load-displacement responses for 
(a) LFCD1 and LFCD2; and (b) SFCD2 

61 



 

 
 

       

        

   

      

      

  

     

    

   

 

      

  

     

      

          

      

        

     

 

  

     

   

      

      

     

   

    

  

     

Numerical and experimental responses of a bent group are found to noticeably deviate past a point 

on the load-displacement equilibrium path much before a physical closure of the flare gap is 

experimentally recorded. This point, upon investigation, is found to correspond to the state at 

which tensile yielding of rebars in the most critical column section (i.e., at the top) has reached 

more than halfway through the section, i.e., rebars near the middle of the section lying along a 

plane normal to the direction of loading have reached yielding in tension. Past this state, the lateral 

force, required to achieve a specific level of drift, computed using the numerical model is 

significantly underpredicted as compared to that measured in case of the respective experimental 

specimen. It is believed that nearing this, somewhat damaged, state of the most critical column 

section, a redistribution of internal forces takes place in the column. As a result, the flared region, 

near the concrete core of sections below the topmost one, starts actively participating in resisting 

the applied loads. This is substantiated by strut-and-tie models proposed by the researchers of the 

original study (Nada et al. 2003) following detailed full-blown nonlinear finite element analyses 

of bent groups with flared columns. Two strut-and-tie models, one applicable before flare gap 

closure and the other after, were proposed. The presence of compressive struts in the flared region 

of the former strut-and-tie model, does indicate some flare participation in the lateral load resisting 

mechanism of such bent groups before flare gap closure is encountered. The absence of flares in 

the numerical model of a bent group specimen is believed to lead to the above-mentioned 

underprediction of numerically evaluated lateral forces as compared to the experimentally 

measured ones given specific levels of drift. 

4.2.3 Abutment Components 

The selected testbed bridges are supported on seat-type skewed (depending on the bridge skew 

angle) abutments supported on pile foundations. A typical seat type skewed abutment is shown in 

Figure 4.20 (a). Such an abutment system comprises of a backwall interacting with the backfill 

soil, wingwalls, shear keys, bearing pads, a stemwall, expansion joints, and a pile group supporting 

the system. Kaviani et al. (2012; 2014) implemented a simplified, yet effective and numerically 

robust, skewed abutment model by explicitly considering, in a phenomenological sense, the 

interaction between the bridge superstructure (i.e., the deck) and specific components of the bridge 

abutment, viz, the backfill, shear keys and bearing pads. An explicit consideration of the responses 

of other components is omitted because their contributions to the overall response of an OSB and 
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their effects on relevant failure modes were deemed insignificant by the researchers. Figure 4.20 

(b) and Figure 4.20 (c) show schematic diagrams (top-view and perspective view, respectively) of 

the simplified finite element model of a generic seat-type skewed abutment. Relevant details of 

modeling each of the aforementioned components, as implemented in this project, are presented 

in the following sub-sections. It is to be noted that modeling of pile groups and soil-structure 

interaction at/beneath the abutment foundations are kept outside the scope of this study. 

(a) (b) 

(c) 

Figure 4.20 A typical seat-type skewed abutment: (a) general configuration (top-view) (Kaviani 
et al. 2012); (b) simplified finite element model (top view); and (c) simplified finite element 

model (perspective view) 
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4.2.3.1 Backfill 

Kaviani et al. (2012; 2014) modeled the longitudinal interaction of the bridge superstructure (i.e., 

the deck) with the abutment backwall and the ensuing passive resistance of the backfill soil using 

several (five) translational compressive gap springs evenly distributed over the skewed length of 

the backwall as shown in Figure 4.20 (b) and Figure 4.20 (c). The gaps represent the expansion 

joint between the deck and the backwall. Modeling of springs in OpenSees is achieved by means 

of a specialized element, referred to as the zeroLength element, defined by two nodes at the same 

location. The nodes are connected by uniaxial material object(s) to represent the uncoupled 

unidirectional force-deformation relationships for the element. A quasi-rigid element, i.e., an 

exceedingly stiff elastic beam-column element with highly amplified material properties, is used 

to geometrically capture the physical dimension of the deck at each end of the bridge. 

A nonlinear hysteretic force-deformation relationship with a hyperbolic backbone curve, 

implemented in OpenSees as the uniaxial material model HyperbolicGapMaterial, is used to 

model the passive resistance of each backfill spring activated upon closure of the expansion joint 

gap. This material model is based on the work by Duncan and Mokwa (2001) and Shamsabadi et 

al. (2007) with parameters calibrated from large-scale abutment tests (Wilson and Elgamal 2006) 

performed on the large high-performance outdoor shake table facility (LHPOST) at the University 

of California, San Diego. The parameters of this model primarily include the initial stiffness, bf
initK

bf
ultF

bf
initK

h bfn

, and the ultimate passive resistance, . The following empirical equations, recommended by 

Caltrans SDC v1.7, are used to estimate the values of and bf
ultF (shown in Table 4-6) for the 

backfill springs of the selected testbed bridges. 

kip/in 125 (ft, kip)
ft 5.5 ft

bf
init

bf

hK w
n

 
=    

 

15.0 ksf (ft, kip)
5.5

bf
ult

bf

hF h w
n

 
=     

 

(4.2) 

(4.3) 

where and w represent the height and the skewed length of the backwall, respectively. 

represents the number of backfill springs used per abutment and is taken as 5 (as per Kaviani et al. 

(2012; 2014)). It is to be noted that the skewed, rather than the projected, length of the backwall is 

64 



 

 
 

      

    

     

     

      

     

   

 

 
 

 
 

 
 

 
 

      
   

 

used in Eq.s (4.2) and (4.3) because the passive resistances of the backfill springs are assumed to 

be aligned perpendicular to the skewed backwall. The HyperbolicGapMaterial material model 

definition in OpenSees also allows for the inclusion of a compression gap representing the 

expansion joint ( 

( )F −

bf
initK

1 in wide) between the deck and the backwall. Figure 4.21 shows, for each 

testbed bridge, the resulting nonlinear (hyperbolic envelope) hysteretic force-deformation 

relationship (obtained using values of and bf
ultF in Table 4-6) corresponding to the backfill 

spring located midway along the skewed length of the abutment backwall. 

(a) (b) 

(c) (d) 

Figure 4.21 Nonlinear hysteretic force-deformation relationship (hyperbolic backbone curve in 
bold) used to model the longitudinal passive resistance of a single backfill spring (out of a total 

of 5 equally spaced backfill springs per abutment) placed midway along the skewed length of the 
abutment backwall: (a) Bridge A; (b) Bridge B; (c) Bridge C; and (d) Bridge MAOC 
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Table 4-6 Material properties for uniaxial backfill springs 

Ultimate Initial 
Backwall passive Backwall Number of stiffness of 
skewed resistance of height ( )h

[ ]ft
( )w

[ ]ft
( )bfn ( )bf

initK
[ ]kip / in ( )bf

ultF

, backfill backfill spring Bridge length , backfill 
springs , spring 

, [ ]kip
A 4.6 21.3 5 89.8 83.3 
B 6.2 63.0 5 357.0 444.8 
C 6.3 79.6 5 455.9 574.4 
MAOC 4.5 40.1 5 164.0 147.4 

Kaviani et al. (2012; 2014) also accounted for the effect of abutment skew angle on the passive 

resistance of the abutment backfill by assuming a linear variation (schematically shown in Figure 

4.20 (b) and Figure 4.20 (c)) of the initial stiffness and the ultimate strength of the backfill springs 

over the skewed length of the backwall between the obtuse (OBT) and acute (ACU) corners 

(marked in Figure 4.20 (a)). The lower and upper bounds of the coefficient of linear variation are 

defined as 1 −





and 1 + , respectively, with the former applied to the stiffness and strength 

(given by Eq. (4.2) and Eq. (4.3) respectively) of the spring near OBT while the latter applied to 

that of the spring near ACU. With parameter defined by Eq. (4.4) (Kaviani et al. 2012; Kaviani 

et al. 2014), wherein is the value of bridge skew in degrees, the researchers of the original study 

postulated that for the largest abutment skew angle of 60 degrees, a maximum variation of 30% 

occurs between the stiffness/strength of backfill springs located at the obtuse and acute corners. 

tan0.3
tan 60


 =  (4.4) 

This variation was hypothesized to phenomenologically account for the increase in the available 

volume of engineered backfill soil that can be mobilized per unit length of the backwall in going 

from point OBT towards the point ACU. Figure 4.22 shows the hyperbolic backbone curves 

assigned to the backfill springs of the selected testbed bridges linearly varying in stiffness/strength 

in going from points OBT to ACU. 

66 



 

 
 

 
 

 
 

 
 

 
 

      

  
 

  

    

   

  

    

 

(a) (b) 

(c) (d) 

Figure 4.22 Hyperbolic backbone curves of the force-deformation relationships used to model 
the longitudinal passive resistances of five equally spaced backfill springs (per bridge abutment) 
with linearly varying strengths and initial stiffnesses: (a) Bridge A; (b) Bridge B; (c) Bridge C; 

and (d) Bridge MAOC 

4.2.3.2 Bearing Pad 

Steel reinforced elastomeric bearing pads evenly laid on top of abutment stemwalls are used to 

support both ends of the testbed bridge decks. These fairly strong, yet pliable, bearing pads allow 

slight horizontal movements of the deck after construction. Allowing such necessary movements 

in irregular environmental conditions prevent the development of unwanted/harmful residual 

stresses in bridge components. As schematically shown in Figure 4.20 (c), the combined vertical, 

longitudinal, and transverse resistances of the total number, say actual
bpn , of bearing pads per 
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abutment are modeled using model
bpn

actual
bpn

model
bpn

specialized zero-length bearing elements implemented in 

OpenSees as the elastomericBearingPlasticity element. Note that corresponds to the total 

number of bearing pads per abutment used in the actual design of the testbed bridges while 

refers to that used in the finite element model, conveniently taken equal to the number of backfill 

springs used. The elastomericBearingPlasticity element uses a plasticity-based (rate-independent) 

phenomenological model to describe the coupled bidirectional nonlinear shear force-deformation 

response of bearing pads. A bilinear hardening force-deformation backbone curve, with a post-

yield stiffness ratio of 0.1, is assigned to both translational directions of an elastomeric bearing 

element as shown in Figure 4.23. Coupling between the two horizontal resistances of a bearing 

pad element is described by a circular, rotationally symmetric, yield surface as shown in Figure 

4.23. Nonlinear hardening effects, also captured by the elastomericBearingPlasticity element, are 

not included in this project for simplicity. Each bearing pad is supported vertically on the 

essentially rigid stemwall (represented by a fixed connection at the base of the element), thus 

allowing the vertical (uncoupled with respect to the two horizontal directions) response of the 

bearing pad element to be modeled as exceeding stiff (quasi-rigid). 

Figure 4.23 Bilinear backbone curve of the force-deformation relationship used to model the 
coupled bidirectional (longitudinal and transverse) resistance of an elastomeric bearing pad 

element. The circular yield surface, shown in red, describes coupling between the resistances in 
the two horizontal directions 
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The initial stiffness, bp
initK

bpG

, and, the yield resistance, bp
yF

bpA

, of a single bearing pad are evaluated as 

follows: 

actual

model
bp bp bpbp

init e
bp bp

G A n
K

h n
= 

2

e
bpbp bp

y init

h
F K= 

(4.5) 

(4.6) 

where, , , and e
bph refer to the shear modulus, the cross-sectional area, and the total 

elastomer height/thickness of a single bearing pad, respectively. Assuming the total thickness of 

reinforcing steel shims to be approximately 50% of the elastomer height, the latter can be taken as 

0.67 bph bp
yF

bp
initK

model 5bpn =

actual

model
bp

bp

n
n( )bpG

, where bph

bp
yF

[  × ]in in
A 0.10 11.8 × 11.8 1.7 4/5 6.54 5.58 
B 0.10 23.6 × 23.6 2.5 7/5 31.34 39.10 
C 0.10 18.1 × 18.1 3.0 9/5 19.57 29.53 
MAOC 0.10 12.0 × 12.0 2.4 6/5 7.33 8.66 

is the total height of the bearing pad. The yield resistance, , is calculated 

by limiting the maximum elastic shear deflection of the bearing pad to half the total elastomer 

height (Caltrans 2000). Table 4-7 shows the geometric properties of elastomeric bearing pads used 

in the original design of the selected testbed bridges and their corresponding material properties 

obtained as per Eq.s (4.5) and (4.6). Figure 4.24 shows the resulting hysteretic force-deformation 

relationships, given the values of and in Table 4-7, each corresponding to any one (out 

of per abutment) elastomeric bearing element in the finite element model of a testbed 

bridge. 

Table 4-7 Material properties for elastomeric bearing elements 

Elastomer Bearing Initial Yield shear pad cross- Elastomer stiffness resistance modulus sectional thickness Bridge , ( )bp
yF , , area ( )bpA

[ ]kip / in [ ]kip
, ( )e

bph
( )bp

initK, [ ]in
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(a) (b) 

(c) (d) 

Figure 4.24 Nonlinear hysteretic force-deformation relationships (bilinear backbone curve in 
bold) used to model the coupled horizontal (longitudinal and transverse) resistance of a single 
bearing pad element (out of a total of 5 equally spaced bearing pad elements per abutment): (a) 

Bridge A; (b) Bridge B; (c) Bridge C; and (d) Bridge MAOC 

4.2.3.3 Shear Keys 

Bridge abutments of each of the testbed bridges comprise of exterior shear keys to provide 

transverse support to the superstructure (deck). Transverse shear forces imparted by the deck are 

transmitted to the stemwall primarily through vertical reinforcement between the shear key and 

the stemwall. Such keys are intended to act as structural fuses that break off in the event of a strong 

earthquake to prevent the propagation of damage to the stemwall and the supporting piles. 

However, two prevalent approaches (Caltrans 2013) to the design and detailing of shear keys have 

been historically found, and experimentally corroborated, to engender different damage/failure 
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modes in the seismic aftermath depending on the reinforcement detailing and the type of 

construction joint between the shear key and the abutment stemwall. One approach, called the 

isolated shear key method, involves a smooth construction joint between the shear key and the 

stemwall with vertical reinforcement detailed so as to ensure an easily repairable brittle failure 

based on a sliding shear mechanism through a well-defined horizontal plane. The other approach, 

referred to as the non-isolated shear key method, involves a rough, or no, construction joint 

between the shear key and the stemwall. Reinforcing details for non-isolated shear keys have been 

shown to result in a rather undesirable strut-and-tie failure mechanism accompanied by diagonal 

tension that engages the stemwall reinforcement and subsequently damages the stemwall 

significantly. Reinforcement details of generic shear keys designed according to both design 

approaches and their corresponding failure mechanisms are shown in Figure 4.25. Original designs 

of three of the selected testbed bridges, i.e., Bridge A, Bridge B, and Bridge C, utilize non-isolated 

shear keys. The fourth testbed bridge, i.e., Bridge MAOC, on the other hand, calls for isolated 

shear keys in its original design. The transverse resistance of an exterior shear key is modeled 

using a translational compressive spring, by means of the zeroLength element in OpenSees, on 

each side of an abutment as shown in Figure 4.20 (b) and Figure 4.20 (c). 

Figure 4.25 Exterior shear key reinforcement details (based on Caltrans SDC v1.7) and 
observed failure mechanisms (shown in red): (a) Isolated shear key (brittle failure in sliding 
shear mechanism along a horizontal plane; shear key slides along construction joint without 

engaging the stemwall); and (b) Non-isolated shear key (ductile failure in diagonal tension along 
a diagonal plane thereby engaging and damaging the stemwall) 

Megally et al. (2002) proposed a semi-empirical mechanics- and deformation-based shear force-

deformation hysteretic macro-model (shown in Figure 4.26) for non-isolated shear keys validated 

based on the experimental force-deformation data obtained from destructive testing of reduced-
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scale physical specimens of exterior shear keys. The complete model is constructed by 

superimposing the hysteretic contributions from steel and concrete components as shown in Figure 

4.26. The original authors related each branch of the proposed quinque-linear (branches AB, BC, 

CD, DE, and EF shown in Figure 4.26) backbone force-deformation curve to distinct damage 

levels/mechanisms observed in the conducted experiments. Level-I (contained in branch AB) 

corresponds to initiation of diagonal cracking at the intersection of the shear key’s sloped surface 

with the top of the stemwall. Level-II (point B) is the onset of yielding of shear key reinforcement. 

Level-III (point C) corresponds to the peak load with significant crack width opening at the shear 

key-stemwall interface. Level-IV (point D) is the point at which concrete contribution to the 

resistance falls to zero while Level-V (point E) is the initiation of failure of the steel resisting 

component. Kaviani et al. (2014) suggested the use of Concrete02, a material model from the 

library of uniaxial materials in OpenSees, for a numerically robust implementation of the proposed 

model for exterior shear keys. The backbone curve of the force-deformation hysteresis described 

by Concrete02 can be adjusted to approximately agree with that of the proposed quinque-linear 

model. To define the Concrete02 material model in OpenSees, only three parameters, viz., IIIV , 

III , and D , of the quinque-linear model are required. To this end, force-deformation coordinates 

corresponding to three damage levels, i.e., Level-III, Level-IV, and Level-V, need to be evaluated. 

Figure 4.26 Quinque-linear backbone curve (Megally et al. 2002) and hysteresis rule for non-
isolated exterior shear keys obtained as a superposition of a concrete component and a steel 

component 
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Level-III corresponds to the shear key capacity for a non-isolated shear key. This can be obtained 

by aggregating the contributions from concrete and reinforcing steel (i.e., CV and SV , respectively) 

to the shear resistance as follows (Megally et al. 2002): 

III C SV V V= + (4.7) 

CV 2.4 (in, psi)cf b h=   (4.8) 

( )
22
2

S 1 2 2
1

1V sin cos
2 2s y s y h ssh y v ssv y

h v

dhA f h A f d h n A f n A f
s s h d

 
  

= + + + +   
+  

(4.9) 

where, 1d

h

2sA

sshA

ssvA

hn

yf

is the height of the shear key, 2d b

vn

cf 

SV

is the length of the shear key-stemwall interface, is 

the width of the stemwall; and is the height of the stemwall. 1sA

hs

is the area of horizontal 

reinforcement at the top of the stemwall, is the area of inclined hanger reinforcement near the 

intersection of the shear key’s sloped surface with the top of the stemwall, is the area of 

stemwall horizontal side reinforcement, and is the area of stemwall vertical side 

reinforcement. and are the numbers of horizontal and vertical side reinforcement layers in 

the stem wall, respectively, with and vs representing the respective rebar spacing. Finally, 

and represent the nominal characteristic compressive strength of concrete and the nominal yield 

strength of steel reinforcing bars, respectively. Figure 4.27 schematically shows the diagonal 

failure mechanism of an exterior non-isolated shear key along with the parameters involved in the 

above equations. It is noted that the steel contribution, , is calculated based on the rotational 

equilibrium of the diagonally cracked shear key about the point A (in Figure 4.27). The shear key 

top displacement at this level is computed by assuming that the bottommost rebars near the toe of 

the stemwall crossing the diagonal crack have reached yielding in tension. The displacement 

capacity, III , of a non-isolated shear key is accordingly given by (Megally et al. 2002): 

( ) 1
III 2 y d

h dL b
s


+

 = + (4.10) 
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where, y s

dL

is the yield strain of steel reinforcing bars, and is the larger of the horizontal and 

vertical rebar spacing of the stemwall side reinforcement. represents the reinforcement 

development length given by (Megally et al. 2002): 

(in, psi)
25

b y
d

c

d f
L

f
=


(4.11) 

where bd represents the rebar diameter of the bottommost reinforcing bars in the stemwall. 

Figure 4.27 Schematic diagram of the strut-and-tie model capturing the failure mechanism 
involving diagonal tension in a non-isolated exterior shear key (Megally et al. 2002) 

The force and displacement coordinates at Level-IV, corresponding to full degradation of concrete 

contribution to the shear resisting mechanism, are given by Eq.s (4.12) and (4.13) respectively 

(Megally et al. 2002). A tensile strain of 0.005 in the bottommost rebars (near the toe of the 

stemwall crossing the diagonal crack) is assumed to be reached at this damage level upon 

experimental corroboration. 
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(4.12) IV SV V=

( ) 1
IV 2 0.005 d

h dL b
s
+

 =   + (4.13) 

Finally, the force and displacement coordinates at Level-V are given by Eq.s (4.14) and (4.15) 

respectively (Megally et al. 2002). Level-V, corresponding to the initiation of fracture of rebars 

crossing the crack at the shear key-stemwall interface, is experimentally found to be accompanied 

by the tensile strain in the bottommost rebars (crossing the diagonal crack near the toe of the 

stemwall) reaching 0.007. 

V SV V=

( ) 1
V 2 0.007 d

h dL b
s
+

 =   +

(4.14) 

(4.15) 

The shear key top displacement, D , corresponding to complete failure of the shear key can be 

computed as (Megally et al. 2002): 

IV III
D V V

III IV

V
V V
 −

 =  +
−

(4.16) 

Table 4-8 shows the material parameters obtained for the shear keys of Bridge A, Bridge B, and 

Bridge C. Eq.s (4.7) through (4.16), along with the shear key details given in the original design 

drawings of these testbed bridges are utilized in arriving at the values shown in Table 4-8. Figure 

4.28 (a) through Figure 4.28 (c) show the resulting hysteretic force-deformation relationships 

obtained for the shear keys of these testbed bridges. 

Table 4-8 Material properties for exterior shear key springs 

Bridge IIIV [ ]kip IIIΔ [ ]in DΔ [ ]in

A 1425.16 1.2 5.4 
B 2103.90 3.6 19.3 
C 1895.00 1.7 6.6 
MAOC 406.12 3.7 4.7 

75 



 

 
 

 
 

 
 

 
 

 
 

     
    

  
  

       

    

   

     

  

   

    

     

(a) (b) 

(c) (d) 

Figure 4.28 Nonlinear hysteretic force-deformation relationships (backbone curve in bold) used 
to model the transverse resistance of an exterior abutment shear key spring: (a) Bridge A (non-

isolated shear key); (b) Bridge B (non-isolated shear key); (c) Bridge C (non-isolated shear key); 
and (d) Bridge MAOC (isolated shear key) 

In the absence of an experimentally validated and well documented force-deformation hysteretic 

rule for isolated shear keys, the type used in Bridge MAOC, the original developers (Beckwith et 

al. 2015) of the finite element model of this bridge, calibrated experimental backbone curves 

corresponding to isolated shear key specimens tested at 40% scale (Bozorgzadeh et al. 2007) to 

model the force-deformation hysteretic response of the actual bridge shear keys. Beckwith et al. 

(2015) originally used the Pinching4 uniaxial material in OpenSees to model a trilinear backbone 

curve for the shear keys of Bridge MAOC. However, to maintain consistency of modeling 

approach in this project, the uniaxial material Concrete02 (same as that used for the three other 
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testbed bridges) with parameters given in Table 4-8 (as obtained from Beckwith et al. (2015)) is 

used. The resulting hysteretic force-deformation relationship obtained for the shear keys of Bridge 

MAOC is shown in Figure 4.28 (d). 

4.2.4 Inertial Properties, Gravity Loads, and Modal Analysis 

Translational masses based on the unit weight of reinforced concrete are assigned to the global 

translational, i.e., longitudinal ( )x

( )cw

3(lb/ft )

, transverse ( )y

( )c

, and vertical ( )z

2 4lb-sec /ft

, DOFs corresponding to the 

nodes associated with the superstructure (i.e., the deck) and the columns of each testbed bridge. 

Normal weight concrete, specified by Caltrans SDC v1.7, with a unit weight of 143.96 pcf 

and, therefore, a mass density of 4.471 is used for the specification of 

gravity loads and translational masses respectively. Any deck/column node is assigned its 

respective translational masses and gravity load, as per Eq.s (4.17) and (4.18) respectively, lumped 

based on the tributary lengths and section properties of the total number of non-rigid frame 

elements meeting at that node. 

( )

( ) ( ) ( )

1

i
elN

i i i trib
x y z c j j

j
m m m A L

=

= = =   (4.17) 

( )

( )

1

i
elN

i trib
z c j j

j
w w A L

=

= −   (4.18) 

where ( )i
xm , ( )i

ym , and ( )i
zm are the translational masses assigned to node i ; ( )i

zw is the gravity (along 

z direction) load assigned to node i ; jA and trib
jL are the cross-sectional area and tributary length, 

respectively, of the thj (out of ( )i
elN total) non-rigid frame element meeting at node i ; and ( )i

elN is 

the total number of non-rigid frame elements meeting at node i . 

A load-controlled static gravity analysis is conducted to reflect service conditions of each testbed 

bridge subjected to gravity loads. Post-gravity modal analyses of these bridges are then carried out 

to obtain periods of vibration corresponding to the first few (four) participating modes of the 

bridges. Mode shapes of the testbed bridge models are shown in Figure 4.29 through Figure 4.32. 
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(a) (b) 

(d) (c) 

Figure 4.29 Mode shapes (post-gravity load analysis) of Bridge A: (a) Mode 1; (b) Mode 2; (c) Mode 3; and (d) Mode 4 
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(a) (b) 

(c) (d) 

Figure 4.30 Mode shapes (post-gravity load analysis) of Bridge B: (a) Mode 1; (b) Mode 2; (c) Mode 3; and (d) Mode 4 
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(a) (b) 

(c) (d) 

Figure 4.31 Mode shapes (post-gravity load analysis) of Bridge C: (a) Mode 1; (b) Mode 2; (c) Mode 3; and (d) Mode 4 

80 



 

 
 

  

  

       

(a) (b) 

(c) (d) 

Figure 4.32 Mode shapes (post-gravity load analysis) of Bridge MAOC: (a) Mode 1; (b) Mode 2; (c) Mode 3; and (d) Mode 4 
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4.2.5 Damping Model 

A part of the total seismic energy imparted to a structural system subjected to an earthquake ground 

motion is dissipated by the hysteretic response of the inherently inelastic structure. This 

phenomenon is captured by carrying out a dynamic time-history analyses of the finite element 

model of the structure thoroughly developed with an in-depth consideration of material 

constitutive nonlinearity. However, an inelastic structural model provides only an approximation 

of the myriad phenomena that actually contribute to the actual seismic energy dissipation in the 

structure. The Rayleigh damping model, a mass- and stiffness- proportional damping model and 

conceived to account for energy dissipation in elastic structural models with significant 

mathematical convenience, is commonly used in practice to capture such additional and unknown 

sources of seismic energy dissipation for inelastic structures as well. The popularity of Rayleigh 

damping, despite its arguable lack of physical consistency, emerges from the fact that it rules out 

an explicit construction of a damping matrix for an inelastic structural model whose mass and 

stiffness matrix have already been assembled. 

Rayleigh damping defines the structural damping matrix, C

M K

 = +C M K

, as a linear combination of the mass 

matrix, , and the stiffness matrix (post-gravity-initial/current), , of the structure as follows: 

(4.19) 

where 

i



m

m

and 

i



n

n

are parameters to be determined. The above coupled (in general) matrix equation 

can be diagonalized or uncoupled following a pre- and post- multiplication of the above equation 

on both sides with the matrix of mass-normalized mode shapes (post-gravity-initial/current). 

Hence, Eq. (4.19) reduces to the following modal equation expressed in terms of the critical 

damping ratio, , and the natural frequency, , of the thi

( < )m n 

mode (post-gravity-initial/current). 

1
2 2

i
i

i


  


= + (4.20) 

The Rayleigh parameters, and , can be computed as follows such that predefined values of 

critical damping ratios, and , are respectively observed at specific values of modal 

frequencies, and . 
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(4.21) 

11
2 2

1
2 2

m

m m

nn

n



 

 



−

 
 

  
 =    
    
 
 

Eq. (4.21) gives 

( )
2 2

2 m n m n n m

n m

     


 

−
=

−

( )
2 2

2 n n m m

n m

   


 

−
=

−

(4.22) 

(4.23) 

Three different approaches of implementing Rayleigh damping, as listed below, are brought about 

based on the choice of the state of the structure (i.e., post-gravity-initial/current) in the above 

definitions. 

(i) The damping model is based on the post-gravity-initial stiffness matrix with Rayleigh 

parameters based on the post-gravity-initial modal frequencies corresponding to the post-

gravity-initial stiffness matrix 

(ii) The damping model is based on the current stiffness matrix with Rayleigh parameters based 

on the post-gravity-initial modal frequencies corresponding to the post-gravity-initial 

stiffness matrix 

(iii) The damping model is based on the current stiffness matrix with Rayleigh parameters based 

on the updated modal frequencies corresponding to the current stiffness matrix 

Although the third approach appears to be the most appropriate and scientific way to implement 

Rayleigh damping, the benefit entailed by it can be far outweighed by the computational cost of 

successive modal analyses required at different time steps of an already demanding nonlinear 

dynamic time-history analysis. Either of the two other approaches, on the other hand, can be readily 

applied with the current implementation of the rayleigh command in OpenSees. However, 

contrasting opinions, regarding these approaches, exist among researchers and practitioners in the 

current literature with some advocating the use of one over the other and vice-versa. Without any 

further investigation of such equally prevalent schools of thoughts, the first approach is selected 

in this project as a neutral choice. In this approach, the damping matrix for the structural model of 
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a testbed bridge is constructed following the application of gravity loads and, thereafter, held 

constant for the remainder of the analysis. 

Rayleigh damping must be sparingly and cautiously applied to an inelastic structural model in 

order to prevent the structure from being over-damped and develop non-physical damping forces 

(Charney 2008; Jehel et al. 2014). As such, the assignment of Rayleigh damping in the finite 

element model of a testbed bridge is limited (using the region rayleigh −  command in 

OpenSees) to the elastic beam-column elements used to model the bridge deck and the force-based 

beam-column elements used to model the bridge columns. Elements in a bridge model expected 

to undergo localized yielding in areas of concentrated plasticity, e.g., displacement-based beam-

column elements modeling the column base hinges and nonlinear springs/zero-length elements 

used to phenomenologically capture the nonlinear hysteretic response of various bridge abutment 

components, are precluded to dissipate energy via Rayleigh damping. 

Although the first transverse mode of vibration of any given testbed bridge appears as a relatively 

higher mode of vibration, as compared to the first longitudinal mode, its participation in the 

simulated seismic response of the bridge is expected to be more pronounced. This is because the 

longitudinal response of the bridge is eventually going to be stabilized by the passive resistance of 

the hyperbolic backfill springs, initially separated by physically modeled gaps. As such, a value of 

critical damping ratio, m m

n

n

n

, equal to 0.01 (1%) is applied to the modal frequency, , 

corresponding to the first mode (post-gravity-initial) of vibration of a testbed bridge in the 

transverse direction. This somewhat frugal choice for the value of critical damping ratio is based 

on the ground that damping/energy dissipation is already partially captured by an inelastic 

structural model via hysteresis of material constitutive behavior. 

The second value of critical damping ratio, , is selected to be relatively large, i.e., 0.05 (5%), 

and is applied to a higher value of frequency, , representative of a higher structural mode as 

compared to the predominant modes of vibration. This is done with the intention of suppressing 

spurious higher mode contributions to the seismic response of an OSB. This value of is 

calculated such that the following inequality is satisfied. 

n m
n

m

 



 (4.24) 
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Satisfaction of Eq. (4.24) is required to ensure that a positive value of the Rayleigh parameter 



is obtained (see Eq. (4.22)). Computed values of Rayleigh parameters for the selected testbed 

bridges are shown in Table 4-9. The corresponding Rayleigh damping curves (i.e., versus 

relationships given by Eq. (4.20)) obtained for these bridges are shown in Figure 4.33. 



Table 4-9 Rayleigh damping parameters for the testbed bridge models 

Bridge mω [ ]Hz mξ [ ]% nω [ ]Hz nξ [ ]% α [ ]-1rad s β [ ]-1rad  s

A 3.4 (Mode 3) 1.0 18.5 5.0 0.0397 0.00086 
B 4.3 (Mode 4) 1.0 23.6 5.0 0.0508 0.00067 
C 4.2 (Mode 4) 1.0 23.0 5.0 0.0493 0.00069 
MAOC 3.5 (Mode 2) 1.0 19.3 5.0 0.0414 0.00082 

Figure 4.33 Rayleigh damping curves for the considered testbed bridges:(a) Bridge A; (b) 
Bridge B; (c) Bridge C; and (d) Bridge MAOC 
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4.3 Nonlinear Time History Analysis Setup 

Computational models of the testbed bridges are subjected to seismic excitation by means of rigid 

body ground motion histories uniformly prescribed to all supports (bases). This approach relies on 

a relative displacement-based formulation wherein response histories of deformation quantities 

(such as relative displacement, relative velocity, and relative acceleration with respect to the 

support/base/ground) corresponding to the global DOFs of the finite element model of a bridge are 

evaluated under dynamic seismic loading. Dynamic seismic loads are defined in the form of 

equivalent inertial forces (proportional to the spatial mass distribution in the bridge model) 

resulting from the prescribed rigid body base motions. This method of performing nonlinear time 

history analysis is implemented in OpenSees using the UniformExcitation loading pattern. 

The mathematical model describing the system of governing differential equations (generally 

coupled) of motion of an inelastic multi-DOF bridge structural system subjected to uniformly 

prescribed dynamic seismic excitation at all support/base/ground nodes is given by (Clough and 

Penzien 1993; Filippou and Fenves 2004): 

( ) ( ) ( )( ) ( ), 0 gt t t t + +   = −RM U CU P U M R U (4.25) 

where U , U , and U refer to vectors of deformation quantities, i.e., relative acceleration, relative 

velocity, and relative displacement with respect to the ground, corresponding to the global DOFs 

in the bridge model. M

( ( ), 0 )t  RP U

R ijR

i

 ( 6)j 

t

and C

gU

thi j−

are the mass and damping matrices of the bridge model, 

respectively. denotes the displacement history dependent resisting force 

vector of the bridge structural model. The vector is, in general, a six-dimensional vector of 

ground accelerations corresponding to the six (three translational and three rotational) DOFs of a 

support node. is referred to as the influence coefficient matrix with , its component, 

giving the displacement at the structural DOF corresponding to a slow uniform movement of all 

support nodes along DOF . Time-dependence of the above system of equations is indicated 

by . 

Dimensionality of the applied loading function, i.e., the ground motion acceleration history, 

accommodated by the system of equations described in Eq. (4.25) is general and can be easily 

extended to all six DOFs corresponding to rigid-body ground/support movement. However, 
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restricted by the sparse availability of recorded multi-DOF free-field ground motion records from 

past seismic events and to maintain the simplicity and practicability of analyses to be conducted 

in this project, a testbed bridge model is subjected to a two-dimensional seismic input 

corresponding to the two horizontal-translational (i.e., longitudinal and transverse) directions of 

the bridge. Following the selection of site-specific risk-consistent ensembles of unrotated two-

component ground motion records for a bridge, as will be discussed in the next Chapter, ground 

acceleration histories corresponding to the two horizontal directions of each record are arbitrarily 

(without any loss of generality) assigned to the two horizontal-translational directions of the bridge 

model. 

The Newmark-Beta family of transient integrators are commonly used to numerically integrate the 

system of second-order continuous-time differential equations (Eq. (4.25)) governing the dynamic 

response of structural systems by employing discrete time-stepping techniques. The Newmark-

Beta constant average acceleration method, with values of Newmark parameters,  

t t+  t t+ 

and , set 

equal to 0.5 and 0.25, respectively, is used in this project to solve the governing equations of 

motion of the testbed bridge models developed herein. The constant average acceleration time-

stepping scheme is implicit in the sense that it leads to a coupled system of equations with respect 

to dependent and independent variables (i.e., the solution to the state of the structure at a future 

time depends on the future state of the structure at time itself). This, when applied to 

nonlinear systems, necessitates the use of specialized solution algorithms meant to iteratively solve 

the incremental equations of dynamic equilibrium for such systems. Numerical robustness of such 

solution algorithms is the key to mitigate the occurrence of non-convergence of the iterative 

scheme used to integrate the nonlinear equations of motion over an integration time-step. In the 

case of non-convergence during a nonlinear time-history analysis, it is important to distinguish 

between the onset of physical collapse or a numerical, non-collapse related convergence issue. In 

other words, non-converged nonlinear time-history analyses cannot be discarded. Thus, the 

nonlinear solution strategy is made adequately robust to minimize the number of non-converged 

nonlinear time-history analyses. In case a non-collapse-related numerical convergence issue is 

encountered, convergence of the numerical solution is ensured mainly through adaptive switching 

between available iterative methods (e.g., Newton, modified-Newton, BFGS, Newton-Krylov) in 

OpenSees used to solve the incremental equations of dynamic equilibrium over a time step. 
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It is also essential to ensure that numerical results obtained from employing such discrete time-

stepping numerical techniques to solve continuous-time differential equations are not sensitive to 

the integration time-step int( )t used. With values of Newmark parameters, and  , respectively 

taken as 0.5 and 0.25, consistency, second-order accuracy, and unconditional stability of 

numerically obtained results are engendered. This, however, is strictly valid only for linear systems 

in which numerical stability, consistency, and second-order accuracy is guaranteed irrespective of 

the integration time-step used in the constant average acceleration method. For nonlinear problems 

involving inelastic structural models, the constant average acceleration method does not promise 

numerical stability and consistency of results, which is why the sensitivity of results needs to be 

assessed with respect to the integration time-step used. Time-histories of response quantities such 

as column drift-ratio and absolute acceleration at the column top, corresponding to the testbed 

bridge models subjected to arbitrarily chosen bi-directional earthquake ground acceleration 

histories, are shown in Figure 4.34 through Figure 4.37 wherein results obtained using three 

different values of intt

intt intt

are compared. Each earthquake ground motion input assigned to a testbed 

bridge model (shown in Table 4-10) is arbitrarily picked from a set of ground motion records, 

scaled and selected such that these records, as an ensemble, are consistent with the site-specific 

seismic hazard (elaborated in Chapter 5). Results corresponding to each bridge model are found to 

converge to a stable solution with increasingly small values of the integration time-step thereby 

establishing the adequacy of the nonlinear time history analysis setup implemented in this project. 

A middle ground between accuracy of results and feasibility of computational runtime is achieved 

with a value of taken equal to 0.005 s. However, for future analyses, the value of can be 

adaptively incremented or decremented, in conjunction with adaptive switching between available 

iterative methods, as and when numerical issues are encountered in the convergence of the iterative 

scheme used to solve the incremental equations of dynamic equilibrium over an integration time-

step. 
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Table 4-10 Earthquake ground motion records for preliminary nonlinear time-history analyses 

Ground motion 
Earthquake component Duration Scale Bridge Event Station Magnitude assigned to bridge (s) factor (Year) direction 

Long. Trans. 

A Loma Prieta 
(1989) 

Treasure 
Island 6.93 39.9 2.87 0 90 

B Northridge-
01 (1994) 

Pasadena -
N Sierra 
Madre 

6.69 19.9 2.56 180 270 

C 
Imperial 

Valley-06 
(1979) 

Coachella 
Canal #4 6.53 28.5 3.47 45 135 

MAOC Landers 
(1992) Coolwater 7.28 27.9 2.83 

LN 
(Fault 

Parallel) 

TR 
(Fault 

Normal) 
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(c) (d) 

 
 

    
   

  

Figure 4.34 Convergence of nonlinear time-history analyses results of Bridge A with respect to integration time-step int( )t : (a) finite element 
model and monitored node; (b) Input bi-directional earthquake ground acceleration record; (c) lateral drift response history recorded at monitored 

node; and (d) absolute acceleration response history recorded at monitored node 
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Figure 4.35 Convergence of nonlinear time-history analyses results of Bridge B with respect to integration time-step int( )t : (a) finite element 
model and monitored node; (b) Input bi-directional earthquake ground acceleration record; (c) lateral drift response history recorded at monitored 

node; and (d) absolute acceleration response history recorded at monitored node 
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Figure 4.36 Convergence of nonlinear time-history analyses results of Bridge C with respect to integration time-step int( )t : (a) finite element 
model and monitored node; (b) Input bi-directional earthquake ground acceleration record; (c) lateral drift response history recorded at monitored 

node; and (d) absolute acceleration response history recorded at monitored node 
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Figure 4.37 Convergence of nonlinear time-history analyses results of Bridge MAOC with respect to integration time-step int( )t : (a) finite element 
model and monitored node; (b) Input bi-directional earthquake ground acceleration record; (c) lateral drift response history recorded at monitored 

node; and (d) absolute acceleration response history recorded at monitored node 
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5 Probabilistic Seismic Hazard Analysis 

5.1 Introduction 

Seismic response evaluation of structures is an integral part of performance-based seismic 

assessment and/or design. Seismic performance assessment and/or design of structures requires 

predictions of risk-levels associated with structural performance in the event of an earthquake. To 

obtain reliable risk predictions, the level of ground shaking to be considered for evaluating the 

seismic response of structures should be consistent with the seismic hazard at the site of the 

structure. This necessitates an explicit description of the seismic hazard in terms of a ground 

motion parameter that correlates well with structural response and, in turn, with damage due to an 

earthquake. 

The occurrence of an earthquake is a highly random phenomenon and there is large uncertainty 

associated with seismic loads and ground motion parameters due to random occurrence time, 

variability in magnitude, source-to-site distance, seismic wave attenuation, etc. Therefore, seismic 

hazard assessments must inevitably involve a treatment of uncertainties. Uncertainties can be 

categorized as aleatory and epistemic. Aleatory uncertainty, also known as natural variability, is 

inherent to the considered phenomenon and hence classified as irreducible. Epistemic uncertainty, 

however, arises due to lack of completeness in the chosen model of the considered phenomenon 

and is primarily due to insufficient knowledge and/or data. Epistemic uncertainty promises to 

reduce with more information, knowledge, and/or research. An explicit account of epistemic 

uncertainties is kept outside the scope of this project. 

Probabilistic Seismic Hazard Analysis (PSHA), originally proposed and developed by Cornell 

(1968) aims to identify and quantify the pertinent sources of uncertainties to rigorously 

characterize the seismic hazard in a probabilistic sense. 

5.2 Seismic Hazard Integral 

The essence of PSHA is to identify and aggregate the contribution of all possible seismic events 

(characterized by pairs of earthquake magnitudes and source-to-site distances that could 

potentially affect the considered structure) to arrive at an estimate of the mean annual rate (MAR) 

at which specific values of a ground motion intensity measure ( )IM are exceeded. An reflects 
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the intensity of the earthquake ground motion and can be taken as a structure-independent ground 

motion parameter (e.g., peak ground acceleration (PGA), peak ground velocity (PGV), Arias 

intensity, Housner’s spectrum intensity) or more often as a structure-dependent ground motion 

parameter such as the 5% damped pseudo-spectral acceleration, 1( , 5%)aS T  =

1( , 5%)dS T  = 1T

5% =





, or the spectral 

displacement, , at the expected predominant period . The level of damping 

associated in the definition of damped pseudo-spectral acceleration and/or displacement is 

assumed to be 5% and the explicit indication of is dropped hereafter for the sake of brevity 

and ease of notation. Furthermore, pseudo-spectral accelerations, henceforth are referred to as 

spectral accelerations. 

The basic underlying assumption in probabilistic seismic hazard computations is that of a random 

earthquake occurrence model in time. The homogenous Poisson process is a reasonable model for 

this purpose (Cornell 1968). The time to first occurrence of a Poisson event and the interarrival 

times between such events are distributed according to the exponential distribution with the 

parameter , where  is the mean annual rate (MAR) of occurrence of the Poisson event. The 

mean interarrival time, popularly known as the mean return period (RP), of Poisson events is given 

by the reciprocal of . An important property of the Poisson process, exploited at all stages of the 

PEER PBEE framework and illustrated in Figure 5.1, is that the occurrence of an event following 

or resulting from that of a basic Poisson event also admits a Poisson description. The resulting 

process, known as a censored Poisson process, has a mean annual rate of occurrence equal to the 

product of the MAR of occurrence of the basic Poisson event and the probability of the 

consequential event. 

Figure 5.1 Basic and censored Poisson events 
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Hence, the MAR at which an 



( )M

M

sIM

M

exceeds a given value x

( )R

R

R

due to an earthquake is given by 

(5.1) ( )  IM x P IM x =  

where is the MAR of occurrence of earthquakes with magnitude/intensity greater than a lower 

bound threshold value such that earthquakes with magnitude/intensity lower than this threshold do 

not cause any significant damage to the considered structure. The Poisson model for earthquake 

occurrence in time also allows for computation of the probability of exceedance in an 

exposure time of t years in terms of the MAR of exceedance, ( )IM x , as follows 

  ( ) in  years 1 IM x tP IM x t e − 
 = − (5.2) 

An exposure time of 50 years is common in structural engineering practice, and MAR (or mean 

RP) of exceedance is sometimes equivalently expressed as the probability of exceedance in 

50 years using the relation given by Eq. (5.2). 

The exceedance of a specific value of a ground motion is influenced by a number of factors. 

For a given earthquake-prone site, there are several faults or seismic sources nearby (see Figure 

5.2). Each seismic source has a distinct seismic activity rate i.e., an MAR of earthquake 

occurrence, a range of possible earthquake magnitude values and depending on where the rupture 

occurs on the fault, a range of possible source-to-site distance values. When an earthquake of a 

given magnitude and source-to-site distance occurs, seismic waves propagate from the 

source to the site. It has been observed that even with the same and values for an earthquake, 

regional seismic wave attenuation and local site-effects produce a significant scatter or uncertainty 

in the values of recorded at the site. With simplifying yet reasonable assumptions of (1) 

mutual exclusivity of simultaneous earthquake occurrences near the site; (2) statistical 

independence of and given the occurrence of an earthquake from a certain source; and (3) 

the Poisson description of earthquake occurrence in time, Eq. (5.1) can be expanded invoking the 

Total Probability Theorem as follows: 

( )   ( ) ( )
flt

1
| ,

i i

i i

N

IM i i i M R
i R M

x P IM x M m R r f m f r dm dr 
=

=  = =       (5.3) 
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where fltN =

i

( )iM

i

number of causative seismic sources/faults; i =

( )
iMf m

( )iR

MAF of occurrence of earthquakes 

on seismic source . The functions and ( )
iRf r denote the probability density functions 

(PDFs) of the magnitude and source-to-site distance , respectively, given the occurrence 

of an earthquake on seismic source . 

Figure 5.2 Location of testbed bridges shown on a map of California with seismic sources/faults 
shown in red. Image courtesy: Caltrans ARS Online (v2.3.09) and Google Maps 

The conditional probability  | ,i iP IM x M m R r = =

M

30SV

in Eq. (5.3) is given by attenuation 

relations or ground motion prediction equations (GMPEs) which are predictive relationships of 

, accounting for local site effects, given seismological variables and . R These are typically 

developed by applying statistical regression analyses to recorded earthquake ground motion data. 

Ground motion intensity is closely related to the shear wave velocity profile of the soil/rock at the 

site. For prediction of site-specific ground motion intensity, the time-averaged shear wave velocity 

to 30 m depth, also known as , is used in GMPEs as an index of local site effects. Numerous 

GMPEs developed by various researchers in the past (Abrahamson and Silva 2008; Boore and 

Atkinson 2008; etc.) are commonly used for PSHA computations. 
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The seismic hazard integral (Eq. (5.3)) thus provides a probabilistic characterization of the seismic 

hazard at the site in terms of the MAR of exceeding a specific value of the chosen . In doing 

so, it explicitly accounts for the uncertainty of due to randomness in temporal and spatial 

occurrence of future earthquakes affecting the site, as well as the uncertainties related to the 

seismic wave propagation path and local site conditions. 

5.3 Seismic Intensity Measure: Average Spectral Acceleration over a Period Range 

As stated in the previous section, the results of PSHA are expressed as the MAR of exceedance of 

a specific value of a seismic intensity measure ( )IM

( )M

. Depending on the results of PSHA, 

earthquake ground motion records producing desired levels of are selected for response 

assessment of structures subjected to seismic loading. Thus, an connects seismological 

characteristics of earthquakes (magnitude , source-to-site distance ( )R

M

sIM

1( )aS T

, regional seismic wave 

attenuation, local site-effects, etc.) to structural behavior. A proper choice of is therefore 

crucial to have a true picture of structural performance against earthquakes. 

Ideally, an earthquake and its effects on the considered structure should be completely represented 

by the chosen . However, to date, there exists no such single, or scalar, ground motion in 

the literature that can characterize ground motions and their effects on structural response 

completely. A reasonable choice of should therefore exhibit desirable properties of 

“efficiency” and “sufficiency” (Luco and Cornell 2007). An “efficient” results in small 

dispersion/variability of peak structural responses obtained using different ground motion records 

with the same level of intensity as measured by the . A “sufficient” 

R

leads to statistical 

independence of structural response, given , from ground motion characteristics, such as 

and . Numerous studies and research have been conducted in the past focusing on evaluation 

and comparison of the performance of different based on their efficiency and sufficiency 

(Aslani and Miranda 2005; Baker and Cornell 2004; Baker and Cornell 2005a; Baker and Cornell 

2005b; Baker and Cornell 2006a; Baker and Cornell 2006b; Luco and Cornell 2007; Riddell 2007; 

Shome et al. 1998; Tothong and Luco 2007). The elastic first-mode 5% damped spectral 

acceleration, , is a commonly used . However, it has been shown not to be an efficient 

and sufficient predictor of structural response, especially for (1) structures exhibiting highly 

nonlinear response which leads to significant period elongation; (2) structures that have 
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significantly different fundamental periods in two orthogonal directions; and (3) structures with 

significant contribution to dynamic response from higher modes (Baker and Cornell 2005b; 

Barbosa 2011; Faggella 2008; Luco and Cornell 2007; Shome et al. 1998). Ordinary standard 

bridges (OSBs), the kind of bridges considered in this study, typically fall under the first two 

categories of structures mentioned above, thereby ruling out the choice of 1( )aS T

. 

sIM

as a potential 

candidate 

Vector-valued can be used to address the issue of efficiency and sufficiency to an extent. But 

vector-valued PSHA (VPSHA) (Bazzurro 1998; Bazzurro and Cornell 2002) comes at the price of 

theoretical and computational complexity. It requires the daunting task of integrating joint 

probability density functions of the sIM

sIM

sIM sIM

1( )aS T , is 

, avg( )aS

which are correlated in general. Although simplified and 

computationally efficient methods for performing VPSHA computations exist in the literature 

(Barbosa 2011; Bazzurro et al. 2009; Wang et al. 2016), vector-valued are not opted for in 

this study to maintain the practicability of the aimed performance-based seismic design framework 

for OSBs. 

To achieve a middle ground between rigor and practicability, researchers have introduced scalar 

which are meaningful functional combinations of multiple (Bianchini et al. 2009; 

Bo and Iervolino 2011; Cordova et al. 2000; Fajfar et al. 1990; Kohrangi et al. 2016; Luco 
and Cornell 2007; Mehanny 2009; Vamvatsikos and Cornell 2005). One such , originally IM 

proposed by Baker and Cornell (2005a; 2006a) which has been demonstrated to exhibit higher 

levels of efficiency in the prediction of displacement-based nonlinear structural response 

(Bianchini et al. 2009; Bojórquez and Iervolino 2011; De Biasio et al. 2014; Eads et al. 2015; 

Kennedy et al. 1984; Tsantaki et al. 2012; Vamvatsikos and Cornell 2005) and that of sufficiency 

(Bojórquez and Iervolino 2011; De Biasio et al. 2014; Eads et al. 2015) as compared to 

the spectral acceleration averaged over a period range . The average spectral acceleration 

is defined as the geometric mean of spectral accelerations at different periods and is given by 

( ) ( )
1

, avg 1
1

,
nn

a n a p
p

S T T S T
=

 
=  
 
 (5.4) 
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To remove any ambiguity in notation, the index  1,p n

, avgaS

in Eq. (5.4) refers to the number of 

periods in the averaging period range and not to structural vibration modes. Although studies 

relating to the efficiency and sufficiency of have primarily focused on buildings, this is 

selected in this study to account for the following phenomena not captured by the traditionally 

used IM, i.e., the spectral acceleration at a single predominant period of the structure: 

(a) Lack of certainty in predicting the natural period of the pre-dominant mode of vibration for 

reinforced concrete structures such as OSBs; 

(b) Change in natural periods of reinforced concrete structures in going from pristine 

conditions to cracked states under service loads; 

(c) Structural period elongation due to accumulation of damage during an earthquake which 

leads to higher correlation of structural response with spectral accelerations at longer 

periods; and 

(d) Difference in computed periods of fundamental modes of vibration in two orthogonal 

directions of the bridge. 

During an earthquake, an OSB is supposedly going to be in a more precarious state in the transverse 

direction as compared to that in the longitudinal direction. This is because, in the latter direction, 

the backfill eventually stabilizes the longitudinal response of the bridge. However, shear keys, the 

primary force-resisting mechanism of bridge abutments in the transverse direction, show a 

deteriorating response once their peak strengths are reached (Bozorgzadeh et al. 2007; Megally et 

al. 2002). Hence, the transverse seismic response of an OSB is more likely to govern and result in 

severe damage. Therefore, the range of periods used in the definition of , avgaS

1,transT , to 1,trans2.5T . 

for the OSBs 

considered in this study span from the first transverse mode of vibration, i.e., 

Ten discrete points logarithmically spaced within the extremes of the period range (Bianchini et 

al. 2009) are used to calculate the average spectral acceleration. This choice of the period range 

also happens to include the first mode period in the longitudinal direction of the considered OSBs. 

Table 5-1 lists the first mode vibration periods of the considered OSBs in the transverse and 

longitudinal directions along with the period range chosen for each bridge to compute the average 

spectral acceleration. The reported periods are calculated post gravity load application using 
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uncracked section properties. The effects of cracking and period elongation under service, as well 

as, design loads are captured with the range of periods considered. 

Table 5-1 First mode periods of vibration and period ranges for 

Bridge 1, trans [s]T 1, long [s]T   1, trans 1, trans, 2.5T T

, avgaS

Period Range: 

A 0.29 0.50 [0.29, 0.73] 
B 0.23 0.53 [0.23, 0.60] 
C 0.24 0.40 [0.24, 0.60] 
MAOC 0.28 0.35 [0.28, 0.70] 

The choice of a geometric mean in the definition of (Eq. (5.4)) over an arithmetic mean is 

firstly because the geometric mean is relatively less sensitive to extreme (i.e., very high or very 

low) values. Secondly, and more importantly, the multivariate lognormal distribution, which is 

found to appropriately model the variability in a random vector of correlated spectral accelerations 

(Jayaram and Baker 2008), is closed under the log-linear transformation given by the definition of 

the geometric mean (Eq. (5.4)). Hence, the lognormality of is preserved which facilitates 

the computation of its GMPE (probabilistic characterization given an earthquake 

, avgaS

of , avgaS

M

, avgaS

( )

ln ( )|scenarioa pS T and ln ( )|scenarioa pS T

scenario, i.e., a pair of and R

( )

values), required in PSHA calculations, from existing GMPEs 

of spectral accelerations at single periods. The lognormal random variable , given a scenario, 

can be completely characterized by two parameters, viz., the mean and standard deviation 

of the natural logarithm of the random variable, as follows 

( ), avgln |scenario ln |scenario
1

1
a a p

n

S S T
pn

 
=

 
=  
 

 (5.5) 

( ) ( ) ( ) ( ), avgln |scenario ln ln |scenario ln |scenario ln |scenario
1 1

1
a a p a q a p a q

n n

S S T S T S T S T
p qn

   
= =

 
=    
 

 (5.6) 

in Eq.s (5.5) and (5.6) can be obtained from existing GMPEs (e.g., 

Boore and Atkinson 2008) for spectral accelerations at single periods. The correlation structure 

between pairs of spectral accelerations at two different periods has been previously studied by 

researchers and predictive models available in the literature can be used to compute the correlation 
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coefficient ln ( )ln ( )|scenarioa p a qS T S T

M

in Eq. (5.6). The well-known correlation model by Baker and 

Jayaram (2008) that assumes the correlation coefficient to be independent of earthquake scenario 

(Baker and Cornell 2005a), i.e., a pair of and R values, is used in this study. Thus, Eq. (5.6) 

can be rewritten as 

( ) ( ) ( ) ( ), avgln |scenario ln ln ln |scenario ln |scenario
1 1

1
a a p a q a p a q

n n

S S T S T S T S T
p qn

   
= =

 
=    
 

 (5.7) 

Eq.s (5.5) and (5.7) define the GMPE for , avgaS which can be used in the computation of seismic 

hazard at the site as per Eq. (5.3). Details of PSHA using , avgaS , an improved measure of seismic 

intensity as compared to the traditionally used 1( )aS T , are provided in the next section. 

5.4 Seismic Hazard Analysis 

Seismic hazard analysis involves evaluation of the seismic hazard integral given by Eq. (5.3). 

Standard open-source tools (e.g., OpenSHA (Field et al. 2003)) readily provide results of PSHA 

given a site and a choice of 

, avgaS

, avgaS

x

iM

MN

. However, owing to the novelty of the chosen , these tools do 

not include seismic hazard assessments in terms of . Therefore, the seismic hazard integral 

(Eq. (5.3)), rewritten in terms of as follows, needs to be evaluated while keeping things as 

simple and practicable as possible. 

( ) ( ) ( ) ( )
flt

, avg

, avg

1

1 1

| ,
a i i

i i

a

nN n

S i a p i i M R
i pR M

S

x P S T x M m R r f m f r dm dr 
= =

 
  
 =  = =     
  
 
 

   (5.8) 

In the above equation, is a specific value of average spectral acceleration. Analytical evaluation 

of the integrals in Eq. (5.8) is an impracticable problem. Hence, these integrals need to be evaluated 

numerically. One approach is to treat the continuous random variables and iR

RN

as discrete and 

thereby divide the possible ranges of these random variables into and segments, 

respectively (Kramer 1996). This leads to the following simplification of the hazard integral which 

is now expressed as a summation. 
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( ) ( )
flt

, avg

, avg

1

1 1 1 1

| ,
M R

a

a

nN N N n
i i i i

S i a p j k j k
i j k p

S

x P S T x m r P m P r 
= = = =

 
  
     =          
 
 

   (5.9) 

Where i
jP m  

i

i ( , )i i
j km r

and i
kP r   iM

i
jm

are the probabilities of the random variables and iR

i
kr

, related to 

seismic source , taking the discrete values and respectively. Defining an earthquake 

scenario on fault as a magnitude and source-to-site distance pair, i.e., , Eq. (5.9) becomes 

( ) ( )
flt

, avg

, avg

1 1

1

1 1 1
,

| scenario scenario
S

a

i i i ij kN N j kM R
a

j k

nN N n
i i

S i a p s s
i s p

m r P m P r
S

x P S T x P 

= =

= = =
   
   

 
  
   =       
 
 

   (5.10) 

where SN

x

, equal to M RN N , is the number of possible earthquake scenarios.  The probability of 

, avgaS i

, avgaS i

scenarioi
sP   

, avg | scenarioi
a sP S x  

exceeding a specific value , given an earthquake scenario on fault can be computed 

based on the lognormality of and using Eq.s (5.5) and (5.7). The remaining terms, and 

, are results of seismic source characterization involved in standard PSHA 

calculations. These results, although computed and used in standard PSHA tools (e.g., OpenSHA), 

are not readily available as an output of such tools. For the sake of simplicity, seismic source 

characterization and related calculations are avoided, and a workaround is developed based on the 

results of standard PSHA for spectral accelerations at single periods such that the hazard given by 

Eq. (5.10) can be reasonably approximated. 

The seismic source dependence of the term can be conveniently dropped 

if the GMPE by Boore and Atkinson (2008), which allows for unspecified fault, is used. With this 

simplification, Eq. (5.10) can be rewritten as 

( ) ( )
, avg

flt

, avg
1

1

scenario
1 1

scenario

| scenario
S

a s

N
i

i s a
i

nN n

S a p s
s p

P S

x P S T x



 

=

= =

 
 

 
  
 =   
  
 

  

  (5.11) 
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Eq. (5.11) gives a more tractable form of the seismic hazard integral in terms of , avgaS

scenarios
 s

T

where 

, defined as the MAR of occurrence of scenario from any seismic source affecting the 

considered site, is the only term yet to be determined. This is done by resorting to the results of 

standard PSHA for spectral accelerations at single periods. 

The seismic hazard integral in terms of spectral acceleration at a single period , in a form similar 

to Eq. (5.11), is given by 

( ) ( ) ( )
flt

1

scenario
1

scenario

| scenario
S

sa

N
i

i s
i

N

a sS T
s

P

x P S T x



 

=

=

 
 

=    



 (5.12) 

Seismic hazard curves, for each of the considered testbed bridges, in terms of ( )aS T for each 

period in the averaging period range are shown in Figure 5.3. These hazard curves are obtained 

from OpenSHA (Field et al. 2003) using the Boore and Atkinson (2008) GMPE. 
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(a) (b) 

(c) (d) 

Figure 5.3 Seismic hazard curves in terms of ( )aS T for each period in the averaging period 
range for (a) Bridge A; (b) Bridge B; (c) Bridge C; and (d) Bridge MAOC 

An important observation from Figure 5.3, that facilitates determination of scenarios


( )aS T

T
4[ ( ) 10 | scenario ] 1.0a sP S T −  ( )aS T

to be used in 

Eq. (5.11), is that all seismic hazard curves for spectral accelerations at single periods, irrespective 

of the period, converge to a single value (indicated by the red markers) of MAR of exceedance at 

very small spectral acceleration values. Very small values of , e.g., 410− g, are almost 

certainly exceeded given any earthquake scenario or any period (i.e., 

). Hence, the MAR of exceeding this value of is, per Eq. 

(5.12), equal to the sum of the rates of all possible scenarios contributing to the seismic hazard at 

the site, i.e., 
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( ) ( )4
scenario

1
10

S

sa

N

S T
s

x −

=

= = (5.13) 

A routinely available output from standard PSHA tools is the M R−

x

M

1, trans( 0.23 s)aS T T= =

M R−

M R−

scenario disaggregation of 

seismic hazard (Bazzurro and Cornell 1999).It gives the relative contribution to a specific value of 

seismic hazard for a fixed intensity level of spectral acceleration ( )aS T

R

M

, from each earthquake 

scenario (a pair of and ) that could possibly affect the considered site. Hence, 

( )

( ) ( )
scenario | scenario

% contribution of scenario 100s

a

a s
s

S T

P S T x
x





   =  (5.14) 

An example disaggregation of one point (corresponding to a RP of 975 yrs.) of the seismic hazard 

curve (Figure 5.4 (a)) for Bridge B in terms of , with respect to and R

, is shown in Figure 5.4 (b) where the percentage (%) contribution of each earthquake scenario (an 

pair) is indicated as the height (and color) of the bar associated with the corresponding 

bin. 

(a) (b) 

Figure 5.4 (a) Seismic hazard curve for Bridge B in terms of 
disaggregation of seismic hazard for a mean RP of 975 yrs. associa

( 0.23 s)aS T = ; (b) M R−
( 0.23 s)aS T =ted with 

exceeding 1.26 g. 

Thus, in order to obtain scenarios
 for a specific site, the disaggregation results corresponding to the 

points marked in red in Figure 5.3 come to aid. The extremely small spectral acceleration value of 
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410−

T 410x −=

scenarios

( )aS T

M R−

( )aS T

g is almost certainly exceeded, i.e., 4( ) 10  g | scenario 1.0a sP S T −   

410−

T
4

( ) ( 10 )
aS T x −=

given any earthquake 

scenario for any period at the considered site. Therefore, Eq. (5.14), for g, can be 

rewritten as 

( ) ( ) ( )4

scenario

% contribution of scenario 10

100
a

s

s S T x


− =
= (5.15) 

where the percentage (%) contribution of is obtained from the disaggregation output 

from OpenSHA corresponding to an intensity level given by equal to g for each testbed 

bridge. The choice of here is arbitrary, since the hazard as well as the associated 

disaggregation for such a small value of are identical, irrespective of T . is 

just the value of the hazard (given by the red markers in Figure 5.3) at that intensity level. The 

MAR of occurrence of pertinent earthquake scenarios, per Eq. (5.15), for each testbed bridge 

considered in this project are shown in Figure 5.5. 
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(a) (b) 

(c) (d) 

Figure 5.5 MAR of occurrence of all pertinent scenarios for (a) Bridge A; (b) Bridge B; (c) 
Bridge C; and (d) Bridge MAOC 

With scenarios
 , avgaS

, avgaS

, avgaS ( )aS T

T

, given by Eq. (5.15), and the GMPE for , given by Eq.s (5.5) and (5.7) in hand, 

obtaining seismic hazard curves for the testbed bridges in terms of merely reduces to a 

straightforward evaluation of Eq. (5.11). Figure 5.6 shows the seismic hazard curve for each 

testbed bridge in terms of , and how it compares to the hazard curves in terms of for 

each period in the averaging period range. 
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(a) (b) 

(c) (d) 

Figure 5.6 Seismic hazard curves in terms of , avgaS for (a) Bridge A; (b) Bridge B; (c) Bridge 
C; and (d) Bridge MAOC 

These hazard curves can now be used to define seismic hazard levels that correspond to different 

MARs, or equivalently mean RPs, of exceedance (also shown in Figure 5.6) which are of 

interest to practicing engineers. Six different seismic hazard levels corresponding to mean RPs of 

72 years (or 50 percent probability of exceedance in 50 years), 224 years (or 20 percent probability 

of exceedance in 50 years), 475 years (or 10 percent probability of exceedance in 50 years), 975 

years (or 5 percent probability of exceedance in 50 years), 2475 years (or 2 percent probability of 

exceedance in 50 years), and 4975 years (or 1 percent probability of exceedance in 50 years) are 

chosen for the purpose of this project. These hazard levels are numbered I through VI, respectively. 

Earthquake ground motion records matching these desired levels of seismic intensity can now be 
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selected for evaluating structural response to earthquakes, via nonlinear response history analyses, 

to consistently quantify the seismic demand on the structure of interest. Earthquake record 

selection is typically done by matching their 5% damped spectral acceleration response spectra to 

a target response spectrum corresponding to a hazard level. The next section presents, in detail, 

the definition of a realistic target spectrum for ground motion selection and scaling. 

5.5 Target Spectrum: Conditional Mean Spectrum 

Ground motion record selection serves as the link between probabilistic seismic hazard analysis 

and probabilistic seismic response assessment of structures. This imposes a need for hazard- or 

risk-consistency of earthquake ground motion records to be used for ensemble nonlinear response 

history analyses of the considered structure. One method of selecting risk-consistent ground 

motion records is to match individual acceleration response spectra of earthquake records to a 

target response spectrum corresponding to a specific hazard level (i.e., a specific MAR or mean 

RP of exceedance). 

The uniform hazard spectrum (UHS) has traditionally been used as a target spectrum. The UHS is 

constructed such that at any period, the MAR (or mean RP) of exceeding the respective spectral 

acceleration is equal. It is, therefore, an envelope over the spectral acceleration amplitudes of 

several ground motion records, pertaining to the relevant earthquake scenarios and site conditions, 

such that spectral accelerations at all periods are exceeded with the same MAR. This makes the 

UHS equally hazardous/severe at all defining periods and makes it contradict with actual spectral 

shapes of individual earthquake ground motion records. The frequency content of an earthquake 

record is not usually as broad as that required to match the UHS. An earthquake record that leads 

to a severe (i.e., one with low MAR or high mean RP) spectral acceleration value at one period 

usually does not produce equally severe spectral accelerations at all other periods. Hence, to select 

UHS-compatible ground motions records, one might have to resort to frequency modification of 

accelerograms which, in turn, tends to produce records that are unrealistically aggressive leading 

to conservative estimates of structural response (Baker and Cornell 2006a). The UHS, therefore, 

falls short of qualifying as a realistic target spectrum for ground motion selection. 

A target spectrum, for a given hazard level, should be representative of: (1) the seismic events or 

scenarios leading to the specific level of hazard associated with the considered ; (2) the joint 

probability distribution of spectral accelerations at different periods, conditioned on this specific 
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level of and the contributing earthquake scenarios; and (3) the spectral shape of real ground 

motion records. The conditional mean spectrum (CMS), originally proposed by Baker and Cornell 

(2006a), stands out as a more suitable target based on the above-mentioned requirements. Baker 

and Cornell (2006a) defined the CMS, at a hazard level, as the expected response spectrum 

conditioned on the specific value of at the same hazard level and its associated mean causal 

earthquake scenario, s

M R−

. The mean causal scenario is given by the pair of mean magnitude ( )M

( )R

iT

and mean source to site distance , obtained from disaggregation of seismic hazard. By 

definition, the CMS is based on the conditional joint probability structure of spectral accelerations 

at different periods, given the specific level and the mean causal scenario. Hence, unlike the 

UHS and as will be illustrated later, it preserves the natural spectral shape of real earthquake 

ground motions. The term mean in CMS refers to the conditional mean of the natural logarithm of 

spectral accelerations at different periods defining the spectrum, given the specific 

s

*T

level and 

. 

Baker and Cornell (2006a) originally defined the conditioning in the CMS as the spectral 

acceleration at a single period of interest, say . They also introduced formulations of the 

conditional mean and standard deviation of log spectral acceleration at any period, , of the 

spectrum. These formulations, based on the joint normality of a vector of log spectral accelerations 

(or equivalently, the joint lognormality of a vector of spectral accelerations) at different periods, 

are given by 

( ) ( ) ( ) ( ) ( )

( )

( )
( )

*

* *

*

ln |

ln | ln |ln |ln ln , ln ,ln
ln |

ln
a

a i a ia i a a i a

a

S T s

S T s S T sS T S T x s S T S T
S T s

x 

   
=

 − 
 = +   (5.16) 

( ) ( ) ( ) ( ) ( )* *
2

ln |ln |ln ln , ln ,ln
1

a ia i a a i a
S T sS T S T x s S T S T

  
=

= − (5.17) 

where x

ln ( )|a iS T s and ln ( )|a iS T s

*ln ( ),ln ( )a i aS T S T


is the value of the , i.e., *( , corresponding to the hazard level for which the 

CMS is defined. are obtained from a standard GMPE, e.g., Boore and 

Atkinson (2008), and is given by, for example, the correlation model by Baker and 

Jayaram (2008). 
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The probability normalized deaggregation of the contribution of M
*( )aS T

M

( ,  )M R

and R

x

R

to the MAR at which 

exceeds the threshold value can be viewed as a bivariate probability mass function 

(PMF) of discretized random variables and , or equivalently a univariate PMF of a random 

variable S

s S

S

ln ( )a iS T

representing possible scenarios, given the specific MAR of exceedance. 

The mean causal scenario, , the center of gravity of this conditional PMF of , may correspond 

to an unrealistic causative earthquake scenario at the site in case there are widely varying 

contributing scenarios leading to a multimodal PMF of (Bazzurro and Cornell 1999). To address 

this issue, a more complete version of the CMS, called the “exact” CMS, incorporating all 

causative earthquake scenarios has been introduced by Lin et al. (2013a). 

The formulation of the “exact” CMS relies on deriving the unconditional (with respect to ) S
iT

a

iT

PDF 
of the log spectral acceleration at any period, , as 

( ) ( ) ( ) ( )ln ln |
1

|
S

a i a i

N

q qS T S T S s
q

f a f a S s P S s
=

=

 = =  =  (5.18) 

where is a specific value of . The exact mean and standard deviation of the 

unconditional log spectral acceleration at any period, , are obtained as 

( ) ( ) ( ) ( )ln ln | ln |
1

ln |
S

a i a i a i q

N

S a i qS T S T S S T S s
q

E E S T S s P S s 
=

=

   = = =  =       (5.19) 

and 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

ln ln | ln |

2
2
ln | ln | ln

1 1

ln | ln |
a i a i a i

S S

a i q a i q a i

S a i S a iS T S T S S T S

N N

q qS T S s S T S s S T
q q

E Var S T S s Var E S T S s

P S s P S s



  
= =

= =

   = = + =         

   =  = + −  =    
(5.20) 

respectively. Note that refer to the expectation and variance, respectively,  SE and  SVar

S

( ,  )M R

( ) ( )ln | |
a i qS T S sf a S s

=
=

S ln ( )a iS T

of the operand with respect to , and [ ]qP S s=

qs

is the deaggregation weight, or the fractional 

contribution of the scenario to the considered level of seismic hazard. 

The normality of the conditional distribution is lost upon “unconditioning” 

with respect to as per Eq. (5.18). The unconditional random variable is, therefore, no 
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longer necessarily normally distributed. However, for practical purposes and usability in ground 

motion record selection procedures, the vector of unconditional log spectral accelerations across 

different periods can be assumed to follow a multivariate normal distribution (Lin et al. 2013b). 

The exact mean and standard deviation of ln ( )a iS T (Eqs. (5.19) and (5.20)) can therefore be used 

to rewrite Eqs. (5.16) and (5.17), now incorporating all causative (M, R) scenarios and thereby 

defining the “exact” CMS as 

( ) ( ) ( ) ( ) ( )

( )

( )
( )

*

* *

*

ln

ln lnln |ln ln ln ,ln
ln

ln
a

a i a ia i a a i a

a

S T

S T S TS T S T x S T S T
S T

x 

   
=

 − 
 = +   (5.21) 

( ) ( ) ( ) ( ) ( )* *
2

lnln |ln ln ln ,ln
1

a ia i a a i a
S TS T S T x S T S T

  
=

= − (5.22) 

Eq. (5.21) defines the “exact” CMS, to be referred to as just the CMS hereafter, and Eq. (5.22) 

gives the conditional variability of spectral accelerations at all periods of the spectrum. The 

exponent of Eq. (5.21) gives the conditional median (used for plotting the target spectrum) of the 

lognormal random variable ( )a iS T

*T

M R−
*(

[ ]qP S s=

*( . 

*T

given the specific value of *(

1, transT

. 

For illustration purposes, say is chosen as for one of the testbed bridges, i.e., Bridge B. 

The seismic hazard curve for Bridge B in terms of spectral acceleration at this period of interest, 

was previously shown in Figure 5.4 (a). Figure 5.4 (b) showed the disaggregation results 

obtained from OpenSHA corresponding to the hazard level given by a mean RP of 

exceedance equal to 975 years (i.e., hazard level IV). These disaggregation results are used to 

compute the weights , i.e., the fractional contribution of each causative scenario to the 

seismic hazard, required in Eq.s (5.19) and (5.20). Eq.s (5.19) and (5.20) define the probability 

structure (incorporating all associated causative scenarios) of spectral accelerations across 

different periods, given the exceedance of this specific level (1.26 g) of 

Figure 5.7 (a) shows the probability density functions of spectral accelerations at five arbitrarily 

chosen periods (including = 0.23s). These probability density functions are predicted using the 

Boore and Atkinson (2008) GMPE along with Eq.s (5.19) and (5.20). The median values of these 

distributions are joined by the dashed-dotted blue line, thus giving the median spectrum 
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corresponding to a mean RP of 

*(

*(

*(

*(

exceedance equal to 975 years. The red line, in Figure 5.7 (a), 

denotes the UHS corresponding to a mean RP of 975 years, constructed such that the spectral 

accelerations across all periods are also exceeded every 975 years. As depicted in Figure 5.7 (a), 

the UHS is indeed an overly-conservative target spectrum since it is very unlikely that the spectral 

shapes of real ground motions will be equally above the median at all spectral periods. 

Figure 5.7 (b) shows the conditional probability density functions (predicted using Eq.s. (5.21) and 

(5.22)) of spectral accelerations at the same periods as in Figure 5.7 (a), given the random variable 

takes the value 1.26 g that is exceeded every 975 years. The probability density function 

of , at the conditioning period, is shown as a dirac-delta function centered at 1.26 g, 

implying that the random variable can only take this value. The exponent of Eq. (5.21), 

shown as the black dashed-dotted line in Figure 5.7 (b), gives the conditional median target 

spectrum for hazard level IV defined by a mean RP of exceedance equal to 975 years. As 

shown in Figure 5.7 (b), the target spectrum obtained using the CMS approach drops in magnitude 

away from the conditioning period thereby reflecting credible spectral shapes which are peaked 

only in limited periods and/or period ranges and not uniformly throughout. 

(a) (b) 

Figure 5.7 (a) Probability structure of ( )a iS T incorporating all causative scenarios and 
*( exceeding a value equal to 1.26 g for Bridge B; 

( )a iS T given *( ) 1.26 gaS T = for Bridge B 
corresponding to a 975 year mean RP of 

(b) conditional probability structure of 
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Baker and Cornell (2006a) also extended their definition of CMS to include , avg 1( , , )a nS T T , the 

, avgaS , avgaS

improved considered in this project, as the conditioning . Based on the log-linear 

transformation that defines , joint normality of the natural logarithm of with a vector 

of jointly normal log spectral acceleration accelerations at different periods is ensured. Therefore, 

the CMS, conditioned on a specific level of average spectral acceleration is given by 

( ) ( ) ( )

( )
( )

, avg

, avg , avg

, avg

ln

ln |ln ln ln ln ,ln ln
ln

ln
a

a i a a i a i a a i

a

S

S T S x S T S T S S T
S

x 
   

=

−
= +   (5.23) 

( ) ( ) ( ), avg , avg

2
ln |ln ln ln ln ,ln1

a i a a i a i aS T S x S T S T S  
=

= − (5.24) 

where x

ln ( )a iS T

M R−

M R−

is the value of , avgaS , corresponding to the hazard level for which the CMS is defined. 

ln ( )a iS T

ln ( )a iS T and , avg 1ln ( , , )a nS T T , 

i.e., 
, avgln ( ),lna i aS T S

, avgaS

*(

, avgaS

, avgaS

, avg( )aS

and are given by Eq.s (5.19) and (5.20), respectively, which require a standard 

GMPE, e.g., Boore and Atkinson (2008), and the results of disaggregation of the specific 

level of seismic hazard. The correlation coefficient between any 

in Eq.s (5.23) and (5.24), is given by (Baker and Cornell 2006a) 

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

,

ln ,ln ln
1

ln ,ln

ln ,ln ln ln
1 1

a i a p a p

a i a avg

a p a q a p a q

n

S T S T S T
p

S T S n n

S T S T S T S T
p q

 



  

=

= =



=

 





(5.25) 

For the purpose of illustration and comparison of the CMS conditioned on with that 

conditioned on , the same testbed bridge as before, i.e., Bridge B is considered. The seismic 

hazard curve for Bridge B in terms of , and the disaggregation for hazard level IV 

defined by a mean RP of exceedance equal to 975 years are shown in Figure 5.8 (a) and (b) 

respectively. Using Eq.s (5.19) and (5.20) along with the disaggregation results shown in Figure 

5.8 (b) and the GMPE by Boore and Atkinson (2008), the probability structure of spectral 

accelerations across different periods, given the exceedance of this specific level (0.89 g) of the 

average spectral acceleration is determined. 
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Figure 5.9 (a) shows the probability density functions (predicted using the Boore and Atkinson 

(2008) GMPE along with Eq.s (5.19) and (5.20)) of spectral accelerations at five arbitrarily chosen 

periods (same as before in Figure 5.7). The median values of these probability distributions of 

( )a iS T at different periods, i.e., the median spectrum, and the UHS, both corresponding to a mean 

RP of 975 years, are shown as the blue dashed-dotted line and the red line, respectively, in Figure 

5.9 (a). 

Figure 5.9 (b) shows the conditional probability density functions (predicted using Eq.s. (5.23) and 

(5.24)) of spectral accelerations at the same periods as in Figure 5.9 (a), given the random variable 

, avgaS

, avgaS

1, transT

to 1, trans2.5T . 

, avgaS ; (b) M R−
of seismic hazard for a mean RP of 975 yrs. associated with , avgaS exceeding 0.89 g 

takes the value 0.89 g that is exceeded every 975 years. The exponent of Eq. (5.23), shown 

as the black dashed-dotted line in Figure 5.9 (b), gives the conditional median target spectrum 

associated with hazard level IV defined by a mean RP of exceedance equal to 975 years. 

The light green patch in Figure 5.9 (b) represents the averaging period range starting from 

(a) (b) 

Figure 5.8 (a) Seismic hazard curve for Bridge B in terms of disaggregation 
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(a) (b) 

Figure 5.9 (a) Probability structure of 
corresponding to a 975 year mean RP of 

(b) conditional probability structure of 

( )a iS T incorporating all causative scenarios and 

, avgaS exceeding a value equal to 0.89 g for Bridge B; 

( )a iS T given , avg 0.89 gaS = for Bridge B 

, avgaS

*(

, avgaS

A remarkable difference in the conditional probability structure of spectral accelerations at 

different periods given with that given *(

*(

is the absence of a period where the spectral 

acceleration value is fixed thereby allowing no variability in spectral acceleration at that period. 

Instead, the spectral accelerations within the averaging period range (the light green patch) are 

allowed to vary, with reduced variability, such that the geometric mean of spectral accelerations 

at the periods in this range is fixed. 

A comparison between the target spectrum as obtained from the CMS conditioned on and 

that conditioned on for the considered illustrative example corresponding to hazard level IV 

for Bridge B is shown in Figure 5.10. Figure 5.10 (a) compares the target conditional median 

spectrum obtained in each case while Figure 5.10 (b) compares the standard deviations of log 

spectral accelerations at different periods of the spectrum, given the specific value of the 

conditioning , in each case (i.e., of and of , avgaS ), at hazard level IV. 
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(a) (b) 

Figure 5.10 Comparison between target spectra based on CMS given and CMS given 
for hazard level IV for Bridge B: (a) target conditional median spectr

*(

, avgaS a; and (b) target 
conditional standard deviations of log spectral accelerations 

As can be observed from Figure 5.7 (b), Figure 5.9 (b), and Figure 5.10 (a), the median target 

spectrum conditioned on *(

*T
*T

, unlike the one conditioned on 

)aS T

, avgaS , is peaked at a single period 

, touching the UHS corresponding to hazard level IV. As Baker and Cornell (2006a) pointed 

out, instead for posing a target spectrum that is “very” strong at a single period of interest, , 

which might elongate due to structural damage during an earthquake and is difficult to accurately 

identify in the first place, a target spectrum that is “somewhat” strong at several relevant structural 

periods seems more sensible. This is in agreement with the rationale behind defining and choosing 

, avgaS

, avgaS

, avgaS

, avgaS

as the seismic intensity measure. Ground motion records selected based on the target 

spectrum conditioned on , therefore, will have the trait of being neither very aggressive nor 

very benign in the range of relevant structural periods (Kohrangi et al. 2017). Figure 5.10 (b) brings 

out another positive aspect of using as the conditioning to define the target spectrum 

for ground motion record selection. As will be discussed in the next section, a novel way of 

selecting ensemble of ground motions based on a target spectrum is to capture the natural 

conditional variability at different periods associated with the target spectrum. The target spectrum 

conditioned on has moderate conditional variability at different periods of the spectrum. This 

is in contrast with the conditional variability associated with the target spectrum conditioned on 
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*(

, avgaS

which has no (or zero) variability at a single period and relatively large variability at 

periods farther away. 

Target spectra corresponding to each identified hazard level for all considered testbed bridges are 

obtained using the CMS approach conditioned on . The next section describes the use of a 

novel algorithm (originally proposed by Jayaram et al. (2011) and subsequently modified by 

Kohrangi et al. (2017)) to select ensembles of ground motion records consistent with the risk-level 

of the target spectra. 

5.6 Site-specific Risk-consistent Ground Motion Selection 

As a final step of PSHA, ensembles of site-specific risk-consistent ground motions need to be 

selected to perform response history analyses of the considered structure. Three-dimensional 

structural finite element models require two components of ground motions to be selected. Given 

a target CMS, i.e., the mean of log spectral accelerations at different periods conditioned on a 

target value of the considered , 

( ) of ln ( )a iS T , 

, avgln aS

REC( )a iS T

iT . PN

ground motions can be selected via least squared error-based 

matching between logarithms of the geometric mean (of each horizontal component) response 

spectra of individual ground motions and the target spectrum. The spectra should be matched over 

a range of periods broad enough to capture all relevant structural periods and to ensure a reasonably 

smooth match. For a specific hazard level, the CMS is given by the mean 

conditioned on a value of . The sum of squared error (SSE) for a single ground motion 

record is calculated as 

( ) ( )( ), avg

2
REC

ln |ln
1

SSE ln
P

a i a

N

a i S T S
i

S T 
=

= − (5.26) 

where is the geometric mean of spectral ordinates of a two-component ground motion 

record at a period, is the number of periods over which the SSE is calculated. Baker 

(2011a) suggested the use of 50 periods in calculating the SSE. Ground motion records from a 

database can therefore be chosen based on the least deviation (i.e., SSE) from the target spectrum. 

Ground motion records selected to match the CMS only, as described above, have artificially 

suppressed variability at different periods of the spectrum (Baker 2011a). The CMS is a mean (of 
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log spectral accelerations) spectrum and ensemble of records selected to match only the mean 

spectrum fail to exhibit the associated natural conditional variability at other spectral periods. 

Jayaram et al. (2011) examined the importance of capturing the natural conditional variability 

associated with the target spectrum and found that considering target response spectrum variance 

in ground motion selection tends to increase the mean structural response and the dispersion in the 

response. This can conceivably influence the estimates of risk associated with structural seismic 

performance and hence signifies the importance of capturing response spectrum variance. Jayaram 

et al. (2011), in the same paper, proposed a ground motion selection algorithm that selects a suite 

of ground motions whose logarithmic response spectra match not only a specified target mean 

spectrum, but also the natural variability at different periods of the spectrum. In other words, 

ground motions are selected such that they match a complete target conditional probability 

structure given a hazard level. The algorithm, originally proposed by Jayaram et al. (2011), 

allowed for the conditioning 

, avgaS

X

, avgln aS . 

, avg| ln aSX

Σ ( , )0 0μ Σ

1PN +

in the CMS to be the spectral acceleration at a single period. This 

has been recently modified by Kohrangi et al. (2017) to include as the conditioning . 

The ground motion selection algorithm is based on a complete characterization of the probability 

structure of the multivariate normal random vector, say , of log spectral accelerations at different 

periods conditional on a target value of the normally distributed random variable 

( )

( )
( )

1 , avg

, avg

, avg 1

ln | ln
| ln ~ ,

ln | ln
P

P

a a

a

a N a N

S T S
S N

S T S


 
 

=  
 
  

X μ Σ (5.27) 

where μ

μ

0X

is the mean vector and Σ is the covariance matrix, of the PN dimensional conditional 

random vector . The conditional mean vector, , and the conditional covariance 

matrix, , can be obtained from the statistical parameters of the unconditional 

multivariate normal dimensional random vector defined as follows 
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(5.28) 

( )

( )

( )

( )

1

, avg 1 1

ln

~ ,
ln

ln
P

P

a

a N

a N

S T

N
S T

S
+ 

 
 
 

=  
 
 
 

0 0 0X μ Σ

, avgln aS , by definition, is just a linear transformation on a set of jointly normal log spectral 

0X

0μ

accelerations over a certain period range. Hence, the random vector follows a multivariate 

normal distribution which is closed under linear transformation. The mean vector, , and the 

covariance matrix, 0Σ , of the 1PN + dimensional random vector 0X is given by 

( )

( )

1

, avg

, avg

ln

lnln

ln

a

aa NP

a

S T

SS T

S



 



 
 

  
= =   

    
 
  

1

0

μ
μ (5.29) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
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1 2
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(5.30) 

The conditional mean vector, μ

X ln x

, avgln aS

, and the conditional covariance matrix, Σ of the random vector, 

, of log spectral accelerations at different periods conditional on a target value, say , of 

are given by 

( ), avg

, avg

ln

2
ln

ln
a

a

S

S

x 



−
= +1 2μ μ Σ

, avg

2
ln

1

aS
= −1 2 2Σ Σ Σ Σ

(5.31) 

(5.32) 
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Eq. (5.31) is equivalent to, the previously defined CMS given , avgln aS

, avgln aS . 

in Eq. (5.23). The square 

root of the diagonal entries of the covariance matrix given by Eq. (5.32) is also equivalent to the 

previously defined conditional standard deviation (Eq. (5.24)) of log spectral accelerations at 

different periods given 

Having completely characterized the multivariate normal distribution of the target spectrum given 

a hazard level (Eq.s (5.31) and (5.32)), Monte Carlo simulation is used to generate random 

realizations of this target spectrum. This is done by sampling random vectors from the multivariate 

normal distribution with mean vector and covariance matrix defined by Eq.s (5.31) and (5.32). The 

response spectra are simulated at 50 periods logarithmically spaced between 0.05 s and 5 s to 

ensure a good match of individual ground motion spectra with the target over a wide range of 

periods. The number of target spectrum realizations generated is equal to the number of ground 

motions to be selected. For each simulated spectrum, the SSE is calculated, as follows, for 

optionally scaled geometric mean (of two horizontal components) response spectra of each ground 

motion in a database. 

( )( ) ( )( )
2REC SIM

1
SSE ln ln

PN

a i a i
i

S T S T
=

=  − (5.33) 

where, SIMln ( )a iS T iT

x 

REC
aS

, avgaS

is the simulated spectral ordinate at the period . The scale factor, 

, avgaS

, to be 

applied to the ground motion record in question, is given by 

( )
1

REC

1

nn

a p
p

x

S T



=

=

 
 
 


(5.34) 

where is the target value of , avgaS

x

at the considered hazard level. The scale factor , as per Eq. 

(5.34), is determined such that the geometric mean of over the averaging period range of 

is equal to the desired value, , of . The scaling is applied to the geometric mean 

response spectra of the two horizontal components of the recording. The same scale factor is 

applied to both horizontal components of the ground motion record to be used as input to nonlinear 

dynamic time-history analyses. For every simulated target spectrum, the ground motion in a 

database having the smallest SSE, given by Eq. (5.33), is selected. It is also ensured that no ground 
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motion record is repeated in a particular suite of selected records. The procedure is illustrated in 

Figure 5.11 which shows two such simulated target spectra at hazard level IV for Bridge B, and 

the corresponding spectra of real ground motion records chosen from the NGA database (Chiou et 

al. 2008). 

The sample mean and variance of the suite of ground motions selected using this algorithm may 

deviate slightly from the target values, especially for smaller sets of ground motions. Jayaram et 

al, also suggested an optimization technique to improve the match between sample and target 

means and variances. The technique relies on replacing a ground motion from an initially selected 

suite with one from the database if such a replacement leads to improvement in the match between 

sample and target statistics. For a detailed description of the optimization technique, the reader is 

asked to refer to the original paper by Jayaram et al. (2011). Suites of ground motions selected 

using the algorithm described is able to accurately 

Figure 5.11 Example of simulated and selected ground motion spectra for Bridge B at hazard 
level IV 

reproduce, not only the target mean spectrum, but also the natural variability and correlation across 

different periods. MATLAB scripts, originally developed by Baker (2011b) and recently modified 

by Kohrangi (2015), implementing the complete algorithm, including the optimization technique, 

discussed so far are made available online. These scripts are used for selecting ensembles of ground 
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motions from the NGA database (Chiou et al. 2008) at different hazard levels (i.e., hazard levels I 

through VI) for the testbed bridges considered in this project. 

The match between achieved/sample and target spectrum statistics depends on the size of the 

ensemble, i.e., on the number of ground motions, GMn

GMn

1, transT

ln |ln , avg( )S Sa ae

ln |ln ln |ln, avg , avg( )S S S Sa a a ae −

GMn

GMn

GMn

, chosen. To arrive at a conclusive value of 

, ensembles of size varying from 1GMn =

1, trans2.5T

ln |ln ln |ln, avg , avg( )S S S Sa a a ae +

100GMn =

to 100GMn = are selected for hazard levels I through 

VI for Bridge B. The square root of the mean squared (RMS) deviation over the most significant 

period range (i.e., the averaging period range from to ) between the sample median, 

16th 84thpercentile, and percentile; and the corresponding targets, i.e, , 

, and are plotted as a function of in Figure 5.12. It 

can be seen from Figure 5.12 that the RMS error tends to reduce and becomes almost stationary 

as is increased. A value of per hazard level, for which the error is shown to be 

reasonably low, is chosen for a forward performance-based assessment of the considered testbed 

bridges to be described in the following chapters. The premise of this, rather expensive, choice of 

is to enhance, as part of a forward performance-based seismic assessment, the reliability of 

risk estimates associated with structural performance as much as possible. Thus, it is desired to 

have a large enough ground motion ensemble, given , so that record-to-record variability is 

well propagated to uncertainty in structural response which can, in turn, be adequately quantified. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 5.12 RMS error between sample and target spectrum percentiles versus GMn calculated 
over the averaging period range for ensembles of ground motions selected at (a) hazard level I; 
(b) hazard level II; (c) hazard level III; (d) hazard level IV; (e) hazard level V; and (f) hazard 

level VI for Bridge B; 

Figure 5.13 through Figure 5.16 show the response spectra of selected ground motions for each 

testbed bridge at different hazard levels, along with the respective UHS, the conditional median 

spectrum, and the 2.5th and 97.5th percentile conditional spectra. As can be qualitatively seen from 

these figures, the spectrum of an individual selected ground motion, at a hazard level, may deviate 

from the target median spectrum. However, the selected suite of ground motions, as an ensemble, 
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matches the complete probability structure, i.e., the measures of central tendency, the variability, 

and the correlation structure, of the target response spectrum. 

A few remarks regarding the selected ensembles of ground motion records need to be made. 

Firstly, the values of scale factors applied to the selected earthquake ground motions are bounded 

between 0.3 to 4.0 to have realistic records for response assessment of the testbed bridges. 

Secondly, it is to be noted that although computation of the target CMS at each hazard level 

requires identification of causative scenarios from disaggregation of seismic hazard, no restriction 

whatsoever is imposed on the causal magnitudes and source-to-site distances of the selected 

ground motion records. Finally, an explicit consideration of near fault effects and consistent 

incorporation of velocity pulses in the selected ensembles of ground motions are beyond the scope 

of this project. However, following the selection of a ground motion ensemble, the number of 

records selected, per hazard level, with pulse-like characteristics (Baker 2007) are counted and 

listed in Table 5-2 for each testbed bridge 

Table 5-2 Fraction of pulse-like ground motion records selected per hazard level 

Bridge Hazard Level 
I II III IV V VI 

A 4/100 3/100 4/100 8/100 7/100 8/100 
B 5/100 7/100 7/100 9/100 9/100 11/100 
C 5/100 4/100 4/100 4/100 6/100 7/100 
MAOC 16/100 20/100 21/100 26/100 33/100 39/100 

As a part of the next step in the PEER PBEE framework, i.e., Probabilistic Seismic Demand Hazard 

Analysis (PSDemHA), the selected ensembles of site-specific risk-consistent ground motions are 

used in seismic response assessment of the considered testbed bridges, the results of which will be 

discussed in the subsequent chapters. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 5.13 Risk-consistent ground motion ensembles for Bridge A at (a) hazard level I; (b) hazard level II; (c) hazard level III; (d) 
hazard level IV; (e) hazard level V; (f) hazard level VI 

127 



 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

     
 

(a) (b) (c) 

(d) (e) (f) 

Figure 5.14 Risk-consistent ground motion ensembles for Bridge B at (a) hazard level I; (b) hazard level II; (c) hazard level III; (d) 
hazard level IV; (e) hazard level V; (f) hazard level VI 
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(a) (b) (c) 

(d) (e) (f) 

Figure 5.15 Risk-consistent ground motion ensembles for Bridge C at (a) hazard level I; (b) hazard level II; (c) hazard level III; (d) 
hazard level IV; (e) hazard level V; (f) hazard level VI 
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(a) (b) (c) 

(d) (e) (f) 

Figure 5.16 Risk-consistent ground motion ensembles for Bridge MAOC at (a) hazard level I; (b) hazard level II; (c) hazard level III; 
(d) hazard level IV; (e) hazard level V; (f) hazard level VI 
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6 Deterministic Seismic Response Analysis 

6.1 Introduction 

Utilizing the detailed three-dimensional nonlinear finite element models of the considered testbed 

bridges developed in OpenSees (described in Chapter 4), a series of dynamic time history analyses 

is carried out to assess the structural behavior of these bridges subjected to seismic loading. Each 

testbed bridge model is subjected to a few ground motion records, each associated with a distinct 

level of seismic hazard. These analyses are conducted to gauge the seismic behavior of the as-

designed testbed bridges and to assess the extent of inelastic/nonlinear responses of various 

structural components of these bridges resulting from subjecting the bridge models to ground 

motion records corresponding to increasing levels of seismic hazard. 

In particular, structural responses relating to the column(s) and abutments of the testbed bridges 

are evaluated and compared. Evaluated responses relating to reinforced concrete bridge columns 

include the moment-curvature response of the most critical section in a column, the material 

hysteretic stress-strain responses of reinforcing steel and concrete (unconfined and confined) fibers 

in the most critical column section, and the history of column-axial load ratio. The backfill-

superstructure passive interaction, and the force-deformation hysteresis of bearing pads and 

exterior shear keys are the evaluated responses pertaining to seat-type abutments of the testbed 

bridges. 

The primary focus of this chapter is merely to evaluate and compare the deterministic seismic 

responses of the selected testbed bridges at different seismic hazard levels via nonlinear time-

history analysis of the finite element models (corresponding to expected values and/or best-

estimates of material and/or geometric properties) of these bridges subjected to a single record at 

each hazard level. It is important to note that the results shown in this chapter give no information, 

whatsoever, relating to the statistics of seismic response/demand and/or its associated hazard in 

terms of the annual probability/MAR of exceedance. Such a probabilistic characterization of 

seismic demand and subsequent damage, requiring an explicit account of all pertinent sources of 

uncertainties and their consistent propagation through various stages of the PEER PBEE analytical 

framework, are elaborated in the chapters to follow. 

131 



 

 
 

  

      

  

    

        

       

    

       

 

   

      

 

     

   

     

       

 

  

       

    

   

  

 

    

      

   

    

        

    

     

6.2 Analysis Setup 

The selected set of bridge testbeds are multi-span OSBs supported on one or more single/multiple-

column bent(s) and seat-type abutments. Schematic spline representations of the finite element 

models of these bridges, each subjected to a generic two-component earthquake ground motion 

record, are shown in Figure 6.1 (a) through Figure 6.4 (a). Also marked in Figure 6.1 (a) through 

Figure 6.4 (a) are specific structural members/components of each bridge model chosen for a 

concise presentation of seismic response analyses results. These members are singled out from 

damageable groups of similar structural components for the sole purpose of brevity and 

succinctness of presentation without any loss of generality. 

Three ground motion records, each belonging to an ensemble of records previously selected 

(described in Chapter 5) to represent a distinct seismic hazard level at a specific bridge site, are 

chosen for the deterministic seismic response evaluation of a bridge. Seismic hazard levels II, IV, 

and VI, encompassing a wide range of seismic hazard characterized by mean RPs of 

exceedance equal to 224 years, 975 years, and 4975 years, respectively are considered. As 

previously stated in Chapter 5, it is noted that all earthquake records belonging to an ensemble of 

records selected to represent a specific level of seismic hazard follow, as a joint set rather than 

individually, the complete probability structure of the target conditional spectrum defined for that 

hazard level. A ground motion record, corresponding to one of the three hazard levels mentioned, 

is singled out from the already selected ensemble of records such that the geometric mean response 

spectrum of the two-component record (i.e., the geometric mean of the spectral ordinates of the 

two horizontal components of the record at different spectral periods) closely follows the 

conditional median spectrum defined for that hazard level, especially in the averaging period 

range. 

Response spectra of the three individual ground motion records chosen for deterministic 

earthquake response analyses of the testbed bridges are shown in Figure 6.1 (b)-(i), (c)-(i), and (d)-

(i), through Figure 6.4 (b)-(i), (c)-(i), and (d)-(i). As stated before, the records chosen for the 

response analyses of a bridge individually belong to ensembles of previously selected records 

(whose response spectra are also shown in Figure 6.1 (b)-(i), (c)-(i), and (d)-(i), through Figure 6.4 

(b)-(i), (c)-(i), and (d)-(i)) corresponding to seismic hazard levels II, IV, and VI. Also shown in 

Figure 6.1 (b)-(ii), (c)-(ii), and (d)-(ii), through Figure 6.4 (b)-(ii), (c)-(ii), and (d)-(ii), are the two-
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component horizontal ground acceleration time-histories of these records arbitrarily assigned as 

seismic excitation inputs to the finite element models of the testbed bridges in the longitudinal and 

transverse directions. Table 6-1 shows pertinent details of the chosen seismic ground motion inputs 

for response analyses of the testbed bridges considered. 

Each finite element model of a testbed bridge is subjected to its respective set of three earthquake 

ground motion input excitations, individually corresponding to hazard levels II, IV, and VI. 

Recorded responses of key structural components of these bridges (marked in Figure 6.1 (a) 

through Figure 6.4 (a)) obtained from nonlinear time-history analyses of their finite element 

models at three different levels of seismic input are presented next. Needless to explicitly mention 

here is that these analyses are performed using the analysis setup previously outlined in Chapter 

4. 
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Table 6-1 Earthquake ground motion records for deterministic nonlinear time-history analyses 

Bridge Hazard 
Level 

Earthquake Event 
(Year) Station Magnitude Duration 

(s) 
Scale 
factor 

Ground motion component assigned to 
bridge direction 

Longitudinal Transverse 

A 

II Coalinga-01 (1983) Parkfield - Cholame 
2WA 6.36 40.0 1.59 0 90 

IV Coalinga-01 (1983) Parkfield - Cholame 
4AW 6.36 32.0 3.80 0 90 

VI Taiwan 
SMART1(45) (1986) SMART1 O02 7.3 44.0 1.75 EW NS 

B 

II Kobe, Japan (1995) Takatori 6.9 40.96 0.38 0 90 

IV Loma Prieta (1989) Anderson Dam 
(Downstream) 6.93 39.60 1.58 250 340 

VI Taiwan 
SMART1(45) (1986) SMART1 O01 7.3 44.0 2.98 EW NS 

C 

II Chi-Chi, Taiwan-06 
(1999) HWA2 6.30 44.95 2.81 N E 

IV Chi-Chi, Taiwan-05 
(1999) CHY052 6.2 55.0 3.66 N W 

VI Northridge-01 
(1994) 

San Pedro - Palos 
Verdes 6.69 32.0 3.89 0 90 

MAOC 

II Chi-Chi, Taiwan 
(1999) ILA067 7.62 90.0 2.90 E N 

IV Northridge-01 
(1994) 

Canyon Country - W 
Lost Cany 6.69 19.99 1.57 0 270 

VI Northridge-01 
(1994) 

Canyon Country - W 
Lost Cany 6.69 19.99 2.32 0 270 
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(a) 

(b)-(i) 
(b)-(ii) 

(c)-(ii) 
(c)-(i) (d)-(i) 

(d)-(ii) 

    

  

 

Figure 6.1 Deterministic seismic response analysis setup for Bridge A: (a) schematic representation of the finite element model with structural 
components to be monitored; (i) Geometric mean (of two horizontal components) response spectra; and (ii) bi-directional ground acceleration history of 

ground motion record selected for deterministic response analysis at: (b) hazard level II; (c) hazard level IV; and (d) hazard level VI 
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Figure 6.2 Deterministic seismic response analysis setup for Bridge B: (a) schematic representation of the finite element model with structural 
components to be monitored; (i) Geometric mean (of two horizontal components) response spectra; and (ii) bi-directional ground acceleration history of 

ground motion record selected for deterministic response analysis at: (b) hazard level II; (c) hazard level IV; and (d) hazard level VI 
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Figure 6.3 Deterministic seismic response analysis setup for Bridge C: (a) schematic representation of the finite element model with structural 
components to be monitored; (i) Geometric mean (of two horizontal components) response spectra; and (ii) bi-directional ground acceleration history of 

ground motion record selected for deterministic response analysis at: (b) hazard level II; (c) hazard level IV; and (d) hazard level VI 
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Figure 6.4 Deterministic seismic response analysis setup for Bridge MAOC: (a) schematic representation of the finite element model with structural 
components to be monitored; (i) Geometric mean (of two horizontal components) response spectra; and (ii) bi-directional ground acceleration history of 

ground motion record selected for deterministic response analysis at: (b) hazard level II; (c) hazard level IV; and (d) hazard level VI 
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6.2.1 Bridge Column Response 

The longitudinal and transverse moment-curvature (normalized) responses recorded at the 

bottommost section of the single column in the finite element model of Bridge A, and the topmost 

sections (closest to the deck) of the monitored columns of each of the finite element models of 

Bridge B, Bridge C, and Bridge MAOC, are shown in Figure 6.5 (b)-(i), (c)-(i), and (d)-(i), through 

Figure 6.8 (b)-(i), (c)-(i), and (d)-(i), for the considered set of seismic ground motion inputs. As 

noted from these figures, the longitudinal or transverse moment-curvature response of a bridge 

column intuitively amplifies with increasing levels of seismic hazard associated with the input 

ground motion. The moment-curvature response of any column section, in general, is found to 

qualitatively range from being more or less linear, characterized by small hysteretic cycles, at 

hazard level II to exceedingly nonlinear, described by large plastic deformations and extensive 

hysteresis, at hazard level VI. 

Plotted alongside the moment-curvature responses of the monitored column sections of each 

testbed bridge model are the material stress-strain responses of individual fibers (shown in Figure 

6.5 (a) through Figure 6.8 (a)) corresponding to the cover (unconfined) concrete, core (confined) 

concrete, and reinforcing steel in these sections. Material strains, directly relatable to structural 

damage (ref), are found to vary proportionally with levels of seismic hazard associated with the 

input ground motions. Highest extents of nonlinear hysteretic material stress-strain responses are 

recorded for the seismic input corresponding to hazard level VI. Fiber stress-strain responses 

resulting from ground motion inputs corresponding to lower hazard levels, i.e., hazard levels II 

and IV, show proportionally reduced levels of nonlinear material hysteresis. 

Temporal variations of axial load ratio recorded in the monitored columns of each testbed bridge 

model for the considered seismic inputs are shown in Figure 6.9 (b), (c), and (d), through Figure 

6.12 (b), (c), and (d). Axial load ratio is expressed as the ratio of axial load in the column to the 

axial load capacity (defined as g ceA f 

cef 

, where gA is the gross area of the column cross-section and 

is the expected compressive strength of the design concrete mix) of the column section. From 

gravity loading alone, the bridge columns of the testbed bridge models are found to experience 

low initial axial load ratios (ranging from 4.0-8.0%) shown as the starting point of the axial load 

ratio time-histories. It is noted from Figure 6.9 (b), (c), and (d), through Figure 6.12 (b), (c), and 
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(d) that the maximum axial load ratios reached in the columns due to the considered set of input 

ground motions do not vary significantly at different seismic hazard levels and are found to remain 

considerably low (less than 15.0%). 
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Figure 6.5 Seismic response of various components of the single column of Bridge A: (a) schematic representation of the finite element model with 
column structural components being monitored; (i) normalized moment-curvature section response; (ii) material hysteretic stress strain response of a 
single confined (in blue) and unconfined (in red) concrete fiber; and (iii) material hysteretic stress strain response of a reinforcing steel fiber recorded 

at: (b) hazard level II; (c) hazard level IV; and (d) hazard level VI 
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Figure 6.6 Seismic response of various components of the monitored column of Bridge B: (a) schematic representation of the finite element model 
with column structural components being monitored; (i) normalized moment-curvature section response; (ii) material hysteretic stress strain response 

of a single confined (in blue) and unconfined (in red) concrete fiber; and (iii) material hysteretic stress strain response of a reinforcing steel fiber 
recorded at: (b) hazard level II; (c) hazard level IV; and (d) hazard level VI 
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Figure 6.7 Seismic response of various components of the monitored column of Bridge C: (a) schematic representation of the finite element model 
with column structural components being monitored; (i) normalized moment-curvature section response; (ii) material hysteretic stress strain response 

of a single confined (in blue) and unconfined (in red) concrete fiber; and (iii) material hysteretic stress strain response of a reinforcing steel fiber 
recorded at: (b) hazard level II; (c) hazard level IV; and (d) hazard level VI 

143 



 

 
 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

(a) (b)-(i) 

(b)-(ii) 

(b)-(iii) 

(c)-(ii) (d)-(ii) 

(c)-(i) (d)-(i) 
(c)-(iii) (d)-(iii) 

    

  
 

 

Figure 6.8 Seismic response of various components of the monitored column of Bridge MAOC: (a) schematic representation of the finite element 
model with column structural components being monitored; (i) normalized moment-curvature section response; (ii) material hysteretic stress strain 

response of a single confined (in blue) and unconfined (in red) concrete fiber; and (iii) material hysteretic stress strain response of a reinforcing steel 
fiber recorded at: (b) hazard level II; (c) hazard level IV; and (d) hazard level VI 
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Figure 6.9 Seismic response history of the single column of Bridge A: (a) schematic representation of the finite element model with column being 
monitored; temporal variation of axial load ratio recorded in the monitored column at: (b) hazard level II; (c) hazard level IV; and (d) hazard level VI 
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Figure 6.10 Seismic response history of the monitored column of Bridge B: (a) schematic representation of the finite element model with column 
being monitored; temporal variation of axial load ratio recorded in the monitored column at: (b) hazard level II; (c) hazard level IV; and (d) hazard 

level VI 
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Figure 6.11 Seismic response history of the monitored column of Bridge C: (a) schematic representation of the finite element model with column 
being monitored; temporal variation of axial load ratio recorded in the monitored column at: (b) hazard level II; (c) hazard level IV; and (d) hazard 

level VI 
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Figure 6.12 Seismic response history of the monitored column of Bridge MAOC: (a) schematic representation of the finite element model with 
column being monitored; temporal variation of axial load ratio recorded in the monitored column at: (b) hazard level II; (c) hazard level IV; and (d) 

hazard level VI 
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6.2.2 Bridge Abutment Response 

Recorded force-deformation longitudinal responses, corresponding to the considered seismic 

inputs, of the backfill springs (marked in Figure 6.13 (a) through Figure 6.16 (a)) placed near the 

obtuse corners of the, in general, skewed bridge abutments on one end of each testbed bridge model 

are shown in Figure 6.13 (b)-(i), (c)-(i), and (d)-(i), through Figure 6.16 (b)-(i), (c)-(i), and (d)-(i). 

With increasing levels of hazard associated with the seismic inputs, progressively amplified levels 

of the passive response of the backfill spring, mobilized upon closure of the abutment expansion 

joint gap, of a testbed bridge model are observed. 

Transverse responses of the non-isolated (for Bridge A, Bridge B, and Bridge C) and isolated (for 

Bridge MAOC) exterior shear keys (marked in Figure 6.13 (a) through Figure 6.16 (a)) of the 

testbed bridge models resulting from the considered seismic inputs are shown in Figure 6.13 (b)-

(ii), (c)-(ii), and (d)-(ii), through Figure 6.16 (b)-(ii), (c)-(ii), and (d)-(ii). Shear keys are found to 

respond in a progressively amplified manner thereby resulting in worsening levels of inflicted 

damage as the bridge models are subjected to ground motion inputs corresponding to successively 

higher levels of seismic hazard. The isolated shear key of Bridge MAOC, unlike the non-isolated 

shear keys of Bridge A, Bridge B, and Bridge C, is found to completely break off at higher seismic 

hazard levels, thus playing the role of a sacrificial structural fuse that is meant to prevent the 

propagation of damage to the abutment stemwall. 

Horizontally coupled longitudinal and transverse responses of the chosen bearing pad elements 

(marked in Figure 6.13 (a) through Figure 6.16 (a)) recorded in the seismic response analyses of 

the testbed bridge models at the considered seismic hazard levels are shown in Figure 6.13 (b)-

(iii), (c)-(iii), and (d)-(iii), through Figure 6.16 (b)-(iii), (c)-(iii), and (d)-(iii). The coupling 

between the two horizontal translational force responses of the chosen bearing pad elements at the 

three seismic hazard levels considered are shown in Figure 6.13 (b)-(iv), (c)-(iv), and (d)-(iv), 

through Figure 6.16 (b)-(iv), (c)-(iv), and (d)-(iv). It is again noted that, like in the case of every 

other structural component assessed, increasingly hazardous seismic ground motion inputs 

engender increasing levels of inelastic bearing pad deformations. 
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Figure 6.13 Seismic response of various components of an abutment of Bridge A: (a) schematic representation of the finite element model with 
abutment structural components being monitored; (i) force-deformation hysteretic response of a backfill spring; (ii) force-deformation hysteretic 

response of an exterior shear key; (iii) force-deformation hysteretic response of a bearing pad; and (iv) bi-directional coupled force response along 
with circular yield surface of a bearing pad recorded at: (b) hazard level II; (c) hazard level IV; and (d) hazard level VI 
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Figure 6.14 Seismic response of various components of an abutment of Bridge B: (a) schematic representation of the finite element model with 
abutment structural components being monitored; (i) force-deformation hysteretic response of a backfill spring; (ii) force-deformation hysteretic 

response of an exterior shear key; (iii) force-deformation hysteretic response of a bearing pad; and (iv) bi-directional coupled force response along 
with circular yield surface of a bearing pad recorded at: (b) hazard level II; (c) hazard level IV; and (d) hazard level VI 
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Figure 6.15 Seismic response of various components of an abutment of Bridge C: (a) schematic representation of the finite element model with 
abutment structural components being monitored; (i) force-deformation hysteretic response of a backfill spring; (ii) force-deformation hysteretic 

response of an exterior shear key; (iii) force-deformation hysteretic response of a bearing pad; and (iv) bi-directional coupled force response along 
with circular yield surface of a bearing pad recorded at: (b) hazard level II; (c) hazard level IV; and (d) hazard level VI 
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Figure 6.16 Seismic response of various components of an abutment of Bridge MAOC: (a) schematic representation of the finite element model 
with abutment structural components being monitored; (i) force-deformation hysteretic response of a backfill spring; (ii) force-deformation hysteretic 

response of an exterior shear key; (iii) force-deformation hysteretic response of a bearing pad; and (iv) bi-directional coupled force response along 
with circular yield surface of a bearing pad recorded at: (b) hazard level II; (c) hazard level IV; and (d) hazard level VI 
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7 Probabilistic Seismic Demand Hazard Analysis 

7.1 Introduction 

Following a thorough probabilistic treatment of the seismic hazard at a given site which enables 

the selection of representative ensembles of site-specific risk-consistent ground motion records, 

the next pivotal step in the PEER PBEE framework is to evaluate the structural seismic response, 

i.e., the seismic demand imposed on the considered structure, due to these earthquakes. Structural 

seismic response assessment is not devoid of uncertainties. In addition to the uncertainty associated 

with occurrence/exceedance of the earthquake itself propagating to the response of the 

structure, there is extensive variability in the amplitudes of structural response quantities recorded 

from nonlinear response history analyses of finite element structural models subjected to 

earthquake excitations corresponding to the same level of intensity. Such variability in structural 

response, given , is due to: 

(a) the aleatory record-to-record variability of ground motion histories with the same level of 

intensity as measured by the 

(b) the aleatory uncertainty in the finite element model parameters (e.g., constitutive material 

model parameters, damping model parameters, etc.); 

(c) the epistemic parameter estimation uncertainty associated with using finite datasets to 

estimate the parameters of the aleatory probability distributions characterizing the FE 

model parameters; 

(d) the epistemic modeling uncertainty characterizing the overall numerical models of the 

structural systems considered and resulting from the inability of idealized (due to numerous 

simplifying assumptions) numerical models of structural systems to predict the actual 

response of the structure to earthquake ground motions. 

Out of the listed sources, ground motion record-to-record variability has been found to primarily 

contribute to the dispersion in structural response given an intensity level. Record-to-record 

variability is exhibited by ground motions, given , because the is usually not able to 

perfectly gauge an entire ground motion history, which for every earthquake is unique. Although 

not negligible, contributions of the three other sources of uncertainty listed above are not 

considered in this project for simplicity. 
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The objective of Probabilistic Seismic Demand Hazard Analysis (PSDemHA) is to 

probabilistically characterize the seismic demand on the considered structure through a rigorous 

quantification of the relevant sources of uncertainties. 

7.2 Demand Hazard Integral 

PSDemHA aims to predict the mean annual rate (MAR) at which specific values of seismic 

response parameter amplitudes, called engineering demand parameters ( s)EDP

EDP

sEDP

. sEDP

EDP



EDP

, are exceeded at 

the given site for the considered structure. This is done by aggregating the contribution to the rate 

of exceedance from different levels of 



corresponding to different hazard levels specific 

to the site of the structure. Dependence of on other ground motion characteristics (e.g., 

magnitude and source-to-site distance) is neglected by relying on “sufficiency” (defined in Chapter 

5) of the considered are defined to characterize the structural response in terms of

deformations (strains/displacements), accelerations, induced forces, and/or other quantities 

relevant to damage and/or losses incurred by the structure and its components. 

The exceedance of a specific value, , of an EDP in time, due to an earthquake occurrence 

(Poisson event) admits a censored Poisson description with the MAR of exceedance given 

by 

( )  EDP P EDP   =   (7.1) 

where , the seismic activity rate, is the MAR of occurrence of earthquakes with 

magnitude/intensity greater than a lower bound threshold value such that earthquakes with 

magnitude/intensity lower than this threshold do not cause any significant damage to the 

considered structure. Different levels of , resulting from earthquake occurrences, contribute to 

the exceedance of a specific value of an . These levels are assumed to be mutually 

exclusive owing to the basic assumption of mutual exclusivity of simultaneous earthquake 

occurrences in time. As a result, the Total Probability Theorem can be used to rewrite Eq. (7.1) as 

follows 

( )   ( )|EDP IM
IM

P EDP IM x f x dx   =   =   (7.2) 
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where x EDP

( )IMf x dx

dx 

EDP

( )EDP  EDP

sEDP

sEDP

is a specific value of the 

x

( )IMf x dx

( )IMd x

x



, conditional on which, the uncertainty in is primarily 

due to ground motion record-to-record variability, which is the only source considered. 

is the probability that the continuous random variable takes a value between and x dx+ , 

where is an infinitesimally small increment. Thus, the seismic activity rate , taken inside the 

integral, and multiplied by can be written as 

( )  

   

( ) ( )

( )

IM

IM IM

IM

f x dx P x IM x dx

P IM x dx P IM x

x dx x

d x

 



 



  =    +

=   + − 

= + −

=

(7.3) 

where is the absolute differential of the seismic hazard curve giving the MAR of 

occurrence, and not exceedance, of a specific value, , of . The final form of the seismic 

demand hazard integral is obtained as follows by substituting Eq. (7.3) into Eq. (7.2). 

( )   ( )|EDP IM
IM

P EDP IM x d x   =  =  (7.4) 

Eq. (7.4) probabilistically characterizes the seismic demand imposed on the considered structure 

at a given site, in terms of the MAR at which specific values of an are exceeded. The curve 

representing versus is called the demand hazard curve of the of interest. A set 

of , each corresponding to a discrete state of damage in the structure, is identified for 

PSDemHA. Damage limit-states considered and their associated , pertinent to the seismic 

evaluation of ordinary standard reinforced concrete bridge structures and meaningful to practicing 

engineers, are discussed in detail in the next section. 
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7.3 Damage/Limit-states Considered and Associated Engineering Demand 

Parameters 

The damage/limit-states considered in this project to evaluate the performance of ordinary standard 

bridges (OSBs) are classified into serviceability limit-states and ultimate-limit states. 

Serviceability limit-states deemed important for a reinforced concrete OSB are: (i) crushing of the 

cover concrete in a bridge column; and (ii) damage of any shear key in the abutment. These 

represent superficial damage to the bridge and require significant repairs to be conducted, 

especially in the case of shear key damage. However, a bridge is not designed to rely on the 

concrete cover and/or shear keys for primary load resistance and support under any type of loading. 

Therefore, structural integrity is not significantly affected due to the exceedance of serviceability 

limit-states. Ultimate limit-states pertinent to seismic performance of a reinforced concrete OSB 

are (i) buckling of the first longitudinal reinforcement bar (rebar); and (ii) subsequent rupture of a 

longitudinal rebar. Buckling of a rebar represents serious compromise to the structural integrity of 

a bridge structure and extreme damage of the core concrete characterizing the limit of economical 

repair (Goodnight et al. 2016). Rupture or fracture of a previously buckled rebar leads to rapid loss 

of strength in the supporting column which may cause structural collapse. 

Associated with each of the four limit-states described above, representative engineering demand 

parameters ( s)EDP

sEDP

sEDP

sEDP

sEDP

need to be defined to gauge the level of imposed seismic demand on OSBs. 

Displacement-based have been found to correlate better to structural damage as compared 

to force-based (Priestley et al. 2007). Traditionally, measures of deformation such as 

displacements, curvatures, drift ratios etc. have been used as . However, for reinforced 

concrete flexural members, such as columns, deformations can be directly and most reliably related 

to structural damage through material strains (Priestley et al. 2007). Despite being good indicators 

of damage, material strains have not been readily used in the past as because they are often 

difficult to predict objectively in finite element models that exhibit softening of section response. 

Nevertheless, for this project, sEDP relating to the damage/limit-states affecting reinforced 

concrete bridge columns are defined to be strain-based. This is supported by the finding that 

localization or softening behavior (leading to loss of objectivity in strain prediction) is not 

observed for reinforced concrete columns with low expected axial load ratios (typically less than 

15% under combined gravity and earthquake loading) which are characteristic of OSBs in 
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California (Coleman and Spacone 2001). For the EDP relating to damage of shear keys in a 

bridge, a conventional displacement ratio is used. An EDP is defined to represent the amplitude, 

i.e., the maximum value in the entire time-history, of the response quantity being monitored for a 

single earthquake. Therefore, a single value of kEDP associated with the thk limit-state, kLS , is 

recorded from every nonlinear time-history analysis performed. 

For the limit state of concrete cover crushing, defined as 1LS , 1EDP is the maximum value of 

absolute compressive (negative) strain of any longitudinal rebar in any column. 

( )( )( )1 max max max bar
compcol bar t

EDP t= (7.5) 

In the above definition, ( )bar
comp t represents the compressive (negative) strain recorded in a single 

bar among the outermost layer of rebars in a column ( )col at time t . The choice of this EDP

comes from experimental observations by Goodnight et al. (2016) corroborating the adequacy of 

this parameter in prediction of concrete cover crushing (Section 8.3.1). 

For 2LS 2EDP

( )bar
tensile t ( )col

t

3LS 3EDP

, i.e., the initiation of longitudinal rebar buckling, is the maximum tensile (positive) 

strain of any longitudinal reinforcement in any column. 

( )( )( )2 max max max bar
tensilecol bar t

EDP t= (7.6) 

, here, represents the tensile (positive) strain recorded in a single bar in a column at 

time . In the same set of experiments as before, Goodnight et al. (2016) also demonstrated that 

the initiation of, or equivalently a precursor to, buckling of a rebar can be related to the value of 

the peak tensile strain experienced by the rebar (Section 8.3.2). 

For representing longitudinal rebar fracture, is the maximum excursion or difference 

between the maximum tensile (positive) strain and the minimum compressive (negative) strain, 

the latter following the former, of any longitudinal reinforcement in any column. 

( ) ( )( )( )3 max max max minbar bar
tensile compt tcol bar t

EDP t t 


= − (7.7) 

158 



 

 
 

     

        

    

    

 

    

     

 

   

  

   

        

 

  

 

       

    

         

  

 

( )bar
tensile t

 ( )t t 

EDP

4EDP SK

( )SK . 

EDP

sEDP

sEDP

and ( )bar
comp t 

( )col

4LS

represent the tensile (positive) strain recorded at time t and the compressive 

(negative) strain recorded at time in a single bar in a column . Duck et al. (2018) 

(discussed in Section 8.3.3) found that strain excursions encountered by rebars in circular columns 

during a complete cyclic loading history can be used to predict Plastic Buckling Straightening 

Fatigue (PBSF), a phenomenon leading to potential fracture of buckled rebars. 

A conventional displacement-based is defined for the limit-state, , representing shear 

key damage. is the maximum horizontal displacement, , recorded at the top of any shear 

key 

( )( )4 max max SK

SK t
EDP t=  (7.8) 

This choice is dictated by the load-displacement relationships of exterior shear keys, extracted 

from the experimental work by Megally et al. (2002). These relationships, used to model the 

hysteretic response of shear keys in the finite element models of the considered bridges (Chapter 

4), show distinct branches separated by different levels of horizontal displacement of the top of 

shear keys. Each such branch corresponds to a level of damage inflicted and/or the formation of a 

damage mechanism. 

The rationale behind the specific choice of an associated with a limit-state is based on a 

deterministic predictive capacity model (explained later in the report in Chapter 8) for that limit-

state. Table 7-1 summarizes the associated for the four considered limit-states. Figure 7.1 

visually describes the chosen with Bridge B as an example. 
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1 :LS
( )( )( )1 max max max bar

compcol bar t
EDP t=

2 :LS
( )( )( )2 max max max bar

tensilecol bar t
EDP t=

3 :LS
( ) ( )( )( )3 max max max minbar bar

tensile compt tcol bar t
EDP t t 


= −

4 :LS
( )( )4 max max SK

SK t
EDP t= 

Table 7-1 Summary of limit states used in project with associated engineering demand parameters 

Limit-state Associated Engineering Demand Parameter ( )EDP

Concrete 
cover crushing 

Maximum absolute compressive strain of any 
longitudinal rebar in any column. 

Longitudinal 
rebar buckling 

Maximum tensile strain of longitudinal rebar in any 
column. 

Longitudinal 
rebar fracture 

Maximum difference of tensile (positive) and 
compressive (negative) strain, the latter following 
the former, of any longitudinal rebar in any column 

Shear key 
damage 

Maximum horizontal displacement of any shear key 
normalized by the displacement at peak strength. 

Figure 7.1 Illustration of recorded engineering demand parameters for each limit-state based on Bridge B 
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7.4 Demand Hazard Analysis 

For the thk kEDP

 |kP EDP IM x = kEDP

( )IM x

kEDP

kEDP

kEDP ln | ln |( , )
k kEDP IM EDP IM 

kEDP

. 

kEDP

kEDP

|kEDP IM ln |EDP IMke

damage/limit-state and its associated engineering demand parameter, , 

Probabilistic Seismic Demand Hazard Analysis (PSDemHA) involves evaluation of the demand 

hazard integral given by Eq. (7.4), rewritten as follows 

( )   ( )|
kEDP k IM

IM

P EDP IM x d x   =  =  (7.9) 

PSDemHA is mainly carried out in two steps: (i) probabilistic quantification of the conditional 

seismic demand on the structure given a hazard level that allows computation of the conditional 

probability, ; and (ii) convolution of the conditional probability of 

exceedance with the site-specific seismic hazard curve for the considered structure. 

The first step of PSDemHA is accomplished by subjecting the nonlinear finite-element model of 

the considered structure to selected ensembles of site-specific risk-consistent ground motion 

records. At each hazard level, response histories of relevant strain/deformation measures 

(discussed in Section 7.3) resulting from nonlinear time-history analyses of the considered testbed 

bridges are recorded and the values of each associated with the considered set of k

x

limit-

states are determined. To predict the structural response, , based on a given value, , of the 

chosen earthquake intensity measure, , a statistical model is established by fitting a probability 

distribution to the data of , given each hazard level. The two-parameter 

lognormal distribution is commonly used to model the scatter in the values of conditional 

on 

The estimated probability distributions of at discrete levels are then 

interpolated/extrapolated over a wide range of values. For this purpose, functional forms 

capturing the observed growth (versus ) of statistics of the lognormal distribution of , 

given , are assumed and least square fitted. Cornell et al. (2002) assumed the following power 

law growth function for the lognormal median, , i.e., , with respect to . 

( )|k

b
EDP IM x a x =  (7.10) 
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where a

x

and b are positive constants determined from regression by method of least squares, and 

represents values of . The power law assumption is found to accurately capture the growth 

of the lognormal median in the case of each kEDP

|kEDP IM

|kEDP IM

for all considered testbed bridges (shown in 

Figure 7.2 (a) through Figure 7.17 (a)). Another assumption, forwarded by Cornell et al. (2002) 

and traditionally used in PBEE, is that of a constant measure of dispersion, , i.e., ln |kEDP IM

kEDP

|kEDP IM

|kEDP IM

|kEDP IM

kEDP kEDP

|kEDP IM

kEDP

kEDP

, with respect to . However, in the case of each for all considered testbed bridges, 

is observed to consistently decrease, following an initial increase, with increasing levels 

of (Figure 7.2 (b) through Figure 7.17 (b)). The following functional form is found to 

reasonably describe this trend and is, therefore, used to predict as a function of 

c

d

|kEDP IM

thk

(represented by x ). 

( )|

1
kEDP IM f

c x fx
d xf

d




= 
 

− +  
 

(7.11) 

where, c , d , and 

f

f are positive constants obtained by least square fitting. In Eq. (7.11), and 

refer to the maximum value and the argument of the maximum value of respectively, 

and controls the post-peak decay of the function. Note that is not the standard deviation 

of given . It is close to the coefficient of variation of given for small values 

of . Although is found to first increase and then decrease with increasing , the 

standard deviation of given consistently increases with increasing levels of . 

Figure 7.2 (c) through Figure 7.17 (c) show a probabilistic quantification of the conditional seismic 

demand (characterized by values of corresponding to the limit-state) imposed on the 

four testbed bridges given six discrete hazard levels. These figures also show the 

extrapolation/interpolation of the conditional probability distribution of seismic demand, given 

any 

kEDP

kEDP ,

, based on regression analysis (Eq.s (7.10) and (7.11)). The extrapolation/interpolation of 

the conditional probability distribution of is based on the regression model fitted to data 

available at six discrete hazard levels. The error associated with the predictive models of 

given , over the range of values spanning these hazard levels is therefore minimum. These 
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ranges of kEDPvalues, for the considered testbed bridges, where , given , is most 

confidently predicted are indicated by the light blue patches in Figure 7.2 (c) through Figure 7.17 

(c). 

As the second step of PSDemHA, the demand hazard curve of kEDP

kEDP

( )IMd x

sEDP

is obtained by convolving 

the conditional probabilities of exceeding a specific value ( )

, avgaS

, given different levels of 

410−

, with the corresponding rates of occurrences, (also shown in Figure 7.2 (c) through Figure 

7.17 (c)), of these values of at the considered site. The convolution is done numerically over 

a wide range of , i.e., , values ( g to 5 g) and is not restricted to the light blue range 

of most confidence. Demand hazard curves, hence obtained, of all considered are shown in 

Figure 7.18 through Figure 7.21. 
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(a) (b) 

(c) 

Figure 7.2 Conditional seismic demand on Bridge A, in terms of 1EDP

1|EDP IM
1|EDP IM

1EDP

: (a) Regression model 
for versus ; (b) Regression model for versus ; and (c) Conditional 

probability distributions of given 
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(a) (b) 

(c) 

Figure 7.3 Conditional seismic demand on Bridge A, in terms of 2EDP

2 |EDP IM
2 |EDP IM

2EDP

: (a) Regression model 
for versus ; (b) Regression model for versus ; and (c) Conditional 

probability distributions of given 
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(a) (b) 

(c) 

Figure 7.4 Conditional seismic demand on Bridge A, in terms of 3EDP

3 |EDP IM

: (a) Regression model 
for versus ; (b) Regression model for 

3|EDP IM

3EDP
versus ; and (c) Conditional 

probability distributions of given 
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(a) (b) 

(c) 

Figure 7.5 Conditional seismic demand on Bridge A, in terms of 4EDP

4 |EDP IM

: (a) Regression model 
for versus ; (b) Regression model for 

4 |EDP IM

4EDP
versus ; and (c) Conditional 

probability distributions of given 
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(a) (b) 

(c) 

Figure 7.6 Conditional seismic demand on Bridge B, in terms of 1EDP

1|EDP IM
1|EDP IM

1EDP

: (a) Regression model 
for versus ; (b) Regression model for versus ; and (c) Conditional 

probability distributions of given 
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(a) (b) 

(c) 

Figure 7.7 Conditional seismic demand on Bridge B, in terms of 2EDP

2 |EDP IM

: (a) Regression model 
for versus ; (b) Regression model for 

2 |EDP IM

2EDP
versus ; and (c) Conditional 

probability distributions of given 
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(a) (b) 

(c) 

Figure 7.8 Conditional seismic demand on Bridge B, in terms of 3EDP

3 |EDP IM

: (a) Regression model 
for versus ; (b) Regression model for 

3|EDP IM

3EDP
versus ; and (c) Conditional 

probability distributions of given 
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(a) (b) 

(c) 

Figure 7.9 Conditional seismic demand on Bridge B, in terms of 4EDP

4 |EDP IM

: (a) Regression model 
for versus ; (b) Regression model for 

4 |EDP IM

4EDP
versus ; and (c) Conditional 

probability distributions of given 
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(a) (b) 

(c) 

Figure 7.10 Conditional seismic demand on Bridge C, in terms of 1EDP

1|EDP IM

: (a) Regression model 
for versus ; (b) Regression model for 

1|EDP IM

1EDP
versus ; and (c) Conditional 

probability distributions of given 
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(a) (b) 

(c) 

Figure 7.11 Conditional seismic demand on Bridge C, in terms of 2EDP

2 |EDP IM

: (a) Regression model 
for versus ; (b) Regression model for 

2 |EDP IM

2EDP
versus ; and (c) Conditional 

probability distributions of given 
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(a) (b) 

(c) 

Figure 7.12 Conditional seismic demand on Bridge C, in terms of 3EDP

3 |EDP IM

: (a) Regression model 
for versus ; (b) Regression model for 

3|EDP IM

3EDP
versus ; and (c) Conditional 

probability distributions of given 
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(a) (b) 

(c) 

Figure 7.13 Conditional seismic demand on Bridge C, in terms of 4EDP

4 |EDP IM

: (a) Regression model 
for versus ; (b) Regression model for 

4 |EDP IM

4EDP
versus ; and (c) Conditional 

probability distributions of given 
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(a) (b) 

(c) 

Figure 7.14 Conditional seismic demand on Bridge MAOC, in terms of 1EDP

1|EDP IM
1|EDP IM

1EDP

: (a) Regression 
model for versus ; (b) Regression model for versus ; and (c) Conditional 

probability distributions of given 
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(a) (b) 

(c) 

Figure 7.15 Conditional seismic demand on Bridge MAOC, in terms of 2EDP

2 |EDP IM

: (a) Regression 
model for versus 

2 |EDP IM

2EDP
versus ; and (c) Conditional 

pro
; (b) Regression model for 
bability distributions of given 
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(a) (b) 

(c) 

Figure 7.16 Conditional seismic demand on Bridge MAOC, in terms of 3EDP : (a) Regression 
model for 

3 |EDP IM versus ; (b) Regression model for 
3|EDP IM

3EDP
versus ; and (c) Conditional 

probability distributions of given 
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(a) (b) 

(c) 

Figure 7.17 Conditional seismic demand on Bridge MAOC, in terms of 4EDP : (a) Regression 
model for 

4 |EDP IM versus ; (b) Regression model for 
4 |EDP IM

4EDP
versus ; and (c) Conditional 

probability distributions of given 
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(a) (b) 

(c) (d) 

Figure 7.18 Demand hazard curves for Bridge A: (a) 1EDP 2EDP 3EDP 4EDP; (b) ; (c) ; and (d) 
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(a) (b) 

(c) (d) 

Figure 7.19 Demand hazard curves for Bridge B: (a) 1EDP 2EDP 3EDP 4EDP; (b) ; (c) ; and (d) 
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(a) (b) 

(c) (d) 

Figure 7.20 Demand hazard curves for Bridge C: (a) 1EDP 2EDP 3EDP 4EDP; (b) ; (c) ; and (d) 
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(a) (b) 

(c) (d) 

Figure 7.21 Demand hazard curves for Bridge MAOC: (a) 1EDP 2EDP 3EDP 4EDP; (b) ; (c) ; and (d) 
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7.5 Disaggregation of Seismic Demand Hazard w.r.t. Seismic Intensity Measure 

Seismic demand hazard associated with the sEDP

( )
kEDP 

sEDP

EDP

kEDP , is a result of the competing effects between the two terms in the numerator of Eq. (7.12) as 

| ( ) |IMd x , make negligible contributions to the demand hazard associated with a “not-too-small” 

| ( ) |IMd x

of interest for the testbed bridges are computed 

by aggregating, as per Eq. (7.9), the contributions from all possible 



EDP

kEDP

kEDP

levels. The MAR of 

exceeding a specific value, , of any EDP

kEDP

can consequently be disaggregated into the 

contributions from different levels of . Such a disaggregation provides additional insight into 

the distribution of causative values leading to a specific level of demand hazard. The 

conditional probability distribution of , given an , say , exceeds a value,  , with a 

specific MAR, , is computed as follows 

( )
  ( )

( )
|

|
|

k

k

k IM
IM EDP

EDP

P EDP IM x d x
f x

 


 


 = 
= (7.12) 

Figure 7.22 through Figure 7.25 present disaggregation results for three points on the demand 

hazard curves of the of interest for all considered testbed bridges. These three points 

correspond to mean RPs (reciprocal of MARs) of EDP

kEDP

( )
kEDP 



exceedance equal to 72 years, 975 years, 

and 4975 years. The three points are chosen to span a reasonably wide range of probabilities of 

exceedance starting from 50 % to 1 % in an exposure time of 50 years. The ordinate of each 

disaggregation plot on the right-hand-side shows the conditional probability distribution, i.e., Eq. 

(7.12), of , given a specific level of exceedance. The ordinate along the left-hand-side 

of the same plot shows the site-specific seismic hazard curve. Also marked in each of these plots 

is the value of corresponding to the same MAR of exceedance as given by . 

The shape of the conditional distribution of , given a specific level of demand hazard for any 

a function of . “Very” small values of 

kEDP





, despite having “high” rates of occurrence, 

value, , of . Values of generated at these “low” levels of earthquake intensity are 

much smaller than the specific demand value . Thus, the conditional probability of 

exceeding , given “very” small values of , is almost zero, i.e.,  | 0kP EDP IM  . As 

levels are increased, their rates of occurrence, , decrease. On the other hand, 
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structural response amplification due to increasing levels of 

kEDP

| ( ) |IMd x

| ( ) |IMd x

| ( ) | 0IMd x 

kEDP

leads to increase in 

 |kP EDP IM

kEDP

kEDP

EDP

sEDP

. At first, this increase in the conditional probability of exceedance 

outweighs the decrease in . As a result, 

 |kP EDP IM

contribution to demand hazard increases 

with increase in . This continues up to a point where values of start becoming “somewhat” 

rare, and the decrease in starts to subdue the growth in . Although 

structural seismic response is greatly amplified with increasing levels of seismic intensity, the rates 

of occurrence of “very” large values are “too” small, i.e., . As a result, the 

contribution to demand hazard from “very” large and “too” rare values of also becomes 

negligible. 

Also, as noted from the disaggregation curves, higher levels of earthquake intensity contribute 

more to the exceedance of larger values of any . This is shown by the gradual shift of the 

center-of-mass of the conditional probability distributions of causative towards higher values 

of , as the hazard associated with increasing values of are disaggregated. These 

probability distributions of causative also get fatter with an increase in the value of , 

implying more variability in earthquake intensity leading to higher levels of seismic demand. 

Furthermore, it is observed that contribution to a specific level of demand hazard comes from a 

certain range of values. It is important to note that contribution to a given MAR (or mean 

RP) of exceedance comes not only from the value with the same MAR (or mean RP) 

of exceedance, but also from values with lower MARs and from those with higher MARs. It 

is also worthwhile to notice and appreciate that, for the considered testbed bridges, a significant 

part of the contribution to the considered levels of demand hazard of all in question does 

come from the range of most confidence (indicated by the light blue patch in Figure 7.22 

through Figure 7.25). 
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(a) (b) 

(c) (d) 

Figure 7.22 1EDP 2EDP 3EDP 4EDPdisaggregation of demand hazard for Bridge A: (a) ; (b) ; (c) ; and (d) 
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(a) (b) 

(c) (d) 

Figure 7.23 disaggregation of demand hazard for Bridge B: (a) 1EDP 2EDP 3EDP 4EDP; (b) ; (c) ; and (d) 
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(a) (b) 

(c) (d) 

Figure 7.24 disaggregation of demand hazard for Bridge C: (a) 1EDP 2EDP 3EDP 4EDP; (b) ; (c) ; and (d) 
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(a) (b) 

(c) (d) 

Figure 7.25 disaggregation of demand hazard for Bridge MAOC: (a) 1EDP 2EDP 3EDP 4EDP; (b) ; (c) ; and (d) 
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8 Probabilistic Seismic Damage Hazard Analysis 

8.1 Introduction 

To evaluate the seismic performance/adequacy/reliability of structures in terms of risk-levels 

associated with the exceedance of a pre-defined set of damage/limit-states, a probabilistic 

treatment of structural seismic demand and capacity is essential. Probabilistic Seismic Demand 

Hazard Analysis (Chapter 7) characterizes the uncertainties in seismic demand imposed on 

structures emanating primarily from underlying uncertainties in seismic source characterization 

(e.g., temporal and spatial occurrence of earthquakes, earthquake magnitudes, etc.), seismic wave 

propagation path and hence the seismic intensity measure recorded at the site, local site/soil 

conditions, and record-to-record variability exhibited by ground motions with the same level of 

seismic intensity. In doing so, all epistemic sources of uncertainties and the aleatory structural 

model parameter uncertainty are not considered in this project for simplicity. 

Ideally, a “perfect” finite element structural model would be able to capture real physical damage 

(e.g., concrete cover crushing, longitudinal bar buckling, longitudinal bar fracture, etc.) and the 

effects of damage accumulation as the structural model is subjected to an earthquake ground 

motion. In such an ideal situation, computation of an estimate of the probability of exceeding 

specific damage/limit-states would have been possible through nonlinear response history analyses 

alone by merely counting the number of cases where specific damage/limit-states are encountered 

and/or exceeded. In the absence of “perfect” physics-based finite element structural models, 

seismic reliability or risk associated with the exceedance of damage/limit-states of interest is 

computed by bringing in the notion of structural capacity. 

Structural capacity against a specific limit-state is defined as the maximum value of the physical 

quantity representing the associated seismic demand parameter, i.e., EDP , that the structure can 

withstand without exceeding or being in the specific damage/limit-state. Structural capacity can 

be predicted by the joint use of a simplified (design code type) analytical, semi-analytical or 

empirical predictive capacity model for the specific limit-state and experimental data collected 

from an ensemble of specimens tested for the considered limit-state (Berry and Eberhard 2004; 

Berry and Eberhard 2005). In the absence of experimental data for a given limit-state, predictions 

of structural capacity can be obtained through numerical simulation of the structural response using 
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reliable (e.g., validated at the component level) finite-element structural models (Mackie and 

Stojadinović 2004; Nielson 2005). There is significant uncertainty associated with predictions of 

structural capacity due to a myriad of reasons which primarily include path- or history-dependence 

of cyclic structural response, uncertainty in material properties, difference in geometric properties 

and/or system configurations of experimental specimens, use of imperfect predictive 

methods/models, etc. 

Probabilistic Seismic Damage Hazard Analysis (PSDamHA) is aimed towards a rigorous 

quantification of the various sources of uncertainties associated with predictions of structural 

capacities and a consistent and coherent propagation of the same to make probabilistic predictions 

of structural damage/limit-states exceedance. 

8.2 Damage Hazard Integral 

The objective of PSDamHA is to evaluate the mean annual rate (MAR) of the structure or its 

components exceeding a given damage/limit-state due to the occurrence of an earthquake. For a 

set of discrete limit-states, a limit-state function, also known as a performance function, is 

mathematically expressed as 

0 damage/limit-state exceedance
0 damage/limit-state boundary
0 no damage

k k kZ C EDP



= − =


(8.1) 

where kC
thk

and kEDP



represent the random variables corresponding to the capacity and the 

engineering demand parameter associated with the limit-state. The homogenous Poisson 

assumption of earthquake occurrences in time allows a censored Poisson description of the 

temporal exceedance of limit-states due to earthquakes with the MAR of limit-state exceedance 

given by 

 0
kLS kP Z =   (8.2) 

where , the seismic activity rate, is the MAR of occurrence of earthquakes with 

magnitude/intensity greater than a lower bound threshold value. Earthquakes with 

magnitude/intensity lower than this threshold do not cause any significant damage to the 

considered structure. Given the joint probability distribution of kC and kEDP , the probability of 
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limit-state exceedance can be evaluated by integrating the joint probability density function over 

the unsafe domain, i.e., k kC EDP

kC

. Due to numerous factors affecting structural capacity and 

demand and significant levels of uncertainties associated with these factors, the task of formulating 

joint probability density functions of and kEDP , and their integration, in general, becomes a 

very challenging task. This can be circumvented by making numerical approximations, e.g., First-

Order Reliability Method (FORM) and Second-Order Reliability Method (SORM), or by breaking 

down the problem into more tractable steps involving conditional and/or marginal probability 

distributions of the individual random variables in the limit-state function. 

Numerous researchers have focused on the development of methodologies to evaluate the seismic 

reliability of structures (Esteva and Ruiz 1989; Kennedy et al. 1980; Song and Ellingwood 1999a; 

Song and Ellingwood 1999b; Tzavelis and Shinozuka 1988; Wen 1995). The formal probabilistic 

framework for evaluating the MARs at which specific limit-states are exceeded, originally 

developed by Cornell and co-workers (Bazzurro and Cornell 1994; Cornell et al. 2002; Shome et 

al. 1998; Yun et al. 2002) culminated into the state-of-the-art framework for PBEE developed at 

PEER (Krawinkler and Miranda 2004; Moehle and Deierlein 2004; Porter 2003). According to the 

PEER PBEE framework, the task of predicting the MAR of exceedance of a set of discrete limit-

states is broken down into two major steps by invoking the Total Probability Theorem on Eq. (8.2) 

. With the basic underlying assumption of mutual exclusivity of simultaneous earthquake 

occurrences in time, thereby deeming different values of kEDP

kC

mutually exclusive, Eq. (8.2) is 

rewritten as 

  ( )0 |
k k

k

LS k k EDP
EDP

P Z EDP f d    =   =   (8.3) 

where  is a specific value of kEDP
thk

, conditional on which, the uncertainty in kZ is solely due to 

that in , the structural capacity against the limit-state. Uncertainty quantification of 

conditional limit-state exceedance given a specific value of demand is typically done using 

predictive models for the specific limit-state and comparing such predictions with reliable 

experimental and/or numerical data. Uncertainty associated with such predictions stem from path-

or history-dependence of cyclic structural response, uncertainty in material and/or geometric 

properties, difference in geometric properties and/or system configurations of experimental 
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specimens, use of idealized predictive methods/models with missing explanatory variables, use of 

a single demand parameter to predict the exceedance of a limit-state, etc. The probabilistic analysis 

involved in computing the conditional probability of exceeding the thk



kEDP

thk

limit-state conditioned on 

the value of the associated engineering demand parameter, kEDP

( )
kEDPf d  kEDP

( )
kEDPd 

thk

kEDP

is called fragility analysis. 

Details of fragility analyses conducted as a part of this project are discussed in detail in Section 

8.4. 

The term , in Eq. (8.3), is the probability that the continuous random variable 

takes a value between and d +



, d

( )
kEDPf d 



being an infinitesimally small increment. The seismic 

activity rate , taken inside the integral, and multiplied by gives 

( )  

   

( ) ( )

( )

k

k k

k

EDP k

k k

EDP EDP

EDP

f d P EDP d

P EDP d P EDP

d

d

      

   

    

 

  =    +

=   + − 

= + −

=

(8.4) 

where is the absolute differential of the demand hazard curve of giving the MAR 

of occurrence, and not exceedance, of a specific value, , of kEDP . Substituting Eq. (8.4) into 

Eq. (8.3), the seismic damage hazard integral for the limit-state is written as follows 

  ( )0 |
k k

k

LS k k EDP
EDP

P Z EDP d   =  =  (8.5) 

Eq. (8.5) expresses the damage hazard integral for the limit-state as a direct convolution of the 

corresponding fragility function with the demand hazard curve of the associated engineering 

demand parameter, . Detailed descriptions of the deterministic predictive capacity models 

used, and fragility analyses conducted for the considered damage/limit-states to adequately 

quantify the uncertainty in limit-state capacity are presented in Sections 8.3 and 8.4. 

8.3 Deterministic Capacity Models for Considered Damage/Limit-States 

To evaluate the performance or capacity of any structure against various damage-states or limit-

states of interest, predictive capacity models are required. A capacity model attempts to relate a 
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combination of structural properties, such as strain, displacement, material strength or geometrical 

properties etc. to a specific apparent damage. The models are typically empirical or semi-empirical 

and derived from experimental data and/or engineering judgement. Consequently, capacity models 

are often found in the form of equations with variables which are deemed pertinent to the damage-

states of interest. The predictive capacity model for the thk
PRED( )
kCEDP

| |bar
comp

limit-state establishes the threshold 

value of the associated EDP , which, upon crossing, will determine if the thk limit-

state has been reached or exceeded. The predictive capacity models for the four considered limit-

states, as defined in Section 7.3, are discussed below. 

8.3.1 Predictive Capacity Model for Limit-state 1: Concrete Cover Crushing 

The limit-state of concrete cover crushing is predicted to occur based solely on the absolute value 

of the compressive strain, , of the extreme longitudinal reinforcement. From experimental 

data by Goodnight et al. (2015; 2016), Eq. (8.6) was observed to minimize the sum of the squared 

error between the predicted strain and the observed strain for concrete cover crushing. A 

comparison between the experimental data and the prediction provided by Eq. (8.6) is shown in 

Figure 8.1. The reaching/exceeding of the concrete cover crushing limit-state is indicated by the 

first signs of concrete flaking between spiral layers (Goodnight et al. 2015; Goodnight et al. 2016). 

Experiments conducted by Goodnight et al. (2015; 2016) were cyclic pushovers. Therefore, the 

measured data is based on the maximum compressive strain achieved at the peak of each cycle. As 

discussed in their report, Eq. (8.7) should be adopted for design/assessments of new/existing 

structures, instead, as the measured strain at the peak of each cycle would inevitably have exceeded 

the actual strain which initiated the cover crushing. If the absolute value of the maximum 

compressive strain in a longitudinal bar is found to exceed the value given by Eq. (8.7), the 

concrete cover is deemed to have crushed. 

| | 0.00475bar
comp =

1

PRED | | 0.004bar
C compEDP = =

(8.6) 

(8.7) 
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Figure 8.1 Experimental data (Goodnight et al. 2015) of recorded compressive strength at 
concrete cover crushing plotted with the strain obtained by minimizing the sum of the squared 

error between the prediction strain and observed strain. 

8.3.2 Predictive Capacity Model for Limit-state 2: Longitudinal Bar Buckling 

The capacity model for longitudinal bar buckling is also obtained from the same set of experiments 

as for concrete cover crushing. In the experiments conducted it was observed that bar buckling 

occurred following a reversal from a peak tensile strain while the bar is under net elongation 

(Goodnight et al. 2015; Goodnight et al. 2016). Therefore, the researchers concluded that the 

capacity of a column to bar buckling can be related to a peak tensile strain, bar
tensile , of the 

longitudinal reinforcement which will cause severe instability upon reversal (Goodnight et al. 

2015; Goodnight et al. 2016). The prediction equation was found to depend on structural and 

geometrical properties of the column, namely it is a function of the transverse volumetric steel 

ratio, yield strain of the transverse reinforcement and axial load ratio. The adopted capacity 

equation for this project, given as the peak tensile strain following which a strain reversal will 

cause bar buckling, is given in Eq. (8.8) (Goodnight et al. 2015; Goodnight et al. 2016). The 

exceedance of this threshold value of the tensile strain of a longitudinal bar in a column is deemed 

to be a precursor to longitudinal bar buckling upon strain reversal. A comparison between the 

experimental data and the prediction provided by Eq. (8.8) is shown in Figure 8.2. 

2

PRED 0.03 700 0.1yhebar
C tensile s

s ce g

f PEDP
E f A

 = = + −


(8.8) 
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In Eq. (8.8), s

sE P

cef  gA

is the volumetric transverse reinforcement ratio, yhef is the expected yield stress 

of transverse reinforcement, is the elastic modulus of the transverse reinforcement, is the 

axial load, is the expected compressive yield stress of the concrete in the column, and is 

the cross-sectional area of the column. It is noted here that, for a time-history analysis, the axial 

load will vary while the other components on the right-hand side of the equation will remain 

constant for each column. To simplify the approach such that a single value of tensile strain can 

be assigned to each column as its capacity for bar buckling, the axial load will also be taken as a 

constant. The axial load used to assess the capacity of a column is taken from the end of the gravity 

analysis prior to the start of the earthquake time history. In this way the capacity of a column is 

independent of the seismic time history. 

Figure 8.2 Comparison of experimental data set (Goodnight et al. 2015) of recorded tensile 
strengths at reversal prior to bar buckling with predicted tensile capacity from Eq. (8.8). 

8.3.3 Predictive Capacity Model for Limit-state 3: Longitudinal Bar Fracture 

The capacity model for longitudinal bar fracture is taken from the recent Caltrans work by Duck 

et al. (2018). The capacity equation is derived from comprehensive finite element analyses as part 

of efforts in the investigation of Plastic Buckling Straightening Fatigue (PBSF) of longitudinal 

bars in circular columns. The prediction of PBSF of a longitudinal bar in a circular column depends 

on the strain excursion encountered by the rebar during a complete loading cycle. Strain excursion 

is defined as the difference between the maximum tensile strain (positive) and the minimum 

compressive strain (negative), the latter following the former, in the strain time-history of a 
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longitudinal reinforcement bar. The threshold value below which the strain excursion of a 

longitudinal bar should be kept under to prevent PBSF is termed as the von Karman strain. The 

researchers found that once the strain excursion in a bar has reached t fhe von Karman strain, large 

concentrations of strain occur between centers of rotation in the buckled shape of the reinforcement 

bar leading to potential fracture. The von Karman strain, VK

VK

(%)s

barn

barn

T
Y

VK

, is given in Eq. (8.9) and is used as 

the predictor of capacity of longitudinal bars against bar fracture. If the maximum strain excursion 

encountered is greater than , the bar in the column is deemed to have fractured. For a detailed 

explanation and its derivation, the reader is referred to the original Caltrans report (Duck et al. 

2018). 

3

PRED 30.11 min(0.054,0.032 (%)) 0.0175 2.93 0.054C VK s bar
TEPD n
Y

 =  = + − − − (8.9) 

In the above equation, is the volumetric transverse reinforcement ratio expressed as a 

percentage, is the number of bars in a column, and T
Y

is the ratio of the ultimate stress to yield 

stress of the longitudinal steel. Where bundles of bars are used, is to be the number of bundles 

rather than the total number of longitudinal reinforcement bars as this term is used to consider the 

“polygon effect”. The polygon effect is the phenomenon where the number of bars or bundles 

affect the deformed shape and efficiency of the transverse reinforcement in restraining lateral 

deformations (Duck et al. 2018). In consultation with the researchers of the PBSF study, the ratio 

of the ultimate stress to yield stress of the longitudinal bar, , was taken as 1.4 for this project. 

Note that for bridges of identical column design, the value of is constant across all columns. 

8.3.4 Predictive Capacity Model for Limit-state 4: Shear Key Damage 

A predictive model for the displacement capacity of monolithic shear keys is extracted from the 

work by Megally et al. (2002) which in part focuses on the seismic response of exterior monolithic 

(non-isolated) shear keys, as found in three of the four testbed bridge structures (Bridge A, Bridge 

B and Bridge C). Megally’s work attempts to model the hysteretic rule of exterior shear keys using 

a strut-and-tie mechanism and through observations from experimental load-displacement results. 

This hysteretic rule was also used in modeling the shear key in the finite element model as 
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described in Chapter 4. The complete model is constructed by superimposing the hysteretic 

contributions from steel and concrete components as shown in Figure 8.3. The experimental load-

displacement curves showed distinct branches that were related to five damage levels, also used in 

the definition of the quinque-linear hysteresis rule, by the original authors. Level-I corresponds to 

initiation of diagonal cracking at the intersection of the shear key’s sloped surface with the top of 

the stemwall. Level-II is the onset of yielding of shear key reinforcement. Level-III corresponds 

to the peak load with significant crack width opening at the shear key-stemwall interface. Level-

IV is the point at which concrete contribution to the resistance falls to zero while Level-V is the 

initiation of failure of the steel resisting component. 

Figure 8.3 Hysteresis rule for monolithic exterior shear keys obtained from Megally et al. 
(2002) as a superposition of a concrete component and a steel component. 

Out of the five different damage-states in the hysteretic model of exterior monolithic shear keys 

summarized above, the lateral displacement at the top of the shear key corresponding to damage 

Level-III was selected to denote the displacement capacity of the shear key for this project. This 

was chosen as it represented the maximum load of the shear key and the point beyond which the 

concrete begins to degrade causing significant damage. The lateral displacement at the top of the 

shear key, III (in its original format), corresponding to the peak load is given in Eq. (8.10) 
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(Megally et al. 2002). If the recorded displacement exceeds III

y

1d

b

bd

yf

cf 

the shear key is deemed to have 

been damaged. 

4

PRED 1( )2 ( )C III y d
h dEDP L b

s


+
=  = + (8.10) 

where, is the yield strain of steel reinforcing bars, s is the larger of the horizontal and vertical 

rebar spacing of the stemwall side reinforcement, is the height of the shear key above the 

stemwall, is the width of the stemwall, and h is the height of the stemwall. dL represents the 

reinforcement development length given by (Megally et al. 2002). 

     (psi, in)
25

b y
d

c

d f
L

f
=


(8.11) 

where represents the rebar diameter of the bottommost reinforcing bars in the stemwall and 

and represent the nominal characteristic compressive strength of concrete and the nominal yield 

strength of steel reinforcing bars, respectively. 

Note that the model proposed by Megally et al. (2002) described above is applicable only to Bridge 

A, Bridge B and Bridge C as these bridges are designed using the same type of monolithic, i.e., 

non-isolated, shear keys as those tested in the experimental investigation. For Bridge MAOC, 

however, sacrificial type isolated shear keys are called for in the design. The displacement capacity 

of this type of shear keys is taken as the displacement at peak strength obtained from a scaled 

backbone curve calibrated using experimental data corresponding to a single specimen (Beckwith 

et al. 2015; Bozorgzadeh et al. 2007). This backbone curve is also used in modeling the force-

displacement relationship of isolated shear keys in the finite element model of Bridge MAOC 

described in Chapter 4. The predictive displacement capacity model in this case is given by Eq. 

(8.12) (Beckwith et al. 2015). 

4

PRED 3.75 inC IIIEDP =  = (8.12) 

8.4 Fragility Analysis and Experimental/Numerical Data Sources 

As previously mentioned, capacity models are used to quantify the resistance to certain damage-

states of interest. However, the capacity models described are deterministic and therefore do not 
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take into account any uncertainty related to the capacity of the structural components. To quantify 

uncertainty related to a limit-state capacity, fragility functions are adopted. Fragility functions are 

obtained by making use of the deterministic capacity models and comparing the predictions of 

limit-state exceedance with reliable experimental data from tests conducted in the laboratory 

and/or numerical results from analyses of high-fidelity finite element models. The sources of 

uncertainty captured through fragility curves are related to: 

(a) Use of idealized/simplified predictive limit-state capacity model (e.g., missing variables) 

(b) Unknown material properties 

(c) A single predictive demand parameter is insufficient to perfectly predict whether a limit-

state is reached or exceeded (i.e., other demand parameters play a role) 

Fragility functions, defined as cumulative probability distribution functions, expresses the 

probability of reaching or exceeding a system or component-based limit-state (damage-state) given 

a specific value of a predictive demand parameter associated with this limit-state (ATC 2007), e.g., 

PGA , ( )1, 5%aS T  = , EDP

of sEDP as the input for all considered limit-states and are in the form of the two-parameter 

, etc. In this project, fragility functions are developed to take in values 

lognormal cumulative distribution functions. The fragility function for the thk

k

EDP

limit-state is defined 

as follows 

 
ln( )0 | k

k k
k

P Z EDP  




 −
 = = 

 
(8.13) 

where  k

thk

is the cumulative distribution function of the standard normal distribution. and 

are the parameters of the fitted lognormal distribution representing the mean and standard 

deviation of the natural logarithm of experimentally and/or numerically measured values of the 

associated for which the limit-state is exceeded. 

As previously mentioned, fragility curves are constructed using experimental data from laboratory 

tests and/or high-fidelity numerical analyses. Typically, these fragility curves pertain to 

specimens/numerical models of varying design parameters. For a reinforced concrete column, for 

example, parameters such as the diameter, column height, material properties, longitudinal and 

transverse reinforcement ratio etc. can vary greatly. These fragility curves, therefore, provide a 

good estimate of average uncertainties and limit-state exceedance for a large population of 
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specimens given an EDP

thk

thk

EDP

EDP

.EDP
thk

kEDP

EDP

EDP

. However, to be a good predictor for a specific design, fragility curves 

should ideally be constructed using data corresponding to specimens/models of the same design. 

This necessitates “normalization” of fragility curves to ensure that fragility curves, constructed 

using available experimental/numerical data pertaining to specimens/models of varying 

parameters, can be used for new and specific designs of the considered bridges. To create a 

normalized fragility curve for the limit-state, experimentally/numerically measured values of 

the associated demand parameter for which the limit-state is reached or exceeded, referred to as 
MEAS

kEDP , are recorded for each specimen tested/analyzed and divided by the predicted capacity, 

PRED
kCEDP , using the appropriate capacity model. The horizontal axis of the normalized fragility 

curve for the limit-state is therefore the ratio of the experimentally/numerically measured value 

of the relevant at which the limit-state of interest is reached or exceeded to the predicted 

(using a deterministic capacity model) value of the at which the limit-state is reached or 

exceeded. In this way, a normalized fragility curve contains a unitless horizontal axis whereas a 

non-normalized fragility curve has a horizontal axis dependent on the units of the selected 

The normalized fragility function constructed for the limit-state is, therefore, defined as 

MEAS

PRED

ln( )0 |
k

k k
k

C k

EDPP Z
EDP

 




   −
 = =    

    

(8.14) 

where k

thk

and k  are the parameters of the fitted lognormal distribution representing the mean and 

standard deviation of the natural logarithm of the ratio of experimentally/numerically measured to 

predicted values of for which the limit-state is exceeded. The value of the ratio of the 

experimentally/numerically measured value of at limit-state exceedance to the predicted 

value of the same would have been equal to unity in case a “perfect” deterministic capacity 

model were used (Zhang 2006). In such a case, the fragility function would have taken the form 

of a step function at a value of unity. However, in reality, a scatter of ratios is typically found due 

to idealized/simplified predictive models, unknown material properties, missing explanatory 

variables, etc. The uncertainty of the measure-to-predicted capacity ratio can be visualized as 

inversely proportional to the steepness of the fragility curve, i.e., a steep slope infers a lower level 

of uncertainty and vice versa. In addition, the bias of the deterministic capacity model can be 
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determined based on the median value of the measured-to-predicted capacity ratio, i.e., the value 

of the ratio corresponding to 50% probability of exceedance. 

A normalized fragility curve provides an estimate of the probability of limit-state exceedance given 

a value of normalized measured-to-predicted capacity ratio. To use this fragility curve for a new 

design, the constructed curve must be denormalized. Denormalization is done by scaling the 

horizontal axis of the normalized fragility curve though multiplication by the predicted capacity 

for that specific design using the appropriate deterministic capacity equation. This denormalized 

fragility curve, for the thk MEAS
kEDP

k

kEDP

kEDP . 

EDPs

limit-state, therefore, has a horizontal axis of and is equivalent 

to the definition given by Eq. (8.13) with parameters and k given by 

PREDlog
kk k CEDP = +

k k  =

(8.15) 

(8.16) 

With values of as input, the denormalized fragility can be used to determine the MAR of 

limit-state exceedance by convolution with the corresponding demand hazard curve of 

To construct reliable fragility curves specific experimental/numerical sources were used. Sources 

selected in this project are from modern experimental data where strain or displacement are 

recorded while, at the same time, observations are made for the exceedance of limit-states of 

interest. Experimental/numerical sources used in this project are listed in Table 8-1. Note that 

specimens from multiple sources are used in the development of some fragility curves. Also note 

that, the data corresponding to the limit-state of rebar fracture comes solely from a series of finite 

element analyses. A more detailed overview of each source is provided in the following sections. 

Table 8-1 Experimental sources for constructing fragility curves for all considered limit-states 

Sources Specimen Scale Specimens Limit-State 
Schoettler et al. (2015) full scale 1 2 
Trejo et al. (2014) half scale 6 1 
Goodnight et al. (2015) half scale 23 1, 2 
Murcia-Delso et al. (2013) full scale 4 1, 2 
Duck et al. (2018) FE 36 3 
Megally et al. (2002) half scale 4 4 
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8.4.1 Fragility Curve for Limit-state 1: Concrete Cover Crushing 

Normalized fragility curve for concrete cover crushing is constructed partly using data from 

reinforced concrete column experiments conducted by Goodnight et al. (2015) in which the strains 

of longitudinal reinforcement bars were recorded. These columns were constructed to represent 

single degree of freedom bridge columns each consisting of a footing, a column and a loading cap. 

The specimens were subjected to unidirectional top-column displacement histories and the strains 

at the end of each half cycle were recorded along with any damage observed on both sides of the 

column. A total of 23 columns in this dataset are utilized in forming the fragility curve for the 

limit-state of concrete cover crushing. It is noted that in most cases, concrete cover crushing was 

observed on both sides of a single column thus making a single column contribute two data points 

to the construction of the fragility curve. Data also came from experiments conducted by Trejo et 

al. (2014) and Murcia-Delso et al. (2013). The former consisted of experiments performed on 

single reinforced concrete cantilever columns, with a mixture of Grade 60 and Grade 80 steel 

reinforcement, with footings subjected to unidirectional top-column displacement time histories. 

The latter consisted of unidirectional top-column displacement history tests where the columns are 

embedded in enlarged (Type II) shafts. A total of six columns are utilized from Trejo et al. (2014) 

and four from Murcia-Delso et al. (2013) for the construction of the fragility curve. 

The predicted capacity for concrete cover crushing is an absolute compressive strain of 0.004 in 

the extreme longitudinal reinforcement. As explained previously in Section 8.3.1, this is the 

recommended strain capacity for design/assessment of new/existing structures. However, as the 

normalized fragility curve is to be constructed from experimental data where the 

recorded/observed strain is always higher than the actual strain which initiated the crushing, the 

experimental data is normalized by the originally observed strain capacity of 0.00475 (Eq. (8.6)) 

instead of the recommended value of 0.004 (Eq. (8.7)). The recommended strain capacity is used 

for denormalization of the constructed normalized fragility curve such that it can be used for 

specific designs of the considered bridges. The relevant experimental data used in the fragility 

curve is provided in Table 8-2. The table does not show the corresponding predicted value of the 

capacity using the deterministic model. The normalized fragility curve for concrete cover crushing 

is provided in Figure 8.4. It can be seen that all data points lie in the vicinity of the fitted cumulative 

lognormal distribution function with only small deviations at the upper and lower tails of the CDF. 

The value of the normalized strain at 50% probability of exceedance is approximately 1.02 
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indicating a small bias. The fitted lognormal distribution for the normalized fragility function 

corresponding to limit-state 1 has parameters 1 and 1  of 0.0174 and 0.3264 respectively. 

Table 8-2 Experimental data used for fragility curve of limit-state 1 

Specimen Strain at LS 1 Specimen Strain at LS 1 
Goodnight 8 N/A 0.0060 Goodnight 25 0.0036 0.0040 
Goodnight 9 0.0041 0.0032 Goodnight 26 0.0045 0.0046 
Goodnight 10 0.0026 0.0039 Goodnight 27 0.0036 0.0038 
Goodnight 11 N/A N/A Goodnight 28 0.0051 0.0055 
Goodnight 12 0.0047 0.0044 Goodnight 29 0.0055 0.0054 
Goodnight 13 0.0460 0.0360 Goodnight 30 0.0052 0.0059 
Goodnight 14 0.0029 0.0030 Trejo 1 0.0030 N/A 
Goodnight 15 0.0027 0.0041 Trejo 2 0.0015 N/A 
Goodnight 16 0.0048 0.0038 Trejo 3 0.0050 N/A 
Goodnight 17 0.0043 0.0043 Trejo 4 0.0047 N/A 
Goodnight 18 0.0680 0.0000 Trejo 5 0.0054 N/A 
Goodnight 19 0.0060 0.0065 Trejo 6 0.0032 N/A 
Goodnight 20 0.0065 0.0046 Murcia-Delso 1 0.0068 N/A 
Goodnight 21 0.0046 0.0048 Murcia-Delso 2 0.0064 N/A 
Goodnight 22 0.0063 0.0085 Murcia-Delso 3 0.0040 N/A 
Goodnight 23 0.0052 0.0062 Murcia-Delso 4 0.0036 N/A 
Goodnight 24 0.0085 0.0083 
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Figure 8.4 Fragility curve for limit-state 1 

8.4.2 Fragility Curve for Limit-state 2: Longitudinal Bar Buckling 

The fragility curve for the limit-state of longitudinal rebar buckling is developed based on 

experimental data from Goodnight et al. (2015), Murcia-Delso et al. (2013), and Schoettler et al. 

(2015). The same set of column experiments from Goodnight et al. (2015) and Murcia-Delso et al. 

(2013) used in obtaining the fragility curve for concrete cover crushing were used for the 

construction of the fragility curve for longitudinal rebar buckling. In addition, a single full-scale 

column from Schoettler et al. (2015) subjected to dynamic loading was included in this fragility 

analysis. The peak tensile strains of rebars in the tested column specimens were recorded prior to 

rebar buckling observation and used as the measured capacity of the column corresponding to this 

limit-state. The recorded strains are normalized by the predictive capacity model given by Eq. (8.8) 

. The data points used in the construction of the fragility curve are shown in Table 8-3. The table 

does not show the corresponding predicted value of the capacity. The normalized fragility curve 

for longitudinal rebar buckling is shown in Figure 8.5. It can be seen that all data points lie very 

close to the fitted cumulative lognormal distribution function with only small deviations at the 
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upper and lower tails of the CDF. The value of the measured-to-predicted strain capacity ratio at 

50% probability of exceedance is approximately 1.05 indicating a small bias. The fitted values of 

lognormal distribution parameters, i.e., 2 and 2  , for the normalized fragility function 

corresponding to limit-state 2 are 0.0451 and 0.2011 respectively. 

Table 8-3 Experimental data used for fragility curve of limit-state 2 

Specimen Strain at LS 2 Specimen Strain at LS 2 
Goodnight 8 0.0510 0.0480 Goodnight 22 0.0410 0.0530 
Goodnight 9 0.0530 0.0510 Goodnight 23 0.0510 0.0480 
Goodnight 10 N/A 0.0380 Goodnight 24 0.0370 0.0480 
Goodnight 11 0.0590 0.0330 Goodnight 25 0.0420 0.0350 
Goodnight 12 0.0580 0.0440 Goodnight 26 0.0320 0.0240 
Goodnight 13 0.0470 0.0470 Goodnight 27 0.0360 0.0240 
Goodnight 14 0.0350 0.0350 Goodnight 28 0.0360 0.0300 
Goodnight 15 0.0370 0.0380 Goodnight 29 0.0550 0.0360 
Goodnight 16 0.0560 0.0520 Goodnight 30 0.0360 0.0330 
Goodnight 17 0.0550 0.0390 Murcia-Delso 1 0.0264 N/A 
Goodnight 18 N/A 0.0470 Murcia-Delso 2 0.0410 N/A 
Goodnight 19 0.0370 0.0320 Murcia-Delso 3 0.0321 N/A 
Goodnight 20 0.0460 0.0370 Schoettler 1 0.0440 N/A 
Goodnight 21 0.0510 0.0360 
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Figure 8.5 Fragility curve for limit-state 2 

8.4.3 Fragility Curve for Limit-state 3: Longitudinal Bar Fracture 

For longitudinal rebar fracture, the measured capacity at the limit-state is obtained from an 

ensemble of finite element analyses conducted by Duck et al. (2018) rather than a set of 

experimental data. The structural properties assigned to the columns in the finite element analyses 

attempt to comprehensively cover the gamut of practical structural properties found in the field. 

Each column is modeled in OpenSees with every longitudinal bar and hoop modeled as a single 

displacement-based beam-column element discretized along its length. The material properties of 

the steel are modeled after Dodd and Restrepo-Posada (1995). The structural characteristics 

evaluated in the analyses include: column diameter, rebar size, reinforcement ratio, transverse 

hoop spacing, yield and ultimate strengths of reinforcement and loading histories. An imperfection 

of 0.01 in. in the bars is initially modelled to induce buckling. For a comprehensive description of 

the finite element model, design parameters and loading procedures, the reader is referred to the 

original report by Duck et al. (2018). 
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Recall that the capacity of the column rebars to fracture is determined from a strain excursion 

following a maximum tensile strain, i.e., the difference between the maximum tensile strain 

(positive) and the minimum compressive strain (negative), the latter following the former, in the 

strain time-history of a longitudinal rebar. The predicted capacity of this excursion is called the 

von Karman strain evaluated using Eq. (8.9). For the normalized fragility curve corresponding to 

LS 4, the authors of the original work provided values of the fitted lognormal distribution 

parameters, i.e., 3 and 3  , as -0.0083 and 0.1088 respectively. The resulting fragility curve is 

shown in Figure 8.6. The value of the measured-to-predicted strain excursion capacity ratio at 50% 

probability of exceedance is approximately 0.99 indicating a minimal bias. 

Figure 8.6 Fragility curve for limit-state 3 

208 



 

 
 

  

        

     

 

           

     

     

     

      

      

 

 

     

  

      

      

  

  

      

   

      

 
 

   
     
     
     
     

    

8.4.4 Fragility Curve for Limit-state 4: A Shear Key reaching its Shear Strength Capacity 

The experimental data for constructing the fragility curve for the limit-state of a shear key reaching 

its shear strength capacity comes from four specimens tested in the work by Megally et al. (2002). 

The specimens are all exterior type non-isolated shear keys and therefore only apply to Bridge A, 

Bridge B and Bridge C as they have the same type of shear keys. The deformations recorded 

correspond to damage Level III as defined in Section 8.3.4, i.e., the deformation at peak strength 

of the shear key. Both the recorded and the predicted deformations (the latter given by Eq. (8.10) 

) for each specimen along with the ratios of measured-to-predicted deformations are provided in 

Table 8-4. The corresponding normalized fragility curve for limit-state 4 for a non-isolated shear 

key is shown in Figure 8.7. It can be seen that all data points lie close to the fitted cumulative 

lognormal distribution function. As there are few points used in the fragility analysis, little can be 

said about the fit near the tails of the CDF. The value of the measured-to-predicted displacement 

ratio at 50% probability of exceedance is approximately 1.15 indicating a moderate bias. The fitted 

lognormal distribution for the normalized fragility function corresponding to limit-state 4 has 

parameters 4 and 4  equal to 0.1316 and 0.1107 respectively. For Bridge MAOC with isolated 

shear keys in its design, the backbone curve of the shear key is calibrated using results from a 

single experimental specimen (Bozorgzadeh et al. 2007). Therefore, the predicted displacement 

capacity, given by Eq. (8.12) in this case, is equal to the single measured displacement capacity. 

The normalized fragility function for limit-state 4 for an isolated shear key, also shown in Figure 

8.7, is hence defined as a step function at a value of unity. 

Table 8-4 Experimental data and deterministic capacity used for fragility curve of limit-state 4 

Shear key deformation at peak strength 
Specimen 

Experimental (in) Predicted (in) Ratio 
Megally 1 (non-isolated) 1.5 1.2 1.25 
Megally 2 (non-isolated) 1.3 1.2 1.08 
Megally 3 (non-isolated) 1.5 1.2 1.25 
Megally 4 (non-isolated) 1.3 1.3 1.00 
Bozorgzadeh 1 (isolated) 3.75 3.75 1.00 
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Figure 8.7 Fragility curves for limit-state 4 

8.5 Seismic Damage Hazard Analysis 

PSDamHA for the thk



kEDP

 0 |k kP Z EDP  =

( )
kEDP  of kEDP . 

EDP

limit-state is mainly carried out in two steps: (i) probabilistic quantification 

of the conditional limit-state capacity of the structure given a specific value, , of the associated 

engineering demand parameter, , thereby allowing computation of the conditional 

probability, ; and (ii) convolution of the conditional probability of limit-state 

exceedance with the corresponding demand hazard curve 

The first step of PSDamHA involves development of fragility functions as discussed in Section 

8.4. Each fragility function pertaining to a limit-state of interest gives the probability of limit-state 

exceedance for a specific value of the associated normalized with respect to the 

corresponding predictive capacity model. The normalization of the engineering demand parameter 

is essential to ensure the practicability of fragility functions obtained from experimental/numerical 

data coming from tests/analyses conducted on specimens of varying relevant structural parameters. 

Normalized fragility functions can therefore by used for new and/or specific designs of a structure 
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with values of relevant structural parameters different from that of the experimental/numerical 

specimens used in the development of the fragility functions. For the specific designs of the testbed 

bridges considered, the normalized fragility function developed for a limit-state of interest is 

denormalized using the corresponding deterministic predictive capacity model in conjunction with 

Eq.s (8.15) and (8.16). This is required to correctly compute the conditional probability of limit-

state exceedance given a specific value of the associated EDP

thk

kEDP ( )
kEDPd 

. 

Secondly, for a testbed bridge, the MAR of limit-state exceedance for the limit-state is obtained 

by numerically convolving the conditional probabilities of limit-state exceedance given specific 

values of with the corresponding rates of occurrences, , of these values of kEDP

. Results of PSDamHA conducted for each testbed bridge are shown in Table 8-5 where the mean 

RP (= 1/MAR) of exceedance of each limit-state considered is reported. 

Table 8-5 Mean RPs of limit-state exceedance for as-designed testbed bridges 

Mean RP of exceedance 
LSLSLSLS1423 :::: Concrete cover Longitudinal Longitudinal Shear ke y 

rebar buckling rebar fracture3 damage crushing 

  Bridge        
 

    

A 199 1378 3290 2269 
B 322 1621 3654 2513 
C 1202 10793 28975 525 
MAOC 168 617 1152 85 

It is noted from the results of PSDamHA of the testbed bridges that increasingly critical limit-

states, i.e., limit-state 1 through limit-state 3, concerning reinforced concrete bridge columns for 

OSBs are associated with increasing values of mean RPs of exceedance. The mean RP of 

exceeding the 4th limit-state of shear key damage depends on the type of shear key used in the 

bridge. Bridges A, B, and C, having monolithic non-isolated type shear keys show high mean RPs 

of exceeding limit-state 4, while the mean RP of exceedance associated with this limit-state is 

found to be relatively small for Bridge MAOC with sacrificial isolated type shear keys in its design. 
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8.6 Deaggregation of Seismic Damage Hazard w.r.t Associated Engineering 

Demand Parameter 

Seismic damage hazard corresponding to a limit-state of interest for a testbed bridge is computed 

by aggregating, as per Eq. (8.5), the contributions from all possible values of the associated 

consistent with the seismic demand hazard at the considered site. The MAR of exceeding a limit-

state can consequently be disaggregated into the contributions from different values of the 

associated EDP

EDP

kEDP thk

kEDP

kLS

EDP

kEDP

kEDP

. Such a disaggregation provides additional insight into the distribution of 

causative values leading to a specific level of damage hazard for the limit-state. The 

conditional probability distribution of , given exceedance of the thk

0kZ 

limit-state, i.e., 0kZ 

, with a specific MAR, , is computed as per Eq. (7.12). Figure 8.8 through Figure 8.11 present 

results of disaggregation of damage hazard corresponding to the limit-states of interest for 

all considered testbed bridges. The ordinate of each disaggregation plot on the right-hand-side 

shows the conditional probability distribution, i.e., Eq. (7.12), of , given . The 

ordinate along the left-hand-side of the same plot shows the demand hazard curve of . Also 

shown in red, in its own independent ordinates in each of these plots, is the corresponding fragility 

function, i.e.,  0 |k kP Z EDP  =

( )
  ( )

| 0

0 |
| k

k k

k

k k EDP
EDP Z

LS

P Z EDP d
f z

  





 = 
= (8.17) 

The shape of the conditional distribution of kEDP
thk

kEDP

| ( ) |
kEDPd 

0kZ  kEDP

 0 | 0k kP Z EDP  =  | ( ) |
kEDPd 

kEDP

, given a specific level of damage hazard for the 

limit-state, is a result of the competing effects between the two terms in the numerator of Eq. 

(7.12) as a function of . “Very” small values of kEDP

k

kEDP

 0 |k kP Z EDP  =

, despite having “high” rates of 

occurrence, , make negligible contributions to the damage hazard of limit-state . The 

conditional probability of , given “very” small values of , is almost zero, i.e., 

. As values of are increased, their rates of occurrence, 

, decrease. On the other hand, direct proportionality of the chances of incurring damage with values 

of leads to increase in . At first, this increase in the conditional 
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probability of limit-state exceedance outweighs the decrease in | ( ) |
kEDPd 

kEDP

kEDP | ( ) |
kEDPd 

 0 |k kP Z EDP  = thk

kEDP kEDP

| ( ) | 0
kEDPd  

kEDP . 

k

kEDP kEDP
thk kEDP

kEDP

. As a result, kEDP

contribution to damage hazard increases with increase in . This continues up to a point where 

values of start becoming “somewhat” rare, and the decrease in starts to subdue 

the growth in . Although the chance of exceeding the limit-state greatly 

increases with “very” large values of , the rates of occurrence of these “very” large 

values are “too” small, i.e., . This results in negligible contribution to damage 

hazard from “very” large and “too” rare values of 

Furthermore, it is observed that contribution to a specific MAR of exceedance of limit-state 

comes from a certain range of values. It is important to note that contribution to a 

given MAR (or mean RP) of exceedance of the limit-state comes not only from the 

value with the same MAR (or mean RP) of exceedance, but also from values with lower 

MARs and from those with higher MARs. 
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(a) (b) 

(c) (d) 

Figure 8.8 EDP disaggregation of damage hazard for Bridge A: (a) Limit-state 1 (b) Limit-state 2 (c) Limit-state 3 (d) Limit-state 4 
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(a) (b) 

(c) (d) 

Figure 8.9 EDP disaggregation of damage hazard for Bridge B: (a) Limit-state 1 (b) Limit-state 2 (c) Limit-state 3 (d) Limit-state 4 
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(a) (b) 

(c) (d) 

Figure 8.10 EDP disaggregation of damage hazard for Bridge C: (a) Limit-state 1 (b) Limit-state 2 (c) Limit-state 3 (d) Limit-state 4 
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(a) (b) 

(c) (d) 

Figure 8.11 EDP disaggregation of damage hazard for Bridge MAOC: (a) Limit-state 1 (b) Limit-state 2 (c) Limit-state 3 (d) Limit-state 4 
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8.7 Deaggregation of Seismic Damage Hazard w.r.t Seismic Intensity Measure 

An alternative expression of the damage hazard integral corresponding to the thk

( )
kEDPf  kEDP

limit-state of 

interest can be obtained by rewriting , the probability distribution function of , in 

Eq. (8.3), as follows 

( ) ( ) ( )| |
k kEDP EDP IM IM

IM

f f x f x dx =   (8.18) 

Substitution of Eq. (8.18) into Eq. (8.3) gives 

  ( ) ( )|0 | |
k k

k

LS k k EDP IM IM
IM EDP

P Z EDP f x f x d dx    =   =      (8.19) 

which is mathematically equivalent to 

 

  ( )

( )
( )|0| |

0 |
k

IMk k EDP IMk
EDPk

LS k IM
IM

f x dxP Z EDP f x d

P Z IM x d x
  

 

  =  

=  = 



 (8.20) 

Eq. (8.20), in contrast to Eq. (8.5), computes the MAR of limit-state exceedance for the thk

, i.e.,  0 |kP Z IM x =

kEDP kEDP

thk

limit-

state by convolving the fragility function given , with the seismic 

hazard curve. This fragility function is obtained by a separate convolution of the originally defined 

fragility function, given , with the conditional probability distribution of given 

0kZ 

already quantified in the PSDemHA phase (Chapter 7) of the framework. The MARs of limit-state 

exceedance, for the selected set of limit-states for the testbed bridges considered, obtained using 

Eq. (8.20) match exactly with those obtained using Eq. (8.5). 

Seismic damage hazard corresponding to the selected set of limit-states for the considered testbed 

bridges are computed by aggregating, as per Eq. (8.20), the contributions from all possible 

levels. The MAR of exceeding a limit-state can now be disaggregated into the contributions from 

different levels of , thereby providing additional insight into the distribution of causative 

values leading to a specific level of damage hazard. The conditional probability distribution of 

, given exceedance of the limit-state, i.e., , with a specific MAR, 
kLS , is given by 

Eq. (8.21). Figure 8.12 through Figure 8.15 present results of disaggregation of damage hazard 

corresponding to the limit-states of interest for all considered testbed bridges. The ordinate of each 
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disaggregation plot on the right-hand-side shows the conditional probability distribution, i.e., Eq. 

(8.21), of 

kLS . 

, given 0kZ  . The ordinate along the left-hand-side of the same plot shows the 

site-specific seismic hazard curve. Also marked in each of these plots is the value of 

corresponding to the same MAR of exceedance as given by 

( )
  ( )

| 0

0 |
|

k

k

k IM
IM Z

LS

P Z IM x d x
f x z






 = 
= (8.21) 

The shape of the conditional distribution of 
thk

| ( ) |IMd x

0kZ 

kEDP

| ( ) |IMd x

 0 |kP Z IM x = | ( ) | 0IMd x 

EDP

, given a specific level of damage hazard for the 

limit-state, is again due to the competing effects between the two terms in the numerator of 

Eq. (8.21) as a function of . “Very” small and “frequent” (having “high” rates of occurrence, 

) values of 

 0 | 0kP Z IM x = 

kEDP

make negligible contributions to the damage hazard of limit-state k

 0 |kP Z IM x =

. 

This is because the conditional probability of , given “very” small values of resulting 

in “very” small values of , is almost zero, i.e., . The contribution to 

damage hazard from increases with increasing values of because of the direct 

proportionality of with and as a result with . Contributions to 

damage hazard from increasing levels of gradually start to saturate and eventually decrease. 

The rarity of large values of increases thereby making the drop in outweigh the 

growth in . For “very” large and “too” rare (i.e., ) values of 

, the contribution to damage hazard therefore becomes negligible. 

It is again important to notice that contribution to a specific MAR of exceedance of a limit-state 

comes not only from the value with the same MAR, but also from a certain range of 

values having lower and/or higher MARs of exceedance. As can be seen from Figure 8.12 through 

Figure 8.15, an appreciable part of the contribution to the achieved levels of damage hazard 

corresponding to the selected set of limit-states does come from the range of most confidence 

(indicated by the light blue patch) where predictions of given are the least erroneous. 
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(a) (b) 

(c) (d) 

Figure 8.12 disaggregation of damage hazard for Bridge A: (a) Limit-state 1 (b) Limit-state 2 (c) Limit-state 3 (d) Limit-state 4 
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(a) (b) 

(c) (d) 

Figure 8.13 disaggregation of damage hazard for Bridge B: (a) Limit-state 1 (b) Limit-state 2 (c) Limit-state 3 (d) Limit-state 4 
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(a) (b) 

(c) (d) 

Figure 8.14 disaggregation of damage hazard for Bridge C: (a) Limit-state 1 (b) Limit-state 2 (c) Limit-state 3 (d) Limit-state 4 
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(a) (b) 

(c) (d) 

Figure 8.15 disaggregation of damage hazard for Bridge MAOC: (a) Limit-state 1 (b) Limit-state 2 (c) Limit-state 3 (d) Limit-state 4 
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9 Parametric Probabilistic Seismic Performance Assessment 

Framework 

9.1 Introduction 

As a part of the stated objectives of this project, the development of a rigorous performance-based 

seismic assessment framework for ordinary standard bridges (OSBs) in California, implementing 

several state-of-the-art improvements relating to various stages of the PEER PBEE framework, is 

achieved. However, the overarching goal of this project is the development and formulation of a 

performance-based seismic design framework for OSBs accommodating multiple risk-based 

design objectives. The essence of structural design is to select values of critical structural design 

parameters/variables such that a predetermined target specification of a performance measure is 

met. The performance measure used in this study is the MAR of limit-state exceedance or, 

equivalently, the mean return period (RP) of limit-state exceedance evaluated for the specific limit-

states defined in Chapter 8 using the improved version of the PEER PBEE framework. 

Multiple sets of structural design parameter values can satisfy the target performance objectives. 

The ensemble of all these possible sets with mean RPs of limit-states exceedance greater than or 

equal to the specified targets constitute a feasible design domain in the design parameter space. 

For multiple risk-targeted design objectives, the selected values of critical structural design 

parameters/variables should satisfy the target mean RP of one of the limit-states exactly while 

ensuring that the mean RPs of the other limit-states are more than satisfied. Exploring the design 

parameter space via a parametric probabilistic assessment can help investigate and visualize the 

effect of varying key structural design parameters on the mean RPs of limit-states exceedance. 

Feasible design domains obtained, as a result, can be used to make risk-informed design decisions. 

This chapter elaborates on the assembly, implementation, and automatization of a full-blown 

parametric probabilistic seismic performance assessment framework for OSBs in California. This 

framework forms a basis for the simplified risk-targeted performance-based seismic design 

procedure distilled out of this project for OSBs in California. 
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9.2 Design Variables 

The choice of design variables should cover a spectrum of meaningful structural design 

parameters, commonly found in seismic bridge design practice. Design variables can be classified 

into two categories, viz., primary design variables and secondary design variables. Primary design 

variables refer to design parameters to which the exceedance of the selected set of limit-states are 

most sensitive. A range of possible designs corresponding to different sets of primary design 

parameter values can be assessed to investigate the effects of varying primary design variables on 

the mean RPs of exceedance of the selected set of limit-states. Performance-based seismic design 

of OSBs, therefore, involves determining the values of primary design variables such that specified 

performance objectives, stated in terms of mean RPs of limit-state exceedance, are met. All other 

bridge design parameters determined by meeting requirements of capacity design, minimum 

ductility limitations, reinforcement ratio restrictions, etc., and/or restricted by the geometry of the 

bridge, available real estate, traffic requirements, etc. are referred to as secondary design variables. 

In this chapter, the effects of varying the primary design variables on the mean RPs of exceedance 

of the selected set of limit-states are investigated while most secondary design variables are held 

constant. 

9.2.1 Primary Design Variables 

The primary design variables deemed critical to the seismic performance of an OSB are the column 

diameter, colD long, and the column longitudinal reinforcement ratio, . These two variables 

constitute the design parameter space to be explored such that feasible design domains can be 

delineated following a parametric probabilistic assessment of the testbed bridges. Columns in a 

bridge are the primary lateral load resisting structural components. Due to the seismic importance 

of bridge columns and because design parameters of columns are one of the few structural 

parameters that an engineer can readily vary, the primary design variables chosen in this project 

revolve around the design of reinforced concrete bridge columns. 

Values of the chosen primary design variables are subject to practical constraints. Based on the 

recommendations of expert practitioners in Caltrans, the diameter of a bridge column is varied in 

increments of 6 in. due to the availability of existing prefabricated formwork while the longitudinal 

steel reinforcement ratio, although a continuous variable, is varied in increments of 0.005. Column 
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diameters for this project vary from 4 ft to 8 ft depending on the bridge while the steel 

reinforcement ratio varies from 0.01 (1.0 %) to 0.03 (3.0 %). In addition, due to the fact that strain 

based EDPs colDare utilized in this project, the minimum value of to be assessed for a bridge is 

selected so as to prevent softening of column section response. A softening behavior produces 

nonobjective curvatures in the column sections which consequently leads to unreliable and 

nonphysical predictions of strains in the finite element analyses. 

Re-designs of each testbed bridge corresponding to different combinations of column diameter 

and longitudinal reinforcement ratio, subject to the practical limitations mentioned, are assessed 

in this project to obtain the mean RPs of exceedance for the selected set of limit-states. The design 

parameter space for each of the four testbed bridges are shown in Figure 9.1 with each combination 

of parameters analyzed labelled as red circles; also shown as a red star is the as-designed primary 

design parameters for each bridge. 

(a) (b) 

(c) (d) 

Figure 9.1 Design space for (a) Bridge A; (b) Bridge B; (c) Bridge C; and (d) Bridge MAOC 
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9.2.2 Secondary Design Variables 

Structural design variables, pertaining to the design of OSBs, that are 

(a) designed, after the primary design variables have been determined, so as to capacity protect 

the bridge against other undesirable failure modes thereby forcing energy dissipation to 

occur due to yielding of the primary load resisting components, i.e., bridge columns, only, 

(b) determined by meeting requirements of minimum ductility, minimum reinforcement, 

distribution of reinforcement, etc. specified by the code, and/or 

(c) restricted by the geometry of the bridge, available real estate, traffic requirements, etc. 

are grouped into the category of secondary design variables. Secondary variables do not impact 

the performance of the bridge significantly in terms of mean RPs of exceeding the selected set of 

limit-states considered in this study and as such are not included in the design parameter space. 

These variables include column transverse reinforcement ratio, spacing of transverse hoops in a 

column, diameter and distribution of rebars in a column, height of a column, number of columns 

in a bent, skew of column bent(s), number of bents, along with variables involving the design of 

other bridge components such as the bridge deck, bent cap, abutment (shear keys, backwall, stem 

wall, etc.), and foundations (shallow foundations and/or piles and pile cap). For the seismic 

performance assessment of any re-design of a testbed bridge, values of all secondary design 

variables, except the column transverse reinforcement ratio ( )trans

trans

, are taken as per the original 

design of the as-designed bridge. 

For columns with low axial load ratios, typical of OSBs, the transverse reinforcement ratio 

minimally affects the compressive strength of the concrete core, thereby marginally impacting 

seismic demand hazard assessment of OSBs. Therefore, a constant value (1.0 %) of is used 

for development of the finite element models of the testbed bridges and their re-designs 

corresponding to different values of the chosen primary design variables, subsequent structure-

specific ground motion selection and demand hazard analyses. However, because the transverse 

reinforcement affects the capacity of the column corresponding to the limit-states of rebar buckling 

and rebar fracture, i.e., limit-state 2 and 3, as noted in the capacity equation Goodnight et al. (2016) 

and Duck et al. (2018), respectively, a sensitivity analysis is performed for these two limit-states 

by varying the transverse reinforcement ratio as a fraction of the longitudinal reinforcement ratio. 

For a design point in the primary design parameter space of a testbed bridge, mean RPs of 
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exceeding limit-states 2 and 3 are calculated corresponding to the following cases: Case I: 

0.01trans =

trans

trans

, Case II: 0.5trans long = ; and Case III: 0.75trans long = . In doing so, a constant value 

(1.0 %) of is used until the demand hazard analyses step of the framework. It is only in the 

damage hazard analysis step, different capacity predictors corresponding to the three cases of 

mentioned are used. 

As far as ductility requirements, impacted by the column transverse reinforcement ratio, are 

concerned, the designer can check whether these requirements are met after the primary design 

variables have been determined and accordingly adjust the transverse reinforcement ratio to meet 

these criteria. The distribution of reinforcement bars in a column is also determined by the designer 

following requirements and recommendations specified by the code and may be adjusted if 

necessary. It is important to keep in mind that after all primary and secondary design variables 

have been determined following all adjustments, a final check of structural performance is required 

to ensure that the final design still meets the specified performance objectives. 

9.3 Workflow for Parametric Full-blown Probabilistic Seismic Performance 

Assessment 

Following the identification of primary design variables, i.e., the column diameter ( )colD

( )long

, avgaS

and the 

column longitudinal reinforcement ratio , a rectangular grid in the design space is 

constructed by varying the primary design variables subject to the practical constraints defined for 

each testbed bridge. The seismic performance of the resulting re-designs of each testbed bridge is 

assessed using the improved PEER PBEE framework assembled as a part of this project. Figure 

9.2 illustrates the overall workflow for the parametric full-blown probabilistic seismic 

performance assessment of the considered testbed bridges using Bridge B, the two-span, single-

column bent bridge, located in Tustin, California, as a case in point. 

For each re-design of a testbed bridge, a new nonlinear finite-element model is generated by 

updating the primary design parameters, and their associated geometric, material, and damping 

properties in OpenSees. Modal analysis is performed following the application of gravity loads on 

the structure and the averaging period range used in the definition of the chosen earthquake 

intensity measure, i.e., , is identified. Probabilistic seismic hazard analysis (PSHA) (outlined 
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in Chapter 5) is performed to obtain the site-specific seismic hazard curve in terms of , avgaS

, avgaS

, avgaS

kEDP

sEDP

|( )
kEDP IM

|( )
kEDP IM

kEDP

kEDP

. This 

gives the values of corresponding to the MARs (or mean RPs) of exceedance defining the 

six hazard levels considered in this project. Conditional on these values of , the target 

response spectra at the considered hazard levels are determined for site-specific risk-consistent 

ground motion record selection. Ensembles of 100 ground motions at six hazard levels are selected 

and nonlinear time-history analyses of the re-designed bridge subjected to these ground motions 

are performed using the nonlinear OpenSees model. As a part of probabilistic seismic demand 

hazard analysis (PSDemHA) (presented in Chapter 7), an empirical conditional probability 

distribution of , for the thk limit-state, given is established using the two-parameter 

lognormal distribution. This is done for all corresponding to the considered set of limit-

states. The two primary parameters of the lognormal distribution, i.e., the median and 

dispersion , are regressed as functions of as previously described in Chapter 7. The 

demand hazard curve for each is obtained by numerically convolving the conditional 

probability distribution of , given , with the site-specific seismic hazard curve. Finally, 

for probabilistic seismic damage hazard analysis (PSDamHA) (discussed in detail in Chapter 8), 

normalized fragility curves corresponding to the considered limit-states are accordingly 

denormalized for the current re-design of the testbed bridge and convolved with the respective 

demand hazard curves to arrive at estimates of the mean RPs at which different limit-states are 

exceeded. The entire process is repeated for all re-designs of the considered testbed bridges which 

define their respective design parameter spaces as shown in Figure 9.1 

Implementation of the parametric full-blown risk-targeted seismic performance assessment 

framework for the considered bridges might seem computationally prohibitive. However, with a 

well-managed workflow and an efficient utilization of available computing resources, different 

steps involved in the framework can be smoothly and seamlessly executed. A general description 

of management of the overall workflow, available computing resources, and their effective 

utilization is provided in the next section. 
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Figure 9.2 Overall workflow for parametric full-blown risk-targeted seismic performance assessment 
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9.4 Workflow Management and Computing Resources 

To efficiently execute different steps involved in the parametric full-blown risk-targeted 

probabilistic seismic performance assessment framework, a well-organized management of the 

overall workflow is of paramount importance. To this end, the Tcl input files for the OpenSees 

models of the benchmark bridges used in this project are revisited for an improved and effective 

parameterization of the OpenSees models. This is done to facilitate the automated generation of 

OpenSees models corresponding to multiple re-designed versions of the actual testbed bridges. 

MATLAB scripts and functions previously developed to carry out individual steps of the 

framework, including the orchestration of performing ensemble nonlinear time-history analyses in 

OpenSees, are also parameterized such that changes in the primary design variables can be easily 

and correctly accommodated. 

The Tcl input files were also modified to mitigate the occurrence of non-convergence of the 

iterative scheme used to integrate the nonlinear equations of motion over an integration time-step. 

In the case of non-convergence during a nonlinear time-history analysis, it is important to 

distinguish between the onset of physical collapse or a numerical, non-collapse related 

convergence issue. In other words, non-converged nonlinear time-history analyses cannot be 

discarded. Thus, the nonlinear solution strategy is made adequately robust to minimize the number 

of non-converged nonlinear time-history analyses. In case a non-collapse related numerical 

convergence issue is encountered, convergence of the numerical solution is ensured mainly 

through adaptive switching between iterative methods (e.g., Newton, modified-Newton, BFGS, 

Newton-Krylov) and/or convergence test types and tolerances used to solve the incremental 

equations of dynamic equilibrium over a time step. Another strategy employed is to slightly vary 

the number of element integration points used in numerical integration of the element stiffness 

matrices and element resisting force vectors. 

Computationally intensive steps, i.e., selection of site-specific risk-consistent ensembles of ground 

motion records and subsequent ensemble nonlinear time-history analyses, of the workflow are 

parallelized using parallel for-loops (“parfor”-loops) in MATLAB. The parallel computing 

toolbox in MATLAB allows users to exploit the full-processing power of multicore computers by 

executing jobs on several local workers the number of which, by default, is equal to the number of 

physical cores available in the computer. For a smooth and seamless parametric probabilistic 
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seismic performance assessment of the considered testbed bridges, sequential execution of 

different components of the overall workflow is automatized for each re-design of the testbed 

bridges defining their respective design parameter spaces. 

A parent directory is first created for each testbed bridge, i.e., Bridge A, Bridge B, Bridge C, and 

Bridge MAOC. The parent directory for a testbed bridge contains parameterized Tcl input files for 

the considered bridge. A MATLAB script is run to feed a pair of values for the two primary design 

variables from the design space of a testbed bridge to the Tcl input files. OpenSees is invoked 

through MATLAB for a preliminary post-gravity modal analysis thereby spitting out the averaging 

period range to be used in the definition of , avgaS , the average spectral acceleration over a period 

range. A MATLAB function is called thereafter which takes in relevant bridge information and 

performs PSHA computations. Subsequently, the hazard information is fed into another MATLAB 

function implementing the ground motion selection algorithm, previously described in Chapter 5. 

The task of ensemble ground motion record selection at a hazard level is computationally 

independent of any other hazard level. Therefore, a parallel execution of these tasks using a parfor-

loop in MATLAB significantly speeds up the process of selecting 600 ground motions (100 per 

hazard level) for a single design point. Individual sub-directories containing selected ensembles of 

ground motion records at six different hazard levels for a specific design point are created and 

accordingly populated in the parent directory of a testbed bridge. Thereafter, the most 

computationally intensive task of performing ensemble nonlinear time-history analyses of a design 

point in OpenSees is orchestrated through MATLAB and executed parallelly via another parfor-

loop. Inside the parent directory for a testbed bridge, results of ensemble nonlinear time-history 

analyses and recorded sEDP for a specific design point are stored in individual sub-directories for 

each ground motion record corresponding to a hazard level. The level of parallelization achieved 

at this step of the workflow is limited in a desktop computing environment and is tremendously 

enhanced in a supercomputing environment, as is discussed in the next sections. In a desktop 

computing environment, the two different parfor-loops (one for the selection of ensembles of 

ground motion records at six hazard levels for a design point, and the other for the orchestration 

of ensemble nonlinear time-history analyses of a design point in OpenSees) are nested inside a 

sequential for-loop that runs over all pairs of primary design parameter values defining the 

respective design space of a testbed bridge. As discussed later in Section 9.4.2, this flow of 
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operations is slightly modified in the supercomputing environment to greatly utilize its tremendous 

parallel computing capabilities. 

To avoid unnecessary computation of the subsequent steps of the workflow with EDP data 

coming from numerically non-converged analyses, the sequential for-loop running over each 

design point in the design space of a testbed bridge is broken at this stage. Once all ensemble 

nonlinear time-history analyses for all design points has finished running, an automated check is 

made for convergence issues encountered. With alterations made to the analysis parameters (e.g., 

order of switching between solution algorithms and convergence test types, values of tolerance, 

integration time step size) and/or model parameters (e.g., number of element integration points) 

subsequent runs, barring the already converged cases, are made until the number of non-collapse 

related numerical non-converged cases is reduced to zero. Based on the design parameter spaces 

defined for the testbed bridges, the number of nonlinear time-history analyses to be performed 

using OpenSees amounts to a total of 12000 (= 20 re-designs × 6 seismic hazard levels × 100 

nonlinear time history analyses per seismic hazard level) for Bridge A, Bridge B, and Bridge C, 

and a total of 15000 (= 25 re-designs × 6 seismic hazard levels × 100 nonlinear time history 

analyses per seismic hazard level) for Bridge MAOC. This leads to a total of 51000 nonlinear time 

history analyses for the entire study. It is noteworthy to mention that for each of these analyses, 

the numerical integration of the equations of motion converged over the entire duration of the 

seismic input. 

With available numerically converged EDP data for all design points in the design space of a 

testbed bridge, a sequential for-loop over each design point is re-initiated to carry out the remaining 

relatively low-cost computational tasks of the overall workflow i.e., PSDemHA and PSDamHA. 

For a single design point, these tasks primarily involve numerical evaluation of hazard integrals 

thereby leading to estimates of mean RPs of limit-state exceedance for the selected set of limit-

states. 

9.4.1 Desktop Computing Environment 

Dell Precision T7810, a high-performance workstation, is used to execute different steps involved 

in the parametric full-blown risk-targeted seismic performance assessment of the four testbed 

bridges considered. Specifications for the workstation include a dual Intel Xeon E5-2650 v4 

processor with 12 cores each, a clock rate of 2.2GHz, and 128 GB DDR4 RAM. Although the 
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parallel computing toolbox in MATLAB imposes no limit to the number of local workers to be 

specified in a desktop computing environment, the default value for the chosen computer, i.e., 24 

(= 2 processors × 12 cores each), is used. Thus, 24 individual jobs which are essentially 

independent of each other can be parallelized on the local desktop computing environment. 

The entire workflow, as outlined previously, is executed in the desktop computing environment 

without any modification. It is only in the supercomputing environment, as will be discussed in 

the next section, the outlined flow of operations is slightly modified to achieve a higher level of 

parallelization. With the specifications of the desktop computer mentioned above, the task of 

selecting 600 ground motions (100 per hazard level) for a single design point is finished in about 

15-20 minutes with a parallel execution of the task using a parfor-loop in MATLAB. The parfor-

loop engages 6, out of 24 available, workers in the desktop computing environment to select six 

independent ensembles (one ensemble per worker) of ground motions at six different hazard levels. 

This is in significant contrast to a runtime of about 2.5-3 hours when the same task is performed 

sequentially for six hazard levels for a single design point. 

In terms of computational cost and runtime, a significant bottleneck is encountered while 

performing ensemble nonlinear time-history analyses of design points defining the design space 

of a testbed bridge in OpenSees. Since a sequential for-loop over the number, nD

600 n D

, of design points 

of a testbed bridge drives the parametric full-blown assessment of the bridge in the desktop 

computing environment, only 24 out of the essentially independent nonlinear time-

history analyses can be carried out in parallel. This leads to significantly long runtimes (e.g., about 

75-150 hours depending on the bridge model) for the ensemble nonlinear time-history analyses 

phase involved in the full-blown assessment of a bridge. As discussed in the next section, a 

remarkable improvement, primarily in terms of runtime, is achieved by switching to available 

supercomputing resources for the step of performing ensemble nonlinear time-history analyses of 

all design points of a testbed bridge. 

9.4.2 Supercomputing Environment 

Stampede2, the flagship supercomputer at the University of Texas at Austin’s Texas Advanced 

Computing Center (TACC), is chosen for the parallel execution of ensemble nonlinear time-history 

analyses. Stampede2 provides high-performance computing resources to thousands of researchers, 
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comprised primarily of 4,200 Intel Knight’s Landing (KNL) compute nodes and 1,736 Intel Xeon 

Skylake (SKX) compute nodes. The KNL nodes have 96GB of DDR RAM, a clock rate of 1.4 

GHz, and can parallelize 68 processes (analyses) while the SKX nodes have 192GB of RAM, a 

clock rate of 2.1 GHz, and can parallelize 48 processes. Researchers remotely login to one of the 

system’s login nodes and submit jobs to a job queue where they wait to be assigned to compute 

nodes. The assignment of jobs is controlled by SLURM, a job scheduling software for Linux/Unix 

systems. SLURM job files written by the researcher provide key job information necessary for the 

system to process requests, including a time limit, the number of nodes and parallel processes 

required, and which research allocation to charge. A maximum of 50 jobs can be submitted to the 

KNL queue at once by any one research allocation with a maximum time limit of 48 hours. The 

maximum number of jobs that can be submitted to the SKX queue is restricted to 25 with the same 

allowable time limit of 48 hours. Therefore, in one batch of 50 jobs, the KNL compute nodes can 

process 3,400 (= (50 Jobs) × (1 Node per Job) × (68 processes per Node)) parallel nonlinear time-

history analyses at 1.4 GHz clock rate, while the SKX compute nodes can process 1,200 (= (25 

Jobs) × (1 Node per Job) × (48 processes per Node)) parallel nonlinear time-history analyses at 

2.1 GHz clock rate. 

The process is initiated in the desktop computing environment where the workspace outlined 

previously is created and the workflow is executed up to the selection of 600 n D

nD

600 n D

ground motion 

records for all design points in the design space of a testbed bridge. MATLAB scripts, 

functions, and the parent directory of a testbed bridge containing parameterized bridge model Tcl 

input files and selected sets of ground motion records for each design point are compressed and 

secure copied to a personal storage space on Stampede2 where it is subsequently extracted. Once 

the primary workspace has been extracted, an automated initialization script is run in MATLAB 

on Stampede2 that divides the total workload, i.e., jobs, into batches of jobs subject to 

the job queue constraints previously described. The initialization script also creates respective 

SLURM job submission files. Thereafter, the SLURM job files are individually executed in a 

sequential manner as they cannot run concurrently. When a job is assigned to a compute node, the 

node is assigned an identification number that prescribes a unique set of time-history analyses to 

complete (generally a set of 68 on KNL nodes or 48 on SKX nodes) with the aim of maximizing 
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the utility of each node. The assignment of jobs in a batch to KNL nodes and respective CPUs is 

illustrated in Figure 9.3. 

Figure 9.3 Parallel assignment of ensemble time-history analyses in a batch to KNL nodes on 
Stampede2 

After all batches of jobs have been submitted and all analyses within a batch are complete, a second 

automated process is run to assess which analyses did not converge or complete in the allotted 

time limit and then reinitializes the workspace for a subsequent run. This reinitializing process also 

flags every analysis that has converged such that it is never selected on a future run and its results 

overwritten. Due to the high number of initial analyses (10,000+ for each bridge), the KNL nodes 

are typically used for the first batch of jobs due to their higher throughput (3,400 parallel processes 

vs. 1,200 on the SKX nodes) to reduce the number of non-converged or incomplete analyses down 

to a number that the SKX nodes can efficiently handle in a subsequent run. Between runs, 

alterations are made to analysis parameters (e.g., order of switching between solution algorithms 

and convergence test types, values of tolerance, integration time step size), model parameters (e.g., 

number of element integration points) and/or SLURM job file parameters (e.g. job queue, time 

limit) to increase the likelihood of converging and/or completing future analyses. 

Using supercomputing resources, exorbitant desktop computing runtimes of performing ensemble 

nonlinear time-history analyses of all design points in the design space of a testbed bridge is 

remarkably brought down to about 15-20 hours. Once all analyses have converged, the analysis 
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results are compressed and secure copied to the desktop computing environment for post-

processing. The remaining relatively low-cost computational steps of the overall workflow, i.e., 

PSDemHA and PSDamHA, are subsequently performed in the desktop computing environment. 

9.5 Mean Return Period Surfaces for Considered Limit-states and Feasible Design 

Domains 

Results of the parametric full-blown probabilistic seismic performance assessment, in terms of 

mean return periods (RPs) of limit-state exceedance, obtained for the selected set of limit-states 

for each re-design of the considered testbed bridges are shown in Figure 9.4 (a) through Figure 

9.19 (a). Figures corresponding to limit-states 2 and 3, i.e., the limit-state of longitudinal rebar 

buckling and longitudinal rebar fracture, include results of the sensitivity analysis performed with 

respect to trans 0.01trans =

0.75trans long =

1LS

which is assumed to vary as: Case I: , Case II: 0.5trans long =

2LS

; and 

Case III: . For each limit-state, a piecewise linear surface is least-square fitted to 

the mean RPs computed at the re-design points as shown in Figure 9.4 (b) through Figure 9.19 (b). 

Although the overall topology of the fitted mean RP surfaces over the design space is accurate, 

some topology details are by-products of the fitted surface (here, piecewise linear) assumed. It is 

important to notice that the mean RP results obtained for the as-designed bridges, in each case, 

remarkably agree with the topology of the fitted surfaces despite being excluded from the data 

used for fitting these surfaces. Contour plots of the mean return period surfaces over the design 

space are shown in Figure 9.4 (c) through Figure 9.19 (c). 

Visual inspection, and corroboration by contours, of mean RP surfaces show an increasing trend 

of mean RP of exceedance values corresponding to the limit-states pertaining to bridge columns 

(i.e., , , and 3LS ), as any one, or both, of the primary design variables in the design space 

of a testbed bridge are increased. Increasing values of primary design variables (both relating to 

design of bridge columns) result in stronger, and thereby translating to safer (characterized by low 

MAR or high mean RP of limit-state exceedance), designs of columns in a bridge. In an average 

sense, the non-zero or nor-singular slopes of the seemingly parallel contour-lines of these surfaces 

indicate non-trivial sensitivity of the mean RPs of exceeding limit-states concerning bridge 

columns to the chosen primary design variables thereby justifying the choice. 
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As shown in Figure 9.4 (c) through Figure 9.19 (c), contours of the mean RP surface fitted for the 

limit-state of shear key damage in any testbed bridge are, on an average, almost parallel to the 

long

( )colD

axis thereby being suggestive of low sensitivity of the exceedance of this limit-state to 

different values of longitudinal reinforcement ratio. With larger column diameter values, 

however, the shear keys are found to exhibit more safety (i.e., higher mean RP of limit-state 

exceedance). As mentioned earlier, the design of shear keys is not intended to be achieved as a 

primary goal of this project. Therefore, a discussion with regard to the exceedance of this limit-

state and how it relates to the primary design variables is dropped hereafter. 

For a specific limit-state (1-3), design points with mean RP of exceeding a limit-state greater than 

or equal to a specified target for that limit-state can be deemed “safe”, while classifying those with 

mean RP of limit-state exceedance lower than the specified target as “unsafe”. Information as such 

can be used to construct and delineate regions of safety and/or feasibility over the design parameter 

space. For each testbed bridge, the mean RP surfaces for the considered set of limit-states (1-3) 

are intersected by horizontal planes corresponding to the respective specified target mean RPs 

enlisted in Table 9-1. Target mean RPs of limit-state exceedance adopted for this project are based 

on discussions with and feedback from expert Caltrans engineers thereby reflecting the risk 

tolerance of the bridge engineering community in general. Figure 9.4 (b) through Figure 9.19 (b), 

with the exception of figures corresponding to limit-state 4, show this intersection of each of these 

mean RP surfaces with a horizontal red plane corresponding to the respective specified target mean 

RP. The contour lines corresponding to these target return periods are indicated by bold lines in 

the contour plots shown in Figure 9.4 (c) through Figure 9.19 (c). In each of the contour plots, the 

feasible domain in the design space (i.e., design points corresponding to a mean RP larger than the 

target mean return period) is colored in green. Contour lines of the mean RP surfaces 

corresponding to target mean RPs of individual limit-states are superimposed in the design space 

to delineate the overall feasible design domains and to identify the governing limit-states along the 

boundaries of the feasible design domains. Seismic performance of the as-designed version of a 

testbed bridge can be gauged by the relative location of the corresponding design point (denoted 

by a red star in Figure 9.20 through Figure 9.23) in the design parameter space with respect to the 

feasible design domain outlined (i.e., does the as-designed bridge belong to the feasible design 
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domain). Feasible design domains obtained for the four testbed bridges considered are shown in 

Figure 9.20 through Figure 9.23. 

Table 9-1 Target mean RPs of limit-state exceedance 

Limit-state Target Mean RP of Exceedance (years) 
1. Concrete cover crushing 225 
2. Longitudinal rebar buckling 1000 
3. Longitudinal rebar fracture 2500 

It is observed from Figure 9.20 that Bridge A, as-designed, lies just outside the feasible design 

domain. The performance of the as-designed bridge is found to be considerably well with regard 

to the ultimate limit-states of longitudinal rebar buckling and longitudinal rebar fracture, as 

depicted by its proximity with respect to the corresponding target RP contour lines on the “safe” 

side. The as-designed bridge, however, just falls short of satisfying the target for the serviceability 

limit-state of concrete cover crushing with only a minimal difference between the calculated and 

the target mean RP value (199 years versus a target of 225 years). The feasible design domain, in 

this case, is controlled by the limit-state of concrete cover crushing for column designs with small 

colD and large long values. For designs with large colD values coupled with small values of long

, the limit-states of longitudinal rebar buckling and longitudinal rebar fracture, are found to almost 

equally govern the definition of the feasible design domain. 

As seen from Figure 9.21, Bridge B, as-designed, performs remarkably well with respect to all 

three limit-states. It lies well inside the feasible design domain while not being too far from the 

demarcating target mean RP contour lines. Governing the definition of the feasible design domain, 

in this case, is mostly found to be the limit state of longitudinal bar fracture. 

Given the seismic hazard at the site of Bridge C and secondary design variables set as per the 

original design of this three-span, three-column bent bridge, the feasible design domain obtained 

and shown in Figure 9.22 is found to encompass, almost entirely, the considered design parameter 

space. The as-designed version of Bridge C is found to be too conservative in terms of seismic 

performance as measured by the mean RPs of exceeding the considered set of limit-states. The 

target mean RP contour for the limit-state of concrete cover crushing is not shown in Figure 9.22 

because all design points in the considered design parameter space are found to have mean RPs of 
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exceedance greater than the specified target. The feasible design domain is completely controlled 

by the limit-state of longitudinal rebar fracture. 

In contrast to the favorable performances of the the as-designed versions of Bridge A and Bridge 

B, and the overly conservative performance of Bridge C, as-designed, the as-designed version of 

Bridge MAOC is found to underperform in terms of damage hazard associated with the selected 

set of limit-states. As shown in Figure 9.23, the design point corresponding to Bridge MAOC, as-

designed, lies outside the feasible design domain which, in this case, is partly controlled by 

different limit-states. Similar to the observation made in case of Bridge A, the feasible design 

domain is controlled by the limit-state of concrete cover crushing for bridge designs having small 

colD

colD

trans

and large long

long

values. On the other hand, the limit-state of longitudinal rebar fracture is found 

to control the feasible design domain for designs with large and small values. 

Comparison of feasible design domains obtained for each of the three cases of assumed in 

the sensitivity analysis conducted for each testbed bridge are also shown in Figure 9.20 through 

Figure 9.23, (a), (b), and (c) respectively. As noted from these figures, the feasible design domains 

obtained for a testbed bridge in each case differ from each other to some extent. The feasible design 

domain obtained for Case II, i.e., 0.5trans long =

0.75trans long = trans

to trans

trans

0.01trans = . 

, for a testbed bridge is found to be slightly smaller 

than that obtained for Case III, i.e., . Case I, with a constant value of equal 

to 0.01 (1%) is found to yield feasible design domains comparable to the other two cases. It is to 

be noted that the parametric probabilistic seismic performance assessment framework, subject to 

several simplifying and/or empirical assumptions made at its various stages, is ultimately an 

approximate tool for gauging the seismic performance of a structure. Given the approximate nature 

of this numerical assessment framework, the observed level of sensitivity of its results with respect 

is not significant. For reasons of simplicity, without compromising accuracy, the choice 

of as a secondary design variable is hence deemed justified. Discussion hereafter, although 

equally applicable to all three cases, is restricted to Case I, i.e., 

The full-blown parametric probabilistic seismic performance assessment framework, although 

computationally expensive, can be very well used for the design of a new OSB. The concept of a 

feasible design domain in the design parameter space can be utilized to make risk-informed design 
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decisions while trying to satisfy multiple risk-based objectives. Values of primary design variables 

are determined first such that multiple risk-based objectives are met. This involves selection of a 

design point in the primary design parameter, i.e., col longD − , space either lying on the boundary 

of or located inside the feasible design domain. In doing so, standardized and/or predetermined 

values of secondary design variables are used. Upon selection of primary design variables, 

secondary design variables are determined and adjusted to meet requirements of capacity design, 

code-based requirements of ductility, minimum reinforcement, etc., and/or other restrictions 

imposed by available real estate, traffic flow, etc. As mentioned earlier, after all primary and 

secondary design variables have been determined following all adjustments, a final check of 

structural performance is required to ensure that the final design still meets the specified 

performance objectives. 
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Figure 9.4 Results of parametric probabilistic seismic performance assessment of Bridge A in terms of limit-state 1, i.e., concrete cover crushing:     
(a) mean RPs (in years) of limit-state exceedance of all design points; (b) fitted mean RP surface; and (c) contours of mean RP surface (target RP 

contour line in bold) and feasible domain (in green) 
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Figure 9.5 Results of parametric probabilistic seismic performance assessment of Bridge A in terms of limit-state 2, i.e., longitudinal rebar buckling: 
1st row: . 0.01trans = ; 2nd row: . .0.5trans long = ; 3rd row: . .0.75trans long = ; (a) mean RPs (in years) of limit-state exceedance of all design points; 

(b) fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.6 Results of parametric probabilistic seismic performance assessment of Bridge A in terms of limit-state 3, i.e., longitudinal rebar fracture: 
1st row: . 0.01trans = . .0.5trans long = . .0.75trans long =; 2nd row: ; 3rd row: ; (a) mean RPs (in years) of limit-state exceedance of all design points; 

(b) fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.7 Results of parametric probabilistic seismic performance assessment of Bridge A in terms of limit-state 4, i.e., shear key damage: 
(a) mean RPs (in years) of limit-state exceedance of all design points; (b) fitted mean RP surface; and (c) contours of mean RP surface 

245 



 

 
 

 

 

 

 

 

       
   

 

 

 

 

 

Figure 9.8 Results of parametric probabilistic seismic performance assessment of Bridge B in terms of limit-state 1, i.e., concrete cover crushing:     
(a) mean RPs (in years) of limit-state exceedance of all design points; (b) fitted mean RP surface; and (c) contours of mean RP surface (target RP 

contour line in bold) and feasible domain (in green) 
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Figure 9.9 Results of parametric probabilistic seismic performance assessment of Bridge B in terms of limit-state 2, i.e., longitudinal rebar buckling: 
1st row: . 0.01trans = . .0.5trans long = . .0.75trans long =; 2nd row: ; 3rd row: ; (a) mean RPs (in years) of limit-state exceedance of all design points; 

(b) fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.10 Results of parametric probabilistic seismic performance assessment of Bridge B in terms of limit-state 3, i.e., longitudinal rebar 
fracture: 1st row: . 0.01trans = . .0.5trans long = . .0.75trans long =; 2nd row: ; 3rd row: ; (a) mean RPs (in years) of limit-state exceedance of all design 

points; (b) fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.11 Results of parametric probabilistic seismic performance assessment of Bridge B in terms of limit-state 4, i.e., shear key damage: 
(a) mean RPs (in years) of limit-state exceedance of all design points; (b) fitted mean RP surface; and (c) contours of mean RP surface 
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Figure 9.12 Results of parametric probabilistic seismic performance assessment of Bridge C in terms of limit-state 1, i.e., concrete cover crushing:     
(a) mean RPs (in years) of limit-state exceedance of all design points; (b) fitted mean RP surface; and (c) contours of mean RP surface (target RP 

contour line in bold) and feasible domain (in green) 
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Figure 9.13 Results of parametric probabilistic seismic performance assessment of Bridge C in terms of limit-state 2, i.e., longitudinal rebar 
buckling: 1st row: . 0.01trans = . .0.75trans long =. .0.5trans long =; 2nd row: ; 3rd row: ; (a) mean RPs (in years) of limit-state exceedance of all design 

points; (b) fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.14 Results of parametric probabilistic seismic performance assessment of Bridge C in terms of limit-state 3, i.e., longitudinal rebar 
fracture: 1st row: . 0.01trans = ; 2nd row: . .0.5trans long = ; 3rd row: . .0.75trans long = ; (a) mean RPs (in years) of limit-state exceedance of all design 

points; (b) fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.15 Results of parametric probabilistic seismic performance assessment of Bridge C in terms of limit-state 4, i.e., shear key damage: 
(a) mean RPs (in years) of limit-state exceedance of all design points; (b) fitted mean RP surface; and (c) contours of mean RP surface 
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Figure 9.16 Results of parametric probabilistic seismic performance assessment of Bridge MAOC in terms of limit-state 1, i.e., concrete cover 
crushing:  (a) mean RPs (in years) of limit-state exceedance of all design points; (b) fitted mean RP surface; and (c) contours of mean RP surface 

(target RP contour line in bold) and feasible domain (in green) 
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Figure 9.17 Results of parametric probabilistic seismic performance assessment of Bridge MAOC in terms of limit-state 2, i.e., longitudinal rebar 
buckling: 1st row: . 0.01trans = ; 2nd row: . .0.5trans long = ; 3rd row: . .0.75trans long = ; (a) mean RPs (in years) of limit-state exceedance of all design 

points; (b) fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.18 Results of parametric probabilistic seismic performance assessment of Bridge MAOC in terms of limit-state 3, i.e., longitudinal rebar 
fracture: 1st row: . 0.01trans = ; 2nd row: . .0.5trans long = ; 3rd row: . .0.75trans long = ; (a) mean RPs (in years) of limit-state exceedance of all design 

points; (b) fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.19 Results of parametric probabilistic seismic performance assessment of Bridge MAOC in terms of limit-state 4, i.e., shear key damage: 
(a) mean RPs (in years) of limit-state exceedance of all design points; (b) fitted mean RP surface; and (c) contours of mean RP surface 
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Figure 9.20 Feasible design domains for Bridge A: (a) 0.01trans = 0.5trans long =; (b) ; and (c) 
0.75trans long =
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Figure 9.21 Feasible design domains for Bridge B: (a) 0.01trans = 0.5trans long =; (b) ; and (c) 
0.75trans long =
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Figure 9.22 Feasible design domains for Bridge C: (a) 0.01trans = 0.5trans long =; (b) ; and (c) 
0.75trans long =
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Figure 9.23 Feasible design domains for Bridge MAOC: (a) 0.01trans = 0.5trans long =; (b) ; and (c) 
0.75trans long =
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9.6 Closed-Form Approximations to Mean Return Periods of Limit-state 

Exceedances 

In the context of performance-based seismic assessment and/or design, closed-form solutions have 

been derived for the demand hazard curve and the MAR of damage/limit-state exceedance (Cornell 

et al. 2002; Kumar and Gardoni 2013; Romão et al. 2013; Vamvatsikos 2013). Such closed-form 

solutions allow an analyst/designer to circumvent the evaluation of probabilistic integrals involved 

in PSDemHA and PSDamHA steps of the PEER PBEE framework. With an aim to reduce the 

computational burden of the proposed parametric probabilistic seismic performance assessment 

framework, potentially to be used for design of new OSBs, a comparative study of the closed-form 

solutions to the MAR of limit-state exceedance, available in the literature, is conducted. 

Furthermore, this study is also intended to assess the potential viability of using LRFD-like design 

formats, based on such closed-form solutions, in the context of a simplified performance-based 

seismic design (PBSD) methodology to be distilled out of this project. 

Cornell et al. (2002) developed a closed-form solution for estimating the MAR of limit-state 

exceedance as a part of the SAC/FEMA project aimed towards probabilistic performance-based 

assessment and design of structures. This closed-form solution relies on some restrictive 

(idealized) assumptions such as: 

(1) the seismic hazard curve is assumed to have a power-law form (linear in log space), i.e., 

( ) ( ) 1

0
k

IM x k x
−

= (9.1) 

(2) sEDP

EDP

kEDP

are assumed to have a lognormal distribution when conditioned on , 

(3) the median of an , say kEDP associated with the thk limit-state, conditional on 

is assumed to have a power-law form, i.e., 

|k

b
EDP IM a x =  (9.2) 

(4) the dispersion of conditional on is assumed to be constant, i.e., 

| constant
kEDP IM = (9.3) 
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(5) the capacity term kC

kC

thk

associated to the thk

kC

limit-state is assumed to have a lognormal 

distribution with median and dispersion parameter . 

Under the above assumptions, the MAR of limit-state exceedance for the limit-state can be 

expressed as (Cornell et al. 2002) 

( )
( )

2
2 21

|2
1
2 EDP IM Ck k

k Ck

k
b

LS IM x e
 

 
  +

=  (9.4) 

where 
Ck

x is the value of , conditional on which, the median value of kEDP , i.e., ( )
Ck

ba x is 

equal to the median capacity 
kC . Thus, 

1

k

Ck

b
Cx
a

 
=  
 

(9.5) 

The above closed-form solution, however, has been criticized for the lack of accuracy (Aslani and 

Miranda 2005a; Bradley and Dhakal 2008) primarily due to an inadequate, and only locally 

accurate, power-law fit of the seismic hazard curve. As noted from the disaggregation of damage 

hazard with respect to 

kLS

kEDP

, shown in Chapter 8, contribution to a specific level of damage hazard, 

, can come from a range of possible values that sometimes even spread outside the 

range of most confidence where , given , data is available. An appropriate fit of the 

seismic hazard curve should therefore be accurate over a wide range of values. 

Vamvatsikos (2013) proposed an improved version of the closed-form solution by Cornell et al. 

(2002) which addresses its main shortcoming of a linear fit of the seismic hazard curve in log 

space. The improved closed-form solution suggests the use of a second-order polynomial fit of the 

seismic hazard curve in log-space, i.e., 

( ) ( )
2

2 1ln ln
0

k x k x
IM x k e

− −
=  (9.6) 

Using Eq. (9.6), the curvature of the seismic hazard function can be accurately captured over a 

wide range of values (see Figure 9.24). Although the actual seismic hazard curve significantly 

deviates from the proposed fit for small values of , this deviation does not potentially lead to 

massive errors in the estimation of MARs of damage/limit-state exceedance. As seen from the 
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disaggregation of demand and/or damage hazard, the contribution coming from small values of 

EDP
thk

2k

is negligible owing to small conditional probabilities of and/or limit-state exceedance. 

With all other assumptions same as before, the MAR of exceeding the limit-state can be 

expressed as (Vamvatsikos 2013) 

( )
( )2 2 2

1 |2
1

1 2
0

EDP IM Ck k

k Ck

qk
b

LS IMk x e
  



  
+

−  =
 

(9.7) 

where, 

and 

2
|

2 2

1

1 2 kEDP IM

q
k

b


=

+

(9.8) 

2 2
|

2 2

1

1 2 k kEDP IM Ck
b


 

=
+

+

(9.9) 

It is to be noted that Eq. (9.7) reduces to Eq. (9.4) when the parameter is set to zero. The two 

closed-form solutions given by Eq. (9.4) and Eq. (9.7) are hereafter referred to as closed-form 

solution 1 and 2 respectively. A visual description of different parameters and assumptions 

involved in these closed-form solutions is provided in Figure 9.24 
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Figure 9.24 General description of parameters and approximations involved in closed-form solutions 1 and 2 
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9.6.1 Comparison of Numerical Results with Closed-Form Solutions 

Mean RPs of limit-state exceedance, obtained (using closed-form solutions 1 and 2) for limit-states 

1, 2, and 3 (i.e., concrete cover crushing, longitudinal rebar buckling, and longitudinal rebar 

fracture, respectively), for each re-design of the considered testbed bridges are shown in Figure 

9.25 (a) through Figure 9.36 (a). The piecewise linear surface, for each limit-state, fitted to the 

mean RPs computed at the re-design points are shown in Figure 9.25 (b) through Figure 9.36Figure 

9.19 (b). Contour plots of the mean RP surfaces for individual limit-states and the corresponding 

feasible domains are shown in Figure 9.25 (c) through Figure 9.36 (c). Finally, the overall feasible 

design domains for the testbed bridges obtained using closed-form solutions 1 and 2 are compared 

with the respective numerically obtained feasible design domain in Figure 9.37 through Figure 

9.40. 

The comparative study does suggest that the closed-form solution by Vamvatsikos (2013) is 

reasonably accurate (as compared to the numerical solution) and significantly more accurate than 

the closed-form solution by Cornell et al. (2002). However, the process of delineating a feasible 

design domain for a testbed bridge using any one of these closed-form solutions still requires 

almost as much work as the numerical method. Although the use of a closed-form solution evades 

the rather inexpensive (in terms of computational workload) numerical evaluation of probabilistic 

demand and damage hazard integrals, the computationally prohibitive step of running ensemble 

nonlinear time-history analyses for design points cannot be avoided. Moreover, the level of 

inaccuracy (as compared to the numerical solution) associated with the results of such overly-

simplified closed-form solutions are sometimes found to be non-trivial. 

Predicated on these findings, formulation of the proposed simplified PBSD methodology, 

discussed in the next Chapter, does not rely on the use of available closed-form solutions to the 

MARs, or mean RPs, of limit-states exceedance. The formulation, however, is general and is 

flexible to the use of both numerical and/or closed-form approaches to probabilistic seismic 

damage hazard assessment. 

266 



 

 
 

 

 

 

       
   

   

 

 

Figure 9.25 Results of parametric probabilistic seismic performance assessment of Bridge A in terms of limit-state 1, i.e., concrete cover crushing: 
1st row: Closed-form solution 1; 2nd row: Closed-form solution 2; (a) mean RPs (in years) of limit-state exceedance of all design points; (b) fitted 

mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.26 Results of parametric probabilistic seismic performance assessment of Bridge A in terms of limit-state 2, i.e., longitudinal rebar 
buckling: 1st row: Closed-form solution 1; 2nd row: Closed-form solution 2; (a) mean RPs (in years) of limit-state exceedance of all design points; 

(b) fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.27 Results of parametric probabilistic seismic performance assessment of Bridge A in terms of limit-state 3, i.e., longitudinal rebar 
fracture: 1st row: Closed-form solution 1; 2nd row: Closed-form solution 2; (a) mean RPs (in years) of limit-state exceedance of all design points; (b) 

fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.28 Results of parametric probabilistic seismic performance assessment of Bridge B in terms of limit-state 1, i.e., concrete cover crushing: 
1st row: Closed-form solution 1; 2nd row: Closed-form solution 2; (a) mean RPs (in years) of limit-state exceedance of all design points; (b) fitted 

mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.29 Results of parametric probabilistic seismic performance assessment of Bridge B in terms of limit-state 2, i.e., longitudinal rebar 
buckling: 1st row: Closed-form solution 1; 2nd row: Closed-form solution 2; (a) mean RPs (in years) of limit-state exceedance of all design points; 

(b) fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.30 Results of parametric probabilistic seismic performance assessment of Bridge B in terms of limit-state 3, i.e., longitudinal rebar 
fracture: 1st row: Closed-form solution 1; 2nd row: Closed-form solution 2; (a) mean RPs (in years) of limit-state exceedance of all design points; (b) 

fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.31 Results of parametric probabilistic seismic performance assessment of Bridge C in terms of limit-state 1, i.e., concrete cover crushing: 
1st row: Closed-form solution 1; 2nd row: Closed-form solution 2; (a) mean RPs (in years) of limit-state exceedance of all design points; (b) fitted 

mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.32 Results of parametric probabilistic seismic performance assessment of Bridge C in terms of limit-state 2, i.e., longitudinal rebar 
buckling: 1st row: Closed-form solution 1; 2nd row: Closed-form solution 2; (a) mean RPs (in years) of limit-state exceedance of all design points; 

(b) fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.33 Results of parametric probabilistic seismic performance assessment of Bridge C in terms of limit-state 3, i.e., longitudinal rebar 
fracture: 1st row: Closed-form solution 1; 2nd row: Closed-form solution 2; (a) mean RPs (in years) of limit-state exceedance of all design points; (b) 

fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.34 Results of parametric probabilistic seismic performance assessment of Bridge MAOC in terms of limit-state 1, i.e., concrete cover 
crushing: 1st row: Closed-form solution 1; 2nd row: Closed-form solution 2; (a) mean RPs (in years) of limit-state exceedance of all design points; 

(b) fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.35 Results of parametric probabilistic seismic performance assessment of Bridge MAOC in terms of limit-state 2, i.e., longitudinal rebar 
buckling: 1st row: Closed-form solution 1; 2nd row: Closed-form solution 2; (a) mean RPs (in years) of limit-state exceedance of all design points; 

(b) fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.36 Results of parametric probabilistic seismic performance assessment of Bridge MAOC in terms of limit-state 3, i.e., longitudinal rebar 
fracture: 1st row: Closed-form solution 1; 2nd row: Closed-form solution 2; (a) mean RPs (in years) of limit-state exceedance of all design points; (b) 

fitted mean RP surface; and (c) contours of mean RP surface (target RP contour line in bold) and feasible domain (in green) 
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Figure 9.37 Feasible design domains for Bridge A: (a) Closed-form solution 1; (b) Closed-form solution 2; and 
(c) Numerical solution 
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Figure 9.38 Feasible design domains for Bridge B: (a) Closed-form solution 1; (b) Closed-form solution 2; and 
(c) Numerical solution 
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Figure 9.39 Feasible design domains for Bridge C: (a) Closed-form solution 1; (b) Closed-form solution 2; and 
(c) Numerical solution 
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Figure 9.40 Feasible design domains for Bridge MAOC: (a) Closed-form solution 1; (b) Closed-form solution 
2; and (c) Numerical solution 
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10 Simplified Risk-targeted Performance-based Seismic Design 

Methodology 

10.1 Introduction 

A simplified risk-targeted performance-based seismic design methodology is proposed in this 

chapter in lieu of the full-blown methodology discussed in Chapter 9. The purpose of the simplified 

methodology is to provide an alternative method to the full-blown parametric probabilistic seismic 

performance assessment in obtaining a final design point satisfying multiple risk-based objectives 

along with a feasible design domain in the primary design parameter space but requiring a much 

lower and practical computational expense. One would adopt the simplified methodology only if 

the computational expense of the full-blown assessment demands too high a computational load 

than available. The major sink in computational resource is in running the ensemble nonlinear 

time-history analyses through a finite element analysis package (OpenSees), rather than the 

probabilistic computations required. Computational cost, therefore, is directly proportional to the 

number of ensemble nonlinear time-history analyses carried out. Therefore, the reduction in the 

computational load for the simplified procedure comes from the following: 

• Reduction in the number of design points to be assessed 

• Reduction in the number of seismic hazard levels at which ensemble nonlinear time-history 

analyses are performed 

• Reduction in the size of the ensemble, i.e., the number of nonlinear time-history analyses, 

per seismic hazard level 

By implementing a smart combination of the above reductions, the number of nonlinear time-

history analyses required to be run to obtain a final design point along with an approximate feasible 

design domain for a bridge can be greatly reduced. It is important to note that although requiring 

far fewer nonlinear time-history analyses to be run as compared to the full-blown methodology, 

the proposed simplified methodology is not compromised in terms of the level of rigor adopted in 

its formulation. 
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10.2 Simplified Methodology for Risk-targeted Performance-based Seismic Design 

The first step toward a simplified risk-targeted performance-based seismic design methodology is 

to find a set of primary design parameter values that satisfies multiple risk-based performance 

objectives. With performance objectives stated in terms of target mean RPs of exceedance for 

multiple limit-states of interest, the chosen design should be such that the target for one of the 

limit-states is exactly satisfied while the mean RPs of exceeding the other limit-states are greater 

than the respective specified targets. To this end, a step-by-step simplified method is outlined 

based on the findings of the full-blown parametric probabilistic seismic performance assessment 

of the testbed bridges carried out in Chapter 9. 

10.2.1 Simplified Methodology – Step 1: Choosing a Positive Slope Line in the Design 

Parameter Space for Interpolation 

It is noted from the results of Chapter 9 that along any line connecting two or more design points 

in the primary design parameter space with a positive slope, i.e., along any direction with 

increasing values of colD longand as shown in Figure 10.1, the growth of mean RP surfaces 

corresponding to the limit-states of interest can be well-approximated using a piecewise power 

law/function. A piecewise power function is equivalent to a piecewise linear function in 

logarithmic space. Thus, with mean RPs of limit-state exceedance evaluated at two or more design 

points along any positive slope line in the design space of a bridge and given a target mean RP of 

exceedance for a specific limit-state, a design point along that line that satisfies the specified target 

can be determined using a piecewise log-linear interpolation. 

The first step of the simplified methodology is, therefore, to choose such a positive slope line in 

the primary design parameter space. To be able to find a design that satisfies a specific target mean 

RP of exceeding a limit-state along such a line using interpolation, the selected positive slope line 

should pass through  ( 2)p  1[ , , ]pD D

1 pD D

m 1ft− X

colD

arbitrary design points, designated as , for which mean 

RPs of exceeding that limit-state are known. Having selected such a line, defined as , with a 

positive slope equal to , in the design space, the following unitless quantity, , 

representative of continuously increasing values of and long along that line is defined: 
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Figure 10.1 Design space of Bridge B showing possible positive slope directions (indicated by 
arrows) with increasing values of colD and long . Red circles indicate a design point. 

     11 ft ftlong colX D
m

 − − = − +   (10.1) 

Mathematically, Eq. (10.1) represents a family of lines with slopes equal to 1
m

− 1ft− which are 

perpendicular to 1 pD D (of slope equal to m 1ft− ) with different values of X representing the 

intercepts of these lines along the long axis. The idea is pictorially illustrated in Figure 10.2 where 

1ft−

colD

m

the axes shown are not to scale. From the unit, i.e., , of slope/slope of a line defined in the 

design space of a bridge, it is noted that the primary design parameters, and long

1
m

−

, are assumed 

to be plotted along the abscissa and ordinate of the design space respectively. To remove any 

ambiguity of notation, and just represent the numerical values of slopes. 
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Figure 10.2 Illustration of the quantity X 1 4D D
m 1ft−

iD

k

1i+D

representing design points along the line, in 
this case, having a positive slope equal to 

A discrete value of X

( )long i 1 pD D

1 pD D

, say iX , thus, represents an arbitrary design point with primary design 

parameters ( )col iD

iD 1i−D

(RP) kLS
i k

and along . The mean RP of exceeding limit-state for any 

arbitrary design point lying along between points and can, therefore, be 

approximated using Eq.(10.2), as follows 

( ) ( )
( ) ( )

( )1 1
11

1 1

log RP log RP
RP exp log RP log log

log log

k k

k k

LS LS
LS LS i i

i ii i
i i

X X
X X

+ −
−−

+ −

 −
 = +  −
 −
 

(10.2) 

where is the mean RP of exceeding limit-state for the design point represented by iX . 

This is shown in Figure 10.3 with the case of Bridge B as an example. 
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Figure 10.3 Growth of mean RP surfaces for different limit-states along a positive slope line of 
slope equal to 0.005 1ft− in the design parameter space of Bridge B: 1st row: Limit-state 1; 2nd 

row: Limit-state 2; 3rd row: Limit-state 3; (a) Mean RP surface with observed growth along the 
positive slope line. Red circles indicate calculated mean RP for a design point; (b) Fitted 

piecewise power function to observed growth of mean RP surface along the positive slope line 
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10.2.2 Simplified Methodology – Step 2a: Selecting Number of Design Points to Assess 

With performance objectives stated in terms of target mean RPs of exceedance for a selected set 

of limit-states, ideally only two extreme design points, say 1D

( 3)p =

1 3D D

1 3D D . 

and 2D

1D

1D

represented by 1X

2D

2D

and 

respectively, need to be assessed such that a design satisfying the specified target for a limit-state 

2X

3D

can be determined through interpolation. In other words, if a very weak design point and a very 

strong design point were assessed, the design point satisfying the target RP of exceedance for a 

limit-state will lie somewhere in between these two points. However, if and , as such, are 

taken very far apart in order to guarantee that the specified target for a limit-state of interest lies 

within the evaluated mean RPs for the assessed design points, the fitted power function will contain 

errors much larger than if the two design points were taken close to each other. Based on the size 

of the primary design parameter spaces of the four testbed bridges evaluated in this project, it is 

found that three design points along any positive slope direction are generally required to have a 

good approximation of the growth of a mean RP surface for a limit-state along that direction. As 

such, having decided on the size of the primary design parameter space for a bridge, it is 

recommended that a total of three design points , , , and , be chosen along a 

specific positive slope line as shown in Figure 10.4. Hence, a two-piecewise power function 

(a piecewise log-bilinear function) is constructed to approximate the mean RPs along 

Figure 10.4 Design space of Bridge B showing three possible trios of design points to be 
assessed (indicated by yellow circles) along three respective positive slope directions. Red 

circles indicate all other design points 
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10.2.3 Simplified Methodology – Step 2b: Procedure for Choosing Design Points to Assess 

As mentioned earlier, a total of three design points, 1D

2D

long

, 2D

3D

, and 3D , are to be chosen along a 

positive slope line 1 3D D 1D

colD

in the design space of a bridge. , , and are named in order of 

increasing and , i.e., they correspond to increasingly stronger designs. The choice of the 

three design points to be assessed is not completely arbitrary. Initially a single design point should 

be chosen somewhere in the middle of the design space and mean RPs of exceeding the selected 

set of limit-states be evaluated for the first design point. The subsequent design points can be 

chosen more intelligently based on the results obtained for the first design point: 

• if the first design point yields mean RPs of limit-state exceedance all significantly larger 

than the respective targets, the remaining design points should correspond to weaker 

designs. The chosen design points in the predefined design space need not necessarily be 

consecutive. 

• if the first design point yields mean RPs of limit-state exceedance all significantly smaller 

than the respective targets, the remaining design points should correspond to stronger 

designs. The chosen design points in the predefined design space need not necessarily be 

consecutive. 

• if the first design point yields mean RPs of limit-state exceedance near the respective 

targets, one of the remaining design points should correspond to a weaker design while the 

other should correspond to a stronger design. The chosen design points in the predefined 

design space need not necessarily be consecutive. 

The procedure is illustrated in Figure 10.5 with Bridge B as an example. 
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(a) The structure is to be evaluated taking into 

account limit-states 1, 2, and 3 with target mean 

RPs of 225 years, 1000 years, and 2500 years 

respectively. The design space of possible 

primary design parameters is shown with each 

design point plotted in red. The positive slope 

line of slope equal to 0.005 1ft−

colD

colD

, along which the 

parameters and long are increasing, is 

shown as a grey arrow. 

(b) A design point is chosen somewhere near the 

center of the design space shown in yellow. The 

point chosen is a design with and long of 7 

ft and 2% respectively. The mean RPs of 

exceedance of limit-states 1, 2, and 3 evaluated 

for this design point are 733 years, 5081 years, 

and 11758 years respectively, which are much 

larger than the respective target mean RPs. 

(c) As the calculated mean RPs of limit-state 

exceedances of the first chosen design point is 

much larger than the respective targets, 

additional design points corresponding to 

weaker designs are chosen. The chosen design 

points are shown in yellow. 

Figure 10.5 Design points selected in the design space of Bridge B for the simplified 
methodology. 
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10.2.4 Simplified Methodology – Step 3: Finding Design Point along Positive Slope Line 

Satisfying Multiple Risk-based Performance Objectives 

The seismic performance of three chosen design points, 1D , 2D , and 3D represented by 1X

3X

, 2X , 

and respectively, in terms of mean RPs of exceeding the selected set of limit-states are 

evaluated using the improved version of the PEER PBEE assessment framework assembled as a 

part of this project. As mentioned earlier, these design points are chosen such that they lie along a 

positive slope line in the primary design parameter space of a bridge. The equation of this line, 

1 3D D , with colD and long plotted along the abscissa and ordinate of the primary design parameter 

space, respectively, is given by 

     1ft ftlong colm D − − =  + −  (10.3) 

where m , the numerical value of the slope of the line, and  , the intercept of the line along the 

long axis, can be determined from the coordinates of any two of the chosen design points 1D , 2D

, and 3D . The value of X , say *( ) kLSX , satisfying a target value of mean RP of exceedance, say 

TARGET(RP) kLS , for the thk limit-state which lies between mean RPs (RP) kLS
i and 1(RP) kLS

i+

corresponding to design points represented by iX and 1iX + respectively, is given by Eq. (10.4) 

according to the piecewise log-linear fit. The index i in Eq. (10.4), for a total of three design points 

assessed, can take values of 1 and 2. 

( )
( ) ( )

( ) ( )( )* 1
TARGET

1

log logexp log log RP log RP
log RP log RP

k k k

k k

LS LS LSi i
i LS LS i

i i

X XX X +

+

 −
 = +  −
 − 

(10.4) 

With multiple risk-based performance objectives stated in terms of target mean RPs of exceedance 

for the selected set of limit-states, a design point per limit-state along 1 3D D

*( ) kLSX k

, represented by 

which exactly satisfies the specified target for limit-state , can be determined through 

interpolation as per Eq. (10.4). The value of X , say *X , representing the design point satisfying 

multiple targets, i.e., exactly satisfying the target for one limit-state while being on the safer side 

for the other limit-states, is given by: 

( )1* * *max ( ) , , ( ) nLSLSX X X= (10.5) 

291 



 

 
 

           

  

    

    

    

       

     

 

    

    

 

    

         

 

       

  

     

       

    

       

      

  

     

where n *X

*
colD *D

1 3D D

*D 1 3D D *D

is the number of limit-states considered, in this case, equal to 3. Once a value of is 

obtained, Eq. (10.1) can be invoked to write 

   * * 1 *1 ft ftlong colX D
m

 − = − +   (10.6) 

where, and *
long are the primary design parameters of the design point, defined as , along 

that satisfies multiple risk-based performance objectives. Eq. (10.6) basically represents the 

equation of a line passing through the point and perpendicular to . The design point 

can therefore be obtained as the point of intersection between the two lines given by Eq. (10.3) 

and Eq. (10.6), as follows: 

 
 

 

 

 
 

1
1* *

*
*

1

1 ft 1ft

ft 1

col

long

D Xm
m 

−

−

−

 
  −   −  

= =    − −      − −   

D (10.7) 

It is to be noted that, in practice, values of colD

*
colD

*
colD

1D

*D
* 0.014long =

1 3D D

and long

*
long

*
long

2D

* 5.8 ftcolD =

*D

are constrained by various factors such 

as the availability of existing prefabricated formwork, restrictions on rebar sizes, etc. Thus, exact 

values of and obtained may not always be practically realizable. In case, Eq. (10.7) 

yields a non-feasible value of and/or , a viable design point nearest to *D

3D

on the safer 

side is chosen as the final design. 

The procedure is illustrated in Figure 10.6 with Bridge B as an example. In this example, to obtain 

the mean RPs of limit-state exceedance of limit-states 1, 2, and 3 for the chosen design points, 

, , and , results of the parametric probabilistic seismic performance assessment of Bridge B, 

carried out previously in Chapter 9, are directly used. The design point given by 

and , is shown in the feasible design domain previously outlined for Bridge B in 

Chapter 9 using the full-blown methodology. As noted from Figure 10.6 (f), , found to be 

governed by limit-state 3 in this case, lies just inside the feasible design domain of Bridge B. As 

noted from the feasible design domain obtained using the full-blown methodology, the governing 

limit-state in the vicinity of in the design space is indeed limit-state 3, thereby validating 
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the simplified method. The already assessed safe design point 2D lying along 1 3D D , 

corresponding to colD and long of 6 ft and 0.015 respectively, qualifies to be the most viable design 

point in this case. 
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(a) The design points of Bridge B chosen for 

the simplified methodology (indicated by 

yellow circles), lying along the line 1 3D D

(indicated by the grey arrow) are shown. The 

equation of 1 3D D is 

     10.005 ft ft 0.015long colD − − =  − − 

The mean RPs of limit-state exceedance of 

limit-states 1, 2, and 3 are evaluated for the 

chosen design points 

(b) 1*( )LSX

1 3D D

is calculated using Eq. (10.4) 

representing the design point along 

in the design space of Bridge B exactly 

satisfying the target mean RP for limit-state 1 

(c) 2*( )LSX

1 3D D

is calculated using Eq. (10.4) 

representing the design point along 

in the design space of Bridge B exactly 

satisfying the target mean RP for limit-state 2 

Figure 10.6 Illustration of Steps 1-3 of the simplified methodology applied to Bridge B 
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(d) 3*( )LSX

1 3D D

is calculated using Eq. (10.4) 

representing the design point along 

in the design space of Bridge B exactly 

satisfying the target mean RP for limit-state 3 

(e) The value of *X satisfying all three targets 

and governed by limit-state 3, in this case, is 

given by 

( )31 2* * * *max ( ) ,( ) , ( )

1160.7885

LSLS LSX X X X=

=

Finally, the design point *D , along 1 3D D , with 

and * 0.014long = is obtained as 

per Eq. (10.7) and shown as a yellow star in the 

design space of Bridge B 

* 5.8 ftcolD =

(f) Location of the design point (indicated 

by a yellow star) is shown with resp

*D

ect to the 

feasible design domain for Bridge B. 

previously obtained in Chapter 9 using the full-

blown methodology 

Figure 10.6 (contd.)   Illustration of Steps 1-3 of the simplified methodology applied to Bridge B 
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In case a practically unrealizable design point, *D

1 3D D

*D

*D

, is obtained, one might not always come across 

a situation as favorable as the one encountered in the example illustrated in Figure 10.6. In the 

example shown, a safe and viable design point, i.e., 2D

colD

*D

1 3D D

1 3D D

1 3D D , (also shown) in the design space of Bridge MAOC, obtained by using

*D

 the results of Chapter 

, lying along the line, , of already 

assessed design points happened to be very close to the unrealizable (in terms of ) design point 

in the primary design parameter space. However, it is possible that a relatively more 

economical and practically realizable design point located away from in the design space 

may actually be closer to , and hence more desirable, than the next viable safe design point 

lying along . This is illustrated in Figure 10.7 where the design point along a chosen line, 

9 and following the steps of the simplified methodology outlined so far, is shown. Also shown in 

Figure 10.7 is the location of the design point with respect to the feasible design domain 

previously delineated for Bridge MAOC using the full-blown methodology. 

(a) (b) 

Figure 10.7 Result of steps 1-3 of the simplified methodology applied to Bridge MAOC.        
(a) Design point *D 1D

3D
*D

(indicated by a yellow star) obtained for a specific choice of , 2D , and 
(indicated by yellow circles) is show in the design space of Bridge MAOC; (b) Location of 

the design point (indicated by a yellow star) obtained is shown with respect to the feasible 
design domain for Bridge MAOC previously obtained in Chapter 9 using the full-blown 

methodology 
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As can be seen from Figure 10.7, the design point corresponding to colD

colD

1 3D D

*D 1 3D D

3D

*D

and long

long

3D

of 4.5 ft and 

0.025, respectively, or the one corresponding to and of 5 ft and 0.02, respectively, both 

lying inside the feasible design domain but away from , are relatively more economical and 

closer to as compared to , the next safe and viable design point along . Hence, these 

design points qualify, better than , as candidate final designs for Bridge MAOC. Without the 

knowledge of a feasible design domain, however, such a design decision would not have been 

well-versed in terms of the associated risk. 

The simplified design methodology could have, very well, been concluded at Step 3 thereby 

engendering a design point in the primary design parameter space of an OSB satisfying 

multiple risk-based performance objectives. However, the steps of the simplified design 

methodology outlined thus far cannot delineate a feasible design domain in the design space of a 

bridge. The knowledge of a feasible design domain of a bridge in its design space is extremely 

valuable in the sense that it can be greatly utilized to make risk-informed design decisions thereby 

leading to safe and economic design of bridges, especially with regard to the earthquake hazard. 

The remaining steps of the methodology are primarily aimed towards delineating a feasible design 

domain in the design space of a bridge using as few design points as possible. Where previously 

every design point in the primary design parameter space of a testbed bridge was assessed to 

determine the mean RPs of exceedance of the selected set of limit-states, and hence delineate a 

feasible design domain, a smarter methodology is employed to reduce the number of design points 

required to be assessed. 

10.2.5 Simplified Methodology – Step 4a: Linear Approximation of Contour Lines of Mean 

RP Surfaces 

Contour lines of the mean RP surfaces, fitted for individual limit-states of interest, corresponding 

to the respective target mean RPs of exceedance specified for the selected set of limit-states are 

superimposed in the design space to delineate the overall feasible design domain of a bridge. The 

next step in the simplified methodology towards obtaining a feasible design domain is, therefore, 

to approximate the contours of the mean RP surfaces for each limit-state of interest. From 

observations of the topology of the fitted mean RP surfaces (Chapter 9) for the selected set of limit-
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states for all testbed bridges considered, the seemingly parallel contours of such a surface in the 

design space, for a given limit-state, can be reasonably approximated by straight lines having the 

same slope. 

Given a limit-state, the piecewise log-linear relationship fitted along the line 1 3D D

1 3D D

colD

1 3D D 1D

1
aD

1 3D D

. Any other 

1 3D D

1
aD

1 3D D

1
aD 1 3D D

can be used to 

approximate different levels of mean RPs of exceedance of that limit-state in the design space. 

Estimation of the slope of linearized contour lines in the design space corresponding to these mean 

RP levels requires the seismic performance assessment of an additional design point located away 

from . This additional design point, 1
aD

long

1D

3D

1
aD

, is recommended to correspond to the design with, 

either the smallest and largest , or the largest colD

2D 1 3D D

and smallest long

3D

, among all evaluated 

design points, i.e., , , and , along the line in the design space. In other words, 

assuming to be the diagonal of a rectangle passing through vertices and in the design 

space, should be chosen such that it lies at one of the two other vertices of the rectangle. This 

is to ensure that, for the limit-state in question, the fitted piecewise log-linear relation along 

contains the mean RP of exceedance evaluated for the additional design point, 

design point enclosed in the above-mentioned rectangle and positioned closer to in the 

design space is not recommended to be chosen as . This is because the slope of linearized 

contours to be determined based on this approximate method is found to become increasingly 

sensitive to the proximity of this additional design point to . With the design space of Bridge 

B as an example, possible choices of the additional design point, , given , are illustrated 

in Figure 10.8. 
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(a) (b) 

Figure 10.8 Possible choices of the additional design point, 1
aD , given 1 3D D , in the design 

space of Bridge B required for Step 4a of the simplified methodology; 
(a) 5 ftcolD = , 0.02long = ; (b) 7 ftcolD = , 0.01long =

The mean RPs of exceeding the selected set of limit-states are evaluated for 1
aD

thk

1 3D D 1
aD

1 3D D

1 3D D

i

iD k

1(RP) kLS
i+

. The mean RP of 

exceedance of the limit-state evaluated for 1
aD

1
(RP) k

a
LS
D

1( ) kLSaD 1( ) kLSaD

X 1( ) kLSaD

is denoted as 
1

(RP) k
a

LS
D

1( ) kLSaX 

k

. For the thk

1
(RP) k

a
LS
D

limit-state, 

the design point along with the same mean RP of exceedance as that of , i.e., , is 

determined through interpolation using the piecewise log-linear relationship developed earlier. 

This new design point along is termed . To obtain the coordinates of , the 

value of , say , along representing the design point , and corresponding 

to a mean RP of exceeding limit-state equal to , is first calculated as follows 

( )
( ) ( )

( ) ( )( )
1

1
1

1

log logexp log log RP log RP
log RP log RP

k k k
a

k k

LS LS LSa i i
i LS LS i

i i

X XX X +

+

 −
 = +  −
 − 

D (10.8) 

where the index, , can take values of 1 or 2. iX

1i+D 1 3D D

1
1(RP) (RP) (RP)k k k

a
LS LS LS
i i+ 

D

and 1iX +

(RP) kLS
i

1( ) kLSaD

represent the pair of assessed design 

points and along with mean RPs of exceedance for limit-state equal to 

and such that . Hence can be obtained as 
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(10.9) ( )
 

 

( )  

 

1
1

1
1

1

1 ft 1

ft 1

k
k

LSaLS
a Xm

m 

−

− 

−

     − −    =    − − −     

D

where m 1ft− 1 3D D

1
km

1
(RP) k

a
LS
D

1
aD k

1
km

k

1 3D D

1
aD

and 

1( ) kLSaD

1D

are the slope and -axislong

2D

intercept of respectively. 

The slope, say , of the contour line corresponding to a mean RP of in the primary 

design parameter space can therefore be estimated as the slope of the line connecting the design 

points and . From observations, the slope of all contour lines for limit-state in the 

design space of a bridge can be approximated as . Thus, linearized contour lines of the mean 

RP surface for limit-state corresponding to different mean RP values (including the respective 

specified target) encompassed by the piecewise log-linear function fitted along can be 

determined. The procedure is illustrated in Figure 10.9 with the case of Bridge B, as an example. 

In this example, to obtain the mean RPs of limit-state exceedance of limit-states 1, 2, and 3 for the 

additional design point, , along with , , and 3D , results of the parametric probabilistic 

seismic performance assessment of Bridge B, carried out previously in Chapter 9, are directly used. 

(a) The additional design point, 1
aD

5 ftcolD =

, 

corresponding to and 0.02long = , 

chosen for assessment is shown. The mean RPs 

of exceeding limit-states 1-3 are evaluated for 

this design point. 

Figure 10.9 Illustration of Step 4a of the simplified methodology applied to Bridge B 
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(b) 1

1
(RP) a

LS
D

1
1( )LSaX 

1
1( )LSaD 1 3D D

1
1( )LSaD

1
1m

1
aD

is calculated to be 234 years for 

limit-state 1. representing the design 

point along in the design space 

of Bridge B with mean RP of exceeding limit-

state 1 equal to 234 years is calculated using 

Eq. (10.8) 

(c) The design point obtained using 

Eq. (10.9) is shown in the design space of 

Bridge B. The slope, , of all contour lines of 

the mean RP surface for limit-state 1 can be 

approximated as the slope of the line joining 

and 1
1( )LSaD in the design space. 

(d) Linearly approximated contours of the 

mean RP surface for limit-state 1 are shown in 

the design space of Bridge B with the contour 

line corresponding to the target mean RP of 

225 years for limit-state 1 shown in bold. 

Green region indicates the feasible domain 

with regard to limit-state 1. 

Figure 10.9 (contd.) Illustration of Step 4a of the simplified methodology applied to Bridge B 
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(e) 2

1
(RP) a

LS
D

2
1( )LSaX 

2
1( )LSaD 1 3D D

2
1( )LSaD

2
1m

1
aD

is calculated to be 1235 years for 

limit-state 2. representing the design 

point along in the design space 

of Bridge B with mean RP of exceeding limit-

state 2 equal to 1235 years is calculated using 

Eq. (10.8) 

(f) The design point obtained using 

Eq. (10.9) is shown in the design space of 

Bridge B. The slope, , of all contour lines 

of the mean RP surface for limit-state 2 can be 

approximated as the slope of the line joining 

and 2
1( )LSaD in the design space. 

(g) Linearly approximated contours of the 

mean RP surface for limit-state 2 are shown in 

the design space of Bridge B with the contour 

line corresponding to the target mean RP of 

1000 years for limit-state 2 shown in bold. 

Green region indicates the feasible domain 

with regard to limit-state 2. 

Figure 10.9 (contd.)   Illustration of Step 4a of the simplified methodology applied to Bridge B 
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(h) 3

1
(RP) a

LS
D

3
1( )LSaX 

3
1( )LSaD 1 3D D

3
1( )LSaD

3
1m

1
aD

is calculated to be 2548 years for 

limit-state 3. representing the design 

point along in the design space 

of Bridge B with mean RP of exceeding limit-

state 3 equal to 2548 years is calculated using 

Eq. (10.8). 

(i) The design point obtained using 

Eq. (10.9) is shown in the design space of 

Bridge B. The slope, , of all contour lines 

of the mean RP surface for limit-state 3 can be 

approximated as the slope of the line joining 

and 3
1( )LSaD in the design space. 

(j) Linearly approximated contours of the 

mean RP surface for limit-state 3 are shown in 

the design space of Bridge B with the contour 

line corresponding to the target mean RP of 

2500 years for limit-state 3 shown in bold. 

Green region indicates the feasible domain 

with regard to limit-state 3. 

Figure 10.9 (contd.)   Illustration of Step 4a of the simplified methodology applied to Bridge B 
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10.2.6 Simplified Methodology – Step 4b (Alternative to Step 4a): Bilinear Approximation 

of Contour Lines 

As an alternative to Step 4a, contours of the mean RP surface for a given limit-state can be better 

approximated by bilinear parallel lines, rather than linear ones. This requires the seismic 

performance assessment of two, instead of one, additional design points located away from 1 3D D

1
aD

1 3D D

1
aD

1D long

2
aD

. A similar approach, as applied to the choice of only (described earlier in Section 10.2.5), is 

employed in choosing the other additional design point, 2
aD

1
aD

2
aD

1
aD colD

1
aD

1 3D D

. Having selected the line , there 

are typically two possible choices for the design point . Once is selected as per the 

recommendations stated in Section 10.2.5, just corresponds to the other possible choice for 

. Unlike , 2D , and 3D referring to designs with increasing and , i.e., increasingly 

stronger designs, and can interchangeably refer to both additional design points. With the 

design space of Bridge B as an example, and having selected 1
aD for the specific choice of 

as shown in the illustrative example in Figure 10.9, the other additional design point, 2
aD , is shown 

in Figure 10.10. 

Figure 10.10 Additional design points, 1
aD and 2

aD , given 1 3D D

1
aD

, in the design spa
5 ftcolD =

ce of Bridge 
B required for Step 4b of the simplified methodology. corresponds to , 

0.02long = while 2
aD corresponds to 7 ftcolD = , 0.01long =

304 



 

 
 

   

    

      

          

     

       

     

    

       

  

    

   

    

        

        

     

 

    

            

      

Bilinear contour lines, by definition, are therefore split into two segments with respect to 1 3D D , 

one corresponding to the region in the design space containing 1
aD , and the other corresponding 

to that containing 2
aD . Slopes of these two segments of the contours of a mean RP surface for the 

thk limit-state are denoted by 1
km and 2

km respectively. The procedure to evaluate 1
km is already 

described in Section 10.2.5. It requires first finding the design point 1( ) kLSaD (using Eq. (10.8) and 

Eq. (10.9)) along 1 3D D having the same mean RP of exceeding limit-state k as that of 1
aD . 

is, thereafter, calculated as the slope of the line in the design space connecting design points 

1
km

1
aD

and 1( ) kLSaD . The other slope, 2
km , is also evaluated following the same procedure by first locating 

the design point 2( ) kLSaD along 1 3D D having the same mean RP of exceeding limit-state k as that 

of 2
aD , i.e., 

2
(RP) k

a
LS
D

. To obtain the coordinates of 2( ) kLSaD , the value of X , say 2( ) kLSaX  , along 

1 3D D representing the design point 2( ) kLSaD , and corresponding to a mean RP of exceeding limit-

state k equal to 
1

(RP) k
a

LS
D

, is calculated (similar to Eq. (10.8)) as follows 

( )
( ) ( )

( ) ( )( )
2

1
2

1

log logexp log log RP log RP
log RP log RP

k k k
a

k k

LS LS LSa i i
i LS LS i

i i

X XX X +

+

 −
 = +  −
 − 

D (10.10) 

where the index, i , can take values of 1 or 2. iX and 1iX + represent the pair of assessed design 

points iD and 1i+D along 1 3D D with mean RPs of exceedance for limit-state k equal to (RP) kLS
i

and 1(RP) kLS
i+ such that 

2
1(RP) (RP) (RP)k k k

a
LS LS LS
i i+ 

D
. Hence 2( ) kLSaD can be obtained (similar to 

Eq.(10.9)) as 

( )
 

 

( )  

 

1
1

2
2

1

1 ft 1

ft 1

k
k

LSaLS
a Xm

m 

−

− 

−

     − −    =    − − −     

D (10.11) 

where m 1ft− and  are the slope and -axislong intercept of 1 3D D respectively. Hence, 2
km is 

given by the slope of the line in the design space connecting design points 2
aD and 2( ) kLSaD . 
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It is to be noted that had the design corresponding to the point 2
aD , in this case, been chosen as the 

single additional design point, 1
aD , before in Section 10.2.5, 2

km would have been the 

approximated slope of linearized parallel contours of the mean RP surface for limit-state 

obtained in Section 10.2.5. 

k

Given a limit-state, parallel contour lines of its mean RP surface corresponding to different values 

of mean RP of exceedance (including the respective specified target) encompassed by the 

piecewise log-linear function fitted along 1 3D D , can be approximated as bilinear lines with slopes 

1
km and 2

km . 1
km is taken as the contour slope applicable to the portion of the design space, with 

respect to 1 3D D , containing 1
aD . The slope 2

km , on the other hand, is utilized to approximate 

parallel contours in the portion of the design space, with respect to 1 3D D , containing 2
aD . 

Figure 10.11 shows the results of Step 4b of the simplified methodology applied to Bridge B. 

These results are obtained by directly using the results of the parametric probabilistic seismic 

performance assessment of Bridge B, carried out previously in Chapter 9, to calculate the mean 

RPs of limit-state exceedance of limit-states 1, 2, and 3 for the additional design points, 1
aD and 

2
aD , along with 1D , 2D , and 3D . Bilinear approximations of parallel contour lines corresponding 

to the mean RP surfaces for limit-states 1, 2, and 3 are shown in Figure 10.11 (a), (b), and (c), 

respectively. These bilinear contour plots for Bridge B, obtained using Step 4b of the simplified 

methodology, are the corresponding improved alternatives to the linearized contour plots (shown 

in Figure 10.9 (d), (g), and (j), respectively) obtained previously, using Step 4a, in the illustrative 

example considered. 
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(a) (b) 

(c) 

Figure 10.11 Bilinear approximation of parallel contours of the mean RP surfaces obtained for 
Bridge B corresponding to: (a) limit-state 1; (b) limit-state 2; and (c) limit-state 3. Contour lines 
corresponding to the respective target mean RPs are shown in bold. Green regions indicate the 

feasible domains with regard to the respective limit-states 

10.2.7 Simplified Methodology – Step 5: Obtaining Feasible Design Domain 

Step 4a/4b allows for a linear/bilinear approximation of the target mean RP contour lines 

corresponding to the respective mean RP surfaces for individual limit-states. In case Step 4a is 

used, this is done by drawing a line with slope 1
km passing through the design point along 1 3D D

satisfying the target mean RP of exceedance specified for the thk limit-state. Step 4b requires 

drawing two lines, one with slope 1
km and the other with 2

km emanating from the design point 

along 1 3D D satisfying the target mean RP of exceedance specified for the thk limit-state. The 
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former line is drawn in the portion of the design space, with respect to 1 3D D , containing the design 

point 1
aD , while the latter is drawn in that containing 2

aD . Such approximated target mean RP 

contour lines of the mean RP surfaces corresponding to individual limit-states can be superimposed 

in the design space to approximately delineate the overall feasible design domain for a bridge. 

For illustration, the approximated contour lines at the target mean RPs specified for limit-states 1-

3 and the resulting feasible design domains for Bridge B obtained using both Step 4a and Step 4b 

are shown in Figure 10.12 (a) and (b) respectively. Also shown in Figure 10.12 (c) is the feasible 

design domain for Bridge B previously obtained in Chapter 9 using the full-blown methodology 

wherein every design point in the design space is assessed. Figure 10.13, Figure 10.14, and Figure 

10.15, following Figure 10.12 for Bridge B, compare the feasible design domains obtained using 

Steps 1-5 of the simplified methodology, developed thus far, for the specific choices of 1D , 2D , 

3D , 1
aD , and, when applicable, 2

aD (also shown), for Bridge A, Bridge C, and Bridge MAOC 

respectively. Note that the usual order of presentation of results corresponding to the considered 

testbed bridges is altered here. This is because Bridge B was used as a case in point throughout the 

development of the simplified methodology and results for Bridge B are therefore presented first 

so as to directly follow the figures from the last two sections. It is also to be noted that results of 

the simplified methodology presented in Figure 10.12 through Figure 10.15 correspond to the 

direct use of results of the parametric probabilistic seismic performance assessment of all testbed 

bridges, carried out previously in Chapter 9, to evaluate the performance of the reduced set of 

design points required in the simplified methodology. 

It can be seen from Figure 10.12 through Figure 10.15 that, for all testbed bridges, the 

approximated contours at the specified target mean RPs match reasonably well with the 

corresponding contours obtained using the full-blown methodology. Figure 10.12 through Figure 

10.15 also show the location of the respective design point *D , along 1 3D D , for a testbed bridge 

satisfying multiple risk-based performance objectives as obtained from the simplified 

methodology. As noted from the feasible design domains obtained using the full-blown 

methodology, the governing limit-state in the vicinity of 1 3D D in the design space of a bridge is 

in agreement with the limit-state dictating the selection of *D , along 1 3D D , in the simplified 

methodology. The simplified methodology, in lieu of the full-blown one, is found to not only 
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generate a valid design solution *D satisfying multiple risk-targeted performance objectives, but 

also provide a comparable approximation of the feasible design domain and governing limit-states 

in the design space of a bridge, thereby deeming the assumptions made in the formulation of the 

simplified methodology well founded. 
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Figure 10.12 Feasible design domains for Bridge B obtained using: (a) simplified method with linear contours 
(Step 4a); (b) simplified method with bilinear contours (Step 4b); and (c) full-blown method 
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Figure 10.13 Feasible design domains for Bridge A obtained using: (a) simplified method with linear contours 
(Step 4a); (b) simplified method with bilinear contours (Step 4b); and (c) full-blown method 
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Figure 10.14 Feasible design domains for Bridge C obtained using: (a) simplified method with linear contours 
(Step 4a); (b) simplified method with bilinear contours (Step 4b); and (c) full-blown method 
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Figure 10.15 Feasible design domains for Bridge MAOC obtained using: (a) simplified method with linear 
contours (Step 4a); (b) simplified method with bilinear contours (Step 4b); and (c) full-blown method 
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10.3 Reduction in Computational Workload 

Steps 1 to 5 of the simplified methodology requires the probabilistic performance assessment of 

only 4 or 5 (depending on whether Step 4a or Step 4b is used) design points. Hence, the simplified 

methodology, developed thus far, does significantly reduce the computational workload, as 

compared to the full-blown method, in terms of the number of design points to be assessed towards 

achieving the goal of finding a design point satisfying multiple risk-based performance objectives 

and obtaining a feasible design domain in the design space of a bridge. However, in the formulation 

of the simplified methodology, results of the full-blown parametric probabilistic seismic 

performance assessment of the testbed bridges carried out in Chapter 9 were used till now to 

calculate the mean RPs of exceeding the selected set of limit-states for the design points to be 

assessed. In other words, the workload in terms of the number of seismic hazard levels chosen for 

performing ensemble nonlinear time-history analyses and the size of the ensemble of ground 

motion records used per hazard level in the PSDemHA stage of the performance assessment carried 

out for a single design point was kept the same as before, i.e., 6 hazard levels and 100 ground 

motion records per hazard levels Therefore, the major sink in available computational resource of 

running the ensemble nonlinear time-history analyses through a finite element analysis package 

(OpenSees) for a single design point is not addressed yet. 

Computational cost, being directly proportional to the total number of nonlinear time-history 

analyses performed for a design point, is sought to be further reduced from one or both of the 

following: 

(i) Reduction in the number of seismic hazard levels at which ensemble nonlinear time-history 

analyses are performed 

(ii) Reduction in the size of the ensemble, i.e., the number of nonlinear time-history analyses, 

per seismic hazard level 

The primary goals of the simplified design methodology, formulated thus far, can be summarized 

as follows: 

(i) locating a design point along a chosen positive slope line in the primary design parameter 

space of a bridge satisfying multiple risk-based performance objectives; and 
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(ii) delineating a feasible design domain and recognizing its governing/controlling limit-states 

in the primary design parameter space of a bridge 

Without compromising with any one of the above projected goals of the simplified design 

methodology, it is aimed to reduce the computational workload required for the performance 

assessment of a single design point of a bridge. It is found that a significant reduction in 

computational workload, involved in the PSDemHA stage of the performance assessment to be 

carried out for a single design point, can be achieved while still producing reasonably accurate and 

consistent approximations of both above-mentioned outcomes for all four testbed bridges 

considered. While maintaining consistency and accuracy of results, it is possible to reduce the 

number of hazard levels from 6 up to 3, along with reducing the number of nonlinear time-history 

analyses performed per hazard level from 100 to, as low as, 20,: The set of three seismic hazard 

levels to be considered for the performance evaluation of a design point are recommended to be 

well-spaced in terms of mean RPs of exceedance, e.g., a set of three hazard levels 

corresponding to mean RPs of 224 years (or 20 percent probability of exceedance in 50 years), 

975 years (or 5 percent probability of exceedance in 50 years), and 4975 years (or 1 percent 

probability of exceedance in 50 years), i.e., previously defined hazard levels II, IV, and VI, can be 

chosen. With no preference for one over the other and without significantly changing the results, 

one can also chose a set of three hazard levels corresponding to mean RPs of 72 years (or 50 

percent probability of exceedance in 50 years), 475 years (or 10 percent probability of exceedance 

in 50 years), and 2475 years (or 2 percent probability of exceedance in 50 years), i.e., previously 

defined hazard levels I, III, and V. It is to be noted that in checking the adequacy of results obtained 

from using progressively reduced sets of ground motion records per hazard level and arriving at 

the recommended number, i.e., 30, for the same, new ensembles of ground motion records 

reselected each time using the site-specific risk-consistent ground motion selection algorithm, 

previously described, were used. This is because, given a hazard level, the algorithm picks ground 

motion records from the NGA database that, as an ensemble, match the probability structure of the 

target spectrum defined for that hazard level. Using reduced sets of ground motion records 

randomly picked from the originally chosen 100 records per hazard level would, therefore, have 

disturbed the risk-consistency of such ensembles. 

Any further in reduction in workload by using less than 3 seismic hazard levels and/or using 

ensembles of smaller than 20 ground motion records per hazard level for the performance 
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evaluation of the reduced set of design points in the simplified methodology is not recommended. 

This is because the accuracy of results past this workload threshold is found to be sensitive to, 

among other factors, the bridge and its design space, the choice of the reduced set of design points 

to be assessed, the location of target mean RP contour lines in the chosen design space, the hazard 

levels considered in the reduced set of three hazard levels, etc. 

The reduced workload simplified methodology is re-implemented for the seismic performance-

based design of the four testbed bridges, results of which are shown in Figure 10.16 through Figure 

10.19 maintaining the usual order of presentation of results pertaining to these bridges. As 

mentioned earlier, these results correspond to freshly selected ensembles of 20 ground motion 

records per hazard level for a set of three hazard levels used in the PSDemHA of the specific 

chosen design points 1D , 2D , 3D . 1
aD , and, if required, 2

aD (also shown) for each bridge. The set 

of three hazard levels considered correspond to hazard levels I, III, and V, with mean RPs of 

exceedance equal to 72 years, 475 years, and 2475 years, respectively. A comparison of the 

feasible design domain is made between those obtained using the reduced workload simplified 

methodology (both Step 4a and Step 4b) and the one obtained using the full-blown methodology, 

the latter involving the seismic performance assessment of all design points in the design space 

each making use of 6 seismic hazard levels and 100 ground motion records per hazard level in the 

PSDemHA stage. As can be seen from Figure 10.16 through Figure 10.19, the reduced workload 

simplified methodology is indeed able to produce results comparable to the full-blown 

methodology. The reduced workload simplified performance-based design methodology applied 

to a bridge, not only is able to predict, considerably well, the design *D satisfying multiple risk-

targeted performance objectives, but also leads to a much cheaper, yet reasonably accurate, 

delineation of the feasible design domain along with recognition of governing limit-states in the 

respective design space. 

316 



 

 
 

 

     
 

 

Figure 10.16 Feasible design domains for Bridge A obtained using: (a) reduced workload simplified method 
with linear contours (Step 4a); (b) reduced workload simplified method with bilinear contours (Step 4b); and (c) 

full-blown method 
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Figure 10.17 Feasible design domains for Bridge B obtained using: (a) reduced workload simplified method 
with linear contours (Step 4a); (b) reduced workload simplified method with bilinear contours (Step 4b); and (c) 

full-blown method 
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Figure 10.18 Feasible design domains for Bridge C obtained using: (a) reduced workload simplified method 
with linear contours (Step 4a); (b) reduced workload simplified method with bilinear contours (Step 4b); and (c) 

full-blown method 
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Figure 10.19 Feasible design domains for Bridge MAOC obtained using: (a) reduced workload simplified 
method with linear contours (Step 4a); (b) reduced workload simplified method with bilinear contours (Step 

4b); and (c) full-blown method 
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10.4 Proposed Simplified Risk-targeted Performance-based Seismic Design 

Methodology 

The proposed simplified risk-targeted performance-based seismic design (PBSD) methodology 

incorporates the simplified methodology as discussed in Section 10.2 with savings, in terms of 

computational expense, achieved through a reduction in workload outlined in Section 10.3. The 

final proposed risk-targeted PBSD procedure for Ordinary Standard Bridges (OSBs) consists of 

the following preliminary steps, before moving on to an implementation of the simplified 

methodology subsequently summarized in the form of a flow chart. 

(I) Identification of the site and the overall geometry of the bridge to be designed, given

available real estate, traffic requirements, etc.

(II) Identification of a set of limit-states of interest and associated engineering demand

parameters ( s)EDP , preferably strain-based, concerning reinforced concrete bridge

columns, the primary lateral load resisting component of an OSB. For the chosen limit-

states, a set of normalized fragility functions, each giving the probability of a limit-state

exceedance given a specific normalized value of the associated EDP , are developed.

Normalization of a fragility function, using a deterministic capacity model for the given

limit-state, is highly recommended to ensure that fragility curves, constructed using

available experimental/numerical data pertaining to specimens/models of varying

parameters, can be used for new and specific designs of the considered bridge.

(III) Identification of performance objectives stated in terms of mean return periods (RPs) of

exceeding the selected set of limit-states

(IV) Definition of the primary design parameter space of the bridge, a two-dimensional

rectangular grid comprising of practically realizable design points, i.e., sets of practically

realizable values of the primary design variables, the column diameter, colD , and the

column longitudinal reinforcement ratio, long . Based on preliminary column section

analyses, the primary design space is recommended not to include designs points exhibiting

possible strain softening of section response.
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(V) Identification of all relevant secondary design variables (described in Section 9.2.2 of

Chapter 9). These variables are preliminarily set to take standardized and/or predetermined

values sometimes even dependent on the values of the primary design variables.

(VI) Development of a nonlinear finite element model of the bridge in a finite element analysis

package (e.g., OpenSees) allowing appropriate parameterization with respect to the

primary design variables while using secondary design variables as determined in Step V.

(VII) Automatization of the following sequential steps involved in the seismic performance

evaluation of a bridge design point:

(i) Finite element model generation of the bridge given specific values of the primary

design variables.

(ii) Preliminary post-gravity modal analysis to obtain periods of different modes

vibration of the bridge, especially the period of the first transverse mode of

vibration, i.e., 1,transT .

(iii) Definition of intensity measure ( )IM , i.e., the spectral acceleration averaged over

a period range. Ten discrete points logarithmically spaced within 

are used in defining the average (geometric mean) spectral acceleration. 

(iv) Probabilistic Seismic Hazard Analysis (PSHA) to obtain seismic hazard curves in

terms of mean annual rates (MARs), or equivalently mean RPs (= 1/MAR), of

exceeding specific values of the chosen . Details of PSHA are provided in

Chapter 5.

(v) Identification of three seismic hazard levels, defined by mean RPs of 

exceedance, for site-specific risk-consistent ground motion selection and

subsequent nonlinear time-history analyses. Chosen seismic hazard levels should

be well-spaced in terms of mean RPs of exceedance, e.g., a set of hazard levels

corresponding to mean RPs of 224 years, 975 years, and 4975 years, or that

corresponding to mean RPs of 72 years,475 years, and 2475 years.

(vi) Site-specific risk-consistent selection of ensembles of 20 ground motions records

per hazard level. Details of ground motion selection algorithm are provided in

Chapter 5.

1,transT to 1,trans2.5T
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(vii) Ensemble nonlinear time-history analyses of the computational model of the bridge

at the chosen hazard levels to obtain , given , data for the engineering 

demand parameter associated with the 

kEDP
thk limit-state. Multiple-core desktop 

computers or a supercomputer can be used to run such analyses in parallel. It is 

recommended not to proceed to the next step without resolving non-collapse related 

numerical convergence issues encountered in this step. 

(viii) Probabilistic Seismic Demand Hazard Analysis (PSDemHA) to obtain demand

hazard curves, in terms of MARs or mean RPs of exceeding specific values, of the

sEDP associated with the selected set of limit-states. Details of PSDemHA are

provided in Chapter 7.

(ix) Denormalization of fragility functions given the specific design of the bridge.

Details are provided in Chapter 8.

(x) Probabilistic Seismic Damage Hazard Analysis (PSDamHA) to obtain MARs or

mean RPs of exceeding the selected set of limit-states. Details of PSDamHA are

provided in Chapter 8.

Having adequately setup the problem, as outlined, the simplified PBSD methodology is initiated 

to: 

(1) locate a design point, *D , along a chosen positive slope line in the primary design

parameter space of a bridge satisfying multiple risk-based performance objectives; and

(2) delineate a feasible design domain and recognize its governing/controlling limit-states in

the primary design parameter space of a bridge

Aimed at achieving the above-mentioned goals, the steps involved in the proposed simplified 

PBSD methodology are summarized in the following flow chart 
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11 Conclusions 

11.1 Summary of Research Work 

Probability-based design provides the most scientific and rational solution to an earthquake-

resistant structural design problem wherein an inherently uncertain structural system needs to be 

designed such that its performance entails, not only resisting highly uncertain seismic demands, 

but also meeting reliably societal demands of life safety, economy and resiliency. The 

classification of structural performance should therefore be predicated on an acceptable risk, 

defined by the risk tolerance of society as a whole. Fueled by such needs, the structural engineering 

community, over the last few decades, has moved on towards implementing the philosophy of 

probabilistic performance-based earthquake engineering (PBEE) in the realm of structural seismic 

design. Probabilistic performance-based seismic design (PBSD) involves designing a structure to 

meet more refined and non-traditional performance objectives explicitly stated in terms of the risk 

associated with the exceedance of critical damage/limit-states or certain tolerable thresholds of 

monetary loss, downtime, etc. (i.e., probability of limit-state or threshold exceedance in a specified 

exposure time). The recent advent of PBEE in seismic design practice of buildings motivated this 

research wherein a simplified risk-targeted PBSD methodology, building on the comprehensive 

probabilistic PEER PBEE framework, is aimed to be developed for Ordinary Standard Bridges 

(OSBs) in California. The overarching goal of this project is to address, without any compromise 

in rigor, the somewhat hindered implementation of the PEER PBEE framework in seismic bridge 

design practice owing to its all-inclusive nature, pressing computational requirements and inherent 

theoretical complexity. 

A summary of the overall approach taken to arrive at a solution to the formulated problem can be 

best presented by classifying the entire bulk of the conducted research into three distinct phases: 

(I) Implementation of the PEER PBEE assessment framework 

(II) Parametric full-blown probabilistic performance assessment 

(III) Development of simplified risk-targeted PBSD methodology 

The following sections provide a general idea of the work entailed in each of these three phases. 
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11.1.1 Phase I: Implementation of the PEER PBEE Assessment Framework 

At the very outset, the road taken involves a meticulous implementation of the PEER PBEE 

assessment framework for OSBs which lies at the heart of the proposed PBSD methodology. 

Improvements from state-of-the-art literature relating to various steps of the PEER PBEE 

analytical framework are also incorporated. The PEER PBEE framework involves a sequential 

execution of analytical steps pieced together (integrated) using the Total Probability Theorem 

(TPT) to arrive at an estimate of a performance measure, e.g., the mean annual rate (MAR) at 

which a limit-state is exceeded, or the MAR at which a decision variable, say monetary loss, 

downtime, or death, etc., exceeds a value of interest. The performance measure sought for in this 

study is the MAR of limit-state exceedance or, equivalently its reciprocal, the mean return period 

(RP) of limit-state exceedance. The task of probabilistically predicting the future seismic 

performance of a bridge, in terms of the mean RPs of exceeding a selected set of limit-states, is 

broken down into three analytical steps, namely: probabilistic seismic hazard analysis (PSHA), 

probabilistic seismic demand hazard analysis (PSDemHA), and probabilistic seismic damage 

hazard analysis (PSDamHA). 

PSHA aims to identify and quantify the pertinent sources of uncertainty associated with seismic 

ground motion parameters (i.e., ground motion intensity measures) to rigorously characterize the 

seismic hazard at the considered site in a probabilistic sense. The essence of PSHA is to identify 

and aggregate the contribution of all possible seismic events (characterized by pairs of earthquake 

magnitudes and source-to-site distances that could potentially affect the considered structure) to 

arrive at an estimate of the mean annual rate (MAR) at which specific values of a ground motion 

intensity measure are exceeded. Depending on the results of PSHA, earthquake ground 

motion records produc

( )IM

ing desired levels of are selected for probabilistic response assessment 

of structures subjected to seismic loading. A proper choice of is therefore crucial to have a 

true picture of structural performance against earthquakes. To this end, an improved earthquake 

, i.e., average spectral acceleration over a specified period range, is used to account for the 

following factors deemed important for OSBs, typically not captured by the traditionally used 

, i.e., elastic 5% damped spectral acceleration at the expected predominant period of the structure: 

(a) Lack of certainty in predicting the natural period of the predominant mode of vibration for 

reinforced concrete structures such as OSBs; 
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(b) Change in effective natural periods of reinforced concrete structures in going from pristine 

conditions to cracked states under service loads; 

(c) Structural period elongation due to accumulation of damage during an earthquake which 

leads to higher correlation of structural response with spectral accelerations at longer 

periods; and 

(d) Difference in periods of fundamental modes of vibration in the two orthogonal directions 

(i.e., longitudinal and transverse) of the bridge. 

Owing to the novelty of the chosen , standard PSHA tools do not include seismic hazard 

assessments in terms of this . Hence, a convenient, yet rigorous, workaround is adopted based 

on the results of standard PSHA for spectral accelerations at single periods such that the seismic 

hazard in terms of the average spectral acceleration can be reasonably approximated. 

Ground motion record selection serves as the link between PSHA and subsequent probabilistic 

seismic response assessment of a bridge, thereby imposing a need for hazard- or risk-consistency 

of earthquake ground motion records to be used for ensemble nonlinear response history analyses 

of the considered bridge. A ground motion selection algorithm recently developed by Baker and 

co-workers (Ref.) is implemented for the selection of site-specific risk-consistent ensembles of 

ground motion records representative of six seismic hazard levels corresponding to the following 

return periods: 72, 224, … 4,975 years. Given a seismic hazard level, the algorithm employs a 

conditional mean spectrum-based ground motion selection to pick earthquake records from the 

NGA database that, as an ensemble, follow the complete probability structure of the target 

conditional spectrum defined for that hazard level. 

The objective of PSDemHA is to characterize probabilistically the seismic demand imposed on 

the considered bridge, in terms of the MAR at which specific values of seismic response 

parameters, called engineering demand parameters 1( s)EDP LS , are exceeded at the bridge site. 

This is achieved via a convolution of the conditional probability of EDP exceedance, given , 

with the site-specific seismic hazard curve for the considered bridge. At this stage, a set of limit-

states mainly concerning reinforced concrete bridge columns, the primary lateral load resisting 

component of an OSB, is defined. These limit-states are selected as: limit-state 1: concrete cover 

crushing, limit-state 2: a precursor to longitudinal rebar buckling, and limit-state 3: a precursor to 

longitudinal rebar fracture; they are pertinent to the seismic evaluation of bridge structures and 
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meaningful to practicing engineers. A fourth limit-state corresponding to an abutment exterior 

shear key reaching its shear strength capacity is also considered. Material strain-based sEDP

associated with the limit-states related to the desired failure mode involving bridge columns (i.e., 

hinging of columns) are defined and used in this project. Strain-based sEDP correlate better to 

damage than traditionally used displacement based sEDP (e.g., column drift, plastic hinge 

rotation). 

PSDamHA is aimed towards making probabilistic predictions of structural damage/limit-state 

exceedances in terms of MARs, or mean RPs, associated with these events. This requires a 

convolution of the fragility function defined for a limit-state (i.e., the conditional probability of 

limit-state exceedance given EDP ) with the corresponding demand hazard curve. Strain-based 

fragility functions based on reliable experimental data or high-fidelity numerical data are 

developed or inherited for the considered limit-states through proper identification of relevant test 

and research programs previously conducted. Fragility functions, typically constructed using 

experimental or numerical data pertaining to specimens or models with different geometric, 

material and mechanical characteristics, need to be normalized such that they can be used for 

structural components of any specified characteristics. Appropriate normalizing deterministic 

capacity prediction equations are identified and used for this purpose. 

The improved version of the PEER PBEE framework assembled is implemented on four California 

testbed OSBs located in regions with disparate levels of seismicity. The selected testbed bridges 

also cover a wide range of geometrical parameters such as number of spans, span lengths, number 

of columns per bent, skew angle, etc. OpenSees Tcl input files for the nonlinear finite element 

models of these bridges, inherited from previous Caltrans funded projects, are thoroughly revisited 

and improved based on experimental validation (at the component level) and/or literature review. 

The Tcl input files are also modified to mitigate the occurrence of non-convergence of the iterative 

scheme used to integrate the nonlinear equations of motion. In case a non-collapse related 

numerical convergence issue is encountered, convergence of the numerical solution is ensured 

through adaptive switching between iterative methods (e.g., Newton, modified-Newton, BFGS, 

Newton-Krylov) and/or convergence test types and tolerances used to solve the incremental 

equations of dynamic equilibrium at each time step. 
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11.1.2 Phase II: Parametric Full-blown Probabilistic Performance Assessment 

Using the improved version of the PEER PBEE assessment framework for OSBs assembled and 

implemented in Phase I, the goal of developing a performance-based seismic design framework is 

addressed next. At the crux of structural design lies the selection of optimal values of critical design 

parameters/variables such that predetermined target specifications of certain performance 

measures are met. The performance measures used in this study are the MARs or mean RPs of 

exceeding a selected set of limit-states. Hence, a parametric full-blown probabilistic seismic 

performance assessment of the testbed bridges is carried out to investigate and visualize the effects 

of varying key structural design parameters on the mean RPs of limit-state exceedances. 

A two-dimensional design space is defined in terms of the primary design variables, viz., column 

diameter ( )colD and column longitudinal reinforcement ratio ( )long , to which the exceedances of 

the selected set of limit-states are believed to be most sensitive. The chosen design variables pertain 

to the reinforced concrete bridge columns because they constitute the primary lateral load resisting 

structural components of an OSB. Moreover, column plastic hinge regions are also meant in a 

seismic event to act as structural fuses and thereby dissipate energy through inelastic material 

behavior. All other bridge design parameters to be determined by meeting the requirements of 

capacity design, minimum ductility capacity, reinforcement ratio restrictions, etc., and/or restricted 

by the geometry of the bridge, available real estate, traffic requirements, etc. are referred to as 

secondary design variables. In the parametric study of each of the four testbed bridges, the values 

of most secondary design variables are taken as per the original design of the as-designed bridge. 

A fully automated workflow incorporating an efficient utilization of available computing resources 

is developed for a smooth and seamless execution of the parametric full-blown probabilistic 

seismic performance assessment of the considered bridges. The Tcl input files of the OpenSees 

computational models of these bridges are revisited and parameterized to facilitate the automated 

generation of models corresponding to multiple re-designed versions of the actual bridges. The 

seismic performance of such re-designs generated by varying the primary design parameters, 

subject to practical constraints, are evaluated using the improved PEER PBEE framework 

described. This involved the extensive parallelization of computationally independent jobs, which 

was made possible through Stampede2, the flagship supercomputer at the University of Texas at 

Austin’s Texas Advanced Computing Center (TACC). It is noteworthy to mention here that for 
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the sizable number of nonlinear time-history analyses performed for each of the re-designs of the 

considered testbed bridges, convergence of the numerical integration of the equations of motion 

over the entire duration of the seismic input is also ensured in an automated fashion. 

Finally, for each re-design of a testbed bridge, and for each of the considered limit-states, a 

piecewise linear surface is fitted in the primary design space to the computed mean RPs of limit-

state exceedance. Topologies and contours of these surfaces are explored. Feasible design 

domains, i.e., collection of design points in the two-dimensional design parameter space with mean 

RPs of limit-state exceedances higher than or equal to the respective specified targets, are 

identified. Safety of the as-designed bridges and feasibility of their re-designs are examined. 

11.1.3 Phase III: Development of Simplified Risk-targeted PBSD Methodology 

The concept of a feasible design domain in the design parameter space can be utilized to make 

risk-informed design decisions while trying to satisfy multiple risk-based performance objectives. 

The full-blown parametric probabilistic seismic performance assessment framework can therefore 

be very well used for the design of a new OSB unless its computational cost is prohibitive for the 

computational resources available. For reasons of practicability in current bridge design practice, 

a computationally more economical, simplified, non-traditional, risk-targeted performance-based 

seismic design procedure is distilled out of this project based on the findings of the full-blown 

parametric probabilistic seismic performance assessment carried out for the testbed bridges. The 

proposed simplified design methodology is able to: 

(i) find a design point in the primary design parameter space of a bridge being designed for 

multiple risk-based performance objectives; and 

(ii) delineate an approximate, yet sufficiently accurate, feasible design domain and identify the 

limit-states controlling its boundary in the primary design parameter space of the bridge; 

at a computational cost significantly lower than that of the parametric full-blown method. 

Upon selection of primary design variables, secondary design variables are to be determined and 

adjusted to meet requirements of capacity design, code-based minimum ductility capacity and 

minimum reinforcement, etc., and/or other restrictions imposed by the real estate available, traffic 

flow, etc. After all primary and secondary design variables have been determined, a final check of 

331 



 

 
 

      

 

  

    

 

  

  

     

  

     

    

  

      

  

  

         

     

   

  

    

    

  

     

      

          

    

   

structural performance is required to ensure that the final design still satisfies the specified risk-

based performance objectives. 

11.2 Highlight of Findings 

Findings of the present research related to the phases of work described above are grouped 

accordingly and presented next. 

11.2.1 Findings of Phase I: Implementation of the PEER PBEE Assessment Framework 

An experimental validation of the finite element modeling technique employed for multiple-

column bents of OSBs is carried out. Numerical models of experimental column-bent specimens 

developed using fiber-section force-based Euler-Bernoulli frame elements are validated by 

comparing the transverse pushover response of these models with experimental data. This effort 

revealed the necessity of modeling explicitly the reduced-size section provided at the base of 

reinforced concrete bridge columns (to mimic a pin connection) instead of modeling this 

connection as a perfect pin. Numerical models of column-bents with columns perfectly pinned at 

the base are found to underpredict the transverse pushover resistance of such bents when compared 

to experimental data for the same imposed lateral displacement time history. 

PSDemHA, requiring the convolution of conditional probabilities of EDP exceedance with the 

site-specific seismic hazard curve of an OSB, calls for a conditional seismic response assessment 

of the bridge to quantify the conditional probabilities of EDP exceedance given . The demand 

hazard convolution involves a continuous regression against of the parameters of probability 

distribution functions fitted to EDPs at discrete levels. An improved functional fit to the 

conditional lognormal dispersion parameter as a continuous function of , typically taken as a 

constant, is revealed by the EDP ensembles at discrete values of and proposed in this project. 

As expected, the results of PSDamHA of the testbed bridges show that exceedances of increasingly 

severe limit-states, i.e., limit-states 1 through 3, concerning the reinforced concrete bridge columns 

for OSBs have increasing values of mean RPs. The as-designed testbed bridges considered, as 

assessed using the implemented PEER PBEE framework, exhibit a wide range of seismic 

performance as measured by the mean RPs of exceeding the selected set of limit-states. The mean 

RPs of exceeding limit-states 1 through 3 are found to cover the gamut of values from 150 to 1,500 

years for limit-state 1, 500 to 10,000 years for limit-state 2, and 1,000 to 30,000 years for limit-
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state 3. The mean RP of exceeding the 4th limit-state, namely that of an abutment exterior shear 

key reaching its shear strength capacity, is found to range between 80 and 2500 years depending 

on the type of shear key used in the bridge. Bridges A, B and C, having monolithic non-isolated 

type abutment shear keys, show high mean RPs of exceeding limit-state 4, while the mean RP of 

exceedance associated with this limit-state is found to be relatively small (compared to those of 

Bridges A, B, and C) for Bridge MAOC with sacrificial isolated type shear keys specified in its 

design. It is also found that the mean RP of abutment shear key limit-state exceedance lies between 

the mean RPs of exceeding the critical limit-states of rebar buckling and rebar fracture for Bridges 

A and B. Shear keys of Bridges C and MAOC, on the other hand, are found to exceed this limit-

state with mean RPs smaller than the respective mean RPs of exceeding the limit-state of concrete 

cover crushing. 

The implementation of the present improved version of the PEER PBEE framework, developed 

with painstaking details, is highly advantageous. A design method based on or distilled out of this 

rigorous assessment framework will be fittingly risk-informed, rational and scientific. The MAR 

or mean RP of a damage/limit-state exceedance for an OSB, according to the PEER PBEE 

framework, is computed by aggregating or accounting for the contributions from all seismic hazard 

levels. As shown by the disaggregation with respect to of the mean RP of exceedance of (or 

the hazard level associated with) any of the damage/limit-states considered, different levels of 

(both corresponding to higher and lower mean RPs of exceedance as compared to the specific 

mean RP of the damage/limit-state exceedance) contribute to the damage/limit-state hazard. This 

provides a scientific basis to disapprove an incomplete method according to which, for the sake of 

computational and/or theoretical convenience, one chooses to design a bridge such that specified 

limit-states are not exceeded (with a specified confidence levels) at specified discrete seismic 

hazard levels (e.g., earthquake ground motions with a mean return period of IM exceedance of 975 

years, 2475 years, etc.). 

11.2.2 Findings of Phase II: Parametric Full-Blown Probabilistic Performance Assessment 

The improved version of the PEER PBEE assessment framework implemented for OSBs is used 

to parametrically assess the seismic performance of the testbed bridges considered. A range of 

possible re-designs of each testbed bridge, corresponding to different values of the primary design 
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variables (i.e., colD and long ), are analyzed to investigate the effects of these design parameters 

on the mean RPs of exceeding the selected set of limit-states. 

For each limit-state, a piecewise linear surface is fitted to the mean RPs computed at all the re-

design points (located on a regular grid in the 2D primary design space) of a testbed bridge. 

Although the overall topologies of the fitted mean RP surfaces over the design space are accurate, 

some topology details are by-products of the fitted surfaces assumed (here piecewise linear). It is 

important to notice that the limit-state exceedance mean RP results obtained for the as-designed 

bridges, in each case, are in excellent agreement with the topology of the fitted surfaces despite 

being excluded from the data used for fitting these surfaces. 

Increasing values of the two primary design variables (both related to the design of the bridge 

columns) result in stronger, and thereby translating to safer designs characterized by lower MAR 

or higher mean RP of limit-state exceedance. This is found to be especially true for limit-states 1, 

2, and 3 related to damage in the bridge columns. The mean RPs of exceeding these limit-states, 

pertaining to seismic design of OSBs, are found to be indeed sensitive to the chosen primary design 

variables thereby justifying their choice. 

The fitted mean RP surfaces for limit-state 4 (at least one transverse shear key reaching its shear 

strength capacity) in any of the testbed bridges show low sensitivity to the column longitudinal 

reinforcement ratio. However, larger column diameters increase the safety of the bridge against 

shear key failures (i.e., higher mean RP of limit-state exceedance). 

Contour lines of the mean RP surfaces for limit-states 1, 2, and 3, corresponding to respectively 

specified target mean RPs selected based on discussions with and feedback from expert Caltrans 

engineers, are superimposed in the primary design space to delineate the overall feasible design 

domains. This also helps identify the governing limit-states along the boundaries of the feasible 

design domains. The seismic performance of the as-designed version of a testbed bridge is gauged 

by the location of the corresponding design point in the design parameter space relative to the 

overall feasible design domain of the bridge (i.e., does the as-designed bridge belong to the feasible 

design domain and how close is it from its boundary?). The seismic performance of the as-designed 

testbed bridges is found to show considerable variability. These bridges originally designed 

following a more traditional (prescriptive) seismic design philosophy, rather than an explicitly 

performance-based one, are found to exhibit irregular levels of conservativeness. While some of 
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the as-designed testbed bridges are found to be conservative, sometimes too much, with respect to 

the selected limit-states and corresponding target mean RPs, others are found to lie near the 

borderline of safety, or clearly in the unsafe domain. 

The categorization of an important column design parameter, the transverse reinforcement ratio 

( )trans , for columns with low axial load ratios, typical of OSBs, as a secondary design variable is 

justifiable. A sensitivity analysis is conducted by repeating the bridge performance evaluation over 

the grid of re-design points for two additional levels of trans expressed as fractions of long , with 

the three levels considered spanning a practical range of transverse reinforcement ratio. The 

observed level of sensitivity of the performance evaluation results with respect to trans is small 

enough to be ignored for simplicity. 

A comparative study is conducted between the closed-form solutions to the MAR of limit-state 

exceedance, available in the literature, and the numerical results obtained from the full-blown 

probabilistic performance assessment method used This is done to assess the potential viability of 

LRFD-like design formats based on such closed-form solutions to be used as the sought PBSD 

methodology. These closed-form solutions still require the computationally most demanding step 

of running ensemble nonlinear time-history analyses for a bridge, while circumventing the rather 

inexpensive numerical evaluation of the demand and damage hazard integrals. Moreover, the 

results obtained from such simplified closed-form solutions, requiring almost as much 

computational work as the numerical method, are often inaccurate by a significant margin. 

11.2.3 Findings of Phase III: Development of Simplified Risk-targeted PBSD Methodology 

The topologies of the mean RP surfaces for limit-states 1, 2, and 3, in the primary design parameter 

space are explored. These topologies are found to be well-captured by piecewise power functions. 

Based on this observation, a step-by-step strategy requiring the performance evaluation of only 3 

design points is devised that allows locating a design point, which satisfies multiple risk-based 

performance objectives, in the primary design parameter space of a bridge under design. 

Knowledge of the feasible design domain of a bridge in its design space is extremely valuable as 

it can be utilized to make risk-informed design decisions leading to safe and economic design of 

bridges. An approximate delineation of the feasible design domain is systematically achieved 

based on the observation that contours of the mean RP surfaces for the limit-states considered can 
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be approximated by parallel linear/bilinear lines in the primary design space. This however 

requires the performance evaluation of 1 or 2 additional design points, depending on the choice of 

linear or bilinear lines in approximating the contours of the mean RP surfaces. 

The computational requirement of the full-blown parametric method is therefore significantly 

reduced by requiring the performance evaluation of only 3 to 5 design points to realize the risk-

targeted design objectives. The computational workload is further reduced by drastically curtailing 

the total number of nonlinear time-history analyses to be run for the performance evaluation of a 

single design point while still maintaining reasonable levels of accuracy. 

Results of the reduced-workload, simplified, non-traditional, risk-targeted, performance-based 

seismic design procedure applied to the considered testbed bridges are found to tally well with the 

results of the full-blown parametric method, thereby validating the proposed PBSD methodology. 

11.3 Recommendations for Future Research 

The completed research work is neither exhaustive nor fully devoid of limitations. A brief account 

of identified issues, possible solutions, and relevant avenues for further research is presented in 

this section. 

At the heart of performance-based earthquake engineering is the explicit quantification of relevant 

uncertainties and their consistent propagation through the performance assessment framework. 

Only sources of uncertainties associated with the seismic hazard, ground motion record-to-record 

variability, and structural capacity prediction, typically deemed predominant, are considered in 

this project. Other sources of uncertainties, such as finite element model parameter (e.g., 

constitutive material model parameters, damping model parameters, etc.) aleatory uncertainty, 

parameter estimation epistemic uncertainty, and overall modeling epistemic uncertainty, are 

commonly omitted or neglected in performance-based earthquake engineering. However, recent 

studies (Bradley 2010; Bradley 2013; Liel et al. 2009; Terzic et al. 2015) have shown that such 

sources of uncertainties can or are likely to be significant and must be included for a 

comprehensive seismic performance assessment. This aspect can be enhanced significantly by the 

inclusion, treatment and propagation of additional pertinent sources of uncertainties associated 

with various stages of the PEER PBEE assessment framework implemented for OSBs and used to 

calibrate and validate the simplified PBSD method proposed herein. 
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Both a scalar for PSHA and a scalar EDP associated with each damage-/limit-state of interest 

for both PSDemHA and PSDamHA are considered in this project. Vector-valued sIM are found 

to more accurately characterize/predict, by exhibiting higher levels of “efficiency” and 

“sufficiency”, the seismic demand on structural systems. A single predictive demand parameter 

can be insufficient to perfectly predict whether a limit-state is reached or exceeded (i.e., other 

demand parameters may also play a role). A vector of statistically correlated sEDP can therefore 

be used to more accurately predict the exceedance of damage-/limit-states of interest. 

The chosen seismic intensity measure for probabilistic seismic hazard assessment is the average 

(geometric mean) spectral acceleration over a period range, , avgaS . This has already been 

shown to be superior, in terms of “efficiency” and “sufficiency”, as compared to the traditionally 

used , i.e., spectral acceleration at a single period. Due to the unavailability of seismic hazard 

assessment results from standard PSHA tools in terms of this rather novel , a simple 

workaround is developed to estimate the seismic hazard. This involves using the results of standard 

PSHA tools for spectral accelerations at single periods thereby avoiding the esoteric step of seismic 

source probabilistic characterization and related calculations. However, the workaround is 

applicable only if an attenuation relationship independent of the characteristics of the seismic 

sources/faults (e.g., Boore and Atkinson 2008) is used in PSHA. Such a restriction can be removed 

by including probabilistic seismic hazard assessments in terms of this easy-to-implement , i.e., 

, avgaS , in available open-source PSHA software tools (e.g., OpenSHA). 

Explicit consideration of near fault effects in PSHA and a risk-consistent incorporation of velocity 

pulses in the selected ensembles of ground motion records are kept beyond the scope of this 

project. This can lead to an underestimated seismic risk to OSBs as evaluated using the current 

implementation of the PEER PBEE framework. 

The set of three limit-states relating to bridge columns, defined for the development of the 

proposed PBSD methodology for OSBs, is neither exhaustive nor definitive. The proposed 

methodology is developed with such limit-state definitions as mere placeholders and is readily 

able to accommodate more refined (e.g., more mechanics-based) definitions and/or a larger 

number of limit-states. 
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The seismic performance measure selected in this study is the MAR of limit-state exceedance or, 

equivalently, the mean return period (RP) of limit-state exceedance. This can be taken one step 

further by defining performance measures in terms of the hazard associated with the exceedance 

of specific values of decision variables, e.g., monetary loss, downtime, deaths, etc., which are more 

meaningful to stakeholders and/or decision makers (e.g., government officials). 

Computational models of OSBs can be improved particularly to model the soil-structure 

interaction effects at the column foundations and/or at the abutments. Force-deformation 

relationships assigned to nonlinear springs used to model different components of skewed bridge 

abutments can be validated using experimental data from reliable sources and/or numerical data 

from analyses conducted using full-fledged physics-based high-fidelity finite element models. 

The proposed simplified PBSD methodology is formulated by retaining the inherent rigor of the 

PEER PBEE framework lying at its crux. As a result, a rather non-traditional design method is 

proposed requiring complete probabilistic performance assessments of design iterations (i.e., 

design points). In this regard, efforts can be channeled to convert the non-traditional method 

distilled out of this project, without significantly compromising its rigor, into a more traditional 

design format requiring LRFD-like checks of structural demand-to-capacity ratios. 

Having identified the combined values of primary design variables satisfying multiple risk-based 

performance objectives, the proposed PBSD method recommends determining most secondary 

design variables (e.g., the ones not restricted by the geometry of the bridge, available real estate, 

traffic flow requirements, etc.) so as to meet code-based requirements of capacity design, 

minimum ductility limitations, reinforcement ratio restrictions, etc. These requirements typically 

involve the use of prescriptive measures and/or safety factors such that undesirable consequences 

are prevented with some level of confidence. Empirical observations, experience and/or 

engineering judgment have dictated the prescription of such measures and safety factors in codes 

of practice. Future research can be directed towards developing a more transparent and more 

probabilistically explicit determination of these secondary design variables. 

Finally, the viability of the proposed simplified PBSD methodology currently relies on a two-

dimensional primary design parameter space for OSBs. The possibility of extending the proposed 

simplified method to accommodate more than two primary design variables, especially for non-

ordinary bridges, should be investigated. 
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