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1 Introduction 

Traffic incident management is an active process involving coordination between multiple agencies 
and field operations teams ranging from emergency services to maintenance. In large agencies, 
such as Caltrans districts, this process is coordinated by the Traffic Management Center (TMC). 
Prior research has demonstrated the importance of early verification of incidents for reducing the 
delays associated with capacity-reducing events. The total delay caused by an incident is at least 
proportional, if not polynomially related, to the time required to verify a given incident (Rindt et 
al., 2010). Generally, this is due to the fact that a response to an event cannot be deployed until the 
problem is diagnosed, leading to significantly greater queuing and thus increased delays and impacts 
to system safety. Once an incident is diagnosed through verification, the response process can be 
well organized and more deterministic. As a result, shortening the verification time is a critical 
component in the efficient management of incidents. Because the above steps are sequential, early 
verification is ultimately dependent upon early identification of a disruption. 

In California, the identification of incidents arrives through a variety of channels including the 
California Highway Patrol’s (CHP) iCAD system, telephone reports from the public, and the Cal-
trans Closed Circuit Television (CCTV) system. The first two of these channels are particularly 
effective for reporting of severe incidents, when emergency phone calls are made in response to ac-
cidents. Less severe events, such as stalled vehicles or debris in the roadway have less likelihood of 
being quickly reported by the public. While these situations tend to produce less severe disruptions 
to traffic flow, they create conditions that are more likely to produce secondary incidents that may 
have significantly greater severity. At the same time, active monitoring of every stretch of roadway 
by a TMC operator is time consuming, tedious, and a generally inefficient use of human resources. 

The past several decades have seen the development a wide variety of Automated Incident De-
tection (AID) methods ranging from the theoretical to practical deployments. These efforts have 
produced an equally wide variety of results, but generally there is enough promise in these methods 
to suggest they may aid TMC operators in improving incident identification time. This, in turn, im-
proves response times to a variety of system events, reduces the occurrence of secondary incidents, 
and generally improves the efficiency of TMC operations. 

This project was conceived to perform an evaluation of candidate Vehicle Detection Applica-
tion System (VDAS) for performing Video Analytics (VA) and Automated Video Incident Detection 
(AVID) and generally characterize traffic conditions, identify incidents, and improve incident iden-
tification and response times. Our experience working with TMC operations suggests that TMC 
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operators tend to have developed a level of efficiency with existing processes such that the introduc-
tion of new tools and techniques—no matter the technical potential—can actually disrupt existing 
processes leading to less efficiency overall. Thus, an additional focus was to consider how these 
AVID systems can be directly integrated into existing TMC processes with a minimum of disrup-
tion. 

2 Summary of Work Performed 

The original scope of work involved three primary tasks: 

1. Literature Search: review commercial VDASs along with any recent deployments or evalua-
tions that might inform this effort; 

2. AVID Tool Evaluation: evaluate candidate commercial AVID systems to establish their per-
formance capabilities given the constraints of Caltrans infrastructure; and 

3. Real-time pilot study: using a selected VDAS based upon the tool evaluation, demonstrate 
how VA and AVID can be integrated into TMC processes. 

The broad intent of the effort was to evaluate the impact this system has on the measured delays 
of particular classes of incidents over time. The research plan assumed the availability of the re-
sources and direct CCTV and communications links provided by the Calfornia Traffic Management 
Laboratories to collect system data post-installation and the use of the Caltrans TMC performance 
evaluation system (Rindt et al., 2010) to determine the effectiveness of AVID in incident response. 

However, during the course of the project, a number of issues disrupted this planned scope 
of work. The most serious was the unexpected discontinuation of the Calfornia Traffic Manage-
ment Laboratories at UC Irvine. The original proposal was built around leveraging the capabilities 
of CTMLabs, which included the ability to control and capture Caltrans District 12 CCTV feeds 
making laboratory analysis readily feasible. The loss of CTMLabs functionality meant that the 
communications and computing infrastructure upon which task 2 experiments were intended to be 
carried out was no longer available. Then, soon after the start of the project, Caltrans District 12 
began significant upgrades to their TMC and CCTV infrastructure. Further, the agreements open 
which CTMLabs allowed for tight technical coordination—and specifically the integration of re-
search-developed software products—between UCI and Caltrans District 12 TMC were no longer 
available. This brought into question the ability to conduct a real-time pilot study during which 
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VDAS outputs would be integrated into TMC operations through software modifications to TMC 
systems. 

Due to these modifications, the research team concluded that a live TMC evaluation was not 
feasible and agreed to attempt to collect and test candidate VDAS systems using pre-recorded video 
from existing Caltrans CCTV feeds over the now unsupported CTMLabs communications intertie 
between Caltrans District 12 and UCI. The research team was able to access a web-based interface 
for four video streams from District 12 over the intertie. To achieve this goal, it was necessary to 
reverse engineer the custom web software delivering the feeds to save the streams for subsequent 
analysis. Unfortunately, the amount of video saved from the four feeds proved to be both time-lim-
ited and low quality due to the intermittent connectivity provided over the legacy intertie and web 
interface. The VDAS tool evaluation was primarily intended to test the ability of AVID systems to 
identify disabled vehicles and/or debris in roadway—scenarios that demand the analysis of many 
hours of video to identify candidate events. As a result, the limited quality and amount of video 
collected over the intertie produced no quality candidates representing these test scenarios. 

Without a concrete set of video data to evaluate, the AVID tool evaluation using District 12 
video became infeasible. This, along with the loss of the CTMLabs, made it impossible to carry 
out the pilot study. As a result, the scope of the project was modified to focus on an expansion of the 
literature review into a synthesis of not only AVID systems, but to consider the range of technologies 
available for AID and system monitoring. In this synthesis, we consider the impacts of big data and 
machine learning techniques being introduced due to the accelerating pace of ubiquitous computing 
in general and Connected Autonomous Vehicle (CAV) development in particular. 

We begin with a general background on the history of traffic management in Section 3. This 
is followed by a more detailed review Section 4 of the general incident management process to 
introduce the importance of incident detection and general situational awareness in the TMC. We 
then turn our attention to AID in general (Section 6) and AVID in particular (Section 7). In section 
Section 8 we discuss more recent data sources for AID that have seen limited deployment in pro-
duction systems but offer significant potential. We then consider the changing role of the TMC and 
how new data can be integrated into TMC processes most effectively (Section 9) before concluding 
in Section 10. 

3 Background 

The last great shift in transportation norms in the United States occurred during the postwar period 
as the sustained period of economic growth and development led to the explosion of car ownership 
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and the development of the Interstate Highway System. The rising importance of the automobile led 
to the establishment of the United States Department of Transportation in 1966 and the concomitant 
development of national standards for safety and roadway operations. During this period, the first 
notions of using advanced technologies to improve traffic safety and operations arose (Auer et al., 
2016). 

With the establishment of its first TMC in Los Angeles in 1971 (Caltrans, 2017a), the State of 
California ushered in the current era of traffic management. This began with the widespread de-
ployment of a broad range of traffic monitoring and management technologies ranging from moni-
toring technologies such as Inductive Loop Detector (ILD) and CCTV to control strategies such as 
on-ramp management through metering and information provision through Changeable Message 
Signs (CMS). During the 1980s, researchers and agencies began to focus on developing automated 
systems for managing traffic flow on both freeways and arterials, particularly as Information and 
Communications Technology (ICT) continued its steady advancement. 

Realizing the potential provided by these new technologies, the passage of the Intermodal Sur-
face Transportation Efficiency Act (ISTEA) in 1991 established research, development, and de-
ployment programs that laid the groundwork for the transportation revolution that today appears 
imminent. In particular, the Intelligent Vehicle Highway Systems (IVHS) program—later renamed 
to the Intelligent Transportation Systems (ITS) program—seeded the development of ideas and 
technologies for the creation of smarter infrastructure. This led to the creation of the National 
ITS Architecture (NITSA), which has seen ongoing development of a set of standards for how the 
transportation system can adapt to and integrate changes in ICT (Iteris, Inc., 1998). While the 
terminology may have changed, the fundamental concepts have seen a steady evolution and the re-
sulting initiatives have moved transportation in the United States to the cusp of the CAV revolution, 
whereby fleets of driverless vehicles will provide shared mobility services to the population with 
potentially unprecedented levels of efficiency and safety that will touch virtually every sector of the 
economy. 

In the synthesis that follows, we focus on the problem of creating situational awareness of free-
way operations through traffic state monitoring and AID systems, keeping in mind the broader 
context of traffic management. After a review of incident management processes, we provide an 
overview of incident detection methods before focusing on AVID systems, including their devel-
opment as well as historical and modern deployments. We follow this discussion with a look at 
competing and/or complementary AID alternatives made possible by advances in computing, ma-
chine learning, and ICT, including the highly promising incorporation of CAV data into the incident 
management infrastructure. 
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4 Incident Management 

The primary TMC function of interest for this review is the management of freeway incidents. For 
our purposes, such incidents are disruptions to the normal demand for vehicle transportation or to 
the capacity provided by the system, and our focus is on capacity disruptions. We note the following 
general incident classes that can degrade both the safety and efficiency of the system. 

• Planned Closures 

• Capacity Impacts 

− Recurrent congestion 

− Debris in roadway [unplanned] 

− Right-of-way encroachment [unplanned] 

− Collision [unplanned] 

− Breakdowns/stopped vehicles [unplanned] 

• Demand Impacts 

− Event-related congestion 

− Remote incidents causing demand shifts [unplanned] 

The primary concern, from a near-term traffic-management perspective, is the development of 
non-recurrent congestion that ultimately leads to system delays and negative impacts on safety, 
including the increased likelihood of secondary incidents. Overwhelmingly, such congestion arises 
from unplanned capacity impacts caused by lane-blockages due to collisions, debris in the roadway, 
or right-of-way encroachment. As such, we focus our review on identifying these events. 

The importance of rapid incident detection and verification is well established. For instance, 
using direct measurement of freeway performance in the presence of incidents as logged by the 
Caltrans District 12 TMC, Rindt et al. (2010) show that the delays caused by an incident are ex-
ponentially related to the speed with which full capacity is restored—assuming demand is constant 
during the disruption. Furthermore, the likelihood of a secondary crash increases by roughly 2.8% 
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for each minute the primary incident continues to be a hazard (Owens et al., 2009). This makes 
quick identification of such events a core TMC priority. 

These facts have long been recognized by traffic management agencies, who have established 
protocols for responding to incidents. California Department of Transportation (Caltrans) traffic 
incident management guidelines characterize incident management as shown in Figure 1 (Caltrans, 
2014). Per the manual the typical incident management responsibilities include the following, with 
the responsibilities distributed across TMC staff, Freeway Service Patrols (FSP), Traffic Manage-
ment Teams (TMT), and Maintenance. 

• Monitor traffic operations (TMC). 

• Perform incident detection and verification (TMC, FSP, TMT, Maintenance). 

• Protect incident scene (TMT, Maintenance). 

• Perform first responder duties (Maintenance). 

• Clear minor incidents (Maintenance/FSP). 

• Implement traffic control strategies and provide supporting resources (TMT, Maintenance). 

• Disseminate traveler information (TMC/TMT). 

• Assess and direct incident clearance activities (Maintenance). 

• Mitigate small vehicle fluid spills (Maintenance). 

• Develop alternate routes (TMC, TMT, Maintenance). 

• Assess and perform emergency roadwork and infrastructure repair (Maintenance). 

• Assume role of Incident Commander, if appropriate (Maintenance). 

• Support unified command as necessary (TMT, Maintenance). 

In addition to these specific functions, there are cross cutting issues that complicate manage-
ment. For instance, coordination with other agencies must be considered because jurisdictional 
responsibilities mean that specific responses must be implemented by the agencies controlling the 
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resources involved (CSUSB, 2009). More generally, the guidelines define six distinct phases for 
incident management: 

• Notification/Detection: the process by which the TMC and other traffic management agencies 
are notified of a possible disruption; 

• Verification: the confirmation that an incident has occurred from an official source and the 
identification of the impacts, which are necessary to address the disruption; 

• Dispatch: determination of necessary actions to clear the incident and its impacts, and com-
munication to the assets necessary to effect those actions; 

• Response: implementation of the dispatched actions, including marshalling of necessary assets 
and transporting them to the site and working to re-establish capacity and minimize impacts to 
the traveling public; 

• Clearance: process by which demand/capacity balance is restored to normal conditions, in-
cluding the dissipation of any abnormal queuing due to the incident impacts 

• Normal Conditions: complete resolution of incident impacts. 

Figure 1 Incident Components (Caltrans, 2014) 

Since incident response cannot begin until an incident is detected, the fundamental goal of enhanced 
situational awareness in the TMC is to speed the detection process such that response can begin 
earlier. 

7 



5 Conventional Incident Detection Methods 

Incident detection has been a primary goal of traffic management for decades. Ozbay et al. (2005) 
offer a detailed assessment of incident detection methods circa 2005, which provides a useful start-
ing point for this review. Here we break down the techniques into three categories: communication, 
patrols, and remote monitoring and consider the relative strengths and weaknesses of each. 

Public communication methods for identifying incidents include roadside callboxes and cell-
phones, though the proliferation of cellphones since the early 2000s has diminished the role of 
roadside callboxes for incident reporting. In the present day, most publicly reported incidents will 
come via cellphone. These reports will typically filter from first-responders who receive initial no-
tification of events such as accidents. The TMC typically will have tight collaboration with first 
responding agencies, such as the highway patrol and other emergency services, such that notifica-
tions to those agencies will be received nearly simultaneously in the TMC and which will initiate 
the verification, dispatch, and response actions. The benefits of these approaches are direct notifi-
cation of the incident—usually by those affected. Such communications tend to occur rapidly after 
the event and therefore are effective for initiating TMC actions. However, less impactful disrup-
tions, such as debris in the roadway, may or may not be reported via dedicated emergency channels. 
While these relatively minor disruptions do not involve collisions, they are precursors to secondary 
incidents that may involve loss of property or life. As such, they require supplemental techniques 
for quick identification. 

Incidents are also reported via various official patrolling mechanisms. Police highway patrols 
have been a first-line reporting mechanism for decades as their surveillance of freeway operations for 
enforcement and safety often puts them in positions to be the first responder on the scene. FSP, TMT, 
and aircraft-based monitoring—often via media outlets—also have a role to play here as official 
sources of information. However, the cases in which such patrols are the first incident notification 
have diminished greatly with increase in cell-phone and other communications technologies. This 
is due to the fact that patrol-based notifications depend on the frequency and general coverage of 
patrols across large networks. It is more common that patrolling first responders are the first to 
provide incident verification to the TMC, which allows the development of a response plan. Thus, 
additional mechanisms are necessary to achieve wide-channel incident identification that includes 
the ability to detect “precursor incidents” 

Toward this end, TMCs could benefit from automated methods for remotely monitoring and 
identifying incidents. The next two sections consider sensor-based Automated Incident Detection 
and AVID techniques respectively. 
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6 Automated Incident Detection 

The development of algorithms to automatically detect disruptions to the transportation system has 
long been an application of interest for ITS. These systems have the primary goal of reducing the 
time to detection in order to initiate the clearance of a disruption as quickly as possible. 

6.1 Performance Metrics 

The performance of AID systems is generally characterized in terms of a number of primary metrics 
(Cheu et al., 2002): 

• Detection Rate (DR) is the ratio of incidents correctly detected to the total number of incidents 
that occurred and is expressed as: 

Number of incidents detected 𝐷𝑅(%) = × 100 (1) Total number of incidents 

• False Alarm Rate (FAR) is ratio of the number of times an algorithm identified an incident 
when none existed to the total number of cases the algorithm considered. It can be computed 
as: 

Number of false alarms 𝐹𝐴𝑅(%) = × 100 (2) Number of cases considered 

Luk et al. (2010) point out that the more frequently an algorithm is applied (e.g., every 6 s vs 
every minute), the more potential there is for false alarms. As a result, care must be taken when 
comparing False Alarm Rate (FAR) across studies. 

• Mean Time-To-Detect (MTTD) is the average time to detect an incident (𝑡 𝑑𝑒𝑡) from the time 𝑖 

it occurred (𝑡 𝑎𝑐𝑡) and can expressed as follows: 𝑖 

= 𝑡 𝑑𝑒𝑡 − 𝑡 𝑎𝑐𝑡 𝑇𝑇𝐷𝑖 (3) 𝑖 𝑖 
𝑛 1 𝑀𝑇𝑇𝐷 = 󰝸 𝑇𝑇𝐷𝑖 (4) 𝑛 𝑖=1 

Wang et al. (2005) note that for effective use in TMC operations, an AID should have a 
short Mean Time-To-Detect (MTTD) while maximizing Detection Rate (DR) and minimizing False 
Alarm Rate (FAR). However, they point out that there is a correlation between MTTD and DR, as 
shown in Figure 2, whereby increasing MTTD typically increases DR and decreases FAR. 
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Figure 2 Relationship between MTTD, DR, and FAR (Wang et al., 2005) 

Given these relationships, a given deployment must set the thresholds for each metric to obtain a 
balance that is appropriate for the application. One approach is to compute a performance index as 
suggested by Chung and Rosalion (1999) 

𝑚 100 − 𝐷𝑅 𝑃𝐼 = 󰙩 100 󰙪 × 𝐹𝐴𝑅𝑛 × 𝑀𝑇𝑇𝐷𝑝 (5) 

Here, 𝑚, 𝑛, and 𝑝 are used to represent the relative importance of DR, FAR, and MTTD respectively. 
A single performance index is useful as an objective function in optimizing calibration procedures 
for AID algorithms whereby a selected algorithm 𝐀 is characterized by some set of parameters 𝛽 
and is evaluated against a training set to produce assessments of the performance measures (DR, 
FAR, MTTD) 

𝐀(𝛽) ⟶ (𝐷𝑅, 𝐹𝐴𝑅, 𝑀𝑇𝑇𝐷) (6) 

These performance measures serve as inputs of the objective function, which we can then transform 
such that the decision variables of the optimization are the algorithm parameters 𝛽, so we can 
formulate a generic optimization 

𝑚𝑎𝑥 𝑃𝐼 = 𝑓 (𝐷𝑅, 𝐹𝐴𝑅, 𝑀𝑇𝑇𝐷) = 𝑓 (𝐀(𝛽)) (7) 

subject to any operational constrains on 𝐷𝑅, 𝐹𝐴𝑅, or 𝑀𝑇𝑇𝐷. The arbitrary AID algorithm 𝐀 will 
generally be a non-linear function in the parameter space, so the optimization algorithm will likely 
require heuristic optimization methods specific to each AID. 

The development of AID using ILD and other point-sensors has a long history and a number of 
notable reviews are available (Martin et al., 2001, Jacobson and Stribiak, 2003, Carson, 2010 and 
Pickford, 2015a). 
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6.2 AID Methodologies 

Examples of AID in the literature extend back to at least as early as the 1974 development of the stan-
dard normal deviation (SND) algorithm Dudek et al. (1974). Other notable developments in AID 
include the “California Algorithm” (Payne et al., 1976) that employed decision trees comparing ob-
served occupancy to historically-derived thresholds to identify incidents. The McMaster algorithm 
applied Catastrophe Theory to analyze the traffic state-space and identify incidents (Persaud et al., 
1990). Lin and Daganzo (1997) proposed the “Berkeley Algorithm”, which treats the time-series 
of occupancy as a random walk, with significant deviations flagged as potential incidents. Cheu 
and Ritchie (1995) and (Abdulhai and Ritchie, 1999a) (among others) developed AID algorithms 
using Artificial Neural Network (ANN) and Probabilistic Neural Network (PNN) approaches. Each 
of these solutions tended to advance the state of the art and performance but were highly dependent 
on incident detection thresholds. In practical application, thresholds that guaranteed low FAR (e.g., 
2% or less) led to high MTTD (6-8 minutes) resulting in limited usefulness for practical deployment 
in which alternative communications channels outperform the systems (Mahmassani et al., 1999). 

More recent efforts have sought to combine more advanced traffic state estimation with incident 
detection. Dabiri and Kulcsár (2015) use a macroscopic traffic framework to build a bi-parameter 
incident estimation that characterizes incidents with respect to nominal conditions. The spatio-tem-
poral approach of Chung and Recker (2013) uses a simpler statistical method to characterize inci-
dents as deviations from historical normal speeds. Wang et al. (2016) propose a particle filtering 
method to perform the joint estimation of state in incident detection with lower computational bur-
den. Application to I-880 in California showed 100% detection with no false alarms. However, 
the time of detection relative to the actual onset of the incident was sensitive to model parameters, 
making calibration critical for implementation in practice. 

In terms of practical deployment reviews, Luk et al. (2010) offer a useful assessment of AID 
in use in Australia using a range of standard algorithms. Their results are summarized in Table 1 
and suggest quite high performance levels, particularly for ANN and PNN, which would imply high 
value for TMCs in deployment. 

Motamed and Machemehl (2014) provide an evaluation of a dynamic time warping pattern 
classification method for incident detection (Hiri-o-tappa et al., 2010). In this approach standard 
deviation of observed speed over 1-min intervals is compared to characteristic precursors for pre-
viously observed incident conditions using a generalized distance metric. The distance metric is 
explicitly designed to minimize the impact of small distortions on the matching, which makes it 
more robust for pattern classification using noisy data. The method was applied to simulated data 
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Algorithm DR (%) FAR (%) MTTD (min) 
McMaster (Hall et al., 1993) 68-88 <0.01 2.1-3.2 

DELOS (Chassiakos and Stephanedes, 1993a) 78 0.176 1.1 
ANN (Ritchie and Cheu, 1993) 89 0 2.4 
ANN (Ritchie and Cheu, 1993) 89 0 2.4 

ANN (Dia and Rose, 1997) 83 0.065 3.4 
PNN (Abdulhai and Ritchie, 1999b) 98-100 0-0.5 0.3-2.5 

California 8 Algorithm (Chung and Rosalion, 1999) 71 0.005 8.9 
DELOS (Chung and Rosalion, 1999) 73 0.03 5.5 

ANN (Chung and Rosalion, 1999) 97 0.176 5.2 
PNN (Zhang and Taylor, 2006) 93 0.057 2.7 
ANN (Zhang and Taylor, 2006) 83 0.065 3.4 
California 8 Luk et al. (2010) 84 0.075 8.3 

ARRB VicRoads Luk et al. (2010) 84 FAR 0 6.7 

Table 1 Summary of results from AID performance review in Australia (Luk et al., 2010) 

and achieved a 100% DR with a MTTD of 125𝑠. When applied to real-world data from a motor-
way in Pathumthani, Thailand, the system achieved 89% DR with a MTTD of 210𝑠. FAR was not 
reported in either case. 

Nathanail et al. (2017) recently proposed a traffic volume responsive method for AID. This 
technique performed on-line calibration of threshold values for the California #7 (Levin and Krause, 
1979) and DELOS (Chassiakos and Stephanedes, 1993b) algorithms for different traffic volumes 
to make them more robust to changing traffic states. In application to the Attica Tollway in Athens, 
Greece, they report improvements to the existing algorithms with a 20% DR increase and 25% FAR 
decrease. 

The rich literature in AID based upon conventional traffic sensors—particularly those that com-
bine generalized state estimation with incident detection—suggests that these methods should be 
considered for continued development and deployment, especially in light of the continued devel-
opment of big data analytics in traffic analysis. However, practical deployments in the United States 
have consistently demonstrated high false alarm rates to the point that very few TMCs employ AID 
due to high FAR (CTC & Associates LLC, 2012). As a result, AID systems likely require redundant 
systems to be useful for every day monitoring. 
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7 Automated Video Incident Detection 

Using video technology to monitor traffic is a mature concept dating back well into the last cen-
tury. Williams (2003) describes how “police forces (beginning with Durham in 1956) began to use 
CCTV to assist in the one-man operation of traffic lights (Norris et al., 2004).” As agencies gradu-
ally installed more CCTV and integrated them into TMCs, their use has become nearly pervasive 
(Kergaye et al., 2014). In this section, we review the core research in AVID before considering re-
views of actual deployments to assess performance. We then provide a current survey of available 
commercial technologies that we identified and finish with a discussion of factors for successful 
AVID deployments. 

7.1 Core Research and Technology 

Coifman et al. (1998) offer a useful summary of the core elements of video image processing 
required for traffic analysis: 

• Automatic segmentation of each vehicle from the background and from other vehicles so that 
all vehicles are detected. 

• Correctly detect all types of road vehicles–motorcycles, passenger cars, buses, construction 
equipment, trucks, etc. 

• Function under a wide range of traffic conditions–light traffic, congestion, varying speeds in 
different lanes. 

• Function under a wide variety of lighting conditions–sunny, overcast, twilight, night, rainy. 

• Operate in real-time. 

They go on to summarize the primary approaches of early systems brought to market as either 
tripwire or vehicle tracking systems. Tripwire systems monitor detection zones for vehicles in 
a manner similar to loop detectors. Autoscope (Michalopoulos, 1991b) was one of the earliest 
examples of a tripwire system and used a threshold-based analysis of changes in specific pixels 
to determine the presense of vehicles. The system was later expanded to include AID capabilities 
and commercialized (Michalopoulos, 1991a). Descendents of this system are still a commercially 
active product. Other tripwire systems from the same era identified by Coifman et al. (1998) include 
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CCATS, TAS, IMPACTS and TraffiCam. Some early systems based upon vehicle tracking included 
CMS Mobilizer, Eliop EVA, PEEK VideoTrak, Nestor TrafficVision, and Sumitomo IDET. 

The early generations of video processing struggled with a range of conditions including vari-
able traffic conditions (congestion or high flow), occlusion, camera instability, lighting inconsis-
tency including glare and shadows. Allieviating these shortcomings has been the focus of most of 
the research in the field since Coifman et al.’s (1998) review. 

Gloyer et al. (1995) proposed an approach for recursively tracking freeway vehicles to identify 
prevailing speeds and use this for identifying congestion. To identify vehicles, their algorithm relies 
on identifying differences between a background image and the current scene. This object identi-
fication is coupled with a 3 dimensional model of the roadway scene and recursively processed to 
track vehicles as they move through the scene. The vehicle tracks are then converted into speeds. 
Experimental results used recorded images from freeways in Santa Ana, CA to evaluate perfor-
mance, but only “promising performance efficiency” was reported without quantitative support. 
Further enhancements of this system do not appear in the literature. 

Trivedi et al. (2000) addressed issues related to integrating multiple cameras as well as acoustic 
monitors into a single incident detection system, including novel (at the time) technologies such as 
omni-directional cameras that maximized coverage. They proposed a refined pixel-based segmen-
tation approach that handled shadows more robustly than existing approaches at the time. Experi-
mental results are limited in scope, but the authors do show the ability to distinguish between objects 
and their shadows. The multi-sensor scheme proposed for network wide coverage lays out some 
early concepts for network-wide sensor fusion that may be informative for today’s Data Fusion (DF) 
problems. 

Kastrinaki et al. (2003a) published a widely cited review of video processing for traffic ap-
plications that considered both roadway traffic monitoring and automated vehicle guidance. They 
consider the specific applications of automatic lane finding and object detection from the perspec-
tive of both fixed camera (roadway monitoring) and moving camera (autonomous vehicle) perspec-
tives. They noted eleven distinct systems for traffic monitoring with static cameras as summarized 
in Table 2. Of these systems, we only found that Autoscope remains a viable commercial product. 

Ozbay et al. (2005) performed detailed benefit/cost calculations for a variety of incident de-
tection techniques. Their simulation-based results for CCTV deployments indicate a benefit/cost 
ratio ranging from 7.7 to 13.27. Fries et al. (2007) performed a similar simulation-based analysis 
of traffic cameras and computed a benefit/cost ratio of 12.0. The simulation approaches applied 
in both of these analyses limit their general applicability as the metrics are based upon specific 
modeled deployments with assumed rates of effectiveness. 
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System Operating domain Processing techniques 
ACTIONS (Enkelmann, 1990) Spatio-temporal Optical flow field with spatial 

smoothness constraints 
AUTOSCOPE (Michalopoulos, 
1991b) 

Spatial and temporal domain 
independently 

Background frame differencing 
& interframe differencing, 
Edge detection with spatial and 
temporal gradients for object 
detection 

CCATS (Hoose, 1991) Temporal-domain with spatial 
constraints 

Background removal and 
model of time signature for 
object detection 

CRESTA (Postaire et al., 1987) Temporal-domain differences 
with spatial constraints 

Interframe differencing for 
object detection 

IDSC (Takaba et al., 1984) Spatial domain process with 
temporal background updating 

Background frame differencing 

MORIO (Dreschler and Nagel, 
1982) 

Spatial domain processing with 
temporal tracking of features 

Optical flow field and 3D 
object modeling 

TITAN (Blosseville et al., 
1990) 

Spatial operation with temporal 
tracking of features 

Background frame differencing 
and Morphological processing 
for vehicle segmentation 

TRIP II (Wan and Dickinson, 
1990) 

Spatial operation with neural 
nets 

Spatial signature with neural 
nets for object detection 

TULIP (Rourke and Bell, 1989) Spatial operation Thresholding for object 
detection 

TRANSVISION (Wan et al., 
1994) 

Spatio-temporal domain Lane region detection (activity 
map) and background frame 
differencing for object 
detection 

VISATRAM (Zhu et al., 2000) Spatio-temporal domain Background frame 
differencing, Inverse 
perspective mapping, Spatial 
differentiation, Tracking on 
epipolar plane of the 
spatio-temporal cube 

Table 2 Video-based traffic monitoring systems circa 2003 (Kastrinaki et al., 2003a) 

Joshi et al. (2007) propose techniques for improving video tracking performance using support 
vector machines and co-training to improve handling of shadows in scenes. They also demonstrate 
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some features of unsupervised machine learning that may be informative. We were unable to find 
any further extension of their research in the literature. 

Fishbain et al. (2009) proposed a video-based traffic state estimator that is then applied to 
incident detection. In this system, flow, speed, and concentration are directly estimated from the 
video images and incidents are flagged based upon partitioning of the 3-D traffic state variable space 
using thresholds. The system does not appear to have been evaluated under real-world conditions, 
but offers an interesting model-based approach to incident detection that may be informative. 

Loureiro et al. (2009) consider the problem of obtaining traffic information from uncontrolled, 
public video streams. This is an interesting question from a broader machine-learning perspective 
as the proliferation of public video streams provides a potentially rich source of traffic information. 
Though primarily a review, they identify the key challenges to using uncontrolled video for real-time 
traffic monitoring including: 

• lack of control and knowledge of orientation (view angles, distance, etc) making it difficult to 
map onto a logical network 

• view inconsistency caused by occlusion and other factors 

• variable video quality 

• environmental effects including weather and lighting issues (through this is not exclusive to 
uncontrolled video) 

Though the authors do not offer a concrete path toward deployment, the proposal is worth re-
visiting in the coming years as machine learning and video processing technology continues to 
improve. 

Chintalacheruvu and Muthukumar (2012) propose a video-based vehicle tracking system rely-
ing on a corner detection algorithm that requires less calibration than existing systems. Experimen-
tal results using video from the Las Vegas, NV area compare favorably to the existing commercial 
Autoscope installation based upon comparisons to ground truth measurements. The system was 
deployed in a queue warning system at work zones and on freeways during special events, though 
no evaluation of the system’s performance for that application was provided. 

Netten et al. (2013a) detail the findings of the Realising Advanced Incident Detection on Euro-
pean Roads (RAIDER) program, which was funded by a European consortium including TNO from 
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the Netherlands, AIT from Austria, TRL from the UK, and FEHRL based in Belgium. In this re-
view AVID systems are compared to three new types of AID systems anticipated by 2030. The first 
considered was eCall, whereby vehicles involved in accidents report automatically to emergency 
agencies—now a European mandate from 2018 forward. The second was nomadic devices whereby 
vehicles act as passive probes providing Floating Car Data (FCD) that is then used for AID. The 
third described cooperative systems in which vehicles actively detect incidents around them and 
report those detections centrally. Based upon an analysis of current technological capabilities and 
anticipated development, they conclude that “[v]ideo tracking and scanning radar systems are the 
only detection technologies considered in this project that can provide the required performance for 
accident and breakdown detection by 2020. These road side solutions should be considered as an 
intermediate solution till they can be replaced by [cooperative] in-vehicle or nomadic devices.” 

Li et al. (2014) offer a useful summary of video-based traffic monitoring. They note AUTO-
SCOPE, CCATS, TAS, IMPACTS and TraffiCam as tripwire or ILD-mimicing systems and contrast 
them to vehicle tracking systems typified by CMS Mobilizer, Eliop EVA, PEEK VideoTrak, Nestor 
TrafficVision, Autocolor, and Sumitomo IDET. They highlight that the latter systems struggle with 
vehicle occlusion, making camera placement critical. 

Wan et al. (2014) describe a Real-time Highway Surveillance System using video analytics that 
includes stopped vehicle detection. Their system solves a number of deployment related issues, 
including automatic calibration. They compare it to an unnamed commercial product and claim 
superior traffic state estimation. However, the specific AVID evaluation was extremely limited as 
only one stopped vehicle event occured during the test, which was successfully detected. 

Ren (2016) proposes a method for AVID that estimates traffic states (flow, speed, occupancy) 
in each lane by dividing them into monitored cells and tracking objects through the cells. Incident 
conditions are determined using a fuzzy state vector machine to classify traffic states correspond-
ing to incidents. The results are compared favorably to the ILD-based California and McMaster 
algorithms for a limited set of test cases, with significant improvments in DR, FAR, and MTTD. 
However, the authors note their algorithm will suffer from the common AVID problems of envi-
ronmental conditions and coverage. 

Mehboob et al. (2016) propose a similar solution to Ren using customized video analytics to 
estimate speed and flow, which are then fed through a fuzzy logic analyzer that classifies these states 
into incident or non-incident conditions. Calibration of parameters appears to be done manually 
based upon ad hoc analysis of speed-flow data. Without a more robust calibration method, the 
results of this system are likely to vary significantly with the deployment. 

17 



Bottino et al. (2016) describe a video-based system that identifies traffic states using object 
detection and a flow analysis model. They claim the system can adaptively switch between learning 
and on-line modes based upon the stability of the flow model. The system has been used primarily 
for traffic state estimation, but the authors claim it has application for AVID. 

7.2 Deployment Evaluations 

There have been numerous evaluations of deployed commercial AVID systems over the past two 
decades. For instance, Ikeda et al. (1999) tested an AVID system produced by OMRON Corpora-
tion on the Metropolitan Expressway in Tokyo. The system used an imaging differencing algorithm 
to identify and track vehicles. Notable elements of the system included enhanced accuracy through 
the use of multiple cameras focused on the same scene and the ability to dynamically select base-
line images to handle rapid changes in lighting. The system was integrated into the TMC using 
event-driven pop-up notifications. They report successful detection of 755 incidents (stopped/slow 
vehicles and debris in the roadway) with a FAR of 8.7%. OMRON doesn’t appear to market any 
AVID systems today. 

Martin et al. (2001) summarized the performance of a variety of AID approaches including 
ILD-based and AVID techniques as shown in Table 3. Though the applications are admitted to 
be difficult to directly compare due to methodological differences in the evaluations, the summary 
provides a useful reference point for reported AID performance at the time. 

In a head-to-head test of commercially available AVID systems at the time, (Prevedouros et 
al., 2006) compared the performance of commercially installed Autoscope, Citilog, and Traficon 
systems in a freeway tunnel. The results were mixed, at best, with the authors citing reliability prob-
lems and wide-ranging false alarm and detection rates that were dependent on traffic state and, in 
particular, environmental conditions such as darkness, glare and other factors. They recommneded 
that the AVID systems evaluated needed further development and that their most useful application 
was for the detection of objects (i.e., debris) in lanes. 

Margulici and Chiou (2007) performed a head to head test on the Citilog and Econolite AVID 
systems circa 2005. They found that Citilog and Econolite achieved incident detection rates of 
86% and 81% respectively with false alarms rates of 14% and 19% respectively. They also found 
that the performance of the systems degraded significantly with weather and traffic conditions and 
suggested that careful camera placement could mitigate some of these factors. 

Shehata et al. (2008) discuss environmental challenges for AVID. They specifically analyze 
two unnamed commercial systems deployed in two different cities for false alarms due to shadows, 

18 



Name DR (%) TTD (min) FAR (%) FAR basis Installations Projected SLC𝑎 

Network false 
alarms per hour 

APID 86 2.50 0.05% Calc Toronto, Boston 7.74 
DES 92 0.70 1.87% Calc Toronto 289.48 
ARIMA 100 0.40 1.50% Calc Laboratory 232.20 
Bayesian 100 3.90 0% n/a Laboratory 0.00 
California 82 0.85 1.73% Calc California, 

Chicago, Texas 
267.80 

Low-Pass Filter 80 4.00 0.30% Calc Laboratory 46.44 
McMaster 68 2.20 0.0018% Calc Minnesota 0.28 
Neural Networks 89 0.96 0.012% Calc Laboratory 1.86 
SND 92 1.10 1.30% Calc Not Known 201.24 
SSID 100 - 0.20% Calc Laboratory 30.96 
TSC #7 67 2.91 0.134% Calc California, 

Chicago, Texas 
20.74 

TSC #8 68 3.04 0.177% Calc California, 
Chicago, Texas 

27.40 

Video Image Pro-
cessing 

90 0.37 3.00% Tot France 0.03 

Cellular Tele-
phones 

100 - 5.00% Tot n/a 0.005 

Table 3 Reported performance of AID algorithms circa 2001 (Martin et al., 2001). 
NOTE: (𝑎) Projected false alarm rates for Salt Lake City network. 

snow, rain, and glare. One city had a tunnel monitoring system with a FAR of 25%, of which 
90% were due to static shadows in the scene. The second city had an installation of 6 cameras that 
were used for AID. The FAR of this system ranged from 48-80% depending on the camera. These 
false alarms were caused in roughly equal proportion by static shadows, snow/rain, glare, and other 
causes, though the specifics varied with the season. Noting the poor performance of these systems, 
the authors provide an in depth review of research and strategies for improving performance under 
various conditions. They recommend a number of approaches including incorporating atmospheric 
optics, employing multiple cameras, the use of hyper-spectral imaging, and the development of 
custom algorithms for each environmental condition. 

In their review of AID methods employed in Australia, Luk et al. (2010) note that installed 
AVID systems had high false positive rates, particularly in tunnel installations: 
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Video equipment for monitoring and incident detection has been installed in most tun-
nels in Australia. The video incident detections are prone to high FAR because of environ-
mental conditions (rain, wind and shadows) or reduced effectiveness because of visibility 
constraints (fog, night-time). 

The authors go on to offer some specific recommendations for AID installations that generally 
apply to AVID, including “target values for calibration and operation of DR 80%, FAR 1% and 
MTTD 5 min.” 

Huang and Buckles (2012) evaluated the deployment of low cost cameras for traffic monitoring 
in Texas. Much of the focus of this effort was on designing the communications systems for wireless 
transmission of video signals. Significant discussion is given to the tradeoffs between video quality 
and communications bandwidth, which may be of use in the development of CCTV infrastructure in 
areas lacking sufficient communications infrastructure. Only limited AVID analysis was performed 
on detection of stopped vehicles using the commercial Abacus from Iteris and a custom TxDOT 
AVID system. During the test, only a single stopped vehicle event occurred, which was detected by 
Abacus system and no false alarms were noted in this test. 

Simpson (2013) evaluated a number of commercial detection systems for wrong way vehicle 
detection on freeways in Arizona that included microwave, radar, and video (visual and thermal) 
systems. Though the specific vendors weren’t specified, the results were sufficiently positive for 
them to recommend a combined approach using redundant systems to account for failed detections 
and false alarms. 

Preisen and Deeter (2014) summarize the results of a pooled fund study of traffic VA for data 
collection and incident detection in Ontario, Canada as well as Iowa and Missouri. Systems evalu-
ated included a thermal camera from DRS Technologies, Inc, the Abacus Video Analytics system 
from Iteris, Inc., an on-site Video Analytics system from Peek Traffic Corporation, the TrafficVision 
system for traffic data collection and incident detection, and the ENTERPRISE Next Generation 
Traffic Data and Incident Detection from VideoIQ. In addition to considering general VA applica-
tions, they define the Operational Concept for automated incident detection alerts in the TMC from 
VA. They specifically note the importance of camera coverage to capture the highest percentage 
of incidents possible while mitigating environmental effects on AVID performance. They make a 
qualified recommendation that VA is ready for practical application: 

Video Analytics demonstrated that with proper location and configuration, detection 
of stopped vehicles and/or debris in roadway can have minimal false positives or ‘false 
alarms’ (as few as 0% false alarms), however the camera site is critical to achieve this. Slow 
traffic detections were found to have higher ‘false alarm’ rates. In addition, Video Analytics 
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demonstrated that it can be effective in supplementing existing mechanisms for incident 
detection (e.g. detecting/alerting operators of incidents they were not already aware of.) 

Ultimately, they conclude that commercial AVID technologies are viable as long as agencies 
and vendors agree to parameters defining acceptable performance and to on-going calibration and 
configuration that meet those standards. 

Ishak et al. (2016) evaluated a number of commercial systems for performing traffic counts 
using existing video detection cameras installed at intersections in Baton Rouge, LA. The study 
performed manual counts at 20 intersections and compared them to counts determined by previ-
ously installed Econolite Autoscope systems using Multiple Logistic Regression and t-tests. Their 
findings showed that VA counts at 40% of the intersections showed statistically significant differ-
ences from the manual counts, which they attributed to poor calibration and maintenance. Thus, as 
with the pooled-fund study mentioned above, they recommended regular re-calibration of installed 
systems to maintain performance levels. Since these re-calibrations generally require vendor activ-
ities, they should be included in any service contract or budgeted for separately by the agency. 

Bommes et al. (2016) offer a comprehensive review of video applications for ITS. In regard 
to AVID, they note Traficon (Versavel, 1999) and Autoscope (Michalopoulos, 1991a) as specific 
commercial products (without critical review) as well as the academic work of Shehata et al. (2008) 
and Fishbain et al. (2009). They conclude with the assessment that many traffic systems have a large 
number installed cameras that are not currently used for VA or AVID, which is a missed opportunity. 
They further suggest that temporary AVID installations in work zones would be particularly useful 
due to the greater potential for incidents. 

Kim et al. (2017) offer a recent review of video analytics for traffic incident detection and 
vehicle counts. Much of their focus is on the factors that influence performance of video traffic 
analytics systems. Optimal placement varies with the specific technology and application, though 
camera heights of 30-60 feet were typical. Unsurprisingly, the quality of the video feed also was 
shown to have significant impact on the performance of the systems. Modern installations using 
high definition internet protocol (IP) cameras will likely provide suitable performance for modern 
commercial AVID systems, but the prevalence of legacy low-definition analog cameras in a par-
ticular deployment will be a factor in a system’s ultimate performance. Numerous studies in their 
review also noted performance variation across lanes in traffic measurement applications. Based 
upon these findings, they performed a pilot study using an unnamed testbed involving 315 cameras 
and selected 21 for analysis using three different video quality settings. Incidents were identified 
for analysis using TMC logs to provide ground truth data. The system was capable of identifying 
incidents caused by wrong-way vehicles; stopped vehicles (using thresholds); congestion (using 
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thresholds); slow speeds, and pedestrians. The results show the system’s sensitivity to video quality, 
ranging from (DR=25%, FAR=30.9%) for lower quality video (bitrate <100 kbps) to (DR=80.4%, 
FAR=8.9%) for higher quality (bitrate >1000 kbps). The authors analyze the specific characteristics 
for both undetected incidents and false alarms. The false alarms were determined to be caused pri-
marily by environmental conditions as well as by the camera being moved out of the preset position 
for which calibration was performed. They attributed the bulk of the undetected incidents to road 
markings (a cross-hatched gore point) confusing the algorithm. 

A 2017 New South Wales government report on AID and and AVID made the following rec-
ommendations when considering AVID deployments: 

Lighting is also an important consideration for use of AVID systems. In open air en-
vironments, AVID reliability for detection of incidents on sections with changing lighting 
conditions (ie areas that are regularly in shadow) may be limited. Operational measures 
may need to be taken to instruct the system not to detect incidents at those locations and 
prevent a high false alarm rate; however this will result in AID blind spots on the network. 
(NSW Government, 2017) 

7.3 Commercialized Technology Summary 

The common capabilities of today’s commercial VA and AVID systems are shown in Table 4 and 
include a broad range of capabilities. However, Wan et al. (2014) note that commercial offerings 
tend to be tailored to specific tasks rather than general purpose tools. This can be seen in the context 
of AVID in which specific products are designed to identify distinct incidents: 

• Wrong-way driver (e.g., Traficon’s VIP/D) 

• Stopped vehicles (e.g., Econolite’s Autoscope Solo Terra) 

• Roadway debris (e.g., Iteris’s Abacus). 

As such, video processing systems come in a variety of forms including standalone integrated 
camera/analytics units, rack-mounted video processing hardware designed to process video streams 
provided by existing feeds and/or non-analytics units, and software solutions for accessing analytics 
and event data from existing video feeds. The most mature vendors offer products in all of these 
categories. 
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Traffic Data and Monitoring 
Speed Speed of individual vehicles 
Volume The number of vehicles per time unit per lane 
Occupancy The average number of vehicles per lane 
Traffic Flow Total number of vehicles summed over all directions 
Density The density of vehicles per lane 
Headway Distance between vehicles 
Gap time Time distance between vehicles 
Counts Number of vehicles passing over a detection zone 
Queue length The length of the queue formed by waiting vehicles 
Turn counts The number of turns occurring at intersections 

Automatic Event Detection 
Congestion Congestion level 
Stopped vehicles Vehicles stopped on roadside 
Slow/fast drivers Speed not within nominal bounds 
Wrong-way drivers Wrong way 
Pedestrians Pedestrians on roadway 
Debris Trash or fallen objects 
Fire/smoke Fire or smoke in tunnel 
Accident Recognition Recognition of vehicle collision 

System Technical Alarms 
Image Quality Image quality is not sufficient for viewing or processing 
Camera Movement Camera’s instability affects the quality of video output 
Video Failure No video output 
PTZ out of home PTZ camera is not focusing on right scene 

Table 4 Typical features of commercial video analytics systems (Huang and Buckles, 2012) 

We reviewed a range of video-based technologies available in the market based upon our research, 
including capabilities and the ability of these systems to potentially meet the AVID requirements. 
We performed a limited survey of standalone cameras for traffic monitoring as well as a number of 
cameras with embedded analytics based upon a review of the literature and known product lines. 
Because Caltrans District 12 made a commitment to camera hardware at the start of the project, this 
review was discontinued. Table 5 summarizes the standalone cameras identified during the review 
and Table 6 summarizes the cameras that incorporate embedded analytics. 
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Company Product Notes 

Flir ITS Series 
Peek Traffic Color Video Detection Camera 
COHU 3960/3920 Analog 
Pelco ESPRIT/Spectra IV [SE(35X)/SL] Analog 

Vicon Industries SVFT-PRS23 Analog 
Elmo ESD-380DR PTZ Camera Analog 
Iteris Vantage RZ4 Analog 

COHU 39803960/3960HD/3940 Network 
Indigo Vision 9000 PTZ IP Dome Camera (36X) Network 

JVC VN-V686WPBU Network 
Axis Q6032-E / 233 / 232D+ Network 

Bosch AutoDome 300 Series Network 
American Dynamics VideoEdge IP SpeedDome Network 

Panasonic WV-NW964 Network 
CP Technologies FCS-4200 Network 

Inscape Data NVC3000 Network 

CP Technologies FCS-4100 Network 

Sony SNC-RZ50N Network; requires housing 

Vivotek SD7313 Network 
Axis 213 PTZ Network; requires housing 
ACTi CAM-6610 Network 
Canon VB-C60/VB-C50iR Network; requires housing 
PiXORD P-463 Network; requires housing, dome 
PiXORD P-465 Network 
Advanced Technology IPSD518S Network; requires housing 

Vivotek SD7151 Network 
Sony SNC-RZ25N Network; requires housing; web 

interface 
Toshiba IK-WB21A Network; requires housing 
CNB ISS2765NW/ISS2765PW Network 

Table 5 Examples of commercial standalone cameras without analytics. 
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Company Product Notes 

Flir (2017a) ITS Series-AID Thermal imaging camera with embedded AID for 
stopped vehicles, wrong-way drivers, pedestrians, 
debris in lanes 

Flir (2017b) ITS Series-Dual AID Camera plus thermal imaging providing AID for 
stopped vehicles, wrong-way drivers, pedestrians, 
debris in lanes 

Flir (2017c) Traffibot HD Embedded AID analytics as well as multi-stream 
encoding providing AID for stopped vehicles, 
wrong-way drivers, pedestrians, debris in lanes 

Citilog (2017d) XCam-Edge-AID Embedded AID for stopped vehicles, congestion, 
pedestrian, wrong way and slow vehicles, and debris 

Peek Traffic (2017c) VideoTrak XCam Supports AID for slow and stopped vehicles and can 
discriminate between fluid and congested traffic 

Peek Traffic (2017b) VideoTrak IQ Limited to vehicle presence detection—primarily a 
replacement for intersection presence detectors. 

Peek Traffic (2017a) Unitrak Coupled camera and video detector card designed for 
presence detection at intersections. Discontinued. 

Table 6 Examples of standalone cameras with analytics. 

The camera-based units noted above may be relevant to Caltrans districts that are looking to de-
ploy new hardware in the field. However, for those that already have substantial investment in 
CCTV deployments, off-camera systems may be a more compelling choice. Table 7 summarizes 
the commercial rackmount video analytics systems we identified. These systems are standalone 
hardware-based units that are designed to analyze video streams from multiple video feeds obtained 
from independently installed cameras. 

Company Product Notes 

Iteris (2017) VersiCam Intersection and workzone detection (no AID) 

Flir (2017d) VIP-T/VIP-IP/VIP-HD integrated automatic incident detection, data collection, 
recording of pre and post incident image sequences and 
streaming video in one board 

Table 7 Rackmount analytics systems. 

Finally, Table 8 summarizes software-based AVID solutions that are designed to operate on work-
stations or in cloud systems to provide VA and AVID analysis that can be integrated into existing 
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Advanced Transportation Management Systems (ATMS) installations. These systems are most 
consistent with the original goals of this project because the Caltrans District 12 TMC has a mature 
ATMS with existing hardware in place. 

Company Product Notes 

Citilog (2017b) SmartTraffic-AID, SmartTraffic-i, 
SmartTraffic-ww 

Software AID that can be installed 
on capatible cameras to detect 
incidents and wrong way vehicles 

Citilog (2017c) VisioPaD+ Software AID that can run on 
Windows systems using existing 
hardware. Use existing PTZ 
cameras to perform AVID that can 
detected stopped vehicles. 

Citilog (2017a) MediaRoad Software AID that can run on 
Windows systems using existing 
hardware. Incidents detected 
include: Stopped vehicle 
Congestion, Pedestrian, Wrong way, 
Slow vehicle 

Kapsch (2017) DYNAC Full ATMS product includes CCTV 
AVID solutions as a component. 

Trafficvision (2017) TrafficVision Software solution; provides data on 
lane occupancy rates, average rate 
of speed and incident detection of 
stopped vehicles, wrong-way 
vehicles, vehicle congestion, 
pedestrians in the road and slow 
speeds below a specified threshold 
for a specified duration 

Telegra X-AID (2017) X-AID Reported Detection Rate: 95%; 
FAR: 0.72/day; Incidents detected: 
wrong-way Driving, Slow/Stopped 
Vehicle, Traffic 
Slowdown/Congestion, Pedestrians, 
Reduced or Loss of Visibility 
(smoke, fog, etc.), Debris on the 
Road, Dangerous Driver Behavior 

Table 8 Software-based AVID. 
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7.4 Discussion and Synthesis 

Our review of AVID technology identified a number of considerations for agencies considering 
deployments. The challenges associated with these systems include: 

• Tradeoffs between FAR, DR, and MTTD: as noted Section 6 and in Figure 2, time to detec-
tion will generally increase with improving detection rate and decreasing false alarm rate. The 
balance between these performance measures must be defined by the agency, though it’s worth 
emphasizing that a low FAR is particularly important for TMCs that are responsible for sizable 
networks as operator fatigue with high false alarm rates will invariably lead to AID systems 
being ignored. 

• Difficulty with particular environmental conditions: numerous reviewed studies noted how 
lighting (darkness, glare, shadows, etc.) and weather (rain, snow) degraded AVID performance, 
even in modern systems1. To mitigate these problems, careful calibration for camera-specific 
environmental conditions is required. 

• High need for calibration and maintenance: numerous reviews of practical deployments 
emphasized the need for ongoing calibration of AVID systems in order to achieve acceptable 
performance. 

• Coverage limitations: the calibration requirements and performance of AVID systems makes 
obtaining full coverage of all managed roadways a challenging proposition. This can be miti-
gated somewhat through prioritizing placement of cameras, but gaps will inevitably remain. 

Beyond the strict performance concerns are the range of costs associated with AVID systems. 
Up-front capital costs for camera hardware, communications infrastructure, and the AVID hard-
ware/software solution can be substantial, though these costs are coming down as the technology 
matures. Of equal concern are the on-going costs, which include maintenance of the infrastruc-
ture and communications systems along with the on-going calibration of installed systems and any 
licensing fees associated with the chosen product. 

The most fundamental takeaway is that no technologies available today are infallible for AID in 
general and for AVID in particular, so defining specific requirements up front is critical. The need 

1 This assessment was also offered during informal discussions with municipal agencies in Orange County operating video-based 
traffic signal detection systems. 
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for clear requirements is emphasized from the Pooled Fund study of Preisen and Deeter (2014) 
where they note: 

• A well scoped design, implementation, configuration, and testing phase allows the Video 
Analytics provider to configure and test selected cameras before realtime use; 

• All parties agree to reach a ‘go/no-go’ decision on each camera after testing occurs and 
false alarms are found to be minimal; and 

• There are provisions for periodic re-configuration of Video Analytics settings to ensure 
detections are appropriate (e.g. false positives are minimized). 

Netten et al. (2013b) provide an excellent guideline for formalizing such requirements and 
provide a sample for the AID use-case as shown in Table 9. Such qualitative assessments provide 
a means for specifying benefit bundles as a function of cost for particular use-cases. Candidate 
solutions can then be placed in a bundle category to simplify decision making. 

Table 9 Qualitative assessment of incident detection 
performance and costs (from Netten et al., 2013b). 

NOTES: (1) represents lane-level accuracy for incident detection; 
(2) Suitability is defined in terms of each specified use-case 
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8 New Data Sources 

Though traffic VA and AVID systems have largely matured in the marketplace, their shortcomings 
persist and will likely remain problematic in the long term—particularly issues related to cover-
age and environmental degradation in performance. It is therefore useful to consider alternative 
solutions that may supplement or supplant these systems. 

8.1 Aerial Monitoring 

Some recent consideration has been given to aerial monitoring of traffic networks in order to char-
acterize traffic conditions and incidents. Aerial monitoring removes some of the restrictions of 
fixed-point monitoring by allowing sensors or cameras to by dynamically positioned depending on 
need. Latchman et al. (2005) described a proof of concept for the Florida DOT using Unmanned 
Aerial Vehicles (UAVs) to monitor traffic, but the practical test was canceled due to concerns from 
the Federal Aviation Administration. 

More recently, Zhang et al. (2015) describe a routing model using UAV technology. They for-
mulate an optimization problem for using UAVs to fill in coverage gaps for a fixed-sensor network. 
Through theoretical studies of real networks in Sioux Falls and Chicago, they demonstrate the feasi-
bility of an optimal UAV routing algorithm to maximize observable network coverage over time and 
space subject to the operational constraints of the UAV. Results are not reported for conventional 
incident detection measures of DR, FAR, and MTTD. 

8.2 Social Media and Crowdsourced Data 

The explosion of ubiquitous computing is now so mainstream that mobile applications have suffi-
cient penetration to provide levels of high-fidelity data that have previously only been seen in spec-
ulative simulation studies. Today, however, Information Service Providers (ISPs) such as Waze, 
which began a two-way data sharing program with Caltrans in 2016 (Caltrans, 2016), have deep 
user bases and are generating significant amounts of data regarding disruptions to the traffic supply. 
One analysis showed that on a typical weekday, Caltrans TMCs will monitor roughly 3,400 inci-
dents whereas Waze users will report more than 64,000. This suggests great potential for what these 
new data sources can contribute with respect to system awareness for incident detection. However, 
it should be noted that the 3,400 incidents in the Caltrans system are vetted incidents that have been 
received and verified by TMC professionals. The Waze reports are crowd sourced data that have 
not been confirmed and likely contain many duplicates. In this sense, the Waze data serves as an 
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additional channel for incident notification, but may contain a significant number of false alarms 
and inaccurate data ranging from location (Talasila et al., 2013) to incident specifics. 

Gu et al. (2016) discuss using Twitter posts to identify incidents using natural language pro-
cessing. In an application using 2014 data from Philadelphia and Pittsburgh, a small sample of 
Tweets were shown to match most of the incidents identified through official sources. 

The range of new data with varying reliability made available by these new data sources imply 
a need for integrating these multiple disparate data sources with more conventionally trustworthy 
data via DF and analytics. A recent collection of articles Chowdhury et al. (2017) offers a good 
overview of the problem space and current approaches addressing these issues. 

8.3 Connected Automated Vehicles for Incident Detection 

Though the timelines vary from “it has already begun” to decades (USDOT, 2016), there is gen-
eral agreement that CAV are the future of transportation and that these changes are potentially as 
transformative (if not more so) than the introduction of the mass produced car a century ago. The 
imminent disruption introduced by private sector advances will require forward thinking transporta-
tion professionals who can balance the traditional conservatism of transportation engineering with 
a willingness to embrace these new technologies and their implications. 

Recognizing this coming change, the USDOT initiated development of the Connected Vehicle 
Reference Implementation Architecture (CVRIA) in parallel to the ongoing development of the 
NITSA and published the version 2.0 in 2015 (Sill, 2015) along with the USDOT’s ITS Strategic 
Plan (Barbaresso et al., 2014), which laid out the plans to merge the NITSA and CVRIA into a 
single Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT). 

Even as fleets of CAVs increasingly take to the roadways in coming years, traffic management 
systems will continue to play a critical role in managing the infrastructure and rights-of-way that 
these vehicles will rely upon. Recognizing this, TMCs should be able to tap into CAV deployment 
to support TMC functions. Further, the advancements in machine learning generated by CAV de-
velopment should be transferable to TMC technologies. The extent to which CAV systems to date 
already rely upon processing of video and various range-finding technologies suggests a number of 
directions that video-based machine learning from CCTV should benefit. 

It is certain that OEMs will continue to develop vehicles with vision/sensor-based logic for col-
lision avoidance (initially) and full autonomy (eventually). As this machine intelligence increases in 
sophistication, it’s reasonable to assume that these systems will be characterizing particular classes 
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of disruption (collision, debris, animal/pedestrians in the roadway, uneven road surface etc) in or-
der to act on them properly. Once they can classify them it would be relatively simple to share 
these characterizations via connected technology to the TMC or other ISP. In a sense, this is just an 
incremental change from the use of social media for incident reporting. The only difference is that 
the vehicle Artificial Intelligence (AI) is assessing the scene and reporting it rather than a human 
driver. This is likely to result in more consistent characterization of disruptions and also simplify 
the handling of reports by the TMC since the reports will be more structured. 

The impact of CAV on the development of AID has also been anticipated in the literature. In an 
early study related to mobile reporting, Skabardonis et al. (1998) analyzed Caltrans incident logs 
to study the impact of (manual) cell-phone reports on incident detection. Even in this relatively 
early era for cellphone market penetration, they found that cellular phones detected 38% of 264 
lane-blocking incidents during the period with a FAR of 7%, with roughly 1/3 of the cell-phone 
reports capturing incidents not reported by the CHP. 

More directly, Cheu et al. (2002) describe an early incident detection algorithm from FCD that 
compares directly measured section travel times to historical means via statistic testing to identify 
the likely onset of non-recurrent congestion. In a simulation-based evaluation, they note the rela-
tionship between the penetration rate and performance in terms of DR and FAR. They conclude that 
an instrumented vehicle penetration rate of 50% is necessary to achieve comparable performance 
to the best ANN system of the time (Ritchie and Cheu, 1993). 

(Jerbi et al., 2007) describe a comprehensive “infrastructure-free” traffic information system 
whereby the collective of vehicles share information amongst each other using pervasive commu-
nications to develop a distributed database (Marca et al., 2006, propose a similar concept). Though 
the system doesn’t explicitly identify incidents, it does provide decentralized guidance to all ve-
hicles in the system based upon a shared knowledge base of traffic conditions. It is reasonable to 
extend this concept to identify incident conditions, with the TMC tapping into the collective data-
base via roadside units or a cloud-based “blackboard” representing the collective knowledge of the 
system. 

Abuelela et al. (2009) focused on identifying incidents based upon vehicle lane-changing be-
havior reported to roadside units and applying a Bayesian approach to identify incidents. In this 
research, they specifically focus on identifying incidents occurring under low-congestion condi-
tions that ILD-based algorithms may struggle to identify. Based upon simulation modeling, they 
report that for moderate demand conditions of 900 vph/ln and 70% market penetration of reporting 
vehicles, the system can obtain 100% DR with 0% FAR with a MTTD around 3-minutes. 
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White et al. (2011) describe exactly such a system using smart-phone accelerometers to identify 
when a vehicle is involved in an incident and to provide automatic notification to first responders and 
by extension, the TMC. The authors note the existence of commericial systems providing similar 
capabilities, such as GM’s OnStar, but argue that such systems are not pervasive and are expensive. 
Their smartphone based system taps into hardware that is common today to extend the capability to 
any car with an occupant carrying a mobile phone. This study is an interesting proof-of-concept, but 
does note how the lack of standards arising from bottom-up consumer-driven purchases complicates 
the problem of building an incident detection system from vehicle- or person-based technologies. 

Khorashadi et al. (2011) describe a two-phase system that combines vehicle-based assessment 
of changing traffic conditions to identify incidents with a voting system facilitated by Vehicular 
Ad-hoc NETworks (VANET) to develop a consensus regarding incident likelihood. Simulation 
results show that with an equipped vehicle penetration rate of 25% the system achieves 100% DR 
with a 0.046% FAR, effectively outperforming all other loop-based AID as well as AVID systems 
as reported in an evaluation performed by Martin et al. (2001). 

Bauza and Gozalvez (2013) describe a cooperative traffic detection system similar to Kho-
rashadi et al. (2011). This system uses the equivalent of a Dedicated Short Range Communications 
(DSRC) Basic Safety Message (BSM) to report vehicle trajectories to roadside beacons. These data 
are used to estimate the traffic state in terms of speed and density, which are then converted to a pre-
diction that an incident is occurring using fuzzy logic rules. If this occurs, the system polls nearby 
vehicles using multi-hop communications for their assessment of incident conditions to develop a 
consensus. Via simulation study, they report incident detection performance of severe incidents 
ranging from (64% DR, 45% FAR) to (90% DR, 13% FAR). 

Smith (2015) describe a smartphone application that performs DF of incident reports from a 
variety of public and social media feeds to provide incident conditions to drivers. Testing of the 
system in four metropolitan areas in the United States showed FARs ranging from 21.5% to 8.7%. 
They do not report statistics for DR. 

Baiocchi et al. (2015) describe an incident detection system using VANETs that transmit FCD 
to roadside beacons. These data are incorporated into a speed threshold-based incident detection 
algorithm whereby slow vehicles are essentially treated as voters indicating incident conditions. 
Using a simulation study of Rome, Italy, they report that with an equipped vehicle penetration rate 
of 50-75% they achieve a 98% DR with a MTTD of 47𝑠 (and a maximum of 2 minutes). 

Salem et al. (2015) describe a system that uses Bluetooth sensors to estimate traffic conditions 
over time, using Markov chain analysis to produce course estimates of incident conditions. Field 
tests were promising, but too limited to generalize. 
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Asakura et al. (2015) propose two algorithms for incident detection using FCD combined with 
traffic models based upon bottleneck and shockwave analysis respectively. Simulation analysis 
showed some promise for the algorithms for low vehicle penetration rates, but more work is needed 
to lower MTTD. 

Park and Haghani (2016) propose a Bayesian Neural Network (BNN) model to detect secondary 
incidents using road segment speed data obtained from cellular phones and other sources via the 
commercial INRIX system. Performance analysis shows FAR in the 10-20% range (though perfor-
mance varies over time). Neither MTTD nor DR is specified. However, this system offers some 
unique structures tailored to the analysis of secondary incidents that may be of interest. 

Similarly, Asakura et al. (2017) propose an AID that relies on FCD computed from Global Posi-
tioning System (GPS) trajectories and then applying two different algorithms to identify incidents. 
The first uses flow rate and travel time differences between adjacent sections to identify incidents. 
The second uses trajectories to estimate shockwaves that imply incident conditions. Using simu-
lation analysis, they show that with a probe penetration rate of 10%, they were able to achieve a 
58.1% DR with a FAR of 0.014% and a MTTD 11.3 minutes. 

Khan et al. (2017) estimate traffic state using connected vehicle data (headways, stops, and 
speed) to estimate density and map this to Level-of-Service (LOS). This approach could identify 
incidents by identifying deviations from typical conditions, but no practical deployment has been 
performed. 

Thomas and Vidal (2017) propose an incident detection system based upon passive traffic in-
formation from smartphone application data using a number of supervised learning classifiers that 
include Logistic Regression (Bishop, 2006) along with the two ensemble methods: a bagging clas-
sifier of logistic regression (Breiman, 1996) and an adaBoost classifier (Drucker, 1997). All of these 
algorithms were applied using a standard software library (scikit-learn, 2017). Simulation results 
using the idealized NetLogo Traffic 2 Lanes model (Wilensky and Payette, 1998) were mixed, with 
the DR in the 70-80% range and FAR in the 10-20% range. 

Beyond these existing cases, there is clearly significant potential in combining the machine intel-
ligence being integrated into modern vehicles with connected vehicle technology (either short-range 
or network communications) to decentralize detection and identify locations in the system in need 
of active monitoring by TMC personnel. Just as important is the notion that increasing intelligence 
embedded into the vehicles will produce detailed and continuous assessments of system perfor-
mance. As demonstrated by the review above, the concept of vehicles as probes for collecting sys-
tem data has been around since the advent of modern traffic management, but it is only in the very 
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recent CAV advancements that the full capabilities of autonomous vehicles assessing their environ-
ment are becoming clear. We now can realistically anticipate vehicles reaching level-5 autonomy 
in which vehicle computers manage all aspects of the “dynamic driving task” in all conditions such 
that all humans are effectively passive passengers (see Figure 3). Based upon this, it is reasonable 
to assume that the developing intelligence of autonomous vehicles will include the ability to detect 
and identify a range of disruptions to the normal driving environment that are the common targets 
of AVID, such as disabled vehicles, debris in the roadway, pedestrian or other encroachment into 
the right-of-way, and so on. Add in the presence of pervasive connectivity that is anticipated to 
arrive even sooner—whether that is via DSRC, a 5G technology such as Cellular V2X, or some 
as-yet undeveloped system—it is highly likely that autonomous vehicles will actively identify and 
share high-fidelity assessments of disruptions to each other and to the system operators. 

Figure 3 Five levels of Autonomous Vehicles (SAE International, 2017) 

Indeed, the aforementioned RAIDER program considered this issue specifically for improving in-
cident detection in Europe (Netten et al., 2013a). This project identified a range of new technolo-
gies likely to become available for incident detection including new roadside technologies (such as 
Bluetooth detection and DSRC), nomadic devices (vehicles as probes), and cooperative systems in 
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which CAVs identify incident conditions and report them to the managing agency. The new roadside 
technologies are likely to provide incremental benefits, but will not solve the common problems of 
infrastructure-based solutions to incident detection: high agency cost, coverage problems, low-fi-
delity data. On the other hand, the nomadic systems providing direct traffic stream data has near 
term potential for new incident detection algorithms. More significantly, cooperative systems, in 
which intelligence is embedded in the vehicle for incident detection that is then shared with agen-
cies, have revolutionary potential for providing real-time system awareness to agencies. A decade 
ago, this type of system might have seemed unrealistic. However, the development of autonomous 
vehicle technologies is rapidly increasing vehicle intelligence. Since these vehicles must identify 
anomalies to navigate the complex traffic environment, their internal logic will necessarily be able 
to characterize various types of disruption. Burgeoning connected vehicle technology—whether 
roadside or network-based, will provide ready channels for sharing this information. Indeed, this 
type of sharing is already happening via social media and phone applications. The difference with 
the next generation of fully cooperative systems is that the intelligent assessment of incidents and 
hazards will come from in-vehicle systems rather than human assessment. 

9 Integrating Incident Detection into the TMC 

Given the rapidly evolving machine learning capabilities embodied by CAV and big data develop-
ments, TMC operators should focus their system improvements in a manner that couples the best 
characteristics of existing technology with new technologies that have the highest potential for ben-
efit. There is clear value in infrastructure-based CCTV as a tool for remote assessment of traffic 
conditions from the TMC. However, the cost/benefit of AVID should consider how these other tech-
nologies may provide similar assessments that perform better in all environmental conditions and 
provide complete coverage of the network. 

Furthermore, it is clear that the TMC’s role will change with increasing penetration of CAVs 
and their supporting technology. Fundamental questions remain unanswered: 

• How can the TMC access the data streams being generated by individuals and their service 
providers to obtain better information about the system? 

• How can the TMC use and manage the extreme amounts of data arising from CAV and the 
intelligent Internet of Things (IoT) infrastructure? 

• Are CAV part of the control system, assets to manage indirectly as they have been convention-
ally, or some combination of the two? 
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One thing we can say is that the specific technologies that will dominate the transportation sys-
tem in the coming decades cannot be known with certainty. Managers of the system will be best 
served by understanding the functional capabilities of potential technologies and building systems 
to integrate those capabilities should they become a reality. This flexibility is especially valuable 
in a time of technological transition when organic coordination maximizes adaptability to change 
(Utterback, 1994). The ARC-IT (Iteris, Inc., 2017) is providing this functional structure and in-
cludes TMC incident detection as a core functional object. It therefore serves as a good starting 
point for answering these questions. However, it does not explicitly consider how new technologies 
from the Internet of Things (IoT) and CAV landscape can service those functions, probably due to 
their relative immaturity for traffic applications. Thus, the question remains of what is the best way 
to leverage these capabilities and incorporate them into operations. 

El Faouzi et al. (2011) provide a highly cited review of integrating ITS data streams into TMC 
operations that focuses on data fusion techniques. They break down the prevailing fundamen-
tal multi-sensor DF methods into statistical (multivariate analysis and data mining), probabilistic 
(Bayesian and other probabilistic techniques), and AI approaches (ANN, evolutionary algorithms, 
etc). However, they point out that data fusion in complex systems, such as traffic networks, re-
quires a layered approach—specifically noting the contributions of the defense industry in the area. 
They describe five levels of fusion for transportation that characterize the development of complete 
situational awareness of the managed system: 

1. Level 0: pre-processing data from each source to common formats and representations; 

2. Level 1: gathering data from all sources into a common framework for analysis; 

3. Level 2: state estimation using Level 1 data sets and other institutional knowledge; 

4. Level 3: incident/event identification and processing in the context of state estimation; and 

5. Level 4: continual refinement and integration of new information 

Modern TMCs generally perform some version of each of these levels of fusion. However, 
the traditionally siloed nature of traffic data analysis systems adds to the challenge of integrating 
disparate data sources into a global picture. Improvements to Level 0 and Level 1 processing to 
emphasize consistency in how data represent the system is critical. Here, standards such as the 
ARC-IT are critical for guiding this process such that heterogeneous products can be combined 
into a functioning whole. 
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Level 2 state estimation is still in its adolescence—particularly in the TMC. Augmenting data 
from traditional point sensors with new sensors including VA systems, FCD, social media and 
other public sources, and cooperative CAV systems will surely lead to advances. Furthermore, as 
the extensive review in this report shows, the Level 3 goal of incident identification is feasible using 
a variety of technologies with the ultimate solution likely to require leveraging the strengths of a 
combination of technologies in order to meet the operational goals of the TMC. 

The as-yet-unsolved challenge is how to effectively achieve these goals incrementally. Un-
doubtedly, success will require systems engineering by creative professionals who can envision 
the possibilities of new data sources. This need is echoed in Kergaye et al.’s (2014) review of TMC 
operations across the country in which they note the importance of hiring a systems engineer “to 
ensure compatibility between ITS components and overall systems architecture.” 

10 Conclusion 

This report has provided a broad review of technologies for improving the TMC’s situational aware-
ness of the transportation system with a particular focus on incident detection in general and AVID 
in particular. We have considered the general characteristics of incident management and noted the 
fundamental importance of quick incident detection to support rapid mitigation of disruptions in 
order to maintain the efficiency and safety of the system. Detailed reviews of a range of conven-
tional and automated detection methods, including a number of field evaluations show that AID 
is an achievable goal. However, there is no single solution that can provide globally satisfactory 
performance on its own. As such, TMCs should continue to explore the possibilities of new data 
streams that will become available with the transformation of the vehicle fleet with connected and 
automated vehicle technologies. 

We offer the following recommendations for the development of situational awareness capabil-
ities in the TMC that can effectively identify incidents in order to initiate effective responses. 

• Sensor-based AID technologies have been repeatedly shown to be effective in theory but 
widespread practical deployments are limited. It is possible that in live management settings, 
sensor-based AID algorithms do not provide a sufficient upgrade over manual monitoring of 
sensor data and incident notifications received through other channels, making the benefit/cost 
unattractive to TMCs. 

• AVID technologies can perform well under specific conditions though environmental per-
formance degradation and coverage issues mean that deployments should be selected carefully 
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to maximize effectiveness. In many cases, TMCs already have CCTV installations, so AVID 
systems can enhance the value of existing capital expenditures. The systems also have the ad-
vantage of offering a mechanism for rapid incident verification through manual control of the 
camera once an automated alert is received. 

• Specification of system performance expectations is critical. This specification should be 
specifically aware of how additional information can be incorporated effectively into existing 
TMC processes in order to justify the deployment as well as provide mechanisms for post analy-
sis to provide ongoing calibration and refinement. 

• Calibration and refinement are critical to success. Multiple evaluations reviewed empha-
sized the need for on-front and ongoing calibration and refinement in order to maintain system 
performance. Changes to the transportation infrastructure, seasonal variations, and other dy-
namic changes can all degrade installed systems over time. Systems that use machine learning 
and self-calibration techniques should be prioritized as these will minimize ongoing mainte-
nance costs. 

• TMCs should make Data Fusion and multi-technique machine learning the fountainhead 
of TMC intelligence. The performance of individual incident detection technologies, whether 
based upon traditional point sensors, FCD, AVID, or CAV show a range of strengths and weak-
nesses with respect to the tradeoffs between DR, FAR, and MTTD. Thus, TMCs would be best 
served by employing multiple methods and merging them into a broader situational awareness 
via DF algorithms that combine the best characteristics of learning algorithms with local knowl-
edge to maximize applicability to real-time management. 
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