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Chapter 1. Introduction 
The Pedestrian Safety Improvement Program is an effort of the California Department of Transportation 
(Caltrans) to identify and address systemic problems of pedestrian safety in California, with the long-term 
goal of substantially reducing pedestrian fatalities and injuries in California. The efforts and findings 
presented in this report reflect the work of a team of experts in traffic engineering, transportation 
planning, public health, geographic information systems, and urban design from the UC Berkeley Safe 
Transportation Research & Education Center. 

The effort is well-timed. Available data indicate that pedestrians are 37 times more vulnerable than the 
rest of roadway users in California—that is, they suffer 37 times more injuries than they inflict on others. 
Additionally, while California has seen major gains in traffic safety over the last few years, these gains 
disproportionately reflect improvements in passenger vehicle safety. For example, while there was a 
nearly 10% decrease in overall traffic fatalities from 2007-2016, the gains were mostly realized for 
motorized modes (19% reduction in fatalities) but pedestrian deaths increased by 33. If we compare 
trends from 2010 (the end of the most recent financial crisis) there is an overall increase across all 
fatalities of about 33%, but again, this reflects a 29% increase in fatalities of motorized modes and an 
increase of 44% for pedestrian fatalities. Thus, pedestrians need more protection and investment but 
receive less of both than motorized users. 

 
 

 
Figure 1-1. Fatal crash trends in California (2007-2016) 

 
 
This report represents an effort to provide the knowledge and identify the resources needed to address this 
imbalance between pedestrians and motorized roadway users in California. The approach presented here 
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is intentionally pragmatic, aiming not for an ideal plan, but for one that can help Caltrans and the State 
make gradual progress toward goals to improve pedestrian safety in California. 

1.1. Key Components 
The report is divided into three core chapters (excluding this chapter) that describe the overall project and 
findings. In particular, these chapters focus on three distinct focus areas pertaining to Caltrans’ pedestrian 
safety monitoring program: (i) pedestrian exposure modeling, (ii) contextualized hotspot development, 
and (iii) pedestrian safety toolkit development. Collectively, these three areas of emphasis balance the 
need for ready-to-use, user-friendly decision-support tools for identifying pedestrian high collision 
concentration locations (HCCLs) in the near term, while also making significant advances that lay the 
foundation for more statistically rigorous network screening approaches in future extensions of this work:  

Chapter 2 – Pedestrian Exposure Model describes the process to develop a pedestrian exposure model for 
the California State Highway System (SHS), explains the scope of the model in application to the SHS 
and summarizes the annual volume estimates.    

Chapter 3 – Contextualized Hotspot Clustering describes a clustering approach to develop a pedestrian 
crash typology for the state highway system and evaluates the distribution of the proposed crash types 
within the crash population as well as within pedestrian HCCLs. 

Chapter 4 – Pedestrian Safety Toolkit summarizes the enhancements made to the pedestrian safety 
monitoring report tool, along with the modifications made to the crash data import and SWITRS 
matching processes. 

Overall, this report represents a tremendous amount of analysis and exploration of pedestrian safety in 
California.  It is hoped that this analysis will provide Caltrans and stakeholders with the information they 
need to address current challenges and develop plans to continue progress in the future. 
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Chapter 2. Pedestrian Exposure Model 
Pedestrian volume data are important for safety analysis because they can be used as a basic measure of 
exposure at a specific location. For example, the relative risk of pedestrian crashes for people traveling 
along state highways can be estimated as the number of pedestrian crashes per million pedestrian 
crossings. Further, using pedestrian volume as a variable in safety performance functions can show which 
roadway design features or other characteristics of a location should be modified to reduce pedestrian 
crashes and injuries. Volume data can also be used to identify how common pedestrian activity is on the 
State Highway System, indicating the importance of designing roadways for safe and convenient 
pedestrian access. 
 
It is impractical to count pedestrians at every intersection and along every segment of the 15,000-mile 
State Highway System on a routine basis. This problem can be addressed by applying statistical models to 
estimate volumes at specific locations. 

This chapter describes the process to develop a pedestrian exposure model for the California State 
Highway System. First, as described in the following section, we conducted a literature review of 
previous pedestrian models, the methods used, and potential explanatory variables. In the Model 
Development section, we describe the chosen explanatory variables, the processing of the count data, and 
the model estimation. The final section explains the scope of the model in application to the SHS and 
summarizes the annual volume estimates. 

2.1. Background and Literature Review 
This section summarizes existing research on pedestrian volume models, highlighting variables that could 
be used to estimate pedestrian volumes at specific locations on the California State Highway System. 
Existing literature includes pedestrian volume studies from California as well as other parts of North 
America. 

2.1.1. Previous Pedestrian Demand Models 
NCHRP Report 770 (1) provides a summary of pedestrian demand modeling research, highlighting three 
general categories of models that can provide facility-level volume estimates at roadway intersections and 
pedestrian network segments.  

• “Trip generation and flow” models. This approach estimates the number of pedestrian trips 
between small areas, such as block faces or pedestrian analysis zones. These models follow a 
traditional traveling modeling approach, since they estimate trip generation, trip distribution, and 
network assignment. Ultimately, trips assigned to the pedestrian network are totaled for specific 
roadway crossings and sidewalk segments. One study applied the traditional travel model 
approach to block-sized pedestrian analysis zones in central Baltimore (2), and a similar approach 
is being developed using small grid cell pedestrian analysis zones in Portland (3).  

• “Network simulation” models. This category of models, including Space Syntax, develops 
volume estimates for each part of a pedestrian network based on network characteristics such as 
connectivity and sight lines. In some cases, these network variables are combined with land use 
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variables to estimate pedestrian volumes (4,5). However, these models are often complex, take 
time, and require special programs time to apply.  

• “Direct demand” models. These models estimate pedestrian volumes along roadway segments 
and intersections using site and surrounding area characteristics. Street block face or mid-block 
count data have been used to model pedestrian volumes in New York, NY (6), Milwaukee, WI 
(7), and Minneapolis, MN (8,9). However, more recent direct demand pedestrian volume models 
have been developed from intersection crossing counts (10-17). Intersection crossing counts can 
provide a more direct representation of pedestrian exposure for safety analyses.  

We recommended the direct demand modeling approach for Caltrans because these models are simple to 
understand, do not require complex computer applications to execute, and are straightforward to apply. 
Typical steps used in the direct demand approach are listed below. 

1. Pedestrian counts are taken at a sample of locations in a community. These counts are often 
collected manually over short periods of time, but automated detection techniques that collect 
data over weeks, months, or even years can also be used.  

2. Short-period counts may be expanded to represent annual volume estimates (annual volume 
estimates can be compared with crash data that is reported on a yearly basis). 

3. The annual (or other duration) pedestrian volumes are used as the dependent variable in a 
predictive model. Statistical software is used to identify significant relationships between the 
pedestrian volumes at each study location and explanatory variables describing the characteristics 
of the study location (e.g., land use characteristics, transportation system features, demographic 
factors, or any other factors thought to be relevant to pedestrian volumes).  

Finally, the preferred statistical model equation can be used to estimate pedestrian volumes in other 
locations throughout the community.Error! Reference source not found.Error! Reference source not 
found.summarizes several recent direct demand pedestrian volume models. All were developed from 
counts collected within specific geographic areas, so they may not provide accurate pedestrian volume 
estimates in other communities. Many of these models are based on short counts (ranging from 2 to 12 
hours) and are only appropriate for estimating pedestrian volumes during the specific times of day (e.g., 
afternoon peak period) or seasons of the year when the counts were taken. However, models developed 
for San Francisco (16) and the California State Highway System (17) are based on counts that were 
extrapolated to annual volumes, so they produce estimates of full-year pedestrian volumes. Many early 
applications of this approach used linear regression modeling. While simple to understand, this approach 
can produce unrealistic, negative volume estimates, so most recent studies have used loglinear and 
negative binomial model structures.  
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Table 2-1. Direct Demand Pedestrian Volume Models 

General information Pedestrian Count Information Statistically-Significant Explanatory Variables Model Information 

Model 
Location Source 

Locations 
Used for 
Model 

Pedestrian Count 
Description 

Type of 
Count Sites 

Count 
Period(s) 
Used for 
Model Land Use 

Transportation 
System 

Socioeconomic 
Characteristics Other Model Output 

Model 
Type 

Charlotte, 
NC 

UNC 
Charlotte 
(Pulugurtha 
& Repaka 
2008) (10) 

176 Pedestrians 
counted each time 
they arrived at the 
intersection from 
any direction 

Signalized 
intersections 

7 am-7 pm • Pop. within 0.25 
mi. 
• Jobs within 0.25 
mi. 
• Mixed land use 
within 0.25 mi. 
• Urban residential 
area within 0.25 mi. 

• Number of 
stops within 
mi. 

bus 
0.25 

  Total pedestrians 
approaching 
intersections 
from 7 am to 7 
pm (shorter 
periods also 
modeled) 

Linear 

Alameda 
County, CA 

UC 
Berkeley 
SafeTREC 
(Schneider, 
Arnold, & 
Ragland 
2009) (11) 

50 Pedestrians 
counted every time 
they crossed a leg 
of the intersection 
(pedestrians within 
50 feet of the 
crosswalk were 
counted) 

Signalized 
and 

unsignalized 
arterial and 

collector 
roadway 

intersections 

Tu, W, or 
Th: 12-2 
pm or 3-5 
pm; Sa: 9-
11 am, 12-2 
pm, or 3-5 
pm 

• Population within 
0.5 mi. 
• Employment 
within 0.25 mi. 
• Commercial 
properties within 
0.25 mi. 

• BART (regional 
transit) station 
within 0.1 mi. 

  Total pedestrian 
crossings at 
arterial and 
collector 
roadway 
intersections 
during a typical 
week 

Linear 

San 
Francisco, 
CA 

San 
Francisco 
State (Liu 
& Griswold 
2009) (12) 

63 Pedestrians 
counted each time 
they crossed a leg 
of the intersection 
(no distance to 
crosswalk 
specified) 

Signalized 
and 

unsignalized 
intersections 

Weekdays   
2:30-6:30 
pm 

• Population density 
(net) within 0.5 mi. 
• Employment 
density (net) within 
0.25 mi. 
• Patch richness 
density within 0.063 
mi. 
• Residential land 
use within 0.063 mi. 

• MUNI (light-rail 
transit) stop density 
within 0.38 mi. 
• Presence of bike 
lane at intersection 

 • Mean slope 
within 0.063 
mi. 

Total pedestrian 
crossings at 
intersections 
from 2:30-6:30 
pm on typical 
weekday 

Linear 

Santa 
Monica, CA 

Fehr & 
Peers 
(Haynes et 
al. 2010) 
(13) 

92 Pedestrians 
counted each time 
they crossed a leg 
of the intersection 
(no distance to 
crosswalk 
specified) 

Signalized 
and 

unsignalized 
intersections 

Weekdays     
5-6 pm 

• Employment 
density within 0.33 
mi. 
• Within a 
commercially-zoned 
area 

• Afternoon bus 
frequency 
• Average speed 
limit on the 
intersection 
approaches 

 • Distance 
from Ocean 

Total pedestrian 
crossings at 
intersections 
from 5-6 pm on 
typical weekday 

Linear 
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General information Pedestrian Count Information Statistically-Significant Explanatory Variables Model Information 

Model 
Location Source 

Locations 
Used for 
Model 

Pedestrian Count 
Description 

Type of 
Count Sites 

Count 
Period(s) 
Used for 
Model Land Use 

Transportation 
System 

Socioeconomic 
Characteristics Other Model Output 

Model 
Type 

San 
CA 

Diego, Alta 
Planning + 
Design 
(Jones et al. 
2010) (14) 

80 Pedestrians 
counted each time 
they arrived at the 
intersection from 
any direction 

Signalized 
and 

unsignalized 
intersections 

(includes 
some 

trail/roadway 
intersections) 

Weekdays     
7-9 am 

• Population density 
within 0.25 mi. 
• Employment 
density within 0.5 
mi. 
• Presence of retail 
within 0.5 mi. 

• Greater than 6,000 
transit ridership at 
bus stops within 
0.25 mi. 
• 4 or more Class I 
bike paths within 
0.25 mi. 

• More than 100 
households 
without vehicles 
within 0.5 mi. 

 Total pedestrians 
approaching 
intersections 
from 7 am to 9 
am 

Loglinear 

Montreal, 
Quebec 

McGill 
University 
(Miranda-
Moreno & 
Fernandes 
2011) (15) 

1018 Pedestrians 
counted each time 
they crossed a leg 
of the intersection 
(no distance to 
crosswalk 
specified) 

Signalized 
intersections 

Weekdays 
6-9 am, 11 
am-1 pm, 
and 3:30-
6:30 pm 

• Population within 
400 m 
• Commercial space 
within 50 m 
• Open space within 
150 m 
• Schools within 
400 m 

• Subway within 
150 m 
• Bus station within 
150 m 
• % Major arterials 
within 400 m 
• Street segments 
within 400 m 
• 4-way intersection 

 • Distance to 
downtown 
• Daily high 
temp. >32°C 

Total pedestrian 
crossings at 
intersections over 
8 count hours 
(shorter periods 
also modeled) 

Loglinear 
(also used 
Negative 
binomial) 

San 
Francisco, 
CA 

UC 
Berkeley 
SafeTREC 
(Schneider, 
Henry, 
Mitman, 
Stonehill, 
& Koehler 
2012) (16) 

50 Pedestrians 
counted every time 
they crossed a leg 
of the intersection 
(pedestrians within 
50 feet of the 
crosswalk were 
counted) 

Signalized 
and 

unsignalized 
intersections 

Tu, W, or 
Th: 4-6 pm, 
extrapolate
d to annual 
volumes 

• Households within 
0.25 mi. 
• Employment 
within 0.25 mi. 
• Within high-
activity zone (with 
parking meters) 
• Within 0.25 mi. of 
university campus 

• Intersection 
controlled by 
traffic signal 

is 
a 

 • Maximum 
slope of any 
approach leg 

Total pedestrian 
crossings at 
intersections 
during a full year 

Loglinear 

Minneapolis
, MN 

University 
of 
Minnesota 
(Hankey et 
al. 2012) 
(8) 

259 Pedestrians were 
counted each time 
they crossed a 
screenline in the 
middle of a block 

Midblock 
locations 

along 
sidewalks 

and multi-use 
trails 

September 
12-hour 
(6:30 am-
6:30 pm) 
counts and 
2 hour 
counts (4-6 
pm) 
extrapolate
d to 12-
hour counts 

• Distance to the 
central business 
district 

• Intersection is on a 
principal arterial 
roadway 
• Intersection is on 
an arterial roadway 
• Intersection is on a 
collector roadway 

 • Percent of 
neighborhood 
residents who are 
non-White 
• Percent of 
neighborhood 
residents with a 
college education 

• Distance to 
the nearest 
body of 
water 
• 
Precipitation 
during count 
period 

Total pedestrians 
using roadway 
and trail 
segments during 
a 12-hour period 
in September 

Negative 
binomial 
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General information Pedestrian Count Information Statistically-Significant Explanatory Variables Model Information 

Model 
Location Source 

Locations 
Used for 
Model 

Pedestrian Count 
Description 

Type of 
Count Sites 

Count 
Period(s) 
Used for 
Model Land Use 

Transportation 
System 

Socioeconomic 
Characteristics Other Model Output 

Model 
Type 

California UC 
Berkeley 
SafeTREC 
(Grembek 
et al. 2014) 
(17) 

66 Pedestrians 
counted each time 
they crossed a leg 
of the intersection 
(no distance to 
crosswalk 
specified) 

Intersections 
along urban 
arterials in 
the State 
Highway 
System 

Various 
two-hour 
and four-
hour 
periods on 
weekdays 
and 
weekends, 
extrapolate
d to annual 
volumes 

• Households within 
0.1 mi. 

• Sum of mainline 
and minor street 
vehicle volumes 
• Number of lanes 
on minor street 

  Total pedestrian 
crossings at 
intersections 
during a full year 

Loglinear 

Minneapolis
, MN 

University 
of 
Minnesota 
(Hankey & 
Lindsey 
2016) (9) 

471 Pedestrians were 
counted each time 
they crossed a 
screenline in the 
middle of a block 

Midblock 
locations 
along 
sidewalks 
and multi-use 
trails 

September 
days: 4-6 
pm  

• Population density 
within 1250 m 
network buffer 
• Retail area within 
200 m network 
buffer 
• Open space area 
within 1000 m 
network buffer 
 

• Transit stops 
within 1000 m 
network buffer 
• Off-street trail 
within 3000 m 
network buffer 
(only in 1 of 2 
models) 
• Major roads within 
200 m network 
buffer (only in 1 of 
2 models) 

  Total pedestrians 
using roadway 
and trail 
segments from 4-
6 pm on 
September days 

Loglinear 
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2.1.2. Potential Explanatory Variables 
Using the direct demand modeling approach, pedestrian volumes are assumed to be a function of the 
characteristics at and around specific locations on the California State Highway System. These 
characteristics will be represented by a set of explanatory variables. Previous research suggests 
explanatory variables representing land use, transportation system, socioeconomic, and several other 
characteristics are associated with pedestrian volumes. While there are many possible pedestrian model 
inputs, some explanatory variables are easier than others to gather statewide. For example, population 
density is provided by the U.S. Census Bureau’s American Community Survey at the block group level 
for the entire country, so this information would be relatively easy to obtain for any location along the 
State Highway System. In contrast, there are no statewide databases of commercial property locations 
(this information has been gathered in previous studies through special requests to county tax assessors). 
Lists of potential explanatory variables and the assumed ease of collecting these variables are provided in 
Table 2-2, Table 2-3, and Table 2-4. Ease of collecting each variable is classified into the following 
categories: 

• Easy. Data are available statewide from an existing data source. The variable can be created 
through basic GIS analysis. 

• Moderate. Data are available for most or all of the state from existing data sources, but the data 
may be in different formats in different jurisdictions. The variable may require more sophisticated 
GIS analysis to create.  

• Difficult. Data are not available from existing data sources. Field data collection or manual data 
collection from aerial or street-level imagery may be needed to create the variable. 

Table 2-2. Potential Pedestrian Volume Model Inputs and  
Ease of Data Collection: Land Use Variables 

Variable Study (buffer area used) Ease of Collection 

Population within a given distance Charlotte, NC (10) (0.25 mi.); 
Alameda County (11) (0.5 
mi.); Montreal, QC (15) (400 
m) 

Easy (American Community Survey 
block group data) 

Population density within a given 
distance 

Minneapolis, MN (9) (1250 
m network buffer); San 
Francisco (12) (0.5 mi.); San 
Diego County (14) (0.25 mi.) 

Easy (American Community Survey 
block group data) 

Jobs within a given distance Charlotte, NC (10) (0.25 mi.); 
Alameda County (11) (0.25 
mi.); San Francisco (16) 
(0.25 mi.) 

Easy (Longitudinal Employer-Household 
Dynamics Origin-Destination 
Employment Statistics block data) 

Employment density within a given 
distance 

San Francisco (12) (0.25 
mi.); Santa Monica (13) (0.33 
mi.); San Diego County (14) 
(0.5 mi.) 

Easy (Longitudinal Employer-Household 
Dynamics Origin-Destination 
Employment Statistics block data) 

Households within a given distance San Francisco (16) (0.25 Easy (American Community Survey 
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Variable Study (buffer area used) Ease of Collection 

mi.); California (17) (0.1 mi.) block group data) 

Schools within a given distance Montreal, QC (15) (400 m) Easy (California Department of 
Education GIS data) 

Presence of retail within 0.5 mi. San Diego County (14) Moderate (County tax assessor parcel 
data; need to look to each jurisdiction) 

Commercial space within a given 
distance 

Minneapolis, MN (9); 200 m 
network buffer); Montreal, 
QC (15) (50 m) 

Moderate (County tax assessor parcel 
data; jurisdiction-specific) 

Commercial properties within a 
given distance 

Alameda County (11) (0.25 
mi.) 

Moderate (County tax assessor parcel 
data; jurisdiction-specific) 

Residential land use within a given 
distance 

San Francisco (12) (0.063 
mi.) 

Moderate (County tax assessor parcel 
data; jurisdiction-specific) 

Urban residential area within a 
given distance 

Charlotte, NC (10) (0.25 mi.) Moderate (County tax assessor parcel 
data; jurisdiction-specific and also need 
to define “urban”) 

Within a commercially zoned area Santa Monica (13) Moderate (County tax assessor parcel 
data; jurisdiction-specific) 

Open Space within a given distance Minneapolis, MN (9); (1000 
m network buffer); Montreal, 
QC (15) (150 m) 

Moderate (County tax assessor parcel 
data; jurisdiction-specific and also need 
to define “open space”) 

Distance to central business district 
(CBD) or downtown 

Minneapolis, MN (8); 
Montreal, QC (15) 

Moderate (US Census Bureau GIS data; 
need to define CBD location(s) within 
each region) 

Mixed land use within a given 
distance 

Charlotte, NC (10) (0.25 mi.) Difficult (County tax assessor parcel 
data; jurisdiction-specific and also 
requires complex calculation) 

Patch richness density within a 
given distance 

San Francisco (12) (0.063 
mi.) 

Difficult (Requires complex calculation 
and multiple data sources) 

 

Table 2-3. Potential Pedestrian Volume Model Inputs and  
Ease of Data Collection: Transportation System Variables 

Variable Study (buffer area used) Ease of Collection 

Street segments within a given 
distance 

Montreal, QC (15) (400 m) Easy (US Census GIS data or Caltrans 
GIS data) 

4-way intersection Montreal, QC (15) Easy (US Census GIS data or Caltrans 
GIS data) 

Signalized intersection San Francisco (16) Easy (Caltrans TASAS data) 
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Variable Study (buffer area used) Ease of Collection 

Major arterials or major roadways 
within a given distance 

Minneapolis, MN (9) (200 m 
network buffer); Montreal, 
QC (15) (400 m) 

Moderate (US Census GIS data or 
Caltrans TASAS data; need reliable 
classification of arterial roadways) 

Intersection is on a principal arterial 
roadway 

Minneapolis, MN (8) Moderate (US Census GIS data or 
Caltrans TASAS data; need reliable 
classification of arterial roadways) 

Intersection is on an arterial 
roadway 

Minneapolis, MN (8) Moderate (US Census GIS data or 
Caltrans TASAS data; need reliable 
classification of arterial roadways) 

Intersection is on a collector 
roadway 

Minneapolis, MN (8) Moderate (US Census GIS data or 
Caltrans TASAS data; need reliable 
classification of arterial roadways) 

Regional transit station within a 
given distance 

Alameda County (11) (0.1 
mi.); Montreal, QC (15) (150 
m) 

Moderate (Metropolitan Planning 
Organization or Regional Transit 
Authority; jurisdiction-specific) 

Number of transit stops within a 
given distance 

Minneapolis, MN (9) (1000 
m network buffer); Charlotte, 
NC (10) (0.25 mi.) 

Moderate (Metropolitan Planning 
Organization or Regional Transit 
Authority; jurisdiction-specific) 

Bus station within a given distance Montreal, QC (15) (150 m) Moderate (Metropolitan Planning 
Organization or Regional Transit 
Authority; jurisdiction-specific) 

Sum of mainline and minor street 
vehicle volumes 

California (17) Moderate (Caltrans TASAS data; needs to 
be connected from segments to 
intersections and may not be available for 
all roads) 

Number of lanes on minor street California (17) Moderate (Caltrans TASAS data; needs to 
be connected from segments to 
intersections and may not be available for 
all roads) 

Average speed limit on the 
intersection approaches 

Santa Monica (13) Moderate (Caltrans TASAS data; needs to 
be connected from segments to 
intersections and may not be available for 
all roads) 

Multi-use trail density Minneapolis, MN (9) (3000 
m network buffer) 

Difficult (Pedestrian and bicycle facility 
inventories do not exist statewide) 

4 or more multi-use trails within a 
given distance 

San Diego County (14) (0.25 
mi.) 

Difficult (Pedestrian and bicycle facility 
inventories do not exist statewide) 

Presence of bike lane at intersection San Francisco (12) Difficult (Pedestrian and bicycle facility 
inventories do not exist statewide) 
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Variable Study (buffer area used) Ease of Collection 

Afternoon bus frequency Santa Monica (13) Difficult (Metropolitan Planning 
Organization or Regional Transit 
Authority; jurisdiction-specific and 
requires frequency in addition to location 
data) 

Greater than 6,000 transit ridership 
at bus stops within 0.25 mi. 

San Diego County (14) Difficult (Metropolitan Planning 
Organization or Regional Transit 
Authority; jurisdiction-specific and 
requires ridership in addition to location 
data) 

Parking meters on at least one 
approach to intersection (“high-
activity zone”) 

San Francisco (16) Difficult (Parking facility inventories do 
not exist statewide) 

MUNI (light rail) stop density 
within a given distance 

San Francisco (12) (0.38 mi.) Location specific (San Francisco) 

 

Table 2-4. Potential Pedestrian Volume Model Inputs and  
Ease of Data Collection: Socioeconomic and Other Variables 

Variable Study (buffer area used) Ease of Collection 

Socioeconomic Variables 

Percent of neighborhood residents 
who are non-White 

Minneapolis, MN (8) Easy (American Community Survey block 
data) 

Percent of neighborhood residents 
with a college education 

Minneapolis, MN (8) Easy (American Community Survey block 
data) 

More than 100 households without 
vehicles within a given distance 

San Diego County (14) (0.5 
mi.) 

Easy (American Community Survey block 
data) 

Other Variables 

Mean slope within a given distance San Francisco (12) (0.063 
mi.) 

Easy (US Geological Survey National 
Elevation Dataset) 

Maximum slope of any intersection 
approach 

San Francisco (16) Easy (US Geological Survey National 
Elevation Dataset) 

Distance to ocean Santa Monica (13) Easy (US Census Bureau GIS data) 

Distance to the nearest body of water Minneapolis, MN (8) Easy (US Census Bureau GIS data) 

Precipitation during count period Minneapolis, MN (8) Easy (National Oceanic and Atmospheric 
Administration weather data or data 
collector records) 

Daily high temperature > 32C Montreal, QC (15) Easy (National Oceanic and Atmospheric 
Administration weather data) 
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2.2. Model Development 
As previouslymentioned, the direct demand approach that we selected assumes that pedestrian volumes 
are a function of the built environment and demographic attributes of the surrounding area. To develop 
the predictive model, we needed to collect data for and process the explanatory variables that describe the 
surrounding area and the dependent variable, or annual pedestrian intersection volumes. These efforts are 
described in the next two subsections and followed by explanation of the model estimation process. 

2.2.1. Explanatory Variables 
The complete list of explanatory variables is shown in Table 2-5. For variables that pertain to an area 
around the intersection, such as population, the value was calculated at three different buffer distances–
half-mile, quarter-mile, and tenth-mile. The scale of these variables is described as “buffer” in the scale 
column of Table 2-5. Other variables are related to the specific attributes of the intersection location and 
are described as “intersection” in Table 2-5. Explanation for how we calculated each variable is described 
below. 

Table 2-5. Explanatory variables 

Description Scale Data Source 
Demographics   

Population Buffer U.S. Census ACS 
Number of households Buffer U.S. Census ACS 

Population that is white alone Buffer U.S. Census ACS 
Number of walk commuters Buffer U.S. Census ACS 

Number of transit commuters Buffer U.S. Census ACS 
Number of households with no vehicle Buffer U.S. Census ACS 

Number of college degree holders Buffer U.S. Census ACS 
Percent of population that is white alone Buffer U.S. Census ACS 

Walk commute mode share Buffer U.S. Census ACS 
Transit commute mode share Buffer U.S. Census ACS 

Percent of households with no vehicle Buffer U.S. Census ACS 

Percent of population with a college degree Buffer U.S. Census ACS 

Infrastructure   
Intersection is on a principal arterial Intersection CRS 

Intersection is on a minor arterial Intersection CRS 
Intersection is on a collector street Intersection CRS 

Four-way intersection Intersection CRS 
Intersection has a signal Intersection Open Street Map 

Network Connectivity   

Number of meters of streets Buffer U.S. Census TIGER 



 
 

18 

Description Scale Data Source 

Number of street segments Buffer U.S. Census TIGER 

Transit   

All Transit Metric Buffer Center for Neighborhood Technology 

Number of jobs within 30 minutes on transit Buffer Center for Neighborhood Technology 

Number of transit commuters Buffer Center for Neighborhood Technology 

Number of transit trips per week Buffer Center for Neighborhood Technology 

Number of routes Buffer Center for Neighborhood Technology 

Employment/Land Use   
Employment square footage of foot traffic land uses Buffer ESRI Business Analyst 

Number of employees Buffer ESRI Business Analyst 

Climate   
Number of days with more than 0.5 inch rain Intersection CA Energy Commission 
Number of days with more than 1 inch rain Intersection CA Energy Commission 

Number of days with more than 10 inches snow Intersection CA Energy Commission 
Number of days with temp over 90F Intersection CA Energy Commission 

Other   
Distance to water body Intersection ESRI Business Analyst 

Number of schools Buffer CA Dept of Education 
Maximum slope of intersecting road segment Intersection Google Elevation 

2.2.1.1. Population and demographics 
We used U.S. Census American Community Survey data to develop the demographic variables. The five-
year dataset, collected from 2011 to 2015, provides sample-based estimates at the block group level; 
block groups are smaller than tracts but larger than blocks. The spatial resolution worked well for our 
tenth, quarter-mile, and half-mile buffer distances.  

We collected demographic data on race, education, households, and commute mode. For each attribute, 
we calculated both the total and the percent of the block group population. 

Our analysis required us to take the Census data and analyze it spatially, near the count locations. We 
used the Census GIS shapefile and joined the columns in Table 2-6 to it. 

Table 2-6. Census variables used in analysis 

Variable Census Description 

B02001e1 Race: Total: Total population -- (Estimate)  

B02001e2 Race: White alone: Total population -- (Estimate) 

B08301e1 Means of Transportation to Work: Total: Workers 16 years and over -- (Estimate) 
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B08301e19 Means of Transportation to Work: Walked: Workers 16 years and over -- (Estimate) 

B08301e10 Means of Transportation to Work: Public transportation (excluding taxicab): Workers 16 years 
and over -- (Estimate) (includes bus, streetcar, subway, railroad, and ferryboat) 

B11001e1 Household Type (Including living alone): Total: Households -- (Estimate)  

B15003e1 Educational Attainment for the Population 25 Years and Over: Total: Population -- (Estimate) 

B15003e22 Educational Attainment for the Population 25 Years and Over: Bachelors degree -- (Estimate) 

B25044e1 Tenure by Vehicles Available: Total: Occupied housing units -- (Estimate)  

B25044e3  Tenure by Vehicles Available: Owner occupied: No vehicle available: Occupied housing units -- 
(Estimate) 

B25044e10 Tenure by Vehicles Available: Renter occupied: No vehicle available: Occupied housing units -- 
(Estimate) 

 

We wrote a Python script using the ArcPy library to process the variables. For each buffer distance, the 
script clipped the block groups by the appropriate buffer, calculated the area of the clipped block groups, 
and then divided that area by the total area of the original block groups to determine the percentage of 
block groups that fall within the buffer. The calculations for the different types of variables were as 
follows: 

• For the number variables, like population, the percentage was used to scale down the total block 
group population to an area-based estimate of the population that falls within the clipped block 
group. Summing the population estimates of the block groups by buffer, produced estimates of 
the total population falling within each buffer. 

• For the percentage variables, like percent of population that is white alone, we followed the steps 
described above for both the numerator variable, white-alone population, and the denominator 
variable, total population. The final variable was the ratio of the two. 

Table 2-7below lists the input variables used to make the calculations for each demographic variable.  
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Table 2-7. Input variables used for calculation for each Census variable 

Variable Name Numerator Variable Denominator Variable 

Population B02001e1  n/a 

Number of households B11001e1  n/a 

Population that is white alone B02001e2   

Number of walk commuters B080301e19  n/a 

Number of transit commuters B08301e10  n/a 

Number of households with no vehicle B25044e3 + B25044e10  n/a 

Number of college degree holders B15003e22  n/a 

Percent of population that is white alone B02001e2 B02001e1 

Walk commute mode share B08301e19 B08301e1 

Transit commute mode share B08301e10 B08301e1 

Percent of households with no vehicle B25044e3 + B25044e10 B25044e1 

Percent of population with a college degree B15003e22 B15003e1 

2.2.1.2. Transit 
There is not a freely available comprehensive dataset for the transit systems in the state. Much of the data 
are available through Google’s General Transit Feed Specification (GTFS), though not all transit agencies 
publish their stops, routes, and schedules using that specification. We purchased data from AllTransit, a 
service provided by the Center for Neighborhood Technology (CNT). The AllTransit data also uses 
GTFS, but CNT staff contacted transit agencies that did not publish using GTFS and compiled a 
comprehensive database of transit information available for purchase. The AllTransit data is aggregated at 
the Census tract level. CNT processed the raw stop, route, and schedule data and provided us with a 
dataset that includes useful metrics, which include: 

• Transit trips per week within one half mile 
• Transit routes within one half mile 
• Jobs accessible within a 30 minute trip 
• Percent of commuters who use transit 
• AllTransit Performance Score 

The AllTransit Performance Score is an aggregate value from 1 to 10 that “measures more than just 
access to transit. It considers the performance of transit - connections to other routes, jobs accessible in a 
30-minute transit ride, and the number of workers using transit to travel” 
(https://alltransit.cnt.org/methods/). 

Although a few of the descriptions of the metrics provided in this dataset, like transit trips per week 
within one half mile, sound like they are site-specific, all the variables were provided at the tract-level. 
This scale is not conducive to identifying subtle differences in transit access between nearby locations, 
but it was the best available data source. For each metric except for AllTransit, we used the approach 

https://alltransit.cnt.org/methods/


 
 

21 

described in the demographics section to estimate the values within each buffer. For the AllTransit metric, 
we took an area-based weighted average of the tracts falling within the buffer. 

2.2.1.3. Employment 
We selected two employment metrics: employees and square footage of traffic-generating commercial 
uses. The first metric attempts to capture the contribution to pedestrian exposure from people working 
near the relevant intersections. The second measure captures the scale of businesses that generate walking 
trips by attracting customers. The data source for both metrics is ESRI Business Analyst software. ESRI 
sourced the data from Infogroup. The software mapped every business in the United States, complete with 
the number of employees that work there and the approximate size, in square feet, of the business. To 
determined the number of employees near relevant intersections, we conducted a GIS analysis that 
selected all businesses within our chosen buffer distance and summed the number of employees in those 
businesses. We did not discriminate based on the type of business. 

We used the same data set for business square footage, but we filtered the businesses by type. 
Warehouses, for example, do not generate significant foot traffic outside of their employees, and that foot 
traffic is captured in the metric above. Each of the businesses in the ESRI Business Analyst dataset has a 
corresponding North American Industry Classification System (NAICS) code that categorizes the 
business by type. For our analysis, we only considered businesses from the following categories: 

• 44-45: Retail Trade 
• 522: Banks 
• 54: Professional, Scientific, and Technical Services  
• 62: Health Care and Social Assistance 
• 71: Arts, Entertainment, and Recreation  
• 72: Accommodation and Food Services 
• 812: Personal and Laundry Services  
• 813: Religious, Grantmaking, Civic, Professional, and Similar Organizations  

The ESRI Business Analyst data do not provide exact square foot measurements for each business, but 
instead categorizes them into one of four ranges: 

• A: 1 - 2,499 square feet 
• B: 2,500 - 9,999 square feet 
• C: 10,000 - 39,999 square feet 
• D: 40,000 square feet and above 

We used the middle of each of the A-C ranges and the lowest value for range D when summing the total 
amount of square feet within the buffer distance. Therefore, we applied the value 1,250 for A, 6,250 for 
B, 25,000 for C, and 40,000 for D. We summed all of the square footages for the businesses within the 
buffers for our metric.  
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2.2.1.4. Infrastructure 
The functional classification variables indicated whether the streets making an intersection were either 
principal arterials, minor arterials, or collectors. For example, the value for principal arterial would be 0 if 
neither street was a principal arterial, 1 if one of the streets was, and 2 if both were. The four-way 
intersection and signal variables could have values of 0 or 1, if the intersection had the respective feature. 

2.2.1.5. Network Connectivity  
We developed a script in ArcMap that counted all street segments within the buffer distances from count 
locations. The script also computed the total meters of street centerlines within each of the buffer 
distances for the count locations. We used the California Road System (CRS) street GIS dataset when 
computing the street segments and street lengths. 

2.2.1.6. Climate data 
Although the annual volume estimates we used as the dependent variable are based on short-term counts 
conducted during varying weather conditions, we were not able to account for weather when making 
those estimates. We assumed, however, that the varying climates throughout the large state of California 
would affect the total pedestrian activity at different locations, particularly in locations and months of the 
year with extreme weather.  

We used the California Energy Commission’s (CEC) Building Climate Zone Areas map to define the 16 
climate zones of California and define their boundaries. While this map was not created explicitly for 
transportation applications, the CEC needs accurate climate data to assign energy budgets to new and 
retrofitted buildings. The CEC also identified representative cities within each of the sixteen climate 
zones, and temperature and precipitation measurements were taken from each of those locations as 
representative of the entire zone.  

The CEC website provided GIS map data of the zones, but did not provide the temperature and 
precipitation data publicly. To obtain this information for each of the representative cities, we relied on 
data from the National Oceanic and Atmospheric Administration (NOAA). NOAA’s National Centers for 
Environmental Information provides an online climate data search. Using the tool to specify location, date 
range and data type, we downloaded all of the data we needed. NOAA did not have climate data for all of 
the cities chosen as representative cities within each climate zone. For zones 1, 8, and 16, we chose 
alternative cities within each climate zone with available NOAA data (see Table 2-8).  
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Table 2-8. Representative cities from each climate zone 

Climate Zone CEC City SafeTREC City 

1 Arcata Eureka 

2 Santa Rosa Santa Rosa 

3 Oakland Oakland 

4 San Jose San Jose 

5 Santa Maria Santa Maria 

6 Torrance Torrance 

7 San Diego San Diego 

8 Fullerton Anaheim 

9 Burbank-Glendale Burbank-Glendale 

10 Riverside Riverside 

11 Red Bluff Red Bluff 

12 Sacramento Sacramento 

13 Fresno Fresno 

14 Palmdale Palmdale 

15 Palm Springs Palm Springs 

16 Blue Canyon Tahoe City 

 

For each representative city, we gathered four weather data points (See Table 2-9): 

Table 2-9. Weather data gathered for each city 

Contents Data Code Year 

Long-term averages of number of days during the 
year with precipitation >= 0.50 inches 

ANN-PRCP-AVGNDS-GE050HI 2010 

Long-term averages of number of days during the 
year with precipitation >= 1.00 inches 

ANN-PRCP-AVGNDS-GE100HI 2010 

Long-term averages of number of days during the 
year with snowfall >= 10.0 inches 

ANN-SNOW-AVGNDS-GE100TI 2010 

Long-term average number of days per year where 
tmax is greater than or equal to 90F 

ANN-TMAX-AVGNDS-
GRTH090 

2010 
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The first two data points measure the average number of days a city accumulates precipitation. We 
hypothesized that areas with significant snowfall would see less pedestrian activity in winter months, so 
we gathered data on snowfall. Finally, we gathered data for extremely high temperatures. We chose data 
from 2010 as it is the most recent date NOAA made data available.  

We assigned each count location to the climate zone they resided in and associated the corresponding 
climate data for the representative city of the climate zone. For example, all count locations within 
climate zone 12 inherited climate data from Sacramento. These data are granular in scale, but do account 
for differences in activity between different regions of the state. 

2.2.1.7. Distance to nearest body of water 
California contains tens of thousands of bodies of water, as well as hundreds of miles of coastline along 
the Pacific Ocean and the San Francisco Bay. Many of the bodies of water are small streams, ponds, and 
seasonal wetlands that likely would not have an effect on nearby pedestrian volumes. We used the 
definition of a lake from the “National Lakes Assessment” published by the EPA to narrow down the 
bodies of water and eliminate small ponds (Source). Our dataset only includes the 3,417 lakes in 
California 10 acres or larger. The GIS data originated from the California Department of Fish and 
Wildlife (DFW) from 2013. 

We used 54 of the largest rivers and tributaries in the state and we eliminated all smaller streams and 
tributaries from our dataset. The dataset is published by Natural Earth, who sourced the data from World 
Data Bank 2, published by the U.S. Central Intelligence Agency. We obtained coastal GIS data from the 
DFW’s Marine Region’s GIS resources. 

Once we compiled the coast, river, and lake dataset, we conducted a “Near Table” analysis on all of the 
pedestrian count locations. The analysis determines the closest body of water to the count location and 
reports that distance in miles.  

2.2.1.8. Schools 
We prepared a dataset of all primary and secondary schools, public and private, in California. We 
obtained the private school directory from the California Department of Education (DOE) and geocoded 
the addresses found in the directory (http://www.cde.ca.gov/ds/si/ps/). The public school GIS was also 
found on the DOE website. The DOE private school data was not geocoded, so we performed that task so 
all school sites could be used in GIS. We then simply tallied the number of schools within a given set of 
buffer distances from count locations. We ensured that the schools were classified as “open” and not 
“closed” or “pending.” We also processed the data so that multiple schools at the same location were 
counted as one school. This was necessary, as the data often included many schools at the same site, even 
though they could be considered the same school. This includes evening, vocational, and adult education 
programs; district offices; and multiple programs in the same high school.  

http://www.cde.ca.gov/ds/si/ps/
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2.2.1.9. Slope 
We measured the maximum slope of streets leading to relevant intersections. To do this, we applied a 
buffer of 330 feet from the center of the intersection, then gathered the latitude/longitude pairs from the 
points where the buffers intersected the streets. We wrote a script that fetched the elevations from the 
points using the Google Maps Elevation API. We compared the elevations for the street points to the 
elevations from the intersection to determine the slope for each street leading into the intersections. We 
then found the maximum slope for each intersection and used that data as the slope variable. 

2.2.2. Dependent Variable 
The dependent variable for the pedestrian exposure model is the annual pedestrian crossing volume at 
each intersection count site. Because agencies cannot afford to conduct long-term crossing counts, either 
manually or using automated counting technology, we created annual count estimates by expanding short-
term crossing counts using expansion factors in a process explained under Processing Count Data.  

This approach required that we compile large amounts of short-term count data, as the dependent variable 
for the model, and long-term count data to create the expansion factors. The count data processing 
involved two main tasks. First, we used the long-term count data to develop expansion factors, and 
second, we applied the expansion factors to the short-term counts to create the annual volume estimates.  

2.2.2.1. Count Data Compilation 
Each Caltrans district has a budget for collecting video-based count data through Miovision, and these 
data, collected at several hundred locations, formed the basis of the short-term pedestrian intersection 
count data. Among the 583 count studies, durations ranged from 1 hour to 96 hours. Count durations 
longer than 12 hours were generally multiple daytime counts, such as 7AM to 7PM on consecutive days. 

To acquire more data, Caltrans Local Assistance emailed a count data request to a list of previous 
applicants for Active Transportation Program (ATP) grant funding, and Streetsblog shared the request on 
their website. A number of agencies shared their pedestrian and bicycle count data sets. Table 
2-10describes the short-term pedestrian intersection count studies that we received in this outreach effort. 
The count data under “Other” came from a transportation enthusiast who had scraped multiple municipal 
websites and planning reports to extra count data (https://github.com/ericfischer?tab=repositories). Most 
counts were conducted during morning and afternoon 2-hour peaks and some also included midday peak.  

Table 2-10. Sources of short-term pedestrian intersection count data provided by local jurisdictions 

Agency/Jurisdiction Number of 
Count Studies 

Number of Unique 
Locations Used in 

Model 

Alameda County Transportation Commission 101 59 

City of Brea 6 0 

El Dorado County 16 0 

Los Angeles County 5 0 
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Town of Los Gatos 5 3 

City of Newport Beach 17 0 

Orange County Transportation Authority 122 97 

City of Rialto 35 10 

City of Riverside 3 0 

City of Santa Ana 71 68 

City of San Luis Obispo 99 11 

San Luis Obispo County 189 68 

San Luis Obispo Council of Governments 91 87 

Sonoma County 2 0 

South Gate 14 5 

Tulare County 81 61 

Other 657 479 

Caltrans - Miovision 538 360 

Total 2052 1308 

 

We compiled a total of 2,052 short-term count studies from throughout the state. This number was 
narrowed down to a total of 1,308 intersection locations for several reasons: 

1. Some locations had multiple studies so these were consolidated into a single location for the 
model. 

2. Some Miovision studies on the SHS counted no pedestrians during the duration of the study. We 
assumed that these locations had negligible pedestrian activity are were not appropriate for 
inclusion in the model.  

3. Since the exposure model is intended for estimating pedestrian volumes on the SHS, and 
California’s roads are not representative of the SHS, we screened intersections by functional 
classification of the intersecting roads. We eliminated intersections whose two intersecting roads 
were some combination of local and minor collector and did not include a higher level functional 
classification. We used the functional classification data from the CRS dataset.  
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Figure 2-1. Short-term count locations included in model 

Among the 1,308 short-term count locations included in the study (Figure 2-1), count durations ranged 
between 1 and 86 usable hours for developing the annual estimates. The average count duration was 7.9 
hours and the median was 6 hours. Most of the 6-hour counts were a combination of 2-hour morning, 
midday, and afternoon peak counts.Figure 2-2 shows the number of locations by count duration. 
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Figure 2-2. Histogram of short-term count durations 

In addition to the short-term count data, we compiled 133 long-term count studies with count durations 
ranging between 1 week and 5 years. Automated passive infrared counters from the same vendor were set 
up at sidewalk and trail locations in Alameda, Fresno, Los Angeles, San Diego, and San Francisco 
Counties between 2008 and 2017 as part of unrelated research and planning programs. These counters 
collect screenline volumes and cannot capture intersection crossing volumes, but when set up on a 
sidewalk near an intersection, they likely capture similar activity patterns to the crosswalks. The counters 
aggregated counts to 15-minute or 1-hour intervals, and we analyzed all counts at 1-hour intervals. 

Figure 2-3 shows the number of sites by annual volume estimate and district. Districts 4 and 7, the most 
urban districts, have the highest volume locations, as expected. District 12 also has some higher volume 
sites. 
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Figure 2-3. Histogram of annual volume estimates by district 
 
2.2.2.2. Creating Expansion Factors 
A number of pedestrian and bicycle studies have used automated count data from a limited number of 
locations to develop expansion factors that can be used to expand short-term counts to long-term volume 
estimates (8,16,18,19,20,21,22,23). This process is based on the assumption that similar sites will have 
similar patterns in hourly, weekly, and monthly volume trends. Even if the magnitude of volumes is 
different, the proportional trends can be similar. 

Before calculating the expansion factors, we cleaned the long-term count data. For each location, we 
graphed the count values over time and flagged observations that were outliers. These outliers included 
intervals with spikes in counts that were more than double the values at corresponding times for 
surrounding weeks and extended periods of zero counts, both indicating counter errors or aberrations 
from normal activity (e.g., athletic event, parade, street festival). We also excluded national holidays. 

To account for human error, we also developed algorithms to automate the error checking. We flagged 
count periods that violated a check that values were within a certain number of standard deviations of the 
expected value. We tested two methods of establishing the threshold: 

• Single observation threshold. For the count in question, consider the counts taken at the same 
time of the week in the previous 4 weeks and in the following 4 weeks. The count is “probably 
incorrect” if it is more than two standard deviations above or below the average of the eight 
same-time-of-week counts. The same-time-of-week counts should exclude holidays. 
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• Multiple observation thresholds (four consecutive count periods). For the four consecutive count 
periods in question, consider the counts taken at the same time of the week in the previous 4 
weeks and in the following 4 weeks. For each of the four periods, calculate the average and 
standard deviation of the eight corresponding same-time-of-week counts. The four consecutive 
hours of counts are “probably incorrect” if each individual count in the series is more than one 
standard deviation above or below the average of its eight corresponding same-time-of week 
counts. The same-time-of-week counts should exclude holidays. 

After flagging the periods with potential counter errors or outliers, we graphed the counts for the 
surrounding two weeks to visually evaluate whether the count looked incorrect. We determined that the 
automated approach did not flag appropriate outliers, so we did not incorporate these checks into the final 
data cleaning process. 

After cleaning the data, we compiled all the long-term counts into two spreadsheets. The first spreadsheet 
was a location reference that included the intersection ID, city, county, state, latitude, and longitude. The 
second sheet included all of the counts aggregated into hourly time periods.  

For each counter, we calculated hour-to-weekday, day-to-week, and week-to-year expansion factors as 
the proportion of the total daily, weekly, or annual pedestrian traffic that a given smaller period is 
expected to represent. One option for combining the individual locations is to take the average of the 
expansion factors at all sites in what is called the single factor approach. Previous research has shown, 
however, that sites with different land use have different activity patterns, which supports the use of factor 
groups for the expansion factors. We used the approach described in (24) to define the hour-to-weekday 
factor groups based on the land use at the long-term count site as defined in Table 2-11. We could not 
identify land use categories that correlated with weekend activity patterns, so weekend counts were not 
used in the annual volume estimates. The hour-to-weekday expansion factors are shown in Table 2-12.  

Table 2-11. Land use definitions for factor groups 

Category Definition 

Central Business 
District 

In the downtown area as labelled on Google Maps or from expert knowledge of 
the area 

School School facility on adjacent block or yellow crosswalk present at intersection 

Trail Count location within a block of trail access point 

Other All other sites 
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Table 2-12. Hour-to-weekday expansion factors by land use factor group 

Hour Other CBD School Trail 

12:00 AM 0.009 0.011 0.003 0.001 

1:00 AM 0.006 0.009 0.002 0.001 

2:00 AM 0.005 0.006 0.001 0.000 

3:00 AM 0.004 0.006 0.002 0.001 

4:00 AM 0.005 0.005 0.003 0.001 

5:00 AM 0.011 0.009 0.012 0.030 

6:00 AM 0.024 0.020 0.023 0.061 

7:00 AM 0.055 0.044 0.118 0.084 

8:00 AM 0.059 0.054 0.080 0.098 

9:00 AM 0.053 0.060 0.047 0.098 

10:00 AM 0.056 0.070 0.046 0.070 

11:00 AM 0.059 0.077 0.053 0.044 

12:00 PM 0.062 0.081 0.058 0.031 

1:00 PM 0.063 0.076 0.074 0.034 

2:00 PM 0.070 0.070 0.088 0.034 

3:00 PM 0.083 0.070 0.110 0.064 

4:00 PM 0.074 0.062 0.061 0.068 

5:00 PM 0.073 0.059 0.060 0.084 

6:00 PM 0.065 0.052 0.050 0.114 

7:00 PM 0.055 0.049 0.046 0.049 

8:00 PM 0.041 0.037 0.025 0.016 

9:00 PM 0.031 0.031 0.018 0.008 

10:00 PM 0.022 0.023 0.012 0.007 

11:00 PM 0.015 0.019 0.007 0.003 

No. of Locations 55 25 15 7 
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Whether the location was near a school was the main feature distinguishing between the day-to-week 
activity patterns. Schools typically had less activity on weekends. The day-to-week expansion factors are 
shown in Table 2-13. 

Table 2-13. Day-to-week expansion factors by land use factor group 

Day Non-School School 

Mon 0.146 0.154 

Tue 0.149 0.154 

Wed 0.149 0.156 

Thu 0.148 0.169 

Fri 0.149 0.154 

Sat 0.138 0.114 

Sun 0.121 0.098 

No. of Locations 83 20 

 

There were 8 locations with at least one year of continuous counts. These factors (Table 2-14) do not sum 
to 1 because they are meant to take one week of counts in a given month and expand to an annual 
estimate.  
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Table 2-14. Week-to-year expansion factors 

Month Group Average 

January 0.079 

February 0.082 

March 0.085 

April 0.086 

May 0.084 

June 0.082 

July 0.092 

August 0.088 

September 0.086 

October 0.083 

November 0.080 

December 0.074 

No. of Locations 8 

We applied the expansion factors to calculate the annual volume estimates based on hourly counts. First, 
we used the hour-to-weekday factors to estimate daily volumes using the following formula: 

where Vi is the observed volume in hour i, and αi is the hour-to-day expansion factor calculated for hour 
i. We used a corresponding formula for the day-to-week and week-to-year expansion. The resulting
number was the annual estimate for the year the short-term counts were conducted. We normalized these
counts to 2016 using adjustment factors developed from Census ACS estimates of total population for
California by year (Table 2-15).
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Table 2-15. Annual adjustment factors to normalize count estimates to 2016 

Year Total CA 
Population 

Annual 
Adjustment Factor 

2006 35,980,000 1.09 

2007 36,230,000 1.08 

2008 36,580,000 1.07 

2009 36,960,000 1.06 

2010 37,330,000 1.05 

2011 37,680,000 1.04 

2012 38,010,000 1.03 

2013 38,340,000 1.02 

2014 38,680,000 1.01 

2015 38,990,000 1.01 

2016 39,250,000 1.00 

 

2.2.3. Exposure Model Estimation 
The final dataset included 75 explanatory variables, when accounting for the different buffer sizes for 
appropriate variables, and the dependent variable (annual volume). It was not practical to test all the 
possible combinations for this many variables, so we performed some preliminary analyses to identify 
variables that may be more significant, avoid problems with collinearity, and determine if transformations 
may be appropriate.  

2.2.3.1. Variable Selection and Transformation 
Scatter plots of the dependent and independent variables are a useful tool for visually evaluating 
correlation and patterns that may suggest the value of transforming the variables. For example, number of 
employees with a quarter mile showed a dispersed relationship when graphed against annual volume (see 
Figure 2-4). Taking a log transformation of annual volume narrows the band, but the relationship is still 
not linear (seeFigure 2-5). Finally, graphing the log of both number of employees and annual volume 
demonstrates a more linear relationship (see Figure 2-2)Figure 2-5. The second two graphs also show how 
the inclusion of locations with zero values for the annual volume is problematic, since the trends are not 
consistent with the other locations. Dropping these locations brings the sample down to 1,270 locations.  
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Figure 2-4. Scatter plot of number of employees within a quarter mile and annual volume 
 

 
Figure 2-5. Scatter plot of number of employees within a quarter mile and log of annual volume 
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Figure 2-6. Scatter plot of log of number of employees within a quarter mile 
and log of annual volume 

We produced corresponding scatter plots for all 75 explanatory variables. Evaluation of these graphs 
helped us determine that using a log transformation of the dependent variable was most appropriate. We 
also calculated Pearson and Spearman correlation coefficients for the complete set of variables, including 
log transformations of all variables. Pearson correlation evaluates the linear relationship between 
variables, whereas Spearman compares the ranks of the values and does not use the raw values. Spearman 
is less vulnerable to being pulled up by very high outliers, of which there are a few in this dataset. The 
correlation analysis helped us to identify the set of variables that were strongly correlated with the log of 
annual volume, such as log of the number of routes within a tenth mile (logRoutesT) (ρp=0.70, ρs=0.73). 
Additionally, for each variable highly correlated with the dependent variable, we needed to avoid 
including other explanatory variables in the model that were strongly correlated and a cause of 
collinearity. For instance, logRoutesT is strongly correlated with population within a half mile (PopH) 
(ρp=0.74, ρs=0.88). 

 
2.2.3.2. Initial Estimation 
The model was specified as a loglinear regression and estimated using ordinary least squares regression. 
The model structure was as follows: 

ln(𝑌𝑌𝑌𝑌𝑑𝑑𝑑𝑑 ) =  𝛽𝛽𝛽𝛽0 + 𝛽𝛽𝛽𝛽1𝑋𝑋𝑋𝑋1𝑑𝑑𝑑𝑑 + 𝛽𝛽𝛽𝛽2𝑋𝑋𝑋𝑋2𝑑𝑑𝑑𝑑 + ⋯ + 𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗 𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑  + 𝜖𝜖𝜖𝜖𝑑𝑑𝑑𝑑 
 

where:  
Yi = annual pedestrian crossing volume at intersection i; 
Xji = value of explanatory variable j at intersection i; and 
Βj = model coefficient for explanatory variable j, 
𝜖𝜖𝜖𝜖𝑑𝑑𝑑𝑑 = error term for the log-linear model, which is normally distributed. 
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Using the logarithm of the dependent variable prevents the model from returning negative values. Linear 
and negative binomial models were also tested, but the loglinear model had the best fit when evaluating both 
training and test data. To develop estimates from a loglinear model, we use the following equation: 

 

For the model estimation, we removed a random subset (10 percent) of the locations for testing and used 
the remaining 90 percent for the training. The testing subset was used to test and compare the predictive 
power of models estimated using the training data. We tested 300 different iterations of the training and 
testing data to be sure that the goodness-of-fit (adjusted R-squared) and residual sum of squares (RSS) 
were consistent. We began each model with a set of 15 to 20 non-collinear explanatory variables and ran 
stepwise backward regression to automatically remove the least significant variable in each step until all 
the variables were significant (p-value<.01). To improve the goodness-of-fit, we tested trading out similar 
explanatory variables, including different buffer distances for the same variables and strongly correlated 
other variables. We tested removing variables to see the impact on the adjusted R-squared and dropped 
variables that had an impact of less than 0.01. We also dropped variables if the direction of the coefficient 
did not make intuitive sense.  

2.2.3.3. Manipulation of Variables 
At intermediate stages in the modeling process, we plotted residuals and compared predicted and 
observed values to understand how the model was performing (Figure 2-7). We found that one particular 
low observed volume location had a very high predicted location. This location at Hyde and Turk in San 
Francisco has very high population (a positively correlated variable), but does not otherwise have 
conditions as favorable to walking as nearby neighborhoods, partly due to higher crime and fewer 
businesses in the immediate vicinity.  
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Figure 2-7. Observed vs. predicted pedestrian volumes (training data) 

To further examine this error, we plotted the residuals vs. population within a half mile (Figure 2-8). In 
this plot, we see that for population values greater than 20 thousand the residuals drop off, indicating that 
there is a threshold beyond which greater population does not point towards greater walking activity. As a 
result, we truncated the population within a half mile variable at 20 thousand. Replacing the original 
population variable with the truncated version in the model removed the outlier. There were only 20 
locations that required truncation, 14 of which were in District 4 and 6 of which were in District 7. 
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Figure 2-8. Residuals as a function of population within half a mile 

Several of the variables that performed well in the models tested were best with the larger buffer scales 
(half and quarter mile). We theorized that greater concentration of a variable closest to the count location 
may have more impact on volume than when it is evenly dispersed or has greater concentrations further 
from the site. To account for this we modified two buffer variables, employees and street segments, to 
weight them according to high concentrations within a tenth of a mile by multiplying the variable by (1 + 
Value_Tenth/Value_X), where X is the scale of the given variable. This change improved the R-squared 
by approximately 0.01. Figure 2-9 and 

Figure2-10 repeat the observed vs predicted and residuals as a function of population within a half mile 
after the variables were manipulated. It is apparent that the major outlier is gone from the predicted values 
and the residuals are more linear as a function of the truncated population with a half mile. 
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Figure 2-9. Observed vs. predicted pedestrian volumes (training data) with truncated population 
variable and weighted number of employees and street segments 

 
 
 
 

 

Figure 2-10. Residuals as a function of truncated population within half a mile 
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2.2.3.4. Final Model 
The final model included eight explanatory variables and the specification is described inTable 2-16. All 
variables were highly significant (p-values << 0.001). The adjusted R-squared was 0.714, meaning that 
the model is able to explain 71.4 percent of the variability of the log of pedestrian volumes. 

Since the linear regression models the log of the pedestrian volumes using a normally distributed error 
term, the untransformed volume estimates (obtained as exponential of the log-linear model’s output) 
follow a log-normal distribution. The coefficient of variation, which is a standardized measure of 
dispersion, for the log-normally distributed pedestrian volume estimates was 1.5, which indicates a 50% 
error relative to the mean estimate. The root mean squared error (RMSE) for the untransformed estimates 
was 1,582,572. 

Log of the weighted number of employees within a quarter mile had a positive coefficient, indicating that 
presence of jobs nearby is positively associated with pedestrian activity. This result is consistent with 
previous research. Work locations are attractors for commuters, who may finish their commute of any 
mode on foot, even if they do not walk the whole way. Additionally, businesses and government offices 
may attract visitors seeking services.  

Truncated population within a half mile also had a positive coefficient, a logical result, indicating that the 
presence of more residents is positively associated with pedestrian activity. Residences are potential 
sources of pedestrians, who may be conducting commute or other trip on foot or connecting to other 
modes of transportation. Even if walk mode share is low, more population means more potential 
pedestrians. Similar variables have been significant in many previous pedestrian models.  

Log of weighted street segments within a half mile had a positive coefficient, indicating that a greater 
density of streets is associated with greater pedestrian activity. This result is consistent with previous 
research on street connectivity, which theorizes that people are more likely to walk when there are more 
route options that are more direct.  

Walk commute mode share within a half mile had a positive coefficient, an expected result. Although this 
variable is similar to our dependent variable, it does not cause endogeneity problems because it is an 
aggregate variable at a larger scale.  

Log of number of schools within a half mile had a positive coefficient, indicating that presence of more 
schools is associated with greater pedestrian activity. This variable has performed well in previous 
models. Schools are a potential attractor for pedestrian activity, but they also may be a proxy for density 
or mix of land uses.  

The principal and minor arterial variables both had positive coefficients. We theorized that these arterial 
roads may be locations where more businesses are located and more trips on transit and walking occur 
since there are more attractors. Principal arterials have a greater impact on pedestrian activity in the 
model, and this result is consistent with our expectation. 

The four-way intersection dummy also had a positive coefficient. We expected that intersections with 
four legs would have more activity due to the greater connectivity as well as having more crosswalks.  
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Table 2-16. Final pedestrian exposure model 

 Scale Manipulation Transformation Estimate Pr(>|t|) 

Intercept    5.58 < 2e-16 *** 

Number of employees 1/4 mile weighted log 0.390 < 2e-16 *** 

Population 1/2 mile truncated  0.000142 < 2e-16 *** 

Number of street segments 1/2 mile weighted log 0.302 2.08e-05 *** 

Walk commute mode share 1/2 mile   2.84 6.25e-08 *** 

Number of schools 1/2 mile  log 0.0444 1.38e-05 *** 

Principal arterial Intersection   0.457 4.17e-16 *** 

Minor Arterial Intersection   0.384 6.23e-10 *** 

Four-way intersection Intersection   0.413 7.38e-09 *** 

Dependent Variable: log(Annual Volume Estimate) 
Adj. R2 = 0.714 

*** p-value < 0.001 

Table 2-17shows the correlations between the dependent and explanatory variables. Many of the 
explanatory variables are moderately correlated with each other, but still provide significant explanatory 
power within the model. Principal arterial, minor arterial, and four-way intersection have lower 
correlations with the dependent variable because they have limited discrete values, whereas the other 
variables are continuous. 
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Table 2-17. Correlation matrix of dependent and explanatory variables 
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Annual lVolume  1         

l,w,4Employees  0.71 1        

t,2Population  0.70 0.47 1       

Street Segmentsl,w,2 0.64 0.66 0.58 1      

Walk 2Mode Share  0.48 0.51 0.39 0.31 1     

l,2Schools  0.42 0.29 0.43 0.42 0.16 1    

Principal Arterial 0.24 0.14 0.16 0.17 0.01 0.05 1   

Minor Arterial 0.16 0.13 0.13 0.00 0.14 0.08 -0.49 1  

Four-Way 0.34 0.24 0.23 0.21 0.11 0.20 0.16 0.08 1 
w t 2 4l log transformation;  weighted;  truncated;  ½ mile buffer;  ¼ mile buffer 

2.3. Model Application 

2.3.1. Model Scope 
The initially stated scope of the pedestrian exposure model was the California SHS. There are practical 
reasons for limiting this scope to roads that are expected to have pedestrian activity: 

1. Certain state highways, including freeways and some expressways, prohibit pedestrians. While 
this does not necessarily mean that there are not pedestrian collisions in these locations, the 
pedestrian exposure at these locations is likely to be extremely low and cannot be modeled in the 
same way as locations where pedestrians may legally travel. We do not know enough about the 
reasons why people walk on freeways unless they have a disabled car. This behavior is prohibited 
and is related more to random chance of a car collision or other problem than to the conditions of 
the surrounding area. 

2. Certain state highways, primarily remote 2-lane rural highways, despite allowing pedestrians, 
have essentially no pedestrian activity because there are no nearby activity generating land uses. 
The variables we use in our model would not predict the very limited activity in these locations. 

In the first step before defining the scope, we generated an intersection file for the SHS based on CRS 
street centerline data, using the following broad steps within a Model Builder tool in ArcMap.  

1. Selected roads within 200 feet of state highways, excluding freeways. 
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2. Merged divided roads into single line segments with a merge distance of 40 meters. 
3. Found the intersection of these road segments to create intersection points.  
4. Deleted overlapping points. 

This process created a set of points located at the intersection of street centerlines along the SHS. 

The process required some extra steps to fix errors identified through visually checking. We used CRS 
data to identify roads with highway numbers (HWY_NUM) and exclude functional classification 
(FC_DRAFT) equal to 1 (freeways), but that was not enough information to generically identify 
expressways that serve essentially as freeways (like Hwy 24 in District 4). The speed limit data in ESRI 
Streets data and the design speed data in the TASAS highway table, which we have in a linear referenced 
layer, were useful in removing overpass and underpass locations that were falsely created as intersections 
in the above process. We could not use the linear referenced TASAS highway or intersection data for 
intersection generation because the linear referencing does not place intersections accurately enough 
based on the postmiles. None of the above mentioned streets datasets had coincidental lines, so we relied 
on proximity thresholds instead of intersecting features when removing roads from the dataset. 
Additionally, Merge divided tool did not successfully merge all divided roads, which meant that some 
intersections were represented by as many as 4 non-overlapping points. We used a 25-meter tolerance to 
remove some of these duplicates, but some remained. We could not increase the tolerance without 
removing some points for offset intersections. The final intersection file contains 23,017 points and has 
some errors, but was too large to manually check all locations.  

We tested several methods of determining the scope of model application, and used 10 years (2004-2013) 
of pedestrian collision data from SWITRS to validate the different approaches. This was based on the 
assumption that collisions are a proxy for pedestrian activity. We determined that population density was 
better than roadway attributes, such as number of lanes, design speed, or access control, at identifying 
locations where pedestrian collisions occur, and thus where pedestrians likely travel. Using Census block-
level population densities, we selected intersectionswithin 200 metersof a block with minimum 500 
people per square mile. The final model scope file contains 12,414intersection points (shown in Figure 
2-11). We validated the scope by examining pedestrian collision locations, assuming these locations are 
where people are walking. Of the 13,963 pedestrian collisions along the SHS between 2004 and 2013, 
13,669 (98%) occurred within 200 meters of a scope intersection. Of the remaining collisions, only 51 
(0.3%) were intersection collisions.  
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Figure 2-11. Final pedestrian exposure model scope – intersections with volume predictions 
 
2.3.2. Pedestrian Volume Predictions 
We calculated each of the explanatory variables from the final model for all the locations in the model 
scope and used these values along with the model results to predict annual pedestrian volumes at each 
location. Figure 2-12 shows the number of locations by predicted annual pedestrian volume and Caltrans 
district. 
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Figure 2-12. Histogram of the number of locations by 
predicted annual pedestrian volume and district 
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Chapter 3. Contextualized Hotspot Clustering 

3.1. Motivation 
Pedestrian hotspots, also referred to as high collision concentration locations (HCCLs), are identified 
within the pedestrian safety monitoring report (PSMR) tool by using crash frequencies and their 
associated injury severity distribution as the selection and prioritization criteria. When compared to 
techniques that are applicable to hotspots associated with automobile crashes (e.g., crash rates, safety 
performance functions and empirical Bayes), the use of crash frequencies can be restrictive, as it can 
suffer from regression-to-mean bias. In this regard, the estimation of intersection-level pedestrian 
volumes will be helpful in the future for developing more statistically robust methodologies for pedestrian 
hotspot identification.  

But in cases when pedestrian exposure may not be readily available, (such as for ramps, segments), the 
use of only crash outcome-based metrics (injuries, fatalities) may not necessarily translate to recurring 
crash concerns with systematic, underlying patterns occurring at the hotspot location. In contrast, once an 
HCCL is available for investigation, traffic safety investigators are likely to look for such patterns within 
crash attributes and narratives when determining whether a site needs a specific countermeasure. The 
absence of such patterns may result in no recommendation for countermeasures which implies that the 
investigation resources were sub-optimally utilized. Thus, it would be helpful to bring some of the pattern 
matching capabilities upstream of the investigation process into the hotspot identification/prioritization 
process. 

3.2. Clustering Methodology 
Clustering is a form of unsupervised learning approach that seeks to group multidimensional data that 
“similar” to each other. In order to define what represents similarity in observations, either a distance-
based approach or a probability-based approach can be undertaken. A distance-based approach is utilized 
when the input data represent counts or numbers, and the similarity can be quantified by evaluating which 
cluster is closest using a distance function (e.g., euclidean distance). An example of a popular distance-
based clustering approach is k-Means clustering, wherein each observation is associated with a cluster 
which is closest in euclidean distance to its mean value. However, when the input variables are 
categorical in nature, it is not possible to quantify the difference between two observations. In such 
instances, a probability-based clustering approach can still be undertaken, wherein a joint probability 
function can be parameterized which determines the likelihood of certain attributes belong to one cluster 
or another. In this instance, as our variables of interest are categorical in nature, a probability-based 
clustering approach is more suitable. As a result, we utilized latent class analysis as the clustering 
methodology for this project. This approach was motivated by Depaire et al. (25) who applied LCA to 
analyze crashes in Brussels Capital Region between 1997 and 1999. 

LCA is a probabilistic clustering framework every cluster has a different underlying probability 
distribution from which its data elements are generated(25).  In order to identify the different clusters, the 
probability distribution functions are parameterized, after which the problem of finding the clusters 
reduces to a parameter estimation problem. In order to estimate the parameters, we used the Expectation-
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Maximization (EM) algorithm, which uses an iterative method to find the parameter estimates that can 
maximize the log-likelihood function. For more details on the EM algorithm, please refer to Ng (2009) 
(26). 

3.2.1. Crash Variables of Interest 
In order to detect patterns in a standardized manner, it is necessary to reduce the dimensionality of various 
crash attributes available within the TASAS crash data. A meaningful representation of the 
dimensionality reduction is a pedestrian crash typology which can be defined by a simultaneous 
occurrence of certain crash characteristics. It is important to note that while more well-defined crash 
typologies exist for automobile crashes (e.g. rear-end, broadside, sideswipe, etc.), similar definitions do 
not exist for pedestrian crashes. The variable selection process for defining the crash types had two 
primary guiding principles: (i) the variables should help summarize the dynamics of the crash (interaction 
between the modes), (ii) relevance of the crash dynamics for countermeasures. Based on these 
considerations, we used the following set of crash variables for crash typology development: 

1. Movement preceding collision for automobiles: 
a. Proceeding straight 
b. Turning left or right 
c. Others (e.g., lane change, stopped/parked vehicle, etc.) 

2. Movement preceding collision for pedestrians: 
a. Crossing at crosswalk—intersection 
b. Crossing not at crosswalk 
c. Roadway (including shoulder) 
d. Others (e.g., crossing at crosswalk—not intersection, not in roadway, approach/leave 

school bus) 
3. Location of collision: 

a. Extreme lanes (right or left lane) 
b. Beyond lanes (right shoulder area, beyond shoulder (left or right)) 
c. Others (e.g., interior lanes, gore area, etc.) 

4. Lighting: 
a. Lighting absent (dark—no street light) 
b. Others (daylight, dusk/dawn, dark—street light, dark—inopr. street light, etc.) 

Collectively, the variables chosen above help summarize the context of the crash: where it happened 
(using location of collision and attributes of pedestrian movement), how it happened (by a combination of 
automobile and pedestrian movement), and if any potential countermeasures can be applied (in this case, 
street lighting).  

The variables chosen above do not include any facility-type desciptors (e.g., freeway vs arterial streets, 
segments vs intersection), as we intended for the crash typology to be generic and comparable across 
multiple facility types.  
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3.2.2. Latent Class Analysis 
The process of identify meaningful crash clusters was undertaken as a two-step process. Since LCA 
requires the number of crash clusters as inputs (k), the first step involved applying LCA for different 
number of cluster combinations. Since the output of LCA is probabilistic classification of a crash to 
different clusters, as part of the step, we need to find the most dominant trends within each cluster to 
convert the probabilistic cluster definitions into deterministic cluster definitions. As a result, while LCA 
provides a probability for each crash to belong to one of the k clusters, at the second step there may some 
percentage of crashes that may not belong to any cluster since they do not meet all the criteria associated 
with that cluster. For instance, if a cluster is defined to have the following crash characteristics: (i) the 
motor vehicle was proceeding straight, (ii) the pedestrian was crossing not at the crosswalk, (iii) the 
location of the collision was in one of the extreme lanes, and (iv) lighting was not an issue. In this case, if 
a crash satisfied criteria (i), (ii) and (iv), but not (iii) (e.g., the crash took place in one of the interior 
lanes), then while the LCA may still classify it within this cluster with high probability, to ensure that the 
patterns within each cluster are consistently defined, we would exclude such a crash from this cluster 
definition. 
 
Lastly, we determined the optimal number of clusters in a manner that they covered at least 5% of the 
total crashes. While such a model selection approach is statistically less rigorous, it increases the 
probability of observing each crash type within the typology to be observed across different HCCLs. 

3.3. Data Set 
In order to find clusters of similar crashes within the pedestrian crashes occurring along the California 
state highway system, we applied LCA on 4289 pedestrian crashes obtained from TASAS for the years 
2009-2013. However, this dataset excluded crashes occurring on freeway segments as they are also not 
being considered within the hotspot identification process owing to the lack of good countermeasures to 
address them.  

3.4. Results 
The LCA-based clustering process resulted in the identification of 8 distinct crash types, as defined in 
Table 3-1. The crash typology can be further sub-classified by whether the movement preceding collision 
is through, turning or others, whereas within those sub-categories additional differences exist with regards 
to the pedestrian movements. While location of collision was included as a defining characteristic of some 
crash types, in other instances, especially when the pedestrian is also identified to be moving along the 
roadway, it was not deemed as essential for inferring the crash dynamics. Finally, lighting was only 
identified to be of significance in only one straight movement cluster. Collectively, the crash types 
covered 86.6% of all crashes in the dataset.  

Table 3-1. Crash Typology 

Cluster 
No. 

Auto 
Movement Pedestrian Movement Location of 

Collision Light Issue % 

1 Straight Xing not at Xwalk Extreme Lanes No 17 



 
2 

  
Roadway including Shoulder 

 
- 

 
No 

 
9 

3 Roadway including Shoulder - Yes 5.4 
4 Xing Xwalk at Ixn Extreme Lanes No 12 
5  

Turning 
Xing Xwalk at Ixn Beyond Lanes No 14 

6 Xing not at Inxn/Xwalk - No 5 
7 Right Turn Xing Xwalk at Ixn Extreme Lanes No 9.2 
8 Other - - - 15 

Total 86.6 
 
 

While crash types 1-7 are informative with regards to providing the crash context, crash type 8 is 
relatively minimal in its description, since it only includes crashes wherein the motor vehicles are neither 
turning nor going straight prior to the collision. However, it was included in the current version of the 
typology so as to analyze the implications of a commonly observed motor vehicle movement being 
absent. 

A visual representation of the crash types are shown in Figure 3-1. 
 

Figure3-1. Visual Representation of the pedestrian crash types 

Tables 3-2 to 3-5 provide some summary statistics to supplement our understanding how these clusters 
differentiate themselves from each other. Table 3-2 shows the distribution of crashes within each crash 
type across different access controlled facilities. As is expected, a majority of pedestrian crashes across all 
crash types occur on conventional streets, where pedestrians typically have unrestricted access. The only 
exception to this trend is crash type 7, a turning movement cluster, which has 54% of crashes occurring at 
freeways. Considering that freeway segment crashes were excluded from the clustering process, it is 
expected that these freeway crashes occur along ramps. This hypothesis is confirmed by Table 3-3 which 
shows a distribution of highway segment/intersection/ramp crashes within each cluster. As per Table 3-3, 
54% of all crashes in crash type 7 occur at ramps. Table 3-3 also reveals that most of the crashes in crash 

 

50 



 
 

51 

type 1-3 occur along highway segments which is consistent with the crash type definitions wherein the 
pedestrian movements are either crossing not in a crosswalk, or walking along the roadway. In general, 
the distributions reveal that a majority of pedestrian crashes occur along highway segments in 
conventional streets. 

Table 3-2. Distribution of access controls across crash types 

Crash Type Conventional Freeway Expressway 
One-Way 

City 
Streets 

Grand 
Total 

Not in a 
cluster 71% 25% 3% 2% 100% 

1 84% 10% 4% 2% 100% 
2 65% 30% 5% 0% 100% 
3 68% 17% 15% 0% 100% 
4 77% 17% 2% 4% 100% 
5 79% 17% 2% 3% 100% 
6 66% 30% 2% 2% 100% 
7 46% 54% 0% 0% 100% 
8 69% 25% 5% 1% 100% 

Grand Total 71% 23% 4% 2% 100% 
 

Table 3-3. Distribution of Highway-Int-Ramp across Clusters 

Crash Type H I R Grand 
Total 

Not in a 
cluster 41% 35% 24% 100% 

1 75% 15% 10% 100% 
2 59% 11% 30% 100% 
3 81% 2% 17% 100% 
4 46% 38% 17% 100% 
5 41% 42% 17% 100% 
6 39% 30% 31% 100% 
7 8% 38% 54% 100% 
8 52% 22% 25% 100% 

Grand Total 50% 26% 23% 100% 
 

Table 3-4 provides the distribution of different injury severity levels within each crash type. The results 
reveal that crash types involving motor vehicles traveling straight and pedestrians not crossing at 
intersections have a relatively higher share of fatal and severe injury collisions. In comparison, crashes 
that occur at/near intersections, which predominantly involve turning movements, involve relatively less 
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severe injuries. We would expect such a difference to exist as there is a greater likelihood of vehicles 
traveling at higher speeds at the time of collision when traveling straight. 

Table 3-4. Distribution of Injury Severity across Clusters 
 

Crash Type No 
Match Fatal Severe Other 

Visible 
Complaint 

of Pain 
Grand 
Total 

Not in a 
cluster 1% 6% 16% 36% 41% 100% 

1 0% 22% 28% 35% 16% 100% 
2 1% 11% 25% 34% 29% 100% 
3 1% 39% 22% 23% 15% 100% 
4 0% 6% 19% 36% 39% 100% 
5 1% 1% 9% 38% 50% 100% 
6 1% 3% 11% 37% 48% 100% 
7 0% 0% 3% 41% 55% 100% 
8 1% 7% 15% 35% 43% 100% 

Grand Total 1% 10% 17% 35% 37% 100% 
 

Finally, Table 3-5 shows the distribution of the crash types across each year of the crash data set. It 
reveals that the relative shares of the crash types are reasonably stable, which is encouraging as it 
indicates that the crash dynamics that are represented with each crash type is recurring in nature. 

Table 3-5. Distribution of Clusters across Year 
 

Crash Type 2009 2010 2011 2012 2013 Grand 
Total 

Not in a 
cluster 23% 25% 23% 27% 26% 25% 

1 19% 14% 16% 17% 20% 17% 
2 7% 9% 10% 8% 9% 9% 
3 5% 6% 5% 6% 7% 6% 
4 5% 6% 6% 4% 4% 5% 
5 13% 13% 12% 10% 11% 12% 
6 6% 4% 5% 6% 5% 5% 
7 7% 8% 7% 6% 5% 7% 
8 15% 16% 16% 17% 12% 15% 

Grand Total 100% 100% 100% 100% 100% 100% 

 
3.5. Applying crash typology to HCCLs 
Once we applied the crash typology to all pedestrian crashes, we analyzed their distribution within 
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pedestrian HCCLs. While this feature is not currently available within the PSMR tool, we incorporated 
these modifications using MATLAB. We identified HCCLs using the sliding window method with a 
window length of 0.1 miles, and minimum crash threshold of 2 crashes. Based on the crashes identified 
within each HCCL, we can now summarize the distribution of different crash types within each HCCL, as 
shown in a sample output in Figure 3-2.   

Figure3-2.A sample output of HCCLs sorted by fatal+injury  
along with the crash typology distribution 

The application of the sliding window method on the 2009-2013 crash data yielded 815 HCCLs covering 
2126 crashes. In comparison, the input crash dataset included 4289 crashes. Thus, it is possible that 
distribution of crash types, as observed in the crash population may differ from the distribution of crashes 
that are captured within HCCLs. Table 3-6 provides a comparison of the distribution of crash types 
observed in the HCCLs along with the total pedestrian crash population considered for this analysis. The 
comparison reveals that straight movement crash types are underrepresented in HCCLs, whereas the 
turning movement crash types as well as the crash type with neither straight nor turning movements have 
comparable representation in HCCLs.  

Table 3-6. Comparing distribution of pedestrian crash types in HCCLs and crash population 

Crash Type In HCCLs In Crash 
Population 

1 16.2% 17.0% 
2 6.4% 9.0% 
3 2.8% 5.4% 
4 5.9% 12.0% 
5 13.7% 14.0% 
6 4.8% 5.0% 
7 7.8% 9.2% 
8 13.9% 15.0% 

All Straight Movement 
Crash Types 31.4% 43.4% 

All Turning Movement 
Crash Types 26.2% 28.2% 

All Crash Types 71.5% 86.6% 
 

In the case of crash types 2 and 3, it is reasonable to expect that the likelihood of multiple crashes 
involving pedestrians walking along the roadway within the same segment of 0.1 miles is low when 
compared to the overall population which does not impose any spatial constraints. But in the case of crash 
type 4, which involves a pedestrian crossing at an intersection crosswalk, it is unclear why there would be 
a drop-off of 6%. The nature of this relationship between crash types in the population vs within HCCLs 
would be explored further in future extensions of this work. 
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Chapter 4. Pedestrian Safety Toolkit 
This chapter provides an overview of the updates made to the pedestrian safety monitoring report (PSMR) 
tool during this phase of PSIP. 

4.1. Roadmap of Pedestrian Safety Tools 
Table 4-1 summarizes the roadmap of the different pedestrian safety-related tools that were developed 
during this project. PSMR tool is the primary tool for identifying and prioritizing pedestrian HCCLs. It 
imports TASAS crash data and conducts network screening using either sliding window method or 
dynamic programming. However, the research team has revised the functionality of the tool significantly, 
as indicated by the version number changing from v1.x to v2.x, based on feedback from Caltrans users as 
well as other issues identified by the research team. In particular, we made four significant changes to the 
overall functionality of the network screening process:  

1. We divided the data crash data importing feature into two distinct processes:  
• When using Excel-based files that are obtained from the TASAS database directly, only the 

PSMR tool (v2.x) is required for importing the data (as well as conducting SWITRS matching). 
• When using text-based files obtained from TASAS Selective Accident Retrieval (TSAR), the 

TSAR2XLS tool will be required to first convert the text files into an Excel-based file, which can 
be then be used as an input into PSMR (v2.x). 

2. We improved the error handling capabilities within TSAR2XLS tool to better address missing data 
within the TSAR files. 

3. We modified the network screening process to analyze left and right independent alignments 
separately. 

4. We improved the SWITRS matching functionality to speed it up when running large files, as well as 
allow matching to be undertaken without requiring postmile information as matching criterion. 

Table 4-1. Roadmap of the various pedestrian safety-related tools developed within the project 

 V 1.X V 2.X 
 Data 

sources Functionality Version/Date Data 
sources Functionality Version/ 

Date 
PSMR TSAR 

SWITRS 
(optional) 

- Import data 
- SWITRS matching 
- Generate a list of 
district-level 
pedestrian HCCL’s 
- Sliding Window 
- Dynamic 
Programming. 

V1.3 
07/14/17 
 

TASAS-
TSN Input 
(preferred) 
TSAR-2-
XLS Input 
SWITRS 

- Improved DP 
- Combine 
D/UD 
- Highway 
Group 

V2.0 
10/02/17 
V2.1 
Modified 
SWITRS 
matching  
 

TSAR2XLS TSAR 
SWITRS 
(optional) 

- Converts TSAR text 
files to Excel 
- Error handling 
- Error log 
-Faster SWITRS 
matching 

V1.0 
10/06/17 
V1.1 
Modified 
SWITRS 
matching  
 

   



4.2. TSAR2XLS 
The objective of creating a separate tool for importing TSAR files was to transition from using text-based 
TSAR files, which are themselves created from within TASAS, to using Excel-based pedestrian crash 
data files from TASAS directly. Such a transition is motivated by reducing the likelihood of error-prone 
data input which is possible when creating text files from a database, and then converting it back into a 
database-friendly Excel file. However, we recognize that generating TSAR files is relatively easier for the 
Caltrans stakeholders in comparison to obtaining TASAS data directly. Thus, TSAR2XLS provides this 
continuity in functionality of importing TSAR files, while transitioning the PSMR tool to also input 
TASAS-based Excel worksheets. 

 

 
Figure 4-1. TSAR2XLS converts text-based TSAR files to an Excel worksheet 

 
Figure 4-1 illustrates the key functionality of the TSAR2XLS tool, which is to convert text-based TSAR 
accident detail files into Excel files. However, while the importing of text data into Excel is largely error- 
free, it is possible that some missing data within a few columns of the text file may disrupt the structure of 
the data, thus interrupting the import process. The shortcomings of an error identified within PSMR v1.3, 
which provided the TSAR import feature, is shown in Figure 4-2. Herein, the user importing a TSAR file 
is alerted of an error in row 34 of the file, and is requested to intervene to make changes to the file so as to 
make corrections within the file. However, the intermediate worksheet shown to the user does not provide 
any capabilities regarding the type of formatting error or how to correct it. 

 

(a) PSMR (v1.3) detects an error in file (b) A prompt indicates the need for user intervention 
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(c) Non-responsive intermediate sheet 
 

Figure 4-2. Error management in PSMR (v1.3) 

We significantly improved the error handling in TSAR2XLS (v1.0) in three distinct ways, as shown in 
Figure 4-3. Firstly, when the tool finds an error, it specifically points which cell has an error (AR34), as 
opposed to the name of the row. Secondly, it provides specific instructions about the type of content that 
was missing in that cell so that the user can enter an appropriate code, after which the user can press a 
button to resume the import process. Finally, after the text files have been successfully imported, 
TSAR2XLS (v1.0) generates an error log to document what changes were made the TSAR files in the 
process of importing them into the tool. These modifications to the data import process make the error 
handling user-friendly and transparent. 

 

(a) TSAR2XLS detects an error in file 
 

(b) TSARSXLS provides specific instructions to enter missing data and resume the import process 
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(c) TSARSXLS generates an error log to record all changes made 

Figure 4-3. Error management in TSAR2XLS (v1.0) 

Once the TSAR files are imported in the TSAR2XLS tool, it can be exported as an Excel file compatible 
with PSMR Tool (v2). TSAR2XLS also allows for SWITRS matching to be undertaken. However, that 
functionality is also available in PSMR (v2) in case the user does not select the SWITRS matching option 
during TSAR file import process. 

 
4.3. Pedestrian Safety Monitoring Report Tool 

 
4.3.1. Excel-based data import functionality 
While PSMR (v1) used TSAR files as input crash data, PSMR (v2) uses only Excel-based files. Figure 4- 
4 shows the two types of Excel files that are expected to act as input crash files: (i) An Excel file obtained 
from TASAS directly, or (ii) an output of TSAR2XLS which converts TSAR files into an Excel 
worksheet. As Figure 4-4 indicates, the header row of the two files have different column numbers and 
formatting styles. However, the PSMR tool has been modeled to search for relevant columns by 
keywords, which provides greater flexibility when handling different types of Excel files. However, given 
the differences in the templates of the two Excel files, the tool does not allow files of different formats to 
be merged together. Thus, it is important to ensure the user chooses the input crash data from one data 
source (TASAS or TSAR). 

 

(a) Excel file from TASAS (b) Output of TSAR2XLS 
 

Figure 4-4.Two types of Excel-based crash data files 
 
4.3.2. Resolving road alignment issues during network screening 
One of the issues identified in the network screening output in PSMR (v1.3) was that it combined crash 
data from road segments with different independent alignments. Figure 4-5 shows an example of a route 
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which has the left and right independent alignments that are physically separate from each other. In this 
case, if the differences in alignment are not recognized, the network screening may combine crashes from 
the two segments and search for HCCLs based on the proximity of their postmiles. 

 

Figure 4-4. An example of a route with left and right independent alignments 

To address this issue, we modified the network screening algorithm in PSMR (v2.0) to distinguish 
between left and right independent alignments, which can be identified using the column named 
“Highway Group” in the crash database. However, the highway group attribute also includes indicators 
corresponding to whether the underlying road segment is divided or undivided. Unlike left/right 
independent alignment, PSMR (v2) allows for the Caltrans expert user to choose whether divided and 
undivided segments can be combined for the purposes of HCCL identification (Figure 4-6). 

 

Figure 4-5.Modified network screening query window in PSMR (v2.0) 
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4.4. Modifications to SWITRS Matching 
In addition to the functionalities described above, both TSAR2XLS (v1.0) and PSMR (v2.0) include the 
same SWITRS matching functionality as found in PSMR (v1.3). While updating these tools, we also 
wanted to update the SWITRS matching functionality for two different reasons. Firstly, the matching 
feature in PSMR (v1.3) was slow. Secondly, it used postmile information as part of the attributes 
considered for finding a common crash in SWITRS and TASAS. However, recent changes in SWITRS 
documentation may result in postmile information not being available in SWITRS crash data. 

Thus, to address these issues, the SWITRS matching algorithm has been updated in TSAR2XLS (v1.1) 
and PSMR (v2.1), which utilizes the following attributes to find a matching crash in SWITRS and 
TASAS: 

• Date of crash (available as is in both SWITRS and TASAS) 
• Time of crash (available as is in both SWITRS and TASAS) 
• Concatenated string of JURIS and BADGE in SWITRS compared with “Common Accident 

Number” in TASAS 

We tested the computational efficiency of the modified matching algorithm using test cases with varying 
number of records. We compare the running times of TSAR2XLS (v1.0), which uses the same matching 
algorithm as PSMR (v1.3), and TSAR2XLS (v1.1). Table 4-2 reveals that while the old matching 
algorithm is much faster when the test case included just 25 records, the new matching function scales 
much better as the file sizes increase. The reason for the inferior performance of new matching function 
for the first test case is that the revised matching algorithm uses a bigger SWITRS file which includes a 
larger set of attributes. In comparison, the previous version of the matching algorithm utilized SWITRS 
files that did not contain attributes such as JURIS and BADGE. Since there is a higher fixed cost (in 
computational time) for opening a bigger file, TSAR2XLS (v1.1) performs slightly worse than 
TSAR2XLS (v1.0) in the case of n=25. 

Table 4-2. Running times for SWITRS matching function for different test cases  
(n corresponds to the number of records) 

 n = 25 n = 1247 n = 21467 
TSAR2XLS (v1.0) 3.59s 139.53s 2567.67s 
TSAR2XLS (v1.1) 60s 125.72s 1408.45s 

4.5. Troubleshooting for PSMR and TSAR2XLS 



In addition to the tools discussed above, we have also initiated a web-based troubleshooting mechanism 
which allows for Caltrans expert users to report any issues that they face while using TSAR2XLS or 
PSMR tools back to the project team at SafeTREC. We developed the template for documenting these 
issues using Google Documents, which allows a user to explain a problem and assign it to one of the 
project team members. Once the issues is resolved, the problem can be marked as resolved, which will 
subsequently be conveyed to the person who reported the problem. Figure 4-7 shows snapshots of the 
troubleshooting template for TSAR2XLS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-6.Troubleshooting template for TSAR2XLS 
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Chapter 5. Conclusions and Recommendations 
This report aimed to create a comprehensive picture of pedestrian safety in California, as well as to 
continue and support the efforts for implementing a Pedestrian Safety Improvement Program in 
California.  Each chapter in this report describes an activity that contributes to the overall strategy to 
enhance pedestrian safety in California. A concise summary, important insights, and some 
recommendations for each chapter are provided below: 
 
Chapter 2 – Pedestrian Exposure Model described the process to develop a state-scale pedestrian 
exposure model for the California State Highway System (SHS). The report explains the scope of the 
model, the data that was collected, and the analytical and modeling assumptions that were used to produce 
the annual volume estimates. 

Keyinsights: 
• Local agencies have data that are beneficial for larger scale modeling projects. The project team 

was able to utilize such counts for the purpose of this project. 
• The project team developed a framework to expand short term counts that are routinely conducted 

by Districts to annual pedestrian volumes. This framework allows Caltrans to convert short term 
counts of various durations to a common unit of observation of annual volumes. 

• The team developed a direct demand model for estimation of annual pedestrian volumes on the 
state highway system. The model identifies the relationship between land-use and other variables 
about the surrounding environment and the expanded intersection counts. 

• The research team applied the model to estimate annual pedestrian volumes at all applicable 
(count and non-count locations) on the California state highway system. 

• Potential enhancements can include: 
o Improve classification of expansion factor groups for count locations. This can include 

improving the identification of outlier data in long term count data sets, and/or develop a 
tool to automate selection of factor groups and application of expansion factors. 

o Test alternative direct-demand model specifications and approaches to reducing model 
error and improve robustness. 

Recommendations: 
• Implement a repository to store data used to develop the pedestrian exposure model. An effort to 

propose the desired specification of such a repository is already being conducted. 
• Recommend updating and re-estimating the pedestrian exposure model every 5 years. In this 

period, there should be additional Miovision count data from the PSMR-related site 
investigations, other District count activities, and counts from local jurisdictions. Data used for 
explanatory will also likely be updated in this period. 

 

Chapter 3 – Contextualized Hotspot Clustering described a clustering approach to develop a pedestrian 
crash typology for the state highway system and evaluates the distribution of the proposed crash types 
within the crash population as well as within pedestrian HCCLs. 

Key insights: 
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• Developed a crash typology to distinguish between different pedestrian crash dynamics occurring 
along the state highway system. 

• The typology can be used to identify crash types that are recurring at specific locations. 
 

Chapter 4 – Pedestrian Safety Toolkit described the enhancements made to the pedestrian safety 
monitoring report (PSMR) tool, along with the modifications made to the crash data import and SWITRS 
matching processes. 

Key insight: 
• Revised Pedestrian Safety Monitoring Report Tool to include better error handling capabilities 

and improve HCCL identification. 
 
Recommendations: 

• Develop a method to incorporate pedestrian crash typology into thePSMR toolto prioritize high 
collision concentration locations. 

• Develop pedestrian intersection Safety Performance Functions for California for future 
incorporation into the PSMR tool.  
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Appendix A – Scatter plots of model variables 
 

Figure 0-1. Scatter plots for number of employees within a quarter mile 
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Figure 0-2. Scatter plots for population within a half mile 
 

Figure 0-3. Scatter plots for number of street segments within a half mile 
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Figure 0-4. Scatter plots for walk commute mode share within a half mile 
 

Figure 0-5. Scatter plots for number of schools within a half mile 
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