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Chapter 1 

Introduction 

1.1 Overview 

This report describes operational data analysis and modeling of arterial networks with signalized intersec-

tions. It is organized as follows. 

• Section 2.1 presents the setup for data collection, analysis and simulation. 

• Section 2.2 provides detailed analysis of collected signal phasing and traffc data. 

• Section 2.3 describes arterial traffc and platoon modeling. 

• Section 2.4 discusses simulation results of the Rollins Park network. 

1.2 Problem 

A 2013 report from US Public Interest Research Group (PIRG) [47] showed that the average number of 

miles driven by the average American has been falling for about a decade, through economic booms and 

busts, and was down to mid-1990s levels. Millennials, our nation’s largest-ever generational cohort, are 

using transit and bikes more and taking fewer and shorter car trips, resulting in a 23% drop in the average 
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number of miles driven. The percentage of high school seniors with a driver’s license fell 12%. Walkable 

city life is increasingly attractive to both young people and retiring baby boomers. The rise of on-line 

shopping, social media, online video streaming and telecommuting has meant fewer quick car trips. 

Figure 1.1: Percent delay by road type and time of day. Source: [42]. 

Despite these trends, as every driver knows, our roads are increasingly congested — not everywhere or all the 

time, but for increasing periods at a growing number of key intersections and road segments. Congestion 

radically reduces the volume of traffc passing through a road section, the throughput, thereby creating a 

negative feedback loop that creates more backups. 2015 Urban Mobility Scorecard [42] estimates that the 

average US commuter wastes 42 hours and 19 gallons of fuel per year because of congestion. This amounts 

to $960 annual congestion cost per commuter, which translates to $160B congestion cost nation-wide. As 

is evident from Figure 1.1, almost two thirds of congestion in large cities (and more than 80% in smaller 

urban areas) occur on city streets, and half of it happens during off-peak hours. The off-peak congestion 

affects not just private travelers, but shipping industry and manufacturers that depend on timely delivery of 

material. The off-peak congestion is also an evidence of poor transportation management. 

The effectiveness of arterial congestion management depends on effciency of signalized intersections. This 

can be explained as follows. The Highway Capacity Manual (HCM) [8] defnes an intersection’s capacity 
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as: 

C = ∑si 
gi 
, (1.2.1) 

T i 

where T s the signal cycle time; for lane group i, si is the saturation fow rate; and gi/T is the effective green 

ratio. HCM takes si = N × s0 × f : N is the number of lanes in the group, s0 is the base rate in vehicles per 

hour (vph), and f is an ‘adjustment factor’ that accounts for the road geometry and nature of the traffc. The 

base rate s0 is obtained from a thought experiment: it is the maximum discharge rate from an infnitely long 

queue of vehicles facing a permanently green signal. HCM recommends s0 = 1900 vph, although empirical 

estimates can be as low as 1200 vph. Note that si × (gi/T ) is the rate at which vehicles in queue in group 

i can potentially be served by the intersection So we also call it the service rate in a queuing model of this 

lane group. 

Consider an intersection with four approaches, each with one through lane and one left-turn lane as in 

Figure 1.2 (top). There are thus eight movements in all. Suppose each lane supports a fow up to 1900 vph 

for a total capacity of 1900 × 8 = 15,200 vph. However, from Figure 1.2 (bottom) only two movements 

can safely be allowed at the same time, so the effective green ratio for each movement is at most 0.25, and 

from equation (1.2.1) the capacity of the intersection is only 3800 vph. Thus the intersection is the principal 

bottleneck in urban roads: its capacity is a fraction (here 1/4) of the capacity of the roads connecting to it. 

Figure 1.3 (left) is a schematic of the system of vehicle detectors installed at an intersection in Santa Clarita, 

CA. Each tiny white dot is a magnetic sensor that reports the times at which a vehicle enters and leaves its 

detection zone. When there is a pair of detectors, like at every stop bar and some advance locations, the 

speed of the vehicle is also estimated and reported. The detection system also receives the signal phase 

timing from the confict monitor card in the controller cabinet (not shown in the fgure). The sensors in 

the departure lanes are used to estimate turn movements, as explained in [30]. These measurements can 

be processed to obtain all intersection performance measures, including V/C (volume to capacity) ratios, 

fraction of arrivals in green, as well as red-light violations [12, 29]. From the times, at which each vehicle 

enters the intersection we get the empirical saturation fow rate, that is the rate at which vehicles actually 

move through the intersection during the green phase, and the vehicle headway. 

Figure 1.3 (top right) displays the trace of all 12 vehicles that enter a through lane in the intersection during 
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Figure 1.2: An intersection with four approaches, each with a through and left-turn movement (top), and a 
ring-and-barrier diagram to organize the movements (bottom). Source: [15]. 

one cycle with a green phase duration of 50 seconds for the through movement. The second and third 

columns give the times (in seconds) after the start of green and before the end of green when each vehicle 

enters the intersection, the fourth column gives the duration of time the vehicle ‘occupied’ the detector zone, 

and the ffth column lists an estimate of its speed. The detectors have a sampling frequency of 16 Hz, so the 

speeds are quantized (the distance between the two detectors is 12 feet), and speeds above 60 mph have a 

quantization error of about 15 mph, speeds below 30 mph have an error under 5 mph. The average speed 

of the 12 vehicles is 42 mph. The speed limit at this intersection is 50 mph. The frst vehicle entering the 

intersection has a delay or reaction time of 3.47 seconds. The frst 5 vehicles enter within 14.16 seconds, 

so the empirical saturation fow rate of this movement is 14.16/5 = 2.83 seconds per vehicle or 3600/2.83 

11 
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Figure 1.3: Schematic of intersection detection system, and a trace of vehicles entering intersection from 
one through lane during one green phase. 

= 1272 vph. Vehicles 5, 6, . . . travel at much higher speed. Suppose these 12 vehicles were all to move as 

a platoon, that is, at the same speed of 45 mph (66 feet per second) with a uniformly small time headway 

of (say) 0.75 seconds (the space headway would be 0.75 × 66 = 49.5 ft), giving a saturation fow rate of 

3600/0.75 = 4800 vph, which is 3.8 times the observed rate of 1272 vph and 2.5 times HCM’s theoretical 

rate of 1900 vph. The headways among vehicles 1, . . . ,5 are small, suggesting that they were queued at the 

stop bar. The larger headway between vehicles 6 and 7 and 7 and 8 suggests they were moving when the 

phase started. The small headway among vehicles 7, . . . ,11 suggest they were moving as a platoon. An 

estimate for an intersection with speed of 30 mph (44 feet per second) and a space headway of 40 feet is 

a (platoon) saturation fow rate of (40/44) × 3600 = 3960 vph, which is twice HCM’s 1900 vph and up 

to three times the rates observed in today’s intersections. The following fact summarizes the relationship 

between platooning and the increase in saturation fow rates: platooning decreases the headway of vehicles 
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crossing an intersection by a gain factor Γ and increases the saturation fow rates of an intersection 

by the same factor Γ. 

What does it take to organize a platoon? If each of the 12 vehicles queued at (or approaching) the intersection 

in Figure 1.3 could measure, say by radar, the relative distance and speed from the vehicle in front of it, its 

longitudinal motion could then be controlled by an adaptive cruise control (ACC) algorithm that would 

maintain a tight headway. If furthermore, these vehicles could communicate with each other and with the 

signal controller (for phase information), a cooperative adaptive cruise control (CACC) algorithm would 

maintain an even shorter headway and thus achieve a greater saturation fow rate. 

Platooning is technically feasible. In fact, an autonomous 8-vehicle platoons with 16 ft gap traveling at 60 

mph was demonstrated 20 years ago in 1997 by the National Automated Highway System Consortium [11, 

43]. Since then vehicle automation has been greatly facilitated by advances in actuation (electronic braking, 

throttle, and steering) and sensing (radar and video), while platoon stability and control design are much 

better understood. Indeed, in [36] authors report an experiment of a 6-vehicle CACC platoon, with a 0.5 

s headway. They used ACC equipped vehicles augmented with vehicle-to-vehicle (V2V) communications 

using a 802.11a WiFi radio in ad-hoc mode. Experiments with a 4-vehicle platoon, capable of cut-in, cut-

out and other maneuvers, using CACC technology, are described in [28]. The vehicles’ factory-equipped 

ACC capability was enhanced by a dedicated short-range communication (DSRC) radio that permitted V2V 

communication to enable CACC. The vehicles in the platoon had a time gap of 0.6 seconds (time headway 

of 0.8 seconds) traveling at 55 mph. ACC is today common in many high-end cars. 

It is important to distinguish our proposal to use [C]ACC to increase an intersection’s capacity from propos-

als to use [C]ACC to increase road capacity by decreasing headway. Increasing the capacity of urban roads 

will not increase the throughput of the urban network, which is limited by intersection capacity. 

1.3 Objective 

The aim of the current project was to develop a suite of techniques that will: 

1. enable assessment of intersection effciency; 
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2. model impact of [C]ACC on arterial traffc fow; and 

3. make traffc on urban streets more reliable and predictable. 

Working toward this goal, we delivered: 

1. arterial measurement data collection system; 

2. analysis of phasing and timing of actuated signals; 

3. evaluation of car following models and their parameters; 

4. model of ACC and CACC platooning in mixed traffc; and 

5. micro-simulation model of signalized arterial network in Rollins Park, MD, built from measurement 

data. 

1.4 Scope 

The proposed techniques combine traffc management and traffc information. 

Traffc management comprises feedback control of the road network infrastructure and demand management 

through traveler information, advisory messages and pricing. It happens on three levels: 

1. at the vehicle level the car speed and headway are adjusted to increase throughput and safety; 

2. at the road link level signal timings are optimized and special lanes re-allocated, e.g. bus lanes may 

be opened for everyone when necessary; and 

3. at the network level traffc demand is managed via route advisory, day-to-day intersection timing 

adjustments, and traffc information dissemination. 

Traffc information helps to provide reliable travel advice, assess the transportation system’s performance, 

scenario analysis and future forecasts. It includes the current state of traffc and short term forecasts. It infu-

ences traveler departure times and route choices, as well as transportation modes. Traffc information is thus 
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a demand management tool, and its effectiveness depends on the accuracy of the information and the quality 

of the routing and transportation mode alternative advice provided to the travelers. Traffc information also 

enables one to assess the effectiveness of traffc management schemes. 

Figure 1.4: Information fow. 

Figure 1.4 shows the information fow between the traffc measurement infrastructure and the proposed 

management layers. The vehicle level control system makes a group of connected vehicles move in a fuel 

effcient manner by reducing the number of stops at intersections. The fow through intersections is increased 

by forming platoons with minimal inter-vehicle spacing. The road link level control system includes signal 

timings that are tuned to increase traffc throughput. The goal is to improve the effective green (so that the 

green time is not wasted) and progression quality (so that most vehicles arrive at the intersection during 

green time). The lane management component aims to increase the link capacity at certain times of day 

by opening designated lanes to all the traffc. Sometimes, designated lanes may be used for parking. The 

network level control system determines intersection signal split timings to minimize congestion and delay. 

Signals are tuned to favor traffc on particular routes at a given time of day. This infuences traveler route 

choices when reinforced by disseminating routing information. 
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Proper deployment and management of signalized intersections relies on the continuous process of: 

1. obtaining and analyzing of signal phasing and traffc measurement data; 

2. operations planning — simulating various scenarios, operational strategies as well as impact of new 

and emerging technologies in vehicles and multimodal transportation; 

3. implementing the most promising operational strategies in the feld. 

This process requires a fast and trusted traffc simulator for the rapid quantitative assessment of a large 

number of operational strategies for the road network under various scenarios. The research presented 

hereby is the stepping stone for achieving this goal. 
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Chapter 2 

Methodology 

2.1 Research Setup 

To perform this project, we chose a site with seven instrumented intersections, located in Rollins Park, 

Maryland. Intersection instrumentation is provided by Sensys Networks, Inc. (www.sensysnetworks.com). 

The site map is shown in Figure 2.1. In each of the seven locations counts of vehicles approaching the 

intersection, crossing stop bar and exiting the intersection, together with signal phasing data are collected. 

Signal phasing is important because all seven signals are actuated (as opposed to pre-timed): for a given 

approach, green time varies between minimum and maximum thresholds, getting extended beyond the min-

imum threshold as new vehicles arrive. 

Figure 2.1: Map showing locations of seven instrumented intersections in Rollins Park, MD. 

The diagram in Figure 2.2 depicts the process of data collection, analysis and building the simulation model. 

This diagram has six components, which we describe next. 
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Figure 2.2: Process of data collection, analysis and building the simulation model. 

1. The instrumentation of each intersection includes approach, stop bar and exit vehicle detectors; an 

access point (AP) that accumulates detector data to produce vehicle counts; and a confict monitoring 

card that is installed together with the signal controller and records the information about signal phas-

ing. The confict monitoring card is connected to AP, which collects both vehicle counts and signal 

phasing. AP is equipped with cellular modem used to send the collected data to Sensys cloud for 

processing. For this project we set up a dedicated server that replicates those data sent by the seven 

APs to the Sensys cloud and stores them. 

2. This component depicts intersection layout corresponding to AP3299, shown in Figure 2.1. Data 

collected from each intersection allows to analyze the performance of actuated signals and assess 
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intersection throughput. 

3. Signal timing plans provide: cycle lengths, minimum and maximum green times for each phase and 

offsets specifying when a cycle at a given intersection starts relative to a global clock. Every phase 

corresponds to a movement, as shown in Figure 1.2. All this information is necessary for confguring 

signals in the simulation model. 

4. Vehicle counts per lane at stop bar and exit detectors can be used to estimate turn ratios at intersections 

— in what proportion traffc breaks down into left turn, through movement and right turn. Signal 

timing plans and actual phasing data together with historical vehicle counts can be used to forecast 

signal behavior. All together, these data provide suffcient input for the simulation model. 

5. We build a model of Rollins Park network for Simulation of Urban Mobility (SUMO) [25], a free, 

open source micro-simulation package. SUMO can be enhanced with custom models and provides 

various APIs to remotely control the simulation. This component shows a screenshot of graphical 

SUMO display. 

6. If we zoom into the intersection corresponding to AP3299, the same as depicted by component 2, 

we can see that vehicle detectors modeled in the simulation exactly correspond to actual detectors 

deployed in the feld. 

Next, we discuss intersection data analysis. 

2.2 Intersection Measurement Data Analysis 

The analysis of intersection dataconducted in the current project focuses on signal phasing and timing 

(SPaT). SPaT refers to the current phase at a signalized intersection together with the residual time of 

the of the current phase for every approach to the intersection. The estimate is periodically broadcast by 

the intersection, say once per second. For a fxed-time controller the SPaT information will be defnitive; 

the challenge is for an actuated controller for which only an estimate of the residual time can be given. A 

SPaT message is usually accompanied by a MAP message, which describes the physical geometry of one 

or more intersections. A vehicle approaching or departing the intersection can take the residual time of the 
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current phase from the SPaT message, together with knowledge of its own position and speed and MAP 

information, to calculate a speed profle that reduces stop-and-go driving and idling [49]. 

Several studies offer such ‘eco-friendly’ speed advice and simulate its benefts. In [3], authors use model 

predictive control (MPC) to construct a vehicle trajectory that traverses a sequence of intersections without 

stopping at a red light, knowing the signal phase timing sequence in advance. In [39], authors propose speed 

advice based on SPaT messages from the upcoming intersection and evaluate the expected reduction in 

emissions and fuel consumption using a vehicle dynamics model. In [7], authors simulate a velocity planning 

algorithm for eco-driving through a signalized corridor. These studies report fuel savings in arterial driving 

ranging between 12 and 47%. This wide variability in fuel savings estimates may be due to differences in 

the underlying vehicle simulation models. 

On the other hand, the Glidepath feld experiment found drivers who got speed advice saved 7%, whereas 

SPaT-based automatic speed control saved 22% of fuel, relative to an uninformed driver [48]. The Glide-

path experiments suggest that accuracy in the SPaT estimate is essential to maximize the fuel savings that 

automation can achieve. Another feld experiment [56] reports comparable fuel savings. For a review of the 

SPaT message structure and other SPaT applications see [34]. 

A few studies propose SPaT estimation based on poor measurements of signal phase. In [13], authors 

estimate the cycle length, phase durations, and the cycle start time for several intersections along a segment 

of Van Ness Avenue in San Francisco. Only fxed-time signals are considered. Their data consists of 

samples of GPS position and speed taken once every 20-80s from bus runs over this segment for one month. 

However, to estimate the red duration at an intersection, only between 40 and 350 samples out of 4,300 

bus runs collected over one month were found to be usable. These few samples were “aggregated” (in an 

unspecifed manner) to estimate the duration of red. The accuracy of the estimates is unimpressive, with 

absolute errors up to 7s for an average red duration of 35s. Since the signal timing parameters are fxed 

and available from the San Francisco Transportation Authority, the one month-long data collection and 

processing effort to estimate these parameters seems misspent. This approach to estimating parameters for 

fxed-time signals using speed measurements of “foating cars” was also used by [5, 52, 38]. 

In [24], authors describe an application in which several drivers with smartphones cooperate to fnd (detect) 

the signal light at an intersection and predict its phase duration. Much effort is spent to detect the signal 

20 



head and identify the signal color. (In the two reported scenarios, the signal head misdetection rates were 

7.8 and 12.4%, meaning that in one out of ten intersections on average, the signal head was not detected or 

some other object was mistaken for a signal head.) The two remaining tasks are: (1) estimating the phase 

durations; and (2) ‘synchronization’ or locating the current time within the current cycle or phase, so the 

vehicle can fgure out the residual time of the phase. In case of a fxed-time signal with known timing plan, 

the phase durations are known, and synchronization is achieved simply by determining the time of a phase 

transition from (say) green to red. For an actuated signal the phase duration varies from one cycle to the next, 

and three machine learning algorithms are tested to predict the duration of the next phase from signal phase 

history: however, the best prediction based on the fve previous phases and cycle lengths is only slightly 

better than taking the next phase duration to be the same as the last duration. The authors do not discuss 

how phase duration estimates made by vehicles at earlier times are transferred to the vehicle that is making 

the current prediction. 

These two studies spend much effort in collecting and processing noisy measurements of signal phase. By 

contrast, city transportation agencies and auto companies obtain the signal phase data directly from the 

signal controller. Cities may invest in SPaT devices to improve mobility generally and to provide priority to 

public transportation [31]. Auto companies devote their effort to improving SPaT algorithms and designing 

interfaces to present SPaT messages to drivers. The algorithm in [37], discussed in detail in the next section, 

predicts phase actuations during cycles [t, t + d] based on measurements of signal phase during cycles [t − 

2d, t − d]. Here, d is the delay in acquiring phase information from the city. The brief description in [4] does 

not explain how their SPaT estimate is derived but states that it is displayed to the driver via a “countdown 

clock on the dashboard.” The website (http://conectedsignals.com) states that its SPaT estimates combine 

real-time signal data, GPS location, and speed limit information, and are delivered via cellphones. 

Report Contributions This report presents several algorithms to estimate the residual duration of a phase 

for a semi-actuated intersection in Rollins Park, MD. Direct measurements from the intersection are used 

to evaluate the algorithms. The algorithms predict the times for all future phase transitions, based on pre-

vious phase measurements and on the real time information that locates the current time within the current 

phase. For actuated signals, conditioning the prediction on this real time information greatly reduces the 

prediction error. To our knowledge, this is the frst paper to use this information, which is available at the 

signal controller. A surprising fnding is that for semi-actuated signals, as time increases, the estimate of 
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the residual phase duration may increase or decrease, posing a challenge to construct fuel-minimizing speed 

profles. Another contribution stems from the observation that for a driver the best SPaT estimate is the one 

that minimizes the driver’s own loss function. For example if, as seems likely, drivers differently weight er-

rors in predicting ‘end of green’ and ‘end of red’, drivers on two different approaches would prefer different 

estimates of the same phase transition, since ‘end of green’ for one approach to the intersection would be 

the ‘end of red’ for the other. This suggests that multiple SPaT estimates should be created and broadcast. 

This Section is organized as follows. Subsection 2.2.1 describes the intersection site and the measurement 

system. Subsection 2.2.2 formulates the SPaT estimation problem. Subsections 2.2.3 and 2.2.4 present three 

SPaT estimation algorithms. 

2.2.1 Measurement Site 

Figure 2.3: Intersection at Tildenwood Drive and Montrose Road 

Figure 2.3 shows the intersection at Tildenwood Drive and Montrose Road in Rollins Park, MD (AP3321 

in Figure 2.1), where all our data is collected. The same fgure also indicates the six phase movements 

permitted at this intersection. The movements are arranged in the dual ring of Figure 2.4. Ring 1 comprises 
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phases p4, p1, p2, and ring 2 comprises phases p8, p5, p6; phases p3, p7 have zero duration. The thicker 

vertical lines are the two barriers. Across Montrose Rd., to the east of the intersection, is the pedestrian 

cross-walk which is actuated in every cycle at the beginning of phases p4 and p8. 

Figure 2.4: The dual-ring diagram; phases p3 and p7 have zero duration. The thicker vertical lines are the 
two barriers. 

The intersection is equipped with magnetic vehicle detectors. There are detectors at the stop bar, at advance 

locations, and in the departure lanes. The latter permit an accurate count of turn movements (p1 and p5). 

In addition, the current signal phase is obtained from the controller every 100ms. All measurements are 

time stamped with a common clock with a 10ms accuracy. These detectors are for measurement only; the 

controller itself relies on different detectors for signal control. 

In summary, the data consists of the time series of vehicle detections and signal phase at a time resolution 

of 10ms. The data is sent wirelessly to an access point (AP) mounted on a pole at the controller, from where 

it is sent via cellular connections to the traffc management center and to our server. The data are obtained 

courtesy of Sensys Networks, Inc. The analysis here uses one month of data for October 2015. Only phase 

data is used in this study; a future research will report on the additional predictive power provided by vehicle 

detection data. 

The intersection is regulated by a semi-actuated, coordinated controller. The cycle length is fxed at L = 

100, 110 or 120s, depending on time of day and day of week. Phase p4 or p8 is the synchronizing phase, 

which starts each cycle. The cycle is divided into nominal durations for each phase; the controller modifes 

these durations in each cycle depending on vehicle detections. ([14] describes the operation of actuated 
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controllers.) The main direction of traffc is East-West and this direction has no detectors for signal control. 

There are detectors in the secondary North-South direction. If few vehicles are detected in the secondary 

direction, its green duration (phases p4, p8) is shortened and the time saved thereby is added to the green 

duration of the main direction (phases p2, p6). Vehicles making left turn movements (phases p1, p5) are 

also detected, and their green duration is also reduced if fewer vehicles are detected in the turn pockets, see 

Figure 2.3. 

Thus if we denote by di the duration of phase pi, we see that all of these durations may vary from one cycle 

to the next, while maintaining some identities: 

d4 + d1 + d2 = d8 + d5 + d6 = L, (2.2.1) 

d1 + d2 = d5 + d6, (2.2.2) 

d4 = d8. (2.2.3) 

Equation (2.2.1) recognizes L as the cycle length; (2.2.2) and (2.2.3) are implied by the two barriers shown 

in Figure 2.4. 

2.2.2 The Signal Phase and Timing (SPaT) Problem 

Figure 2.5: Variables used to defne the SPaT estimation problem. 

We use Figure 2.5 to defne the SPaT estimation problem. Time is in seconds. The fgure shows two 
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cycles n and n + 1, each of length L, starting at times c(n) and c(n + 1); d4(n),d1(n) · · · is the duration 

and p4(n), p1(n), · · · is the end time of phase p4, p1, · · · in cycle n; so if t is the current time in cycle n 

during phase p4, p1, · · · , then p4(n) − t, p1(n) − t, · · · is the residual time of the phase that is included in 

the SPaT message. Observe that from the phase end times one can calculate the phase durations, e.g. 

d1(n) = p1(n) − p4(n), etc. Conversely, from the phase durations one can calculate their end times. 

The SPaT Problem Let I(t) be the information about previous phases available at time t during cycle n. 

The problem is to predict the residual times pk(m) − t of all phases k for all future cycles m = n,n + 1, · · · , 

given I(t). 

Figure 2.6: Variation in Phase durations over 2,000 cycles. 

Our study uses data for 16,000 cycles in October 2016. The phase data for a sample of 2,000 cycles (about 

3 days) is shown in Figure 2.6. The plot is similar to Figure 2.5: the difference is that the plot is rotated 90 

degrees, the 2,000 cycles are ‘stacked’ horizontally, and only phases in ring 1 are shown (there is a similar 
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plot for phases in ring 2). The x coordinate is the cycle number; the y coordinate is the time in seconds 

during that cycle. The length of a cycle is 120, 110 or 100s, as determined by the timing plan. Every cycle 

starts in the synchronizing phase p4 (and p8); its duration is d4 and it is colored green as in Figure 2.5. The 

minimum value of d4 is the pedestrian clearance time of 36s; the duration d4 (and d8) is extended by 5s each 

time an additional vehicle is detected. Phase p4 is followed by the left turn phase p1 (and p5) colored red, 

and lasting d1. Duration d1 depends on the detection of left turn vehicles, and each new detection triggers an 

extension of 5s. d1 is zero in many cycles, when there are no left turns. The last phase in the cycle is p2 (and 

p6), colored blue. It lasts for time d2 until the end of the cycle. Large values of d4 and d1 occur only during 

the AM and PM peaks. The 4s yellow and 1.5 or 2s red signal phases are included in the green duration. 

We now present several algorithms for SPaT estimation. 

2.2.3 The Approach of Protschky Et Al [37] 

Suppose the data available at time t in cycle n comprises all the phase actuations that occurred during the d 

cycles m ∈ (n− 2d,n− d]. This data can be put in the form of the binary array gk(i,m) = 1 or 0, accordingly 

as phase k is or is not green (actuated) during second i = 1, · · · ,L of cycle m = n − 2d + 1, · · · ,n − d. This 

data is used to predict future actuations during cycles [n,n+ d]. 

For each phase k, the data is ‘compressed’ into the frequency distribution gk(i) of actuations at second i of a 

cycle: 

n−d 
gk(i) = 

1 
∑ gk(i,m), i = 1, · · · ,L. (2.2.4) 

d m=n−2d+1 

We will evaluate (2.2.4) for that subset of the data of Figure 2.6 for which the cycle length is L = 120. 

(A separate analysis should be carried out for cycles of length 100, 110, as it makes no sense to combine 

these data.) The number d of such cycles is approximately 200. Using (2.2.4) gives the frequency distri-

butions for phases p4, p1, p2 shown in Figure 2.7. Also shown in the fgure are two horizontal dashed lines 

corresponding to frequency 0.8 and 0.2; their signifcance will be discussed later. 

The frequency distribution of phase p4 has value 1 for the frst 36s – the pedestrian clearance time – after 

which the the frequency declines until it reaches 0 at 44s into the cycle, and beyond which p4 is never 
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Figure 2.7: Frequency distributions for phases p4, p1, p2 from data in Figure 2.6 for cycles of length 120s. 

green. The frequency distribution of phase p1 has value 0 for the frst 36s (during which phase p4 is always 

actuated) and then jumps to 0.2 at 36s, because there is a left turn movement in 20% of the cycle samples. 

The frequency of phase p1 actuation increases up to 0.47 at 42s into the cycle, and then decreases to 0 at 

73s into the cycle. (In Figure 2.6 one may observe that p4 does last up to 73s during a few cycles of length 

120s.) Lastly the frequency of phase p2 being actuated is 0 until 36s, increases monotonically to reach 1 for 

seconds i = 73, · · · ,110 and then declines to 0 at 120s, which is the end of the cycle. 

The three frequency distributions can be expressed as L-dimensional vectors π4,π1,π2 in which πk(i) is the 

frequency with which phase pk is actuated during second i of the cycle. These frequencies are given by 

(2.2.4). Vectors π8,π5,π6 are given by the same formula. The six vectors are not independent because of 

(2.2.1)-(2.2.3). (These vectors are not probability distributions, they simply give the frequency with which 

a phase is actuated during a particular second of the cycle.) 

These six frequency distributions are computed at the beginning of each cycle when information about the 
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⎪⎪⎪
⎪⎪⎪

phase actuations of a new cycle is received. The computation can be done locally at each intersection, or it 

can be done centrally if local information is available at the traffc management center. [37] further compress 

the distribution from gk of (2.2.4) to γk of (2.2.5): 

⎧ 
G, gk(i) ≥ 0.8 ⎪⎨ 

γk(i) = R, gk(i) ≤ 0.2 . (2.2.5) ⎪⎩ M, else 

The interpretation of γk(i) = G or R is that with 80% ‘confdence’ phase k is green or red at second i, whereas 

γk(i) = M means the phase maybe green or red. In terms of Figure 2.7 γk(i) = G or R accordingly as the 

distribution gk(i) is above the upper dashed line or below the lower dashed line; otherwise γk(i) = M. 

In the scheme of [37], the intersection broadcasts the compressed versions (2.2.5) of the six distributions, 

say every second. But to fgure out the residual time of the current or future phase, a vehicle also needs 

to know the broadcast time within the cycle. So we will assume that the SPaT message includes the time 

t ∈ [1,120] in the cycle when the broadcast is made, although [37] do not mention the need to broadcast 

this time. Even with this time, however, the vector γ given by (2.2.5) still may not be useful. Suppose, for 

example, a driver arriving at time 20s into the cycle wants to know when phase p4 will end or when p1, p2 

will start. From (2.2.5) and Figure 2.7 the answers will be: ‘p4 will likely end in 40-20 = 20s’, ‘no clue 

when p1 starts’, and ‘p2 will likely start in 60-20 = 40s’. Of course these ‘80% confdence’ answers may be 

incorrect; and they leave a lot of uncertainty. A better response is provided in the next section. 

The deeper problem with compressing the raw data of Figure 2.6 into the frequency distributions of (2.2.4) 

or Figure 2.7 is that the frequency distribution obscures the residual times of the phase, which is what the 

SPaT message is supposed to provide and vehicles need to calculate their speed profle. Consider a simple 

example to illustrate this. Suppose in an actuated signal with cycle length of 100s, one particular phase lasts 

exactly 20s in every cycle. Suppose further that the actuation of this phase can begin at any second i in the 

cycle with uniform probability, 0.01. So this phase will be actuated for an interval of 20s starting at any 

second in the cycle with uniform probability. Hence for this phase (2.2.4) gives g(i) ≡ 0.2 and (2.2.5) gives 

γ(i) ≡ M, and neither estimate conveys any information about this phase. On the other hand the same raw 

data implies that the duration of this phase is 20s with probability 1, which should be included in the SPaT 

message. Suppose further that the intersection knows the phase history up to the current time in the cycle. 
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In that case, the intersection knows that the phase was actuated (say) t seconds ago and so the residual time 

is exactly 20 − t. This message would be much more informative. We develop this idea next. 

2.2.4 Residual Time Prediction 

As in (2.2.1)-(2.2.3) and Figure 2.5, let d4,d1,d2 denote the duration of phase p4, p1, p2. (The treatment of 

phases p8, p5, p6 is virtually the same.) Since in each cycle, each phase is actuated for a contiguous interval 

of time, it is easy to calculate the histograms or empirical probability distributions (pdf) of the durations 

from the raw data of Figure 2.6. Since d2 = 120− (d4 + d1) (by (2.2.4)), it is enough to calculate the pdfs of 

d4,d1,d4 + d1. Since d4 and d1 may be dependent, the pdf of d4 + d1 cannot be calculated from the pdfs of 

d4 and d1. As in section 2.2.3 we consider only the data for cycles of length 120s. The calculated pdfs are 

plotted in Figure 2.8. 

Figure 2.8: Pdfs for durations d4,d1,d4 + d1 from data in Figure 2.6 for cycles of length 120s. 

We propose several residual time predictors, depending on the information available at time t in the cycle 

that the prediction is made. 

Conditional Expected Value as Prediction 

If the prediction is made at the start of the cycle, t = 0, then nothing is known except the unconditional pdfs 

of the phase durations in Figure 2.8, and so a reasonable prediction for the durations is their expected values. 

These values are inserted in the plots of Figure 2.8. 

Now consider the prediction of the residual duration of d4 at some later time t in the cycle. We see from the 

pdf of d4 that if t > 36 and if the intersection knows that d4 is still actuated at t, i.e., that d4 > t, a better 
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prediction at t would be the expected value of d4, conditioned on the event {d4 > t}. The top right panel in 

Figure 2.9 shows the conditional pdf p(d4 | d4 > 36) and its expected value 41.58. The bottom left panel 

plots the conditional expectation as a function of t, t 7→ E{d4 | d4 > t}. The bottom right panel shows the 

prediction of the residual or the time remaining before the end of d4, i.e., the plot of t 7→ E{d4 | d4 > t}− t. 

One striking feature is that the residual time of d4 suddenly increases at t = 36 by about 2.5s, which may 

appear counter-intuitive. (Another consequence is that a driver waiting for the left turn signal, phase p1, 

to turn green will see this time suddenly extended by 2.5s. The phenomenon is similar to the experience 

of the ‘remaining time’ to download a fle.) If the residual time is revealed to the driver via a countdown 

clock as in [4], then the clock must make a backward jump at t = 36. By assuming that the prediction of the 

duration does not change with time, i.e., E{d4 | d4 > t}− t = E{d4}− t, the eco-driving control strategies in 

[7] and [39] rule out the realistic situation depicted in the bottom right panel of Figure 2.10. Of course the 

complexity of Figure 2.9 disappears in the case of fxed-time signals, for which the pdfs are delta-functions. 

Figure 2.9: Unconditional and conditional pdfs for d4, expected value and residual expected value. 
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Confdence Based Prediction 

Suppose we want to provide a confdence bound on the predictions of the residual duration in the spirit 

of [37]. One way is to pick a confdence bound, say 0.3, and ask: For what value d can one guarantee 

P{d4 > d} = 0.3? Let F(d) = P{d4 ≤ d} be the cumulative distribution function (cdf) of d4. Then 1 − 

F(d) = P{d4 > d} and the answer to the question is given by the unique solution d of 

1− F(d) = 0.3. (2.2.6) 

The left panel of Figure 2.10 plots the pdf and 1-CDF of d4. The latter is a decreasing function, and the 

solution of (2.2.6) is d = 38. Now suppose we ask the same question at time t = 36 into the cycle with p4 

actuated. Then the answer is given by 

1− F(d | d4 > 36) = 0.3. (2.2.7) 

which yields d = 43. Here F(d | d4 > 36) is the CDF of d4 conditioned on the event {d4 > 36}. Thus 

with probability 0.3, at time t = 0 in the cycle d4 is at least 36, and at time t = 36 in the cycle d4 is at 

least 43.5. Evidently, having real-time information signifcantly improves the prediction, both in the form 

of conditional expectation (Figure 2.9) and with confdence bounds (Figure 2.10). 

Figure 2.10: Left: P{d4 > d} = 0.3 is d = 38. Right: P{d4 > d | d4 > 36} is d = 43.5. 

Observe that in (2.2.7), (2.2.10) the answer d is just the 0.7th quantile of d4. 
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2.2.5 Prediction Errors 

Consider the conditional expected value estimate of the bottom left panel of Figure 2.9 at time t into the 

cycle, for which the prediction of the residual time is P(t). (For example, for t = 42, P(t) = 44.) In our 

data set there are several samples for which d4 > t and for each of those samples we can calculate the exact 

error in the prediction of the residual time, P(t) − d4. We can then calculate the mean absolute error for the 

prediction at t: 

n(t) 
MAE(t) = 

1 
∑ |P(t) − d4(ω)| (2.2.8) 

n(t) 
ω=1 

in which ω = 1, ...,n(t) are the samples of d4 for which d4(ω) > t. 

In exactly the same way we can calculate the MAE for confdence-based prediction shown in Figure 

2.10. The formula for MAE is exactly the same as in (2.2.10), the only difference is that P(t) is now 

the confdence-based estimate. 

Figure 2.11 plots the the conditional expectation and confdence-based predictions and the prediction errors. 

The confdence bound is 0.3. The most remarkable aspect of the fgure is that both prediction errors decrease 

as more real-time information is accumulated by the intersection. 

If we take a quadratic loss function, (2.2.10) must be replaced by the mean-squared error (2.2.9): 

n(t) 
MSE(t) = 

1 
∑ [P(t) − d4(ω)]

2 (2.2.9) 
n(t) 

ω=1 

in which ω = 1, ...,n(t) is the same as in (2.2.10). The best prediction error is now simply the conditional 

expectation. 

2.2.6 Different Loss Functions 

The function MAE in (2.2.10) implicitly takes the loss of an inaccurate prediction as the absolute value of 

the error, hence a positive error and a negative error of the same magnitude are judged equally. But it seems 

more likely that an over estimate of the ‘time to red’ is evaluated differently from the same error in the 
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Figure 2.11: Left: Two predictors, middle: MAE errors for both predictors: conditional expectation and 
confdence-based as a function of observation time t; Right: MSE for both predictors. 

estimate of ‘time to green’. (In the former case, one may have to slam on the brakes.) This consideration 

suggests using the loss function 

Z p Z M 
E[L(p − x)] = c2(p− x) f (x)dx + c1(p − x) f (x)dx. (2.2.10) 

0 p 

Here c2 is the cost per second of underestimation, c1 is the cost per second of overestimation of the phase 

duration, p is the prediction, x is the actual duration, and EL(p− x) is the expected loss. The best prediction 

that minimizes (2.2.10) is given by p ∗ where 

|c1| F(p ∗ ) = (2.2.11) |c1 + c2| 

i.e. p ∗ is just the |c1|/|c1 + c2|th quantile of the duration. So this is just the confdence based estimate with 

an appropriate choice of the confdence bound. 

This loss function is plotted in Figure 2.12. If |c1| 6= |c2|, the two slopes are different. So, if our driver feels 

|c1| < |c2| when driving during phase p2, he will feel the two slopes should be exchanged when driving 

during phase p4. 

2.2.7 Summary 

We presented three algorithms for SPaT predictions, i.e., estimates of the remaining duration of a signal 

phase. The investigation is based on high-resolution phase data for a semi-actuated intersection in Rollins 
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Figure 2.12: Left: Two predictors, middle: MAE errors for both predictors: conditional expectation and 
confdence-based as a function of observation time t; Right: MSE for both predictors. 

Park, MD. In each case the prediction is calculated from the ground truth. The algorithms can be readily 

implemented at the intersection’s signal controller. We summarize three principal fndings. 

First, having knowing in real-time how much time into the current phase has elapsed, greatly improves 

the prediction of the residual time for that phase and for a subsequent phase. Second, for an actuated 

signal, it is very likely that as time increases, the real-time prediction of the residual time can increase 

and decrease. This poses a challenge to the design of speed profles that reduce fuel consumption. Third, 

drivers are likely to weight differently errors in predicting end of green and end of red, so drivers on two 

different approaches would prefer different estimates of the residual time of the same phase. It may be worth 

considering providing multiple estimates of the residual time. 

Next, we discuss arterial traffc modeling. 
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2.3 Traffc Modeling 

To assess the impact of ACC and CACC vehicles on intersection throughput, one has to model car following 

behavior. The choice of the car following models largely determines the fndings of of the ACC/CACC 

impact study. There is a variety of car following models. The list starts with the Reuschel [40] and Pipes [35] 

models, in which the speed changes instantaneously as a function of the distance to the leading vehicle. 

Another class of models, generally referred to as Gazis-Herman-Rothery (GHR) [10, 17],1 is where the 

acceleration depends on speed difference and the distance gap according to the power law and not infuenced 

by the driver’s own speed. These models are incomplete in the following sense: they can describe either 

free traffc or approach to standing obstacle, but not both. On the contrary, complete models describe all 

situations, including acceleration and cruising in free traffc, following other vehicles in stationary and non-

stationary situations, and approaching slow or standing vehicles, and red lights [46] (Chapter 10). 

The class of models, where the acceleration depends on speed difference with car in front and on the differ-

ence between the actual and the desired gap linearly, is attributed to Helly [20]. Helly modl is complete, and 

its linear nature makes it easy to understand and analyze. It was extensively studied, built upon and used for 

ACC/CACC modeling [44, 19, 51, 21, 50]. 

Another example of a complete model is the Optimal Velocity Model (OVM) [6]. In OVM, acceleration 

depends only on the distance (but not on the speed difference) to the car in front: this distance determines 

the optimal speed, which the vehicle tries to hold. OVM is not always collision-free. Full Velocity Difference 

Model (FVDM) [22] extends OVM by adding the linear dependence on the speed difference with the car in 

front to the acceleration equation. Generally considered more realistic than OVM, in terms of acceleration 

values and the shock waves that it produces, FVDM suffers from the defect that it is not complete in the 

sense defned above. The reason is that the speed difference term does not depend on the gap between the 

vehicle and the car in front. Consequently, a slow vehicle triggers a signifcant deceleration of its follower 

even if it is miles away. Newell car following model [32, 33], describes car-following behaviour based on 

the analysis of time-space trajectory, assuming that the time-space trajectory for two adjacent vehicles is 

essentially the same, except for the shift in time and space. For gaps smaller than desired and triangular 

fundamental diagram, the Newell model behaves the same OVM. 
1Also known as General Motors car following model. 
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All the above mentioned models are heuristic — they attempt to describe vehicle fow based on observations 

and common sense. Gipps car following model [18] and the Intelligent Driver Model (IDM) [45] are similar 

to complete heuristic models in that they too are defned by their acceleration equations. In addition to that, 

they adhere the following principles: 

1. the model is complete in the sense of the defnition above; 

2. the equilibrium gap to the car in front is no less than the safe distance computed as a sum of the 

minimal gap and the distance the car can travel during the period called reaction time; 

3. deceleration increases and decreases smoothly under normal driving conditions, but can exceed “com-

fortable” level when the car in front is too close and too slow — to avoi collision; 

4. transitions between different driving modes are smooth; 

5. each model parameter describes only one aspect of driving behavior; 

6. acceleration is strictly decreasing function of the speed; 

7. acceleration is increasing function of the gap between the vehicle and the car in front; 

8. acceleration is an increasing function of the speed of the car in front; 

9. minimal gap to the car in front is maintained even during standstill, but there is no backward movement 

if the gap is smaller than the minimal (e.g. due to initial conditions). 

Gipps model is widely used and is implemented in the Aimsun microsimulator. Krauss car following 

model [26] is a stochastic variation of Gipps model, where an auto-correlated noise is added to the ve-

hicle speed. Krauss-Gipps model is implemented in the SUMO microsimulator [25]. IDM is considered to 

have more realistic acceleration profle than that of Gipps model. It is widely investigated for the purpose 

of ACC/CACC implementation [23, 41, 53, 28]. Due to the continuous transition between free fow and 

congested traffc, the gap between vehicles grows infnitely large as the speed approaches the equilibrium 

value. The other effect of this continuous transition is that the gap size between the vehicle and the car 

in front smaller than desired leads to unrealistically high deceleration values. This produces unacceptable 

vehicle behavior in platoons. Therefore, the acceleration function was modifed to retain the spirit of IDM 
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but to eliminate its shortcomings. The resulting model is called Improved IDM (IIDM) [46] (Chapter 11). 

Gipps model and IIDM are sometimes called frst principle models, referring to the four principles stated 

above. 

Finally, there is a category of car following models referred to as behavioral. These are Wiedemann [54, 

55] and Fritzsche [16] models, implemented in Planung Transport Verkehr (PTV) Vissim and Paramics 

simulators respectively. These two models are essentially hybrid systems, where guards between different 

modes of vehicle dynamics are thresholds for the speed difference and the distance to the car in front. 

Adjusting those guards changes driver behavior in the range from overly cautious to aggressive and from 

slow reactive to fast. In the Wiedemann and Fritzsche models, transitions between different driving modes 

are not necessarily smooth, as acceleration changes in a series of discrete transitions, which violates rule 4 

of the frst principles listed above. Designed to model human behavior and requiring complex tuning of the 

multitude of parameters, these models are generally not used for ACC/CACC. 

In this report we analyze three models — Gipps, IIDM and Helly — and assess the impact of ACC and 

CACC vehicles on the intersection throughput in the context of these models. 

2.3.1 Analysis of Selected Car Following Models 

We start by introducing the notation that will be used in the car following model discussion. It is summarized 

in Table 2.1 together with the default parameter values that we will use in our experiments, unless stated 

otherwise. 

The state update equations for a car following model are: 

v(t + Δt) = v(t)+ a(t)Δt; (2.3.1) 

v(t)+ v(t + Δt) a(t)Δt2 
x(t + Δt) = x(t)+ Δt = x(t)+ v(t)Δt + , (2.3.2) 

2 2 

where acceleration a(t) depends on the car following model — Gipps, IIDM and Helly — whose descrip-

tions follow. 
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⎪
⎪

Symbol Description Default value 
l Vehicle length. l = 5 m. 
t, Δt Time and the model time step. Δt = 0.05 s. 
x(t) Vehicle position. 
xl(t) Position of the vehicle in front, the leader. 
vmax Maximal admissible speed for the vehicle. vmax = 20 m/s. 
v(t) Vehicle speed. 
vl(t) Speed of the leader. 
a(t) Vehicle acceleration. 
amax Maximal vehicle acceleration. amax = 1.5 m/s2 . 
b Desired vehicle deceleration. 

Gap: distance from the front of the vehicle to the tail of the leader, 
b = 2 m/s2 . 

g(t) 
g(t) = xl(t) − x(t) − l. 

gmin Minimal gap that is allowed between the vehicle and the leader. gmin = 4 m. 
gd(t) Desired gap between the vehicle and the leader. 
τ Reaction time to decelerate for the vehicle to avoid collision with the leader. τ = 2.05 s. 
θ(t) xl(t)−x(t) Headway: θ(t) = . v(t) 
f (t) 1 Vehicle fow: f (t) = . 

θ(t) 

Table 2.1: Notation for car following models. 

• Gipps model: 

� � �� 
vmax − v(t) 1 q 

a(t) = min amax, , −v(t) − bτ + (bτ)2 +(vl(t))2 + 2b(g(t) − gmin) . (2.3.3) 
Δt Δt 

• IIDM: ⎧ � � � �δ1 gd(t) ⎪⎨ amax 1 − , if gd (t) > 1; g(t) g(t) 
a(t) = � � � (2.3.4) �δ1amax/a ∗(t) gd (t) ⎪⎩ a ∗(t) 1 − , otherwise, g(t) 

where 

! � �δ2 

a ∗ (t) = amax 1− 
v(t) 

, (2.3.5) 
vmax � � 

v(t)(v(t) − vl(t)) gd(t) = gmin + max 0,v(t)τ + √ , (2.3.6) 
2 amaxb 

and δ1,δ2 are some fxed positive parameters.2 

2In the original descriptions of IDM and IIDM, parameter δ1 at δ1 = 2, but we believe, it does not have to be restricted to a 
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• Helly model: 

� � 
vmax − v(t) 

a(t) = min amax, ,α1 (vl(t) − v(t)) + α2 (g(t) − gmin − v(t)τ) , (2.3.7) 
Δt 

where α1 and α2 are some positive fxed parameters.3 

In all three models, the equilibrium speed (a(t) = 0) is achieved with v(t) = vl(t) = vmax and g(t) = gmin + 

v(t)τ. In this case, equilibrium headway is: 

gmin + l 
θe = τ + . (2.3.8) 

vmax 

Assuming default values from Table 2.1, the length of the car l = 5 m, the speed limit vmax = 20 m/s, the 

minimal gap gmin = 4 m and the reaction time τ = 2.05 s, from (2.3.8) we get θe = 2.5 s,4 which translates 

to fe = 1/θe = 0.4 vehicles per second, 24 vehicles per minute, or 1440 vehicles per hour. 

Now let us compare the behavior of these car following models in three experiments with intersections. In 

these experiments we will be using the parameter values from Table 2.1, and specifc IIDM and the Helly 

model parameters given in Table 2.2. 

δ1 = 8 
δ2 = 4 
α1 = 0.5 
α2 = 0.25 

Table 2.2: Parameter values used for IIDM and the Helly model. 

Experiment with a free road ahead. 

Consider a setup presented in Figure 2.13. 

The initial condition at time t = 0 is that infnite number of vehicles are standing in the queue with the 

minimal gap between them. The light turns green, and vehicles are released. 

Figure 2.14 shows trajectories, speeds and accelerations of the frst ten vehicles from the queue computed 

by the three car following models. The signal is located at position 0 indicated by the horizontal black line 

given value. 
1 1 3Helly determined that α1 should be in the range [0.17,1.3], and α2 could be selected in the range 
� 

4 α1, 2 α1 
� 

[9]. 
4Empirical evidence suggests that 2.5 seconds is a typical headway observed in dense traffc on urban streets. 
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Figure 2.13: Signal turns green at time t = 0, and vehicles start moving. The frst vehicle has free road 
ahead. 

Gipps IIDM Helly 

Figure 2.14: Experiment with a free road ahead: comparison of vehicle trajectories, speeds and accelerations 
between the three car following models. 
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Figure 2.15: Experiment with a free road ahead: comparison of point measurements of fow, distance to 
leader, speed and acceleration at the detector location between the three car following models. 

in the top three trajectory plots. The frst vehicle is governed by the car following model just as everyone 

else, but its leader is infnitely far. From the acceleration and speed plots one can see that in the Gipps and 

the Helly models the frst vehicle accelerates with maximal acceleration amax until reaching the maximal 

speed, at which point the acceleration instantaneously drops to 0. In the IIDM, the frst vehicle accelerates 

with a ∗(t) from equation (2.3.5), approaching the maximal speed asymptotically. 

The most important for the intersection throughput assessment, however, is the traffc behavior at the stop 

bar — at the detector location indicated in Figure 2.13. Figure 2.15 presents the point measurments ob-

tained from this detector location, with each dot corresponding to a vehicle passing the detector. Flow (top 

left) is computed for a vehicle passing the detector based on the time passed after the previously detected 

vehicle, taken as a headway θ(t), which is then inverted ( f (t) = 1/θ(t)) and converted to vehicles per hour 

(vph). The red horizontal line corresponds to the equilibrium fow, in our case — 1440 vph, when vehicles 
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move at maximal speed. Gap (top right) between vehicles as well as speed (bottom left) are monotonically 

increasing, while acceleration (bottom right) is monotonically decreasing. 

As is evident from plots in Figure 2.15, Gipps model produces rather aggressive car following pattern to the 

point that it manages to push through the intersection 26 vehicles per minute, two more than would pass 

through the intersecton in an equilibrium fow (24 vehicles per minute), while IIDM and Helly model push 

through 23 and 22 vehicles per minute respectively — see the middle row (free road ahead) of Table 2.3. 

What is interesting about this observation, is that with the Gipps model one could argue that a signal would 

increase the road throughput by creating pulses in the vehicle fow, as the one in Figure 2.15 (top left). 

Moreover, the smaller the signal cycle, the bigger will be the throughput increase. This is counterintuitive 

and, likely, unrealistic. IIDM and Helly model can be tuned to behave more agressively by increasing 

their parameters δ1,δ2 in IIDM and α1,α2 in Helly. Neither of these two models, however, can reach the 

throughput result of Gipps. 

Experiment with a red light downstream. 

Let us modify the experiment setup by introducing the second intersection downstream of the frst one, 

where vehicles have to stop at the red light — Figure 2.16 depicts the modifed confguration. 

Figure 2.16: Signal turns green at time t = 0, and vehicles start moving. The frst vehicle encounters red 
light in the next intersection 300 meters downstream. 

In this experiment, the second intersection is 300 meters away from the frst one. This distance is enough to 

hold 33 vehicles in the queue (see Table 2.1 for default values of the car length l and the minimal gap gmin), 

which is more than the most aggressive, Gipps, car following model can send in one minute. 

It is important to note that if instead of any car following model we were using a Point Queue model 

with limited or unlimited queues, such as in [27], we would be able to send as many vehicles through 

the frst intersection, as our saturation fow setting would allow. In the case of our example, if we set the 

saturation fow to 24 vehicles per minute (equal to our equilibrium fow), after 1 minute of green light in 
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Gipps IIDM Helly 

Figure 2.17: Experiment with a red light ahead: comparison of vehicle trajectories, speeds and accelerations 
between the three car following models. 

the frst intersection, 24 vehicles would be transferred from the frst queue to the next, in front of the second 

intersection. The car following model, on the other hand, exhibits the braking effect that propagates back 

and reduces the vehicle fow though the frst intersection. In the experiment with the red light downstream 

we study the impact of this braking effect on the throughput of the frst intersection. 

Figure 2.17 shows trajectories, speeds and accelerations of the frst ten vehicles from the queue computed 

by the three car following models. The frst signal is at position 0 indicated by the horizontal black line in 

the top three trajectory plots, and the second signal is at position xs = 300. To make the frst vehicle stop at 

xs, we place a “blocking vehicle” in front at position 

xb = xs + gmin + l = 300 + 4+ 5 = 309, 

43 



Figure 2.18: Experiment with a red light ahead: comparison of point measurements of fow, distance to 
leader, speed and acceleration at the detector location between the three car following models. 

with velocity vb = 0. Governed by the car following model, the frst vehicle stops at position xs to maintain 

the minimal gap with this virtual “blocking vehicle”. In our case, the frst vehicle in the Gipps and the Helly 

models reaches the maximal speed before starting to brake. Moreover, in the Helly model the frst vehicle 

continues with the maximal longer than in Gipps, allowing the second vehicle to almost reach the maximal 

speed, which then leads to prohibitively sharp deceleration jump. In contrast, in IIDM the frst vehicle 

starts to brake earlier than in Gipps and Helly models, even before reaching the maximal speed, resulting in 

smooth speed curves. 

Point measurements taken at the detector location, shown in Figure 2.16, and presented in Figure 2.18, 

indicate the reduction in fow through the frst intersection as the result of the braking propagation. Gipps, 

IIDM and Helly models manage to send 22, 21 and 21 vehicles per minute respectively through the frst 

intersection — see the middle row (red light ahead) of Table 2.3. As before, the red horizontal line in the 
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top left plot corresponds to the equilibrium fow, in our case — 1440 vph, when vehicles move at maximal 

speed. These plots also indicate the reactiveness of the studied car following models: how fast the cars 

upstream react to the behavior of the frst vehicle. Given the IIDM and Helly model parameter values from 

Table 2.2, Gipps model has the shortest reaction time, followed by IIDM and then, by Helly model.5 

Experiment with different accelerattion levels. 

Now, let us explore how throughput of the frst intersection in our two previous experiments depends on the 

maximal acceleration amax. We repeat both experiments, with the free road and with the red light ahead, for 

three different values of amax: 0.8, 1.5 (our default) and 2.5 m/s2. 

Figure 2.19: Comparing fows for different values of amax for two experiments — with the free road (top), 
and with the red light ahead (bottom). 

Value of amax Type of experiment Gipps model IIDM Helly model 

0.8 m/s2 free road ahead 
red light ahead 

23 
20 

20 
19 

20 
20 

1.5 m/s2 free road ahead 
red light ahead 

26 
22 

23 
21 

22 
21 

2.5 m/s2 free road ahead 
red light ahead 

27 
22 

24 
22 

23 
22 

Table 2.3: Summary of three experiments — intersection throughput in vehicles per minute. Values equal 
to or exceeding the equilibrium fow, 24 vehicles per minute, are given in bold. 

5Reactiveness of the two latter models can be somewhat increased by increasing parameters δ1, δ2 for IIDM and α1, α2 for 
Helly model. 

45 



Figure 2.19 presents the point measurements obtained from the detector location for the cases of free road 

(top) and red light downstream (bottom). Table 2.3 summarizes the throughput results for all the model-

accelertion-experiment combinations. 

The main fndings of this experiment are: 

• with low amax and braking effect, Helly model produces larger throughput than IIDM, whereas gen-

erally the opposite is true; 

• with low amax, IIDM and Helly model behave similarly; 

• with high amax and braking effect, the all three models produce the same throughput; 

• braking effect reduces the impact of amax parameter on throughput. 

To perform a spacial analysis of the traffc fow shock wave propagation for different values of amax, we 

have to translate the car following behavior into a macroscopic model, which we do next. 

2.3.2 Micro-to-Macro Translation 

Macroscopic models describe traffc in terms of density, and speed. The road is divided into 1, . . . ,N links, 

and the state of the system at time t is given by the density-speed pair {ρi(t),Vi(t)}N 
1 . Table 2.4 contains the 

notation used in macro-modeling. 

Symbol Description Default value 
Δxi 

t, Δt 
ρi(t) 
ρJ 

Vi(t) 
vmax 
fi(t) 
f0(t) 

Length of link i. 
Time and the model time step (same as in the car following model). 
Vehicle density in link i. 
Maximal admissible (jam) density. 
Average traffc speed link i. 
Maximal admissible traffc speed (same as in the car following model). 
Vehicle fow out of link i. 
Vehicle fow entering link 1. 

Δxi = 5 m. 
Δt = 0.05 s. 

ρJ = 1/9 veh. per meter. 

vmax = 20 m/s. 

Table 2.4: Macro-modeling notation. 
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Vehicle density ρit) is computed from the gap between vehicles and the vehicle length: 

1 
ρi(t) = , (2.3.9) 

gi(t)+ l 

where notation gi(t) defnes average gap between vehicles that are in link i at time t. Obviously, ρi(t) ≤ 

ρJ = 1 
gmin+l . 

Every time step, density values in each link are updated according to the conservation law: 

Δt 
ρ(t + Δt) = ρi(t)+ ( fi−1(t) − fi(t)) , i = 1, . . . ,N, (2.3.10) 

Δxi 

where fi(t) = ρi(t)Vi(t), and the entering fow f0(t) is given. 

The speed equation is derived from vehicle speed. For points (t,x) on the trajectory of a vehicle, we can 

write: 

v(t) = V (t,x). 

The change in position during one time step Δt can be expressed by the frst order Taylor expansion around 

(t,x): 

v(t + Δt) = V (t + Δt,x + v(t)Δt) 
∂V (t,x) ∂V (t,x) 

= V (t,x)+ Δt + v(t)Δt 
∂t ∂x � � 

∂V ∂V 
= V (t,x)+ +V (t,x) Δt. 

∂t ∂x 

At the same time, from the car following model we have: 

v(t + Δt) = v(t)+ a(t)Δt. 
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⎪⎪
⎪⎪

Thus, we get: 

� � 
∂V ∂V 

V (t,x)+ +V (t,x) Δt = V (t,x)+ a(t)Δt, 
∂t ∂x 

which, after cancelling V (t,x) and dividing both sides of the equation by Δt, yields: 

∂V ∂V 
+V (t,x) = a(t). 

∂t ∂x 

Discretizing this equation in time and space, we can write: 

Vi(t + Δ) −Vi(t) Vi(t) −Vi−1(t) 
+Vi(t) = ai(t), i = 1, . . . ,N, 

Δt Δxi 

and V0(t) = V1(t). 

Thus, we obtain the speed equation: 

� � 
Vi(t) −Vi−1(t) Vi(t + Δt) = V (t)+ ai(t) −Vi(t) Δt. (2.3.11) 

Δxi 

Here ai(t) is defned by the car following model. 

• For Gipps model, following (2.3.3), we have: 

⎧ r ⎫ � � 
1 ⎪⎨ −Vi(t) − bτ + (bτ)2 +(Vi+1(t))2 + 2b − 1 ⎪⎬ ρi(t) ρJ vmax −Vi(t) ai(t) = min amax, , , (2.3.12) 

Δt Δt ⎪ ⎪ ⎩ ⎭ 
i = 1, . . . ,N; VN+1 = vmax. 

• For IIDM, following (2.3.4), we have: 

⎧ � � ⎪ gd,i(t) ⎨ amax 1 − , if gd,i(t) ≥ 1, gi(t) gi(t) 
ai(t) = � � �δ1amax/ai 

∗(t) 
� (2.3.13) ⎪ gd,i(t) ⎩ a ∗ i (t) 1− , otherwise, gi(t) 
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where 

! � �δ2 Vi(t) ∗ ai (t) = amax 1− , (2.3.14) 
vmax 

while the actual gap, gi(t), and the desired gap, gd,i(t), can be expressed through density: 

1 
gi(t) = − l, i = 1, . . . ,N, (2.3.15) 

ρi(t) 

and 

� � 
1 Vi(t)(Vi(t) −Vi+1(t)) gd,i(t) = − l + max 0,Vi(t)τ + √ , i = 1, . . . ,N; VN+1 = vmax. (2.3.16) 
ρJ 2 amaxb 

• For Helly model, following (2.3.7), we have: 

� � �� 
vmax −Vi(t) 1 1 

ai(t) = min amax, ,α1 (Vi+1(t) −Vi(t)) + α2 − −Vi(t)τ , (2.3.17) 
Δt ρi(t) ρJ 

i = 1, . . . ,N; VN+1 = vmax. 

As an example, we reproduced the experiment with the red light ahead and the red light at the second 

intersection in the macroscopic environment. The road is split into 240 links, each with length l = 5 meters. 

The frst signal is located at link 50. The initial condition is: 

1 1 
ρi(0) = ρJ = = = 1/9, 1 = 1, . . . ,49; 

gmin + l 4+ 5 

ρi(0) = 0, i = 50, . . . ,N = 240; 

Vi(0) = 0, i = 1, . . . ,N = 240. 

The second signal with the red light is in link 110 (300 meters downstream of the frst one), which translates 

into condition: 

f110(·) = 0. 
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Figure 2.20: Flow (top) and speed (bottom) contours generated by the IIDM-induced macroscopic model in 
the experiment with the red light downstream for amax = 0.8, 1.5 and 2.5 m/s2. 

Figure 2.20 presents the fow and speed contours, produced by the simulation of 60 seconds of the IIDM-

induced macroscopic model for amax = 0.8,1.5 and 2.5 m/s2. Here, the horizontal axis represents time in 

seconds and the vertical axis — space in meters, where cars travel from bottom to top. The locations of the 

frst and the second signals are at positions 0 and 300 on the vertical axis respectively. 

2.3.3 Effect off Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control 

(CACC) 

We will now explore the impact of ACC and CACC vehicles on intersection throughput. To do that, we 

repeat two experiments described in Section 2.3.1 — the case of free road and the case of red light down-

stream — but this time, throwing ACC and CACC vehicles into the traffc mix. Values of car following 

parameters for ordinary, ACC- and CACC-enabled vehicles are given in Table 2.5. As we can see, ACC and 

CACC vehicles can maintain shorter distances to the car in front. 

We assume that the ACC vehicle has the same car following model as the ordinary one, just with different 
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Vehicle type Reaction time τ (seconds) Minimal gap gmin (meters) 
Ordinary 
ACC-enabled 
CACC-enabled 

2.05 
1.1 
0.8 

4 
3 
3 

Table 2.5: Values of reaction time τ and minimal gap gmin for ordinary, ACC- and CACC-enabled vehicles. 

τ and gmin. CACC vehicle behaves just as ACC, with ACC τ and gmin, if it follows an ordinary vehicle, but 

if it has another CACC car in front, it assumes different car following behavior, which we call CACC car 

following model. 

Denote aIIDM(t) the acceleration function defned by (2.3.4). Defne constant-acceleration heuristic (CAH) 

acceleration function [46] (Chapter 11): 

aCAH (t) = 

⎧⎪⎨ ⎪⎩ 
v2(t)āl (t) 

2 , if vl(t)(v(t) − vl(t)) ≤−2(xl(t) − x(t) − l)āl(t), vl (t)−2(xl(t)−x(t)−l)āl(t) (2.3.18) 
al(t) − (v(t)−vl (t))2Θ(v(t)−vl (t)) ¯ otherwise, 2(xl(t)−x(t)−l) 

where 

āl(t) = min{v̇l(t),amax} , 

and 

Θ(z) = 

⎧⎪⎨ ⎪⎩ 1, if z ≥ 0, 

0, otherwise. 

Now we specify the CACC car following model [46] (Chapter 11): 

aCACC(t) = 

⎧⎪⎨ ⎪⎩ aIIDM(t), if aCAH (t) ≤ aIIDM(t), � � (2.3.19) 
aIIDM(t)−aCAH (t) aCAH (t)+ b tanh b , otherwise. 

As before, we run the free road and the red light downstream experiments using Gipps, IIDM and Helly car 

following models. For each of these models, we compute the intersection throughput, when portion of ACC 

(CACC) vehicles in the initial queue. Thus, we evaluate 72 cases, each defned by: (1) experiment — free 

road or red light downstream; (2) car following model — Gipps, IIDM, Helly; (3) ACC or CACC; and (4) 
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Figure 2.21: Single intersection case: comparison of point measurements of fow, distance to leader, speed 
and acceleration at the detector location for different portions of ACC/CACC traffc. 

percentage of ACC (CACC) — 10, 25, 50, 75, 90 and 100%. 

Figures 2.21 and 2.22 compare fows, gaps, speeds and acceleration obtained at the detector location (see 

Figures 2.13 and 2.16) for 0, 50 and 100% ACC (CACC) penetration rate. Three horizontal red lines on 

fow plots in both fgures correspond to equilibrium fows with 0% ACC (CACC), with 100% ACC and with 

100% CACC penetration rate. These fows are computed as 3600/θe, where θe is given by (2.3.8) with τ and 

gmin from Table 2.5, yilding 1440, 2400 and 3000 vehicles per hour respectively. In the fow and distance 

to leader plots, one can see how 50% ACC curves jump between the no ACC and 100% ACC curves — for 

ordinary vehicles it is similar to the no ACC curve, and for an ACC vehicle it is similar to 100% ACC curve. 

50% CACC curves in the same plots jump between three curves — no ACC, 100% ACC and 10% CACC. 

This is because a CACC vehicle following an ordinary one behaves like ACC vehicle. 
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Figure 2.22: Case with red light downstream: comparison of point measurements of fow, distance to leader, 
speed and acceleration at the detector location for different portions of ACC/CACC traffc. 

For a given ACC (CACC) penetration rate less than 100%, the intersection throughput is sensitive to the 

distribution of ACC (CACC) vehicles in the initial queue. For example, if 25% all vehicles in the initial 

queue are ACC-enabled, and all of them are concentrated at the head of the queue, we would get higher 

vehicle count at the detector location after one minute, than we would with 50% ACC penetration rate 

when all ACC-enabled vehicles are concentrated at the tail of the queue. In another example, 50% CACC 

penetration rate would not produce any gain over 50% ACC penetration rate, if ordinary and ACC/CACC 

vehicles interleave — one ordinary, one ACC/CACC, one ordinary, and so on — since CACC provides 

beneft over ACC in terms of throughput only when some CACC vehicles have other CACC vehicles directly 

in front. 

To mitigate this ACC (CACC) distribution bias, for each of the cases with ACC (CACC) penetration rate less 

than 100%, we run 100 one-minute simulations of the three car following models and record vehicle counts 
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Figure 2.23: Intersection throughput as a function ACC/CACC portion of traffc computed with Gipps, 
IIDM and Helly car following models for two cases — free road downstream (left) and red light downstream 
(right). 

at the detector location, then take the median vehicle count. For 100% penetration rate the ACC (CACC) 

distribution is trivial, and hence, a single simulation for each case is enough. The intersection throughput 

results for all the 72 cases, together with throughput values from Table 2.3 obtained for 0 ACC (CACC) 

penetration rate, are presented at the four plots in Figure 2.23. 

Note that in each of the four plots in Figure 2.23, in addition to the three curves corresponding to car 

following models, there is a curve corresponding to the equilibrium traffc fow. These equilibrium curves are 

computed as follows. Denote λ ∈ [0,1] a portion of ACC (CACC) vehicles in the initial queue; τ[C]ACC and 
[C]ACC gmin the reaction time and minimal gap for ACC (CACC) vehicles, whose values are given in Table 2.5. 
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The average headway in the equilibrium state is obtained by modifying expression (2.3.8): 

[C]ACC 
λgmin +(1 − λ)gmin + l 

θ(λ) = λτ
[C]ACC +(1 − λ)τ + . (2.3.20) 

vmax 

Then, the equilibrium fow in vehicles per minute is given by: 

f (λ) = 60/θ(λ). (2.3.21) 

This formula is suffcient for the case when there is a free road ahead. In the case of the red light downstream, 

however, we are restricted by the capacity of the link connecting the two intersections. To account for that, 

we modify (2.3.21) accordingly: 

( ) 
60 kΔ 

f (λ) = min , , (2.3.22) 
θ(λ) [C]ACC 

λgmin +(1 − λ)gmin + l 

where Δ is the length of the link between the two intersections, and k is the number of lanes in that link. In 

our experiment, Δ = 300, and k = 1. 

2.3.4 Platoon Model 

Vehicles equipped with CACC technology can communicate with one another to form platoons. These 

platoons can increase the throughput of intersections by decreasing headways between successive vehicles. 

In simulation, platoon management and formation is divided into three phases: 

1. identifying vehicles that can be grouped into platoons; 

2. Adjusting parameters of leaders and followers in platoons; and 

3. performing maintenance on the platoon. 

This hierarchy is modeled by the state machine in Figure 2.24. 

To form a platoon, vehicles must be in sequence with one another on a given lane. However, vehicles need 

not share the same fnal destination and are free to switch lanes or leave the platoon if necessary. If an 
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Leader \ Normal Behavior

Follower

within range of
ACC Vehicle

split from platoon

Accelerate Decelerate
leader

accelerates
leader

decelerates

no new instruction

Figure 2.24: State machine describing platoon behavior. 

intermediate vehicle in the platoon changes its route by making a turn or changing lanes, the platoon splits 

into two: one platoon for the vehicles ahead of the intermediate vehicle and another for all the vehicles 

behind. 

A platoon’s lead vehicle has the same properties as ACC vehicles. An isolated CACC vehicle is a leader 

of a platoon of size 1. When a platoon leader comes into range of another CACC vehicle in front, it joins 

the platoon becoming a follower. Followers have reduced headway and travel much closer to one another 

than standalone vehicles. In addition, followers are able to receive information from the leader, such as 

to accelerate after a green light at an intersection or to decelerate approaching an obstacle, e.g. red light 

downstream. 

Since followers are not bound to the same route as the platoon leader, they are free to separate. After leaving 

the platoon, the headway and acceleration parameters are restored to their original values. This can happen 

for example when the follower changes its route or becomes separated from the rest of platoon, e.g., due to 

switching traffc signal as it crosses the intersection. 

Figure 2.25 displays a screenshot of SUMO simulation run in graphical mode. It shows how vehicles cross 

intersection at Montrose Road and Tildenwood Drive (AP3321 with respect to Figure 2.1). Ordinary vehicles 

are colored in blue. [C]ACC vehicles with no followers (standalone) are colored in green. Platoon leaders 

are colored in cyan, and followers are white. 
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Figure 2.25: SUMO screenshot — ordinary, standalone [C]ACC vehicles and platoons are crossing inter-
section AP3321 (Montrose Road and Tildenwood Drive). Platoon leader and follower, as well as standalone 
[C]ACC and ordinary vehicles are labeled accordingly. 

Next, we discuss SUMO simulation results. 

2.4 Simulation of Rollins Park Network 

To study the impact of platooning, we built the SUMO [25] simulation model of the Rollins Park net-

work (Figure 2.1) with seven major intersections, shown in Figure 2.26. IIDM and CACC car following 

models were implemented in C++ within SUMO, and platoon management, presented as a state machine 

in Figure 2.24, was implemented in Python using SUMO/TraCI API [2]. The corresponding source code 

repository can be accessed at [1]. 

Using vehicle counts and estimated turn ratios, we generated 1 hour of origin-destination (O-D) travel de-

mand data with a route assigned to each vehicle. These travel demand data together with signal plans 

constitute input for the simulation model — see Figure 2.2. 
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Figure 2.26: Rollins Park network — O-D pair with routes A and B. Labels ‘P’ indicate links, where platoons 
form, when platooning is enabled. Labels ‘(P)’ indicate additional links with optional platooning, when it is 
enabled. 

We focused our study on the single O-D pair with two routes, A and B, connecting origin (O) and destination 

(D) — see Figure 2.26. Routes A and B coincide in the beginning, following Montrose Road, and split at 

intersection AP3300 into Montrose Road (route A) and Montrose Parkway (route B). 

General approach to congestion analysis on an arterial network is as follows. Intersections, where under 

a given demand a vehicle queue on at least one approach keeps growing are identifed as bottlenecks. If 

rearranging the duration of green phases within a cycle leads to a periodic queue behavior — when a queue 

grows then dissolves — on all intersection approaches, then this intersection bottleneck is due to poor 

control. If, on the other hand, with any phase split we continue observing at least one increasing queue, then 

we have a situation of excessive demand. 

Figures 2.27-2.28 show queue dynamics at the routes A and B approach to the intersection of Montrose 

Road and Hitching Post Lane (AP3323). Vehicle queue measured in SUMO does not grow beyond the 

storage capacity of a road link, where this queue is measured. Once the link storage capacity is reached, 

queue spills back into the upstream link. In Figures 2.27-2.28, queue size reaches the storage capacity of 36. 

Actually, it grows further, but SUMO reports only the maximum halted vehicles in this particular link. What 

we observe from the queue dynamnics plot, though, is that after a certain time peiod, this vehicle queue 

is never fully served. In other words, number of vehicles in the queue does not go to zero. It means, that 

green phase for the vehicles on routes A and B at intersection AP3323 is too short for the given demand. It 

so happens that increasing green phase for the movement corresponding to routes A and B is not a viable 

option, because that would create a backup on the cross street, Hitching Post Lane. Thus, we have a case 
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Figure 2.27: Queue dynamics at the route A (B) approach to the intersection of Montrose Road and Hitching 
Post Lane (AP3323). 

of excessive demand at intersection AP3323. The problem of excessive demand may be mitigated with 

decreasing vehicle headways — through platoon creation. 

We enabled platooning on two links labeled ‘P’ in Figure 2.26 — upstream and downstream links of in-

tersection AP3323 on routes A and B. Then, we ran a series of simulation scenarios varying the fraction 

of ACC (CACC) vehicles from 0 to 75%. In each simulation two vehicle classes were modeled: ordinary 

vehicles and ACC (or CACC) vehicles. In simulations with CACC vehicles platoons were formed in those 

two links, where platoning was enabled. The same number of vehicles was processed in each simulation. 

The rates and locations at which cars were generated were identical in all scenarios to eliminate the variance 

in randomly generated routes. For cases of 0, 25, 50 and 75 percent ACC (CACC) penetration rate, we 

computed average travel time for routes A and B. Table 2.6 lists the resulting mean travel times. 
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Figure 2.28: Zoomed-in queue dynamics from Figure 2.27 — queue does not empty. 

We can see that ACC vehicles alone (without platooning) reduce the travel time along both routes A and 

B. Travel time improvement achieved by CACC over ACC should be attributed to the higher throughput 

of intersection AP3323, resulting in smaller queues and thus, smaller waiting times in queues, formed 

upstream of this intersection. Note that ordinary vehicles show reduced travel times, although [C]ACC 

vehicles have larger gains. Another observation is that the biggest travel time improvement happens when 

CACC penetration rate goes from 25 to 50%. The reason is that with 25% CACC penetration rate, chances 

that CACC vehicles will be positioned in sequence, so that a platoon can be formed, are relatively low. So, 

CACC case does not show much improvement over ACC with 25% penetration rate. On the other hand, 

when CACC peneration rate is high at 75%, platoons become much more frequent and of larger sizes. This 

leads to oversaturation of the downstream link, creating a new bottleneck that offsets some of the upstream 

travel time gains achieved by the platooning. 
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[C]ACC % Vehicle Class Route A Route B 
ACC CACC ACC CACC 

0 ordinary 711 711 622 622 

25% 
ordinary 
[C]ACC 

all 

696 
691 
695 

696 
688 
694 

608 
604 
607 

607 
598 
605 

50% 
ordinary 
[C]ACC 

all 

671 
665 
671 

670 
646 
658 

553 
539 
546 

547 
523 
535 

75% 
ordinary 
[C]ACC 

all 

661 
660 
660 

646 
642 
643 

526 
526 
526 

516 
509 
511 

Table 2.6: Mean travel time in seconds for varying percentage of [C]ACC vehicles on routes A and B (see 
Figure 2.26). 

CACC % Vehicle Class Route A Route B 
Original Additional Platooning Original Additional Platooning 

25% 
ordinary 
CACC 

all 

696 
688 
694 

695 
686 
693 

607 
598 
605 

607 
599 
605 

50% 
ordinary 
CACC 

all 

670 
646 
658 

672 
644 
658 

547 
523 
535 

548 
520 
534 

75% 
ordinary 
CACC 

all 

646 
642 
643 

646 
641 
642 

516 
509 
511 

515 
506 
508 

Table 2.7: Comparing mean travel time on routes A and B from the original platooning experiment with the 
mean travel time, where platooning is allowed in the additional links, as indicated in Figure 2.26. Travel 
time is in seconds. 

To see how platooning can further reduce trave times on routes A and B, we enabled it on links approaching 

intersections AP3319 (on route A) and AP3299 (on route B). Those additional platooning links are labeled 

‘(P)’ in Figure 2.26. Then, we re-ran simulation scenarios with 25, 50 and 75% [C]ACC portion of traffc. 

Average travel times for routes A and B are summarized in Table 2.7, comparing them with the results of 

the original experiment. 

As we can see, additional platooning practically does not reduce travel time. This happens because intersec-

tions AP3319 and AP3299 are not bottlenecks, Pushing vehicles through these intersection in platoons does 

not qualitatively change queue dynamics at AP3319 and AP3299 on routes A and B: the green phase was 

suffcient to handle unplatooned traffc. 
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Moreover, platooning may cause a problem on cross streets. In the case of 50% CACC penetration rate, 

platooning pushes too much traffc through intersection AP3319 along route A blocking the link downstream 

of this intersection for the left-turning traffc from E. Jefferson Street. SUMO screenshot depicting this 

situation is presented in Figure 2.29. 

Figure 2.29: Intersection AP3319 — jam at E. Jefferson Street left turn pocket. 

Thus, we can succinctly formulate the platooning rule: 

platooning should be enabled only at the approaches to bottleneck intersections. 
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Chapter 3 

Conclusion 

Research conducted for the current project is an important stepping stone for building a three-level infor-

mation and control system for urban networks with high-density traffc, presented in Figure 1.4. In this 

project we focused on elements of link-level information (SPaT estimation and prediction) and vehicle-level 

control (ACC and CACC). In SPaT analysis we presented several novel algorithms to estimate the residual 

duration of a signal phase for a semi-actuated intersection. These algorithms predict the times for all future 

phase transitions, based on previous phase measurements and on the real time information that locates the 

current time within the current phase. With respect to the vehicle-level control, we analyzed sensitivity of 

intersection throughput to car following models and related parameters. The Improved Intelligent Driver 

Model (IIDM) was chosen for traffc simulation. Finally, we implemented the platoon model in SUMO and 

tested it in simulation of scenarios on Rollins Park network. 

The results of this project enable further investigation of the following research questions: 

• How to combine vehicle fow measurements with SPaT estimation and how to use predicted vehicle 

fows for SPat prediction. 

• Accurate SPaT prediction would enable speed advisory on links approaching the intersection to min-

imize stops and improve progression quality. This is important for mobility, energy effciency and 

safety. However, such speed harmonization may reduce throughput of upstream intersections. The 
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question is how to manage traffc speed at arterial links without creating bottlenecks at upstream 

intersections. 

• The related question is about the impact of platooning in the speed harmonization effort. Specif-

cally, how platoons should be managed when the corresponding green phase is not long enough to 

accommodate all vehicles in a platoon. 

• How to incorporate network-level control that will balance the vehicle load on multiple routes con-

necting the same O-D pair after some of these routes were enhanced by the above mentioned link-level 

and vehicle-level control. 

These questions require further investigative research in the following areas: 

1. effcient measurement data analysis, and the minimum data needed for traffc system to say observable 

and predictable; 

2. modeling for quantitative assessment of impact platooning with speed advisory and coordination of 

signals at multiple intersections; and 

3. implementation of related infrastructure-to-vehicle (I2V) technologies. 
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