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ABSTRACT 
This papers presents the design of the travel mode detection 
component within a generic architecture of processing indi-
vidual mobility data. It approaches mode detection in two 
steps, each aiming at a particular objective. The first step 
develops a discriminative classifier that detects the mode of 
the observed trips or a sequence of modes in a multiple leg 
journey. It requires a considerable amount of ground truth 
data with known modes to be available for training. It also 
relies on a k-shortest path algorithm that generates plau-
sible alternatives routes for the journey. The second step 
utilizes the discriminative recognition step of the observed 
mode in order to build a behaviorally grounded model that 
predicts the chosen mode within a set of available alterna-
tives as a function of user characteristics and transportation 
system variables. It is based on the discrete choice modelling 
paradigm and results in a set of parameters calibrated for 
distinct neighborhoods and/or segments of population. The 
overall framework therefore enables travel mode choice mod-
eling and a consequent policy analysis and transportation 
planning scenario evaluation by leveraging privacy-sensitive 
individual mobility data possibly held in a secure private 
repository. It provides a set of algorithms to drastically re-
duce the latency and costs of obtaining a crucial information 
for models used in transportation planning practices. The 
performance and accuracy of the algorithms is evaluated ex-
perimentally within a large metropolitan region of the San 
Francisco Bay Area. 

Keywords 
UPDATE 

1. INTRODUCTION 
Travel Demand Models (TDMs) are an important tool 

for transportation planning. TDMs typically rely on travel 
surveys that are expensive, infrequent, and slow to reflect 
changes to the transportation system. Recent studies have. 
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proposed methods for generating travel demand model in-
puts from passively collected location data from mobile phones. 
Several methods have focused on extracting origin-destination 
(OD) matrtces, and perform either dynamic traffic assign-
ment or simulation to estimate the traffic volume on road 
network, which. corresponds to traditional trip based travel 
demand models. A few have attempted to model individ-
ual agent activities and trips, which corresponds to more 
advanced Activity Based travel demand Models (ABMs). 
ABMs are based on the idea that travel is derived from peo-
ple's desire to complete activities. The activity is the nuclear 
unit of such a model; the ABM will predict what activities 
a person wants to partake in, when and where the activities 
will occur, and how the person will travel to each activity. 
ABMs typically assign travel mode probabilistically, accord-
ing to the outputs of a Discrete Choice Model (DCM). The 
DCM parameters are typically derived from household travel 
survey responses. 

Previous studies using cellular data to inform ABMs have 
achieved a good understanding of the activity (trip purpose) 
patterns. However, the missing piece is travel mode and 
route inference. In this paper, we try to fill the gap by 
showing how passively collected big data sources can be used 
to infer the travel mode used to get from one activity to the 
next. Moreover, a DCM based on the inferred travel mode 
is tr?'ined so that such a model can be directly used for 
transportation planning. 

In the Bay Area, on average, a phone accesses the net-
work every 1.2 minutes. For long/non-trivial trips, a cell 
phone will typically create several CDR entries during travel. 
These records encode rich information about the spatial-
temporal nature of the trip (i.e. travel speed, frequency of 
data records, proximity to road and transit infrastructure). 

In this paper we show how to build an ABM that incorpo-
rates activity selection, location and time choice, and travel 
mode selection from passively collected cell phone data. We 
are limited (at present) by the availability of 'ground truth 
information on a traveler's selected travel mode. In this 
work we highlight two methods for dealing with the lack of 
ground truth and inferring the travel mode. Method one 
involves generating realistic cell records for simulated travel 
and building a classifier to determine the travel mode. We 
have at our disposal a well calibrated travel simulation tool 
for the 9 counties of the bay area. The simulator includes 
travel by by car, bus, train, subway, tram (light rail) and 
cable car. In this tool agents iteratively select travel alter-
natives until they find an optimal travel mode/route. We 
use a sequence-to-label Long Short Term Memory (LSTM) 

mailto:permissions@acm.org


neural network ( ( add reference)) to learn the conditional 
probability of the cell phone user's mode of travel during a 
trip given the sequence of cell phone records created during 
travel. The input amounts to a sequence of timestamped 
latitude longitude coordinates ( one input vector for each 
cell rec~rd). The details of the method are discussed in 

· [[Section Ref]]. The model allows for variable size input se-
quences, and automatically learns relevant properties of the 
travel modes (like location of infrastructure specific to one 
or more modes of travel, travel speeds, etc.). 

The second method involves querying an external routing 
database to generate a list of travel alternatives. A naive 
Bayes approach is used to compare the observed cell records 
to the alternatives and determine the most likely mode. The 
method potentially enables better accuracy as the model ex-
plicitly compares the cell records to a set of possible alter-
natives - where the LSTM approach attempts to learn the 
selected travel mode with no information about the alterna-
tives. However, the process of querying an external database 
to generate the set of travel alternatives for each trip in the 
dataset is, at present, infeasible. We demonstrate the effec-
tiveness of this algorithm on a small sample of trips. 

Finally we complete the ABM framework by training a 
DCM on the observed trips, inferred trip purpose, predicted 
travel modes and observable characteristics of a traveler. 
The demonstarted DCM is simplistic, but the model could 
certainly incorporate unique features such as the user's typi-
cal travel mode (inferred from previous trips in the dataset), 
the travel mode of previous trips in the same activity chain 
(if someone drove to the store it is likely that they will also 
drive home), and trip purpose ( as determined by the semi-
supervised IO-HMM). The final output of our work is a gen-
erative model for producing realistic activity chains for users 
(including activity time and location choice) and a discrete 
choice model to inform how the user will travel to the locale. 

While the interpretation of CDRs is less accurate than the 
information from travel surveys, we benefit from the vast 
coverage of cell phone network; cell providers have access 
to a much larger sample size than household travel surveys 
typically do. Due to small sample size ABMs often fit one 
global model to all travelers and all trips (regardless of trip 
purpose)· in a region. With the vast number of customers 
that the cell phone network services we have enough infor-
mation to train local ABMs and are not bound to the as-
sumption that ABM parameters are constant over the whole 
region. (Add note about when paired with IOHMM activity 
model DCM framework allows for population segmentation 
based 'on attributes like travelers inferred home location or 
the travelers lifestyle (i.e. whether the traveler is a regular 
everyday home-work-home commuter, whether she typically 
partakes in secondary activities on the way home from work, 
or whether she frequently telecommutes)), 

The remainder of this paper is organized as follows. Sec-
tion 2 gives a literature review of related works on mode 
detection methods. Section 3 describes the discriminative 
mode recognition step, introducing a range of models and 
discussing their applicability and algorithmic constraints given 
available data. In Section 4, a discrete choice modelling 
framework is introduced. Section 5 presents an experimental 
evaluation of the framework across the range of performance 
metrics. Finally, in Section 6, we draw our conclusions and 
present the future work. 

2. RELATED WORK 

2.1 Travel Mode Detection from Passively Col-
lected Data 

While several studies have used GPS data.to infer travel 
route and mode [7]. To date, there have been few studies 
that have used CDR traces to infer transportation route, 
and fewer still that use CDR data to infer transportation 
mode. 

GPS locations are generally more accurate than CDR lo-
cations. However, GPS services do not give the same popu-
lation coverage or the consistent temporal coverage that you 
get from CDRs. GPS locations are collected by a cellphone 
application provider while the application is enabled (if the 
user has enabled location based services). In other words, 
application service providers have access to GPS data only 
for the apps' user base and only when users are using the 
app and have enabled location services .. Apps are generally 
not enabled at all times - meaning there are large gaps in 
coverage: Some studies have sought volunteers to enable 
GPS and be constantly monitored for transportation sur-
vey purposes, but generally this is for a very small sample. 
[liao2007, ] 

CDRs, on the other hand, are automatically collected for 
all of the carriers' customers. As mentioned above, a record 
is, created anytime a phone places or receives a call, text, 
or accesses data. CDRs, therefore, offer broad population 
coverage - a single service provider typically provides service 
to 25-40% of the population in an area. CDRs also benefit 
from broad temporal coverage - on average, a phone creates 
a CDR record every?? minutes. 

2.1.1 Travel Mode Detection from GPS 
At this point, travel mode detection from GPS data has 

become quite mature. The task has received more attention 
than classification from raw CDR data because it has higher 
spatial and temporal resolution. Most studies using GPS are 
experimental and small scale, and have the ground truth 
travel mode labels to train a supervised classifier. 

Source of ground truth The automated transporta-
tion and emissions calculator app called E-missions tracks 
44 users for 3 months and obtains ground truth travel la-
bels by asking the user to confirm their travel mode once 
the trip has ended. [9]. Table 1 of Shankari et al. gives 
a summary of other GPS based travel mode detection ex-
periments. The number of praticipants in the experiments 
ranges from 5-135. [9]. 

Features Several experiments use pure data from GPS 
[1] [13], [14]. Accelerometer data provide a highly discrim-
inative feature of motion dynamics with distinct signatures 
for each of the modes. [8] and improves the accuracy of 
travel mode detection by 17% over using GPS alone. Oth-
ers incorportates GIS information in addition to GPS and 
accelerom.eter data [10]. These experiments take advantage 
of features like average speed, average acceleration, distance 
from bus routes, and even use realtime transit feeds to de-
termine average candidate bus closeness. 

Models GPS based mode detection algorithms take ad-
vantage of many models including Neural networks [4], De-
cision trees [14], SVM [14], graphical model [6] 

2.1.2 Mode Detection from CDRs 
Holleczek et al. extracted trips from CDR data in Singa-



pore. They then quantified the travel mode split ( driving 
vs. public transport) by comparing the CDR ge'nerated OD 
matrix to the public transport data generated from smart 
card access. (Use this study to identify service gaps) 

Doyle et al. classified the travel mode of users travelling 
between Dublin and Corkbetween in the Republic of Ireland 
using CDR data [3]. They measured the likelihood of an 
observed trajectory being a road trip or a rail trip based 
on the proportion of locating events that occur at cells that 
represent the route of interest. However, the limitation of 
their paper is that 1) they only classified the travel mode 
between car and rail, 2) they only considered one pair of 
origin and destination, and 3) they only used spatial features 
of the CDR data. 

Wang et al. grouped trips by their origin and destinations 
(by 500*500 cells). They clustered the trips in each group 
by the travel time using K-Means algorithm [11]. The faster 
cluster of trips are assigned as driving trips, the slower clus-
ter is assigned public transit. They validated the cluster 
mean travel mode with the Google map travel time for each 
origin and destination group. However, their method did 
not use any.way points during the trip thus any spatial fea-
tures. The selection of 2 clusters per group is not justified 
and there is no direct validation presented. 

Yoo et al. compared the estimation of travel time using 
GPS and cellular data. Travel mode identification was used 
as a pre-processing step prior to map matching. Their travel 
model inferences are purely rule-based, i.e., pedestrian walks 
below 5 kph speed. Bus or train would stops at stops or 
stations, etc. [2] 

Leontiadis et. al devised an algorithm to infer the mobil-
ity path between activity locations based on cellular network 
topology and GIS information. They used A* algorithm 
searching from the GIS road networks, with the weight of 
the road biased to the high-probability paths based on the 
observed way points. Their result also show a median accu-
racy of 70m compared with ground truth GPS trajectories. 
They also show that mobility path accuracy improves with 
its length and speed [5]. 

Route detection from CDR and Handover Data. 
Tettemani et al. use cell handover (HO) data to predict the 
probable route of a traveler. Handovers transfer an ongoing 
call/data-session from one tower to the next if a phone is 
moving while a call is in session. If a call or data session 
lasts for the entirety of the trip, the HO data indicates every 
towers accessed along a route. Tettemani et al. predict the 
route from a distance measure from a possible route (path) 
to the centroid of the cell zones for cells accessed while en 
route. However this work is limited, because, as mentioned, 
handover data relies on the phone accessing the network for 
the entirety of the trip. 

Wu et al. propose a method to estimate route flow (the 
number of vehicles using each route to travel from an ori-
gin to a destination) using a combination of link flows from 
traditional traffic sensors and data from the cell network. 
Each possible route from an origin to destination is associ-
ated with a cellpath - a sequence of towers accessed while on 
a particular route. While the paper doesn't say so explicitly, 
their methqd relies on handover like data. They assume that 
there is only one cell-path associated with each route. 

CDR data does not require a constant session. [[TODO: 
add details]] 

Benefits of my method: - relies on cell phone data - covers 

greater user base than GPS data -allows for population seg-
mentation in ways that explain heterogeneity in travel mode 
choice. - CDR data rather than HO data (does not require 
a session to be active for the entirety of a trip) - Link flows 
from Traffic sensors and Public Transport ridership info can 
be used to validate findings, but is not inherently needed for 
route classification or for calculating mode split. 

2.2 Mode Detection and Map Matching 
Map matching, particularly related to travel on networks, 

is a problem of associating a set of observed coordinates of 
a moving object with a sequence of links that this travel 
takes place on, either offiine [] or online []. Efficiency and 
accuracy of map matching algorithms are at the cornerstone 
of multiple data processing systems producing travel related 
information from location data, and GPS probe data in par-
ticular[]. With decreasing spatial localization accuracy, the 
nature of the problem changes to route flow inference[]. Map 
matching is closely related to mode detection as map match-
ing algorithms, whether offiine or online, can be used to in-
fer which link of a multi-modal network the travel takes 
place on, and, combined with speed information, inform 
mode detection. The impact of map matching approaches is 
profound when multiple modes take geographically distinct 
routes [3], and diminishes when multiple modes share a spa-
tial corridor within the localization accuracy of the. sensing 
technology. The presented work utilizes elements of map 
matching algorithms of []. 

3. METHODOLOGY 
In this work we have two main objectives - the first is 

to build a discriminative model to automatically detect a 
person's mode of travel during a trip. The second objective 
is to fit a discrete chdice model to the observed travel mode. 
The parameters of the discrete choice model describe and 
explain how travelers choose the travel mode from a discrete 
set of travel mode alternatives and can be used to predict 
what travel modes a traveler will take on future trips. 

For the discriminative portion we suffer from a lack of 
ground truth information on what travel mode is actually 
taken for a given trip. We develop two methods for clas-
sifying the travel mode - each has a different approach for 
dealing with the lack of ground truth. In the first, non-
parametric model, we generate realistic cell records for sim-
ulated travel and use a sequence to label LSTM to convert 
the sequence of observed cell records into a travel mode la-
bel. In the second, we rely on an external routing database 
to provide information on the availabl travel alternatives for 
a given trip, and use a naive Bayes (parametric) approach 
to determine the most likely alternatives from the set. 

Finally we train a discrete choice model using the pre-
dicted travel mode, properties of each of the travel alter-
natives, and characteristics of the travelers. The details of 
each step are outlined below. 

3.1 Discriminative model 1: Sequence to label 
LSTM neural net 

3.1.1 Realistic simulation ofCDRsfrom observed trips 
The LSTM training relies on a regional micro-simulation 

to provide the location and activity of each agent throughout 
a day, including realistic travel by car, bus, train, subway, 
tram, light rail, and cable car. We simulate cell records 



Figure 1: Simulated cell records for a car trip: The black 
dots represent the location of the agent at the time of the 

simulated record is shown in black. The corresponding 
simulated cell records are shown in blue 

along the agents path of travel. The simulated cell records 
amount to a (timestamp, latitude,longitude) tuple with lo-
cation noise. 

The average rate at which cell records are created during 
travel is about 50 records per hour. The reported location 
accuracy is about 1km. Therefore we simulate cell records 
along the travel path with 1 km of Gaussian noise. Figure 
1 shows an example of simulated cell records for a driving 
trip from the micro-simulation. We use this procedure to 
simulate CDRs for 48,000 bay area trips. 

3.1.2 Training the LSTM Neural Network 
After simulating CDRs along the agents travel paths we 

train an LSTM sequence to label neural network to learns 
the conditional probability of each travel mode given the 
sequence of latitlJ.des, longitudes, and timestamps observed 
during the trip. 

While this model is trained on simulated CDR data, the 
same could certainly be trained on sequences of coordinates 
and timestamps observed from GPS or other sources as-
suming that the travel mode labels are known. The LSTM 
automatically learns relevant features like location of travel-
mode specific infrastructure, possibly the travel speeds or 
prolonged stops of buses. 

The LSTM inputs are normalized: the location coordi-
nates and timestamps are scaled to be between O and 1. 
These inputs are fed into an encoder followed by 2 hidden 
layers each with 128 nodes. The output of the hiddent nodes. 
are fed to a 6 x 1 output layer. We perform a softmax at 
the output layer to determine the probability of each travel 
mode: car, bus, train, subway, tram, light rail, and cable 
car. 

3.2 Model 2: Naive Bayes approach 

3.2.1 Stay point detection from CD Rs 
The goal of stay location recognition is to turn CDR logs 

CDRLog CDRTrace Stay History 

A1 l'1 Cl I>! 

Figure 2: Call Detail Records (CDR) data collection 

into a list of sequential stay locations with start time and du-
ration for each user, as illustrated in Figure 2. Each record 
of raw CDR logs contains the timestamp and the approxi-
mate latitude and longitude of events recorded by the data 
provider. This is a CDR-specific step that requires fine-
tuning of several threshold parameters. The details of this 
algorithm are outlined in [12]. After we have identified the 
stay locations, a trip is defined as travel between two con-
secutive stay points. 

3.2.2 Building alternative set 
For each trip we query a multi-modal routing database 

(such as Google maps or Open Street Maps) to obtain a set 
of driving, transit, biking and walking (where appropriate) 
route alternatives. For each alternative we retain attributes 
of the trip: 

• travel mode 

• ·total travel time 

• route geometry 

• expected travel time 

• specifically for transit: 

- number of transfers 
- type of transit 
- walking access/ egress distance 
- agency names 
- route name/number 

These features are used both in the parametric discrimi-
native travel model and several are also relevant for fitting 
a DCM. 

3.2.3 Computing likelihood ofalternatives 
We model the likelihood of each alternative using a naive 

Bayes classifier. We want to compute the probability of 
each travel alternative, Yk, in the alternc:1tive set given the 
sequence of CD Rs that we observe: x1 ... Xn: 

P(Yk I X1, ... ,xn) 
We take advantage of Bayes rule to decompose p(yk I x) 

as follows: 

The denominator - the probability of observing the sequence 
of cell phone records that we observe, is constant for all 
travel modes in the set, so 



Here we treat the input sequence as a measure of true 
location with location nosie. The probability of observing a 
record, Xi at a distance di,k from route k is: 

1 - (di k)2 

Pr (xi I Yi)= ---e 2 
a~ 

~0-i 

3.3 Discrete Choice Model 
With travel mode inferred we can formulate a parametric 

discrete choice model to learn traveler's mode preferences 
and determine how traveler's trade off various attributes of 
the travel alternatives. 

In a multinomial DCM, the utility, U, that person nob-
tains from choosing alternative i, depends on attributes of 
each travel alternative in the choice set: 

Uni = /3jZin + Eni 

where Zni represents a vector of observed variables of trip i 
and traveler n, /3 is a vector of the corresponding coefficients 
that are interacted with each of the observable variable, and 
Eni represents the unobservable factors that contribute to 
travel mode choice. 

The probability of traveler n selecting travel alternative i 
is the probability that the utility of alternative i is greater 
than the utility of all other alternatives. If there are J to-
tal alternatives, the probability that mode i is given by the 
following: 

Pni = ~xp(/3_Zni) ) 
I:j=l exp(/3Znj 

We consider a representative sample of Bay Area trips. The 
coefficient /3 are found by maximum likelihood estimation. 

4. EXPERIMENTAL EVALUATION 
There is no ground truth to directly quantify the accu-

racy of individual activity assignments of our proposed dis-
criminative models for real cell records. However, the travel 
micro-simulation tool allows us to evaluate the discrimina-
tive models' ability to recover the travel mode for simulated 
travel and realistic cell records along the travel path. 

In order to assess the models performance on actual cell 
records, we use our methods to infer travel mode split in the 
region and on key commuting trips. We compare our model 
with aggregated statistics from surveys. Finally we evaluate 
the parameters of_the DCM to see if the parameters compare 
well to those typically seen in travel demand models. 

4.1 Discriminative model 

4.1.1 LSTM for mode detection 
The non-parametric LSTM model is trained on simulated 

cell records. We use 80% of the micro-simulation generated 
trips to train the model and 20% as a test set. The dataset 
consisted of 48,000 trips. The distibution of travel mode 
on these trips is shown in Figure ??. As the data-set is 
highly imbalanced, we use an imbalanced cross entropy loss 
function that penalizes missed trips of the transit trips more 
heavily than it penalizes a missed drive trip. 

After every 50 training batches we compute the accuracy 
on test set. Figure 4 shows us the per travel mode recall. 
Recall is a machine-learnin and statistical term that denotes 
the fraction of samples in a given class that are correctly 

Figure 3: LSTM dataset - number of trips by travel mode 
generated from travel micro-simulation tool. 
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Figure 4: LSTM per class recall on the test set. Recall is 
evaluated after every 50 training batches 

identified as belonging to that class. The recall for drive 
trips, for example, tell us what percentage of the drive trips 
were actually labeled as drive trips. The precision, on the 
other hand, represents the fraction of samples that are cor-
rectly labeled as belonging to a class over the total number 
of samples labeled as belonging to that class. The per-class 
precision is shown in Figure 5 

As seen in Figure 4, the recall for car trips begins near 1.0. 
In early training the neural net predicts that all trips belong 
to the most prominent travel mode in the training set - in 
this case the car mode. As the training continues, however, 
the precision for the other modes improves. In particular 
the model achieves a very high subway recall by the end of 
training. 

The relatively low precision of all non-car travel modes 
indicates that the model over-predicts transit trips. 

Figure 6 shows the confusion matrix at the end of train-
ing highlighting which travel modes are misclassified. The 
model still struggles to differentiate between bus and drive 
trips and also often confuses tram trips with bus or drive. 
These make sense as these travel modes often share infras-
tructure.The rail an subway often have dedicated track that 
is often spatia)ly separated from the road network. 
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Figure 5: LSTM per class precision on the test set. 
Precision is evaluated after every 50 training batches 

Figure 6: After training, we obtain the following confusion 
matrix between travel modes in the test set. 

Figure 7 

Figure 8 

4.2 Naive Bayes parametric discriminative model 
Due to privacy protection policies enforced by the CDR 

data provider, there is no direct ground truth to quantify 
the accuracy of individual activity assignments by our pro-
posed model. On routes where there is spatial distinction 
between the· alternatives the classifier naive bayes approach 
works well. In dense urban areas where there is less sepa-
ration between alternatives, the method may not work as 
well. Figure 7 shows a set of alternatives for a given route 
and Figure 8 gives the probability of each alternative when 
we use O"d of 1 km. 

4.3 Discrete Choice Model Results · 
Either of the above methods (or other discriminative meth-

ods) can be used to infer the travel mode. Using the most 
likely travel mode from the naive bayes classifier, we fit a 
simple DCM to the observed travel modes. We infer the 
travelers home location according to the methods outlined 
in [12] and use the median income of the traveler's home 
census tract as a .proxy for the traveler's income. We query 
an in-house routing service that provides travel times and 
costs for a set of possible travel alternatives between the ob-
served origin and destination zones. Eq. (??) shows a DCM 
specification that accounts for the time and cost of travel, a 
traveler's anticipated income. 



Table 1: Discrete choice model parameters for travel mode 

Variable Coeff Std. error z p > IZI 
/3drive -1.048 0.525 .-1.996 0.046 

/3income 0.0156 0.006 2.557 0.011 
/hT -1.9495 0.413 -4.72 0.000 
/3TC -0.0653 0.061 -1.071 0.284 

Vdrive =/3drive + /3income * Income 
+ /3TT * TravelTimedrive 
+ /3Tc * TravelCostdrive 

Vpublic_transit =/3TT * TravelTimepublic_transit 
+ /3Tc * TravelCostpublic_transit 

this model resulted in parameters listed in Table 1. 
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