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Abstract 

This project developed a quantile regression method for predicting future traf-

fc fow at a signalized intersection by combining both historical and real-time data. 

The algorithm exploits nonlinear correlations in historical measurements and eff-

ciently solves a quantile loss optimization problem using the Alternating Direction 

Method of Multipliers (ADMM). The resulting parameter vectors allow determin-

ing a probability distribution of upcoming traffc fow. These predictions establish 

an effcient, delay-minimizing control policy for the intersection. The approach 

is demonstrated on a case study with two years of high resolution fow measure-

ments. It is emphasized that the results are applicable to any traffc intersection 

equipped with sensors that provide suffciently high resolution of data acquisition. 

In particular, the data must have suffcient spatial resolution, e.g., measuring turn-

ing counts, and suffcient temporal resolution, e.g., measurements each 15 minutes. 

For example, numerous sites in California, including a large number of intersec-

tions in LA County, possess sensors that provide the required data to a central 

server. 

1 INTRODUCTION 

Despite the emergence of high-resolution sensing technologies in transportation sys-

tems, many traffc control approaches used in practice still fail to adequately lever-

age real-time and historical measurements [1]. Current demographic and urbanization 

trends worldwide likely portend a global over congestion of roads in the coming years 

[2, 3], raising the need of more optimized signal timing practices. Although typical sig-

nalized intersections are often able to accommodate moderate deviations from average 

traffc conditions, they lack the ability to adapt to more signifcant and uncommon vari-

ations in vehicle fows. Harvested real-time data, analyzed in tandem with historical 

information, provide a practical solution to this problem, as they enable us to predict 

the future state of traffc and to modify the intersection’s behavior accordingly. 

Previous work has demonstrated the strong potential of prediction-based control 

in a variety of traffc settings. Tools such as ARMAX models or Kalman fltering 

have delivered promising results in the framework of freeway traffc predictions [4, 5]. 

However, most models rely on pointwise forecasting techniques and solely estimate a 

single (e.g. most likely) future traffc condition. In systems displaying a high degree of 

uncertainty, determining only the most probable outcome is often not adequate for the 

implementation of an effective and robust control strategy. 

Another recent contribution exploits low-rank latent structure in historical traffc 

data to predict future fows at intersections [6]. Highly correlated, low-rank compo-

nents are computed and used directly as linear regressors for the prediction target. 

However, this technique is still restricted to the framework of pointwise forecasting. 

This report builds on [6] and extend its capabilities with the utilization of probabil-

ity forecasting tools. In particular, the aim is to predict future traffc fow at signaled 

intersections and assign a probability of occurrence to several ranges of possible fow 

values. Also, an objective is to capture the nonlinear relationships between past and fu-

ture traffc fows, and to exploit them in the procedure. As these predictions ultimately 
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need to be coordinated with real-time measurements, this work designs a computa-

tionally inexpensive, time-effcient algorithm by means of multiple quantile regression 
analysis. Lastly, the report presents a direct application of these results in a delay 

minimizing control policy. 

First, a dimensionality-reduction algorithm is presented that casts the fow mea-

surements vectors onto a smaller set of highly correlated components. Inspired by [7], 

which seeks a quantile regression algorithm for wind and power forecasting, the next 

step is to project the reduced-size data to a nonlinear feature space through the appli-

cation of radial basis functions (RBF). Finally, a quantile loss function minimization 

problem is solved in order to compute a set of regression parameters and predict the 

quantiles of future traffc fow using an input vector collected in real-time. 

We demonstrate our results on a case study using an intersection in South Carolina 

because an extensive database of traffc fow measurements at this intersection was 

available to the researchers through an existing industry collaboration. However, it is 

emphasized that the results are applicable to any traffc intersection equipped with sen-

sors that provide suffciently high resolution of data acquisition. In particular, the data 

must have suffcient spatial resolution, e.g., measuring turning counts, and suffcient 

temporal resolution, e.g., measurements each 15 minutes. For example, LA County 

maintains a number of traffc intersections that are able to provide the required data. 

This paper is organized as follows: Section II presents the problem formulation. 

Section III describes the methodology used to predict the quantiles of future traffc 

fow from a set of training input and output. Section IV demonstrates the practical 

benefts of the quantile regression algorithm on the test site in Fig.1. 

2 PROBLEM FORMULATION 

Consider a traffc intersection with several approaches, each permitting a fxed number 

of movements. The total number of allowed movements at the intersection is denoted 

by M . For example, the intersection in Fig.1 used for the study is a standard inter-

section located in Beaufort, South Carolina. It is composed of 4 different approachs: 

North Bound (NB), East Bound (EB), South Bound (SB) and West Bound (WB). Each 

approach allows 3 distinct movements: Through (T), Right Turn (RT) and Left Turn 

(LT). Thus, there are M = 12 movements total. As shown in Fig. 2, traffc fows for 

these movements vary widely around the mean from day to day, rendering average-

based control suboptimal. The goal is to exploit historical data along with real-time 

measurements in order to predict future vehicle fows. Subsequently, these predictions 

are used to adjust the signal timing control and better accommodate the ensuing traffc 

conditions. 

A probabilistic forecasting problem consists in determining the probability density 

function P(Y | X = x), of a target random variable Y 2 R, with x 2 Rm denoting the 

prediction’s covariates. In this work, x compiles past traffc fows up to a given time 

for all M movements and y designates fows at a future time for a specifed movement. 
( ( ( The goal is to characterize P by a set of q predicted quantiles {ỹ  1), ỹ  2), . . . , ỹ  q )}, 

with each ỹ( i) 2 R, where ỹ( i) is the predicted i-quantile for some i 2 [0, 1]. The 

number y( ) 2 R satisfying p(Y � y( )) = is called the -quantile for the random 
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Figure 1: Aerial picture (top) and diagram (bottom) of the test site in Beaufort, South Carolina, displaying all four ap-

proaches and their associated movements. Car fow measurements are collected via stopbar, departure lane and advance 

sensors, depicted respectively as red, blue and green slabs [8]. 
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variable Y . 
For example, suppose that at time 10:00, the goal is to predict the total traffc fow 

for movement NB-T over the next hour, 10:00–11:00. Then, x contains traffc fows 

from 0:00 to 10:00 for all movements, y designates the total fow for movement NB-T 
( i)}q between 10:00 and 11:00, and the set {ỹ  contains q predicted quantiles for y. i=1 

In addition, it is desired that the method works for an arbitrary number q of -quantiles, 

2 [0, 1]. 
First, an appropriate metric is established to gauge the quality of a quantile-based 

regression. Let ˆa(z) be the tilted absolute loss function, defned as ˆa(z) = max{az, (a− 
1)z}. Assume the set S = {y1, y2, . . . , yn} to be a collection of random outcomes for 

y. The quantity 

q n 
XX 

ˆ 
i 
(ỹ( i) − yj) (1) 

i=1 j=1 

( i) is minimized by setting ỹ  as the true i-quantile of S [9]. Due to this property, the 

tilted absolute loss function is regarded as a standard measure of precision for quantile 

regressions and is the metric of quality used in this paper. 

In Section III, using a set of n training input vectors {xi}
n
i=1, with xi 2 R

m , along 

with a set of training output scalars {yi}
n
i=1, yi 2 R, an effcient algorithm is developed 

( i) for predicting the i-quantiles ỹ  , i = 1, 2, . . . , q, as a function of an input vector 

x̂ 2 Rm in order to minimize (1). 

A case study is conducted in Section IV to illustrate the tools developed in the 

previous section using 2 years worth of traffc fow data collected at the intersection 

shown in Fig. 1. 

3 QUANTILE REGRESSION 

In the present setting, the aim is to exploit the fact that predictors and predictands 

correlate in a nonlinear fashion. To that end, the frst step is to construct a nonlinear 

transformation T : Rm " Rk from input vector x 2 Rm to a nonlinear feature 

vector T (x) 2 Rk . Then, the objective is to fnd a collection of estimation parameters 

{�i}
q
i=1, with each �i 2 R

k and such that ỹ( i) = �T T (x). Further, T is chosen as i 

a composition ° � H , where H : Rm " Rm 0 
is a dimensionality reduction operator 

and ° : Rm 0 
" Rk nonlinearly transforms the lower-dimensionality predictors to 

the feature space. Below, H is constructed as a Projection to Latent Structure (PLS) 

mapping, also known as Partial Least Squares, and ° using radial basis functions. 

First, the relevance of PLS mapping and radial basis functions to the present case is 

discussed. Afterwards, it is shown how the Alternating Direction Method of Multipliers 
(ADMM) is used for effciently computing the set {�i}

q
i=1. 

3.1 PLS Dimensionality Reduction 

In the context of traffc predictions, a substantial number of predictors must be consid-

ered. For instance, a 15-minute sample interval of vehicle fows results in daily mea-
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Figure 2: Examples of historical fow measurements for the Northbound Right Turn and Southbound Through movements. 

The red line indicates the average fow over the course of one day, the grey envelope shows the range of historical fow 

measurements throughout the day. Note that there is considerable variation around the mean. 
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surement vectors with length 4 × 24 × M . This number rapidly grows inconvenient 

because nonlinear feature generation is a computationally costly and size-sensitive task. 

Dimensionality impracticalities arise, and it becomes diffcult to disentangle the vari-

ous relationships existing within the data set. 

Here, it is proposed to frst reduce the data size using the Projection to Latent 

Structure method [10]. Similar in some aspects to Principal Component Analysis, a 

PLS-based approach seeks to project the data onto a smaller set of orthogonal vectors 

in directions of high covariance between X and Y . The algorithm thus determines a 

low-rank representation of X , whose components are in turn greatly correlated with Y . 
This property also renders PLS a valuable tool to avoid overftting. Denote by m0 the 

number of PLS components to be computed, a user-specifed tuning parameter. 

Recall the set of training input vectors {xi}
n
i=1 and outputs {yi}

n
i=1. Let us intro-

duce the mean-centered matrices X̃ 2 Rn×m and Ỹ  2 Rn as 

2 3 2 3 

x̃T 
1 ỹ1 

6 . 7 6 . 7 X̃ = 
4 

. 
5 

Ỹ = 
4 

. 
5 

, (2) . . 
Tx̃ ỹn n 

where 

n 
X 1 

x̃i = xi − x̄ with x̄ j = (xi)j , (3) 
n 

i=1 
n 
X 1 

ỹi = yi − ȳ  with ȳ = yi , (4) 
n 

i=1 

(xi)j and x̄ j denote the jth entry of xi and x̄ respectively. 

PLS analysis is carried out iteratively: a pair (pi, si) of principal component p 
and score vector s is determined at each iteration of the process, with p 2 Rm and 

s 2 Rn . The contributions of newly computed components is removed by subtracting 

them from the data matrices between successive iterations. The algorithm terminates 

once m0 component-score pairs have been calculated. 

A classic algorithm for PLS is now briefy described [10]. In order to determine 

the pair (p1, s1), frst fnd two solutions v� 2 Rn and w� 2 Rm solving the following 

optimization problem: 

� (v , w �) = [cov( ˜ Y w)]2 (5) argmax Xv, ˜ 
kvk2=1 ; kwk2 =1 

= argmax Xv)T ( ˜ (6) ( ˜ Y w) , 
kvk2=1 ; kwk2 =1 

where cov denotes the covariance operator. This follows directly from the defnition 
� of latent structures evoked previously. Observe that v� and w are, respectively, the 

left and right singular vectors of the product X̃T Ỹ  , making this step computationally 
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straightforward. Then, obtain a score vector s1 by projecting X̃ onto the direction of 

high covariance v� found in (6) and according to 

X̃v� 
s1 = . (7) 

k X̃v�k2 

Note that only v� is involved in the computation of the score vector. This necessary 

asymmetry is introduced to later use the score vectors for regression. 

Corresponding components p1 and q1 result from the projection of the data matri-

ces onto s1 and are given by 

˜ p1 = Xs1 , (8) 

˜ q1 = Y s1 . (9) 

Finally, update X̃ and Ỹ  to generate X̃ 
2 and Ỹ  2 according to 

˜ ˜ T X2 = X − s1p1 , (10) 

˜ ˜ T Y2 = Y − s1q1 . (11) 

˜ ˜ This process is repeated with the updated data matrices X2, Y2 and fnd an additional 

pair (p2, s2), etc. This algorithm is iterated to obtain m0 pairs. 
0 

Once a collection {(pi, si)}
m
i=1 of component-score pairs has been computed, we 

build the reduced-size matrix of predictors S along with the loading matrix P and write 

S = [s1, s2, . . . , sm0 ] , (12) 

P = [p1, p2, . . . , pm0 ] . (13) 

Denote by Si the ith row of the PLS score matrix S. The PLS effectively fulflls its pur-

pose of dimensionality reduction by representing X 2 Rn×m , which contains raw traf-

fc input data, as a score matrix Sn×m 0 
, m0 ˝ m, so that each training inputxi 2 R

m 

is instead represented by the score vector Si 2 R
m whose components are maximally 

correlated with the set of output fows {yi}
n 
i=1. 

Now, assume an input x̂ is to be used for predictions. Its PLS projection score vec-
ˆ tor Ŝ  2 Rm 0 

must be calculated with respect to the components of P . S is found using 

the expression 

! � 0 
H x̂ := Ŝ  = ((x̂ − x̄)T (P T )†)T 2 Rm , (14) 

where (PT )† stands for the Moore-Penrose pseudoinverse of P T . 
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3.2 Nonlinear Features Generation 

Now that H has been characterized to reduce the data dimensionality, a nonlinear fea-

tures transformation ° is defned. Among the most popular kernels employed in ma-

chine learning for nonlinear features extraction is the RBF Gaussian kernel [11]. Given 

a user-specifed number of desired nonlinear features, the method fnds a set of data 

centers and bandwidths used in the computation of the RBFs. 

Initially, a k-means clustering algorithm is used on S to generate a set of k data 

centers µi 2 R
m 0 

along with their associated bandwidth ˙i 2 R, such that ˙i = 
median kµi − µlk2; i = 1, 2, . . . , k. A multiple seeding k-means++ procedure is 

l 6=i 

applied so as to ensure similar clustering for separate executions of the algorithm [12]. 

The RBF vector °(U) = [° 1(U), ° 2(U), . . . , ° k(U)] 2 Rk is defned with 

kU−µj k2 

° j(U) := e 2˙j ; j = 1, 2, . . . , k (15) 

being the RBF functions with center µj and bandwidth ˙j . The stacked matrix � of 

feature vectors °(Si) 2 R
k is constructed by evaluating the RBF vector for all Si and 

concatenating them to obtain 

2 3 

°(S1) 
6 7 °(S2) 
6 

� = 
6 . 

7 

7 
2 Rn×k . (16) 

. 
4 . 5 

°(Sn) 

Each row °(Si) of � is equivalent to the nonlinear transformation T applied to xi, and 

thus T (xi) := H(°(xi)) = °(Si), i = 1, 2, . . . , n. 

3.3 Alternating Direction Method of Multipliers Algorithm 

Recall the set of parameters {�i}
q 

that is to be computed such that the i-th quantile i=1 
( ( i) ỹ  i) satisfes ỹ = �T T (x̂). Minimizing the absolute tilted loss function in order to i 

fnd {�i}
q 

belongs to the class of convex optimization problems [13]. The equation i=1 
(1) is now reformulated so as to include a l2-regularization parameter � and highlight 

the dependence of the predicted quantiles ỹ( i) = �T T (xj) on the training inputs xj . i 

The optimization problem becomes 

q n q 
XX X k�ik

2 
2 argmin ˆi(�i

T T (xj ) − yj) + � 
2 

. (17) 
�i i=1 j=1 i=1 

This expression decouples along �i and thus is q independent optimization problems. 

The main advantage of the ADMM procedure is to provide an effcient solution to (17) 

through a simultaneous computation of all the estimators and avoid the redundancy of 

casting a solver for each �i consecutively, as suggested in [7] and [14]. This procedure 

is shown in the pseudo-code in Algorithm 1. 
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ADMM is an iterative process characterized by its step size �. No stopping con-

ditions are implemented; instead, a fxed number of iterations T is introduced as an 

additional tunable hyperparameter. 

Upon completion, the program returns a matrix � 2 Rk×q containing the desired 

estimators 

2 3 

| | | 
� = 4 �1 �2 . . . 5 �q . (18) 

| | | 

Although ADMM offers a clear advantage in terms of computational time and com-

plexity, independent quantile regressions may be the source of possible mathematical 
( a) ( b) ( a) ( b) aberrations, such as estimating two quantiles ỹ  and ỹ  , with ỹ  < ỹ  

when a > b. Some quantile regression approaches include additional constraints in 

order to prevent this, however, this would eliminate the computational effciency of the 

ADMM approach. Instead,it was found that sorting the set of computed quantiles in 

increasing order is a reasonable way to fx this issue, as is done in [7]. 

4 CASE STUDY 

4.1 Traffc Flow Prediction 

The algorithm presented in Section III is now demonstrated using data collected at the 

test site in Fig.1 on weekdays from March 2014 to September 2016. This is n = 591 
days worth of traffc fow measurements for each movement. 

Vehicle counts for all movements were sampled on 15-minute intervals. Measure-

ment times remain the same for all days across the data set. To generate the training 

data, we aggregate the measurements by calendar days into the set {xi}
n
i=1, where 

xi 2 R
(12×4×TS ) is a row-vector containing all fows for all movements from 00:00 

to TS in 15-minute intervals on day i. The objective is to forecast a set of fow per-
(0.01) (0.02) (0.03) centiles {ỹ  , ỹ  , ỹ  , . . . , ỹ(0.99)} for a specifed movement, at time TP , 

on a given day, TP > TS . The training set of outputs {yi}
n thus contains fow i=1 

measurements for that particular movement at time TP for all days in the data set. 

For this case study, the goal is to make hourly predictions for all movements based 

on historical fows, and therefore let TS vary from 10:00 to 23:00 in one-hour incre-

ments on different days. At each time step, the target quantity for prediction is the 

hourly fow for all movements in the time range [TS ; TS + 1 hour]. Algorithm 2 

depicts the procedure used to make predictions for a given TS . PLS and ADMM hy-

perparameters were tuned empirically and the following combination was found to 

yield consistent, high-quality predictions: m0 = 7, � = 0.00022, k = 250, T = 150, 

� = 0.5. Subtracting the mean fow from the training and test outputs mitigates the 

effects of traffc volume on the ADMM optimization and allows for a uniform selec-

tion of parameters across the whole data set. The average fow is later re-added to the 

estimated quantiles. 

The performance of the regression algorithm is further enhanced by taking addi-

tional predictors into consideration. Weather data such as temperature and precipi-
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tations are good candidates, as they capture underlying seasonal trends and potential 

poor driving conditions. Hourly precipitation and hourly average temperature obtained 

from 0:00 to time TS are appended to the inputs {xi}
n
i=1 of traffc fow measurements 

before each prediction. It was found that including weather conditions had a positive, 

although slight, overall impact on the prediction quality, which was able to foresee 

lower traffc activity on extremely cold days or in the event of moderate precipitation. 

Fig. 3 displays the 10th to 90th percentile range predicted by the algorithm for high-

volume movements, NB-RT, on 3 distinct test days. Both the 30th to 70th and 40th 

to 60th percentile ranges are delineated with darker blue tones. The observed fow, as 

well as the average fow across the entire data set, are superimposed on the plots as a 

cyan solid line and a red dotted line respectively. The days shown in the fgure exhibit 

drastically dissimilar traffc conditions: July 2nd 2015, which fell right before a long 

weekend holiday and experienced higher-than-average traffc; February 24th 2015, a 

day with lower-than-average traffc due to winter weather; and January 1st 2015, a 

nationwide US holiday causing very unusual traffc. In the fgure, it is seen that the al-

gorithm successfully detects variations from average conditions and accurately predicts 

impending traffc fow. Not only do the quantiles capture the general traffc trend in all 

the examples, but they are also very coherent in a statistical sense. Indeed, a proper 

fraction of observed values — which should amount to about 20% — fall outside of 

the 10 to 90 percentile range. 

Cumulative distribution functions (CDF) can be extrapolated from the sets of pre-

dicted quantiles. CDFs reveal informative visual clues on the probability density func-

tions inferred by the quantiles. Two examples produced at peak traffc times are pre-

sented in Fig. 4. For higher volume predictions, e.g. on July 2, the CDF’s graphs 

appear more linear than in the case of lower traffc volume. Therefore, the algorithm 

displays greater certainty for lower-than-average traffc predictions, since their CDFs 

allocate more probability mass to specifc fow ranges. For above-average traffc, the 

predictions are conservative and predict more uniform traffc distributions. In addition, 

observed values represented by green vertical lines on the plots frequently lie in the 

vicinity of the estimated most probable fow. 

In order to quantify the precision of our forecasts, the tilted loss in (1) is used to as-
(0.10) (0.30) (0.50) (0.70) (0.90)} sign a prediction score to each day. The set {ỹ  , ỹ  , ỹ  , ỹ  , ỹ  

of predicted quantiles is used to compute these scores. Although this score cannot 

assess the quality of the algorithm in absolute terms, it allows us to make direct com-

parisons between different quantile forecasts. On the same days previously studied, 

we evaluate the sum of the prediction scores for all movements from 10:00 to 23:00. 

As shown in Table I, our quantiles clearly outperform those extracted from a direct 

percentile computation over the historical data set. The average tilted loss score for 

the data set decreases from 60 × 102 with historical quantiles to 38 × 102 when us-

ing predicted quantiles. It is observed that historical quantiles are particularly unsuited 

when traffc fow deviates from the average conditions. For example, on January 1, 

2015, historical quantiles yield a high tilted loss score of 444 × 102 whereas predicted 

quantiles receive a score of 35 × 102 . 

10 
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4.2 Delay-Optimizing Control using Predictions 

To evaluate the practical benefts of the traffc prediction algorithm, it is considered 

to use the predictions to adjust control actions at the intersection. Typically, a traffc 

intersection controller supposes fxed arriving fow for each movement and optimizes 

green splits, that is, the fractions of time each movement is given a green signal to 

allow traffc fow [15]. Here, the benefts of adjusting these control parameters every 

hour is studied. 

The Synchro software is a software package used extensively by traffc engineers 

to compute optimal control parameters at intersections. In particular, it employs a 

quantile-based approach for estimating delay for signalized intersections [16]. It as-

sumes fve different traffc arrival scenarios, generates the optimal green times and 

cycle time for each one of them, and fnally averages the fve delays computed with a 

simple equation. In the event that no green splits can accommodate one or several of 

the potential situations, the ”infeasible” cases are discarded in the delay computation. 

However, these scenarios — namely the 90, 70, 50, 30 and 10 fow percentiles — are 

approximated in the Synchro software presuming a Poisson-distributed arrival of ve-

hicles with a nominal average arrival rate and do not refect the actual behavior of the 

intersection. 

Inspired by this Synchro percentile method, we frst predict the quantiles 

(0.10) (0.30) (0.50) (0.70) (0.90) 
{ỹ  , ỹ  , ỹ  , ỹ  , ỹ  } i i i i i 

( j ) 
of future fows for all 12 movements each hour, with ỹ  denoting the j-quantile for i 

movement i. Then, we aim to minimize delay given by Webster’s delay formula 
" # 

r 

0.5C(1 − gi )2 4Xi C di = gi 
+ 900 (Xi − 1) + (Xi − 1)2 + (19) 

1 − [Xi ] si C 

as defned in the Highway-Capacity Manual [17] and used in Synchro, where di is the 

delay per vehicle (s/veh) for movement i; gi is the effective green time per cycle (s) for 

movement i; C is the optimal cycle length (s) for the intersection; si is the saturation 

fow (veh/s) for movement i and depends on the lanes’ capacity; and Xi = C × qi 
gi si 

with qi (veh/s) the arrival-rate indicates the movement’s degree of saturation. The 

total delay D at the intersection is the sum D = 
P12 

di. Now, let D be the delay i=1 j 

assuming the arrival-rates qi for each movement are equal to their predicted j -quantile 
( j ) 

ỹ  , i = 1, 2, . . . , 12. The aim is to compute i 

q 
X 

opt}12 
i=1, C

opt {gi = argmin D 
j 
, (20) 

{gi}12 , C i=1 j=1 

where { j}j
q 
=1 = {0.10, 0.30, 0.50, 0.70, 0.90}. This is a convex optimization 

opt}12 problem and can be readily solved [15]. Once {g i=1 and Copt have been found, i 

the realized total delay D caused by this combination of green splits and cycle length 
opt 

are calculated by setting gi = g and C = Copt in (19) and letting the qi’s be equal i 

to the actual fows. 
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For comparison, green splits are computed using empirical historical quantiles cal-

culated over the entire data set. Table II records the delay engendered when adjusting 

the control policy according to the predicted quantiles compared to the data set quan-

tiles. At the beginning of each hour, new green splits and cycle length are implemented 

following the procedure described above, using total fow quantiles over the next hour. 

More specifcally, the table shows the estimated total delay for February 24th 2015 and 

July 2nd 2015 between 10:00 and 24:00, as well as the mean total delay for this time 

range across the entire data set. Additionally, a theoretical lower bound on the delay 

time is computed by supposing the actual fow is known in advance and optimizing 

for the actual fow. As expected, the predicted quantiles lead to much lower delays in 

comparison to the historical quantiles. On February 24, 2015 and July 2, 2015, total 

delay has been reduced by 5.9 hours and 4.3 hours respectively. Over the whole data 

set, total delay is decreased by 4.6 hours per day on average when implementing the 

control policy according to the predicted quantiles. 

5 CONCLUSIONS 

This project developed a powerful method for estimating quantiles of future traffc fow 

at an intersection using diverse real-time measurements. Furthermore, the effciency of 

the regression algorithm was demonstrated through a case study conducted using data 

on a test site in South Carolina, although the techniques are applicable to any intersec-

tion capable of measuring traffc volume in real time. California possesses many such 

intersections, including many intersections in LA County. The predictions accurately 

described the observed traffc fows for several volume scenarios, using only compu-

tationally non-intensive operations. The case studies results demonstrated an average 

delay reduction of 4.6 hours per day at the intersection switching from a historical 

quantile-based control policy to a prediction-based policy. Through this algorithm, it 

is also possible to accomplish better green split management and reduce traffc delays 

while making no additional adjustments to the existing infrastructure encountered on 

the roads. The relative ease of implementation of the apparatus exposed in this pa-

per makes quantile regression a versatile tool, handily applicable to a wide array of 

forecast-dependent felds. Future works could explore other types of regression, in-

cluding parametric and nonparametric probability density ftting. Another interesting 

extension would be to examine the potential of quantile regression in the case of net-

worked intersections. In this setting, can PLS capture the existing spatial correlations 

between contingent movements? 

Moreover, since quantile predictions refect historical, day-to-day variation in traf-

fc fow, it may be possible detect anomalous deviations from usual traffc conditions 

due to car accidents or lane closures. Contributions could also be made to the theory 

of stochastic control in the framework of model-based traffc control design. 

12 



6 ACKNOWLEDGMENTS 

Sensys Networks, Inc. and Beaufort County, South Carolina provided access to traffc 

fow data. 

References 

[1] A. A. Kurzhanskiy and P. Varaiya, “Traffc management: An outlook,” Economics 
of Transportation, vol. 4, no. 3, pp. 135–146, 2015. 

[2] V. Jain, A. Sharma, and L. Subramanian, “Road traffc congestion in the develop-

ing world,” in Proceedings of the 2nd ACM Symposium on Computing for Devel-

opment. ACM, 2012, p. 11. 

[3] H. Chen, B. Jia, and S. Lau, “Sustainable urban form for chinese compact cities: 

Challenges of a rapid urbanized economy,” Habitat international, vol. 32, no. 1, 

pp. 28–40, 2008. 

[4] L. L. Ojeda, A. Y. Kibangou, and C. C. De Wit, “Adaptive kalman fltering for 

multi-step ahead traffc fow prediction,” in American Control Conference (ACC), 
2013. IEEE, 2013, pp. 4724–4729. 

[5] C.-J. Wu, T. Schreiter, and R. Horowitz, “Multiple-clustering armax-based pre-

dictor and its application to freeway traffc fow prediction,” in American Control 
Conference (ACC), 2014. IEEE, 2014, pp. 4397–4403. 

[6] S. Coogan, C. Flores, and P. Varaiya, “Traffc predictive control from low-rank 

structure,” Transportation Research Part B: Methodological, vol. 97, pp. 1–22, 

2017. 

[7] R. Juban, H. Ohlsson, M. Maasoumy, L. Poirier, and J. Z. Kolter, “A multiple 

quantile regression approach to the wind, solar, and price tracks of gefcom2014,” 

International Journal of Forecasting, vol. 32, no. 3, pp. 1094–1102, 2016. 

[8] A. Haoui, R. Kavaler, and P. Varaiya, “Wireless magnetic sensors for traffc 

surveillance,” Transportation Research Part C: Emerging Technologies, vol. 16, 

no. 3, pp. 294–306, 2008. 

[9] R. Koenker and G. Bassett Jr, “Regression quantiles,” Econometrica: journal of 
the Econometric Society, pp. 33–50, 1978. 
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Algorithm 1: Quantile Parameters Regression 

Input : Set of training input traffc fows {xi}
n , collected from i=1, xi 2 R

m 

0:00 to TS on day i, set of quantiles { 1, 2, . . . , q} to be computed 

with i 2 [0, 1], set of training output traffc fows y 2 Rn with yi 
collected at time TP on day i (TP > TS ), number of PLS components 

m0 , number of k-means centers k, regularization parameter � 2 R, 

ADMM step size � 2 R, number of iteration T 2 N 
Output : Set of quantile estimators � 2 Rk×q , k-means centers and 

bandwidths {(µi, ˙i)}
k
i=1, matrix of PLS components P , mean-fow vector 

x̄ 

Initialize: A1 = 0n,q, Z1 = 0n,q, �
1 = 0k,q 

z1 denotes the ith column of Z1 
i 

Compute mean-centered, aggregated data matrices 

X̂ and Ŷ  , and mean fow vector x̄ from (2)-(4); 

Compute score matrix S and component matrix P 
using (5) to (13); 

{(µi, ˙i)}
k = k-means++(S, k); i=1 

Compute the stacked matrix of feature vectors �(S, k) 
according to (15) and (16); 

Find the Cholesky decomposition UUT of (�T �+ � I); 
� 

for j = 1, 2, . . . , T do 

�j+1 = U−T U−1�T (y + Zj − Aj ); q 

Z̃  = (��j+1 − y q + Aj ); 

for each column z̃l of Z̃  , l = 1, 2, . . . , q do 
j+1 

zl − 1 zl − 1 z = max{0, ˜ l} + min{0, ˜ ( l − 1)}; l � � 

(this is a component-wise operation) 

end 

Aj+1 − Zj+1 = Aj + ��j+1 − y q ; 

end 

return �, {(µi, ˙i)}
k
i=1, P, x̄ 
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�

Algorithm 2: Quantile Predictions and Score Computation 

Input : Test input fow x̂ 2 Rm collected from 0:00 to TS , test output fow 

ŷ  2 R measured at time TP (TP > TS), set of quantile estimators 

� = [�1 . . . �q] 2 R
k×q , set of RBF centers and bandwidths 

{(µi, ˙i)}
k
i=1, matrix of PLS components P, mean-fow vector x̄ 

( 1) ( 2) ( q Output: Set of predicted quantiles {ỹ  , ỹ  , . . . , ỹ  )}, prediction score � 

Ŝ = H(x̂) = ((x̂ − x̄)T (P T )†)T ; 
T (x̂) = °(Ŝ) according to (10); 

for i = 1, 2, . . . , q do 

ỹ( i) = �T T (x̂); i 

end 

( 1) ( 2) ( q Sort {ỹ  , ỹ  , . . . , ỹ  )} in ascending order; 
P 

� = 
q 

ˆ (ỹ( i) − ŷ); i=1 i 

( i)}q return {ỹ  i=1, � 

Tilted loss score (×102) 

Historical Predicted Improvement 

February 24, 2015 253 51 202 

July 2, 2015 230 45 185 

January 1, 2015 444 35 409 

Data Set Mean 60 38 22 

Table 1: Comparison of tilted loss function total scores obtained from predicted quantiles and historical quantiles on three 

different test days. Hourly fows from 10:00 onward were chosen as targets for prediction. The total scores are computed 

by summing the individual daily scores for each movement. The predictions’ performance surpasses that of the historical 

quantiles, with an average daily titled loss score of 38 × 102 vs. 60 × 102 . 
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Figure 3: Example of predictions for the NB-RT movements on three days with different traffc profles. Lightest blue 

indicates the predicted 10 to 90 percentile range, with darker tones corresponding to the 30 to 70 and 40 to 60 ranges. 

The algorithm successfully predicts well below average traffc on the holiday of January 1, 2015. Furthermore, it correctly 

predicts below average traffc due to winter weather on February 24, 2015, as well as above average traffc on July 2, 2015. 
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Figure 4: Plots of predicted cumulative distribution functions for two separate times experiencing unalike traffc volumes. 

Steeper slopes indicate higher expected probabilities of occurrence. Observed fows were accurately predicted by the algo-

rithm for both cases. 

Feb. 24, 2015 Jul. 2, 2015 Data Set Mean 

Delay using 

Historical Quantiles (h) 
99.5 275.7 181.2 

Delay using 

Predicted Quantiles (h) 
93.6 271.4 176.6 

Delay lower bound (h) 91.8 269.3 173.5 

Predicted vs. Historical 

improvement (h) 
5.9 4.3 4.6 

Table 2: Illustrative total delays estimated for two test days between 10:00 and 24:00. Additionally, the average total delay 

across the data set is displayed. The delays are computed using both predicted and empirical historical quantiles; a lower 

bound on the total nominal delays was also calculated. Adjusting the green cycles according to the predictions improves 

total delay by 4.6 hours per day. 
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	Abstract 
	This project developed a quantile regression method for predicting future traffc fow at a signalized intersection by combining both historical and real-time data. The algorithm exploits nonlinear correlations in historical measurements and effciently solves a quantile loss optimization problem using the Alternating Direction Method of Multipliers (ADMM). The resulting parameter vectors allow determining a probability distribution of upcoming traffc fow. These predictions establish an effcient, delay-minimiz
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	1 INTRODUCTION 
	1 INTRODUCTION 
	Despite the emergence of high-resolution sensing technologies in transportation systems, many traffc control approaches used in practice still fail to adequately leverage real-time and historical measurements [1]. Current demographic and urbanization trends worldwide likely portend a global over congestion of roads in the coming years [2, 3], raising the need of more optimized signal timing practices. Although typical signalized intersections are often able to accommodate moderate deviations from average tr
	-
	-
	-
	-

	Previous work has demonstrated the strong potential of prediction-based control in a variety of traffc settings. Tools such as ARMAX models or Kalman fltering have delivered promising results in the framework of freeway traffc predictions [4, 5]. However, most models rely on pointwise forecasting techniques and solely estimate a single (e.g. most likely) future traffc condition. In systems displaying a high degree of uncertainty, determining only the most probable outcome is often not adequate for the imple
	Another recent contribution exploits low-rank latent structure in historical traffc data to predict future fows at intersections [6]. Highly correlated, low-rank components are computed and used directly as linear regressors for the prediction target. However, this technique is still restricted to the framework of pointwise forecasting. 
	-

	This report builds on [6] and extend its capabilities with the utilization of probability forecasting tools. In particular, the aim is to predict future traffc fow at signaled intersections and assign a probability of occurrence to several ranges of possible fow values. Also, an objective is to capture the nonlinear relationships between past and future traffc fows, and to exploit them in the procedure. As these predictions ultimately 
	This report builds on [6] and extend its capabilities with the utilization of probability forecasting tools. In particular, the aim is to predict future traffc fow at signaled intersections and assign a probability of occurrence to several ranges of possible fow values. Also, an objective is to capture the nonlinear relationships between past and future traffc fows, and to exploit them in the procedure. As these predictions ultimately 
	-
	-

	need to be coordinated with real-time measurements, this work designs a computationally inexpensive, time-effcient algorithm by means of multiple quantile regression analysis. Lastly, the report presents a direct application of these results in a delay minimizing control policy. 
	-


	First, a dimensionality-reduction algorithm is presented that casts the fow measurements vectors onto a smaller set of highly correlated components. Inspired by [7], which seeks a quantile regression algorithm for wind and power forecasting, the next step is to project the reduced-size data to a nonlinear feature space through the application of radial basis functions (RBF). Finally, a quantile loss function minimization problem is solved in order to compute a set of regression parameters and predict the qu
	-
	-

	We demonstrate our results on a case study using an intersection in South Carolina because an extensive database of traffc fow measurements at this intersection was available to the researchers through an existing industry collaboration. However, it is emphasized that the results are applicable to any traffc intersection equipped with sensors that provide suffciently high resolution of data acquisition. In particular, the data must have suffcient spatial resolution, e.g., measuring turning counts, and suffc
	-

	This paper is organized as follows: Section II presents the problem formulation. Section III describes the methodology used to predict the quantiles of future traffc fow from a set of training input and output. Section IV demonstrates the practical benefts of the quantile regression algorithm on the test site in Fig.1. 

	2 PROBLEM FORMULATION 
	2 PROBLEM FORMULATION 
	Consider a traffc intersection with several approaches, each permitting a fxed number of movements. The total number of allowed movements at the intersection is denoted by M. For example, the intersection in Fig.1 used for the study is a standard intersection located in Beaufort, South Carolina. It is composed of 4 different approachs: North Bound (NB), East Bound (EB), South Bound (SB) and West Bound (WB). Each approach allows 3 distinct movements: Through (T), Right Turn (RT) and Left Turn (LT). Thus, the
	-

	A probabilistic forecasting problem consists in determining the probability density function P(Y | X = x), of a target random variable Y 2 R, with x 2 Rdenoting the prediction’s covariates. In this work, x compiles past traffc fows up to a given time for all M movements and y designates fows at a future time for a specifed movement. 
	m 

	(( ( 
	The goal is to characterize P by a set of q predicted quantiles {y˜ ,y˜ ,...,y˜ }, with each y˜2 R, where y˜is the predicted i-quantile for some i 2 [0, 1]. The number y2 R satisfying p(Y . y)= is called the -quantile for the random 
	1
	)
	2
	)
	q 
	)
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	i
	) 
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	Figure
	Figure
	Figure 1: Aerial picture (top) and diagram (bottom) of the test site in Beaufort, South Carolina, displaying all four approaches and their associated movements. Car fow measurements are collected via stopbar, departure lane and advance sensors, depicted respectively as red, blue and green slabs [8]. 
	-

	variable Y . 
	For example, suppose that at time 10:00, the goal is to predict the total traffc fow for movement NB-T over the next hour, 10:00–11:00. Then, x contains traffc fows from 0:00 to 10:00 for all movements, y designates the total fow for movement NB-T 
	( i)q 
	}

	between 10:00 and 11:00, and the set {y˜ contains q predicted quantiles for y. 
	i=1 
	In addition, it is desired that the method works for an arbitrary number q of -quantiles, 
	2 [0, 1]. 
	First, an appropriate metric is established to gauge the quality of a quantile-based regression. Let ˆa(z) be the tilted absolute loss function, defned as ˆa(z)= max{az, (a− 1)z}. Assume the set S = {y,y,...,yn} to be a collection of random outcomes for 
	1
	2

	y. The quantity 
	qn 
	XX 
	ˆ (˜y− yj) (1) 
	i 
	( 
	i
	) 

	i=1 j=1 
	( i) 
	is minimized by setting y˜ as the true i-quantile of S [9]. Due to this property, the tilted absolute loss function is regarded as a standard measure of precision for quantile regressions and is the metric of quality used in this paper. 
	In Section III, using a set of n training input vectors {xi}, with xi 2 R, along with a set of training output scalars {yi}, yi 2 R, an effcient algorithm is developed 
	n
	i=1
	m 
	n
	i=1

	( i) 
	for predicting the i-quantiles y˜ , i =1, 2, ..., q, as a function of an input vector xˆ 2 Rin order to minimize (1). 
	m 

	A case study is conducted in Section IV to illustrate the tools developed in the previous section using 2 years worth of traffc fow data collected at the intersection shown in Fig. 1. 

	3 QUANTILE REGRESSION 
	3 QUANTILE REGRESSION 
	In the present setting, the aim is to exploit the fact that predictors and predictands correlate in a nonlinear fashion. To that end, the frst step is to construct a nonlinear transformation T : R" Rfrom input vector x 2 Rto a nonlinear feature vector T (x) 2 R. Then, the objective is to fnd a collection of estimation parameters {.i}, with each .i 2 Rand such that y˜= .T (x). Further, T is chosen as 
	m 
	k 
	m 
	k 
	q
	i=1
	k 
	( 
	i
	) 
	T 

	i 
	a composition ° . H , where H : R" Ris a dimensionality reduction operator and ° : R" Rnonlinearly transforms the lower-dimensionality predictors to the feature space. Below, H is constructed as a Projection to Latent Structure (PLS) mapping, also known as Partial Least Squares, and ° using radial basis functions. 
	m 
	m 
	0 
	m 
	0 
	k 

	First, the relevance of PLS mapping and radial basis functions to the present case is discussed. Afterwards, it is shown how the Alternating Direction Method of Multipliers (ADMM) is used for effciently computing the set {.i}. 
	q
	i=1

	3.1 PLS Dimensionality Reduction 
	3.1 PLS Dimensionality Reduction 
	In the context of traffc predictions, a substantial number of predictors must be considered. For instance, a 15-minute sample interval of vehicle fows results in daily mea
	-
	-

	Figure
	Figure 2: Examples of historical fow measurements for the Northbound Right Turn and Southbound Through movements. The red line indicates the average fow over the course of one day, the grey envelope shows the range of historical fow measurements throughout the day. Note that there is considerable variation around the mean. 
	surement vectors with length 4 × 24 × M. This number rapidly grows inconvenient because nonlinear feature generation is a computationally costly and size-sensitive task. Dimensionality impracticalities arise, and it becomes diffcult to disentangle the various relationships existing within the data set. 
	-

	Here, it is proposed to frst reduce the data size using the Projection to Latent Structure method [10]. Similar in some aspects to Principal Component Analysis, a PLS-based approach seeks to project the data onto a smaller set of orthogonal vectors in directions of high covariance between X and Y . The algorithm thus determines a low-rank representation of X, whose components are in turn greatly correlated with Y . This property also renders PLS a valuable tool to avoid overftting. Denote by mthe number of 
	0 

	Recall the set of training input vectors {xi}and outputs {yi}. Let us introduce the mean-centered matrices X2 Rand Y2 Ras 
	n
	i=1 
	n
	i=1
	-
	˜ 
	n×m 
	˜ 
	n 

	23 23 
	x˜y˜
	T 
	1 
	1 

	6 . 76 . 7 
	X= 4 . 5 Y= 4 . 5 , (2) 
	˜
	˜

	.. 
	T
	x˜ y˜n 
	n 
	where 
	n 
	X 
	1 
	x˜i = xi − x¯ with x¯ j =(xi)j , (3) 
	n 
	i=1 n 
	X 
	1 
	y˜i = yi − y¯ with y¯= yi , (4) 
	n 
	i=1 
	(xi)j and x¯ j denote the jth entry of xi and x¯ respectively. 
	PLS analysis is carried out iteratively: a pair (pi,si) of principal component p and score vector s is determined at each iteration of the process, with p 2 Rand s 2 R. The contributions of newly computed components is removed by subtracting them from the data matrices between successive iterations. The algorithm terminates once mcomponent-score pairs have been calculated. 
	m 
	n 
	0 

	A classic algorithm for PLS is now briefy described [10]. In order to determine the pair (p,s), frst fnd two solutions v2 Rand w2 Rsolving the following optimization problem: 
	1
	1
	. 
	n 
	. 
	m 

	. 
	(v ,w )= [cov(Yw)](5) 
	.
	˜ 
	2 

	argmax Xv, 
	˜ 

	kvk=1 ; kwk=1 
	2
	2 

	= argmax Xv)((6) 
	T 
	˜ 

	(Yw) , 
	˜ 

	kvk=1 ; kwk=1 
	2
	2 

	where cov denotes the covariance operator. This follows directly from the defnition 
	. 
	of latent structures evoked previously. Observe that vand w are, respectively, the left and right singular vectors of the product XY, making this step computationally 
	of latent structures evoked previously. Observe that vand w are, respectively, the left and right singular vectors of the product XY, making this step computationally 
	. 
	˜
	T 
	˜ 

	straightforward. Then, obtain a score vector sby projecting Xonto the direction of high covariance vfound in (6) and according to 
	1 
	˜ 
	. 
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	Xv
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	s= . (7) 
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	Xv
	Xv
	.
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	2 

	Note that only vis involved in the computation of the score vector. This necessary asymmetry is introduced to later use the score vectors for regression. 
	. 

	Corresponding components pand qresult from the projection of the data matrices onto sand are given by 
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	p= Xs, (8) 
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	q= Ys. (9) 
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	Finally, update Xand Yto generate Xand Yaccording to 
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	X= X − sp, (10) 
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	Y= Y − sq. (11) 
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	This process is repeated with the updated data matrices X, Yand fnd an additional pair (p,s), etc. This algorithm is iterated to obtain mpairs. 
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	0 
	Once a collection {(pi,si)}of component-score pairs has been computed, we build the reduced-size matrix of predictors S along with the loading matrix P and write 
	m
	i=1 

	S =[s,s, ..., sm] , (12) 
	1
	2
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	P =[p,p, ..., pm] . (13) 
	1
	2
	0 

	Denote by Si the ith row of the PLS score matrix S. The PLS effectively fulflls its purpose of dimensionality reduction by representing X 2 R, which contains raw traffc input data, as a score matrix S, m˝ m, so that each training inputxi 2 Ris instead represented by the score vector Si 2 Rwhose components are maximally correlated with the set of output fows {yi}
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	n×m 
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	n×m 
	0 
	0 
	m 
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	i=1Now, assume an input xˆ is to be used for predictions. Its PLS projection score vecˆ 
	. 
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	tor S2 Rmust be calculated with respect to the components of P . S is found using the expression 
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	Hxˆ := S= ((ˆx − x¯)(P ))2 R, (14) 
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	T 
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	T 
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	where (P)stands for the Moore-Penrose pseudoinverse of P . 
	T 
	† 
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	3.2 Nonlinear Features Generation 
	3.2 Nonlinear Features Generation 
	Now that H has been characterized to reduce the data dimensionality, a nonlinear features transformation ° is defned. Among the most popular kernels employed in machine learning for nonlinear features extraction is the RBF Gaussian kernel [11]. Given a user-specifed number of desired nonlinear features, the method fnds a set of data centers and bandwidths used in the computation of the RBFs. 
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	Initially, a k-means clustering algorithm is used on S to generate a set of k data centers µi 2 Ralong with their associated bandwidth ˙i 2 R, such that ˙i = median kµi − µlk; i =1, 2,..., k. A multiple seeding k-means++ procedure is 
	m 
	0 
	2

	l6=i 
	applied so as to ensure similar clustering for separate executions of the algorithm [12]. The RBF vector °(U)=[° (U),° (U), ..., ° k(U)] 2 Ris defned with 
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	2
	k 

	kU−µj k2 
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	° j(U) := e j ; j =1, 2, ..., k (15) 
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	being the RBF functions with center µj and bandwidth ˙j. The stacked matrix . of feature vectors °(Si) 2 Ris constructed by evaluating the RBF vector for all Si and concatenating them to obtain 
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	°(Sn) 
	Each row °(Si) of . is equivalent to the nonlinear transformation T applied to xi, and thus T (xi) := H(°(xi)) = °(Si),i =1, 2,...,n. 

	3.3 Alternating Direction Method of Multipliers Algorithm 
	3.3 Alternating Direction Method of Multipliers Algorithm 
	Recall the set of parameters {.i}that is to be computed such that the i-th quantile 
	q 

	i=1 
	(( i) 
	y˜ satisfes y˜= .T(ˆx). Minimizing the absolute tilted loss function in order to 
	i
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	fnd {.i}belongs to the class of convex optimization problems [13]. The equation 
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	i=1 
	(1) is now reformulated so as to include a l-regularization parameter . and highlight the dependence of the predicted quantiles y˜= .T (xj) on the training inputs xj. 
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	The optimization problem becomes 
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	argmin ˆi(.T(xj ) − yj)+ . . (17) .i 
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	i=1 j=1 i=1 
	This expression decouples along .i and thus is q independent optimization problems. The main advantage of the ADMM procedure is to provide an effcient solution to (17) through a simultaneous computation of all the estimators and avoid the redundancy of casting a solver for each .i consecutively, as suggested in [7] and [14]. This procedure is shown in the pseudo-code in Algorithm 1. 
	ADMM is an iterative process characterized by its step size .. No stopping conditions are implemented; instead, a fxed number of iterations T is introduced as an additional tunable hyperparameter. 
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	Upon completion, the program returns a matrix . 2 Rcontaining the desired estimators 
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	Although ADMM offers a clear advantage in terms of computational time and complexity, independent quantile regressions may be the source of possible mathematical 
	-

	( a)( b)( a)( b) 
	aberrations, such as estimating two quantiles y˜ and y˜ , with y˜ <y˜ when a > b. Some quantile regression approaches include additional constraints in order to prevent this, however, this would eliminate the computational effciency of the ADMM approach. Instead,it was found that sorting the set of computed quantiles in increasing order is a reasonable way to fx this issue, as is done in [7]. 


	4 CASE STUDY 
	4 CASE STUDY 
	4.1 Traffc Flow Prediction 
	4.1 Traffc Flow Prediction 
	The algorithm presented in Section III is now demonstrated using data collected at the test site in Fig.1 on weekdays from March 2014 to September 2016. This is n = 591 days worth of traffc fow measurements for each movement. 
	Vehicle counts for all movements were sampled on 15-minute intervals. Measurement times remain the same for all days across the data set. To generate the training data, we aggregate the measurements by calendar days into the set {xi}, where xi 2 Ris a row-vector containing all fows for all movements from 00:00 to TS in 15-minute intervals on day i. The objective is to forecast a set of fow per
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	i=1
	(12×4×T
	S 
	) 
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	(0.01) (0.02) (0.03) 
	centiles {y˜ ,y˜ ,y˜ ,..., y˜} for a specifed movement, at time TP , on a given day, TP >TS. The training set of outputs {yi}thus contains fow 
	(0.99)
	n 

	i=1 
	measurements for that particular movement at time TP for all days in the data set. 
	For this case study, the goal is to make hourly predictions for all movements based on historical fows, and therefore let TS vary from 10:00 to 23:00 in one-hour increments on different days. At each time step, the target quantity for prediction is the hourly fow for all movements in the time range [TS; TS +1 hour]. Algorithm 2 depicts the procedure used to make predictions for a given TS. PLS and ADMM hyperparameters were tuned empirically and the following combination was found to yield consistent, high-q
	-
	-
	0 
	-

	The performance of the regression algorithm is further enhanced by taking additional predictors into consideration. Weather data such as temperature and precipi
	The performance of the regression algorithm is further enhanced by taking additional predictors into consideration. Weather data such as temperature and precipi
	-
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	tations are good candidates, as they capture underlying seasonal trends and potential poor driving conditions. Hourly precipitation and hourly average temperature obtained from 0:00 to time TS are appended to the inputs {xi}of traffc fow measurements before each prediction. It was found that including weather conditions had a positive, although slight, overall impact on the prediction quality, which was able to foresee lower traffc activity on extremely cold days or in the event of moderate precipitation. 
	n
	i=1 


	Fig. 3 displays the 10th to 90th percentile range predicted by the algorithm for high-volume movements, NB-RT, on 3 distinct test days. Both the 30th to 70th and 40th to 60th percentile ranges are delineated with darker blue tones. The observed fow, as well as the average fow across the entire data set, are superimposed on the plots as a cyan solid line and a red dotted line respectively. The days shown in the fgure exhibit drastically dissimilar traffc conditions: July 2nd 2015, which fell right before a l
	-

	Cumulative distribution functions (CDF) can be extrapolated from the sets of predicted quantiles. CDFs reveal informative visual clues on the probability density functions inferred by the quantiles. Two examples produced at peak traffc times are presented in Fig. 4. For higher volume predictions, e.g. on July 2, the CDF’s graphs appear more linear than in the case of lower traffc volume. Therefore, the algorithm displays greater certainty for lower-than-average traffc predictions, since their CDFs allocate 
	-
	-
	-

	In order to quantify the precision of our forecasts, the tilted loss in (1) is used to as
	-

	(0.10) (0.30) (0.50) (0.70) (0.90)
	} 

	sign a prediction score to each day. The set {y˜ ,y˜ ,y˜ ,y˜ ,y˜ of predicted quantiles is used to compute these scores. Although this score cannot assess the quality of the algorithm in absolute terms, it allows us to make direct comparisons between different quantile forecasts. On the same days previously studied, we evaluate the sum of the prediction scores for all movements from 10:00 to 23:00. As shown in Table I, our quantiles clearly outperform those extracted from a direct percentile computation ove
	-
	2 
	2 
	-
	2 
	2 


	4.2 Delay-Optimizing Control using Predictions 
	4.2 Delay-Optimizing Control using Predictions 
	To evaluate the practical benefts of the traffc prediction algorithm, it is considered to use the predictions to adjust control actions at the intersection. Typically, a traffc intersection controller supposes fxed arriving fow for each movement and optimizes green splits, that is, the fractions of time each movement is given a green signal to allow traffc fow [15]. Here, the benefts of adjusting these control parameters every hour is studied. 
	The Synchro software is a software package used extensively by traffc engineers to compute optimal control parameters at intersections. In particular, it employs a quantile-based approach for estimating delay for signalized intersections [16]. It assumes fve different traffc arrival scenarios, generates the optimal green times and cycle time for each one of them, and fnally averages the fve delays computed with a simple equation. In the event that no green splits can accommodate one or several of the potent
	-
	-

	Inspired by this Synchro percentile method, we frst predict the quantiles 
	(0.10) (0.30) (0.50) (0.70) (0.90) 
	{y˜ ,y˜ ,y˜ ,y˜ ,y˜ } 
	iiiii 
	( j ) 
	of future fows for all 12 movements each hour, with y˜ denoting the j-quantile for 
	i 
	movement i. Then, we aim to minimize delay given by Webster’s delay formula 
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	di = + 900 (Xi − 1)+ (Xi − 1)+ (19) 
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	1 − [Xi ] si 
	C 
	as defned in the Highway-Capacity Manual [17] and used in Synchro, where di is the delay per vehicle (s/veh) for movement i; gi is the effective green time per cycle (s) for movement i; C is the optimal cycle length (s) for the intersection; si is the saturation fow (veh/s) for movement i and depends on the lanes’ capacity; and Xi = × 
	C 
	q
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	gi si with qi (veh/s) the arrival-rate indicates the movement’s degree of saturation. The 
	total delay D at the intersection is the sum D = di. Now, let D be the delay 
	P
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	i=1 j 
	assuming the arrival-rates qi for each movement are equal to their predicted j -quantile 
	( j ) 
	y˜ , i =1, 2,..., 12. The aim is to compute 
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	where { j}= {0.10, 0.30, 0.50, 0.70, 0.90}. This is a convex optimization 
	j
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	=1 

	opt
	}
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	problem and can be readily solved [15]. Once {g and Chave been found, 
	i=1 
	opt 

	i 
	the realized total delay D caused by this combination of green splits and cycle length 
	opt 
	are calculated by setting gi = g and C = Cin (19) and letting the qi’s be equal 
	opt 

	i 
	to the actual fows. 
	For comparison, green splits are computed using empirical historical quantiles calculated over the entire data set. Table II records the delay engendered when adjusting the control policy according to the predicted quantiles compared to the data set quantiles. At the beginning of each hour, new green splits and cycle length are implemented following the procedure described above, using total fow quantiles over the next hour. More specifcally, the table shows the estimated total delay for February 24th 2015 
	-
	-



	5 CONCLUSIONS 
	5 CONCLUSIONS 
	This project developed a powerful method for estimating quantiles of future traffc fow at an intersection using diverse real-time measurements. Furthermore, the effciency of the regression algorithm was demonstrated through a case study conducted using data on a test site in South Carolina, although the techniques are applicable to any intersection capable of measuring traffc volume in real time. California possesses many such intersections, including many intersections in LA County. The predictions accurat
	-
	-
	-
	-
	-

	Moreover, since quantile predictions refect historical, day-to-day variation in traffc fow, it may be possible detect anomalous deviations from usual traffc conditions due to car accidents or lane closures. Contributions could also be made to the theory of stochastic control in the framework of model-based traffc control design. 
	-
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	Algorithm 1: Quantile Parameters Regression 
	Input : Set of training input traffc fows {xi}, collected from 
	n 

	i=1i 
	, x
	2 R
	m 

	0:00 to TS on day i, set of quantiles { , ,..., q} to be computed with i 2 [0, 1], set of training output traffc fows y 2 Rwith yi collected at time TP on day i (TP >TS ), number of PLS components m, number of k-means centers k, regularization parameter . 2 R, ADMM step size . 2 R, number of iteration T 2 N 
	1
	2
	n 
	0 

	Output : Set of quantile estimators . 2 R, k-means centers and bandwidths {(µi,˙i)}i=1, matrix of PLS components P , mean-fow vector x¯ 
	k×q
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	Initialize: A=0n,q,Z=0n,q, .=0k,q 
	1 
	1 
	1 

	zdenotes the ith column of Z
	1 
	1 

	i 
	Compute mean-centered, aggregated data matrices Xand Y, and mean fow vector x¯ from (2)-(4); Compute score matrix S and component matrix P using (5) to (13); 
	ˆ 
	ˆ 

	{(µi,˙i)}= k-means++(S, k); 
	k 

	i=1 
	Compute the stacked matrix of feature vectors .(S, k) according to (15) and (16); 
	Find the Cholesky decomposition UUof (..+ I); 
	T 
	T 
	. 

	. 
	for j =1, 2,..., T do j+1 −T −1T j j 
	.
	= U
	U
	.
	(y + Z
	− A
	); 

	q Z= (..− y q + A); for each column z˜l of Z, l =1, 2,..., q do 
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	z = max{0, ˜ l} + min{0, ˜( l − 1)}; 
	l. . 
	(this is a component-wise operation) 
	end 
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	= A+ ..− y q ; 
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	end return ., {(µi,˙i)}, P, x¯ 
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	Algorithm 2: Quantile Predictions and Score Computation 
	Input : Test input fow xˆ 2 Rcollected from 0:00 to TS, test output fow yˆ 2 R measured at time TP (TP >TS), set of quantile estimators .=[.... .q] 2 R, set of RBF centers and bandwidths {(µi,˙i)}, matrix of PLS components P, mean-fow vector x¯ 
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	k×q
	k
	i=1
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	Output: Set of predicted quantiles {y˜ ,y˜ ,...,y˜ }, prediction score . 
	)

	S= H(ˆx) = ((ˆx − x¯)(P )); T(ˆx)= °(S) according to (10); for i =1, 2,...,q do 
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	end 
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	Sort {y˜ ,y˜ ,..., y˜ } in ascending order; 
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	. = ˆ (˜y− yˆ); 
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	}

	return {y˜ 
	i=1
	,. 

	Table
	TR
	Tilted loss score (×102) 

	Historical 
	Historical 
	Predicted 
	Improvement 

	February 24, 2015 
	February 24, 2015 
	253 
	51 
	202 

	July 2, 2015 
	July 2, 2015 
	230 
	45 
	185 

	January 1, 2015 
	January 1, 2015 
	444 
	35 
	409 

	Data Set Mean 
	Data Set Mean 
	60 
	38 
	22 


	Table 1: Comparison of tilted loss function total scores obtained from predicted quantiles and historical quantiles on three different test days. Hourly fows from 10:00 onward were chosen as targets for prediction. The total scores are computed by summing the individual daily scores for each movement. The predictions’ performance surpasses that of the historical quantiles, with an average daily titled loss score of 38 × 10vs. 60 × 10. 
	2 
	2 

	Figure
	Figure 3: Example of predictions for the NB-RT movements on three days with different traffc profles. Lightest blue indicates the predicted 10 to 90 percentile range, with darker tones corresponding to the 30 to 70 and 40 to 60 ranges. The algorithm successfully predicts well below average traffc on the holiday of January 1, 2015. Furthermore, it correctly predicts below average traffc due to winter weather on February 24, 2015, as well as above average traffc on July 2, 2015. 
	Figure
	Figure 4: Plots of predicted cumulative distribution functions for two separate times experiencing unalike traffc volumes. Steeper slopes indicate higher expected probabilities of occurrence. Observed fows were accurately predicted by the algorithm for both cases. 
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	Table
	TR
	Feb. 24, 2015 
	Jul. 2, 2015 
	Data Set Mean 

	Delay using Historical Quantiles (h) 
	Delay using Historical Quantiles (h) 
	99.5 
	275.7 
	181.2 

	Delay using Predicted Quantiles (h) 
	Delay using Predicted Quantiles (h) 
	93.6 
	271.4 
	176.6 

	Delay lower bound (h) 
	Delay lower bound (h) 
	91.8 
	269.3 
	173.5 

	Predicted vs. Historical improvement (h) 
	Predicted vs. Historical improvement (h) 
	5.9 
	4.3 
	4.6 


	Table 2: Illustrative total delays estimated for two test days between 10:00 and 24:00. Additionally, the average total delay across the data set is displayed. The delays are computed using both predicted and empirical historical quantiles; a lower bound on the total nominal delays was also calculated. Adjusting the green cycles according to the predictions improves total delay by 4.6 hours per day. 






