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EXECUTIVE SUMMARY

Nonlinear Time History Analysis of Ordinary Standard Bridges was a joint effort by research
teams from Oregon State University and the University of Central Florida. The objectives
of this study were two-fold: 1) To assess the ability of disparate software packages, namely
CSiBridge and OpenSees, to give similar results for nonlinear time history analysis of four
ordinary standard bridges (OSBs); and 2) To assess the sensitivity of nonlinear time history
response of the OSBs with respect to material properties and modeling assumptions. The
four OSBs each have two-span continuous superstructures. Two of the OSBs (OSB1 and
OSB2) have integral bents, with OSB1 having a two-column bent and OSB2 having a single-
column bent. The other two OSBs (OSB3 and OSB4) have isolation bearings between the
superstructure and bent/abutments, with a similar breakdown of columns per bent (OSB3
has a two-column bent, for example). The technical content of the report is broken down
into four parts followed by modeling recommendations.

The first part addressed benchmarking implementations of lumped and distributed plas-
ticity in cantilever columns. It was demonstrated that both CSiBridge and OpenSees can be
used to correctly implement a lumped plasticity approach for 2D and 3D analysis of simple
steel and concrete cross sections, relative to the exact solution based on Euler-Bernoulli as-
sumptions. OpenSees can be used to correctly implement the distributed plasticity approach,
again relative to the reference solution. In both the lumped and distributed plasticity cases,
the explicit consideration of the cross section with associated uniaxial constitutive models
is beneficial in accounting for axial-moment interaction, as well as excitation about an arbi-
trary axis for the cross section. The discrepancies that arise from the series arrangement of
the elements in the lumped approach can be approximately corrected, particularly for the
initial stiffness and yield force. However, this creates issues with the post-yield hardening
and softening behaviors, as well as cyclic response.

The second part utilized the approximately corrected lumped plasticity approaches to
compare the nonlinear static and nonlinear time history analysis (NTHA) of the four OSBs,
as implemented in CSiBridge and OpenSees. Constitutive models of the columns were stan-
dardized, as possible, followed by the elements and springs governing the isolation bearings
and abutment boundaries. Sectional analysis, nonlinear static analysis of the column hinge
elements, and pushover analysis of the bents were performed for OSB1 and OSB2. Cyclic
analysis on the isolator elements was performed for OSB3 and OSB4. Modal analysis and
NTHA were performed for all OSBs under two different boundary conditions: an original
configuration based on the Caltrans CSiBridge models and a second based on making the
boundary conditions simple rollers. Care was taken to enforce the common model basics in
the two implementations, and it was demonstrated that the two software implementations
could be used to generate nominally similar responses for the OSBs. However, it was shown
that the agreement in terms of trends and magnitudes was highly dependent on the abutment
boundaries and the cyclic response of the column concrete constitutive model.

The third part utilized a set of OpenSees models based on distributed plasticity for
the four OSBs to perform sensitivity analyses. Pushover and NTHA model predictions
were first compared with those in the previous part, followed by sensitivity analyses using



the direct differentiation method (DDM) for parameters such as the column reinforcing
details, abutment strengths, isolator strengths, and superstructure stiffness. The sensitivity
analyses revealed that the stiffness and strength of abutment gap models have a significant
influence on the nonlinear static and dynamic response of all OSBs. Although they receive
predominant attention in the literature, reinforcing details and modeling assumptions for the
columns have less influence on the response of OSB1 and OSB2; however, the influence is not
insignificant. As expected for OSB3 and OSB4, the stiffness and strength of the isolators
have a large influence on the dynamic response. Depending on the boundary conditions
at the abutments, the assumed stiffness of the superstructure can have a seemingly large
influence on the bridge response.
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Chapter 1

Project Summary

General purpose finite element tools such as Perform, SAP2000, CSiBridge, OpenSees, etc.
have put nonlinear time history analysis (NTHA) within an engineer’s reach for the assess-
ment of ordinary bridge response to seismic loading. While these tools predict structural
response more accurately compared to response spectrum or nonlinear static methods, it
has been observed that the response is extremely sensitive to modeling details as well as
the algorithms employed to find a numerical solution to the nonlinear equations of dynamic
equilibrium. Furthermore, these tools can give significantly different results due to inher-
ent modeling assumptions and mathematical formulations of element response that are not
readily apparent. Without modeling guidance and safeguards against numerical instabilities,
NTHA can give results that are incomplete or that controvert engineering judgment.

1.1 Introduction

NTHA has been used successfully for simulating the seismic response of special bridges in
California. The vast majority of California bridges, however, are ordinary bridges, e.g.,
two-span overpasses, for which traditional methods, such as response spectrum and static
pushover analysis, are employed. These traditional methods result in conservative estimates
of the effect of cyclic energy dissipation and degradation. To achieve confident results for
a variety of earthquake scenarios, the idealized model should also contain a realistic repre-
sentation of the geometry, boundary conditions, gravity load, mass distribution, and energy
dissipation for all major components of the bridge.

If a simple linear elastic model of a bridge structure is used, the corresponding analysis
will only accurately capture the static and dynamic behavior of the system when stresses
in all elements of the bridge do not exceed their elastic limit. Beyond that demand level,
the forces generated by a linear elastic analysis will differ considerably from the actual
force demands on the structure; however, the displacements are shown to be a reasonable
estimate of the actual displacements. Such a linear model will fail to capture the effects
of many sources of inelastic response of the bridge such as the effects of the surrounding
soil at different shear strain levels, cyclic yielding of structural components, opening and
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closing of superstructure expansion joints, engagement, yielding and release of restrainers,
and the complex nonlinear abutment behavior. Both linear and nonlinear modeling are
supplementary tools that allow the trained designer and analyst to verify results against
known ranges and established structural behavior during past earthquakes.

Nonlinear modeling and analysis allows more accurate determination of stresses, strains,
deformations, forces, and displacements of critical components. It provides a mechanism
for incorporating realistic material behavior beyond the elastic limit, loss of stiffness due to
nonlinear geometric (P-A) effects, and contact nonlinearity. Results from nonlinear analysis
can then be utilized for the final design of the bridge subsystems or for evaluation of its
global capacity and ductility. However, the resulting response values are potentially sensitive
to small variations in the input parameters. To obtain an accurate representation of the
nonlinear behavior of the bridge structure, it is necessary for the design engineer to have a
clear understanding of basic nonlinear analysis concepts and to have guidance on parameter
selection and the consequences of choices, as inferred from suitable parametric sensitivity
studies, made at the input level.

Unfortunately, the additional level of sophistication of the nonlinear model will also
increase the computational effort required for the analysis, as well as the difficulty in the
interpretation of results. The accurate estimation of the peak demand and response of the
bridge structure under dynamic excitation requires the use of a suite of ground motions, and
will therefore further increase the complexity of the analysis process and size of the output
data. Therefore, three (3) important considerations arise in nonlinear analysis in addition
to parameter selection: 1.) understanding the balance between model complexities and the
corresponding gain in accuracy of the results (i.e., when is nonlinear analysis needed), and
2.) making both input and output readily accessible and understandable (i.e., user interface
to nonlinear models), and 3.) ensuring that the element and material formulations in a given
software are understood relative to the linear and nonlinear responses (i.e., whether or not
the numerical results are reliable).

In general, the modeling assumptions should be independent of the computer program
used to perform the static and dynamic analysis; however, mathematical models are of-
ten limited by the capabilities of the computer program utilized. Therefore, the proposed
work involves proper parameter selection and input into OpenSees and CSiBridge/SAP2000.
However, the guidance on how similar results can be produced between these two software
packages, or potentially any other general purpose structural analysis software, will provide
more general insight and illustrate the consequences of analytical formulations on response.

1.2 Background Research

Previous work on NTHA of ordinary bridges was formalized into PEER report 2008/03
“Guidelines for Nonlinear Analysis for Bridge Structures in California” [2]. This report
provides detailed written guidelines on the construction of three-dimensional (3D) models
that utilize one-dimensional elements (frames, links, and hinges) in both OpenSees and

SAP2000.
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The report contains information on modeling options, analysis options, and guidelines on
model construction for both nonlinear static and nonlinear dynamic analysis. Different static
pushover patterns, eigenvalue or Ritz-vector analysis options, nonlinear abutment models,
damping and time history integrator parameter selection, and response spectrum analysis are
illustrative of the broad scope and depth of information available. The primary findings and
recommendations are presented in easy to follow tables and cut-away views of an idealized
bridge. The components required to be modeled using nonlinear elements are suggested for
each analysis type (primarily abutments and piers), and recommendations are made on the
accuracy of results. For example, fiber hinges should be used for nonlinear 3D NTHA in
SAP.

Bias factors with respect to stiffness and strength degrading materials in OpenSees
showed that SAP may not yield conservative results for all ground motions (bias factors
ranged between 1 and 3). Another contribution of the report is the calibration of param-
eters against known solutions (for a simple cantilever column case) and against OpenSees
models. These calibration practices are particularly important to have when formulation of
individual elements may result in incorrect 3D response that can be knowingly accounted for
a priori (for example, 3D response of some SAP plastic hinge models have incorrect stiffness
and yield values).

While the guidelines allow direct implementation in SAP, direct software tools, guide-
lines, and input files are not provided for NTHA using OpenSees. In addition, multiple
ground motion inputs were considered in the analyses; however, no constructs were provided
for performing parameter variation or sensitivity studies directly in OpenSees. Parame-
ter studies are best performed with the computational control provided by the linkage of
OpenSees with the Tcl scripting language as manual perturbation of parameters and con-
tinual save/run/visualize actions in SAP2000 can be overly cumbersome.

To follow up on the modeling and analysis recommendations made in the 2008/03 PEER
report, Caltrans sponsored additional studies on “Parametric Study of Ordinary Standard
Bridges using OpenSees and CSiBridge” under contract #65A0445 [18] and “Guidelines for
Nonlinear Seismic Analysis of Ordinary Bridges: Version 2.0” under contract #65A0454
[22]. The same four ordinary standard bridges considered in this report (OSB1 through
OSB4) were studied in #65A0445, whereas three representative bridges (Jack Tone Road
Overcrossing, La Veta Avenue Overcrossing, and Jack Tone Road Overhead) were considered
in #65A0454. La Veta is one of the bridges analyzed in the original study [2].

Recently completed work by researchers at University of California, San Diego (UCSD)
led to the development of a graphical user interface (GUI) for a set of OpenSees-based tools,
named MSBridge. The GUI allows rapid model building for a broad range of typical bridge
configurations, and graphically displays output. The interface was used to generate nu-
merous time history responses and compare with equivalent static analysis. The four OSB
bridges were analyzed under several ground motions and three different abutment condi-
tions (roller, elastic-perfectly-plastic gap, and elastic-perfectly-plastic gap with elastomeric
bearings models). However, the work did not interpret results obtained via MSBridge, e.g.,
through parametric studies that could be used as a tool for establishing reasonable bounds
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on bridge response to seismic loading. Simple examples that highlighted and explained the
differences between basic structural elements and nonlinear material models in MSBridge,
which uses distributed plasticity and plastic hinge formulations, and CSiBridge, which uses
concentrated plasticity formulations, were not presented.

Modeling issues related to abutments, expansion joints, and soil-structure interaction
(SST), all of which were outside the scope of the 2008/03 PEER report, were first addressed
with #65A0454. The v2.0 guidelines were intended to expand upon the original guidelines
in the PEER report by incorporating soil-structure interaction effects, revisiting nonlinear
component models, a look into numerical integrators and algorithms, and a more compre-
hensive ground motion selection and scaling treatment for bridges. The primary refinements
were in the nonlinear spring models of the abutments (backfill springs oriented perpendicular
to the backwall), SSI in pile shafts, shear key models, and in-span hinge models. Transverse
response and interaction at the abutment were neglected (beyond the shear key and springs
normal to backwall). The study included several different skew angles when considering the
dependence of response quantities on the properties of the shear keys and backfill springs.

Sensitivity of column ductility, deck displacement/rotation, and unseating to shear key
and backfill properties were presented, showing larger displacement demands for the brit-
tle shear key case and smaller backfill resistance. Results highlighted the importance of
abutment boundary properties on quantifying bridge response. A reduced-order model was
used to study pile SSI effects that included an option for pinned column-to-pile cap connec-
tion. Global bridge displacement demands were relatively insensitive compared to reference
boundary condition cases, but provided useful estimates of pile curvature distributions. The
consideration of foundation models is important in the case where nonlinear behavior moves
into the foundation and impacts the kinematic and force demands on the bents.

The algorithm and integrator studies reviewed existing methods available in OpenSees.
Ground motion selection and scaling comparisons were drawn between conditional mean
spectrum, unconditional spectrum, and spectral acceleration (at first mode), with respect
to a reference case (using larger number of motions). Small differences were observed in
the different response parameters except for local measures using the selection and scaling
techniques, the unconditional method suggested for use as slightly conservative in case of
the local measures.

1.3 Current Research Approach

The research presented in this report addresses two broader needs. The first need is for sen-
sitivity and parametric studies that relate to understanding the role of uncertain parameters
on the nonlinear static and dynamic response of common bridges. Based on previous work,
this has not been rigorously performed for California bridges. The second need is imple-
mentation efficacy, or better quantification of behavior of common bridges using commercial
software. This includes the ability to easily obtain similar results between two software pack-
ages and it requires a thorough understanding of the finite element formulations, constitutive
models, and solution algorithms implemented in each package.
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Addressing these needs should relate back to the use of nonlinear analysis tools for typical
bridges as opposed to special projects only. These two needs should also relate to the cost
of design and broader performance-based impacts that can be demonstrated using NTHA
tools over more conventional linear elastic or response spectrum methods. The structures
selected for demonstration should be reflective of a range of ordinary standard bridges. Hence
the effects of multiple bents, multiple-column bents, skew, superstructure elevation, curves,
bearings, abutments, expansion joints, and potentially soil-structure compliance are not
included in this research; however, this research should form the basis for further investigation
of these nonstandard features.

The research presented here is not intended to minimize the importance of, or need for
additional, experimental studies to quantify the response of bridge components and sub-
assemblies under seismic loads. The research emphasis here is complementary in two ways:
1.) it provides a basis for judgments on what the most important model and model param-
eters are within the nonlinear load-resisting response mechanisms, and 2.) it emphasizes
the distinct differences in being able to standardize nonlinear static vs nonlinear dynamic
responses and the significant effect of the latter on predicted nonlinear time history response
metrics.
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Chapter 2

Literature Review

Nonlinear time history analysis (NTHA) of highway bridges has been a widely studied topic
due to the adoption of performance-based earthquake engineering (PBEE) methodologies,
the development of advanced finite element models, and the steady increase of computational
power. While computing resources enable a large number of analyses to be carried out
quickly, a significant amount of uncertainty persists in the modeling of nonlinear bridge
response to seismic loading. This uncertainty lies in the numerical formulations and software
implementation of the finite element response and variability, or randomness, of structural
properties, among other factors. While the ability to account for such uncertainties is an
advantage of PBEE [16], there are barriers to its adoption by practicing engineers. Expert
knowledge may be required to perform detailed nonlinear dynamic analyses that account for
uncertainties. In addition, inconsistencies can arise when using different software tools to
carry out these analyses. Modeling decisions regarding abutment response and soil-structure-
interaction are among the largest and most dominant sources of uncertainty.

2.1 Current State of NTHA

Kunnath [16] discusses the I-880 viaduct testbed project, which aims to validate the PEER
performance-based earthquake engineering (PBEE) methodology and identify its strengths
and drawbacks. The [-880 viaduct was designed with the PBEE methodology, and a sim-
ulation model was constructed based on this design. Force-based nonlinear beam column
elements with fiber sections were used to consider the spread of plasticity along the pier
columns. Elastic beam elements were used to model the bent cap and the longitudinal box
girders. Soil-structure interaction (SSI) was also considered using six uncoupled elastic zero-
length elements to represent all degrees of freedom provided by the soil-foundation system.
To determine the spring constants for these six degrees of freedom, three-dimensional linear
elastic finite element models were created for the piles and soil under each bent. Radiation
damping was omitted when considering SSI. The shear keys, restrainers, and bearing pads
were modeled using discrete zero-length elements. In the transverse direction, the shear key
is modeled using elastic-perfectly-plastic gap elements. Member masses were distributed and
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lumped at 1/3 points.

Fenves and Ellery [11] investigated the failure mechanism of the Route 14/Interstate 5
Separation and Overhead bridge during the Northridge, California earthquake and examined
modeling and analysis recommendations for earthquake engineering of highway bridges. To
this end, the authors developed a nonlinear inelastic model of the selected bridge. The su-
perstructure and bent caps are modeled using linear elastic beam-column elements. The pier
columns are modeled using inelastic beam-column elements using a fiber cross section model.
The soil backfill and support conditions at the abutments are modeled with nonlinear spring
elements in conjunction with gap elements. The authors considered soil-structure interac-
tion by implementing bilinear springs along the length of the shaft (p-y springs) to represent
the nonlinear force-deformation relationship for the shaft and soil. Radiation damping was
omitted when considering SSI. After simulation of earthquake forces, the authors determined
that the most likely cause of collapse was the shear failure of one of the piers. The nonlin-
ear model was also compared to two three-dimensional linear models, a compression model,
where the intermediate hinge is assumed closed, and a tension model, where the intermedi-
ate hinge is assumed open. The authors concluded that the compression model adequately
represents the displacement demands on the bridge.

Choi et al. [6] modeled four bridges to develop fragility curves for bridges in the Central
and Southeastern United States. Though the current research is not concerned with fragility
curves, the bridge modeling assumptions are of interest. The authors modeled the deck and
prestressed girders as one linear beam-column element with the assumptions that the girders
and deck are composite and that they will remain elastic under longitudinal seismic loads.
The column cross-sections were modeled as a series of fiber elements. In these models, the
authors chose to treat the compressive strength of concrete and the yield strength of steel
as random variables to take into account material uncertainty and variability. Abutment
effects were modeled to account for both passive and active action. In modeling the pile
foundations, linear translational and rotational springs were used in combination. Pounding
effects were also considered utilizing trilinear compression only elements in tandem with a
gap representative of the expansion joint.

Erhan and Dicleli [10] compare the seismic performance of integral and conventional
bridges using finite-element modeling. The authors modeled the longitudinal deck and pre-
stressed girder superstructure as a single segmented linear 3D beam element assuming full
composite section properties. In the transverse direction, at abutment and pier locations, the
deck was modeled as a rigid bar between edge girders. This rigidity simulates the interactions
between the axial deformation of the columns and torsional rotation of the bridge deck, and
the interaction between the in-plane rotations of the deck and displacements of the bear-
ings. The column piers and the foundation piles were modeled using nonlinear concentrated
plasticity hinge elements, calibrated with prescribed moment-curvature relationships. Rein-
forced concrete abutments were modeled as a grid of frame elements using nonlinear springs
and dashpots. Mass of the superstructure was assigned, based on tributary areas, at the
nodes of the superstructures segments. The substructures tributary masses were assigned at
the joints between the cap beam and the columns. Pounding and shear key effects were also
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simulated. The cyclic soil-pile interaction was modeled based on hysteresis behavior using
nonlinear link elements. Dashpots were utilized to model the damping effects of the pile
impacting the surrounding soil. Through a sensitivity study, the authors determined that
friction at the interface of abutments and backfill soil is negligible in the seismic response of
bridges.

Hajihashemi et al. [13] investigated the effect of two support modeling conditions on the
seismic response of bridge structures. The first was a basic support condition where the base
of each column was fixed in both rotation and translation; the bridge ends were fixed against
rotation and vertical translation while lateral and transverse translation were supported by
linear springs. The second was a nonlinear support condition where all fixities remained the
same as the basic configuration except that the lateral and transverse translation were sup-
ported by nonlinear springs based on a detailed soil-structure analysis. From the results, the
author concluded that the basic support condition resulted in a conservative seismic response
when compared to the nonlinear support condition. While the nonlinear support condition
produces relatively realistic results, the basic support condition requires considerably less
modeling effort as soil-structure interaction need not be considered.

Kunde and Jangid [15] investigated the effects of deck and column flexibility on the seis-
mic response of isolated bridges. To this end, three numerical models were constructed. The
first model considered flexibility in both the superstructure and the columns. The second
model considers flexibility in the columns only while the third model excludes flexibility of
both the superstructure and the columns. After comparison of the different models responses,
the authors conclude that three models were comparable with computational efficiency in-
creasing from the first to the third model. Though the models were comparable, the third
model underestimates deck accelerations and peak responses diverge as the flexibility of the
deck and columns increase.

Rahmani et al. [24] developed a 3D continuum model of the Meloland Road overpass.
This model utilized several nonlinear finite elements, including eight-node brick elements
and four-node shell elements to represent the response of the foundation system. The pile
columns were modeled as nonlinear elastoplastic elements. The remainder of the bridge
structure is modeled using elastic elements, as they are capacity-protected by design. After
analysis of the bridge model and comparison to the actual response of the bridge during two
earthquakes, the authors concluded that for complete bridge systems, continuum modeling is
potentially an effective tool for detailed analysis, but requires high-performance computing
to perform a timely analysis.

Aviram et al. [3] generated finite-element spine models of six typical California reinforced
concrete box girder bridges to develop practical modeling recommendations for the nonlinear
analysis of these bridges under seismic ground motions. Recommendations were developed
for modeling the superstructure, cap beams, pier columns, abutments, expansion joints,
soil-structure interaction, and damping. Two software packages were employed to aid in
the development of these recommendations, SAP2000, and OpenSees. The SAP2000 and
OpenSees models used similar modeling assumptions for the superstructure, cap beam, and
abutment system, but the column bent models used differing assumptions. The OpenSees
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model utilized a distributed plasticity model while the SAP2000 model utilized a lumped
plasticity model. Upon comparison, the results, of the NTHA for these two packages, were
found to disagree, despite the fact that the two models agreed for eigenvalue and pushover
analyzes. The authors stated differences in element formulation between modeling software
as the cause of the discrepancy and found the discrepancy between results to increase with
intensity. Due to these discrepancies, the authors recommend further research.

Salveson and Fell [25] investigated the adequacy of existing design codes in the state
of California concerning abutment shear keys. To this end, linear elastic bridge models
were created with and without nonlinear shear key elements. A rate-independent force-
deformation model was used to simulate the nonlinear response of bridge shear keys. This
model considered gap effects along with realistic deformations models. After comparison
of the results, the authors noted that linear shear key models yield conservative results
when compared to their nonlinear counterparts. The authors suggested more rigorous and
complete research efforts to develop and validate more accurate bridge shear key models.

Kwon and Elnashai [17] utilized soil-structure interaction to derive fragility curves for
bridges in the Central and Eastern United States. Two different modeling software packages
were utilized. The bridge structure was modeled in Zeus-NL with the substructure elements
modeled as fiber sections. The authors modeled embankments, abutments, and foundations
in OpenSees by implementing a soil mesh, matching realistic soil material models. The
results of these models showed the embankment and abutment system have highly nonlinear
behavior.

In a study conducted by Erhan and Dicleli [9], five structural models were constructed
with gradual simplifications in soil-pile and soil-abutment interactions. The most sophisti-
cated of these models considered free field effects, local soil-pile interaction, global soil-pile
interaction and radiation damping while the simplest model entirely excludes nonlinear soil-
bridge interaction. The authors concluded, after comparing the results from the five models,
that the seismic response of bridges is considerably affected by soil-bridge modeling assump-
tions, especially for higher intensity ground motions. Though the simplified models produce
a similar response to the most complex model for low-intensity ground motions, the authors
recommend caution when utilizing simplified models with high-intensity ground motions as
these models may not consistently capture the highly nonlinear bridge behavior at higher
intensity ground motions. This finding is consistent with Aviram et al. [3].

Jeremic et al. [14] discussed the response of highway bridges concerning the effect of soil-
foundation-structure interaction. To this end, a finite element model of the I-880 Viaduct
was developed. The inelastic seismic response of both the soil and the structural components
was included. The superstructure is modeled using elastic elements, the pier columns are
modeled using inelastic fiber beam elements, and the soil-foundation-structure interaction
is modeled using equivalent zero-length springs. Elastic soil properties were utilized in a
three-dimensional finite element model of the pile group foundation system to determine
the foundation spring stiffnesses. The authors compared the seismic response of the 1-880
Viaduct with and without soil-foundation-structure interaction; the results demonstrated
that under moderate to severe ground motions the inclusion of soil-foundation-structure
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interaction increased displacement demand, conversely under mild ground motions the in-
clusion decreased displacement demand. From this comparison, the authors concluded that
the effect of soil-foundation-interaction could have either a beneficial or an adverse effect on
the seismic response of the structure dependent on the intensity of the ground motion input.

Zhang et al. [31] investigated soil-structure-interaction concentrating on the application
of the Lysmer-Kuhlemeyer transmitting/absorbing boundary. To this end, the authors de-
veloped a two-dimensional nonlinear OpenSees model of the Humboldt Bay Bridge using
fiber beam-column elements for the pier columns and foundation piles, and linear elastic
beam-column elements for the superstructure. The nonlinear soil domain model incorpo-
rates liquefaction effects and effective stresses. The model uses four-node, finite elements
for various soil layers. Viscous dampers, tangential and normal to the soil boundaries, are
used to model a modified Lysmer transmitting/absorbing boundary. After comparison of
linear elastic soil to elastoplastic constitutive behavior, soil nonlinearity is determined to
significantly affect wave propagation through the soil foundation.

Aviram et al. [1] performed a sensitivity study on the effect of abutment modeling on
the seismic response of bridges. Three abutment models were considered, listed in order of
complexity: spring, simplified and basic. The spring abutment considers the response of
elastomeric bearing pads, concrete shear keys, wing walls, abutment back wall, abutment
piles and soil backfill material. The simplified abutment simplifies the spring model consid-
ering only the gap and embankment fill response. The basic abutment only restrains vertical
translation. The results of the study indicate that the nonlinear behavior of abutments does
not control the nonlinear response of long bridges as significantly as it does for short bridges.
Therefore, the authors recommend the use of the basic abutment for long spans only and
recommend the spring abutment for short spans. The simplified model also underestimates
displacement in the transverse direction.

Mackie and Stojadinovic [19] performed a sensitivity study on the influence of two dif-
ferent abutment models on the seismic response of short and medium length bridges using
Probabilistic Seismic Demand Analysis. The test bridge was modeled after typical new Cal-
ifornia highway overpasses consisting of two equal spans with seat-type abutments and a
single column bent. The first abutment model considers back wall passive pressure, wall
shear strength, and pile group stiffness and strength in the longitudinal direction. In the
transverse direction, this model considers resistance from wing walls, shear keys, and pile
groups. The second abutment model derives soil stiffness per unit length from cross-section
geometry, soil shear moduli, and unit weight. The unit length stiffness is assumed to apply
in both the transverse and longitudinal directions. After sensitivity studies had been per-
formed, the authors concluded that the participating length of the abutment, which affects
the participating mass, is the most critical abutment modeling parameter and that both
abutment modeling approaches are adequate.

Scott and Ryan [27] presented calibration techniques to account for differences between
section moment-curvature and element moment-rotation response for two hinge integration
methods: modified Gauss-Radau and two-point Gauss-Radau. The modified Gauss-Radau
integration results in a bilinear response and is calibrated by satisfying simple constraints.
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The two-point Gauss-Radau hinge integration results in a trilinear moment-rotation response
and thus a secant approximation is used to obtain the desired bilinear response. After
comparing the calibrated models to their uncalibrated counterparts, the authors conclude
that uncalibrated plastic hinge models over predicted the lateral load capacity.

Dameron et al. [8] investigated and modeled significant foundation nonlinearities as part
of the San Diego-Coronado Bay Bridge retrofit project by developing a nonlinear finite-
element model of the bridge. The model including nonlinear representations for the follow-
ing components: expansion joint gaps, pier columns, pile groups, abutments and isolation
bearings. In modeling the foundation, three foundation configurations were developed for
comparison: linear, approximate nonlinear and detailed nonlinear. After comparison of the
three different foundation models, the authors recognized that the detailed and approximate
nonlinear foundation models were similar, but the linear model showed a significant devia-
tion in displacements compared to the nonlinear model, especially after the initial ground
motion pulse.

Shamsabadi et al. [28] considered the lateral response of seat type abutments by devel-
oping nonlinear numerical simulation models. A log-spiral hyperbolic model and a detailed
finite-element model were developed to simulate clayey silt and silty sand. Full-scale abut-
ment tests were performed and used to validate these models. From the results, extended
hyperbolic force displacement curves were developed. The effects of unloading/reloading,
gap formation between the backfill and backwall, wingwalls, shear keys and abutment piles
were not considered in this study. After comparison of the two models to the full-scale abut-
ment test, the authors noted that the finite-element model nearly identically matches the
experimental test results and the log-spiral hyperbolic model yielded slight variation from
the experimental results.

Shamsabadi et al. developed a simple hyperbolic force-displacement equation via limit-
equilibrium methods using mobilized logarithmic-spiral failure surfaces coupled with a modi-
fied hyperbolic soil stressstrain behavior [30]. The model incorporates soil-pile characteristics
to estimate the nonlinear abutment backfill force. This equation applies to all soil types,
given that the required soil characteristics can be determined, and was validated with eight
field experiments. In applying the equation, the authors concluded that the bridge super-
structures may unseat under a high-velocity pulse if abutment seat width is inadequate

Mutobe and Cooper [20] assessed the performance of friction pendulum bearings slated
for installation in the 11 span Benicia-Martinez Bridge as part of a seismic retrofit. The
authors created a finite-element model in ADINA that included the nonlinear behavior of
both the bridge structure and the friction pendulum bearings. The friction pendulum bearing
model was validated with other finite element models and compared to laboratory results of
building structures as no experimental data were available for bridge structures at the time.
The authors recommend additional research into the effect of friction pendulum bearings on
the seismic response of buildings.

Nielson and DesRoches [21] investigated the modeling parameters that significantly affect
the seismic response of multi-span simply supported steel girder bridges. The authors created
several nonlinear 3D bridge models. Nonlinearity of the abutments, bearings, columns and
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bent caps was considered in the bridge model. After comparison of several bridge models,
the authors concluded that loading direction, damping ratio, and fixed bearing stiffness most
greatly influence the seismic response of this bridge type.

Shamsabadi et al. [29] aimed to improve current seismic analysis procedures and guide-
lines by comparing the predictions of finite element models to multiple sets of seismic re-
sponse records. Comparisons were made for three types of California bridges: standard
ordinary non-skewed, skewed bridge and non-standard long-span bridge. Shell elements
were used to model the deck and abutment walls. The finite element models included non-
linear foundation-soil-interaction effects at abutment and pile foundations, and abutment
shear keys effects. After initial comparison to the seismic response records, the models were
calibrated to predict better the actual seismic response. From the results, the authors con-
cluded, given accurate modeling of the abutment and pile foundations, that the models could
predict seismic response.

2.2 Knowledge Gaps in NTHA

While the current state of research in NTHA of highway bridges encompasses a wide range of
modeling approaches, element and constitutive model formulations, and solution strategies,
significant knowledge gaps remain.

e The difference in simulated response when using similar bridge models in separate
software packages

e The effect of cyclic degradation of structural components on the dynamic response of
bridges

e Modeling errors associated with the choice of nonlinear constitutive or element models
and errors with respect to known benchmark solutions

e Ranking and prioritization of the modeling parameters that have the most significant
influence on bridge response during earthquake loading

The benchmark tests of finite element formulations typically employed in bridge analysis and
NTHA simulations of four ordinary standard bridges (OSBs) summarized in the following
chapters will address these knowledge gaps.

In addition, it should be recognized that the above list is not exhaustive, and there
are several other knowledge gaps worthy of further study; however, they are not addressed
directly in this report. These include:

e Numerical integrators and nonlinear algorithms, including accuracy and stability, for
solving nonlinear time history equations of motion

e The sensitivity of response to the choice of damping model and the corresponding need
for more information on other non-classical damping models
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The difference between characterizing idealized new construction versus existing bridges
that exhibit environmental and potentially mechanical degradation

Lack of information to relate predictions from NTHA to useful acceptance criteria
based on the performance of the bridge system as a whole

Effect of ground motion uncertainty on NTHA response predictions

Propagation of ground motion uncertainty, model uncertainty, and parameter uncer-
tainty through NTHA.
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Chapter 3

Benchmark Problems

We begin by illustrating some simple theory of nonlinear structural element formulations,
specifically cantilever columns, as well as how CSiBridge and OpenSees are able/unable to
implement them. With a homogeneous steel cross section, a closed form solution is quickly
derived with which to validate both software platforms, so in the first section we restrict
ourselves to strictly two-dimensional (2D) steel sections. The second section introduces the
complication of coupled lateral response in three-dimensional analysis, but retaining the
simplicity of a homogeneous circular steel cross section. This section has perfect circular
symmetry and therefore it is easier to establish errors or approximations with the numerical
implementations.

Finally, there should be no loss of generality when moving to the concrete sections,
because it will be shown it is the element formulation that causes the issues, and is illustrated
in more detail in the third section of the document. The fiber cross sections yield the same
sectional behaviors (i.e., moment-curvature relation) as long as the constitutive models input
are consistent between software; however, this does not always lead to consistent element-
level results.

This document is intentionally limited to nonlinear static (i.e., pushover) response anal-
ysis. There are many basic behaviors that a model should capture and can be studied
in this series of case studies. However, for the purposes of NTHA, obviously the cyclic
unloading/reloading behaviors and numerical stability of different materials/elements are
important, but will be studied further in Chapters 4 and 5.

3.1 2D system (steel rectangular cross section)

A steel cantilever column has a rectangular cross section and is loaded with an axial and
lateral load as shown in Figure 3.1. The axial force is held constant while the lateral load
is monotonically increased (here load control is adopted with load factor A). It is assumed
throughout the document that the shear deformations are negligible (the shear area is as-
sumed to be large in the software implementations). The dimensions, material properties,
and applied load are shown in Table 3.1.
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Figure 3.1: Geometry, cross section, and material of the 2D steel case study

Table 3.1: Rectangular 2D steel column properties

H = 240 in b=15in [h=20in ]| o, = 50 ksi
E = 29000 ksi | N = 1000 kip | A = variable
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Figure 3.2: Moment-curvature results for 2D steel section

3.1.1 Moment-Curvature Relation

The moment-curvature relationship was calculated based on both an exact (theoretical)
solution and a numerical solution with a fiber section, as shown in Figure 3.2. The cross
section was divided into 50 layers (50 x 2) in CSiBridge to get the fiber solution (there are
still some minor differences between the two solutions because of the use of discrete areas in
the fiber section and the midpoint integration rule).

3.1.2 Case A

Case A represents the common implementation of a beam/column under lateral load where
the plasticity is concentrated at a hinge location. Using this lumped hinge assumption, it
is possible to derive the closed-form or analytical solution under this assumption (as well as
the numerical results using implementations in both CSiBridge and OpenSees). To obtain
the analytical solution, an elastic beam in series with a zero-length hinge was considered as
shown in Figure 3.3 below. The solution procedure is:

u3(1) = usy)(4) + ugs,)(9)
us(i) = (MH?)/3ET + 0;H (3.1)
uz(i) = (\H?)/3ET + ¢il ,H
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where H = total height, \; = load at each step, ¢; = curvature at each step (the total
curvature), and [, = plastic hinge length (assumed to be 10 in). The curvature ¢; can be
found from moment-curvature curve once M; is determined (for the monotonically increasing
case study).

Implicit in the formulation above is that the plastic curvature is constant over the plastic
hinge length, which is obviously not a correct assumption. Similarly, there are two other
important assumptions. The first assumption relates to the length of the column that con-
tributes to the elastic deformations. Initially here the full height H is assumed, which will
lead to an over prediction of the elastic displacement because of the contribution of the
hinge. Later in this section, methods of correcting this oversight are introduced (i.e., by
considering H — [,,). The second assumption is that the location of the integration point
that corresponds to the hinge is at the base of the column (x = 0). The implication is that
the yield moment and therefore the yield load are correct; however, the initial stiffness and
post-yielding stiffness are not correct. Later in this section, an appropriate correction will
also be made (i.e., that the location of the integration point is at some point [, above the
base).

Figure 3.5 shows the load-displacement curve from the analytical solution. Due to the
simplicity of the case study, the plastic moment (and therefore plastic load) is exact. How-
ever, as mentioned above, the initial elastic stiffness is small (solution is more flexible),
because the deformations accumulate simultaneously in both elements. Comparisons with
solutions from the two software (CSiBridge and OpenSees) are shown later because there
are several different modeling choices that can be made.

The Case A solution shown in Figure 3.5 is of course also somewhat dependent on the
selected value of the plastic hinge length, as with any method that must account for the
difference between rotation and curvature. In this section, the plastic hinge length is kept
constant between all implementations and was obtained as half of the cross section dimension.
The larger the assumed plastic hinge length, the larger the discrepancy will be between the
true/exact stiffness and the one predicted using the analytical solution of Case A.

3.1.3 Case B

Case B represents the exact solution in the sense that plastic curvature is allowed to form
anywhere along the length of the beam-column. In addition, the plastic curvature is exactly
integrated at all locations to yield the correct displacement field. As with Case A, only the
analytical solution is derived here, the results from implementing in different software are
shown along with the modeling assumptions in a later section.

The procedure for the analytical solution for the problem shown in Figure 3.4 is:

M(z) = —-NH + Nz

/ Plo)de (3.2)
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Figure 3.5: Comparison of Case A and Case B analytical solutions

The curvature ¢(x) is obtained from the moment-curvature diagram. Both 6(z) and
uz(H) can be calculated using numerical integration (the trapezoid rule was used). There
is no longer any assumption about the plastic curvature, it may be linearly or nonlinearly
varying in the plastic hinge region and is defined explicitly by the shape of the moment-
curvature relation. The resulting load-displacement curve for Case B is shown in Figure
3.5.

The comparison of the two cases is shown below in Figure 3.5. As can be seen, the
common observation that a series representation of a hinge and column is more flexible than
considering the true response is upheld. However, because of the series system, the forces
are the same in the hinge and column, and therefore the yield moment is preserved. As with
the elastic stiffness, the post-yielding stiffness would also not the same in the two approaches
(here it is less apparent because an elastic-perfectly-plastic material was selected). Note that
both analytical solutions are exact under the assumptions of the element(s), the deviation
from these using software implementations is explored next.

3.1.4 Case C Software implementations
Showing that Case A is Fiber hinge model in CSiBridge

The problem in Case A was modeled using CSiBridge V17.3.0. A single frame element is used
along the full height of the column. At the base of the column, a frame hinge (Fiber P-M2-
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Figure 3.6: Comparison of Case A with CSiBridge

M3) with a plastic hinge length of 10 in was defined. The steel cross section discretization
was 50 by 50 fibers. Nonlinear analysis with displacement control was adopted. As can be
seen in Figure 3.6, the CSiBridge results give an excellent match with the analytical solution
for case A.

Showing that Case A is OpenSees elasticBeamColumn with zeroLength element

The problem was also modeled in OpenSees to show consistent results can be obtained, mean-
ing the limitation is with the formulation of the elements, not the software implementation.
An elasticBeamColumn element of length H was used with a zeroLength element at the base
of the cantilever. This modeling approach was adopted because the zeroLengthSection does
not have a plastic hinge length associated with the element. The ElasticMultiLinear mate-
rial was used to define the points on the backbone of the moment-rotation relation used in
the rotational degree of freedom of the zeroLength element. The moment-rotation backbone
was obtained from a sectional analysis using the zeroLengthSection element and a section
discretization similar to that used in the CSiBridge Fiber hinge. Figure 3.7 below shows the
comparison results between Case A and OpenSees.

As would be expected, both the OpenSees and CSiBridge implementations are able to
match the Case A analytical results within a close numerical tolerance.

38



350 T T T T

300

250

o
S
(=)
T
|

Load (kip)
&
(=)

—_
S
(=)
T
|

Case A .
— — ZeroLength with M-R (OpenSees)

O Il Il Il Il
0 2 4 6 8 10

Displacement (in)

D
(e}
T

Figure 3.7: Comparison of Case A with OpenSees

Showing that Case B is OpenSees forceBeamColumn

The column in Case B was modeled using OpenSees with two types of elements to compare
the results with the exact solution. The first is the forceBeamColumn in OpenSees, which is
based on the iterative force-based formulation. A single forceBeamColumn (formerly nonlin-
earBeamColumn) column element was used to model the column. The Lobatto integration
rule with five integration points was used. Figure 3.8 compares the results between Case
B and forceBeamColumn element implementation in OpenSees. A second element may be
introduced to improve the prediction of the curvature distribution along the length of the
column, but the force-displacement relation remains very close to the true solution even with
the single element.

Showing that Case B is OpenSees beamWithHinges

The beamWithHinges element in OpenSees contains a hinge section at both ends of an
elastic element, and was used to construct the same column shown in Case B. A plastic
hinge with length 10 in at both ends (i and j nodes) of the element was created with
the same fiber section discretization as the previous implementations (forceBeamColumn in
OpenSees, zeroLengthSection in OpenSees, and Fiber hinge in CSiBridge). From Figure 3.9
a good match between the exact solution and beamWithHinges element implementation can
be noticed. The slight discrepancy between the yield and plastic force is due to the selected
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Figure 3.8: Comparison of Case B with OpenSees (forceBeamColumn)

value of the plastic hinge length.

3.1.5 Case D Corrections to Software Implementations

In order to adjust the Fiber hinge model in CSiBridge to match or be close to the exact
solution (meaning Case B), two methods of adjustment in CSiBridge were introduced. These
are both commonly accepted forms of improving the response of lumped-plasticity models.
It is just demonstrated here that with a 2D homogeneous steel section, both methods of
correction have the desired outcome.

Introduce a rigid-plastic hinge

This method of correction was implemented by introducing an Interaction hinge type (P-M2-
M3) in the CSiBridge software at the lower end of the column instead of the Fiber hinge. The
type of hinge is a moment-rotation hinge and the surface data was introduced depending on
FEMA 356, equation 5-4, although obviously the values on the moment-rotation backbone
given as defaults are not directly relevant for bridge analysis. The Caltrans hinge appears to
be conceptually similar in implementation. The parameters of this type of hinge are shown
in Figure 3.10. The results of this method of correction are shown in Figure 3.11.

From this figure, it can be seen that this method can partially correct the numerical
results. The elastic slope (stiffness) exactly matches the closed-form solution but the post-
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Figure 3.9: Comparison of Case B with OpenSees (beamWithHinges)

yielding slope is not correct. As the hinge does not contribute to the deformations prior
to yielding, both the elastic stiffness and the yield force (or yield moment) are preserved.
However, there are limitations on the type of nonlinear and yielding behaviors that can be
achieved due to the use of the discrete points on the backbone curve (there is no discretized
fiber cross section), in addition to the unloading-reloading behavior during cyclic analysis.

Introduce a rigid element in the hinge region

In this method, the column is split into two different frame elements. The element at the
base is a rigid element (E/ = oo) with length of [, (10 in), i.e., there is a new node at
x = l,. It is not necessary for the multiplier to be infinite, similar results can be obtained
with multipliers in the range of 3 to 10. A frame hinge type (Fiber P-M2-M3) is introduced
at the bottom of the rigid element (at z = 0). The remaining length (H — [, = 230 in) was
modeled as an elastic beam (frame element without any frame hinges). The details of this
method are shown in Figure 3.12.

The results of this correction method are shown in Figure 3.13. The initial stiffness is
approximately correct (it is shown through an analytical solution below that the stiffness
is actually not exact, but very close), and generally there is a better match between the
corrected case and exact solution from Case B. There is the added benefit of being able to
use the fiber cross section that was not possible with the rigid-plastic hinge correction.

Due to the location of the hinge at the base of the column, the yield moment and therefore
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Figure 3.12: Details of the rigid element
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yield force should also be exact. However, as with the other methods of correcting response,
the post-yield stiffness is also only approximately correct.

Effect of fiber hinge location

It is of course not necessary in CSiBridge (or conceptually) to locate the hinge at the base of
the rigid element. It may be beneficial to locate near the midpoint, as suggested in previous
work (Aviram et al., 2008). To study the effect of the fiber hinge location on the monotonic
behavior of the 2D steel cantilever column, and to establish whether the results in Figure 3.13
are correct, different locations of the hinge were studied using both an analytical solution
and CSiBridge software implementation. As derived in Case A, the solutions procedure is:

uz(i) = us,) (1) + u,)(7)
uz(i) = (N(H — 1,)*)/3ET + 0;(H — 3,) (3.3)
uz(i) = (\(H — 1,)*)/3ET + ¢l,(H — x3,)

where H = total height, \; = load at each step, ¢; = curvature at each step (the total
curvature), x, = location of the hinge (z, = 0, 5, 10 in) as shown in Figure 3.14, and [, =
plastic hinge length (assumed to be 10 in). The curvature ¢; can be found from moment-
curvature curve once M; is determined (for the monotonically increasing case study).

As with the derivation in Case A, it is assumed that the plastic curvature is constant over
the plastic hinge length. The presence of the rigid element removes the elastic deformation
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in the plastic hinge region. However, the additional dimension x;, is still needed to define
the location of the integration point used for evaluating the curvature and moment. Setting
l, to zero and zj, to zero degenerates the solution into that previously defined in Case A.
An additional assumption is made that the location of the integration point also defines the
location of the lumped rotation due to the constant plastic curvature over [,.

The effect of moving the location of the hinge on the new analytical solution is shown
in Figure 3.15. The elastic stiffness for each of the hinge locations (x; = 0, 5, 10 in) is
approximately equal to the exact stiffness (Case B). It can be shown that the exact elastic

stiffness can be derived by setting z;, equal to H — \/ H? —[,H +12/3. In addition, due

to the preservation of the location of the peak moment at the hinge location, the z;, = 0
in location preserves the yield force. The yield force is progressively overestimated as the
location of the hinge is increased. The optimal location of the hinge for purposes of initial
stiffness therefore, by definition, will lead to an overestimate of the yield force.

Moreover, the problem is repeated in CSiBridge using several locations of the hinge (zy,
= 0, 5, 10 in), to be consistent with the analytical solution. The results from CSiBridge
are shown in Figure 3.16. It can be seen that both the stiffness and strength are consistent
between Figure 3.15 and Figure 3.16. The location of the hinge at the bottom of the rigid
element (z;, = 0 in) provides the best match with the actual solution (Case A that is).
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Figure 3.16: Comparison of CSiBridge results of different fiber hinge locations

Table 3.2: Circular 3D steel column properties

H = 240 in D =20 in o, = 50 ksi
E = 29000 ksi | N = 1000 kips | Az, Ay = variable

3.2 3D system (circular steel cross section)

A steel circular cantilever column is loaded with an axial and two equal lateral loads in the
local z and y directions as shown in Figure 3.17. The axial force is held constant while the
lateral load is monotonically increased (here load control is adopted with load factor Az and
AY).

Because of the circular symmetry of the cross section, the load-displacement (defined as
the vector combination of loads in y and z directions, and the vector combination of displace-
ments in the y and z directions) behavior is always the same regardless of the combinations
of loads in each of the lateral directions (i.e., factors Ay and Az).

The dimensions, material properties, and applied load are shown in Table 3.2.

3.2.1 Moment-Curvature Relation

The moment-curvature diagram was plotted from a numerical solution with a fiber section
in CSiBridge, as shown in Figure 3.18. The cross section was divided into 50 layers in
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Figure 3.17: Geometry, cross section, and material of the 3D case study

the tangential direction and 40 layers in the radial direction, as shown in Figure 3.19. As
discussed in past research [4], there are other discretizations of circular cross sections that
yield the same results with more optimal placement of the fibers in the core.

In theory, due to the circular symmetry of the cross section, any vector combination of
moments Mz and My will produce the same curve as Figure 3.18. However, the numerical
implementation may yield slightly different responses due to only a single axis of symmetry
in the patch discretization or a non-standard starting angle paired with a coarser section
discretization.

3.2.2 Cases A and B

Similar to the procedure followed in the 2D case study, the analytical solutions were derived
for Case A (series system containing an elastic beam and a zero-length hinge) and Case B
(single beam with ability for plasticity to spread along the height). The results are shown in
Figure 3.20 and exhibit similar characteristics to those shown previously in Figure 3.5. To
make all the subsequent plots comparable, the vertical axis (ordinate) is always the vector
combination (square root sum of the squares) of loads in the y and z directions. Similarly
the horizontal axis (abscissa) is always the vector combination of the displacements in the y
and z directions.
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Figure 3.19: Fiber distribution of circular steel cross section in CSiBridge
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3.2.3 Case C Software implementations
Showing that Case A is Fiber hinge model in CSiBridge

As in the 2D case, the 3D case study was modeled using CSiBridge V17.3.0 using a single
frame element. At the base of the column, a frame hinge type (Fiber F-M2-M3) with a plastic
hinge length of 10 in was inserted (the plastic hinge length is again not the intent of this
study, and is used consistently between implementations in this section). Nonlinear analysis
with displacement control was carried out. As can be seen in Figure 3.21, the CSiBridge
analysis results show an acceptable match with the analytical solution from Case A.

Showing that Case A is OpenSees elasticBeamColumn with zeroLength element

The problem was modeled in OpenSees by using the elasticBeamColumn element in series
with a coupledZeroLength element at the lower end of the cantilever. The moment-rotation
relation was obtained from the moment curvature relation by multiplying the curvature
by the plastic hinge length (I,) to get the rotation and then used as input in Opensees.
The backbone was specified using an ElasticMultiLinear material and the coupling between
lateral responses was enabled by the circular yield surface of the coupledZeroLength element.
Figure 3.23 below shows the comparison of results between Case A and OpenSees.
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