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ABSTRACT 
 

This research aims to explore the possibility of using high-resolution data such as sec-by-sec 
traffic signal data provided by the Centracs system or event-based data provided by SMART-
SIGNAL (Systematic Monitoring of Arterial Road Traffic and SIGNAL) system, to evaluate 
intersection safety. Traditional methods, either using historical crash data collected from 
infrequently happened collisions, or potential conflicts estimated from microscopic simulation 
which assumes “accident-free”, cannot provide accurate and timely evaluation of intersection 
safety. In contrast, this research proposes a comprehensive intersection safety evaluation system, 
which is able to quantify the safety performance of signalized intersections by using high-
resolution traffic signal data collected from existing loop detection systems. 

This research proposes an innovative method to identify the emerging and impending hazardous 
situations including red-light running (RLR) violations and potential traffic conflicts, which 
essentially indicate the safety level of an intersection.  The proposed method first estimates the 
drivers’ decision to stop-or-run (SoR) by developing a simple method to identify first-to-stop 
(FSTP), yellow-light running (YLR), and red-light running (RLR) cases using high-resolution 
data. By applying a binary logistical regression model, this research found out that occupancy 
time, time gap, used yellow time, time left to yellow start, time gap between the first two 
preceding vehicles, and decisions of preceding and surrounding vehicles show significant 
impacts on drivers’ decisions. Furthermore, due to the rare events nature of RLR, a modified rare 
events logistic regression model was developed for RLR prediction. The results showed that the 
rare events logistic regression model performed significantly better than the standard logistic 
regression model. 

This research further proposes an intersection safety evaluation system which evaluates the 
overall intersection safety based on a combination of the potential traffic conflicts and red-light-
running cases. The proposed system has been applied to an intersection in Anaheim, CA 
operated using Econolite Centracs System and a corridor with 3 intersections located at 
Minneapolis, MN using SMART-SIGNAL System. The proposed system can be applied to build 
a real-time intersection collision avoidance system. Also, the intersection safety information 
collected from a network-wide system can be used to rank the safety severity for all intersections 
in the network, therefore helps agencies identify the intersections which need most improvement. 
This research is expected to contribute significantly to the improvement of intersection safety, 
and build a foundation for future dynamic systems that could alert drivers of emerging and 
impending hazardous situations.  
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Chapter 1  
Introduction 

An intersection is a planned point of conflict in the roadway system. With different crossing and 
entering movements by both drivers and pedestrians, an intersection is one of the most complex 
traffic situations that motorists encounter. Crashes often occur at intersections because of the 
potential conflicts between left-turning, crossing, and right-turning movements. This makes 
intersection safety a national, state, and local priority [1]. Based on the Fatality Analysis 
Reporting System (FARS) and National Automotive Sampling System-General Estimates 
System (NASS-GES) data, approximately 40 percent of the estimated 5,811,000 crashes that 
occurred in the United States in 2008 were intersection-related crashes [2]. A majority of 
intersection-related crashes occurred due to careless and reckless driving behavior such as Red 
Light Running (RLR) that has resulted in a substantial number of severe injuries and significant 
property damage. According to the National Highway Traffic Safety Administration's (NHTSA) 
Traffic Safety Facts 2008 Report [3], there were more than 2.3 million reported intersection-
related crashes, resulting in more than 7,770 fatalities. Of these, 762 were caused by red-light 
running, and red-light runners as reported by FARS injured an estimated 165,000 people 
annually [2]. As further amplified by the National Survey of Speeding and Other Unsafe Driver 
Actions [4], 97% of drivers feel that other drivers running red-lights are a significant safety 
threat. This number is increasing at more than three times the rate of growth for all other fatal 
crashes [5, 6]. In China, a study shows that RLR had caused over 4227 severe injury crashes and 
789 fatalities based on the data collected from Jan. 2012 to Oct. 2012 [7]. Despite improved 
intersection designs and more sophisticated applications of traffic engineering measures, the 
annual toll of human loss due to motor vehicle crashes has not substantially changed in the past 
ten years [8]. 

Much research has been conducted to study intersection safety, and a significant portion is 
related to drivers' stop-or-run (SoR) behavior such as red-light running (RLR) and yellow-light 
running (YLR). For RLR prevention, many methods, such as variable message warning signs, 
signal timing adjustment, or even autonomous vehicle technologies [9, 10, 11, etc.] have been 
developed. But to apply these methods, a critical first step is to predict potential SoR behavior of 
the driver. Notice, RLR in most of the situations is not an intentional decision, but an erratic 
behavior due to uncertain surrounding conditions such as traffic light switching to yellow, or 
following a platoon [12]. Many organizations such as the Federal Highway Administration 
(FHWA), the Institute of Transportation Engineers (ITE), American Association of State 
Highway and Transportation Officials (AASHTO), AAA, etc. are devoting substantial resources 
to help reduce intersection crashes. A significant amount of effort has been focused on the 
assessment of intersection safety. The most common method of assessing safety at an 
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intersection is analyzing its collision history. For example, all eight intersection safety 
assessment methods suggested by FHWA (collision frequency, collision rate, combined collision 
frequency and rate, equivalent property damage only method, critical collision rate, risk analysis 
methods, safety performance functions, and empirical Bayes method) use historical collision data 
[13]. Also, the Highway Safety Manual (HSM) safety predictive method proposed by AASHTO 
[14] also relies on historical crash data. However, given the infrequent and random nature of 
crashes, crash-data-based methods are slow to reveal the need for remediation of either the 
roadway design or the flow-control strategy, not to mention the real-time safety assessment. 

1.1 Datasets 
Different data sets have been used to study RLR crashes and red-light runner behaviors. For 
example, Retting et al. [15] used the data collected from the Fatality Analysis Reporting System 
(FARS) and General Estimates System (GES) to analyze the vehicle and driver characteristics of 
red-light runners. Wissinger et al. [16] used focus groups to investigate the attitudes, beliefs, and 
perceptions of the public toward RLR and red light cameras; and Porter & Berry [17] conducted 
a national telephone survey to understand those who had run the red light.   

To fully understand SoR behavior, data collection plays a vital role. Most of the current research 
uses the off-line data collected from video cameras. For example, in Bonneson et al.'s before-
after study [18], they used videotape records along with other methods like laser speed guns to 
collect RLR data to analyze the impact of factors such as yellow interval timing, on the 
frequency of red-light violations, [19]. Gates et al. [20] temporarily installed consumer-grade 
video cameras at four high-speed and two low-speed intersections to collect driver behavior in 
dilemma zones. David & Najm [21] examined red light violation behavior using about 47,000 
violation records that were captured by photo enforcement cameras from 11 signalized 
intersections in the city of Sacramento, California, over a four-year period. Some research 
identified that safety belt use, driving records, ethnicity, etc. were critical for RLR [6, 22]. But 
apparently, these factors are difficult to determine in real-time and cannot be used for real-time 
RLR prediction.  

Some research analyzed high-quality video data and found out that the vehicle characteristics 
(such as vehicle speed) and traffic operations (such as flow and signal timing) had a significant 
impact on RLR [18, 20, 23, 24, 25, 26, 27]. However, using video data for RLR prediction have 
limitations since the quality of the data is constrained by the quality of cameras and, more 
importantly, real-time video data analysis is time-consuming and costly. This limitation causes 
an obstruction for implementation of dynamic systems that can inform or alert drivers of 
emerging and impending hazardous situations like RLR in real time. Building such dynamic 
systems has become one of the primary focuses of many federal and local agencies recently. For 
example, the U.S. Department of Transportation (DOT) and state DOTs have formed several 
programs to investigate collision avoidance systems such as Intersection Decision Support 
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Program (IDSP) [9, 10] and the Cooperative Intersection Collision Avoidance System (CICAS) 
[11]. 

In contrast to video data collection, loop detector data can be quickly and automatically obtained 
in real time with low cost. Since majority of signalized intersections have been equipped with 
loop detectors for signal operations (Figure 1.1), using loop detector data to help measure and 
improve intersection safety becomes very attractive, as pointed out by Zhang et al. [26]. In their 
research, Zhang et al. used multiple discrete point sensors to collect data and then predict RLR 
events. However, the general aggregate data (30-sec, 5-min or even 15-min) ignores details and 
is too coarse to describe individual drivers' behaviors in depth at signalized intersections. Due to 
this reason, little research has been conducted using loop detector data to analyze SoR behavior. 
But with recent improvements in data aggregation methods [28, 29], high-resolution traffic and 
signal event data can be easily collected at signalized intersections, either from a traffic 
controller [28] or directly measured from the back panel in a traffic cabinet [29]. High-resolution 
traffic data (event-based or second-by-second data) provides detailed vehicle arrivals and 
departures from loop detectors. This data, combined with signal phase changes, could be used to 
derive vehicle trajectories, which can serve as the foundation for traffic conflict analysis. 
Moreover, since loop detector data can be easily and automatically obtained in real time with low 
cost, this could significantly contribute to the implementation of dynamic systems that could 
inform or alert drivers of emerging and impending hazardous situations. The safety evaluation 
system developed in this research could be a critical first step in the implementation of IDSP and 
CICAS for identifying safety hotspot for treatment. 

High-resolution traffic and signal event data has great potential to improve intersection safety. 
But so far, only very preliminary research has been done by Chatterjee & Davis [30], who used 
event data to identify incidents and help reconstruct car crashes. Therefore, it is necessary to 
investigate the potentials of applying event data for intersection safety study. 
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Figure 1.1 A typical detector layout (as shown in the figure, the advance detector is the loop 
detector typically located 400 feet upstream from the stop-line; and stop-bar detector is 
located right behind the stop-line).  

 

1.2 Models 
Different models have been developed to describe the probability of occurrence of SoR event. 
For example, Sheffi & Mahmassani [31] developed a probit stopping model by assuming that a 
driver's decision to stop is normally distributed, while Bonneson et al. [32] used the logistic 
regression (logit) by assuming that a driver's decision to stop follows a logistic distribution.   

 For RLR prediction, a general way is to first analyze a large amount of traffic data (video data or 
loop detector data) to statistically identify the factors that may significantly impact the RLR 
behavior. From a statistical point of view, a driver's current driving conditions, together with 
surrounding traffic conditions and signal timing situations, will directly or indirectly lead to the 
driver's later behavior of RLR. Therefore, by statistically analyzing a large amount of traffic 
data, the inner correlation between all these impact factors and drivers' RLR behaviors can be 
derived. Then, based on the obtained relationship between the impact factors and drivers' RLR 
behaviors, either a Probit [31, 32] or Logit [33, 34, 35] model can be applied to predict RLR. 

A critical problem for RLR prediction is that traditional statistical methods like Probit or Logit 
have difficulties in predicting RLR accurately. These traditional methods work well for Yellow-
Light-Running (YLR) prediction [36]. However, when applying these methods for RLR 
prediction, the results are not satisfactory. A traffic collision is a random event, and the major 
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factor of an accident is drivers' mistake. According to the crash factor report done by the 
National Highway Traffic Safety Administration [37], out of 787,236 intersection-related 
crashes, about 96 percent (756,570 crashes) had critical reasons attributed to drivers. These 
include inadequate surveillance, false assumption of other's action, turn with obstructed view, 
illegal maneuver, internal distraction, and misjudgment of the gap or other's speed. Such problem 
has been reported as an imbalanced class problem [38, 39]. While conducting this research, it 
was revealed that out of 42277 observations (including Red Light Running, Yellow Light 
Running, and First-to-Stop (FSTP, defined as the first vehicle which stops before the stop line 
when green ends)) collected from three months’ data at one signalized intersection, only 289 
cases (0.7%) were RLR. With such small number of RLR, applying standard classifiers, such as 
logistic regression, will sharply underestimate the probability for RLR [40].  

Therefore, the traditional crash-data-based safety assessment method, which aims to investigate 
the relationship between crashes and other factors such as average annual daily traffic (AADT), 
intersection geometry design, etc. may ignore the most critical factor, i.e. the driving behavior, 
which can be described by the trajectories of vehicles. The traffic conflict technique has been 
developed since the 1960s to relate intersection safety to drivers' actions. This method is based 
on the understanding that conflict frequency is correlated with the risk of actual collision [41, 
42]. The traffic conflict technique analyzes the frequency and character of narrowly averted 
vehicle-to-vehicle collisions using the information of vehicles' trajectories and therefore does not 
need historical crash data. Traditional conflict studies utilize trained personnel to identify and 
record conflicts observed at an intersection, so this method is time-consuming and expensive. To 
overcome the shortcoming, Gettman et al. developed the Surrogate Safety Assessment Model 
(SSAM), which combines microsimulation and automated conflict analysis, to assess the safety 
of traffic facilities without waiting for a statistically above-normal number of crashes and 
injuries to occur [43]. However, traffic conflicts estimated from SSAM are questionable because 
vehicle trajectories in this method are derived from micro-simulation which is assumed 
"accident-free." Proposed system in this research, on the other hand, is based on loop detector 
data, instead of historical crash data or data obtained by traffic simulation. 

1.3 Objectives 
This research aims to address above issues related to RLR by first exploring the influential 
factors which have significant impacts on drivers' RLR behaviors using loop detector data. 
Mainly, RLR events extracted from high-resolution traffic data collected by loop detectors from 
three signalized intersections are utilized to identify the factors that significantly affect RLR 
behaviors. Then based on the data analysis results, and also considering the rare events nature of 
RLR, this research proposes a modified rare events logistic regression model originally 
developed by King and Zeng to predict RLR. King and Zeng's rare events logistic regression 
model has been applied in many fields and shows impressive performance; but so far according 
to our limited knowledge, none of the previous research has used this method to predict RLR. 
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The proposed model is further evaluated using high-resolution traffic data collected by loop 
detectors. The results demonstrate that the new method outperforms the standard logistical 
regression method with a significant improvement of RLR prediction rate. 

The research also aims to quantify the safety performance of signalized intersections and identify 
the emerging and impending hazardous situations. Such information is much needed for the 
implementation of a real-time intersection collision avoidance system. Also, the intersection 
safety information collected from a network-wide system can be used to rank the safety severity 
for all intersections in the network, therefore helps agencies identify the intersections which need 
the most improvement. To achieve this goal, this research proposes a comprehensive intersection 
safety evaluation system which fulfills the following two primary functions: 

 
1) Predict red-light violations. The primary function of the proposed system is to identify 

possible red-light violations, which is a major factor that leads to traffic conflicts. To 
fulfill this function, we first use high-resolution data collected from advanced detectors, 
which are located several hundred feet behind stop-line, to predict drivers’ decision of 
STOP-or-RUN (SoR) at the onset of amber phase. A prediction model will be applied to 
estimate drivers’ SoR decisions. After we predict drivers’ SoR decision, we can 
determine red-light violations by combining signal phasing information. For example, if a 
vehicle is predicted as "RUN" and the remaining amber time is not enough for the vehicle 
to cross the intersection, this car will end up "red-light violation.". The number of red-
light-running violations will provide some indication of intersection safety. Moreover, 
this model can be applied to predict red-light violation in real time if using real-time 
information collected from advanced detectors. The real-time red-light violation 
information, combined with appropriate control strategies like the all-red extension, could 
be used to reduce potential severe crashes caused by red-light running. 
 

2) Estimate potential traffic conflicts based on real traffic conditions. This feature will 
focus on determining both rear-end and crossing (i.e. right-angle) traffic conflicts. The 
rear-end conflicts include the same direction conflicts from all approaches, and the 
crossing traffic conflicts mainly are the conflicts between through movement and 
conflicting left-turns. To estimate the potential conflicts, vehicles' trajectories will be 
determined using high-resolution data. Then, the traffic conflict technique will be applied 
to calculate both types of traffic conflicts at intersections. The overall intersection safety 
will be evaluated based on a combination of the probability of two types of potential 
conflicts. 

 Since the proposed system can be easily applied to most of the signalized intersections equipped 
with loop detectors, it can provide spatial information of intersection safety for a large area; 
therefore, provides agencies with a risk assessment tool to prioritize the intersections which need 
the most attention. More importantly, this research will build a foundation for the future 
development of dynamic systems that could inform or alert drivers of emerging and impending 
hazardous situations.  
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Chapter 2  
High Resolution Data 

A conflict or Stop-or-Run event at an intersection, as discussed in the previous chapter, can be 
estimated from the data collected by loop detectors. The proposed regression models are based 
on the correlation between drivers' behaviors (i.e. RLR, YLR, or FSTP) and impact factors 
including velocity, time gaps (the time difference between the arrival time of the following 
vehicle and the departure time of the leading vehicle), etc. To study the driver's behavior for 
traffic conflict estimation and to develop the prediction model for red-light-running, three steps 
are involved in the data preparation: 

1) Collect high-resolution traffic and signal event data; 
2) Identify a driver’s decisions including red-light running (RLR), yellow-light running 

(YLR), or the first-to-stop (FSTP) during yellow using stop-bar detectors; and 
3) Match events between stop bar and advance detectors since the information collected 

from advance detectors will be needed for the investigation. 

We know that data collection is the most crucial step involved in any research as quality of data 
determines the quality of analysis and hence, the results. As discussed earlier, this research 
requires high-resolution data for estimating the trajectories of vehicles which in turn are able to 
explain the driving behavior. Two types of high-resolution data that can be used in this research 
are: 

1. SMART-SIGNAL Data (Event data) 
2. Econolite Centracs Data (Sec-by-Sec data) 

Both types of data are perfect to estimate drivers’ behavior but this research has been done using 
SMART-SIGNAL data. Both datasets are valid for this research as both of these data are inter-
convertible. 

2.1 High-Resolution Traffic and Signal Event Data from SMART-SIGNAL 
High-resolution traffic event data were gathered by the SMART-SIGNAL (Systematic 
Monitoring of Arterial Road Traffic and SIGNAL) system developed at the University of 
Minnesota [29]. The SMART-SIGNAL is capable of continuously collecting and archiving high-
resolution event-based vehicle-detector actuation and signal phase change data. The SMART-
SIGNAL system has been installed on a major arterial (Trunk Highway 55) at six intersections in 
the Twin Cities area since Jul. 2008. All intersections are equipped with vehicle-actuated signals, 
with advance detectors typically located 400 feet upstream from the stop-line for the green 



8 
 

extension on the major approach and stop-bar detectors located right behind the stop line for 
presence detection on the minor approach. For research purposes, we have also installed stop-bar 
and link entrance detectors on the major approaches. A total of 21 months of data were used for 
analysis, amounting to well over 50 million recorded events. In this research, we used the event 
data collected from three intersections (Boone Ave., Winnetka Ave., and Rhode Island Ave., see 
Fig. 2.1 for the detector configuration.) 

 

TH 55

Rhode Island Ave.

TH 55

Winnetka Ave.Boone Ave.

Stopbar detectors
Entrance detectors
Advance detectors
Unused detectors

Phase 6 (WB)

400 ft

842 ft 1777 ft2635 ft
400 ft 400 ft 400 ft

Phase 2 (EB) 400 ft
400 ft

 

Figure 2.1 Study area and intersections (SMART-SIGNAL). 

 Data collected by SMART-SIGNAL is a combination of already existing loop detector data and 
signal status data. The data is collected from individual intersections by the traffic cabinets at the 
intersections and instantly sent to a database for further processing in a lab. This processed data 
made available to general users can explain some traffic behaviors that were difficult to explain 
by using only the loop detector data. A basic architecture of the SMART-SIGNAL system is 
shown in figure 2.2.  
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Figure 2.2 SMART-SIGNAL architecture. 

The detector and signal data can be collected and joined using some additional hardware such as 
Traffic Controller Interface Devices (CID), and Traffic Event Recorder, along with existing 
traffic signal system. These devices can be installed easily in the existing cabinets as shown in 
figure 2.3. 
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Figure 2.3 Changes made to existing Traffic Signal Cabinets 

 After the processing of raw data, high-resolution event-based data is generated by the system 
that gives detailed information about the actuation of detectors and signal phase change with 
exact timing associated with it. The data provide details for individual events such as the time at 
which a particular detector, say D1, was turned on or off by a vehicle or time at which a 
particular signal phase, say G3, was turned on or off and the duration associated with it. The 
sample format of data can be seen in figure 2.4. 
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Figure 2.4 Event-based Data Format.  

 
2.2 Sec-by-Sec Centracs data from Econolite Centracs system 
Recently, the Centracs system, introduced by Econolite, has the capability to automatically 
collect and archive sec-by-sec traffic and signal data, which can be used in this research to 
evaluate intersection safety. More importantly, since Centracs is a robust and cost effective 
system for improving intersection efficiency, it is very possible that Centracs will be installed in 
many intersections in the near future. Indeed, Centracs has been deployed by many cities in CA. 
For example, 9 Orange County cities have adopted the Centracs system since 2011. Data from 
one such site in City of Anaheim has been used for this project as shown in figure 2.5. 

 

Figure 2.5 Study Area and intersections (Centracs). (Source: Google) 
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Econolite Centracs System collected sec-by-sec data that included traffic data (vehicle actuations 
from loop detectors) and signal data (phase data from traffic controllers). The sec-by-sec data 
(including volume and occupancy) essentially indicates the times when a vehicle arrives at and 
departs from detectors. Therefore, the raw data can be used to estimate individual vehicle speed 
and time gap between two consecutive vehicles. Individual vehicle speed is estimated using a 
calibrated effective vehicle length divided by the occupancy time (i.e. the time that the detector 
is occupied by a vehicle), and time gap is the time difference between the time when the leading 
vehicle leaves the detector and the time when the following vehicle arrives at the detector. Time-
stamped state changes of ‘phases in use’ and ‘detectors in use’ are stored in binary format on the 
controller in hourly data files. Data are retrieved from the controller by using a transmission 
control protocol/Internet protocol network connection, with the controller serving as a file 
transfer protocol (FTP) server. Once downloaded from the controller, an application is used to 
convert the data files into comma-separated-value (CSV) files for use in producing the 
appropriate reports. A sample output file is shown in figure 2.6. 

 

Figure 2.6 Sec-by-sec data format 
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The file should be interpreted as follows: 

 For the Phases, the 1, 3, 5 values respectively represent the start of green, yellow and red for the 
phase indicated in the column heading. The interpretation of the detector values represents the 
state changes of the detectors.  Since multiple state changes can happen in a single time-slice, the 
states are added up with the counts alternating between positive and negative to indicate whether 
the last reported state change was ‘on’ (positive) or ‘off’ (negative).  As you will observe, there 
will be cases when you see a ‘1’ followed by a ‘-1’ in a subsequent time-slice.  In cases where 
you observe a ‘-3’ for example, you will know that the signal went from ‘off’ to ‘on’ to ‘off’ 
within that time-slice. It must be noted that the sign of the value indicates the final state of the 
detector in the time-slice.  A negative value means the vehicle left the detector and thus was ‘off’ 
at the end of the reporting period. A positive value means that the detector was reporting a 
vehicle present on the detector at the end of the time-slice.  Thus, a ‘-2’ indicates that the last 
event was an ‘off’ which means it went from ‘on’ to ‘off’ in the time-slice and a value of ‘2’ 
indicates the detector went from ‘off’ to ‘on’. 

 
 
2.3 Conversion of sec-by-sec Centracs data to event-based data  
Many agencies have started collecting high-resolution data and these two data types have been 
widely accepted in the past few years. The biggest advantage of these two data types is that they 
can be converted into each other. This allows application of this research on a large scale. The 
interconversion of data is explained using an example as follows: 

 

(a) 

a
b
c
d
e
f
g
h
i
j
k
l 
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(b) 

Figure 2.7 Interconversion of (a) SMART-SIGNAL data and (b) Centracs data. 

Consider the SMART-SIGNAL data (figure 2.7 (a)) that has been converted to Centracs format 
(figure 2.7 (b)). For the convenience, SMART-SIGNAL and Centracs records has been 
numbered as a, b, c, etc. and 1, 2, 3, etc., respectively. 

• Record a – At 08:09:15.01, detector 8 turned ON after 7.9 sec. The event of turning ON 
is represented as “1” (record 3) and vacant time can be calculated by subtracting ON 
timestamp and previous OFF timestamp represented by “-1” (record 3 – record 1). 

• Record b – At 08:09:15.48, detector 8 turned OFF after 0.46 sec. The event of turning 
OFF is represented as “-1” (record 4) and occupied time can be calculated by subtracting 
OFF timestamp and previous ON timestamp (record 4 – record 3). 

• Record c,d - At 08:09:16.76, GREEN at phase 3 turned OFF after 29.38 sec and at the 
same time YELLOW at phase 3 turned ON. Both events are represented as “3” (record 5) 
which indicates end of GREEN and start of YELLOW at phase 3. Also, GREEN duration 
can be calculated by subtracting timestamps indicating START and END of GREEN 
(record 5 – record 1). 

• Record e:g, f:h, j:k – Records e, f, g, h, j, k represents record 6, 7, 8, 9, 11, 12, 
respectively. Also, occupancy time for detector 9, 10, 22 can be calculated by (record 8 – 
record 6), (record 9 – record 7) and (record 12 – record 11), respectively. 

  

Record Date  Time  dSec  phs-1  phs-3 det-8 det-9 det-10 det-22
1 11/3/2015 8:08:46 0.6 1
2 11/3/2015 8:09:08 0.1 -1
3 11/3/2015 8:09:15 0 1
4 11/3/2015 8:09:15 0.5 -1
5 11/3/2015 8:09:16 0.8 3
6 11/3/2015 8:09:17 0.6 1
7 11/3/2015 8:09:18 0.2 1
8 11/3/2015 8:09:18 0.3 -1
9 11/3/2015 8:09:18 0.8 -1

10 11/3/2015 8:09:20 0.2 5
11 11/3/2015 8:09:21 0.6 1
12 11/3/2015 8:09:22 0 -1
13 11/3/2015 8:09:23 0.2 1
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Chapter 3  
Driver’s Decision Identification 

After collecting high-resolution event data, the second step is to identify YLR, RLR, and FSTP 
cases to study the behavior of a driver's decision of SoR at the signalized intersection. To better 
understand our identification method for YLR, RLR, and FSTP, it is necessary to first explain 
the details of event data.  

3.1 High-Resolution event data 
The raw event data collected by the SMART-SIGNAL system is first used to estimate individual 
vehicle speeds and time gaps. As shown in figure 3.1, event data contains information of 
vehicle’s arrival time (𝑇𝑇𝑖𝑖𝑜𝑜 for ith vehicle) and departure time (𝑇𝑇𝑖𝑖

𝑓𝑓 for ith vehicle). The time 
difference between 𝑇𝑇𝑖𝑖

𝑓𝑓 and 𝑇𝑇𝑖𝑖𝑜𝑜 is occupancy time (𝑡𝑡𝑖𝑖𝑜𝑜𝑜𝑜), i.e., the time the detector is occupied by 
a vehicle. If we assume a known effective vehicle length (𝑙𝑙𝑒𝑒𝑓𝑓𝑓𝑓), which is the sum of vehicle 
length and detector length (𝑙𝑙𝑑𝑑), the speed of individual vehicles (𝑣𝑣𝑖𝑖) can be calculated by the 
second equation in Eq.(1). When combining the information from two consecutive vehicles, time 
gap (𝑡𝑡𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔) and headway (𝑡𝑡𝑖𝑖ℎ) can be derived using the third and fourth equations in Eq.(1). As 
shown in previous research [20, 23], these variables can have significant impacts on drivers’ 
decisions at signalized intersections. In this research, we mainly focus on the impact of the 
occupancy time (which indicates vehicle’s velocity) and time gap (which indicates the 
relationship between vehicles). 

⎩
⎪
⎨

⎪
⎧ 𝑡𝑡𝑖𝑖𝑜𝑜𝑜𝑜 = 𝑇𝑇𝑖𝑖

𝑓𝑓 − 𝑇𝑇𝑖𝑖𝑜𝑜

𝑣𝑣𝑖𝑖 = 𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒
𝑡𝑡𝑖𝑖
𝑜𝑜𝑜𝑜

𝑡𝑡𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑇𝑇𝑖𝑖+1𝑜𝑜 − 𝑇𝑇𝑖𝑖

𝑓𝑓 + 𝑙𝑙𝑑𝑑
𝑣𝑣𝑖𝑖+1

𝑡𝑡𝑖𝑖ℎ = 𝑇𝑇𝑖𝑖+1𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑜𝑜

  (1) 
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Figure 3.1 Vehicle on-time and time gap 

3.2 FSTP/YLR/RLR Identification 
The ultimate goal of this research is to develop a model, which can predict drivers’ decisions of 
SoR using the real-time information collected from loop detectors located several hundred feet 
upstream from stop line, i.e., advance detectors. This prediction model can then be used to help 
avoid collisions by adjusting signal timing. So the first crucial step is to explore whether there is 
a strong connection between a driver’s decision of SoR and driving speed, and signal timing 
information as well as the information of the driving status of preceding and adjacent vehicles. A 
driver's decision at the end of green could be first-to-stop (i.e. FSTP; note if there is already a 
stopped vehicle, the driver's choice is simply 'stop'), or running through the intersections either 
during yellow (YLR) or red (RLR) signal. These situations represent FSTP, YLR, and RLR 
cases respectively (See fig 3(a)).  

However, merely using an advance detector cannot accurately detect RLR, YLR, and FSTP. 
Instead, we use stop-bar detectors to identify YLR, RLR, and FSTP cases. The basic idea is very 
intuitive: if a vehicle approaches stop-bar with a relatively high speed (greater than a threshold 
value), we conclude that the driver decides to run through the intersection; otherwise, this driver 
decides to stop. For the stop cases, only the vehicle which is the first to stop before the stop line 
is defined as "FSTP." For the running situations, if the signal indication is red when the vehicle 
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passes through the stop-bar detector, it is an RLR; and it is a YLR if the signal is yellow. The 
vehicle's speed is estimated using the effective vehicle length divided by the occupancy time (see 
the second equation in Eq. (1). We use 25 ft as the effective vehicle length as this value has been 
calibrated in authors’ previous research [29].  

If the stop-bar detector is installed directly behind the stop bar (such as Int. Rhode Island, see 
Fig. 2.1), the threshold value is set as 10 mph. But for some intersections like Int. Boone and Int. 
Winnetka, the detectors are located about 50 ft. behind the stop-line. Therefore, a different 
threshold value of 20 mph is applied. Note the limits of 10mph and 20 mph are experimentally 
verified and relatively conservative to ensure that the identifications of RLR are correct, but with 
the cost of missing some RLR events.  

But only using speed information can mistakenly identify cases. Therefore, two additional 
conditions are applied to confirm the identification further:   

1) Compare the average speed of three preceding vehicles and the speed of the target 
vehicle. If the speed difference is less than 10mph (and higher than the threshold values 
as mentioned before), the vehicle can be identified as passing through the intersection. 
But if the speed difference is larger than 20mph, we consider that the vehicle is slowing 
down and will stop before the stop line; 
 

2) Verify if the distance between the stop line and detector is enough for a vehicle to stop 
safely. This is especially important for the intersections where the detectors are not 
located right behind the stop line. A simple equation of motion is applied to estimate 
vehicle's stopping distance (𝑑𝑑𝑖𝑖) by assuming a deceleration rate of 10 ft/s2 (i.e. 𝑎𝑎 =
10 𝑓𝑓𝑡𝑡/𝑠𝑠2) (the value is suggested by ITE) [44]. 
 
𝑑𝑑𝑖𝑖 = 𝑣𝑣𝑖𝑖

2

2∗𝑔𝑔
  (2) 

After testing the above conditions, we can safely identify if a vehicle is running through the 
intersection or stopping before the stop line (FSTP). According to signal timing information, the 
running cases can be further categorized into RLR and YLR. Some of the identified cases are 
manually checked using the information from entrance detectors on downstream links to verify 
the accuracy of the proposed method. Note the method presented here cannot identify all cases of 
FSTP, YLR, and RLR. Some cases could be missing since the current method focuses more on 
“accurately” identifying FSTP, YLR, and RLR cases. 

3.3 Event matching between stop-bar and advanced detectors 
Another important step is to match FSTP/YLR/RLR events identified by a stop-bar detector with 
the vehicle events recorded by the corresponding advance detector located on the same lane but 
400 feet upstream (Fig.3.2(a)). The information collected by the advance detectors will later be 
used to estimate vehicle trajectories for conflict analysis and to analyze drivers’ decisions of SoR 
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to predict an RLR ultimately. The prediction must be made at the advance detector so that there 
will be time for performing any conflict or RLR prevention strategy before vehicles reach the 
intersection. Event data matching becomes tough because cars could accelerate, decelerate, and 
most importantly, change lanes while traveling from the advance detectors to the stop detectors. 
However, the matching method assumes no lane changing takes place between the advanced and 
stop detectors, which is an appropriate assumption considering the short distance between the 
two detectors, and their proximity to the intersection. 

Distance

Time

Stop-Bar Detector

Advance Detector

Downstream

Upstream

RUN (RLR)

RUN (YLR) STOP (FSTP)

GLR: Green-Light Running
YLR: Yellow-Light Running
RLR: Red-Light Running
FSTP: First-to-Stop

Match

Match

Match

RUN (GLR)
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Event 1A Event 2A

Event 1S Event 2S
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Trajectory (Event 2)

TT MAX

TT MIN

Distance

d

 

(b) 

Figure 3.2 (a) STOP or RUN event matches; (b) “Window-searching” method. 

A simple “window-searching” method is applied to match the events recorded by advance and 
stop-bar detectors (see Fig. 3.2(b)). This method first identifies a “time window” for each event 



recorded by the advance detector based on a possible maximum and minimum travel time 
required for a vehicle traveling from advance detector to stop-bar detector. 

Mathematically, the “window-searching” method can be formulated as follows. If we denote that 
one  vehicle Ve ℎ𝑖𝑖 ad  arrives  at  the  advance  detector  at  time 𝑇𝑇   a𝑑𝑑 but a set of vehicles has been  𝑖𝑖 
detected by stop-bar detector during the time ∆𝑡𝑡. If we define this set of vehicles as 𝑆𝑆stopbar = 
{ Veℎ𝑠𝑠𝑑𝑑, Veℎ𝑠𝑠𝑑𝑑 , … Veℎ𝑠𝑠𝑑𝑑 }, the 'match' problem then can be defined as a process to find a vehicle 1   2   p 

Ve ℎ 𝑠𝑠𝑑𝑑 in set 𝑆𝑆𝑠𝑠topbar, which is the same vehicle of Ve ℎ𝑖𝑖 a𝑑𝑑. Here 𝑝𝑝 is the total number of vehicles 𝑗𝑗  

in the set 𝑆𝑆𝑠𝑠topbar; and ∆𝑡𝑡 is the “time window” calculated based on the possible maximum and 
minimum travel time. Specifically, the maximum travel time (𝑇𝑇𝑇𝑇𝑚𝑚ax) for vehicle i is estimated                                                                                                                                                                                                                                                                                                      𝑖𝑖 
based on the assumption that the vehicle will fully stop at the stop bar. Also, the minimum travel 
time (𝑇𝑇𝑇𝑇   𝑚𝑚in) is calculated by assuming a maximum acceleration rate (𝑎𝑎 𝑐𝑐onstant) of 6 𝑓𝑓ee𝑡𝑡/𝑠𝑠ec2 𝑖𝑖  
suggested by Long (2000), as shown in the following equation: 

=   2∗𝑑𝑑  𝑇𝑇𝑇𝑇    𝑚𝑚ax 
  𝑖𝑖  𝑣𝑣 𝑎𝑎𝑑𝑑 𝑖𝑖 

(2) 
−𝑣𝑣𝑎𝑎𝑑𝑑+(𝑣𝑣  𝑎𝑎𝑑𝑑)2+2∗𝑑𝑑∗a constant  𝑖𝑖 𝑖𝑖 𝑚𝑚in 

                        

{𝑇𝑇𝑇𝑇𝑖𝑖                        = 

 
 

a constant 

𝑣𝑣    a𝑑𝑑 is the individual vehicle speed for Ve ℎ  a𝑑𝑑  when this vehicle arrives at the advance Where 𝑖𝑖  𝑖𝑖 

detector. Thus the ∆𝑡𝑡𝑡𝑡 can be defined as the time duration of [ 𝑇𝑇    a𝑑𝑑 + 𝑇𝑇𝑇𝑇  𝑚𝑚in, 𝑇𝑇  a𝑑𝑑 + 𝑇𝑇𝑇𝑇 𝑚𝑚ax ]. 𝑖𝑖 𝑖𝑖   𝑖𝑖  𝑖𝑖  

For vehicle Ve ℎ  a𝑑𝑑  and any vehicle Veℎ 𝑠𝑠𝑑𝑑 in set 𝑆𝑆𝑠𝑠topbar during ∆𝑡𝑡, we can set a match strength   𝑖𝑖 

function, 𝑚𝑚𝑖𝑖,𝑗𝑗, for these two vehicles: 
𝑗𝑗 

1 𝑚𝑚 𝑖𝑖,𝑗𝑗 = (3) 
  | 𝑇𝑇 s𝑑𝑑−𝑇𝑇 𝑎𝑎𝑑𝑑−𝑡𝑡 𝑖𝑖 , 𝑗𝑗 | 𝑗𝑗          𝑖𝑖 

Where 𝑇𝑇   𝑠𝑠𝑑𝑑 is the arrival time of Ve ℎ 𝑠𝑠𝑑𝑑 at the stop-bar detector and 𝑡𝑡 𝑖𝑖, 𝑗𝑗 is the expected travel time 𝑗𝑗  𝑗𝑗  

of vehicle from the advance detector to stop-bar detector. If we assume vehicles keep a constant 
acceleration or deceleration rate, 𝑡𝑡 𝑖𝑖, 𝑗𝑗  can be calculated as 

2𝑑𝑑 𝑡𝑡 𝑖𝑖, 𝑗𝑗 = (4) 𝑉𝑉   𝑎𝑎𝑑𝑑+ 𝑉𝑉  s𝑑𝑑 𝑖𝑖            𝑗𝑗 

where 𝑉𝑉 𝑠𝑠𝑑𝑑 is the vehicle speed when Ve ℎ 𝑠𝑠𝑑𝑑   arrives at the stop-bar detector and 𝑑𝑑 is the distance 𝑗𝑗  𝑗𝑗 

between the advance detector and stop-bar detector, as shown in in Figure 3.2(b). 

To search for the right match, for vehicle Ve ℎ a𝑑𝑑, we calculate 𝑚𝑚 𝑖𝑖,𝑗𝑗 between Ve ℎ  a𝑑𝑑 and any other  𝑖𝑖  𝑖𝑖 

vehicle in set 𝑆𝑆𝑠𝑠topbar. The vehicle pair with the highest value of 𝑚𝑚 𝑖𝑖, 𝑗𝑗  is considered as a right 
match. Considering that lane changing could bias our matching results, we further use the data 
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collected by downstream link entrance detectors (see Figure 2.1) to ensure that those "running" 
vehicles (i.e. RLR or YLR) traveled directly from the advance detector to link entrance detectors. 
In such situation, the possibility of lane-changing activities within such short distance (400 ft) is 
small. 

However, due to the limitation of the loop detector data, our method cannot detect all RLR cases. 
For example, although it is rare, it is possible that a vehicle that passes an advance detector 
decides to RLR by passing the car in front of him/her and moves to the other lane. In fact, our 
purpose is not to detect all RLR cases, but to ensure that all identified RLR cases are exact 
matches. Also, because we use a large amount of event data, missing some RLR cases will not 
have a significant impact on our results. 

3.4 Data Summary 
Some datasets were collected time to time for further research. Note the proposed method was 
not able to identify all the cases. Due to short link and complicated geometry for Int. Winnetka, 
the identified cases were much less than the other two intersections. Also, because of the signal 
progression design, which intends to make vehicles stop at Intersections Boone and Rhode 
Island, the cases identified in these two intersections had more FSTP and YLR cases. But for all 
three intersections, the RLR cases were not many. The possible reason could be the actuated 
signal controls for all three intersections, with long amber times of 5.5 sec due to the high-speed 
limit of 55 MPH. Therefore, most of "running" cases ended up YLR, not RLR. 

All the different aspects of study such as SoR prediction, RLR prediction, conflict estimation and 
safety evaluation were carried out at different point of time during the research process and 
hence used different datasets. A summary of various datasets used during this research is given 
below (see table 3.1, 3.2, 3.3). 

Table 3.1 Stop or Run Prediction 

Intersection Months Total events RLR events YLR events FSTP events 
Boone 3 49531 128 22794 27035 

Winnetka 3 15238 425 12009 2804 
Rhode Island 3 33572 381 22582 10609 

Total 9     
 

Table 3.2 Red Light Running Prediction 

Intersection Months Total events RLR events YLR events FSTP events 
Boone 3 42,227 289 36,155 5833 

Winnetka 3 34,127 307 28,788 5032 
Rhode Island 3 33,370 266 25,543 7561 

Total 9 109,774 862 90,486 18,426 
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Table 3.3 Conflict estimation and Safety Index 

Intersection Months Total events RLR events YLR events FSTP events 
Boone 7 73,814 637 31,469 41,708 

Winnetka 10 72,538 431 39,684 32,423 
Rhode Island 4 26,795 322 15,061 11,412 

Total 21     
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Chapter 4  
Stop-or-Run (SoR) Prediction 

In this chapter, FSTP/YLR/RLR cases have been analyzed to find factors that significantly 
impact drivers' SoR decisions. Drivers usually make their decisions at the start of the yellow 
phase and may adjust their behaviors within a range of area called dilemma zone as indicated in 
much previous research [20, 23, 31]. The factors that impact a driver's decision, according to 
other studies, include approaching speed, yellow time, traffic flow, estimated travel time to reach 
the stop-bar at the start of yellow, vehicles on adjacent lanes, etc. Some of these factors have 
been reinvestigated, and alternatives have been searched using the data collected from advance 
detectors. Data from three different months are used for this research. (for Boone Ave., the data 
from Nov., 2008, May, 2009, and Jun., 2009 are used; for Winnetka Ave., the data from Nov., 
2008, Jan., 2009, and Jun., 2009 are used; and for Boone Ave., the data from Nov., 2008, Jan., 
2009, and Feb., 2009 are used.) 

4.1 Impact Factors 
The information obtained from advance detectors located 400 feet upstream from the stop-bar 
has been utilized in the analysis. Vehicle's behaviors including FSTP, YLR, and RLR have been 
identified using the program introduced in the previous chapter. The information that could 
impact drivers' decisions and could be directly collected from advance loops includes occupancy 
time and time gap between consecutive vehicles. This information primarily indicates vehicle's 
velocity and the (time) distance between the target and leading vehicles at the time when the 
target vehicle passes the detector. Signal timing has also been collected. But since we are only 
interested in major approach through movements, most of the signal timing information such as 
yellow time, cycle length, and all red time are invariable (since all six intersections are 
coordinated with each other, so they have a constant cycle duration of 180 seconds). Two types 
of signal timing related information, which we think will significantly impact drivers' decisions, 
have been chosen to be: 

• used yellow time, i.e. the portion of yellow time that elapsed before the vehicle arrives at 
the advance detector; and 

• time to yellow start, i.e. the time left until signal changes to yellow.  

Also, to analyze if surrounding vehicles' statuses have an impact on the target vehicle, the data 
for three preceding vehicles including occupancy times, time gaps, and their decisions (i.e. RLR 
or YLR) and the information of whether there is a vehicle driving on the adjacent lane were 
collected. In summary, the following factors have been analyzed in this chapter: 

• Occ_A: occupancy time for the target vehicle when passing advance detector; 



𝑙𝑙 𝑌𝑌𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 + 𝑖𝑖𝑓𝑓 𝑌𝑌𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈     > 0               𝐴𝐴   𝑣𝑣𝑖𝑖 𝐴𝐴 
EST =         TravelTime 𝑖𝑖 𝑙𝑙          𝑚𝑚ax  {0, − 𝐺𝐺2𝑌𝑌   } 𝑖𝑖𝑓𝑓 𝐺𝐺2𝑌𝑌 > 0 𝑆𝑆tart 𝐴𝐴 𝑆𝑆𝑆𝑆ar𝑆𝑆𝐴𝐴   𝑣𝑣𝑖𝑖   

 

 { 

• 
• 

Gap_A: time gap between the target vehicle and the nearest preceding vehicle; 
YT_Used_A: the portion of yellow time that elapsed before vehicle arrives at advance 
detector; 
G2Y_Start_A: the time left until signal changes to yellow; 
Occ_A1, Occ_A2, Occ_A3: occupancy times for the three preceding vehicles (A1 is the 
nearest one to the target vehicle); 
Gap_A1, Gap_A2, Gap_A3: time gaps for the three preceding vehicles (A1 is the closest 
one to the target vehicle); 
RLR_A1, RLR_A2, RLR_A3: vehicles’ behaviors for three preceding vehicles, category 
variables with possible values of green-light running (GLR), YLR or RLR; 
RLR_AA: presence of running vehicles in the adjacent lane, a binary variable with "1" 
represents yes and "0" no; 
EST_TravelTime: estimated travel time to reach the stop-bar at the start of yellow. 

EST_TravelTime has been determined using vehicle speed (calculated from occupancy 

• 
• 

• 

• 

• 

• 

Note 
time) and signal timing information (including YT_Used_A and G2Y_Start_A). The following 
equation has been applied to estimate EST_TravelTime value: 

(4) 

4.2 Mean Values 
Before testing the significance of all these factors, it was necessary to visually compare the mean 
values of some important factors for both “stop” and “run” situations, i.e., FSTP and RUN. Fig. 4 
presents the average values of Occ_A, Gap_A, Occ_A1, Gap_A1, G2Y_Start_A, YT_Used_A, 
and EST_TravelTime for both "FSTP" and "RUN" situations for all three intersections. As 
indicated in the figure, most factors have significantly different mean values when a driver 
makes different decisions, especially for time gaps (Figure 4.1(b)), used yellow time (Figure 
4.1(f)), and estimated travel time (Figure 4.1(g)). But occupancy values do not show significant 
changes in two different behaviors (Figure 4.1(a)). 
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Figure 4.1 Mean values for FSTP and RUN 
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4.3 Significance Testing 
A more rigorous way to test the significance of a factor is to apply a statistics model. Since a 
driver’s SoR decision is a binary variable, a binary logistic regression model has been used to 
determine the probability that a vehicle will stop or run through the intersection.  

𝑔𝑔𝑖𝑖
1−𝑔𝑔𝑖𝑖

= 𝑉𝑉𝛼𝛼+𝛽𝛽′����⃑ 𝑋𝑋𝚤𝚤����⃑  (5) 

wherep_i is the probability of stop or run; α is a constant; (β^' ) ⃑ is a vector of slope parameters; 
and (X_i ) ⃑ is a vector of predictor variables. 

All factors mentioned in Section 4.1 (except EST_TravelTime) have been used to fit the model. 
Some dummy variables have also been introduced to describe categorical variables. For example 
RLR_A1_Dm1 = (0, 1, 0) where“1” represents “YLR” and RLR_A1_Dm2= (0, 0, 1) where“1” 
represents “RLR”. A similar design has been applied to RLR_A2 and RLR_A3. For RLR_AA, 
we defined RLR_AA_Dm = (0, 1) where“1” represents the presence of a vehicle driving in an 
adjacent lane. 

After setting up these variables, the binary backward stepwise logistic regression model in SPSS 
(v. 20) has been applied to analyze the three intersections’ data respectively. The results are 
shown in Table 4.1. 

Table 4.1 The Binary Logistic Regression Model (red and bold indicates the factor is 
significant) 

Int. Boone Ave. Int. Winnetka Int. Rhode Island 
B Sig. B Sig. B Sig. 

Occ_A -7.509 .000 -8.938 .000 -5.782 .000 
Gap_A -.049 .000 -.075 .000 -.031 .000 

YT_Used_A -1.808 .000 -1.315 .000 -2.309 .000 
G2Y_Start_A .678 .000 .240 .000 .070 .000 

Occ_A1 -.610 .000 
Gap_A1 -.013 .000 -.020 .000 -.011 .000 

RLR_A1_Dm1 .719 .000 .649 .000 .291 .000 
RLR_A1_Dm2 1.667 .083 3.447 .001 

Occ_A2 -.186 .016 .282 .021 
Gap_A2 -.015 .000 

RLR_A2_Dm1 3.294 .008 
RLR_A2_Dm2 

Occ_A3 .986 .000 
Gap_A3 -.010 .000 

RLR_A3_Dm1 1.808 .000 .682 .074 1.900 .000 
RLR_A3_Dm2 8.836 .002 



As shown in Table 4.1, significant factors were not the same for all the three models based on 
data collected from the intersections. However, occupancy time (Occ_A), used yellow time 
(YT_Used_A), and time to yellow start (G2Y_Start_A) were significant for all three models. 
These three factors essentially indicate estimated travel time. The time gaps between the target 
vehicle and the nearest two preceding vehicles (Gap_A and Gap_A1) also showed significance 
in the model. Also, whether the preceding vehicle passed the intersection during the yellow 
interval (RLR_A1_Dm1) had a significant impact on the model. The significance of these three 
factors (Gap_A, Gap_A1, RLR_A1_Dm1) indicated that a driver’s decision of SoR is influenced 
by the status and decisions of the nearest preceding vehicles. Although the vehicles before the 
nearest preceding vehicles (A2 & A3) could have an impact on drivers' decision making as 
shown in Table 1 (for example, some factors like Gap_A2 and RLR_A3_Dm1 were significant 
at some intersections), the significance was not consistent for all intersections. Also, a vehicle 
passing by in the adjacent lane (RLR_AA_Dm) showed significant impact on the fit model. To 
be known, all three models were significant with an R-squared value around 0.65. Although the 
findings were consistent with previous research, the concept of testing the impact of three 
preceding vehicles introduced in this research is relatively new. 

4.4 Estimated Travel Time 
As we mentioned, Occ_A, YT_Used_A, and G2Y_Start_A primarily represent the information 
of estimated travel time to the stop-bar at the yellow start. To investigate the significance of the 
estimated travel time as done in most of the previous research, Occ_A, YT_Used_A and 
G2Y_Start_A were replaced by EST_TravelTime and the logistic regression model was re-run. 
The results are shown in Table 4.2. 

Table 4.2 The Binary Logistic Regression Model Using EST_TravelTime Data (red and 
bold indicates the factor is significant) 
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 Int. Boone Ave. Int. Winnetka Int. Rhode Island 
B Sig. B Sig. B Sig. 

Gap_A -.055 .000 -.078 .000 -.036 .000 
EST_TravelTime -.946 .000 -.687 .000 -.594 .000 

Occ_A1 -.209 .000   -.770 .000 
Gap_A1 -.017 .000 -.017 .000 -.016 .000 

RLR_A1_Dm1 .773 .000 .722 .000 .460 .000 
RLR_A1_Dm2       

Occ_A2 .360 .000 -.320 .003   

RLR_AA_Dm .345 .000 .788 .000 -.080 .023 
Constant 2.343 .000 4.989 .000 4.292 .000 

Sig. of Model .000 .000 .000 
R Square .691 .642 .616 

 



27 

Gap_A2 -.018 .000 -.007 .093 -.008 .000 
RLR_A2_Dm1 
RLR_A2_Dm2 

Occ_A3 .177 .061 
Gap_A3 -.013 .000 

RLR_A3_Dm1 1.317 .000 .924 .000 
RLR_A3_Dm2 4.279 .004 
RLR_AA_Dm .407 .000 .741 .000 -.197 .000 

Constant 3.886 .000 5.150 .000 4.755 .000 
Sig. of Model .000 .000 .000 

R Square .682 .609 .532 

Without any surprise, the results indicated that estimated travel time was significant to the 
regression model. Besides, the model fitting results also showed that Gap_A, Gap_A1, 
RLR_A1_Dm1, and RLR_AA_Dm were significant for all the three intersections, similar to the 
testing results shown in Table 1. The R-squares of the new models using EST_TravelTime were 
less than the previous model using Occ_A, YT_Used_A, and G2Y_Start_A, but the differences 
were slight. This testing merely indicated that we could use the information of Occ_A, 
YT_Used_A, and G2Y_Start_A, which can be directly measured from loop detectors and signal 
system, instead of estimated travel time, to predict the possibility of a driver’s decision of stop or 
go through the intersection. 

4.5 Prediction Model 
A principal purpose of this research was to verify whether we can use loop detector information 
to predict drivers' SoR behaviors when signal switches to yellow. Based on Eq. 5, the probability 
of “go” (𝑃𝑃𝐺𝐺𝑜𝑜) and “stop” (𝑃𝑃𝑆𝑆𝑡𝑡𝑜𝑜𝑔𝑔) has been estimated using Eq. 6: 

⎩
⎨

⎧ 𝑃𝑃𝐺𝐺𝑜𝑜 = 𝑝𝑝𝑖𝑖 = 𝑒𝑒𝛼𝛼+𝛽𝛽′
�����⃑ 𝑋𝑋𝚤𝚤�����⃑

1+𝑒𝑒𝛼𝛼+𝛽𝛽′�����⃑ 𝑋𝑋𝚤𝚤�����⃑

𝑃𝑃𝑆𝑆𝑡𝑡𝑜𝑜𝑔𝑔 = 1 − 𝑝𝑝𝑖𝑖 = 𝑒𝑒𝛼𝛼+𝛽𝛽′
�����⃑ 𝑋𝑋𝚤𝚤�����⃑

1+𝑒𝑒𝛼𝛼+𝛽𝛽′�����⃑ 𝑋𝑋𝚤𝚤�����⃑

(6) 

The constant and slope parameters have been determined in Table 1. 

To verify the accuracy, we used a new month’s data (Dec. 2008) at Int. Rhode Island. Using this 
month’s data and applying our program introduced in Section 2, we were able to identify a total 
of 11410 cases, of which 3431 were FSTP, i.e. “stop” cases, and 7979 were either YLR or RLR, 
i.e. “run” cases. Using Eq. 6 and the values presented in Table 1, we correctly estimated 9967
events. The accuracy rate was found to be 87%.
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For comparison, we also used the model with EST_TravelTime and the parameter values 
presented in Table 2 to predict drivers’ decisions. This model was able to correctly predict 9727 
events with an accuracy rate of 85%. 

This experiment clearly demonstrated that using information collected from advance detectors; 
we were able to accurately predict drivers' decision of "stop" or "run." Since all the information 
required could be collected in real time, the model presented here could be used to predict 
drivers' decision in real time and could be tremendously beneficial for real-time collision 
avoidance. 

 

  



29 
 

Chapter 5  
Red-Light-Running (RLR) Prediction 

5.1 Influential factors for RLR  
The large amount of matched event data presented in Chapter 2 record the specific driving 
behaviors of each vehicle (i.e. RLR, YLR, or FSTP). From a statistical point of view, a driver's 
current driving conditions (i.e. speed and the time gap between the target and leading vehicles), 
together with surrounding traffic conditions (i.e. the driving behaviors of surrounding vehicles) 
and signal timing situations (i.e. signal status of green, yellow, or red and their durations), would 
directly or indirectly lead to the driver's later behavior of RLR and Non-RLR (note YLR and 
FSTP has been combined as Non-RLR class). Therefore, by statistically analyzing a large 
amount of event data, the inner correlation between all these impact factors and driver's RLR or 
Non-RLR behavior could be derived; and such correlation then could be used to predict RLR 
through some statistical methods, such as logistic regression. 

5.1.1 A binary logistic regression model  

Since a driver’s RLR behavior is a binary variable, a binary logistic regression model has been 
applied to describe the correlation between all impact factors and driver’s RLR behavior (RLR or 
Non-RLR). If we had to define RLR and Non-RLR as “1” and “0”, respectively, a standard 
logistic regression model for RLR could be described as: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡[𝜋𝜋𝑖𝑖] = 𝑙𝑙𝑙𝑙𝑙𝑙 � 𝜋𝜋𝑖𝑖
1−𝜋𝜋𝑖𝑖

� = 𝛼𝛼 + 𝛽𝛽𝑐𝑐𝑚𝑚𝑖𝑖                 (4) 

where 𝜋𝜋𝑖𝑖 is the probability that the target vehicle i is a RLR and 1 − 𝜋𝜋𝑖𝑖  is the probability that the 
target vehicle i is a Non-RLR; 𝑚𝑚𝑖𝑖 represents a vector of all control factors which impact the 
behavior of vehicle i (the details about control factors will be discussed in next section); 𝛼𝛼 is an 
intercept parameter; and 𝛽𝛽𝑐𝑐 is a vector of the coefficients of the corresponding control factors. 𝛼𝛼 
and 𝛽𝛽𝑐𝑐 have been estimated by the method of maximum likelihood estimation (MLE). The 
likelihood function was constructed as Eq. (5). By maximizing the log-likelihood expression 
shown in Eq. (6), the estimate of the new intercept parameter 𝛼𝛼 and coefficients vector 𝛽𝛽𝑐𝑐 has 
been obtained accordingly. Note the "logit" function in the Stata (v. 10) was used to get all the 
results.  

𝑙𝑙(𝛽𝛽𝑐𝑐) = ∏ {𝜋𝜋(𝑚𝑚𝑖𝑖)𝑦𝑦𝑖𝑖[1 − 𝜋𝜋(𝑚𝑚𝑖𝑖)]1−𝑦𝑦𝑖𝑖}𝑜𝑜
𝑖𝑖=1                    (5) 

𝐿𝐿𝐿𝐿(𝛽𝛽𝑐𝑐) = ln�𝑙𝑙(𝛽𝛽𝑐𝑐)� = ∑ {𝑦𝑦𝑖𝑖𝑙𝑙𝑙𝑙[𝜋𝜋(𝑚𝑚𝑖𝑖)] + (1 − 𝑦𝑦𝑖𝑖)𝑙𝑙𝑙𝑙[1 − 𝜋𝜋(𝑚𝑚𝑖𝑖)]}𝑜𝑜
𝑖𝑖=1     (6) 



Occ_A Occupancy time for the target vehicle when passing advance detector (s) 
Gap_A Time gap between the target vehicle and the nearest preceding vehicle (s) 

Yt_Used_A The yellow time that elapsed before vehicle arrives at advance detector (s) 
G2Y_Start_A The green time left until signal changes to yellow (s) 

Occ_A1 Occupancy time for three preceding vehicles (A1 is the nearest one to the target Occ_A2 vehicle) (s) Occ_A3 
Gap_A1 Time gap for three preceding vehicles (A1 is the nearest one to the target vehicle) Gap_A2 (s) Gap_A3 

YLR_A1_Dm Vehicles’ YLR behaviors for three preceding vehicles (A1 is the nearest one to the 
YLR_A2_Dm target vehicle); a binary variable with “1” represents yes (i.e. YLR) and “0” no. 
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Variable Description 

 

where 𝑦𝑦𝑖𝑖 represent that whether vehicle i would run the red light, with a value of either 0 or 1 
only; 𝑖𝑖 = 1,2, …𝑙𝑙 and n is the total number of observed vehicles. 

5.1.2 Influential factors and significance 

To apply Eq. (4), the first critical step was to figure out influential or control factors (i.e. 𝑚𝑚𝑖𝑖 in 
Eq. (4)), which had direct or indirect impacts on drivers’ RLR or Non-RLR behaviors. Much 
previous research has studied this problem (e.g. Bonneson et al., 2001; Gates et al., 2007; Yang 
and Najm, 2007; Elmitiny et al., 2010;, etc.). In this research, we considered all the potential 
factors extracted from the high-resolution traffic and signal event data which could impact a 
driver’s RLR behavior, as shown in Table 2. This list included the information of occupancy 
time and the time gap between consecutive vehicles, which essentially indicate the vehicle’s 
velocity and the (time) distance between the target and the leading vehicles at the time at which 
the target vehicle passes the detector. Signal timing has also been included in the list. Two types 
of signal timing related information that significantly affects drivers’ behaviors have been chosen 
to be used here:  

(a) the used yellow time, that is, the portion of yellow time that elapsed before the vehicle arrives 
at the advance detector; and 

(b) the time to yellow start, that is, the time left until the signal changes to yellow.  

Also, to analyze whether the status of the surrounding vehicles had an effect on the target 
vehicle, the data for three preceding vehicles had been collected. The data included occupancy 
times, time gaps, and their behaviors (i.e., RLR or YLR) and the information on whether there 
was a vehicle driving in the adjacent lane. In summary, this list includes most of the potential 
factors such as the driving conditions of the target vehicle itself, driving conditions of 
surrounding vehicles, and signal timing information. The significance of these factors has been 
determined during the regression process. 

Table 5.1 Descriptive statistics of the potential variables 
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YLR_A3_Dm 
RLR_A1_Dm Vehicles’ RLR behaviors for three preceding vehicles (A1 is the nearest one to the 

target vehicle); a binary variable with “1” represents yes (i.e. RLR) and “0” no. RLR_A2_Dm 
RLR_A3_Dm 

AA_Dm Presence of running vehicles on the adjacent lane, a binary variable with “1” 
represents yes and “0” represents no. 

 

After identifying all possible influential factors as shown in Table 5.1, we then use the data 
extracted from Chapter 3 to test the significance of these influential factors statistically. Note for 
each intersection, three-month data were collected, but only two-month' data were used to derive 
intercept parameters and coefficient vectors; the other month's data were used later for evaluating 
RLR prediction. All factors described in Table 5.1 were used to fit a binary logistic regression 
model. The results are shown in Table 5.2. The "logit" function in the Stata (v. 10) was used to 
obtain all the results.  

Table 5.2 Standard binary logistic regression model 

 Int. Boone Ave. Int. Winnetka Int. Rhode Island 
Variable Parameter P-value Parameter P-value Parameter P-value 

Constant -2.663 P<0.01 -2.140 P<0.01 -2.263 P<0.01 
Occ_A -1.275 P<0.01 -0.707 P<0.01 -1.867 P<0.01 
Gap_A -0.004 P<0.05 -0.002 P<0.05 -0.010 P<0.01 
Yt_Used_A 0.282 P<0.01 0.296 P<0.01 0.526 P<0.01 
G2Y_Start_A -3.052 P<0.01 -1.616 P<0.01 -3.437 P<0.01 
Occ_A1 / / 1.146 P<0.01 1.947 P<0.01 
RLR_A1_Dm / / -3.371 P<0.01 / / 
Gap_A2 0.008 P<0.01 / / / / 
YLR_A2_Dm 0.670 P<0.01 0.965 P<0.01 0.266 P<0.05 
Gap_A3 / / / / 0.010 P<0.01 
YLR_A3_Dm 0.628 P<0.01 / / 0.591 P<0.05 
AA_Dm 0.481 P<0.05 0.213 P<0.05 0.354 P<0.01 

Note: *: Significance of model = .000; “/” indicates that variable is not significant.  
 

Only variables which are statistically significant at the significance level of 0.05 has been 
included in the table. The results showed that Occ_A, YT_Used_A, and G2Y_Start_A were 
common significant factors for all three intersections. This was consistent with our 
understanding of RLR behaviors. As we know, Occ_A indicates the speed of the target vehicle. 
This factor, together with used yellow time (YT_Used_A), and time to yellow start 
(G2Y_Start_A), certainly has a significant impact on whether a driver decides to pass the 
intersection within the rest of yellow time. The results also showed that Gap_A (i.e. time gap) 
was a common significant factor for all three intersections that indicated vehicles' car-following 
behavior, i.e., the shorter the gap time, the more likely the following vehicle would follow the 
leading vehicle and run through the intersection even traffic light is red. Interestingly, the results 



also showed that the YLR behavior of the second preceding vehicle (i.e. YLR_A2_Dm) was 
significant for all three intersections which probably indicated platoon behavior. That means 
when the first vehicle in a platoon runs through the intersection during yellow; the following 
several vehicles very likely end up either YLR or RLR since long yellow time (i.e. 5 sec) was 
provided for these three intersections. 

Also, whether there was a vehicle passing through on the adjacent lane (AA_Dm) showed a 
significant effect on RLR for all three intersections. This demonstrated that the "following" 
behavior of drivers was not only impacted by preceding vehicles, but also by adjacent vehicles. 
Note that all fittings were statistically significant. 

5.2 RLR prediction using rare events logistic regression 
Based on Eq. (4), the probability that the target vehicle was a RLR could be described by the 
logistic distribution as shown in the following equation: 

=    exp(𝛼𝛼 + 𝛽𝛽 𝑐𝑐 x 𝑖𝑖)  𝑝𝑝(𝑦𝑦𝑖𝑖  = 1|x 𝑖𝑖) = 𝜋𝜋𝑖𝑖 (7) 
1+exp(𝛼𝛼 +𝛽𝛽 𝑐𝑐 x𝑖𝑖) 

where 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 denotes the behavior of vehicle i. 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 1 means the vehicle i is a RLR. 
 
The above logistic regression model worked well for YLR prediction (Lu et al., 2015). However, 
when applying to RLR prediction, the prediction accuracy was very low due to the rare events 
nature of RLR. As shown in Table 1, the proportions of RLR events were small for all three 
intersections: 0.7% at Int. Boone, 1.0% at Int. Winnetka, and 0.8% at Int. Rhode Island. With 
such small portions of RLR, applying the standard binary logistic regression method sharply 
underestimated the probability for RLR. To address this challenging issue, a modified rare events 
binary logistic regression, originally developed by King and Zeng (2001 and 2002), has been 
applied in this research to improve RLR predictions. 

5.2.1 Rare events logistic regression method & fitting results 

The proposed rare events logistic regression method essentially included the following three-step 
correction procedure (King and Zeng, 2001 and 2002): 

Step 1: The first step was to apply a choice-based data collection strategy to select Non-RLR 
cases randomly. This move would form a new dataset, in which all RLR cases would be included 
but only a portion of randomly selected Non-RLR cases would be included. In this new dataset, 
the ratio of RLR events to Non-RLR events was recommended to set around 1:10 as suggested 
by other rare events studies (e.g. Beguería, 2006 and Guns and Vanacker, 2012). With the new 
dataset,  the  MLE  technique  could  be   applied   to  estimate  new  intercept  parameter 𝛼𝛼� and 
coefficients vector �̂�𝛽𝑐𝑐 . 
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 α� =  α�  −  ln[ (    1−𝜏𝜏)  (    )] 
𝜀𝜀 

(8) 
 𝜏𝜏     1−𝜀𝜀 

     
 

Step 2: However, the use of choice-based sampling strategy could have significantly biased the 
estimation of intercept parameter α� .  Therefore, the second step was to apply a prior correction to 
avoid sampling bias. In this step, the corrected intercept parameter α�  was calculated based on the 
uncorrected intercept parameter  α� ,         as in Eq. (8): 

 

where 𝜏𝜏 is the actual fraction of “1”s (i.e. RLRs) in the whole population, and 𝜀𝜀 is the observed 
fraction of “1”s in the new dataset. 

Step 3: With corrected intercept  α� and updated coefficients vector �̂�𝛽𝑐𝑐 , Eq. (7) could be used to 
 calculate the updated  probabilities 𝑃𝑃�𝑖𝑖  .  However,  𝑃𝑃�𝑖𝑖 was still an  underestimated   probability,  

because the estimation uncertainty of the coefficients vector �̂�𝛽𝑐𝑐  was neglected. So the third step 
was to correct     by introducing a correction factor 𝐶𝐶 𝑖𝑖  to 𝑃𝑃�𝑖𝑖. The final corrected probability 𝑃𝑃  𝑖𝑖 
was obtained as: 

𝑃𝑃�𝑖𝑖     

𝑃𝑃𝑖𝑖  =  𝑃𝑃�𝑖𝑖   + 𝐶𝐶 𝑖𝑖 
              𝐶𝐶 𝑖𝑖 = ( 0.5 – 𝑃𝑃�𝑖𝑖)  𝑃𝑃�𝑖𝑖  (1 − 𝑃𝑃�𝑖𝑖   ) 𝑋𝑋  𝑖𝑖   𝑉𝑉  (𝛽𝛽)   𝑖𝑖     
{ (9) 

where 𝛽𝛽 = (α�, �̂�𝛽  𝑐𝑐), 𝑋𝑋𝑖𝑖  = [1,  𝑥𝑥  𝑖𝑖], 𝛽𝛽 and 𝑋𝑋 𝑖𝑖 have same dimensions,    𝑖𝑖   is the transpose of 𝑋𝑋𝑖𝑖, and 
𝑉𝑉(𝛽𝛽) is the estimated variance-covariance matrix of the estimated coefficients. 

𝑋𝑋𝑋𝑋́

𝑋𝑋𝑋𝑋́

The rare events logistic regression model was applied to fit the high-resolution event data 
collected earlier. The regression fitting results are displayed in Table 5.3. Note two same 
months’ data were used to derive intercept parameter and coefficients vector, and the other 
month’s data were used for evaluation. To implement the rare events logistic regression model, 
we used the “relogit” function in the Stata (v.10). The results are shown in Table 5.3. 

Table 5.3 Rare events logistic regression model 
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 Int. Boone Ave. Int. Winnetka Int. Rhode Island 
Variable Parameter P-value Parameter P-value Parameter P-value 

Constant -1.998 P<0.01 -1.885 P<0.01 -1.537 P<0.01 
Occ_A -1.371 P<0.01 -1.685 P<0.01 -1.830 P<0.01 
Gap_A -0.001 P<0.01 -0.010 P<0.01 -0.017 P<0.01 
Yt_Used_A 0.342 P<0.01 0.176 P<0.01 0.721 P<0.01 
G2Y_Start_A -3.331 P<0.01 -1.745 P<0.01 -3.074 P<0.01 
Occ_A1 / / 1.068 P<0.01 1.035 P<0.01 
RLR_A1_Dm / / -2.337 P<0.01 / / 
Gap_A2 0.039 P<0.01 / / / / 
YLR_A2_Dm 0.640 P<0.01 1.106 P<0.01 0.169 P<0.05 
Gap_A3 / / / / 0.011 P<0.01 
YLR_A3_Dm 1.202 P<0.01 / / 1.263 P<0.05 
AA_Dm 0.803 P<0.05 0.436 P<0.05 0.162 P<0.01  



Note: *: Significance of model = .000; “/” indicates that variable is not significant. 

The significant impact factors of the rare events model were consistent with those factors for the 
standard logistic regression model. In addition, there were not any factors which flipped the signs 
after applying the rare events logistic regression model. This further indicated the consistency 
between the standard and rare events logistic regression models. But the values for all significant 
factors have been changed. 

5.2.2 Prediction Comparison 

For comparison, both the regression models presented in Table 5.2 and Table 5.3 were used to 
predict RLR based on the event data collected from the third month. The variables that were 
statistically significant at the significance level of 0.05 were included in the prediction models. 
As we mentioned before, for each intersection, three month's data were collected, but only two- 
month' data were used to derive intercept parameters and coefficient vectors; the other month's 
data were used for evaluating prediction accuracy. Table 5.4 presents all the prediction results. 
Note “standard” and “rare” represent standard binary logistic regression model and rare events 
binary logistic regression model respectively. 

Table 5.4 RLR predictions 

Note: *: Standard and Rare represent standard binary logistic regression model and rare events binary 
logistic regression model, respectively. 

From Table 5.4, the result showed that the rare events regression models performed significantly 
better than standard models. The accurate prediction rate (defined as the ratio between correct 
RLR prediction number and actual RLR number) jumped from around 45% to near 80% after 
applying the rare events binary logistic regression methods. Although the false alarm rate 
(defined as the falsely predicted RLR number over total event number) has been increased, an 
overall 2.0% false alarm rate is acceptable for real applications. 

To further compare the performance of all these models, the Receiver Operating Characteristics 
(ROC) curves were plotted and the area under the curves (AUC) of these models were 
calculated. ROC curves and AUCs are frequently used to compare the performance of different 
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 Int. Boone Int. Winnetka Int. Rhode 
Regression Model* Standard Rare Standard Rare Standard Rare 

Total Events 19960 14730 11400 
Actual RLR Number 119 128 74 
Predict RLR Number 247 405 211 357 169 293 
Correct RLR Number 58 90 63 99 32 52 

False Alarm Rate 0.9% 1.6% 1.0% 1.7% 1.2% 2.3% 
Accurate Predication Rate 48.7% 75.6% 49.2% 77.3% 43.2% 70.3% 
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methods (Ling et al., 2003). ROC curve directly shows that which model is dominating, and the 
model with larger AUC also indicates better performance. Fig.5.1 (a), (b) and (c) shows the ROC 
curves and AUC values for the standard and rare events binary logistic regression models for 
three intersections, respectively. The figures clearly demonstrated that the rare events logistic 
regression model was significantly superior to the standard binary logistic regression model.  

  

Figure 5.1 ROC plots and AUC values for standard and rare events models 

  

5.3 Summary 
For prediction and prevention of the potential RLR, it was important to gain a better 
understanding of the relationship between RLR and the impact factors which contribute to 
drivers' RLR behaviors.  A large amount of high-resolution traffic and signal data collected from 
loop detectors was used to extract 9-month's RLR events from three signalized intersections, and 
then identify the influential factors that significantly affected RLR behaviors. The data analysis 
indicated that occupancy time, time gap, used yellow time, time left to yellow start, whether the 
preceding vehicle runs through the intersection during yellow, and whether there was a vehicle 
passing through the intersection in the adjacent lane are significant factors for determining RLR 
behaviors. 

Furthermore, this research addressed the rare events issue of RLR prediction by developing a 
rare events binary logistic regression model. To be noted, it was the first time to apply rare 
events logistic regression for RLR study according to our limited knowledge. The results showed 
that rare events logistic regression model performed significantly better than standard logistic 
regression model. The accurate prediction rate jumped from about 45% for standard logistic 
regression models to near 80% for rare events regression methods. Although the false alarm rate 
has been increased, an overall 2.0% false alarm rate was still acceptable for real applications. 
Moreover, the proposed RLR prediction methods were purely based on the loop detector data 
collected from single advance detectors located 400 feet away from stop-bar. This demonstrated 
that the proposed models have great potential for future field applications since loops have been 
widely implemented in most of the intersections and can automatically collect data in real time. 
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Therefore, this research is expected to contribute to the improvement of intersection safety 
significantly. 

However, although the rare events logistic regression model was superior to the standard logistic 
regression model, the accuracy of the RLR prediction rate was still not very high, and the false 
alarm rate was relatively high. One potential reason was that some important factors which could 
not be collected in real time (i.e. the gender of the driver, age, vehicle type, etc.) were not 
included in our analysis. Also, some other classification models such as decision trees, linear 
discriminant analysis (LDA), vector support machine (VSM) could also be applied to generate 
better prediction results. All these will be left for our future research.  
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Chapter 6  
Conflict Estimation and Intersection Safety Index 

All rear-end traffic conflicts for this study were counted for the major road (TH-55) only. 
Conflicts for the minor approaches were only considered during the crossing conflict stage.  

6.1 Rear-end Conflict Identification 
A conflict has been identified by calculating the difference in projected distance traveled 
between two following vehicles. If the projected distance traveled over a period of time, for the 
leading vehicle, is less than that of the following vehicle, then there is a rear-end conflict. The 
projected distance could be calculated using simple physics shown in Eq.(1). 

𝒅𝒅𝑷𝑷 = 𝒗𝒗 ∗ 𝑻𝑻𝑻𝑻𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 (1) 

where 𝑑𝑑𝑃𝑃 is projected distance, 𝑣𝑣 is individual vehicle speed, and 𝑇𝑇𝑇𝑇𝐶𝐶𝑚𝑚𝑔𝑔𝑚𝑚 is maximum time-to-
collision. The maximum TTC determines how far into the future the distance will be projected. 
This value can be set by the user to any value they deem appropriate; however, the farther the 
distance is projected, the more time there is for a change in trajectory to occur in the real world, 
which will not be accounted for in the projected distance. A maximum TTC that is too high 
would result in inaccurate results. A value of 1.5 seconds has typically been suggested in 
previous research and the SSAM Validation Report [43]. 

With vehicle speeds calculated as described in Section 2.1, and the gap time between succeeding 
vehicles known from the detector data, the trajectory of the leading vehicle could be calculated 
by modifying Eq.(1) to include the gap time as shown in Eq.(2). 

𝒅𝒅𝟏𝟏 = 𝒗𝒗𝟏𝟏 ∗ (𝒈𝒈 + 𝑻𝑻𝑻𝑻𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎) (2) 

where 𝑑𝑑1 is the distance traveled between the time the leading vehicle left the detector and the 
time the following vehicle arrived plus the specified maximum TTC, 𝑣𝑣1 is the leading vehicle’s 
speed, and 𝑙𝑙 is the gap time between the leading and following vehicles. The distance traveled 
by the following vehicle, 𝑑𝑑2, was calculated without the gap time included, similar to Eq.(1). 
These two distances were then compared, and if the following vehicle's projected distance was 
greater than the leading vehicle, a rear-end conflict had occurred. Figure 6.1 illustrates Eq.(2) in 
detail, assuming the following vehicle's speed is higher than the leading vehicle's speed. 
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Figure 6.1 Rear-end conflicts  

Since TTC max is only a threshold value to define a conflict and not necessarily the actual TTC 
(the initial time of conflict), TTC must be calculated per Eq.(3) 

𝑻𝑻𝑻𝑻𝑻𝑻 =
𝒈𝒈 ∗ 𝒗𝒗𝟏𝟏
𝒗𝒗𝟐𝟐 − 𝒗𝒗𝟏𝟏

 (3) 

Acceleration data could be added by estimating the following vehicle’s trajectory. Since driver’s 
behavior is dynamic and constantly adjusting to the existing situation, assuming a constant speed 
during the conflict event was not an accurate approach. To help account for this, acceleration rate 
could be estimated using the “match” method. As explained earlier, the stop detector could be 
matched to the corresponding advance detector to get two points on the vehicle’s trajectory. With 
data known at two points, constant acceleration could now be applied to determine a more 
accurate projection for conflict identification. The new calculation for the following vehicle’s 
projection could now be modified as shown in Eq.(4). This step, however, requires data from 
multiple detectors. 

𝒅𝒅𝟐𝟐 =
𝒗𝒗𝑨𝑨 + 𝒗𝒗𝑺𝑺

𝟐𝟐
 ×  (𝐓𝐓𝐓𝐓𝐓𝐓𝐦𝐦𝐦𝐦𝐦𝐦) (4) 

6.2 Crossing Conflict Identification 
Crossing conflicts are determined by first splitting the intersection into 4 "Conflict Zones." When 
two vehicles with crossing trajectories are projected to be in the same Conflict Zone at the same 
time, a crossing conflict is identified. Figure 6.2 shows how the conflict zones are split. 
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Figure 6.2  Conflict Zones. 

To see if two crossing vehicles were inside the same zone, arrival times must be calculated for 
each vehicle. Two possible trajectory types could be identified here: 1) running through the 
intersection without stopping, and 2) accelerating from a stopped position. The first case was 
simple to calculate and was done by Eq.(5). 

𝑨𝑨𝑻𝑻 = 𝑬𝑬𝒗𝒗𝑬𝑬𝑬𝑬𝑬𝑬 𝑺𝑺𝑬𝑬𝒎𝒎𝑺𝑺𝑬𝑬 𝑻𝑻𝑻𝑻𝒎𝒎𝑬𝑬 + (𝒅𝒅𝑻𝑻/𝒗𝒗𝑺𝑺) (5) 

where AT is arrival time, event start time is given by the detector data, 𝑑𝑑𝑖𝑖  is the distance to the 
desired Conflict Zone, and 𝑣𝑣𝑆𝑆 is the speed of the through vehicle at the stop detector. 

If the driver stops, then the Entrance detector past the intersection must be used to estimate 
acceleration from a stopped position. In this case, the speed of the stop-bar detector from Eq.(5) 
was replaced with the average speed of the Entrance detector and the event start time was 
replaced with the red phase end time, as shown in Eq.(6). 

𝑨𝑨𝑻𝑻 = 𝑷𝑷𝑷𝑷𝒎𝒎𝑷𝑷𝑬𝑬 𝑬𝑬𝑬𝑬𝒅𝒅 𝑻𝑻𝑻𝑻𝒎𝒎𝑬𝑬 + (𝟐𝟐 ∗ 𝒅𝒅𝑻𝑻/𝒗𝒗𝑬𝑬) (6) 

After calculating the arrival time for every conflict zone that the driver would be passing, their 
arrival times were compared to the arrival times of the crossing vehicles. If the arrival time for a 
conflict zone is within the same range as the arrival time of a crossing vehicle for the same 
conflict zone, then a crossing conflict is identified. It should be noted that every case of crossing 
conflict must be the result of an RLR either from the minor or the major road. This method, 
however, required the use of stop-bar and entrance detectors. It would be more economical if 
merely the advance detectors could be used to estimate crossing conflicts. If only one detector 
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has to be used to determine crossing conflicts, then it is necessary to predict the RLR as 
discussed in detail in previous chapters. 

6.3 Intersection Safety Evaluation 
The overall intersection safety level was measured by the number of conflicts (including both 
rear-end and crossing) and RLR events. This section provides our evaluation results for three 
target intersections.  

6.3.1 Conflict and RLR Counts 

Applying the methods introduced in Section 3, we were able to estimate the number of potential 
conflicts and RLR events. A complete summary of each intersection is shown in Table 6.1Error! 
Reference source not found.. 

The results indicated that Winnetka would have the most rear-end accidents. Due to such low 
number of crossing conflicts detected, it is hard to determine which intersection would 
experience the highest number of right-angle crashes. A large number of RLR cases at Rhode 
indicated that there could be a high risk of right-angle crashes, but since it was a T-intersection, 
no crossing conflicts were tested using the current methodology (which could only test two 
through crossing events, not turning). Overall, Winnetka had the highest conflict counts and 
second largest RLR counts. This puts Winnetka at the greatest risk of future collision when 
compared to Boone and Rhode. Boone had nearly double the rear-end conflicts experienced at 
Rhode, indicating that it has a much higher risk of rear-end collision than Rhode.  

Table 6.1 Summary of conflict and RLR counts. 

 

General Info Conflicts Total  
Red-Light 
Runners 

Total Events Matched 
Events 

Adjusted*  
Rear-end Crossing  

Boone 

May 730581 491143 7483 3 279 
Jun 899404 545307 8577 0 380 
Nov 757919 477848 6915 0 289 
Dec 728995 461945 4815 0 307 
Feb 713062 476277 6246 0 245 
Jan 615181 368554 3894 0 219 
Jul 520697 341678 5400 0 205 

Average 709406 451822 6190 0 275 

Winn 

Jan 553937 268292 5546 0 169 
Jun 752600 369237 9122 2 445 
Nov 596693 294523 6895 4 630 
Apr 625528 332482 8134 1 250 
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Aug 719709 369379 9126 0 210 
Mar 488305 199878 4840 0 129 
May 749312 368628 9101 2 444 
Dec 688102 355429 6187 0 304 
Jul 609887 297965 7327 0 199 
Feb 379794 113929 2895 0 86 

Average 616387 296974 6917 1 287 
Jan 748598 463677 3171 - 520 
Feb 721246 432237 3462 - 291 
Dec 811497 520209 3175 - 736 
Nov 653244 351207 3082 - 355 

Average 733646 441833 3223 - 476 

Rhode 

*Average daily traffic adjustments were made to account for the discrepancies in the number of 
successful matches vs. actual traffic to get a conflict count which better reflects the intersection. 
    

6.3.2 Crash Rate Estimation & Comparisons to Actual Crash Data 

Conflicts were be converted to crashes per year by Eq.(7) from the SSAM Validation Report [9]. 
The results are shown in Table 6.2. 

𝑻𝑻𝑺𝑺𝒎𝒎𝑷𝑷𝑷𝑷𝑬𝑬𝑷𝑷 𝒑𝒑𝑬𝑬𝑺𝑺 𝒚𝒚𝑬𝑬𝒎𝒎𝑺𝑺 = 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏 ∗ �
𝑻𝑻𝑪𝑪𝑬𝑬𝑪𝑪𝑪𝑪𝑻𝑻𝑪𝑪𝑬𝑬𝑷𝑷
𝑯𝑯𝑪𝑪𝑯𝑯𝑺𝑺

�
𝟏𝟏.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

 (7) 

The Minnesota Department of Transportation Metro District was able to provide crash data 
between the years 2006 through 2011 for the three intersections being studied. The data was 
obtained from the Minnesota Department of Public Safety (DPS) database; therefore, only those 
crashes reported to the DPS were included in the data. A summary of the crash count taken from 
data collected from the Minnesota DOT Metro District is shown in Table 6.2. These counts were 
for intersection-related crashes only. Rear-end collisions were considered only in the east and 
west directions to compare to the conflicts recorded by the detector data on TH55. 

Table 6.2 Estimated number of rear-end crashes based on conflict results. 

Intersection  
Name 

Rear-end Conflicts Actual Number  
of Rear-end 

Crashes  
(2006-2011) 

Estimated 
Conflicts per hour 

Estimated  
Crashes per year 

Estimated Crashes  
in 6 years 

Boone 8.60 2.52 15 11 
Winnetka 9.61 2.95 18 15 
Rhode 4.48 1.00 6 2 
 

A comparison of the rear-end conflict counts to the historical crash data showed an excellent 
correlation. The rear-end conflicts matched up very well. It would have taken about six years of 
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crash data to notice that Winnetka has the highest risk for rear-end accidents. But automatically 
collected conflict information, revealed the pattern in only a few months. The numbers do tend to 
fluctuate year to year, however, which further supports the need for a real-time safety evaluation 
that can address the current safety concerns before a crash would happen. 
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Chapter 7  
Intersection Safety Evaluation System Implementation - Website 

Development 

As an outcome of this project, a website (www.intersectionsafety.com) was designed to further 
support and share the work done so far. Although it does not use real time data, it features the 
data used in this project and provides the user with an interface to find the number of RLR cases 
and conflicts for various intersections. All the essential features of the website have been 
presented in this chapter. 

7.1 Homepage 
The site introduces the concept of intersection safety using high-resolution traffic data. It allows 
direct access to web pages where you can understand and estimate RLR, conflicts, trajectories, 
queue length, safety index and traffic pollution based on data collected from certain 
intersections. Figure 7.1 shows a preview of website homepage. 

 

Figure 7.1  Homepage: www.intersectionsafety.com 

  

http://www.intersectionsafety.com/


44 
 

The website is in development mode and being updated time-to-time based on research done so 
far. The main sections directly related to the research project that allows user to estimate various 
aspects of intersection safety through a Graphic User Interface (GUI) has been discussed briefly 
in the following sections. 

7.2 RLR 
Red Light Running is an important issue while evaluating safety index of an intersection. This 
kind of driving behavior directly or indirectly acts as a hazard to other vehicles and often ends up 
as a collision. This web page allows a user to estimate the number of RLR cases in all directions 
at an intersection based on the high-resolution event data collected by loop detectors. It gives a 
brief information about the idea of detecting RLR as discussed in previous chapters. A user can 
follow simple steps to estimate RLR cases: 

1) On the left side pane, choose an intersection. 
2) Fill the desired start time and end time for estimation. Make sure the entered period is 

within the range of available data. You can check the dates for available data on the top 
right corner of the map. 

3) Click the button: RLR number. 

The map will display the number of RLR in each direction next to the arrows on the map. An 
estimate of RLR for one day at Boone Ave is shown in figure 7.2. 

 

Figure 7.2 RLR estimate at Boone Ave. 
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Using the data from website, RLR cases were analyzed at Manchester Ave. and Harbor Blvd. for 
October 2015 as shown in Figure 7.3. This intersection is a T-intersection with traffic moving 
Northbound, Southbound and Westbound. It was found that Most of the RLR cases occurred in 
Northbound-Southbound direction. Also, RLR cases were generally higher on Friday, Saturday 
and Sunday. 
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Figure 7.3 RLR cases for 1 month at Manchester Ave. and Harbor Blvd. 

7.3 Conflicts 
Another important aspect from safety point of view is potential conflicts that can occur at an 
intersection. Traffic signal design well addresses most of the conflict zones, but events like RLR 
or YLR can potentially lead to a collision in these conflict zones. Hence, it is good to have an 
estimate of a potential number of conflicts at an intersection to apply protective measures. The 
web page for conflicts also gives an introduction the methodology to estimate conflicts. As 
mentioned in previous chapters, all rear-end traffic conflicts has been counted for the major road 
(TH-55) only. Conflicts for the minor approaches were only considered during the crossing 
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conflict stage. Similar steps can be followed to estimate conflicts as described for RLR. An 
example showing the number of conflicts for one day at Winnetka Ave is provided in Figure 7.4. 

 

Figure 7.4 Conflict estimate at Winnetka Ave. 

  

Using the data from website, RLR cases were analyzed at Manchester Ave. and Harbor Blvd. for 
October 2015 as shown in Figure 7.5. It was found that Maximum number of conflicts occurred 
mostly on Fridays. In addition, majority of conflits were in Nothbound-Southbound Direction. 
This may be due to the T-shape of the intersection. Vehicles on perpendicular leg of intersection 
have to be more careful and hence conflicts were less as compared to NB direction. 
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Figure 7.5 Conflicts for 1 month at Manchester Ave. and Harbor Blvd. 

 

7.4 Safety Index 
Safety Index is a combination of conflicts and RLR events occurring at an intersection that gives 
us an overall estimate of the level of safety for an intersection. Similar steps need to be followed 
as in case of RLR or conflict estimation to find the safety index for an intersection. Figure 7.6 
shows an example of Safety Index evaluation at Glenwood Ave for 2:15 hours. 
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Figure 7.6  Safety index at Glenwood Ave 

Also, Safety Index was analyzed at Manchester Ave. and Harbor Blvd. for October 2015 as 
shown in Figure 7.5. It was found that Safety Index on Fridays was very high. This is consistent 
with high number of conflicts on the same intersection. As seen earlier in case of conflicts, safety 
index was higher in Nothbound-Southbound Direction. The reason may be, again, the T-shape of 
the intersection. Vehicles on perpendicular leg of intersection have to be more careful and hence 
conflicts were less as compared to NB direction. 
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Figure 7.7 Safety Index for 1 month at Manchester Ave. and Harbor Blvd. 

7.5 Trajectories 
           The vehicle trajectory data, as a type of traffic microdata, has attracted more and more 
researchers' attention. It can be used for various transportation research, e.g. car following 
behavior, vehicle lane changing behavior and road safety analysis, etc.  

A vehicle detection and tracking system based on CCTV cameras is developed for collecting 
trajectory data. A deep learning based method, called convolutional neural network (CNN), is 
used to achieve high precision vehicle detection and tracking as shown in figure 7.8. This system 
can identify multi-type vehicles, e.g. car, vans, truck, and motorcycle. Pedestrian detection and 
tracking are also supported. This system is supposed to build a big-data system for traffic 
research. 
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Figure 7.8 Trajectory data collected by CCTV cameras. 

7.6 Queue Length 
Using the event-based data, a set of arterial performance measures, especially intersection queue 
length and arterial travel time, can be estimated. Queue length is unarguably the most important 
performance measure at a signalized intersection since other performance measures such as 
average delay, and level of services can be easily derived from queue length information. A 
major shortcoming of traditional input-output models for estimating queue length has been their 
inability to determine queue length under saturated conditions—i.e. when the queue of cars 
waiting to pass through an intersection extends beyond the upstream vehicle detector. Under 
saturated conditions, data on incoming traffic flow are no longer available, and the input side of 
the input-output model breaks down. This limitation was overcome by developing a new 
algorithmic approach to estimate queue length based on traffic shockwave theory.  

This method first utilizes the high-resolution data collected by the SMART-Signal to identify the 
changes of traffic states and then applies Lighthill-Whitham-Richards (LWR) shockwave theory 
to construct shockwave profiles. The figure below demonstrates the shockwave pattern within a 
cycle. This pattern consists of four shockwaves, and the shockwave motion will repeat from 
cycle to cycle. Using the high-resolution data, the changes of traffic states, i.e. the "breakpoints" 
(A, B, and C), can be identified as shown in figure 7.9. The time-dependent queue length 
including the maximum and minimum queue (if existing) can then be easily derived from the 
constructed shockwave profile.  
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Figure 7.9 Queue length estimation. 

 

The user can estimate the queue length at various intersections using the queue length web page. 
Instructions to estimate queue length are as follows: 

1) On the left side pane, choose an intersection. 
2) Fill the desired start time and end time for estimation. Make sure the entered period is 

within the range of available data. You can check the dates for available data on the top 
right corner of the map. 

3) Check mark the direction in which you want to estimate the queue length. 
4) Click the button: Queue. 

A time-space graph will be plotted with estimated length of queue during the period entered. An 
example showing estimated queue length for Boone Ave is as illustrated in figure 7.10. 

 

Figure 7.10 Estimated queue length for Boone Ave. 
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Chapter 8  
Conclusions and Future Research 

This report presented our recent findings on the safety evaluation for signalized intersections. 
First, this research studied drivers’ stop-or-run (SoR) behavior at signalized intersection when 
the signal changes to yellow. In contrast to most previous research, this research uses high-
resolution traffic and signal event data collected from loop detectors. A simple method is first 
proposed to identify first-to-stop, yellow-light running and red-light running cases using the 
information from both stop bar and advance detectors. Then the data collected from advance 
detectors (including occupancy time and time gap), signal information (including used yellow 
time and the time left to yellow start), as well as the information from three preceding vehicles 
and vehicles on adjacent lanes are applied to identify the factors that significantly impact drivers’ 
decision making. A binary logistical regression method is implemented to analyze the 
significance of all these factors. The investigation results show that occupancy time, time gap, 
used yellow time, time left to yellow start, the time gap between the first two preceding vehicles, 
whether the nearest preceding vehicle runs through intersection during yellow, and whether there 
is a vehicle passing through on an adjacent lane show significant impact on drivers' decision. A 
prediction model, which predicts if a driver SoR through the intersection, is also developed using 
the information collected by advance detectors. The testing experiment shows the accuracy of the 
model is as high as 87%. 

Second, this research presented a new method to predict red-light-running (RLR). To predict and 
prevent the potential RLR, it is important to gain a better understanding of the relationship 
between RLR and the impact factors which contribute to drivers’ RLR behaviors. This research 
addresses the rare events issue of RLR prediction by developing a rare events binary logistic 
regression model. To be noted, it is the first time to apply rare events logistic regression for RLR 
study according to our limited knowledge. The results show that rare events logistic regression 
model perform significantly better than standard logistic regression model. The final prediction 
rate jumps from about 45% for standard logistic regression models to near 80% for rare events 
regression methods. Although the false alarm rate has been increased, an overall 2.0% false 
alarm rate is still acceptable for real applications. Moreover, the proposed RLR prediction 
methods are purely based on the loop detector data collected from single advance detectors 
located 400 feet away from stop-bar. This demonstrates that the proposed models have great 
potential for future field applications since loops have been widely implemented in most of the 
intersections and can automatically collect data in real time.   

Third, this research developed a comprehensive Intersection Safety Evaluation System using 
high-resolution loop detector traffic data. The safety indicators collected to determine the safety 
level include traffic conflicts (both rear-ending and crossing conflicts) and red-light violations. 
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All these measurements are automatically collected by the detection system using the 
programmed algorithms. Safety analysis with this system can be done in real-time to provide 
immediate safety levels and the possibility for real-time mitigation methods to be applied.  
Results provide valuable information for evaluating the safety of each intersection. Future rear-
ends crashes can be estimated and potentially avoided if countermeasures are taken at high-risk 
intersections. Crossing conflicts and RLR counts can indicate driver behavior patterns at each 
intersection and can be used to optimize signal timing operations for safety (i.e. synchronize 
signals at intersections with high RLR to reduce the number of vehicle arrivals during yellow). 

Overall, this research laid a solid foundation for intersection safety evaluation. There were some 
successes, such as predicting the SoR behavior of drivers with an 88% accuracy rate, and 
accurately portraying rear-end accidents through rear-end conflicts. The prediction of red-light 
running produced decent success rates of 65%-75%, but the current model predicts too many 
"false positives" (i.e., too many FSTP cases are predicted as RLR). The SoR model could be 
improved to include other relevant impact factors, and travel time estimation could be enhanced 
with the use of additional loop detectors to determine the vehicle's trajectory better, and some 
other classification models such as decision trees, linear discriminant analysis (LDA), vector 
support machine (VSM) could also be applied to generate better RLR prediction results.  

Overall, this research showed that high-resolution loop detector data has a lot of potential for use 
in intersection safety applications. Not only can intersection-related data be monitored 
continuously, but also future applications could make use of the real-time nature of the data for 
collision avoidance or warning systems. Future research could focus on the optimal placement of 
loop detectors for better safety analysis. Advanced loop detectors could be placed closer to the 
stop bar to avoid confusing a left turning vehicle with a through vehicle. This would improve the 
detector matching algorithm as well as trajectory estimations. The quality of data could also be 
improved by adding more information relating to traffic safety. Information such as illumination 
levels and weather conditions could help with understanding driver behaviors. Further 
development of the algorithms must also include turning maneuvers.  

More importantly, the proposed system can be applied to build a real-time intersection collision 
avoidance system, and the network-wide intersection safety information can be used to rank the 
safety severity for all intersections in the network, therefore helps agencies identify the 
intersections which need most improvement. So our next research topic will be to incoportate the 
proposed safety evaluation system with emerging connected vehicle (V2V and V2I) technologies 
to build a dynamic system that could alert drivers of emerging and impending hazardous 
situations at signalized intersections. 
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