
 

STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION 
TECHNICAL REPORT DOCUMENTATION PAGE 
TR0003 (REV 10/98) 

ADA Notice 
For individuals with sensory disabilities, this document is available in alternate 
formats.  For information call (916) 654-6410 or TDD (916) 654-3880 or write 
Records and Forms Management, 1120 N Street, MS-89, Sacramento, CA 95814. 

1. REPORT NUMBER 

CA17-2111 

2. GOVERNMENT ASSOCIATION NUMBER 3. RECIPIENT'S CATALOG NUMBER 

4. TITLE AND SUBTITLE 

GEOPHYSICAL METHODS FOR DETERMINING THE GEOTECHNICAL 
ENGINEERING PROPERTIES OF EARTH MATERIALS 

5. REPORT DATE 

02/15/2018 
6. PERFORMING ORGANIZATION CODE 

7. AUTHOR 

Coe, Joseph T.; Brandenberg, Scott J.; Ahdi, Sean; Kordaji, Alireza 

8. PERFORMING ORGANIZATION REPORT NO. 

9. PERFORMING ORGANIZATION NAME AND ADDRESS 

Temple University 
1852 N. 10th Street 
Philadelphia, PA  19122 

10. WORK UNIT NUMBER 

11. CONTRACT OR GRANT NUMBER 

65A0482 
12. SPONSORING AGENCY AND ADDRESS 

California Department of Transportation 
1727 30th Street 
Sacramento, CA  95816-7005 

13. TYPE OF REPORT AND PERIOD COVERED 

Final Technical Report 
4/1/2013-3/31/2017 
14. SPONSORING AGENCY CODE 

15. SUPPLEMENTARY NOTES 

16. ABSTRACT 

The purpose of this document is to summarize the in situ physical properties of soil and rock that can be measured by different geophysical 
methods. These methods can provide crucial subsurface information for geotechnical design of transportation infrastructure on a more 
comprehensive scale than typical subsurface investigation techniques. This broader scale often allows greater insight regarding highly variable 
subsurface soil conditions and can result in reduced risk and uncertainty. This document attempts to fill in a gap in the literature by providing a 
comprehensive reference for geotechnical engineers with an introductory knowledge of geophysics. The document emphasizes the 
measurements obtained using common geophysical techniques (e.g., seismic methods, ground penetrating radar, electrical resistivity, etc.) and 
the relationships between these measurements and soil and rock properties. Guidance is provided regarding selection of geophysical methods 
for particular applications, physical scales involved in each method, limitations in measuring a particular physical property, and uncertainty in 
the geophysical measurements. The reader is assumed to have familiarity with the geophysical principles, equipment, and data acquisition 
procedures appropriate for each method. For those readers who desire background information on each of the techniques, an appendix is 
provided as well as citations to several references that discuss this information in much greater detail. The ultimate goal of this document is to 
help geotechnical engineers with an entry-level understanding of geophysics make better-informed decisions regarding the use of geophysical 
methods for geotechnical engineering and transportation infrastructure projects. 

17. KEY WORDS 

Geophysics, Geophysical methods, Seismic, Ground penetrating radar, 
Electrical resistivity, Electromagnetics, Borehole geophysical logging, 
Shear wave velocity, Shear strength, Unconfined compressive 
strength, Density, Porosity, Permeability, Clay content, Water content, 
Rippability, Earthwork factor, Grading factor, Rock mass rating 

18. DISTRIBUTION STATEMENT 

Unlimited 

19. SECURITY CLASSIFICATION (of this report) 

Unclassified 

20. NUMBER OF PAGES 

327 

21. COST OF REPORT CHARGED 

Reproduction of completed page authorized. 



 

     
 

  
 

   
    

   
  

  
 

DISCLAIMER STATEMENT 

This document is disseminated in the interest of information exchange. The contents of 
this report reflect the views of the authors who are responsible for the facts and 
accuracy of the data presented herein. The contents do not necessarily reflect the 
official views or policies of the State of California or the Federal Highway Administration. 
This publication does not constitute a standard, specification or regulation. This report 
does not constitute an endorsement by the Department of any product described herein. 

For individuals with sensory disabilities, this document is available in alternate formats. 
For information, call (916) 654-8899, TTY 711, or write to California Department of 
Transportation, Division of Research, Innovation and System Information, MS-83, P.O. 
Box 942873, Sacramento, CA 94273-0001. 



 

 

  

  
  

GEOPHYSICAL METHODS FOR DETERMINING THE 
GEOTECHNICAL ENGINEERING PROPERTIES OF 
EARTH MATERIALS 

California Department of Transportation 

Report Number CA-17-2111 

February 15, 2018 



 

 

  

  

  

 

 

   

   

   

  

   

 

 

GEOPHYSICAL METHODS FOR DETERMINING THE GEOTECHNICAL 

ENGINEERING PROPERTIES OF EARTH MATERIALS 

Contract No. 65A0482 

Final Report 

February 15, 2018 

Prepared By: 

Principal Investigator: Dr. Joseph T. Coe, Jr. 

Assistant Professor, Temple University 

Co-Principal Investigator: Dr. Scott J. Brandenberg 

Associate Professor, University of California Los Angeles 

Sean K. Ahdi 

Ph.D. Candidate, University of California, Los Angeles 

Alireza Kordjazi 

Ph.D. Candidate, Temple University 



 

 

     

     

      

     

 

   

  

  

    

   

   

   

   

     

     

      

 

  

  

     

   

      

    

  

  

 

EXECUTIVE SUMMARY 

The purpose of this document is to summarize the in situ physical properties of soil and rock 

that can be measured by different geophysical methods. These methods can provide crucial 

subsurface information for geotechnical design of transportation infrastructure on a more 

comprehensive scale than typical subsurface investigation techniques. This broader scale often 

allows greater insight regarding highly variable subsurface soil conditions and can result in 

reduced risk and uncertainty. Appreciation of this fact has led to growing interest in the value of 

geophysical measurements within the geotechnical profession. 

Despite growing interest in geophysical methods, these methods are underutilized for 

transportation infrastructure. A major contributing factor is that literature on geophysical 

methods tends to be concentrated at either end of the novice-expert spectrum. References are 

either introductory in nature and intended for novice geophysical users or rather advanced and 

intended for geophysical specialists in various fields. This document attempts to fill in this gap in 

the literature by providing a comprehensive reference for geotechnical engineers with an 

introductory knowledge of geophysics. The document emphasizes the measurements obtained 

using common geophysical techniques (e.g., seismic methods, ground penetrating radar, 

electrical resistivity, etc.) and the relationships between these measurements and soil and rock 

properties. Guidance is provided regarding selection of geophysical methods for particular 

applications, physical scales involved in each method, limitations in measuring a particular 

physical property, and uncertainty in the geophysical measurements. The reader is assumed to 

have familiarity with the geophysical principles, equipment, and data acquisition procedures 

appropriate for each method. For those readers who desire background information on each of 

the techniques, an appendix is provided as well as citations to several references that discuss 

this information in much greater detail. The ultimate goal of this document is to help 

geotechnical engineers with an entry-level understanding of geophysics make better-informed 

decisions regarding the use of geophysical methods for geotechnical engineering and 

transportation infrastructure projects. 
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1. INTRODUCTION 

This chapter describes the background regarding subsurface exploration in geotechnical 

engineering and the role of geophysics in such explorations. This discussion provides the 

rationale for the research performed in this study. The scope of this document is discussed 

based on the goals of the research. Finally, a summary of the report is provided. 

1.1 BACKGROUND 

Efficient design of transportation projects requires a thorough understanding of the subsurface. 

Unfortunately, the characterization of subsurface properties and geometry remains one of the 

biggest issues in geotechnical engineering. The majority of subsurface investigations rely on 

sampling subsurface soils for laboratory testing and on correlations from in situ testing 

techniques such as the Standard Penetration Test (SPT) and Cone Penetration Test (CPT), among 

others. Such methods have proven capable of providing high-quality information regarding the 

subsurface, though the extent of site characterization is often constrained by the associated 

costs and the limited volume of material actually tested within the site of interest. Therefore, 

the current state of practice for subsurface investigations can provide an inadequate amount of 

information regarding the subsurface to develop reliable, efficient geotechnical designs. 

Geologists have faced a similar issue of proper characterization of the subsurface, although 

typically at a larger scale than in geotechnical engineering. Applications related to exploration 

for natural resources (i.e., petroleum, gas, etc.) have spurred tremendous advances in 

geophysical methods during the turn of the last century, especially as the use of computers has 

proliferated (Telford et al. 1990). Geophysics involves the measurement of properties of earth 

materials based on principles of physics (e.g., seismic wave propagation, electromagnetism, 

etc.). Geophysical methods detect discontinuities in material properties and allow 

determination of the nature and distribution of materials beneath the surface (Wightman et al. 

2003). Geophysical methods are now routinely the initial mode of testing for the exploration of 

petroleum. Successful implementation of geophysical methods provides the necessary 

information to guide drilling operations for such exploration in the petroleum industry (Sirles 

2006). Additionally, geophysics is routinely utilized in a wide range of geologic studies, including 

the delineation of faults (Ivanov et al. 2006; Blakely et al. 2002; Bleibinhaus et al. 2007), 
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characterization of sub-bottom stratigraphy in streams and the ocean (Nielsen et al. 2005; 

Rebescoa et al. 2011; Pinson et al. 2008), location of karst features (e.g., sink-holes) (Hackert 

and Parra 2003; Nyquist et al. 2007; Legchenko et al. 2008), and evaluation of aquifers (Harry et 

al. 2005; Francese et al. 2002; Bradford and Sawyer 2002), among others applications. 

Geophysical methods have proven to be an effective tool for geologists to better understand the 

inner workings of our planet. 

1.2 MOTIVATION FOR RESEARCH 

In addition to geologic applications, geophysical methods can measure in situ properties of soil 

and rock that are often valuable for geotechnical design of transportation infrastructure. This is 

especially true for seismic design purposes where shear wave velocity/modulus and material 

damping are input parameters for site class, estimation of ground response, and seismic hazard 

analysis. Geophysical measurements are also distributed over a larger area than typical 

geotechnical site investigations and can therefore provide a higher level of detail regarding site 

conditions for a project. As such, the application of geophysical methods has demonstrated cost 

savings through reduced design uncertainty and lower investigation costs. Routine use of 

geophysical methods, however, remains limited due to the specialized nature of the work and 

limited industry experience with its application to real-world projects. Literature on the topic 

tends to either be qualitative and introductory, intended for readers with little knowledge of 

geophysical methods, or rather advanced and complex, intended for geophysicists with a 

thorough understanding of geophysical techniques and the measurements they provide. 

1.2.1 ENGINEERING APPLICATION OF GEOPHYSICAL METHODS 

As previously noted, geophysical methods have been routinely utilized to explore the subsurface 

as part of geologic investigations. In many cases, there is significant overlap between 

applications of these methods for geological purposes and for engineering purposes. This 

document aims to explore this overlap in more detail and provide guidance regarding 

measurements of earth material properties using geophysical techniques, particularly as 

relevant for transportation infrastructure. 

Geophysical methods are essentially measuring the same parameters when applied to 

engineering investigations and geologic studies. Often, the main difference between these 
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applications is a question of scale. Engineers are often preoccupied with the near surface (i.e., 

upper tens of meters), which is the outermost part of the earth’s crust that interacts with our 

built environment the most (Butler 2005). Moreover, the spatial scale with which engineers are 

interested is often smaller given the modest size of sites associated with even the largest 

engineering projects (at least in relation to regional or planetary spatial scales). Traditional 

geological studies, particularly as related to oil exploration and understanding the inner 

workings and history of our planet are often interested in deeper strata (e.g., hundreds of 

meters and more) over a broader spatial coverage (e.g., across a geologic region such as an 

entire city, state, country, etc.). Given these differences, there have been a number of unique 

challenges associated with adoption of various geophysical methods for engineering purposes. 

These challenges have spurred extensive research and the marriage of near surface geophysics 

with engineering has allowed tremendous advances in both fields, including better 

understanding of complicated site conditions and the development of specialized techniques 

that focus on the near surface [e.g., Multichannel Analysis of Surface Waves (MASW)]. 

There are a significant number of engineering and environmental applications where 

geophysical methods have proven extremely beneficial both domestically and abroad. The 

literature is filled with case studies where geophysical methods have been successfully applied 

to map groundwater contamination/salinity (Fitterman and Deszcz-Pan 1998; Ackman 2003; Zelt 

et al. 2006; Siemon et al. 2009; Metwaly et al. 2014), evaluate conditions on natural and 

engineered structures such as dams, slopes, levees, and landfills (Nakazato and Konishi 2005; 

Hodges et al. 2007; Amine et al. 2009; Pfaffhuber et al. 2010; Inazaki et al. 2011; Doll et al. 

2012b, Suto 2013; Hayashi et al. 2014; Konstantaki et al. 2015), locate buried objects (Takata et 

al. 2001; Hanafy and Gamal 2005; Porsani and Sauck 2007; Omolaiye and Ayolabi 2010; Doll et 

al. 2012a), evaluate seismicity and seismic hazards (Hardesty et al. 2010; Cox et al. 2011; 

Hayashi et al. 2013; Khan et al. 2013; Stephenson et al. 2013), and monitor karst bedrock 

conditions such as sinkholes (Hackert and Parra 2003; Nyquist et al. 2007; Legchenko et al. 

2008), among a wide range of other engineering and environmental applications. In each of 

these cases, geophysics improved assessment of the desired features and allowed increased 

confidence in design, construction, and/or remediation strategies. Given these potential 

improvements, the prevalence of geophysics has increased in engineering and environmental 

investigations. Table 1.1 as adapted from ASTM 6429 provides a general overview of various 
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engineering and environmental applications for a number of common geophysical methods. 

Several of these applications are related to situations encountered during the design, 

construction, and management of transportation infrastructure. For example, stratigraphic 

identification of unconsolidated sediments, determination of depth to bedrock and water table, 

and location of voids, sinkholes, and utilities are all likely necessary steps in typical 

transportation projects. Other applications as listed in Table 1.1 are less applicable in those 

regards (e.g., location of inorganic contaminants in landfills) but still very useful for other 

engineering and environmental purposes. 

Table 1.1: Selection of geophysical methods for engineering applications based on guidance 
from ASTM D6429. Note: A represents primary method and B represents 
secondary/alternative method as rated for average field conditions. 

Due to the benefits offered by geophysical methods and the significant overlap between near 

surface geophysics and engineering, representation of geophysical interests has increased in 

professional organizations traditionally populated by engineers. For example, the American 

Society of Civil Engineers (ASCE) Geo-Institute has a Geophysical Engineering technical 

committee and ASTM’s Committee D18 on Soil and Rock has a subcommittee devoted to 

Geophysics (D.18.01.02). There is also representation of geophysics in committee AFP20 

Exploration and Classification of Earth Materials of the Transportation Research Board (TRB). 

Additionally, there is increasing collaboration between engineers and the near surface 
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geophysics community through various professional organizations [e.g., Environmental and 

Engineering Geophysical Society (EEGS), the Near Surface Geophysics Section (NSGS) of the 

Society of Exploration Geophysicists (SEG), the Near Surface Geophysics Focus Group (NSFG) of 

the American Geophysical Union (AGU), and the Near Surface Geoscience Division (NSGD) of the 

European Association of Geoscientists and Engineers (EAGE)]. Together, these committees (and 

affiliated professional and government organizations) are responsible for a significant amount of 

literature regarding geophysical subsurface exploration for engineering purposes (e.g., ASTM 

D4428, D5195, D5753, D5777, D6167, D6274, D6429, D6430, D6431, D6432, D6639, D6726, 

D6727, D6820, D7046, D7128, G57; Ward 1990; USACE 1995; McCann et al. 1997; Wightman et 

al. 2003; Butler 2005; Sirles 2006; Anderson et al. 2008; SEGJ 2014). This literature includes 

standards as well as review documents that provide guidance to engineers about appropriate 

deployment of various geophysical methods. 

The purpose of this document is to expand on the overlap between near surface geophysics and 

engineering, particularly as related to transportation infrastructure projects. Much like the 

aforementioned case studies where geophysics have led to improvements in various 

engineering and environmental applications, near surface geophysical techniques can improve 

the current state of practice in transportation infrastructure design, construction, and 

maintenance. As more engineers are exposed to these benefits of geophysics, the goal of this 

document is to encourage responsible use of geophysics to supplement traditional engineering 

subsurface investigations. This document will support such improvements by providing a 

reference suitable for engineers with some experience in geophysics that summarizes the 

pertinent earth material properties that can be measured using those techniques for 

transportation projects. 

1.2.2 TRANSPORTATION AGENCIES EXPERIENCES WITH GEOPHYSICAL TECHNIQUES 

Despite the limited availability of intermediate-level literature focusing on quantitative aspects 

of geophysics, the role of geophysics in characterizing the subsurface for transportation projects 

has been increasingly recognized in recent years as more engineers are exposed to near surface 

geophysical methods. In 2005 the National Cooperative Highway Research Program (NCHRP) 

sponsored a project in conjunction with the TRB to explore the experiences of various 

transportation agencies with geophysical methods (Sirles 2006). As part of this project, a 

5 



 
 

  

  

 

   

  

   

  

 

 

 

 

   

   

  

         

    

   

   

  

    

    

   

 

   

   

    

 

    

  

 

    

questionnaire was sent to representatives from state DOT’s, various federal highway agencies, 

and Canadian transportation agencies. The questionnaire was meant to clarify the role of 

geophysics in geotechnical investigations for participants in the survey, including: familiarity and 

level of comfort with geophysical methods; amount and type of investigations performed; 

typical engineering applications of geophysical methods; annual budgeting and in-house 

capabilities; common practices for solicitation and contracting of geophysical services; and 

future research, educational, and training ideas. The response rate was 90%, which 

corresponded to 67 completed questionnaires, including all 50 state DOT’s, the District of 

Columbia, the Port Authority of New York and New Jersey, 8 Canadian agencies, and 3 federal 

agencies. 

The vast majority of survey respondents (close to 90%) disclosed that they utilized geophysical 

methods as part of their subsurface investigations (Fig. 1.1). However, as noted in Fig. 1.2, a 

large percentage (45%) of these agencies has only started implementing geophysical methods 

within the last 10 years. This statistic, along with corresponding increase in use of geophysical 

methods – 21% of agencies noting an increase by more than 50% – points to a real need for 

formal trainings and standards to be developed so that transportation agencies are increasingly 

comfortable with the appropriate use and limitations associated with geophysical methods. In 

fact, survey responses noted that the greatest deterrent to use of geophysical methods is 

related to lack of understanding (Fig. 1.3). That being said, many transportation agencies did 

recognize the benefits of geophysical methods, with the top responses related to speed of data 

acquisition, cost-benefits to projects, and better subsurface characterizations. The most 

common engineering application for geophysical methods was related to mapping subsurface 

lithology (bedrock and soils), particularly as related to depth, topography, rippability, and other 

engineering properties (Fig. 1.4). These common applications are to be expected given that the 

two most common geophysical methods were seismic methods (i.e., refraction and 

crosshole/downhole techniques) and GPR (Fig. 1.5). Electrical resistivity and borehole logging 

methods were also fairly prevalent in survey responses. However, it appears that 

electromagnetic methods were less favored by respondents. It should be noted that a significant 

percentage of respondents (24%) reported that Nondestructive Testing (NDT) was their most 

common geophysical application (Fig. 1.4). This highlights the ambiguity between geophysical 

methods and NDT. Many of the geophysical exploration methods used in practice have been 
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adapted for use in NDT studies as the underlying theory is often identical. The typical distinction 

is that geophysical methods apply principles of physics to explore underlying subsurface 

conditions of the earth and NDT focuses on evaluation of engineered structures (e.g., concrete, 

asphalt, steel, etc.) (Wightman et al. 2003). The focus of this report will be geophysical 

applications and the distinction provided by Wightman et al. (2003) will serve as a criterion for 

distinguishing between geophysics and NDT. However, this report does provide a brief 

discussion of common NDT applications for transportation infrastructure, the geophysical 

methods employed, and the properties evaluated. 

Figure 1.1: Agency response to survey question regarding use of geophysical methods for 
subsurface investigations (Sirles 2006). 

Figure 1.2: Agency response to survey question regarding initial implementation of 
geophysical methods (Sirles 2006). 
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Figure 1.3: Agency response to survey question regarding greatest deterrent to use of 
geophysical methods (Sirles 2006). 

Figure 1.4: Agency response to survey question regarding most common geophysical 
application (Sirles 2006). 

Figure 1.5: Agency response to survey question regarding most common geophysical method 
used (Sirles 2006). 

The results from Sirles (2006) illustrate the increasing role that geophysics plays in 

transportation projects. More transportation agencies are aware of geophysical methods as 
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tools to augment current subsurface investigations efforts. However, transportation agencies 

still rely heavily on subsurface drilling and in situ testing, even when geophysical methods can 

potentially save money, time, and reduce the risk associated with unknown subsurface 

conditions. For example, 68% of respondents in Sirles (2006) noted only “occasional” use of 

geophysical methods. As such, engineers in these transportation agencies still have limited 

familiarity with these methods. This leads to a lack of understanding and confidence in data 

processing/interpretation, which further deters use of geophysical methods when appropriate. 

The results from this study are meant to address this issue by synthesizing the current state of 

practice of geophysical methods for quantitative measurements of geotechnical properties. This 

report will address the existing gap in the literature for geotechnical engineers with an 

introductory knowledge of geophysics and it will provide guidance regarding acquisition of 

geotechnical design parameters. Examples are also provided with real subsurface data that 

demonstrate the value of geophysical measurements for transportation infrastructure projects. 

1.2.3 CALTRANS EXPERIENCES WITH GEOPHYSICAL METHODS 

Caltrans is unique in comparison to other state DOT’s since it has a centralized branch in its 

organizational structure devoted to geophysics. The Branch of Geophysics and Geology is part of 

the Division of Engineering Services (Geotechnical Services Subdivision) and is responsible for 

providing support on geo-related capital development projects throughout the state of 

California. As of the writing of this report, the Branch of Geophysics and Geology is composed of 

eight personnel led by Branch Chief William Owen based out of the main Caltrans offices in 

Sacramento, California. The Branch of Geophysics and Geology essentially operates as an 

internal consulting group to serve the geophysical needs of the rest of the Department. Their 

work is typically performed under the auspices of the Chief Engineer, though sometimes the 

branch does work directly with local districts to identify appropriate geophysical solutions, 

deploy equipment, and analyze the resulting geophysical data. In limited cases, the internal 

capabilities of the branch may be exceeded (e.g., workflow cannot keep up with demand, 

specialized equipment is necessary for a particular application). In those cases, outside 

geophysical consultants can be brought in on Caltrans projects. Otherwise, geophysical testing 

on Caltrans projects is primarily performed by the Branch of Geophysics and Geology. 
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The Branch of Geophysics and Geology currently provides services with the following 

geophysical methods: Seismic Refraction, Refraction Tomography, Magnetometry, Electrical 

Resistivity, Electromagnetic Conductivity, Ground Penetrating Radar, Borehole Acoustic 

Televiewer, Borehole Resistivity, Borehole PS Suspension Log, Borehole Conductivity, Borehole 

Caliper, Borehole Natural Gamma, and Borehole Full Waveform Sonic Testing. The branch is 

typically involved fairly early in the design process of a project (i.e., less than approximately 60% 

complete). This corresponds to the 0- and 1- phase based on typical Caltrans terminology. In 

some cases, branch efforts may take place in the 2-phase or later when issues arise as part of 

construction. The primary application encountered by the branch is mapping stratigraphy and 

bedrock for foundation design or for excavations (e.g., cut-slope design, landslide mitigation, 

etc.). To that effect, seismic refraction/tomography is one of the most commonly employed 

geophysical methods by the Branch of Geophysics and Geology. The goal of this work is often to 

extrapolate information into the areas away from boreholes and to interpolate conditions 

between boreholes. Also, geophysics is sometimes used to make decisions about where to 

locate certain boreholes. For example, a key aspect of site subsurface investigations is locating 

boreholes away from any existing infrastructure or utilities beneath the surface. GPR can prove 

quite beneficial in such applications, which contributes to why GPR is another one of the most 

commonly employed methods by the Branch of Geophysics and Geology. Velocity logging is also 

performed by the branch to obtain the shear wave velocity profile and other relevant soil 

material properties for seismic design of the foundation/structure. P-S suspension logging was 

once commonly used in this context. However, the number of projects related to foundation 

design (particularly deep foundations) has diminished, which has reduced demand for logging 

velocity and the P-S logging tool. Other methods that are quite beneficial but have seen limited 

usage include surface wave testing techniques such as MASW and ReMi to estimate shear wave 

velocity. Finally, borehole imaging techniques such as acoustic televiewer and optical televiewer 

have been underutilized despite their abilities to provide direct inspection and measurement of 

in situ orientation of bedding planes and fractures. Whether the branch’s geophysical efforts are 

utilized to guide the drilling program or to augment it once it is already taking place has often 

been dependent on the client for the particular project. However, Caltrans continues to 

recognize the importance of judicious use of geophysics to help guide the drilling program. To 

that effect, recent revisions to Caltrans project delivery/development documents have 

encouraged increased use of geophysics in the 0-phase. Geophysical work is rarely performed in 
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the project initiation phase (i.e., K-phase) since there is no budget approved for such work at 

that stage of the process. 

Generally, Caltrans seems to be shifting away from a construction focus to an operations and 

maintenance focus. There is not a large amount of construction taking place of “new” bridges 

and structures. Often, much of the present work centers on maintaining or replacing existing 

facilities (e.g., bridges that have been deemed structural deficient). Given these trends, it is 

unsurprising that some of the aforementioned geophysical techniques are falling out of favor 

and that NDT applications are increasing. For example, through the Branch of Geophysics and 

Geology, Caltrans has been involved in a number of National Cooperative Highway Research 

Program (NCHRP) Strategic Highway Research Program (SHRP2) initiatives that have been 

exploring the role of NDT in maintaining highway related components. This involvement has 

included a number of proof-of-concept applications of NDT for bridge deck investigations, 

pavement delamination, subsurface utilities, and tunnel linings. 

Moving forward, the Branch of Geophysics and Geology will continue to lead the way in 

promoting and applying geophysical methods for highway related applications within the state 

of California. It is anticipated that part of its role will be to encourage more consistent 

application of geophysics for geotechnical projects. In that manner, early identification can 

occur of those projects where geophysics is applicable so that equipment can be swiftly 

mobilized on site early enough (i.e., 0-phase) to aid in the development of drilling plans. The 

goal would be to exploit the reconnaissance capabilities of geophysics and reduce the number 

of boreholes to the absolute minimum necessary in order to better manage subsurface 

investigation budgets. Regarding Caltrans experience with NDT, utility locating will continue to 

be vital for future projects. Many internal studies within Caltrans and others across the country 

have demonstrated that the return on investment is high when using NDT early in a project to 

locate utilities as part of construction efforts. A limited investment in NDT efforts up front leads 

to fewer cost overruns related to change orders and construction claims for utility relocation, 

protection in place or project redesign. It is anticipated that the Branch of Geophysics and 

Geology will place a larger focus on NDT moving forward and will continue to engage in activities 

such as the NCHRP SHRP2 initiatives that study the role of NDT in highway related construction 

and asset management. Finally, a large contribution to limited use of geophysics is likely related 
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to lack of familiarity with these methods and their capabilities. To address this issue, the Branch 

of Geophysics and Geology will continue to engage stakeholders and provide formal and 

informal training opportunities regarding the work it performs and the importance of geophysics 

in modern DOT practice. 

1.3 SCOPE 

Given the previous discussions regarding the increasing importance of geophysics in 

transportation projects, the primary purpose of this report is to provide a review of the 

quantitative measurements possible using geophysical techniques. It is intended to address the 

existing gap in the literature regarding geophysical measurements for geotechnical purposes. 

This review will focus on soil and rock parameters that are particularly useful for geotechnical 

applications in transportation infrastructure projects. The majority of the information will be 

obtained from a compilation of literature where geophysical methods have been utilized to 

obtain various soil and rock properties. Such literature will include case histories and 

comprehensive studies relating physical parameters to geophysical measurements. However, 

certain sections of the report will highlight potential knowledge gaps in the literature and will 

also address issues related to uncertainty in dynamic soil properties. Those discussions will 

highlight the importance of geophysical measurements and the potential impacts on 

geotechnical design. Recommendations will also be provided regarding use of geophysical 

measurements for subsurface investigations for typical Caltrans project applications. 

1.4 ORGANIZATION 

Chapter 2 introduces the typical geophysical techniques utilized in the field of geotechnical 

engineering. The initial focus of this chapter is a qualitative description of the methods, though 

it is not intended as a replacement for full texts on that subject (e.g., Telford et al. 1990, 

Wightman et al. 2003, Anderson et al. 2008) and other recent guidance resources (e.g., ASTM 

D6429, CFLHD website). This chapter also discusses typical subsurface investigation techniques 

used to estimate parameters often obtained from geophysical measurements. 

Chapter 3 discusses the applications of geophysical measurements in geotechnical design of 

transportation projects. This chapter summarizes earth material properties and design 
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parameters that can be obtained from geophysical measurements. Included in this discussion 

are properties that are broad in scope and usage (e.g., porosity of bedrock, clay content, etc.), 

properties that are directly pertinent to seismic design (i.e., shear wave velocity), and non-

destructive testing (NDT) applications. Additionally, uncertainty in shear wave velocity 

measurements is discussed and comparisons are made between results from geophysical 

measurements and those from traditional geotechnical subsurface investigations. 

Chapter 4 summarizes the overall findings of the study. Significant overlap exists between 

geotechnical applications of geophysics and applications related to geological exploration and 

NDT. For example, many geophysical methods are utilized to detect voids and delineate 

subsurface features such as stratigraphic contacts, bedrock topography, fault traces, landslide 

slip surfaces, and similar features. Likewise, many NDT methods are related to geophysical 

methods and are similarly used to detect features (e.g., cracks, delamination, corrosion, voids, 

etc.) in engineered materials such as concrete and pavements. Though these qualitative 

evaluations for geological and NDT purposes are very useful and important applications, they 

are outside the scope of this report. Instead, Chapter 4 focuses on providing recommendation 

regarding appropriate use of geophysical measurements for geotechnical applications as related 

to quantifying earth material properties. The scope of these recommendations primarily focuses 

on shear wave velocity and related seismic design applications, though discussion is included for 

a number of non-earthquake applications such as strength of rock, voids/porosity, presence of 

water, and soil composition. Finally, Chapter 4 highlights any remaining knowledge gaps in the 

current state of geophysical practice and research as related to geotechnical engineering. 
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policies of the State of California or the Federal Highway Administration. This report does not 

constitute a standard, specification, or regulation. 

Continued on Next Page 

14 



 
 

   

    

  

   

   

 

     

      

    

     

 

   

 

  

    

     

     

    

    

 

 

   

    

    

     

    

   

   

      

     

   

2. GEOPHYSICAL METHODS FOR TRANSPORTATION PROJECTS 

This chapter provides a brief summary of the various geophysical methods that are common in 

geotechnical subsurface investigations. The focus is not on qualitatively describing each method, 

but rather to provide a current state of geophysical practice within the context of transportation 

infrastructure applications. More details on each method are available in a wide range of 

references available in the literature (e.g., Steeples and Miller 1988; Sheriff and Geldart 1995; 

USACE 1995; Ellis and Singer 2007; Jol 2008; Ashcroft 2011, etc.). An online resource based on 

Wightman et al. (2003) is also maintained at the Central Federal Lands Highway Division website 

(CFLHD 2013). A discussion is also provided in this chapter regarding the current state of 

practice for estimating pertinent soil properties based on in situ and laboratory investigations. 

Quantitative examples are developed and case histories are discussed where geophysical 

measurements prove more suitable to acquire such properties. 

2.1 SURFACE METHODS 

The following sections provide a brief summary of common surface geophysical methods that 

have been employed for geotechnical purposes. These methods rely on measurements obtained 

using equipment and instrumentation at the ground surface. The focus is to provide context for 

these methods as used in geotechnical engineering. The descriptions are qualitative in nature 

and assume basic understanding of fundamental geophysical concepts and familiarity with the 

methods described. 

2.1.1 SEISMIC METHODS 

Several methods rely on interpreting the subsurface based on the propagation of seismic waves. 

Seismic waves produce mechanical strains in the materials through which they propagate. The 

velocities at which the waves propagate depend on material elastic moduli and density. The 

resulting particle motions depend on seismic wave type, of which P-, S-, and surface (i.e., 

Rayleigh and Love) waves are the most commonly utilized. These motions can be measured 

using sensors and can be used to determine information regarding the material through which 

the wave propagates. These methods have been routinely used in the field of geophysics, 

particularly for mapping lithology as related to exploration for hydrocarbons (e.g., see history of 

seismic techniques in Sheriff and Geldart 1995). 
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Table 2.1: Potential engineering applications of various geophysical methods (Anderson 2006). 
Note: M = Major Application, X = Minor Application 
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Table 2.1 (cont.): Potential engineering applications of various geophysical methods 
(Anderson 2006). Note: M = Major Application, X = Minor Application 

The most common seismic surface methods as employed for geotechnical purposes include 

Seismic Reflection, Seismic Refraction, Spectral Analysis of Surface Waves (SASW), Multichannel 

Analysis of Surface Waves (MASW), and passive methods such as passive MASW, Microtremor 

Survey Method (MSM), Refraction Microtremor (ReMi), and the Horizontal-to-Vertical Spectral 

Ratio (HVSR). Active methods such as Seismic Reflection/Refraction, SASW, and MASW employ 

waves that are actively generated by seismic sources at the site, including sledge hammers, air 

guns, explosives, mass shakers, accelerated weight drops (AWD), and vibroseis vehicles, among 

others. Passive methods such as passive MASW, MSM, ReMi, and HVSR measure ambient 

seismic energy from various sources (e.g., traffic, ocean tidal activity, industrial and construction 
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noise, etc.). These methods are typically utilized to map and delineate geologic features (e.g., 

soil layer contacts, top of bedrock, faults/fractures, voids/tunnels, sub-bottom profiles, depth to 

water table, etc.) and to measure elastic wave velocities, particularly the time-averaged shear 

wave velocity in the upper 30 m of the site (i.e., VS30) to determine the National Earthquake 

Hazards Reduction Program (NEHRP) site class (Tables 2.1 and 2.2). From velocity measurements 

it is possible to obtain the corresponding elastic modulus and the density of the material, which 

can be correlated to other earth material properties. 

Table 2.2: Potential engineering applications of various geophysical methods (Sirles 2006). 
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Seismic methods are generally robust methods that can delineate density contrasts deep below 

the surface. These methods are particularly well suited for obtaining properties of subsurface 

materials that are very difficult to sample using traditional geotechnical investigations or 

subsurface geophysical methods (e.g., glacial till, pavements, etc.). However, they do suffer from 

a number of limitations, primarily related to data post-processing and interpretation. The 

techniques rely on arrivals from waves that interact in a complex manner with the underlying 

subsurface soils. At particularly challenging sites, it may be difficult or impossible to separate the 

effects of different wave types (e.g., reflected/refracted body waves, first arrival surface waves, 

etc.) from the recorded ground signals. There are also limitations related to vertical and lateral 

resolution as well as signal-to-noise ratio. As a result, care must be exercised in designing field 

testing parameters to prevent spatial aliasing, near-field effects, and excessive signal 

attenuation. Optimal field testing parameters may be restricted by the logistics of the particular 

field site. For example, it may be impossible to string a survey line to the length necessary or the 

site may be subject to excessive background seismic noise. Non-unique solutions are possible 

for the results from surface-wave testing because their analysis is based on performing an 

inversion of the measured dispersion curve. Moreover, for passive methods, assumptions must 

be made regarding the directionality of the background seismic energy. As a result of these 

limitations, it is advisable to perform multiple seismic tests at a site to constrain results and 

provide supplementary information. Fortunately, the similarity in equipment used for each of 

the seismic methods encourages complementary testing. 

2.1.2 ELECTROMAGNETIC METHODS 

Electromagnetic methods [i.e., Ground Penetrating Radar (GPR), Borehole Radar (BHR), and 

Time-Domain Reflectometry (TDR)] are often utilized to explore the subsurface and differentiate 

between materials with different electric properties. These methods are distinguished from 

electrical/magnetic methods by the fact that they typically introduce combined electromagnetic 

waves into the domain of interest, rather than a direct current (DC) or alternating current (AC) 

electrical potential. 

Regarding radar methods, much of the processing and interpretation of GPR reflection data is 

similar to that used for seismic wave reflection testing. However, the propagating waves are 

high-frequency (usually polarized) radar waves that are sensitive to the electromagnetic 

19 



 
 

   

   

        

  

  

    

 

 

 

      

   

 

   

     

     

   

   

 

   

     

     

  

 

    

 

     

   

  

 

    

    

properties of the soil instead of mechanical properties. The results from radar methods are 

useful in determining stratigraphy (e.g., Jol et al. 2003), location of faults and fractures (e.g., 

Theune et al. 2006), presence of voids and tunnels (e.g., Di Prinzioa et al. 2010), location of 

utilities (e.g., Al-Nuaimy et al. 2000), and non-destructive testing purposes for concrete and 

pavements (e.g., Bungey 2004; Barrile and Paccinotti 2005; Chang et al. 2009; Chen and Wimsatt 

2010; Willett et al. 2006). The primary measurement in radar methods is the propagation 

velocity of electromagnetic waves in the medium (i.e., the electromagnetic analog to elastic 

wave velocity as obtained in seismic reflection/refraction testing). The propagation velocity can 

be estimated from reflected waves, critically refracted waves, and ground waves generated by 

the transmitter and measured at the receiver. From this velocity it is possible to obtain the 

corresponding dielectric permittivity of the materials. 

In its simplest form, TDR relies on measurements of electromagnetic waveforms along a 

waveguide (e.g., transmission line, cable) of known length and constant dielectric constant. A 

pulse generator attached to the cable inputs the appropriate input voltage signal and any 

reflections are recorded using an oscilloscope. In the case of applications related to soils, the 

“cable” is actually a probe and the soil functions as the dielectric material between the “cable” 

elements. During operation, reflections of the input pulse occur at the initial and final contact 

locations between the probe and soil. Since the length of the “cable” is known, a travel time 

analysis of the reflected signals can be performed to determine the velocity of the 

electromagnetic wave and the corresponding dielectric constant. TDR has proven useful in 

evaluating soil moisture and density, particularly in the context of compaction quality control 

(Lin et al. 2000; Yu and Drnevich 2004; Fratta et al. 2005; Lin et al. 2012) and 

agricultural/environmental applications (Dalton and Van Genuchten 1986; Inoue et al. 2001; 

Wraith and Or 2001; Wraith et al. 2005; Oberdörster et al. 2010; Kallioras et al. 2016). 

2.1.3 ELECTRICAL AND MAGNETIC METHODS 

A number of surface methods employ measurements related to electrical and/or magnetic 

potentials. Some methods utilize passive instrumentation to measure the intrinsic 

electrical/magnetic properties of the subsurface and others utilize active sources of electrical 

current. Examples of passive methods include magnetic surveys that measure local 

perturbations in the Earth’s magnetic field using a magnetometer and self potential methods 
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that measure the voltage difference between two points on the ground caused by the small, 

naturally produced currents that occur beneath the Earth's surface. Active methods include 

Electrical Resistivity and Induced Polarization (IP), which determine the resistivity of soils by 

measuring their response to applied current. 

The most commonly employed electrical/magnetic geophysical methods include ER/IP and 

magnetic surveys. These methods are typically used to measure the electrical properties of the 

soil and to map the subsurface (e.g., delineate layer contacts between soils or to determine the 

depth to the ground water table). The electrical characteristics of soil are inherently related to 

other properties, including void ratio and porosity, water content, hydraulic conductivity, and 

density. As such, these methods can be used to estimate these properties based on correlations 

to electrical resistivity/conductivity and magnetic susceptibility. 

Electrical and magnetic methods are well suited to sites where significant contrasts exist in the 

electrical/magnetic response of the underlying subsurface materials. It is for that reason that 

these methods are often used to locate and evaluate the condition of embedded man-made 

materials (e.g., steel, pipelines, utilities, etc.). As such, a number of these methods have been 

routinely utilized for nondestructive testing (NDT) purposes (e.g., Table 2.1). However, due to 

the nature of the measured parameters in these studies, these methods suffer from poor 

performance at sites where significant background electrical noise is prevalent (e.g., urban sites, 

power lines, grounded metallic objects, etc.). Moreover, saturated clayey soils can present 

challenges because their electrical properties cause severe attenuation in the input energy. 

Similar to seismic methods, equipment layout can be negatively impacted by field logistics. For 

example, very long lines are necessary to string out the large number of sensors necessary for 

sufficient resolution in ER/IP surveys. Finally, data analysis and interpretation is not trivial for a 

number of these methods (e.g., ER/IP) as appropriate inversion techniques and modeling of the 

subsurface is necessary. 

2.1.4 GRAVITY METHODS 

Methods that measure gravitational forces associated with an object have an extensive history 

within the geophysical community and have been used over a wide range of scales and purposes 

(for a good summary, see Nabighian et al. 2005). For example, at a global and interstellar scale, 
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measurements of gravity are vital to understand the complex workings of planetary bodies. For 

geophysical exploration purposes, the gravity method has been widely used for mining and oil 

exploration. In engineering and environmental applications the gravity method can be 

performed at a much more localized scale (i.e., microgravity surveys) to locate subsurface 

features (e.g., voids, changes in depth to bedrock, buried stream valleys, water table levels, etc.) 

and to estimate fluctuations in mass density across a site. Generally, the gravity method relies 

on gravimeters to measure small changes in the gravitational field at the Earth’s surface due to a 

gravity anomaly. The magnitude of these changes can be attributed to lateral density changes in 

the subsurface (e.g., a mass concentration or void) as well as terrain, tidal, equipment drift, 

elevation, and motion-induced variations in the total Earth gravity field. Though they are not as 

readily available as surface modules, borehole gravimeters have been produced as early as the 

1950’s to perform similar gravity measurements within a borehole. 

The measurements required in the gravity method are relatively simple to perform. However, 

the challenge in the method results from minimizing the issues associated with sources of 

“noise” (e.g., equipment drift, tidal variations in gravity measurements, etc.) and in accurately 

determining station locations and elevations from a high precision site survey. For locating 

features at the engineering scale of interest, high station density is necessary and the most 

time-consuming aspect of a microgravity study is often surveying the area of interest. Moreover, 

since the gravity measurements can vary with time due to tidal changes and equipment drift, 

measurements must be repeated several times at each station. The gravity method is less 

affected by issues found in electrical and magnetic methods, such as limitations in investigation 

depth due to highly conductive clay-rich soils near the surface. However, one of the main 

drawbacks is related to data interpretation. For example, a gravity anomaly from a distribution 

of small masses at a shallow depth can produce the same effect as a large mass at depth. 

Resolving this ambiguity can necessitate external information from other geophysical methods 

or geotechnical subsurface investigations. 

Gravity methods have been increasingly used for engineering purposes (e.g., evaluation of 

sinkholes, soft surficial anomalies, etc.). This increase has been driven by improvements in 

gravimetry equipment that have allowed more consistent and higher resolution measurements 

of the gravitational field. Typical gravity anomalies for near-surface engineering applications 
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have magnitudes in the range of 10 - 1000 μGal (hence the use of the microgravity term), where 

Gal is a unit of acceleration measurement equal to 1 cm/s2 (Butler 2007). This implies that 

gravimeter sensitivity, accuracy, and precision must be on the order of 1 μGal (i.e., 1 part in 109 

of the earth’s gravitational field) for engineering applications, an achievement not realized until 

the 1960’s and 1970’s (Butler 1980; Nabighian et al. 2005). Since this equipment has been 

available, there has been growing interest in performing high resolution microgravity surveys for 

engineering issues ranging from the delineation of fracture zones to estimating aquifer porosity 

and depth to bedrock, delineating substrata depth variations and fill thickness, and verifying 

bedrock conditions (Hall and Hajnal 1962; Eaton et al. 1965; Domenico 1967; Wolters 1973; Arzi 

1975; Carmichael and Henry 1977; Wang et al. 1986; Benson and Baer 1989; Roberts et al. 1990; 

Tønnesen 1995; Benson and Floyd 2000; Hayashi et al. 2005; Davis et al. 2008; Mankhemthong 

et al. 2012). The most common application of microgravity surveys is to evaluate the presence 

of subsurface cavities such as sinkholes and other karst topography (Butler 1984; Wenjin and 

Jiajian 1990; Camacho et al. 1994; Yule et al. 1998; Beres et al. 2001; Benson et al. 2003; Styles 

et al. 2005; Mochales et al. 2008; Tuckwell et al. 2008; Whitelaw et al. 2008; Orfanos and 

Apostolopoulos 2011; Paine et al. 2012). 

The unifying earth material property in each of the aforementioned microgravity applications is 

the density of the subsurface materials. Fluctuations in gravitational fields are directly 

dependent on five factors: latitude, elevation, topography, tidal changes, and density variations 

(Telford et al. 1990). In application of the gravity method for engineering and geological 

purposes, the density variation is typically the relationship of interest. The variations in gravity 

that result from differences in density are small in relation to fluctuations that result from the 

other factors. Fortunately, post processing techniques exist to remove the effects of latitude, 

elevation and topographical changes, and temporal (i.e., tidal) fluctuations, though utmost care 

must be exercised during field operations to minimize the influence of these factors. Various 

references provide relevant background information regarding the field procedures and 

associated data post-processing steps involved in isolating the effects of density on gravimetric 

measurements (e.g., Neumann 1977; Butler 1980; Hinze 1990; Telford et al. 1990; Mickus 2003). 

The majority of microgravity surveys for engineering purposes are performed with relative 

gravimeters, which determines the difference in gravity between measurement locations. 

Absolute gravity instruments are more expensive, physically larger, require longer acquisition 
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times, and are generally less user-friendly compared to relative gravity instruments (Nabighian 

et al. 2005). The raw data collected by a relative gravimeter is post-processed and corrected for 

the aforementioned factors. Post-processing also typically includes the separation of the 

anomaly of interest (residual) from the remaining background anomaly (regional) using manual 

or polynomial surface fitting techniques (Hinze 1990), among other approaches. The end result 

is a spatial distribution map of residual gravity measurements. This map can typically be used in 

conjunction with other subsurface investigation techniques to provide a qualitative assessment 

of subsurface conditions based on changes in gravity. For example, minima in the gravity 

measurements (i.e., negative gravity anomalies) typically correspond to potential cavities (Styles 

et al. 2005). Some of the earliest applications of microgravity surveys have relied on such spatial 

distribution maps to evaluate subsurface conditions (e.g., Arzi 1975; Fountain et al. 1975; 

Neumann 1977). More detailed analysis such as numerical modeling can be performed on 

spatial measurements of gravity to quantify the nature (e.g., depth and geometry) of subsurface 

features causing the gravity variations. Additionally, examining the vertical and horizontal 

gradients (i.e., first derivatives) of the gravity measurements can be of considerable importance 

and provide additional information regarding subsurface conditions, particularly for anomalies 

caused by shallow subsurface structures (Evjen 1936; Heiland 1943; Butler 1980; Butler 1984). A 

number of case histories have demonstrated the use of gravity gradient measurements to 

evaluate the subsurface for engineering applications (e.g., Fajklewicz 1976; Butler 1984; Pan 

1989; Pajot et al. 2008; Erkan et al. 2012). 

2.1.5 REMOTE SENSING 

Remote sensing refers to a broad range of techniques where information is obtained based on 

measurements made at a distance without making physical contact with the object. This 

definition is inherently broad [e.g., see summary in Campbell and Wynne (2011)] and includes 

digital imagery methods, thermal radiometry, remote acoustics, radar-based technology 

[synthetic aperture radar (SAR), in combination with interferometry (InSAR)], and LiDAR among 

others. Remote sensing technologies typically rely on measurements of propagated signals (e.g., 

electromagnetic radiation) that are either actively emitted from a source or passively collected 

from the object being measured. As such, there is overlap in the physics and fundamental 

operating theory between remote sensing and many geophysical methods. This overlap is even 

more readily apparent in airborne applications of geophysical surface techniques such as 
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electrical/magnetic and gravity methods. Additionally, there are growing opportunities in 

remote sensing techniques (i.e., InSAR and LiDAR) for the evaluation of transportation 

infrastructure and other civil engineering applications, either as standalone methods or to 

provide complementary information to geotechnical investigations and/or geophysical studies. 

The leading transportation application of remote sensing is for imaging purposes (e.g., 

deformation imaging, landslide and rockslide characterization, etc.). As such, in depth discussion 

of these technologies and their transportation applications are outside the scope of this report, 

which focuses on the measurement of earth material properties. However, a number of case 

studies will be briefly mentioned below and readers are encouraged to review these studies and 

Power et al. (2006), Kemeny and Turner (2008), and Morgan et al. (2011) for more thorough 

discussions of these technologies, particularly as related to InSAR and LiDAR. Additionally, 

Brown and Hodges (2005) provides a broad overview of application of airborne geophysical 

methods for engineering purposes and Vaghefi et al. (2012) provides an overview of 

commercially available remote sensing technology as applicable to evaluation of bridges. 

Among the commonly applied remote sensing technologies for engineering purposes are 

airborne surveys of surface geophysical methods. A number of studies have utilized aircraft-

based electrical/magnetic and gravity methods to develop subsurface maps for various 

engineering purposes, including ground water quality studies (Fitterman and Deszcz-Pan 1998; 

Ackman 2003; Siemon et al. 2009), tunnel and pipeline construction (Hodges et al. 2000; Okazaki 

et al. 2011), location of buried metallic structures such as underground storage tanks (UST) and 

unexploded ordnances (UXO) (Takata et al. 2001; Doll et al. 2012a), evaluation of levee 

condition (Hodges et al. 2007; Amine et al. 2009; Doll et al. 2012b), and rockslide/landslide 

investigations (Nakazato and Konishi 2005; Pfaffhuber et al. 2010). Among established remote 

sensing techniques, InSAR (satellite and aerial) and LiDAR (aerial and terrestrial) are increasingly 

observed in engineering studies. For example, recent CFLHD projects have explored the use of 

InSAR to measure landslide movements (Anderson et al. 2004; Power et al. 2006; Sato et al. 

2009; Morgan et al. 2011). These studies have demonstrated the ability to resolve movements 

on the order of centimeters. Similar efforts have also been performed to monitor dams and 

bridges (Tarchi et al. 1999; Pieraccini et al. 2006; Soergel et al. 2008; Zhang et al. 2010; Talich et 

al. 2014), pavements (Suanpaga and Yoshikazu 2010), levees (Dabbiru et al. 2010; Bennett et al. 
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2014; Han et al. 2015), rock slopes (Bruckno et al. 2013), road subsidence (Yu et al. 2013; 

Lazecký et al. 2014), and sinkholes (Vaccari et al. 2013). In the case of LiDAR, applications have 

ranged from evaluating levee integrity (aerial: Bishop et al. 2003; Casas et al. 2012; terrestrial: 

Kemeny and Turner 2008; Collins et al. 2009) to estimating ground deformations due to 

underground construction (Hashash et al. 2005), characterizing landslides (Conte and Coffman 

2013), estimating deformations due to expansive clays (Garner and Coffman 2014), and 

mapping ground deformations and structural failures due to seismic events (Kayen et al. 2006). 

Remote sensing and airborne geophysical studies provide some advantages over traditional 

surface and subsurface geophysical methods. They often have higher production rates capable 

of providing measurements over a larger area in a smaller amount of time. Moreover, these 

methods can provide measurements in rugged terrains that are often difficult to traverse by 

foot or ground vehicles (e.g., across rivers, marshes, mountains, etc.). However, remote sensing 

techniques suffer from limitations associated with equipment costs, complex data 

interpretation, limited temporal resolution for satellite-based measurements, and coarse spatial 

resolution in comparison to surface/subsurface geophysical methods. Despite these limitations, 

there is tremendous potential offered by remote sensing techniques in management and 

evaluation of transportation infrastructure, as evidenced by a growing amount of interest at the 

state and federal levels [e.g., the USDOT’s Commercial Remote Sensing & Spatial Information 

(CRS&SI) program]. Application of remote sensing and aerial geophysical methods should only 

continue to grow, particularly as the use of unmanned aerial systems (UAS) proliferates and 

such systems are retrofitted to enable remote sensing measurements. One such example is the 

Jet Propulsion Laboratory’s (JPL) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) 

project that was funded in 2004 by the National Aeronautics and Space Administration’s (NASA) 

Earth Science Technology Office (Fore et al. 2015). Since the system became operational in 

2009, it has been utilized for a number of engineering applications, including visualization of 

fault slip (Rymer et al. 2011; Donnellan et al. 2014), monitoring of sinkholes (Jones and Blom 

2013), evaluation of levees (Aanstoos et al. 2011), and estimation of fault-induced landslide 

movements (Scheingross et al. 2013). Similar efforts are underway to develop more 

transportation-focused UAS technology with the support of FHWA and the USDOT CRS&SI 

program. 
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2.2 SUBSURFACE METHODS 

The following sections provide a brief summary of common subsurface geophysical methods 

that have been employed for geotechnical purposes. These methods typically deploy sensors 

within the subsurface either from boreholes or with the use of a cone penetration testing (CPT) 

rig. The focus herein is to provide context for these methods as used in geotechnical 

engineering. The descriptions are qualitative in nature and assume basic understanding of 

fundamental geophysical concepts and familiarity with the methods described. 

2.2.1 ACOUSTIC METHODS 

Acoustic subsurface methods utilize the travel time of mechanical stress waves (i.e., 

compressional) that are generated by transmitters within a borehole. This wave energy travels 

through the fluid of the borehole (i.e., pressure or tube wave) and along the borehole walls, 

often refracting and converting into other modes of wave propagation (i.e., shear waves). The 

probes utilized for acoustic logging often contain a number of receivers to record the wave 

arrivals (both compressional and shear). The travel time of the waves is related to the lithology 

and porosity of the borehole wall materials. 

A number of methods are included in this category of geophysical testing, including acoustic 

velocity logging, full waveform sonic logging, and suspension logging. These methods primarily 

differ in the analytical methods used, the frequency of the input signals, and the purpose of the 

corresponding data. Typically, a plot of wave velocity (compressional and shear) is obtained with 

depth that illustrates the stratigraphy at the borehole location. However, it is also possible to 

obtain information regarding the location of factures and to correlate the measurements to 

porosity, permeability, bulk density, and other elastic properties. Finally, the results from 

acoustic borehole methods can be used to evaluate the condition of the borehole for quality 

assurance purposes. 

Borehole acoustic methods typically provide a higher level of resolution relative to surface 

methods, and are therefore well suited to determine localized fluctuations in velocity. For 

example, sonic logging tools can have a fixed receiver interval as low as 0.3 m (1.0 ft) and can 

therefore resolve soil layers with thicknesses on the order of this value. Moreover, borehole 

acoustic methods can reliably acquire data at this resolution at up to kilometers of depth 
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because the interval between source and receivers is fixed throughout testing (unlike surface 

methods where deeper layers are significantly farther away from the source-receiver pair or 

down-hole methods where the source and receiver are increasingly separated for deeper 

measurements). However, there are some limitations to these methods. The velocity 

measurements are much more localized than typical surface methods and only a limited amount 

of material is sampled in the immediate vicinity of the borehole [i.e., within three times the 

wavelength (Pirson 1963)]. As with other borehole geophysical logging techniques, disturbance 

due to drilling (e.g., stress release, drilling mud infiltration, fracturing, etc.) can affect the 

measurements (Hodges and Teasdale 1991). Care must be exercised during testing operations 

that the probe is vertical and equidistant from the borehole wall and that borehole verticality is 

consistent after construction. Finally, data interpretation can be problematic in certain profiles 

because the nature of the transmitted/refracted waves can be complex. For example, based on 

Snell’s Law a refracted shear wave may not be generated from the input compressional wave if 

the soil shear wave velocity is slow enough. In this situation acoustic logging would be unable to 

resolve the shear wave velocity of such a formation. 

2.2.2 TELEVIEWERS 

Televiewer methods involve the use of equipment to image the borehole wall. Measurements 

are performed using specialized submersible charge coupled device (CCD) cameras [i.e., Optical 

Televiewer (OTV)] that produce direct images of the borehole wall or with ultrasonic transducer 

systems [i.e., Acoustic Televiewer (ATV)] that operate in a pulse-echo arrangement and generate 

synthetic images of the borehole wall based on wave travel time and amplitude. In both cases, 

the measurements are performed as the sensor is rotated within the borehole and the resulting 

image captures a 360o scan of the borehole wall. 

The primary use of OTV and ATV measurements is to identify stratigraphic layers, determine the 

location and extent of fracturing/voids, and to evaluate borehole construction. Most 

commercial systems operate using software that is capable of analyzing the corresponding 

images and providing information regarding planar features, such as strike and dip, frequency, 

and aperture size. Moreover, the images can be further examined for indications of water flow 

and/or contamination and changes in borehole diameter and wall roughness (either due to 

drilling or lithology). Therefore these techniques focus less on direct measurement of soil 
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properties and more on locating specific features such as fractures. However, such information 

can often allow evaluation of other pertinent information such as the orientation of stress fields 

(Wolff et al. 1974; Keys et al. 1979). 

ATV is capable of resolving very small features on the order of 1 mm under ideal conditions 

(Wightman et al. 2003) and OTV resolution is restricted essentially by the quality of the camera. 

However, there are a number of limitations to these methods. Both methods examine only a 

limited area in the vicinity of the borehole wall, which may not be representative of the entire 

formation. Aberrations in the magnetic field (e.g., significant presence of metallic objects such 

as a steel casing) render inaccurate the magnetometer readings that orient the televiewers 

during data acquisition. OTV is affected by the clarity of the drilling fluid in the hole and ATV can 

only be performed in a fluid-filled borehole. 

2.2.3 SEISMIC METHODS 

A number of seismic methods have been developed that utilize the travel time of mechanical 

stress waves as measured by geophones and/or hydrophones within a borehole or set of 

boreholes. These stress waves (typically shear waves) are often generated either at the surface 

[e.g., Down-hole survey and Seismic Cone Penetration Test (SCPT)] or within a borehole (e.g., 

Cross-hole survey). A wide array of seismic sources is possible, including sledgehammers, 

sparker sources, and air guns. These methods are similar in approach to the acoustic methods 

discussed in 2.2.1. However, the fundamental difference is that the seismic source and the 

corresponding receiver are not collocated in the same borehole. The source is either at the 

surface or in another borehole away from the receiver(s). 

The most commonly used seismic subsurface methods in geotechnical engineering include 

Down-hole surveys, Cross-hole surveys, and SCPT. Typically, the underlying goal of seismic 

subsurface methods is the development of an accurate profile of shear wave velocity. 

Compressional wave velocity – and, by extension, Poisson’s ratio – and attenuation can 

sometimes be estimated, particularly in cross-hole tomographic studies. SCPT has an added time 

efficiency benefit that testing can take place concurrently with the acquisition of detailed 

penetration resistance information. However, SCPT is limited to testing in materials and over 

depths applicable to typical cone penetrometer rigs. For example, SCPT may be ineffective in 
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glacial tills as cone refusals may prevent the acquisition of data over an appropriate range of 

depths. Down-hole surveys and Cross-hole surveys are typically performed with one 

measurement at each depth. For example, in down-hole surveys the source at the surface will 

be activated each time the receiver in the borehole is lowered to a new location and the travel 

time with depth will be utilized to develop the velocity profile. Similarly, the source and receiver 

will each be moved to occupy the same depth in different boreholes as part of cross-hole data 

acquisition. However, as previously noted, data acquisition in cross-hole surveys can also be 

performed in such a way as to allow seismic tomography to be performed. Seismic tomography 

refers to the development of two- or three-dimensional (2D and 3D) velocity images between 

boreholes by performing an inversion algorithm on the acquired waveforms. During data 

acquisition, the source and receivers are relocated to occupy a number of stations in their 

respective boreholes. For example, a string of receivers may be placed in one borehole and the 

source moved within its borehole from bottom to top at a specific interval. Once the data has 

been acquired, algorithms are utilized to solve the system of thousands of nonlinear equations 

to reconstruct the velocity field between the boreholes. These algorithms are often based on ray 

tracing or some form of the wave equation that models the manner in which waves propagate 

between source and receivers. As with other methods where seismic wave velocities are 

measured, the results from borehole seismic methods can be correlated to other elastic 

material properties. 

The resolution of seismic subsurface methods lies somewhere between borehole acoustic 

methods as described in 2.2.1 and surface seismic methods such as SASW and MASW as 

described in 2.1.1. Additionally, data interpretation for Down-hole, SCPT, and non-tomographic 

Cross-hole surveys can be simplified relative to SASW/MASW because the receiver is located 

within the soil column at a specific depth for a given seismic input wave. In these cases, 

velocities can be estimated by distinguishing first arrivals in the wave record. The layout of these 

methods also allows a larger volume of material to be sampled in relation to acoustic methods. 

However, the amplitude of the source input wave attenuates in the Down-hole and SCPT 

methods when the receiver is lowered, which makes interpretation of first arrivals increasingly 

difficult as the test progresses. Cross-hole surveys address this issue and also allow information 

regarding anisotropy of the soils, however at additional costs and complexities with field setup. 

Finally, the quality of borehole construction can significantly affect the results. It is particularly 
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important to ensure adequate coupling for any borehole casings that may be installed and also 

to maintain borehole verticality during construction (or otherwise measure the borehole 

alignment during testing). This is also true for SCPT, where care must be exercised to ensure the 

cone tip does not excessively wander as it is pushed into the ground. 

2.2.4 BOREHOLE RADAR 

Borehole radar (BHR) as a subsurface method essentially mimics the functionality of GPR within 

a borehole. A transmitter and receiver antenna is lowered into the borehole, where 

electromagnetic pulses (often in the MHz range) are radiated and reflected energy is recorded 

with depth. The reflections occur at boundaries between materials with different electrical 

characteristics (i.e., dielectric constant). Antennas have been developed at different central 

operating frequencies to allow tailoring the resolution and penetration depth of the system to 

particular site needs and conditions. Generally, BHR is run within a single borehole as a 

reflection survey. However, it is possible with certain systems to perform surface to borehole 

measurements and/or cross-hole measurements as well. 

As with GPR, BHR finds preliminary use as a tool to delineate geological features, particularly in 

cases where the depth of coverage for GPR is inadequate. For example, BHR can be used to map 

fractures, voids and cavities, and contacts between layers, up to kilometers in depth below the 

surface. Additionally, the electrical characteristics of the soil that are measured by BHR can be 

correlated to other soil properties. 

As the fundamental mechanisms are nearly identical, BHR shares a number of limitations with 

GPR. For example, saturated clayey soils still drastically attenuate the radar signals in BHR and 

affect its ability to transmit signals a significant distance away from the borehole. Background 

interference from electrical transmission sources (e.g., cellular towers, radio transmitters, etc.) 

can negatively impact BHR signals. However, since the antenna is lowered into a borehole, BHR 

is able to resolve deeper profiles than possible using GPR. 

2.2.5 ELECTRICAL METHODS 

As is the case for surface methods, a number of methods have been developed for use in 

borehole geophysical investigations that gather information regarding the response of 
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subsurface materials to electrical currents and potentials. Data acquisition is typically 

accomplished using electrodes or coil probes that transmit and/or measure either direct current 

(DC) or alternating current (AC) signals. Some of the methods are passive and measure the 

telluric currents present in the soils and formations [e.g., Spontaneous Potential (SP) logging], 

while others actively induce currents into the surrounding materials and measure the 

corresponding response (e.g., Resistivity and/or Induction logging). 

Most of the electrical methods trace their origins to geophysical borehole logging in the 

petroleum industry. As such, the most common applications of these methods include mapping 

lithology of underlying soils and rocks, determining layer thicknesses, and determining salinity of 

groundwater (Wightman et al. 2003). The most common of the subsurface electrical methods as 

utilized for geotechnical engineering purposes include SP logging, resistivity techniques, and 

induction logging. As with other electrical geophysical methods, the electrical characteristics of 

the soil can be correlated to other soil properties, including clay content and porosity. 

Borehole electrical methods typically allow a greater depth of coverage than surface based 

electrical methods as transmitter and receiver are often collocated at approximately the same 

location within the borehole. However, they suffer from similar limitations given that the 

fundamental theory behind their operation is practically identical. Added complications include 

the effects of borehole construction on the measurements as well as the additional borehole 

fluid interface that can alter the electrical characteristics of the surrounding formations. 

2.2.6 NUCLEAR METHODS 

Nuclear methods include a number of techniques that rely on detecting the presence of 

unstable isotopes in the vicinity of the borehole. Measurements can be made in a passive 

manner that sample the background levels of radiation (e.g., gamma logging) or in an active 

manner that introduces small levels of radiation and measures backscatter (e.g., gamma-gamma 

logging). Different isotopes are utilized depending on the test performed (e.g., gamma logging 

versus neutron logging). 

The most commonly used nuclear methods for geotechnical purposes include gamma logging, 

gamma-gamma logging, and neutron logging. These methods are primarily used to map 
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subsurface stratigraphy as the amount of radioactivity is a function of bulk density, porosity, and 

moisture content. As a result, nuclear methods also find applications related to quality control 

of compaction (i.e., nuclear gauge test) and for non-destructive testing (NDT) of drilled shafts to 

ensure integrity of concrete. Moreover, the sensitivity of the results to moisture changes allows 

these methods to be used to monitor groundwater movement (e.g., between waste 

containment facilities and underlying aquifers). It should be noted that though nuclear methods 

are presented in the subsurface section of this chapter, surface methods that rely on the same 

concepts do exist in practice and do see routine use (e.g., nuclear gauge test, neutron moisture 

probe, etc.). However, these surface nuclear methods will be limited to very shallow 

investigations because measurements only occur in their immediate vicinity (i.e., 4 – 6 in) (Timm 

et al. 2005). 

If calibrated appropriately and interpreted relative to other background information at a site, 

nuclear methods can provide accurate information regarding density, moisture content, and 

identification of geological units and rock types. However, there are a number of unique aspects 

of nuclear methods that must be appreciated in order to ensure successful testing. To start, any 

contamination of the surrounding materials by artificial radioisotopes will alter the readings and 

can be difficult to isolate. Measurement accuracy of the probe is increased as the counting rate 

and length of data acquisition at a given point is increased due to the decaying nature of 

radioactive isotopes. This must be balanced against the logging speed and vertical resolution 

requirements for a given project site. Additionally, the use and transportation radioactive 

materials are regulated by both Federal and State agencies. Care must be exercised when 

handling equipment to ensure the radioactive sources are not subject to excessive wear and 

tear. Therefore nuclear methods are subject to extra logistical concerns relative to other 

geophysical methods. 

2.3 SUBSURFACE INVESTIGATION CURRENT STATE OF PRACTICE 

As previously discussed, all transportation projects are built on or with earthen materials and it 

is important to understand their behavior and properties to ensure adequate long-term 

function. The role of the geotechnical engineer can vary by project, but commonly entails the 

development of suitable subsurface investigation operations to characterize the site conditions. 

The data derived from subsurface investigations are evaluated to define stratification and 
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groundwater conditions and to develop appropriate soil/rock parameters for use in design. As 

previously noted, several methods are available to successfully perform suitable subsurface 

investigations, including geophysical methods. The following sections discuss the current state 

of practice for subsurface investigations as related to transportation projects. Included in the 

discussion are typical geotechnical investigation techniques, in situ methods to determine 

geophysical parameters when geophysical techniques are unavailable or cannot be reasonably 

obtained, and laboratory methods to determine geophysical parameters (e.g., shear wave 

velocity) from soil samples. These sections do not provide detailed information on all available 

subsurface methods; rather the focus is on providing an overview of typical subsurface 

investigations and how geophysics can fit into this process. The reader is encouraged to review 

other references that specifically focus on site investigations, including Mayne et al. (2002) and 

Sabatini et al. (2002), for detailed information on the various subsurface investigation methods. 

2.3.1 TYPICAL GEOTECHNICAL SUBSURFACE INVESTIGATIONS 

The design and execution of a geotechnical subsurface investigation is a multi-step process that 

involves appropriate communication often among several parties, including the geo-

professional, the client, other engineers (e.g., structural engineer, project engineer, etc.), field 

staff (e.g., maintenance, environmental, traffic coordinators, etc.), subsurface drillers, 

permitting agencies, and other outside consultants (e.g., specialty drilling operators, geophysical 

services, etc.). The type of investigation performed will vary depending on the nature of the 

project (e.g., size, scope, new construction versus rehabilitation, etc.) and the site conditions 

(e.g., topography, environmental constraints, etc.). Generally, geo-professionals are approached 

to provide recommendations regarding subsurface conditions for new construction projects 

(initial planning purposes or geotechnical design), for rehabilitation projects, and/or for 

geoenvironmental concerns (e.g., contaminated sites) (Mayne et al. 2002). The most common 

type of subsurface investigation project is performed for new construction (e.g., new 

foundation). In these projects, the main purpose of the subsurface investigation is to obtain the 

stratigraphy and engineering properties of the soil or rock at the site that could affect the design 

of the project, while minimizing exploration costs (Caltrans 2015, ASTM D420). A typical 

subsurface investigation for new construction involves multiple stages, progressing from 

preliminary office/field reconnaissance to designing/planning an appropriate subsurface 

investigation plan, and finally to executing the investigation, interpreting the results, and 
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developing a corresponding geotechnical report summarizing the findings. A number of 

documents address the general development and execution of subsurface exploration plans 

(NAVFAC 1986; AASHTO 1988, currently being revised under NCHRP Project 21-10; USACE 2001; 

Mayne et al. 2002; Sabatini et al. 2002; ASTM D420). Moreover, the Caltrans Geotechnical 

Manual has a section devoted to geotechnical investigations that documents the Department’s 

standards of practice for characterizing subsurface conditions (Caltrans 2015). The following 

sections are not meant to replace these references and the reader is encouraged to review 

them as appropriate. Instead, the following sections synthesize these references and briefly 

discuss major highlights within the investigation phases and the role of geophysical methods in 

the process. 

2.3.1.1 Subsurface Exploration Plan 

Prior to the initiation of field subsurface investigations, it is imperative that a well-defined 

exploration plan is established to ensure that the engineer is able to obtain all the necessary 

data to perform engineering analyses and design. The required subsurface data and 

corresponding exploration plan will depend on the nature of the proposed project (e.g., Table 

2.3). Therefore, it is vital to review the proposed project request and plans with the client so 

that any questions regarding the scope of the work are clarified. For projects in the planning 

phase (i.e., K and 0 phase in Caltrans terminology), the purpose of the field investigation is to 

gather existing site information, evaluate if the proposed work is appropriate, and to support 

preliminary recommendations (Caltrans 2015). Design-phase (i.e., 1 phase in Caltrans 

terminology) subsurface exploration must adequately define stratigraphy and engineering 

properties of the soils and rocks that can impact the proposed project (Caltrans 2015). This 

subsurface exploration plan should consider all available investigation techniques, including 

hand augers and/or test pits, subsurface drilling (with disturbed and undisturbed sampling), in 

situ testing, geophysical investigations, and remote sensing. Generally, the subsurface 

exploration plan should stipulate that remote sensing and geophysical techniques (if necessary) 

be conducted prior to subsurface drilling as these methods are faster, less invasive, and can 

provide supplementary information to guide subsurface drilling (Mayne et al. 2002). 
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Table 2.3: Summary of typical transportation project requirements and necessary subsurface 
information (adapted from Sabatini et al. 2002). 
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No matter the intended purpose of the subsurface investigations (i.e., planning versus design 

phase project), the development of a thorough subsurface exploration plan begins with office 

reconnaissance performed to identify any existing information regarding the project site (Mayne 

et al. 2002; ASTM D420; Caltrans 2015). The results from such an investigation can provide a 

wealth of geologic and historic information that will benefit subsequent planning of subsurface 

investigations and minimize surprises in the field (Mayne et al. 2002). For example, Sabatini et 

al. (2002) provides a useful flow chart to aid engineers in selecting appropriate properties for 

earth materials and includes a review of existing documents as the first step in that process (Fig. 

2.1). Existing information regarding site conditions can be found within a number of potential 

data sources, many of which are publically accessible or available at a modest cost (Mayne et al. 

2002): 

• Prior subsurface investigations (historical data) from areas nearby the project site. Caltrans 

maintains an internal website for archiving geotechnical reports, laboratory tests, and 

boring logs [Digital Archive of Geotechnical Services (GeoDOG)]. 

• Construction records from prior projects at or nearby the site. 

• Geologic and topographic maps, reports, and publications [available from the United States 

Geological Survey (USGS) and California Geological Survey, geological societies, university 

libraries and geology departments, Library of Congress, DOT libraries, public libraries, etc.] 

• Flood zone maps [available from USGS, California Geological Survey, and/or the Federal 

Emergency Management Agency (FEMA)]. 

• Soil survey maps [e.g., Department of Agriculture Soil Conservation Service (SCS) Soil Maps] 

• Aerial photographs (USGS, SCS, Earth Resource Observation System, Google Earth). 

• Remote sensing images (LANDSAT, Skylab, and NASA). 

• Environmental studies and ground water information [e.g., USGS, United States 

Environmental Protection Agency (EPA), California Department of Water Resources (DWR), 

etc.]. 

• Earthquake data, seismic hazard maps, and fault information (available from various 

agencies, including USGS, California Geological Survey, Earthquake Engineering Research 

Center (EERC), Earthquake Engineering Research Institute (EERI), National Earthquake 

Engineering Research Program (NEERP), Multidisciplinary Center of Earthquake Engineering 

Research (MCEER), Advanced Technology Council (ATC), Mid-America Earthquake Center 

(MAEC), and the Pacific Earthquake Engineering Center (PEER)] 
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In addition to the aforementioned sources, consultations with other geo-professionals who may 

have some experience with the site or nearby locations can prove very useful. 

Figure 2.1: Flow chart for selecting appropriate engineering properties of soil and rock for use 
in design (Sabatini et al. 2002). 

Once existing data has been reviewed, a reconnaissance site visit should be performed to better 

understand the geotechnical, topographic, and geological features of the site and to become 

knowledgeable of access and working conditions (e.g., traffic control requirements, proximity to 

nearby structures and utilities, presence of environmentally sensitive areas, etc.) (Mayne et al. 

38 



 
 

   

   

   

   

     

    

  

  

  

    

   

 

  

 

   

    

 

 

     

 

 

    

    

   

   

 

 

  

 

  

    

    

2002; Caltrans 2015). It may be necessary to perform multiple visits for more complicated site 

conditions. The goal is to develop a working preliminary model of the site that can guide the 

development of an appropriate subsurface investigation plan and the selection of potential 

design options (Sabatini et al. 2002). For example, a preliminary site model may note the 

presence of significant alluvial soils that may provide inaccurate “top of rock” estimates with 

traditional drilling procedures, prevent the use of certain in situ test methods, and potentially 

preclude the use of driven pile foundation designs (Sabatini et al. 2002). Or the preliminary site 

model could identify significantly heterogeneous strata across the site that must be better 

characterized by in situ testing or geophysical methods. Therefore, depending on the nature of 

the site and the project, it may be necessary to incorporate geophysical methods as part of the 

initial reconnaissance to better understand site subsurface conditions for subsequent 

explorations. Finally, the reconnaissance visit(s) can also be used to mark the site for utility 

clearance and to establish a benchmark for any future potential borings. 

Following the review of existing data and the field reconnaissance of the site, a subsurface 

exploration plan can then be established that is best suited based on the project design 

requirements, previously available subsurface information, current site conditions, availability of 

equipment, and local practice. The types of subsurface investigation methods and spatial 

frequency with which they are performed will be tailored to the specific project needs. The 

subsurface investigation plan should also take into account anticipated needs for laboratory 

testing so that appropriate sampling of soils is performed. The subsurface exploration plan 

should be flexible to ensure it can be modified to suit unanticipated subsurface conditions once 

the field investigations are initiated. Given the wide range in drilling, sampling, in situ testing, 

and geophysical testing techniques combined with the uniqueness of each site and project, a 

prescriptive approach is not advisable nor provided in this document (and other documents 

regarding subsurface investigations). Instead, the following sections provide a summary of items 

to consider when developing the subsurface exploration plan and the role of geophysical 

methods within that framework. 

2.3.1.2 Subsurface Drilling and In Situ Testing 

For a significant percentage of projects, subsurface exploration entails the drilling of boreholes 

to obtain information about the on-site earth materials. Borings can be used to obtain high 
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quality “undisturbed” and lower quality “disturbed” samples for laboratory testing. To avoid 

issues related to sample disturbance, in situ testing may be performed within borings or as 

standalone tests to evaluate the earth materials properties. The focus of this section is to briefly 

summarize general topics related to subsurface drilling and in situ testing. Sampling techniques 

and the use of laboratory tests to determine engineering properties is presented in 2.3.1.3. It is 

assumed that the reader is familiar with typical subsurface drilling techniques such as auger 

borings and rotary wash techniques and in situ testing methods such as the standard 

penetration test (SPT), cone penetration test (CPT), flat plate dilatometer (DMT), and other 

similar techniques. For review, the reader is encouraged to review the various references 

available that discuss subsurface drilling techniques and in situ test methods in more detail (e.g., 

ASTM D4700; AASHTO 1988; Schmertmann 1988; Briaud 1989; USACE 2001; Briaud and Miran 

2002; Mayne et al. 2002; Sabatini et al. 2002). 

The use of subsurface drilling and in situ testing should not take a “one size fits all” approach, as 

many factors will influence decisions regarding drilling method, boring locations and depths, and 

number/types of in situ tests to perform. These factors include the proposed structure, geologic 

constraints, expected stratigraphy and heterogeneity, and access issues for drilling equipment, 

among others. Additionally, augmenting site explorations with geophysical methods can help 

fine tune the location, amount, and depths of drilling operations and in situ tests. In some cases, 

subsurface stratigraphy and material properties can be developed by supplementing limited 

laboratory testing (and associated drilling for samples) with rapid in situ test methods such as 

CPT and DMT. Therefore, drilling frequency and depth will be limited. General guidelines exist 

regarding minimum number of borings as well as depth to extend borings depending on project 

type (Tables 2.4 – 2.6). However, these guidelines are by no means definitive and they should be 

considered as initial recommendations because actual boring spacing and depth will be highly 

project- and site-dependent. In addition to general guidelines provided in Tables 2.4 – 2.6, ASTM 

standards exist regarding subsurface drilling and various in situ testing techniques. Relevant 

ASTM standards are summarized in Table 2.7. 
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Table 2.4: Minimum recommendations for boring depths (Mayne et al. 2002). 
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Table 2.5: Minimum recommendations for boring layout (Mayne et al. 2002). 
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Table 2.6: Minimum recommendations for number and depths of borings (Sabatini et al. 
2002). 
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Standard Title 

D420 Standard Guide to Site Characterization for Engineering Design and Construction Purposes 
D653 Standard Terminology Relating to Soil, Rock, and Contained Fluids 

D1452 Standard Practice for Soil Exploration and Sampling by Auger Borings 
D1586 Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils 
D1587 Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes 
D2113 Standard Practice for Rock Core Drilling and Sampling of Rock for Site Exploration 
D2487 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil 

Classification System) 
D2488 Standard Practice for Description and Identification of Soils (Visual-Manual Procedure) 
D2573 Standard Test Method for Field Vane Shear Test in Saturated Fine-Grained Soils 
D2944 Standard Practice of Sampling Processed Peat Materials 
D3213 Standard Practices for Handling, Storing, and Preparing Soft Intact Marine Soil 
D3282 Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway 

Construction Purposes 
D3441 Standard Test Method for Mechanical Cone Penetration Tests of Soil 
D3550 Standard Practice for Thick Wall, Ring-Lined, Split Barrel, Drive Sampling of Soils 
D4083 Standard Practice for Description of Frozen Soils (Visual-Manual Procedure) 
D4220 Standard Practices for Preserving and Transporting Soil Samples 
D4394 Standard Test Method for Determining In Situ Modulus of Deformation of Rock Mass Using 

Rigid Plate Loading Method 
D4395 Standard Test Method for Determining In Situ Modulus of Deformation of Rock Mass Using 

Flexible Plate Loading Method 
D4429 Standard Test Method for CBR (California Bearing Ratio) of Soils in Place 
D4544 Standard Practice for Estimating Peat Deposit Thickness 
D4553 Standard Test Method for Determining In Situ Creep Characteristics of Rock 
D4554 Standard Test Method for In Situ Determination of Direct Shear Strength of Rock 

Discontinuities 
D4555 Standard Test Method for Determining Deformability and Strength of Weak Rock by an In 

Situ Uniaxial Compressive Test 
D4623 Standard Test Method for Determination of In Situ Stress in Rock Mass by Overcoring 

Method—USBM Borehole Deformation Gauge 
D4630 Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-

Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test 
D4631 Standard Test Method for Determining Transmissivity and Storativity of Low Permeability 

Rocks by In Situ Measurements Using Pressure Pulse Technique 
D4633 Standard Test Method for Energy Measurement for Dynamic Penetrometers 
D4700 Standard Guide for Soil Sampling from the Vadose Zone 
D4719 Standard Test Methods for Prebored Pressuremeter Testing in Soils 
D4729 Standard Test Method for In Situ Stress and Modulus of Deformation Using Flatjack Method 
D4750 Standard Test Method for Determining Subsurface Liquid Levels in a Borehole or Monitoring 

Well (Observation Well) 

Table 2.7: Relevant ASTM standards regarding subsurface drilling, sampling, and in situ 
testing. 
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Standard Title 

D4879 Standard Guide for Geotechnical Mapping of Large Underground Openings in Rock 
D4971 Standard Test Method for Determining In Situ Modulus of Deformation of Rock Using 

Diametrically Loaded 76-mm (3-in.) Borehole Jack 
D5079 Standard Practices for Preserving and Transporting Rock Core Samples 
D5092 Standard Practice for Design and Installation of Groundwater Monitoring Wells 
D5195 Standard Test Method for Density of Soil and Rock In-Place at Depths Below Surface by 

Nuclear Methods 
D5220 Standard Test Method for Water Mass per Unit Volume of Soil and Rock In-Place by the 

Neutron Depth Probe Method 
D5434 Standard Guide for Field Logging of Subsurface Explorations of Soil and Rock 
D5730 Standard Guide for Site Characterization for Environmental Purposes With Emphasis on Soil, 

Rock, the Vadose Zone and Groundwater 
D5778 Standard Test Method for Electronic Friction Cone and Piezocone Penetration Testing of Soils 
D5878 Standard Guides for Using Rock-Mass Classification Systems for Engineering Purposes 
D5911 Standard Practice for Minimum Set of Data Elements to Identify a Soil Sampling Site 
D6032 Standard Test Method for Determining Rock Quality Designation (RQD) of Rock Core 
D6066 Standard Practice for Determining the Normalized Penetration Resistance of Sands for 

Evaluation of Liquefaction Potential 
D6067 Standard Practice for Using the Electronic Piezocone Penetrometer Tests for Environmental 

Site Characterization 
D6151 Standard Practice for Using Hollow-Stem Augers for Geotechnical Exploration and Soil 

Sampling 
D6168 Standard Guide for Selection of Minimum Set of Data Elements Required to Identify 

Locations Chosen for Field Collection of Information to Describe Soil, Rock, and Their 
Contained Fluids 

D6169 Standard Guide for Selection of Soil and Rock Sampling Devices Used With Drill Rigs for 
Environmental Investigations 

D6282 Standard Guide for Direct Push Soil Sampling for Environmental Site Characterizations 
D6286 Standard Guide for Selection of Drilling Methods for Environmental Site Characterization 
D6517 Standard Guide for Field Preservation of Groundwater Samples 
D6519 Standard Practice for Sampling of Soil Using the Hydraulically Operated Stationary Piston 

Sampler 
D6635 Standard Test Method for Performing the Flat Plate Dilatometer 
D6911 Standard Guide for Packaging and Shipping Environmental Samples for Laboratory Analysis 
D6914 Standard Practice for Sonic Drilling for Site Characterization and the Installation of 

Subsurface Monitoring Devices 
D6938 Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by 

Nuclear Methods (Shallow Depth) 
D7015 Standard Practices for Obtaining Intact Block (Cubical and Cylindrical) Samples of Soils 
D7380 Standard Test Method for Soil Compaction Determination at Shallow Depths Using 5-lb (2.3 

kg) Dynamic Cone Penetrometer 

Table 2.7 (cont.): Relevant ASTM standards regarding subsurface drilling, sampling, and in situ 
testing. 
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In addition to sampling and in situ testing, borings performed as part of subsurface drilling 

operations can potentially be used for borehole geophysical methods (e.g., down-hole seismic, 

cross-hole seismic, televiewer, borehole radar, etc.). However, special care must be taken when 

constructing these boreholes as the requirements for high quality data may necessitate different 

techniques and extra precautions during drilling. For example, in cases of soft soils and running 

sands, the borehole will need to be stabilized prior to borehole geophysical tests, otherwise the 

user runs the risk of losing equipment due to caving of the borehole. Often, this entails the 

installation of a rigid casing such as PVC or steel piping to line the borehole walls. In such cases, 

the quality of the geophysical test results is highly dependent on the coupling between the 

borehole wall and casing. Any gaps between the borehole wall and casing must be filled with a 

suitable grout mixture to ensure adequate coupling. ASTM standards exist for a number of 

borehole geophysical methods that provide directions regarding borehole construction 

specifically for these geophysical operations (e.g., ASTM D4428). A list of relevant ASTM 

standards for borehole and surface geophysical methods typically used in geotechnical 

subsurface exploration operations is provided in Table 2.8. 

Standard Title 

C1383 Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates 
Using the Impact-Echo Method 

D4428 Standard Test Methods for Crosshole Seismic Testing 
D4695 Standard Guide for General Pavement Deflection Measurements 
D4748 Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-

Pulse Radar 
D4788 Standard Test Method for Detecting Delaminations in Bridge Decks Using Infrared 

Thermography 
D5518 Standard Guide for Acquisition of File Aerial Photography and Imagery for Establishing 

Historic Site-Use and Surficial Conditions 
D5753 Standard Guide for Planning and Conducting Borehole Geophysical Logging 
D5777 Standard Guide for Using the Seismic Refraction Method for Subsurface Investigation 
D5882 Standard Test Method for Low Strain Impact Integrity Testing of Deep Foundations 
D6167 Standard Guide for Conducting Borehole Geophysical Logging: Mechanical Caliper 
D6274 Standard Guide for Conducting Borehole Geophysical Logging – Gamma 
D6429 Standard Guide for Selecting Surface Geophysical Methods 
D6430 Standard Guide for Using the Gravity Method for Subsurface Investigation 

Table 2.8: Relevant ASTM standards regarding geophysical and non-destructive testing. 
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Standard Title 

D6431 Standard Guide for Using the Direct Current Resistivity Method for Subsurface Investigation 
D6432 Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface 

Investigation 
D6639 Standard Guide for Using the Frequency Domain Electromagnetic Method for Subsurface 

Investigations 
D6726 Standard Guide for Conducting Borehole Geophysical Logging - Electromagnetic Induction 
D6727 Standard Guide for Conducting Borehole Geophysical Logging – Neutron 
D6758 Standard Test Method for Measuring Stiffness and Apparent Modulus of Soil and Soil-

Aggregate In-Place by Electro-Mechanical Method 
D6760 Standard Test Method for Integrity Testing of Concrete Deep Foundations by Ultrasonic 

Crosshole Testing 
D6780 Standard Test Method for Water Content and Density of Soil In situ by Time Domain 

Reflectometry (TDR) 
D6820 Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface 

Investigation 
D7046 Standard Guide for Use of the Metal Detection Method for Subsurface Exploration 
D7128 Standard Guide for Using the Seismic-Reflection Method for Shallow Subsurface Investigation 
D7383 Standard Test Methods for Axial Compressive Force Pulse (Rapid) Testing of Deep 

Foundations 
D7400 Standard Test Methods for Downhole Seismic Testing 
D7698 Standard Test Method for In-Place Estimation of Density and Water Content of Soil and 

Aggregate by Correlation with Complex Impedance Method 
D7759 Standard Guide for Nuclear Surface Moisture and Density Gauge Calibration 
D7830 Standard Test Method for In-Place Density (Unit Weight) and Water Content of Soil Using an 

Electromagnetic Soil Density Gauge 
E1543 Standard Practice for Noise Equivalent Temperature Difference of Thermal Imaging Systems 
E2583 Standard Test Method for Measuring Deflections with a Light Weight Deflectometer (LWD) 
G 57 Standard Test Method for Field Measurement of Soil Resistivity Using the Wenner Four-

Electrode Method 

Table 2.8 (cont.): Relevant ASTM standards regarding geophysical and non-destructive testing. 

Finally, on site drilling operations can potentially be used as a seismic source for geophysical 

testing (Fig. 2.2). Such seismic-while-drilling (SWD) techniques were originally developed in the 

1980’s by the petroleum engineering industry for application to oil and gas exploration (e.g., 

Angeleri et al. 1990). SWD typically consists of using surficial sensors to record the waveforms 

caused by a rotary-cone bit as each tooth impacts and chisels the rock during drilling operations. 

A reference sensor at the top of the drill string is also used to record the source signature. The 

reference sensor response is cross-correlated to the surface sensor response to compute a 

travel time. Data analysis essentially proceeds in a similar manner to vertical seismic profiling 

(Gal’perin 1974; Hardage 1985), a form of downhole seismic testing, since SWD reverses the 

source and receiver positions (Rector and Marion 1991). Literature on SWD is plentiful within 
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the exploratory geophysics and petroleum engineering community (e.g., 

Rector et al. 1989; Rector and Marion 1991; Asanuma and Niitsuma 1992; Haldorsen et al. 1995; 

Petronio et al. 1999; Malusa et al. 2002; Rocca et al. 2005; Anchliya 2006; Reppert 2013) and 

Poletto and Miranda (2004) contains a thorough discussion of the technique and history of SWD. 

However, its usage has declined as drilling operations for petroleum sources have increasingly 

utilized poly-diamond-composite (PDC) bits. PDC bits scrape through the rock, which proves to 

be a less effective seismic source for SWD compared to the impact and chiseling action of 

rotary-cone bits (Poletto and Miranda 2004). Additionally, the technique has seen little usage 

for geotechnical purposes, likely due to expense and the differences in drilling operations 

through softer earth materials encountered near the surface. 

Figure 2.2: Schematic of the seismic-while-drilling (SWD) technique (Rocca et al. 2005). 

2.3.1.3 Sampling and Laboratory Testing 

As previously noted, borings are routinely used in geotechnical subsurface exploration to sample 

the on-site earth materials and evaluate their engineering properties via laboratory testing. The 

focus of this section is to briefly summarize general topics related to subsurface sampling and 

laboratory testing, particularly as relevant to geophysical methods. As before, it is assumed that 

the reader is familiar with typical subsurface drilling and sampling techniques and is encouraged 
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to review the various references available that discuss them in more detail (e.g., NAVFAC 1986; 

AASHTO 1988; USACE 2001; Mayne et al. 2002; Sabatini et al. 2002). 

When designing and performing a subsurface exploration plan involving subsurface sampling, 

special care must be exercised when prescribing the sampling method to ensure enough 

appropriate samples are available for laboratory testing. The quality of the sample is highly 

dependent on sampling technique, which also dictates the suitability of different laboratory 

tests for a given sample. For example, highly disturbed sampling techniques [e.g., augering 

(ASTM D1452), split-spoon sampling via SPT (ASTM D1586, D3550), etc.] can completely destroy 

the in situ soil structure/fabric. Such samples are only suitable for index type laboratory tests 

such as sieve analysis, plasticity testing, compaction, and similar tests. Undisturbed soil samples 

are required for performing laboratory strength and consolidation testing. Since it is impossible 

to collect truly undisturbed samples, the goal of high-quality undisturbed sampling in 

geotechnical practice is to minimize changes in soil structure, moisture content, void ratio, and 

chemical composition during sampling. This is typically accomplished with thin-walled (Shelby) 

tube sampling (ASTM D1587), though alternative methods exist such as piston (ASTM D6519) 

and pitcher samplers and block sampling techniques (ASTM D7015). Selection of sampling 

technique is a function of geologic conditions, depth and spacing of boreholes, and project 

needs. For example, undisturbed sampling may not be necessary for all boreholes in cases when 

they are closely spaced and when the subsurface stratigraphy is relatively uniform. For planning 

phase projects, sampling may not be necessary at all, particularly if geophysical methods can be 

used to provide enough level of detail regarding site conditions to perform preliminary design 

assessments. Finally, certain soils are particularly difficult to sample (e.g., alluvial soils with 

significant gravel and/or stone content, highly cemented granular soils, etc.) and may require 

alternative sampling techniques outside of typical split-barrel or Shelby tube sampling. 

Geophysical techniques may prove useful in such circumstances where alternative sampling 

techniques are required and cost-prohibitive. Sampling of rock is typically accomplished using a 

number of rock coring techniques/equipment (as summarized in ASTM D2113), with double-

tube core barrels commonly employed and wireline techniques preferred for their efficiency. 

In terms of frequency of sampling, many factors will affect selection of appropriate sampling 

depths and intervals, including site conditions, nature of the project, and required design 
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parameters. Common practice typically involves sampling continuously or with a very small (i.e., 

0.75 m) interval in the upper 3 m of a site, sampling at 1.5 m intervals up to 30 m, and increasing 

sampling interval to every 3 m at depths greater than 30 m (Mayne et al. 2002; Sabatini et al. 

2002). However, this selection of sampling intervals is by no means definitive given the wide 

ranges in site geologic conditions and project requirements. Generally speaking, site subsurface 

conditions that are more homogeneous will require fewer samples for testing. For sites with 

soils that may prove difficult to sample, increasing the sampling frequency should be considered 

to offset the number of samples that may be unusable in the laboratory. As a general guideline, 

a minimum of one undisturbed sample should be taken for each fine-grained stratum (Sabatini 

et al. 2002). Therefore, in profiles where the strata are relatively thin and change frequently 

with depth, sampling intervals may need to increase. However, this must be balanced against 

design requirements. For example, frequent sampling may not be necessary in granular soils for 

designs where settlement is of particular concern. Geophysical methods can be used to rapidly 

provide information regarding site stratigraphy as part of the development of an initial site 

subsurface model and can therefore help to fine tune the selection of sampling frequency. For 

example, seismic methods such as seismic refraction can identify areas of significant 

heterogeneity and electrical methods such as resistivity imaging can identify thin lenses of fine-

grained cohesive soils. These observations can be used to select an appropriate sampling 

frequency to ensure the necessary strata are sampled. 

Once sampled, laboratory testing can be used to evaluate earth material properties as 

appropriate for design purposes. This includes a number of index tests (e.g., plasticity indices, 

unit weight, water content, etc.) as well as strength and consolidation tests. This document 

assumes the reader is familiar with these typical laboratory tests as used to evaluate soil and 

rock properties, and Table 2.9 provides a list of relevant ASTM standards. Any number of 

introductory soil and rock mechanics texts and/or relevant subsurface investigation literature 

(e.g., NAVFAC 1986; AASHTO 1988; USACE 2001; Mayne et al. 2002; Sabatini et al. 2002) can 

provide additional background information as necessary. A laboratory testing program must be 

developed in collaboration with the subsurface exploration plan to ensure drilling operations 

provide adequate samples of the appropriate type for laboratory testing. Table 2.3 highlights 

typical laboratory testing requirements for a range of transportation-related design projects. In 

situ testing and geophysical methods can be used to provide complementary information and 
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avoid sampling disturbance effects. As previously noted, sampling disturbance is a major 

concern regarding selection of appropriate samples. Once sampling has been performed, care 

must also be exercised to ensure the samples are handled appropriately to prevent any 

additional disturbances (e.g., ASTM D3213, D4220, and D6911). Finally, it should be noted that 

laboratory testing can be performed to evaluate geophysical parameters of earth materials in 

lieu of performing geophysical methods in the field. For example, ultrasonic testing (ASTM 

D2845) can be performed using bender element on intact soil and rock samples to evaluate 

shear wave and/or primary wave velocity (as a proxy for elastic moduli parameters). Specialized 

laboratory equipment such as the resonant column test (ASTM D4015) can also be used to 

establish modulus and damping parameters. Depending on the geophysical method considered 

for field testing, resolution may be limited for deep thin strata. Sampling and application of the 

aforementioned laboratory tests may therefore provide more thorough information for the 

purposes of design, though the issue of sampling disturbance must be considered. Section 3.5 of 

this document provides more detailed discussion of laboratory approaches to evaluate 

geophysical parameters. 

Standard Title 

D421 Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and 
Determination of Soil Constants 

D422 Standard Test Method for Particle-Size Analysis of Soils 
D698 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard 

Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)) 
D854 Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer 

D1140 Standard Test Methods for Determining the Amount of Material Finer than 75-µm (No. 200) 
Sieve in Soils by Washing 

D1557 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified 
Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)) 

D1997 Standard Test Method for Laboratory Determination of the Fiber Content of Peat Samples by 
Dry Mass 

D2166 Standard Test Method for Unconfined Compressive Strength of Cohesive Soil 
D2216 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil 

and Rock by Mass 
D2435 Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using 

Incremental Loading 
D2845 Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic 

Constants of Rock 

Table 2.9: Relevant ASTM standards regarding laboratory testing for earth materials. 
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Standard Title 

D2850 Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive 
Soils 

D2936 Standard Test Method for Direct Tensile Strength of Intact Rock Core Specimens 
D3080 Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions 
D3967 Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens 
D3999 Standard Test Methods for the Determination of the Modulus and Damping Properties of 

Soils Using the Cyclic Triaxial Apparatus 
D4015 Standard Test Methods for Modulus and Damping of Soils by Fixed-Base Resonant Column 

Devices 
D4186 Standard Test Method for One-Dimensional Consolidation Properties of Saturated Cohesive 

Soils Using Controlled-Strain Loading 
D4221 Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer 
D4253 Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a 

Vibratory Table 
D4254 Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation 

of Relative Density 
D4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils 
D4373 Standard Test Method for Rapid Determination of Carbonate Content of Soils 
D4427 Standard Classification of Peat Samples by Laboratory Testing 
D4543 Standard Practices for Preparing Rock Core as Cylindrical Test Specimens and Verifying 

Conformance to Dimensional and Shape Tolerances 
D4546 Standard Test Methods for One-Dimensional Swell or Collapse of Soils 
D4643 Standard Test Method for Determination of Water (Moisture) Content of Soil by Microwave 

Oven Heating 
D4648 Standard Test Method for Laboratory Miniature Vane Shear Test for Saturated Fine-Grained 

Clayey Soil 
D4767 Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive 

Soils 
D4829 Standard Test Method for Expansion Index of Soils 
D4943 Standard Test Method for Shrinkage Factors of Soils by the Wax Method 
D4959 Standard Test Method for Determination of Water (Moisture) Content of Soil By Direct 

Heating 
D5084 Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous 

Materials Using a Flexible Wall Permeameter 
D5311 Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil 
D5550 Standard Test Method for Specific Gravity of Soil Solids by Gas Pycnometer 
D5607 Standard Test Method for Performing Laboratory Direct Shear Strength Tests of Rock 

Specimens Under Constant Normal Force 
D5856 Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a 

Rigid-Wall, Compaction-Mold Permeameter 
D6467 Standard Test Method for Torsional Ring Shear Test to Determine Drained Residual Shear 

Strength of Cohesive Soils 

Table 2.9 (cont.): Relevant ASTM standards regarding laboratory testing for earth materials. 
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Standard Title 

D6528 Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive 
Soils 

D6913 Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis 
D7012 Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core 

Specimens under Varying States of Stress and Temperatures 
D7070 Standard Test Methods for Creep of Rock Core Under Constant Stress and Temperature 
D7181 Method for Consolidated Drained Triaxial Compression Test for Soils 
D7263 Standard Test Methods for Laboratory Determination of Density (Unit Weight) of Soil 

Specimens 
D7608 Standard Test Method for Torsional Ring Shear Test to Determine Drained Fully Softened 

Shear Strength and Nonlinear Strength Envelope of Cohesive Soils (Using Normally 
Consolidated Specimen) for Slopes with No Preexisting Shear Surfaces 

Table 2.9 (cont.): Relevant ASTM standards regarding laboratory testing for earth materials. 

2.3.1.4 Role of Geophysics 

As has been previously noted, geophysical methods can play an integral role at various junctures 

in the subsurface investigation process because of their ability to quickly provide information 

over a much larger area than subsurface drilling, in situ testing, and laboratory testing of 

acquired samples. For planning phase projects (i.e., K and 0 phase), subsurface investigations 

involving drilling, in situ testing, and geophysics are not typically performed (Caltrans 2015). 

However, should some form of subsurface investigation prove necessary or highly beneficial, 

geophysics may potentially provide all the information necessary for planning phase projects. In 

the initial stages of design phase projects (i.e., 1 phase) during which the subsurface exploration 

plan is being developed, geophysical methods can aid in tailoring any drilling operations and in 

situ tests based on site subsurface conditions. For example, during initial review of existing 

sources of data, previous geophysical reports can serve to highlight various aspects of 

subsurface conditions in and around the project site. Additionally, depending on the nature of 

the site and project, the initial site reconnaissance can also serve as an opportunity to perform 

some rapid geophysical tests (e.g., seismic refraction) to establish baseline subsurface 

conditions. In this context, often the role of geophysics is more qualitative, whereby engineering 

properties of soil and rock are not necessarily estimated using geophysical measurements. 

Instead, geophysical methods provide a means of rapid and thorough visualization of site 

subsurface conditions, including the location of utilities and other embedded objects that could 

affect drilling operations, depth to water table, and general stratigraphy. 
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In the latter stages of subsurface exploration plans during which field operations have been 

initiated, geophysical methods serve a more quantitative role where they can be used to 

estimate engineering properties of subsurface materials. The main focus of this document is to 

provide feedback regarding the various relationships that exist where geophysical 

measurements can be correlated to such engineering properties for soil and rock. Depending on 

the nature of the project and availability of existing subsurface data, geophysical methods can 

be combined with the relationships summarized in this document to potentially replace typical 

drilling, sampling, and in situ testing procedures. In other cases, geophysical methods in 

isolation may not sufficiently provide conclusive information to adequately constrain designs. 

The uncertainty and scatter inherent in the relationships between geophysical measurements 

and engineering properties of soil and rock may prove too high for sensitive projects or the 

results from geophysical methods may be too ambiguous. In such cases, geophysical methods 

can be used to augment typical drilling, sampling, and in situ testing procedures. For example, 

borehole geophysical techniques can be used selectively at certain borings to provide 

complementary information regarding different stratigraphic units. Surface geophysical 

methods can also augment drilling operations by providing a means to bridge the gap between 

successive boring locations (sometimes in near real-time as in SWD). Geophysical methods can 

also be combined with the results from other subsurface investigation techniques to allow for 

the development of site-specific correlations from which to assign soil and rock properties. 

These site-specific correlations will suffer from less uncertainty and scatter in relationship to 

those presented in this document. Moreover, the broad area of coverage and rapid nature of 

data acquisition can provide a much larger amount of information about the site for a modest 

cost, particularly when geophysical methods are correlated to site borings and the costs 

associated with surface wave methods are compared to the implementation of additional 

borings. As with drilling, sampling, and laboratory operations, ASTM standards have been 

developed that provide guidance regarding appropriate implementation of various geophysical 

methods. A summary of relevant ASTM geophysical standards is provided in Table 2.8. 
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3. APPLICATIONS OF GEOPHYSICAL METHODS 

This chapter discusses the various earth material properties that are obtained from several of 

the methods introduced in Chapter 2. The material presented includes a summary of various 

case histories from the literature where these geophysical methods were utilized as well as the 

results from comprehensive projects to relate various parameters to geophysical 

measurements. The initial focus of the chapter is on earth material properties that are broad in 

scope and applicable across a number of geotechnical applications (e.g., void ratio, grading 

factor, etc.). The latter sections focus specifically on the use of geophysical measurements to 

obtain shear wave velocity for seismic design purposes. 

3.1 APPLICATIONS RELATED TO GEOTECHNICAL PROPERTY MEASUREMENTS 

As discussed in Chapter 2, traditional subsurface exploration operations often rely on drilling to 

sample the subsurface and estimate geotechnical earth properties necessary for geotechnical 

design (e.g., unit weight, void ratio, water content, strength, compressibility, etc.). Geophysical 

methods, if utilized, are deployed to augment drilling operations and to provide qualitative 

assessments of subsurface conditions by delineating boundaries between strata (e.g., locate 

voids, top of rock, etc.). However, geophysical methods do allow for the determination of earth 

material properties in addition to evaluating subsurface geometry. These measurements can 

occur rapidly over a significant area of investigation and can reduce dependency on traditional 

drilling and sampling approaches for site subsurface exploration. The following sections describe 

the earth material properties that can be determined based on the corresponding geophysical 

measurements. Care should be exercised with these relationships as many are highly empirical. 

Citations are provided to allow the reader to locate the databases used when developing the 

empirical expressions provided in this study. Should the site conditions significantly differ from 

the conditions established in the databases, it is recommended that site-specific correlations be 

established using the provided relationships as motivation for an appropriate functional form. 

3.1.1 ELASTIC PARAMETERS 

More than a quarter of DOT use of geophysical methods implements methods based on seismic 

wave propagation (Sirles 2006) (Fig. 1.5). This is unsurprising since wave velocity (P-wave 

and/or S-wave) is the primary measurement from seismic methods, and it is possible to obtain 
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the corresponding elastic parameters of the earth material from these measurements. The 

velocities of these waves are directly linked to the stiffness and density of the material by the 

following relationships in solid mechanics: 

(3-1) 

(3-2) 

where VP is the P-wave velocity of the material, VS is the S-wave velocity, ρ is the density of the 

material, M is the constrained modulus, B the bulk modulus, and G the shear modulus. Young’s 

modulus (E) can be derived from knowledge of the bulk/constrained modulus and shear 

modulus (and/or Poisson’ ratio, ν): 

𝐺𝐺(3𝑀𝑀 − 4𝐺𝐺) 9𝐵𝐵𝐺𝐺 
𝐸𝐸 = = = 2𝐺𝐺(1 + 𝜈𝜈) (3-3) 

𝑀𝑀 − 𝐺𝐺 3𝐵𝐵 + 𝐺𝐺 

Poisson’s ratio can be derived based on the ratio of VP to VS: 

(3-4) 

Given Eqs. 3-1 to 3-4, elastic parameters of earth materials can therefore be estimated based on 

velocities measured using seismic methods (with assumptions regarding mass density of the 

soil/rock). There are a number of situations where these moduli and Poisson’s ratio are 

important for geotechnical purposes (e.g., estimating immediate settlements due to foundation 

loads, estimating small-strain stiffness of soils for dynamic analysis, numerical modeling, etc.). 

Moreover, the moduli themselves can often be related to a number of important engineering 
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parameters including soil strength (e.g., undrained shear strength of a clay). Discussion of the 

specific relationships that have been developed to relate soil moduli and other soil parameters 

is outside the scope of this reference document, and readers are encouraged to review 

textbooks related to soil mechanics (e.g., Lambe and Whitman 1979; Holtz and Kovacs 1981) as 

well as various manuals that have compiled such relationships (e.g., EPRI EL-6800 manual, 

Kulhawy and Mayne 1990). Seismic methods provide an approach to directly estimate elastic 

moduli in situ rather than rely on laboratory testing on potentially disturbed samples (highly 

likely for sands unless freezing techniques are used) or on empirical relationships. 

3.1.2 STRENGTH PARAMETERS 

Strength parameters of earth materials are arguably one of the most important parameters 

affecting geotechnical design. Knowledge of soil and/or rock strength is vital to many 

geotechnical projects, including the design of foundations, retaining systems, and slopes. As 

noted in 3.1.1, geophysical methods that generate mechanical waves inherently measure small-

strain (e.g., γ ≤ 10-3 %) parameters such as shear modulus. Typically, shear strength of earth 

materials is a large strain phenomenon (e.g., γ ≈ 1 – 30%). However, many of the factors that 

affect small strain stiffness share a physical link with large strain phenomena. For example, 

shear strength of a sand is largely governed by void ratio and confining stress (e.g., Rowe 1962; 

Lambe and Whitman 1979), which also affect VS. This forms the basis of a number of 

relationships between elastic moduli and soil strength (as noted in 3.1.1). However, a handful of 

studies have developed direct relationships between wave velocities and the strength of earth 

materials that have exploited the link between small strain and large strain phenomena. The 

following sections describe the results and proposed relationships from such studies for both 

soil and rock. 

3.1.2.1 Shear Strength of Soils 

A significant amount of research has been performed to develop relationships between 

geophysical measurements of small strain stiffness (i.e., wave velocities) and strength 

parameters of sands and clays. Much of the work has exploited the fact that both small strain 

stiffness and strength are affected by void ratio, effective stress, stress history, soil fabric, age, 

and degree of cementation among other factors (Guadalupe et al. 2013). Much of the research 
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has focused on establishing relationships between VS and undrained shear strength (su) of clays, 

particularly in marine and/or offshore applications (Table 3.1). 

Table 3.1: Examples of available correlations between the su of clays and VS or Gmax (L’Heureux 
and Long 2017). 

In many cases, the relationship between su and VS (or Gmax) is expressed using an exponential 

functional form: 

𝑉𝑉𝑠𝑠 = a𝑠𝑠𝑢𝑢𝑏𝑏 (3-5) 

where a and b are coefficients that result from the regression analysis. In establishing these 

relationships (Table 3.1), multiple approaches have been used to measure both the VS (e.g., in 

situ geophysical methods such as downhole seismic, laboratory bender element testing, etc.) 

and the corresponding su (e.g., triaxial, simple shear, Fall cone test, etc.). An example of the 

relative amount of scatter in these relationships is provided in Figs. 3.1 – 3.3. Fig. 3.1 plots the 

Agaiby and Mayne (2015) VS-su variation for normally consolidated and/or lightly 

overconsolidated clays derived from a database of 31 sites across the world (360 total 

measurements). Fig. 3.2 plots the Levesques et al. (2007) VS-su variation for intact post-glacial 

clays from eastern Canada and the North Sea. It should be noted that most of the proposed 

relationships relate VS to su directly in an empirical manner. However, a handful of empirical 
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relationships also attempt to include the effects of other clay parameters that affect su, 

including Plasticity Index (PI), OCR, and/or void ratio (e.g., Andersen 2015; Agaiby and Mayne 

2015). 

(a) 

(b) 
Figure 3.1: Relationships between triaxial compression su and downhole VS for: (a) NC to LOC 
intact clays; and (b) intact NC, LOC, to OC and HOC fissured clays (Agaiby and Mayne 2015). 
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Figure 3.2: Relationship between su and VS for intact post-glacial clays from eastern Canada 
and the North Sea (Levesques et al. 2007). 

Figure 3.3: Relationships between su and VS for Norwegian clays: (a) CAUC triaxial tests; and 
(b) CAUE triaxial tests (L’Heureux and Long 2017). 

Less research is available in the literature that discusses the estimation of shear strength of 

sands. A handful of studies have done so for grouted or lightly cemented sands (Sharma et al. 

2011; Lee et al. 2014) where the strength parameter of interest is often the uniaxial 

compressive strength for undrained loading. The functional form for estimating uniaxial 

compressive strength is typically an exponential or power function similar to those proposed for 

use with concrete and/or bedrock and similar to relationships proposed between su and VS for 

clays (Eq. 3-5): 
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UCS = a𝑒𝑒𝑏𝑏𝑉𝑉𝑝𝑝 (3-6) 

UCS = a𝑉𝑉𝑝𝑝𝑏𝑏 (3-7) 

where UCS is the uniaxial compressive strength of the cemented sand, a and b are regression 

coefficients, and VP is the compression wave velocity of the cemented sand. However, a handful 

of studies have examined drained strength of sands. For example Cha and Cho (2007) developed 

a methodology that estimates the drained friction angle (φ) of a sandy soil using VS as measured 

using field seismic methods (suspension PS logging in their study). The method utilized the 

inherent link between φ and void ratio at a given stress. This relationship was established for the 

four sandy soils tested in their study using oedometer and direct shear testing. A correlation was 

then developed for the variation of VS with vertical effective stress at the maximum and 

minimum possible void ratios (emax and emin) for each of the sandy soils. This correlation was 

obtained using bender element testing (3.4.2) in the oedometer as the sandy soils were 

reconstituted to specific e values. A linear variation for VS was assumed between emax and emin at 

a given stress so that VS could be computed for any given e for that stress. Combining these 

relationships together, an estimate for φ in the field proceeded as follows: (1) estimate vertical 

effective stress profile with depth; (2) measure field VS using PS logging; (3) estimate e using the 

field VS value; (4) estimate φ based on the known vertical effective stress at a given depth and 

from the e computed using VS. Cha and Cho (2007) found reasonable agreement between the 

estimated φ profile with depth and the profile estimating using in situ testing results (i.e., 

corrected blowcounts) (Fig. 3.4). 

Figure 3.4: ϕ estimates using SPT and VS at one site in Korea (Cha and Cho 2007). 
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Other researchers have proposed empirical relationships between Gmax (as related to VS from Eq. 

3-2) and the maximum principal stress at failure (σ’1f) based on transducer or bender element 

testing and triaxial strength testing in the laboratory. Such relationships have been proposed for 

clays (e.g., Baxter et al. 2015), lightly cemented sand (e.g., Sharma et al. 2011), calcareous sands 

(Guadalupe-Torres 2013), non-plastic silts (Guadalupe-Torres 2013), and quartz sand 

(Guadalupe-Torres 2013). In these studies, the ratio of Gmax/σ’1f has been shown to be have a 

relatively small range in values (i.e., typically between 100 and 200) (Table 3.2). Based on these 

results, the Gmax/σ’1f can serve as a parameter analogous to the Su/σ’v ratio in cohesive soils. In 

this manner, field measurements of in situ VS using geophysical methods can be used to 

estimate the variation of σ’1f with depth at a site. Such a profile can be combined with estimated 

or measured values of σ’h to estimate shear strength parameters of soils for which undisturbed 

sampling is difficult. 

Table 3.2: Summary of ratios between Gmax and maximum principal stress at failure for soils 
tested in Guadalupe-Torres (2013). 

Finally, there are a limited number of relationships in the literature that directly relate the peak 

drained friction angle φʹp to VS. One such example was proposed by Uzielli et al. (2013) for 

quartz-silica sands having trace to little fines content (FC < 10%): 

′φ𝑝𝑝 = 3.9(𝑉𝑉𝑠𝑠1)0.44 (3-8) 
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(3-9) 

where VS is input in m/s and φʹp is given in degrees. One particular aspect of the Uzielli et al. 

(2013) relationship is that it was developed using a probabilistic framework so that a target 

probability (pt) of non-exceedance can be assigned (Fig. 3.5). Eq. 3-8 is a best fit deterministic 

line through the data. 

Figure 3.5: Relationship between ϕʹ and VS developed using a probabilistic framework that 
assigns a probability of non-exceedance (Uzielli et al. 2013). 

Care should be exercised when applying the relationships highlighted in this section. 

Determination of soil shear strength is a vital aspect of many geotechnical projects and 

misidentification of strength can lead to failures. The empirical relationships in this section 

contain anywhere from a reasonable amount to a large amount of scatter. Additionally, some of 

the correlations are not derived from robust databases representing a wide range of conditions. 

However, the general approach utilized to develop some of these relationships can be 

performed at a smaller scale (e.g., across a single site, within a general metropolitan region, etc.) 

to develop relationships that are better calibrated for site-specific analyses beyond the 

preliminary design phase. Given the efficiency and broad spatial coverage offered by 
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geophysical methods, such relationships can prove highly beneficial for design, particularly at 

sites where undisturbed soil sampling is difficult. 

3.1.2.2 Unconfined Compressive Strength of Rock 

The unconfined compressive strength (UCS) (also referred to as uniaxial compressive strength) 

of rock plays an important role in geotechnical design, particularly as related to estimating the 

capacity of deep foundations socketed into bedrock. Moreover, bedrock properties may change 

drastically throughout a site based on weathering and fracturing patterns. As a result, a number 

of studies have attempted to correlate the UCS of rock to seismic velocities since the velocities 

can be established on a broader scale throughout a site using seismic reflection/refraction. 

Tables 3.3 – 3.6 and Figs. 3.6 – 3.12 highlight a number of such correlations as available in the 

literature. Rucker (2008) argues that UCS values estimated from seismic velocities are likely 

conservative as the seismic waves propagate through the entire rock mass and are slower due 

to fracturing whereas UCS laboratory testing is often performed on intact specimens of the rock. 

However, such correlations between UCS and seismic velocities may be inappropriate for shales 

as noted in Barton (2007). Finally, as has been the case with many of the earth material 

properties correlated to seismic velocities, there is appreciable scatter in the UCS-velocity data 

and the selected UCS values should be purposefully selected to be conservative. 

Table 3.3: Summary of published relationships between VP and UCS (Yagiz 2011). 
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Table 3.4: Summary of published relationships between UCS and physical properties of 
sandstone rocks (Chang et al. 2006). Note: Δt = 1/VP represents the interval transit time. 

Table 3.5: Summary of published relationships between UCS and physical properties of shale 
rocks (Chang et al. 2006). Note: Δt = 1/VP represents the interval transit time. 

Table 3.6: Summary of published relationships between UCS and physical properties of 
limestone/dolomite rocks (Chang et al. 2006). Note: Δt = 1/VP represents the interval transit 
time. 
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Figure 3.6: Relationship between UCS and seismic velocity developed through relationships of 
low strain to high strain modulus derived from seismic velocities and static UCS testing. 
(Rucker 2008). 

Figure 3.7: Relationship between UCS, VP, and degree of weathering (Hiltunen et al. 2011). 
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Figure 3.8: Relationship between UCS and VP (adapted from Barton 2007). 

Figure 3.9: Comparison of a number of relationships for UCS as a function of VP (Yagiz 2011). 
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Figure 3.10: Empirical relationships between UCS and VP for 260 sandstones (adapted from 
Chang et al. 2006). Note: Numbers within plot denote equations in Table 3.4. 

Figure 3.11: Empirical relationships between UCS and VP for 100 shales (adapted from Chang 
et al. 2006). Note: Numbers within plot denote equations in Table 3.5. 

Figure 3.12: Empirical relationships between UCS and VP for 140 limestones/dolomites 
(adapted from Chang et al. 2006). Note: Numbers within plot denote equations in Table 3.6. 
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3.1.3 CONSOLIDATION PARAMETERS 

The volumetric response of soils is an important aspect of geotechnical design. Consolidation 

reflects changes in stress state and the corresponding transfer of loading from pore pressure to 

skeletal stresses. Secondary compression reflects the effects of long term rearrangement of soil 

fabric (i.e., creep). The resulting changes in effective stress and/or void ratio can impact small 

strain stiffness (and thereby seismic velocity). Based on this mechanical link, a number of 

researchers have explored the relationship between consolidation parameters and geophysical 

measurements of seismic velocity. 

Figure 3.13: VS for a marine clay as a function of vertical effective stress and loading conditions 
during consolidation in an oedometer (Lee et al. 2008). 

Typically, these studies have attempted to examine the VS at the end of primary consolidation to 

develop relationships between VS, void ratio, and/or effective stress (e.g., Viggiani and Atkinson 

1995; Rampello et al. 1997). Some, such as Lee et al. (2008), examined this relationship as a 

function of effective stress, load stage, and time of consolidation (Fig. 3.13). In both approaches, 

the link between VS and consolidation behavior of a soil was quite evident given the similarity in 

the resulting trends when plotted against effective stress. Moreover, Yoon et al. (2011) 

demonstrated that predictions of preconsolidation pressure (σpʹ) from geophysical 

measurements at Korean sites agreed favorably with many of the existing approaches that 

estimate from the void ratio-pressure (e-σʹ) plot (Fig. 3.14). This approach was simply based on 

examining the inflection point of the VS-σʹ trendlines as the soil transitioned from 

recompression to virgin compression (Fig. 3.15). 
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Figure 3.14: Comparison of σʹp estimates for 11 Korean clays: C = Casagrande, J = Janbu, B = 
Becker, S = Sridharan, O = Onitsuka, and VS = Shear wave method (Yoon et al. 2011). 

Figure 3.15: Example of approach used in Yoon et al. (2011) to estimate σʹp (pʹ in figure) from 
VS measurements during consolidation in an oedometer. 

In a similar manner, L’Heureux and Long (2017) presents a best fit trendline between VS and σpʹ 

[determined using the Janbu (1963) procedure] for data from 14 sites in Norway (Fig. 3.16): 

′ 2.009 𝜎𝜎𝑝𝑝 = 0.00769𝑉𝑉𝑠𝑠 (3-10) 
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Figure 3.16: Relationship between σʹp (pʹc in figure) and VS for Norwegian clays (adapted from 
L’Heureux and Long 2007). 

Mayne et al. (1998) developed a similar relationship based on 262 pairings of VS-σpʹ data at 

various clay sites: 

(3-11) 

where VS is express in m/s and σpʹ in kPa. Finally, Lok et al. (2015) developed an empirical 

relationship that allowed the secondary compression index to be estimated from VS 

measurements, assuming information is known about the end of consolidation parameters (i.e., 

tp and ep): 

(3-12) 

where VS is the measured shear wave velocity (measured using bender elements in this study), 

VS,p is the shear wave velocity at the end of primary consolidation, Cα is the secondary 

compression index, ep is the void ratio at the end of primary consolidation, and tp is the time at 

the end of primary consolidation. This relationship was based on comparing the time rate of 
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deformations to the changes in VS with time and normalizing based on the conditions present at 

the end of consolidation for two undisturbed and two reconstituted Macau clay samples (Fig. 

3.17). Given the limited database, this relationship is highly site/soil specific and is not 

recommended for general usage. However, this approach demonstrates tremendous potential 

as a field monitoring tool. A site specific correlation similar to Eq. 3-12 could be developed 

based on a relatively small amount of laboratory consolidation testing in an oedometer fitted 

with bender elements. It would then be possible to use field-based seismic methods to monitor 

long term secondary compression effects after construction to ensure compatibility with 

analytical results during design. 

(a) 

(b) 

Figure 3.17: Relationship between secondary compression and VS in Lok et al. (2015): (a) time 
histories for all four samples; and (b) normalized time histories for all four samples. 
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3.1.4 COEFFICIENT OF LATERAL EARTH PRESSURE 

The coefficient of lateral earth pressure for at rest conditions (Ko) represents the ratio of the in 

situ horizontal effective stress (σ’ho) to the in situ vertical effective stress (σ’vo). Since this 

parameter relates to the in situ stress state in soil, it is routinely found in a number of 

geotechnical applications, including the interpretation of laboratory and in situ tests, the design 

of retaining and excavation support systems, and the evaluation of the shaft friction in deep 

foundations (Simpson 1992; Fioravante et al. 1998). Given the many applications, Ko is an 

important parameter in the design of geotechnical transportation projects. However, it can be 

quite difficult to reliably measure Ko due to the many factors that affect the stress state in soils. 

For example Ko in clays is highly influenced by the many mechanisms that affect its structure, 

including mechanical overconsolidation, ageing, cementation, and physico-chemical changes 

(Jamiolkowski et al. 1985; Fioravante et al. 1998; Puppala et al. 2006). The current state of 

practice typically estimates Ko from the Jaky (1944) empirical relationships for normally 

consolidated (NC) clays with modifications that include the effects of overconsolidation ratio 

typically estimate from laboratory testing on high quality undisturbed samples (e.g., Sivakumar 

et al. 2001): 

𝐾𝐾𝑣𝑣 = (1 − sin 𝜑𝜑)𝑂𝑂𝐶𝐶𝑂𝑂𝑎𝑎 (3-13) 

where φ is the friction angle, OCR is the overconsolidation ratio, and m is often computed as m = 

sinφ and typically varies between 0.4 and 0.7 depending on clay mineralogy (Mayne and 

Kulhawy 1982; Lunne and Christophersen 1983). In situ testing methods have been developed 

that allow for rapid estimates of Ko profiles under field conditions. These methods include direct 

tests [e.g., self-boring pressuremeter test (SBPMT)], semi-direct tests (e.g., total stress cells, 

Iowa stepped blade, and Marchetti’s flat dilatometer test), and empirical correlations to large 

strain penetration tests (e.g., SPT, CPT, etc.) (Robertson 1986). For example, Ko can be estimated 

based on measurements of CPT trip resistance (Kulhawy and Mayne 1990): 

(3-14) 
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where qt is the corrected cone tip resistance, σvo is the in situ total vertical stress, and σ’vo is the 

in situ effective vertical stress. In situ approaches are quite popular in practice as they allow 

rapid determination of Ko. However, it should be noted that the testing process necessary for 

many in situ methods can still appreciably alter the stress state and introduce uncertainty in the 

measurements. 

There has been growing interest in using seismic-based geophysical methods to evaluate Ko 

because of the aforementioned limitations in the current state of practice. It has long been 

recognized that the velocity of body waves in soil are fundamentally dependent on the existing 

effective stress state (e.g., Roesler 1979). For example, VS is fundamentally related to small 

strain shear stiffness (Gmax), which itself is primarily a function of stress state and soil fabric 

(Hardin 1978; Stokoe et al. 1985). Therefore, independent measurements of body wave 

propagation with different polarizations should relate to Ko. Two methods have utilized this 

concept to develop relationships between measurements of VS and Ko. The first was proposed 

by Sully and Campanella (1995) using seismic CPT and crosshole testing at multiple test sites in 

Vancouver, Canada. In this methodology, VS can be related to stress state based on the following 

expression: 

𝑉𝑉𝑠𝑠 = 𝐶𝐶𝑠𝑠(𝜎𝜎′)𝑛𝑛 (3-15) 

where VS is the measured shear wave velocity, Cs is a constant that is dependent on soil 

state/anisotropy, σʹ is the effective confining stress, and n is a stress exponent. There are two 

possible ways to define the σʹ term, either as the average effective stress (σʹm) or as the mean 

octahedral normal stress (σʹo) (Knox et al. 1982): 

′ ′ 𝜎𝜎1 + 𝜎𝜎3 ′ 𝜎𝜎𝑎𝑎 = (3-16) 
2 

′ ′ ′ 𝜎𝜎1 + 𝜎𝜎2 + 𝜎𝜎3 ′ 𝜎𝜎𝑣𝑣 = (3-17) 
3 
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where σʹ1, σʹ2, and σʹ3 are the principal stresses in the vertical and horizontal directions, 

respectively. Input of each of these confining stresses into Eq. 3-15 yields two potential 

configurations for the relationship between VS and confinement: 

𝑉𝑉𝑠𝑠 = 𝐶𝐶𝑠𝑠(𝜎𝜎𝑎𝑎′ )𝑛𝑛𝑡𝑡 (3-18) 

𝑉𝑉𝑠𝑠 = 𝐶𝐶𝑠𝑠(𝜎𝜎𝑣𝑣′ )𝑛𝑛𝑚𝑚 (3-19) 

where the modified n terms represent different stress exponents based on their respective 

confining stress definitions. Based on assuming that the stresses in the horizontal plane are 

isotropic (i.e., σʹ2 = σʹ3 = σʹh) and by applying the individual stress components into Eqs. 3-18 and 

3-19 on two polarizations of the shear wave, the following expression can be derived: 

𝑉𝑉𝑠𝑠(𝐻𝐻𝑉𝑉) 𝐶𝐶𝑠𝑠(𝐻𝐻𝑉𝑉) 
= (𝐾𝐾𝑣𝑣 )−𝑛𝑛1 (3-20) 

𝑉𝑉𝑠𝑠(𝐻𝐻𝐻𝐻) 𝐶𝐶𝑠𝑠(𝐻𝐻𝐻𝐻) 

where VS(HV) represents the velocity of a shear wave propagating in the horizontal direction 

with vertical particle motion (Fig. 3.18), VS(HH) represents the velocity of a shear wave 

propagating in the horizontal direction with horizontal particle motion (Fig. 3.18), Cs(HV) is the 

anisotropic shear wave velocity constant, Cs(HH) is the isotropic shear wave velocity constant, Ko 

is the coefficient of lateral earth pressure at rest, and n1 is a stress exponent that is dependent 

on the vertical effective stress (σʹ1 = σʹv). A complete derivation of Eq. 3-20 can be found in Cai 

et al. (2011). The ratio of Cs(HV)/Cs(HH) is directly related to the inherent structural anisotropy 

of the soil and is independent of the stress conditions (and any corresponding anisotropic 

stresses). Recent studies have demonstrated that electrical resistivity measurements can be 

used to determine this ratio (Tong et al. 2013). Though this ratio can be as large as 1 to 1.1 (e.g., 

Lee and Stokoe 1985; Yan and Byrne 1990), a value of 0.93 is recommended for granular soils 

(Fioravante et al. 1998) and 0.85 for clays (Jamiolkowski et al. 1995). As an alternative to Eq. 3-

20, the derivation can proceed using the average effective stress (σʹm) instead of the individual 

stress components: 
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(3-21) 

where n1 and n2 represent the exponential stress components related to the principal stresses 

acting in the direction of wave propagation and particle motion, respectively. Fioravante et al. 

(1998) noted that the uncertainty in the n exponent terms is less significant than the uncertainty 

in Cs(HV)/Cs(HH). Additionally, as noted from a summary of n1 and n2 values in Table 3.7, n1 can 

be assumed to be equal to n2. By assuming perfectly isotropic conditions, Ko can be estimated 

from measurements using only a single polarization of shear waves from any of the 

downhole/cross-hole seismic tests (Hatanaka and Uchida 1995): 

(3-22) 

where A is a material constant that can be obtained from laboratory tests on undisturbed 

samples. Given the dependence on isotropic conditions for Eq. 3-22, it is expected that 

estimates of Ko would be less reliable than those determined using Eqs. 3-20 and 3-21. 

Figure 3.18: Wave polarization in different forms of seismic testing (Ku and Mayne 2013). 
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Table 3.7: n1 and n2 values for use in estimating Ko from VS measurements (Cai et al. 2011). 

Recent studies by Cai et al. (2011) and Tong et al. (2013) at two test sites in China demonstrated 

generally good agreement between Ko values from Eqs. 3-20 and 3-21 and those obtained from 

the Jaky (1944) relationship using laboratory-derived soil properties and those obtained from 

the Kulhawy and Mayne (1990) relationship to CPT tip resistance. The Ko predicted from the 

seismic measurements matched the Jaky (1944) and Kulhawy and Mayne (1990) values better 

for normally consolidated clays located at larger depths. There was more discrepancy for 

overconsolidated soils at the near surface (less than 15.0 m) (Fig. 3.19). Based on these results, 

Cai et al. (2011) and Tong et al. (2013) concluded that an OCR-based correction factor may 

improve the formulations, though more research is necessary to establish a robust functional 

form for this correction factor. Past studies have also demonstrated similarly effective 

performance of Eqs. 3-20 and 3-21 when estimating Ko values (e.g., Fioravante et al. 1998). 

However, another recent study by Ku and Mayne (2013) explored the relationship between Ko 

and VS at 16 well-documented test sites with different soil types and found that modification 

factors may be necessary for the exponent in Eq. 3-20 (Fig. 3.20). Additionally, Ku and Mayne 

(2013) found that the predictions from Eq. 3-20 were improved by including terms that 

accounted for age and depth of the formation (Fig. 3.21). 
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Figure 3.19: Comparison of estimated Ko values using Eqs. 3-20 and 3-21 [Eqs. (3) and (4) in 
figure legend], Jaky (1944) relationship, and Kulhawy and Mayne (1990) relationship (Mayne 
in figure legend) (Tong et al. 2013). 

78 



 
 

 

 

 

 

     
          

          
 

 

 

 

Figure 3.20: Regression analysis between Ko and VS and corresponding sensitivity analysis of 
MF1 and MF2 on exponent n in Eq. 3-20: (a) Ko VS. VSHH/VSVH with MF1; (b) Ko VS. VSHH/VSHV with 
MF1; (a) Ko VS. VSHH/VSVH with MF2; (b) Ko VS. VSHH/VSHV with MF2 (Ku and Mayne 2013). 
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Figure 3.21: Comparison of regression analysis on Ko as a function of: (a) VSHH/VSVH and soil 
age; and VSHH/VSVH, soil age, and depth (Ku and Mayne 2013). 
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3.1.5 RIPPABILITY 

Rippability is defined as the ease with which soil or rock can be mechanically excavated 

(Wightman et al. 2003). Excavation of rocks, in particular, is inherently related to several 

influential factors, including the extent and location of weathering, unconfined compressive 

strength of the intact rock, and the equipment used for excavation. It is extremely beneficial to 

ensure estimates are made regarding rippability during the planning stages of excavations, so 

that appropriate equipment is selected and the use of explosives is considered to fragment the 

rock as necessary. Assessment of rocks has been a concern for as long as excavations have taken 

place for construction purposes, and several researchers have proposed rock mass classification 

schemes (e.g., Wickham et al. 1972; Bieniawski 1973, 1976, 1989; and Barton et al. 1974). 

However, these methods often rely on parameters derived from laboratory testing and other 

localized measurements of rock properties. Atkinson (1971) was one of several researchers to 

propose relationships for rippability of rock based on P-wave velocity as a proxy for strength and 

weathering characteristics. This allows a fast assessment of overall rippability since seismic 

reflection and/or refraction can be utilized to determine the P-wave velocity on a larger scale. 

Several of these relationships are summarized in Church (1981), and Caterpillar Inc. publishes a 

performance handbook for use with their equipment that includes estimates of rippability based 

on P-wave velocity (Fig. 3.22). MacGregor et al. (1994) developed regression relationships for 

the productivity of rock excavation operations based on P-wave velocity among other factors 

(Fig. 3.23). Productivity was defined as the volume of intact material excavated in a given time 

frame. The proposed relationships for productivity are provided in Table 3.8. Productivity was 

compared to qualitative assessments of the ease of rippability, based on operator feedback (Fig. 

3.24), which ultimately allows a direct comparison between P-wave velocity and rippability. 

Caltrans has developed their own correlations for rippability from P-wave velocity based on 

their experiences, which has proven to be more conservative and reliable across a wider range 

of materials compared to commonly used correlations such as Caterpillar (2008) (see Table 3.9 

and Leeds 2002). As noted previously, equipment plays a role in rippability and the applicability 

of the Caltrans correlations in Table 3.9 are limited to the Caterpillar D-9 series. The primary 

function of Table 3.9 is to serve as a contract specification whereby risks associated with 

blasting are delineated. The blasting specifications included in bid documents for a project 

maintain that Caltrans assumes cost risk for blasting when the material velocity is unrippable 

based on the classification in Table 3.9 (i.e., material velocity above 2000 m/s). If desired, 
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contractors can place more competitive bids by proposing different equipment (e.g., Caterpillar 

D10, D11, etc.) but project cost risks are transferred to the contractor in those situations. This 

demonstrates how the relationships discussed in this document can form the basis for 

contractual exchanges, in addition to estimation of material properties. 

Figure 3.22: Estimates for rippability based on VP and Caterpillar D10R equipment (Caterpillar 
2008). 

Figure 3.23: Case history data used for regression analysis of productivity versus VP in 
MacGregor et al. (1994). 
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Figure 3.24: Qualitative relationship between productivity and rippability (MacGregor et al. 
1994). 

Table 3.8: Proposed equations for productivity as a function of VP in MacGregor et al. (1994). 

Velocity (m/s) Rippability 

< 1050 Easily Ripped 

1050 – 1500 Moderately Difficult 

1500 – 2000 Difficult Ripping 

> 2000 Unrippable 

Table 3.9: Caltrans rippability chart (adapted from Leeds 2002). Note: Limited to Caterpillar D9 
series. 
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3.1.6 EARTHWORK/GRADING FACTOR 

Earthwork operations are typically required for transportation projects. In most cases, 

earthwork operations will consist of excavating in situ soils and bringing the site back to design 

grade by compacting the excavated soil as fill material. In doing so, volumetric changes can 

occur in the excavated materials during excavation and placement, which can alter the amount 

of material necessary to complete construction. Earthwork factors quantify the volumetric 

changes so that they can be accounted for during design and construction. The Shrink Factor is a 

ratio of the unit weight of in situ soils at the site to the unit weight of the soils after compaction. 

The Swell (or Load) Factor is a ratio of the unit weight of the soils at the site after excavation to 

the soils at the site in their natural state. The Earthwork Factor simplifies this into a single step 

by comparing the volumetric amount of compacted fill that results from a given volume of 

excavated material. Shrinkage would be signified by an Earthwork Factor less than 1 and 

swelling would be signified by a value larger than 1. 

Figure 3.25: Earthwork Factor as a function of VP for various rock types based on Smith et al. 
(1972) and Stephens (1978). 

Attempts have been made to develop relationships between earthwork factors and P-wave 

velocities so that volumetric calculations can be performed and quantifies of fill can be 

estimated based on geophysical measurements of site materials. Accurate estimates of 

earthwork materials prior to construction reduce construction costs associated with shortages 

and/or excesses in fill material. Smith et al. (1972) and Stephens (1978) summarize a number of 

studies performed by Caltrans to estimate earthwork factors based on the seismic P-wave 

velocities of different rock types (Fig. 3.25). These curves were generated empirically based on 
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data acquired at a number of project sites (10+) across the state of California. Rucker (2008) and 

Rucker (2000) suggest that earthwork factors can be estimated for site materials by computing 

in situ dry unit weights as correlated to P-wave velocity (e.g., Fig. 3.26) and comparing these 

values to anticipated fill unit weights, laboratory Proctor tests on sampled materials, or to dry 

unit weights estimated using seismic refraction for existing fill areas. Hiltunen et al. (2011) 

provides another such relationship between unit weight and P-wave velocity (Fig. 3.27). 

Figure 3.26: Example of geo-material γd as a function of VP (Rucker 2008). 

Figure 3.27: Estimate of γ for rock as a function of VP and weathering (Hiltunen et al. 2011). 
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3.1.7 ROCK MASS CLASSIFICATION 

Rock masses differ quite significantly from other earth materials as they contain a number of 

structural discontinuities (e.g., joints, shear zones, bedding planes, faults, folds, etc.) that 

ultimately govern their engineering behavior (Bieniawski 1989). Often it is more important to 

evaluate the type and frequency of these discontinuities than it is to determine the types of 

rocks involved or the strength of the intact rock itself (Palmström et al. 2002). Analytical 

techniques highly depend on the relative scale between the problem domain and the size of the 

intact rock blocks formed by the discontinuities (Zhang 2016). It is for this reason that 

classification of rocks often involves a quantitative and/or qualitative assessment of rock 

discontinuities. Over the last 50+ years, various rock classification systems have been proposed 

that attempt to account for the effects of discontinuities [e.g., Rock Quality Designation (RQD) 

(Deere et al. 1967); Rock Mass Rating (RMR) (Bieniawski 1978); Q-System (Barton et al. 1974); 

Geological Strength Index (GSI) (Hoek and Brown 1997); etc.]. Often, these systems allow for an 

estimate of rock strength, stiffness, and/or compressibility, in addition to providing information 

regarding the nature of jointing. Small strain stiffness (and, by extension, seismic wave velocity) 

is also significantly influenced by the nature of jointing in a rock mass. Therefore, it is not 

surprising that a number of investigators have proposed empirical relationships between seismic 

velocity (typically VP) and various parameters associated with different rock mass classification 

systems. The following sections describe these relationships. 

Rock Quality Designation (RQD) Classification of Rock Quality 

0 – 25% Very Poor 

25% – 50% Poor 

50% – 75% Fair 

75% – 90% Good 

90% – 100% Excellent 

Table 3.10: Classification of rock quality based on RQD (ASTM D6032). 

3.1.7.1 Rock Quality Designation (RQD) 

RQD was first developed by Deere (1964) and Deere et al. (1967) as a way to quantify the quality 

of borehole core samples of rock (Table 3.10). There are a few established methods by which to 

define RQD. The direct method is based on quantifying the length of intact core samples. In this 
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manner, RQD is defined as the ratio (in percentage) of the total length of sound core pieces that 

are 0.1 m (4 inch) or longer to the total length of the core run (Fig. 3.28). 

Figure 3.28: Procedure for determination of RQD from rock coring (after Deere 1989). 

RQD provides an index value that represents rock quality since poor rock recovery indicates 

excessive weathering, jointing, fracturing, and similar issues. A core size of at least NX (size 54.7 

mm) or NQ-size (47.5 mm [1.87 in.]) is recommended with drilling taking place using a double-

tube core barrel with a diamond bit (ASTM D6032). RQD can also be determined based on the

frequency of discontinuities observed during scanline surveying (i.e., tape measure along an

outcropped rock surface). Various correlations between RQD and linear discontinuity frequency

have been developed based on different assumptions regarding the spatial distribution of

jointing (Priest and Hudson 1976; Sen and Kazi 1984; Sen 1993). For example, the Priest and

Hudson (1976) relationship specifies an exponential decay function for the discontinuity spacing,

resulting in the following expression for RQD:

𝑂𝑂𝑅𝑅𝑅𝑅 = 100𝑒𝑒−𝜆𝜆𝑎𝑎(𝜆𝜆𝑡𝑡 + 1) (3-23) 
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where λ is the frequency of discontinuities per unit length and t represents the length threshold 

used to define RQD (i.e., typically t = 0.1 m as previously discussed in original RQD definition). In 

terms of geophysical measurements, the seismic compressional velocity is highly affected by the 

presence of jointing in rock. Correspondingly, comparison of the seismic velocity of intact rock 

samples to an in situ rock mass with jointing can provide a reliable method by which to estimate 

RQD. The following functional form has been proposed for this approach: 

(3-24) 

where VP,f is an in situ measurement of seismic compressional wave velocity and VP,o is a 

measurement of seismic compressional wave velocity for the intact rock (Deere et al. 1967). VP,o 

can be measured directly in the laboratory using an ultrasonic pulse approach on sound rock 

core samples or can be indirectly estimated based on lithology of the rock. Similar expressions 

have been established by other researchers (e.g., El-Naqa 1996; Bery and Saad 2012): 

(3-25) 

(3-26) 

where the variables are as defined previously in Eq. 3-24. Other functional forms have also been 

proposed, including a hyperbolic relationship (Sjogren et al. 1979 and Palmström 1995): 

𝑉𝑉𝑝𝑝,𝑞𝑞 − 𝑉𝑉𝑝𝑝,𝑓𝑓𝑂𝑂𝑅𝑅𝑅𝑅 = × 100% (3-27) 𝑉𝑉𝑝𝑝,𝑞𝑞𝑉𝑉𝑝𝑝,𝑓𝑓𝑘𝑘𝑞𝑞

where VP,q is the seismic compressional wave velocity for a rock mass with RQD = 0, VP,f is an in 

situ measurement of VP as described in previous equations, and kq is a fitting parameter that 
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accounts for in situ rock conditions. This functional form can be used by performing a regression 

to determine VP,q and kq from data acquired from a single rock core at the site. Eq. 3-27 can then 

be applied to other parts of a site to estimate RQD from seismic surveys assuming the rock 

shares similar lithological characteristics. For example, Budetta et al. (2001) performed such an 

analysis and determined that VP,q = 1.22 km/s and kq = -0.69 in Eq. 3-27 for a heavily fractured 

calcareous rock in southern Italy (Fig. 3.29). 

Figure 3.29: Relationship between VP and RQD for heavily fractured calcareous rock masses in 
southern Italy (Budetta et al. 2001). 

In some cases, other researchers have developed direct relationships between RQD and 

measured VP from a seismic survey (e.g., Sjogren et al. 1979; El-Naqa 1996; Leucci and De Giorgi 

2006). Eq. 3-28 below and Figs. 3.30 – 3.32 provide examples of such empirical relationships: 
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𝑂𝑂𝑅𝑅𝑅𝑅 = 36.7𝑉𝑉𝑝𝑝0.52 (3-28) 

where VP is input in km/s (El-Naqa 1996). It should be emphasized that such relationships are 

highly site-specific and should not be extrapolated outside their intended scope. 

Figure 3.30: Relationship between VP and RQD for limestones, mudstones, marls and shales 
beneath a dam site in Jordan (El-Naqa 1996). Note: Dahsed lines represent 95% and 90% 
confidence limits. 
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Figure 3.31: Relationship between RQD and VP based on laboratory testing on a calcarenite 
block (Leucci and De Giorgi 2006). 

Figure 3.32: Relationships between RQD and discontinuity frequency (λ) based on Sjogren et 
al. (1979) VP measurements primarily in Norway (Barton 2002). 

A limited number of studies have attempted to develop similar empirical relationships between 

VS and RQD (Leucci and De Giorgi 2006; Biringen and Davie 2013). However, as noted in Figs. 

3.33 – 3.34, the level of fit for these relationships is quite variable depending on the dataset 

examined. 
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(a) (b) 

Figure 3.33: Relationships between RQD and VS: (a) Igneous rock site in South Carolina; and (b) 
metamorphic rock site in Virginia (Biringen and Davie 2013). 

Figure 3.34: Relationship between RQD and VS based on laboratory testing on a calcarenite 
block (Leucci and De Giorgi 2006). 

Finally, it is worth noting that correlations exist between RQD and other rock mass parameters 

of interest. Based on these correlations and the aforementioned relationships proposed 

between seismic velocity and RQD, geophysical measurements can be used to estimate these 
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rock mass properties. For example, RQD can be related to volumetric joint count (Jv), which 

measures the number of joints within a unit volume of rock mass (Palmström 2005): 

𝑂𝑂𝑅𝑅𝑅𝑅 = 110 − 2.5𝐽𝐽𝑣𝑣 (3-29) 

Based on similar relationships, it may be possible to estimate joint related parameters (e.g., joint 

density, spacing, etc.) indirectly from estimates of RQD using geophysical measurements of 

seismic velocity. Fig. 3.32 provides one such graphical form for the relationship between VP, 

RQD, and λ proposed in Sjogren et al. (1979). RQD can also be correlated to deformation 

modulus and UCS (Figs. 3.35 – 3.36). However, relationships to RQD can be quite crude because 

of the one-dimensional nature of the RQD calculation (Palmström 2005). In any case, 

geophysical measurements using seismic methods can still provide useful information regarding 

rock characteristics on a broad scale across a site since the seismic velocities can be directly 

correlated to RQD and indirectly to jointing parameters, UCS, and deformation modulus. 

Figure 3.35: Relationships between deformation modulus ratio and RQD (Ebisu et al. 1992). 
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Figure 3.36: Relationships between UCS ratio and RQD (Zhang 2016). 

3.1.7.2 Tunneling Quality Index System (Q-system) Value 

The Tunneling Quality Index System (Q-system) was developed by Barton et al. (1974) as a way 

to designate rock quality for design and support recommendations in underground excavations 

(Table 3.11). 

Q  Classification of Rock  Quality  

0.001 – 0.01 Exceptionally Poor 

0.01 – 0.1 Extremely Poor 

0.1 – 1 Very Poor 

1 – 4 Poor 

4 – 10 Fair 

10 – 40 Good 

40 – 100 Very Good 

100 – 400 Extremely Good 

400 – 1000 Exceptionally Good 

Table 3.11: Classification of rock quality based on Q-value (after Goel and Singh 2011). 
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In this approach, a Q-value is obtained by using the following relationship: 

𝑂𝑂𝑅𝑅𝑅𝑅 𝐽𝐽𝑟𝑟 𝐽𝐽𝑤𝑤 𝑅𝑅 = × × (3-30) 
𝐽𝐽𝑛𝑛 𝐽𝐽𝑎𝑎 𝑆𝑆𝑂𝑂𝑆𝑆 

where RQD is the rock quality designation, Jn is the joint set number, Jr is the joint roughness 

number, Ja is the joint alteration number (related to friction angle), Jw is the joint water 

reduction number, and SRF represents the stress reduction factor. Table 3.12 provides a 

discussion of these inputs into the Q-system. The first term in Eq. 3-30 relates to the size of the 

intact rock blocks in the rock mass. The second term represents the shear strength along the 

discontinuity planes between rock blocks. The third term is related to the stress environment 

around the underground excavation. The Q-system is essentially a classification system for rock 

masses with respect to stability of underground openings. The Q-value obtained from Eq. 3-30 

can be used to estimate the ultimate support pressure and recommendations regarding 

appropriate support design for an underground excavation (Figs. 3.37 – 3.38). 

Figure 3.37: Correlation between support pressure and Q-value (from Barton et al. 1974). 
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Table 3.12: Summary of Q-system parameters (ASTM D5878). 
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Figure 3.38: Rock support chart based on Q-value (NGI 2015). 

Barton (1991) first proposed a relationship between the Q-value and VP based on data from over 

2000 core samples: 

𝑉𝑉𝑃𝑃 = 3.5 + log10 𝑅𝑅 (3-31) 

where VP is expressed in km/s (Fig. 3.39). 

Figure 3.39: Integrated Q-VP relationship including depth and porosity (Barton 2002). 
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This relationship was based on data from hard rock tunneling projects in several countries 

(including Sjogren et al. 1979) where VP was measured using a number of seismic methods, 

including seismic tomography. However, given the database, Eq. 3-31 is not well suited for rock 

conditions outside those used in its formulation, particularly for “weaker” rock conditions. To 

extend this relationship, a modification was proposed by Barton (1995) that normalized the Q-

value to a nominal hard rock compressive strength value of 100 MPa: 

𝜎𝜎𝑐𝑐 𝑅𝑅𝑐𝑐 = 𝑅𝑅 (3-32) 
100 

where σc is the uniaxial compressive strength expressed in MPa. The normalized Q-value (Qc) is 

then input for Q in Eq. 3-31 to improve the correlation. Additional studies with a wide range of 

rock conditions (e.g., marls, chalks, sandstones, shales, granites, gneiss, etc.) were used to 

develop an integrated VP-Q (and modulus) seismic correlation chart, which uses the Qc from Eq. 

3-32 (Fig. 3.39). This seismic correlation chart allows an approximate Q-value to be selected for 

preliminary assessment of rock support needs based on a measurement of VP at a depth H with 

estimated porosity and uniaxial compressive strength. Rock mass deformation modulus could 

also be estimated using the same chart. All of this could be accomplished in a rapid manner 

using geophysical measurements prior to in situ measurements using coring. 

3.1.7.3 Rock Mass Rating (RMR) Value 

The Geomechanics Classification or the Rock Mass Rating (RMR) system traces its origins to the 

work of Bieniawski (1973) with shallow tunnels in sedimentary rocks. Since that time, the 

database used to develop the rock mass classifications with RMR has increased in size and the 

system has been successively refined until its most recent iteration in Bieniawski (1989). In some 

cases, the refinements were quite significant [e.g., use of ISRM (1978) rock mass descriptions 

(Bieniawski 1979)], and it is advisable to note which version of the system is used to provide a 

classification when communicating with other engineers. Generally, the RMR value allows an 

estimate of rock strength parameters. A total of six parameters are used to classify a rock mass 

using the RMR system: (1) UCS of intact rock material; (2) RQD; (3) joint or discontinuity spacing; 

(4) joint condition; (5) groundwater condition; and (6) Joint orientation (Bieniawski 1989). Table 

3.13 presents the RMR system based on Bieniawski (1989). RMR classification can help estimate 
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many aspects related to underground excavations, including unsupported span, stand-up time, 

bridge action period, support pressure, strength parameters (i.e., cohesion and friction angle), 

modulus of deformation, and allowable bearing pressure. This information is extremely useful in 

selecting the method of excavation and the permanent support system. 

Table 3.13: Summary of Rock Mass Rating (RMR) system parameters (after Bieniawski 1989). 
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The inputs necessary to determine a RMR value overlap significantly with those necessary to 

determine the Q-value. Given this link, it is unsurprising that RMR and Q values are statistically 

correlated and that they provide similar tunnel support recommendations (Pariseau 2011). For 

example, one the first correlations between these two parameters is discussed in Bieniawski 

(1976): 

𝑂𝑂𝑀𝑀𝑂𝑂 = 9 ln 𝑅𝑅 + 44 (3-33) 

Equation 3-33 was developed based on a large database of RMR and Q measurements [117 total 

case histories (68 in Scandinavia, 28 in South Africa, and 21 in USA)]. Since the classic Bieniawski 

(1976) relationship, multiple RMR-Q correlations using the same functional form as Eq. 3-33 

have been developed based on different sets of case histories (Table 3.14). It is unsurprising that 

multiple correlations can be developed given that the two ratings systems take into account 

different rock mass parameters (e.g., uniaxial compressive strength of the intact rock and 

orientation of the rock fractures in the RMR system and stress influence in the Q system). 

RMR Reference 

9 ln 𝑅𝑅 + 44 Bieniawski (1976) 

5.9 ln 𝑅𝑅 + 43 Rutledge and Preston (1978) 
5.4 ln 𝑅𝑅 + 55.2 Moreno Tallon (1980) 
5 ln 𝑅𝑅 + 60.8 Cameron-Clarke and Budavari (1981) 

10.5 ln 𝑅𝑅 + 41.8 Abad et al. (1984) 
15 log 𝑅𝑅 + 50 Barton (1995) 

Table 3.14: Summary of RMR-Q relationships. 

Since the Q-value can be related empirically to VP, it follows that RMR can also be estimated in a 

similar manner, as demonstrated below in a relationship proposed by Sunwoo and Hwang 

(2001) based on data acquired across multiple sites with different geological conditions in 

Korea: 

𝑉𝑉𝑝𝑝−3.5 (3-34) 𝑂𝑂𝑀𝑀𝑂𝑂 = 6 × 10 3.96 + 47 
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where VP is input in km/s. Moreover, RMR can be estimated directly using Eq. 3-33 (among 

other similar proposed relationships) once Q has been estimated using VP. 

3.1.8 MASS DENSITY 

The mass density (and, by extension, unit weight) of earth material plays a significant role in 

estimating stresses. The calculation of stresses proves to be a fundamental step in practically 

any project involving geotechnical engineering. Mass density is itself affected by the distribution 

of grains, pore space, and mineralogy. Many of these factors also affect various geophysical 

measurements. The following sections describe various correlations that exploit this relationship 

between mass density and geophysical measurements. 

3.1.8.1 Seismic Methods 

As previously discussed, mass density is inextricably linked to soil moduli. Independent 

knowledge of the appropriate soil modulus and the corresponding seismic velocity can allow an 

estimate of ρ. However, it is rare to have these two parameters independently measured when 

using field-based geophysical approaches. Therefore, a number of researchers have compiled 

databases where velocities were estimated in the field as part of site subsurface investigation 

efforts or in the laboratory and ρ values were obtained for the soil profile based on in-situ 

testing or laboratory testing on undisturbed samples. From these databases, statistical 

regressions could be performed to empirically relate measured VS (and/or VP) with ρ (or γ). 

Examples of these relationships for rocks were presented previously in the discussion regarding 

earthwork/grading factor (Figs. 3.26 – 3.27). An example of a general correlation is provided in 

Fig. 3.40, where the regression is performed with 438 data points from a wide variety of 

geomaterials including intact rocks, gravels, sands, silts, and clays. The resulting relationship 

could be expressed as follows: 

𝜌𝜌 = 0.277 + 0.648 log 𝑉𝑉𝑠𝑠 (3-35) 
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where VS is input in m/s and the resulting ρ is in g/cc (Burns and Mayne 1996). Mayne (2007) 

proposed a similar relationship for the total unit weight that also incorporated the effects of 

depth: 

𝛾𝛾𝑎𝑎 = 8.32 log 𝑉𝑉𝑠𝑠 − 1.61 log 𝑧𝑧 (3-36) 

where VS is input in m/s, depth (z) is input in meters, and the resulting γt has units of kN/m3. 

Figure 3.40: Relationship between ρ and VS (Burns and Mayne 1996). 

The database for development of Eq. 3-36 is based on 727 samples of different saturated soils, 

including soft to stiff clays and silts, loose to dense sands and gravels, and mixed geomaterials 

(Fig. 3.41). Figure 3.41 also includes data points from intact rocks for comparative purposes (i.e., 

data not included in the regression for Eq. 3-36). Based on this data, limiting values can be 

placed on the maximum unit weight (26 kN/m3) and shear wave velocity (VS = 3300 m/s) of rock 

for correlating between the two properties. 
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Figure 3.41: Relationship between γt and VS and depth (Mayne 2007). 

The relationship from Eq. 3-36 can also be expressed so that the effects of depth are 

incorporated into vertical effective stress as a normalization parameter for VS: 

𝛾𝛾𝑎𝑎 = 4.17 ln 𝑉𝑉𝑠𝑠1 − 4.03 (3-37) 

(3-38) 

where γt is the total unit weight in kN/m3, VS1 is the stress-normalized shear wave velocity in m/s 

(Eq. 3-38), VS is the measured shear wave velocity in m/s, σʹvo is the in situ vertical effective 

stress in kPa, and σatm is a reference pressure of 1 atm (i.e., 101.3 kPa) (Mayne 2006). Figure 

3.42 demonstrates that Eq. 3-37 should allow estimates of γt within ± 1 kN/m3. The use of Eq. 3-

37 to determine γt throughout a soil profile should proceed downward from the ground surface 

in a stepwise fashion since VS1 is itself a function of σʹvo (i.e., depth). Mayne (2006) notes that Eq. 

3-37 is for “well-behaved” soils, meaning that there is no observed cementation or unusual

structure associated with the soil. Cemented soils and carbonate sands would likely plot to the

right of the mean relationships in Fig. 3.42 since the bonding would yield a fast velocity through

the soil matrix despite the more open porous structure (and low unit weight).
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Figure 3.42: Relationship for γt that incorporates the effects of depth based on σʹvo as 
normalization parameter for VS (Mayne 2006). 

From resonant column testing, Mayne (2006) highlighted a similar relationship for dry unit 

weight from a much smaller database of reconstituted quartz sands (Fig. 3.43): 

𝛾𝛾𝑎𝑎 = 0.06𝑉𝑉𝑠𝑠1 + 2 (3-39) 

where γt is the dry unit weight in kN/m3 and, as before, VS1 is the stress-normalized shear wave 

velocity in m/s (Eq. 3-38). 

Figure 3.43: Relationship between γd and normalized VS1 for reconstituted sands (Mayne 
2006). 
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Care should be exercised when applying any of these equations on partially saturated soils. The 

capillary forces resulting from partial saturation can drastically change the small strain stiffness 

(and VS by extension) depending on the gradation of the soil (Cho and Santamarina 2001). Since 

Eqs. 3-35 – 3-39 were not calibrated based on partially saturated soils, it is advisable to adjust 

any field measured VS to account for differences in interparticle forces from partial saturation. In 

doing so, field estimates of VP from seismic geophysical methods can be used to estimate the 

saturation (e.g., Yang 2005) and the concepts introduced in Cho and Santamarina (2001) can be 

used to revise the predicted VS. 

3.1.8.2 Electromagnetic Methods 

Electromagnetic methods provide a measurement of the relative permittivity (i.e., dielectric 

constant) of the propagating medium. Since soil and rock are multi-phase materials, the 

measured dielectric constant represents a composite value affected by each of the phases. 

Therefore, electromagnetic methods can allow for insight into the relative composition of the 

tested earth material. In this manner, electromagnetic methods have been used to correlate to 

bulk mass density, often in conjunction with estimates of water content. The most commonly 

applied approach has been the TDR method. This method has seen significant development in 

the recent past primarily related to its use as a quality control tool for verifying compaction in 

the field (Siddiqui and Drnevich 1995; Lin et al. 2000; Siddiqui et al. 2000; Drnevich et al. 2003; 

Yu and Drnevich 2004; Sallam et al. 2004; Rathje et al. 2006; Lin et al. 2012). This work has led to 

the development of ASTM D6780 for this particular purpose. 

Figure 3.44: Example of a typical TDR waveform (Lin et al. 2012). 
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As previously noted, the TDR method relies on evaluations of the reflections from 

electromagnetic signals traveling along a multi-conductor probe placed in the ground. The initial 

step pulse generated into the probe is reflected at the soil surface and at the end of the probe. 

Typically, multiple reflections of the waveform also result within the probe after which a steady 

state voltage is reached (Fig. 3.44). The difference in time between the reflection at the soil 

surface and at the probe end allows for a round trip travel time to be determined for the 

electromagnetic wave. From this information the dielectric constant of the soil can be 

determined: 

(3-40) 

where Ka is the dielectric constant, Vc is the speed of light in air, Δt is the round trip travel time 

determined from testing, and L is the probe length (Topp et al. 1980). Since small dielectric 

losses are always present, the TDR-measured relative dielectric permittivity in Eq. 3-40 is 

referred to as the “apparent” dielectric constant (Topp et al. 1980). The steady state voltage can 

also be used to measure the electrical conductivity of the soil: 

(3-41) 

where EC represents the electrical conductivity, Kp is a constant related to probe geometry and 

source impedance (Ball 2002; Dallinger 2006) and can be determined experimentally with 

measurements on electrolytic solutions with known EC, Vo is the magnitude of the step input 

voltage used to generate the electromagnetic wave in the probe, and V∞ is the steady state 

voltage recorded by the TDR sensor (Giese and Tiemann 1975). This equation is derived based 

on two assumptions: (1) cable resistance is neglected; and (2) the characteristic impedance of 

the TRD sensor and of the transmission line perfectly match. Modifications to account for these 

two assumptions have been proposed by Lin et al. (2008) to improve measurements of EC. The 

Ka and EC measurements from Eqs. 3-40 and 3-41 can then be used to estimate soil phase 

properties (including mass density) using the following expressions: 
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(3-42) 

√𝐸𝐸𝐶𝐶𝜌𝜌𝑤𝑤 = 𝑐𝑐 + 𝑑𝑑𝑏𝑏 (3-43) 
𝜌𝜌𝑑𝑑

where w is the gravimetric water content, ρw is the mass density of water, ρd is the dry density 

of the tested soil, and a,b,c, and d are constants to be calibrated using a laboratory standard 

Proctor compaction test as exemplified in Figs. 3.45 – 3.46 (Yu and Drnevich 2004). Parameters a 

and c are primarily related to the tested soil type, b does not vary significantly, and d represents 

the effects of the pore fluid EC (Lin et al. 2012). 

Assuming both Ka and EC are known from TDR field measurements, Eqs. 3-42 and 3-43 represent 

two equations with two unknowns, which means they can be solved simultaneously to obtain w 

and ρd. This method is commonly referred to as the One-Step Method and “Procedure B” in 

ASTM D6780. In this case, calibration constant d may differ in the field from the laboratory-

derived value because there may be differences in pore fluid conductivity between the two 

settings. Yu and Drnevich (2004) proposed a methodology to adjust the field measurements to 

allow laboratory calibrations to remain applicable. This method relies on the fact that Ka is 

relatively insensitive to the EC of the pore fluid. In this approach, Eqs. 3-42 and 3-43 are 

combined to form a relationship between EC and Ka: 

(3-44) 

where f and g are new calibration constants related to the previously defined calibration 

constants. These f and g calibration constants are derived based on laboratory measurements 

(e.g., Fig. 3.47) and then applied to Eq. 3-44 so that an adjusted field EC can be estimated from 

the Ka measured in the field using Eq. 3-40.  This adjusted EC represents the field EC as if the 

pore fluid in the field was replaced by the pore fluid used in the laboratory for calibration. 
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Figure 3.45: Examples of calibration between normalized apparent dielectric constant and w 
for TDR testing (Lin et al. 2012). 

Figure 3.46: Examples of calibration between normalized electrical conductivity and w for TDR 
testing (Lin et al. 2012). 

Figure 3.47: Examples of calibration between electrical conductivity and apparent dielectric 
constant for TDR testing (Lin et al. 2012). 
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If only measurements of Ka are made in the field, then Eq. 3-42 represents a single equation 

with two unknowns. This method is commonly referred to as the Two-Step Method and 

“Procedure A” in ASTM D6780. This highlights the fact that an extra step must be taken in the 

field to determine gravimetric water content and mass density information. A portion of the soil 

from where the original TDR measurements were made must be removed, placed in a 

compaction mold, and weighed so that total mass density (ρt) can be estimated. A second Ka 

measurement is also made on the compaction mold sample with the TDR sensor and probe. 

Since ρt [= ρd (1+w)] and Ka in the mold are both known, the field w can be estimated based on 

assuming it is the same as in the mold: 

(3-45) 

Once the w is obtained, the field ρd can then be determined from the two measurements of Ka 

as follows: 

(3-46) 

In this manner, field compaction specifications can be checked rapidly in the field as in Lin et al. 

(2012). 

Measurements of w and ρd from TDR have shown reasonable agreement (e.g., w measurements 

within 1%, ρd within 5%) with those estimated from sand cone testing (Fig. 3.48 and 3.49), 

particularly when a soil-specific calibration is performed rather than reliance on a general 

calibration from all soils. However, there are a number of limitations with the method in its 

current form. First, high clay content soils can cause dispersion in electromagnetic waves (e.g., 

West et al. 2003), which can lead to higher apparent dielectric constants than coarse grained 

soils (Lin et al. 2012). This means the assumption that dielectric-based TDR measurements of w 
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and ρd are independent of soil type may lead to discrepancies in the results, particularly when 

general calibration is performed. 

Figure 3.48: Comparison of w measured in the field using TDR and w obtained from oven 
drying (Lin et al. 2012). 

Figure 3.49: Comparison of γd measured in the field using TDR and sand cone tests (Lin et al. 
2012). 

Full scale laboratory evaluations have demonstrated that the One-Step method and the Two-

Step method both perform similarly (e.g., Lin et al. 2012). However, the One-Step method is 

affected by issues with the empirical adjustment process to account for pore fluid conductivity. 

This leads to a systematic error proportional to the difference between field dry density and 

mold dry density during calibration (Lin et al. 2012). Both methods can be negatively affected by 

the penetration disturbance caused by the field TDR probe (Lin et al. 2006a,b; Lin et al. 2012). 

The amount of error introduced by penetration disturbance can be reduced by using a smaller 
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diameter probe or by predrilling the hole for probe insertion. Finally, it is not possible to 

measure w and ρd solely with TDR without some sort of physical soil sample for calibration. 

However, recent studies have explored combining TDR with other measurements such as 

thermal conductivity to remove the need for calibration with a physical sample (e.g., Zhang et al. 

2015). It should be noted that though this approach has overwhelmingly focused on compaction 

quality assurance, it can be used in any situation where estimates of the w and ρ of the surficial 

soils are desired. 

3.1.8.3 Gravity Methods 

Use of the microgravity technique to establish quantitative measurements of mass density 

necessitates significant data post-processing (e.g., Sissons 1981). An inversion process must be 

used to deduce the subsurface model that best represents the surficial gravity observations 

after corrections for elevation, topography, tidal fluctuations, and regional anomalies. The 

inversion must be constrained by a priori information regarding the density of subsurface earth 

materials, either through direct measurements (e.g., sampling and laboratory testing, in situ 

testing, other geophysical methods, etc.) or indirect assessments (e.g., average values based on 

anticipated subsurface geologic units). Unfortunately, the inherent non-uniqueness of inversion 

algorithms and the need for a priori information signifies that empirical relationships between 

microgravity measurements and density are not practical. However, a significant number of 

studies have been performed that have evaluated the subsurface spatial distribution of density 

based on surficial gravity measurements, which demonstrates the method’s effectiveness for 

this application. For example, Rim et al. (2005) discusses the use of microgravity to determine 

the density variation within the interior of a rock fill dam and Styles et al. (2005) discusses its use 

for mapping cavity locations based on density (Fig. 3.50). 

Hayashi et al. (2005) discusses a case history where microgravity and MASW surveys were 

performed to delineate a buried channel filled with soft alluvium sediments. In this study, 

inversion of the gravity data was constrained by using estimated density values derived from 

empirical relationships between density and the shear wave velocity obtained from the surface 

wave measurements. The resulting density distribution (Fig. 3.51) was used with the shear wave 

velocity model to estimate spatial distribution of shear modulus and map the soft alluvial 

sediments. The Hayashi et al. (2005) study demonstrates how other geophysical methods could 
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be used to supplement microgravity surveys and provide useful a priori information to constrain 

the inversion of microgravity data. A similar concept was proposed by Lines et al. (1988) using 

the results from sonic logging and borehole gravity measurements. Other similar approaches 

have been reported by Pilkington (2006), Mochales et al. (2008), Orfanos and Apostolopoulos 

(2011), and Paine et al. (2012), typically in combination with electrical or magnetic methods 

(e.g., resistivity, GPR, etc.). 

(a) (b) 

Figure 3.50: Example microgravity results: (a) Residual gravity measurements. Black dots 
represent gravity stations and white lines represent potential cavities (solid = probable, 
dashed = possible). (b) Resulting 3D map of cavity location/thickness (Styles et al. 2005). 

Figure 3.51: Delineation of soft alluvial sediments using microgravity measurements and 
constrained inversion with an MASW VS profile (Hayashi et al. 2005). 

In addition to information from other geophysical methods, drilling information (e.g., in situ 

testing) and laboratory measurements of density can be used to supplement microgravity 

studies. For example, Whitelaw et al. (2008) demonstrates the use of drilling information as an 

inversion constraint. Whitelaw et al. (2008) used microgravity results to estimate density 

variation and image a sinkhole basin at the Gray Fossil Site in Washington County, Tennessee. In 
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this study, the gravity inversion was constrained by laboratory measurements from borehole 

samples drilled in the area by the Tennessee Department of Transportation. The resulting 

density contrast images demonstrated the presence of 11 individual sinkholes within the basin 

(Fig. 3.52). 

(a) (b) 

Figure 3.52: 3D ρ contrast models estimated using microgravity measurements: (a) Two 
vertical slices through model (with regions of interest numbered); and (b) Two horizontal 
slices through model (with regions of interest lettered) (after Whitelaw et al. 2008). 

Another study that used existing drilling data was performed by Mankhemthong et al. (2012), 

where the spatial distribution of density was being studied to map an existing fault zone 

separating two distinct geological settings. Mankhemthong et al. (2012) used existing well 

logging data and density measurements from rock samples to serve as constraints for inversion 

of gravity measurements. The resulting estimates of density highlighted the two distinct 

geological terrains on either side of the known fault zone in the study (Fig. 3.53). 
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Figure 3.53: Estimates of near surface bulk ρ across Border Ranges Fault System in Alaska. 
Vertical lines represent uncertainty in estimated ρ and horizontal lines represent spatial 
extent of gravity measurements for a given lettered zone (Mankhemthong et al. 2012). 

The determination of density from microgravity surveys is more straightforward in cases where 

the measurements are performed directly on top of each other. In such cases, it is possible to 

develop a direct expression relating density to the measurements of gravity. For example, if a 

gravity measurement can be made at the surface and at a depth immediately below that 

location, the density can be estimated using the following relationships: 

11.93(∆𝑔𝑔 − 𝜀𝜀𝑇𝑇) 
𝜌𝜌 (𝑔𝑔/𝑐𝑐𝑐𝑐3) = 3.68 − (3-47) 

∆𝑧𝑧 

39.06(∆𝑔𝑔 − 𝜀𝜀𝑇𝑇) 
𝜌𝜌 (𝑔𝑔/𝑐𝑐𝑐𝑐3) = 3.68 − (3-48) 

∆𝑧𝑧′ 

where ρ is the mass density expressed in units of g/cm3, Δg is the difference in the gravity 

measurements, Δz is the elevation difference in meters (Δz’ is the elevation difference in feet), 

and εT is the difference in terrain corrections expressed in units of mGal (Telford et al. 1990). 

However, despite being direct expressions between gravity and density, application of Eqs. 3-47 

and 3-48 still involves successive approximations because the εT term depends on ρ. Gravity 

measurements at locations directly on top of each other can be accomplished in a number of 
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ways. In some cases, the unique circumstances of the site conditions allow for repeated 

measurements at different depths over the same location. For example, Harris et al. (2013) 

estimated the density of waste material at a bioreactor landfill using existing settlement gauge 

information in combination with multiple microgravity surveys performed over several years. As 

development of each landfill cell progressed, the microgravity surveys could be repeated over 

the same locations as the height of the waste material increased. Harris et al. (2013) was able to 

use this approach to estimate the spatial distribution of density for placement of different 

landfill waste cells (Fig. 3.54). 

Figure 3.54: Estimates of waste ρ between initial survey and final survey in Harris et al. (2013) 
study. 

In other cases, measurements at different elevations at the same location are accomplished 

using a tripod or tower structure (e.g., Butler 1984). The most direct approach for taking gravity 

measurements directly on top of each other is with a borehole gravimeter (BHGM). In these 

cases, a terrain correction is unnecessary since the gravity measurements are made below the 

surface (Telford et al. 1990). A generalized form can then be developed for the relationship 

expressed in Eqs. 3-47 and 3-48: 

𝑆𝑆 ∆𝑔𝑔/∆𝑧𝑧 
𝜌𝜌 = − (3-49) 

4𝜋𝜋𝐺𝐺 4𝜋𝜋𝐺𝐺 
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where ρ is the mass density, Δg is the difference in the gravity measurements, Δz is the 

elevation difference, F is the free-air gradient (typically 0.3086 mGal/m or 0.09406 mGal/ft), and 

G is the universal gravitational constant (6.674 x 10-11 m3/kg s2) (Smith 1950; Hammer 1950; 

LaFehr 1983). Eq. 3-49 assumes that the BHGM passes through uniformly thick and laterally 

homogeneous strata of constant density (LaFehr 1983). The radius of investigation for borehole 

gravity measurements is directly dependent on the different in elevation levels where the 

measurements were recorded. Telford et al. (1990) notes that half of the effect on borehole 

gravity measurements is produced by an area within 0.7 Δz of the borehole, 80% from 2.45 Δz, 

and 90% from within 5 Δz, where Δz as before represents the difference in elevation between 

the corresponding gravity measurements. Thus, compared to other borehole density logging 

methods, borehole gravity measurements can be made with less influence from borehole fluids, 

rugosity, casings, and drilling operations (Beyer and Clutsom 1978). More accurate density 

measurements as a function of depth offers tremendous benefits to applications related to 

exploration for petroleum. Therefore, it is not surprising that the first BHGMs were developed in 

the late 1950s for oil exploration (e.g., Howell et al. 1966) and that the borehole gravity 

technique enjoyed a surge of popularity upon its development. A large number of case histories 

exist in the literature where borehole gravity measurements were made on rock for petroleum 

engineering purposes, particularly in the time frame immediately following development of the 

first BHGM (Hammer 1950; Hammer 1965; McCulloh 1965; Jageler 1976; Beyer and Clutsom 

1978; Schultz 1989; Popta et al. 1990; MacQueen 2007, Brady et al. 2013). Robbins (1989) 

provides an annotated bibliography of pertinent literature and documented borehole gravity 

case histories through the 1980s. Application of borehole gravity for traditional geotechnical 

engineering purposes has been less prevalent (e.g., Healey et al. 1984), but as equipment costs 

decrease with time it is expected that borehole gravity measurements can offer a highly useful 

and accurate approach to estimate in situ mass density without the errors present in traditional 

geotechnical sampling and borehole density logging techniques. 

3.1.8.4 Nuclear Methods 

As previously noted in this document, a number of surface and subsurface methods have been 

developed that detect the presence of radiation in the surrounding soil, including background 

levels of radiation (e.g., gamma logging) and induced backscatter from active sources of 

radioactive isotopes (e.g., gamma-gamma logging). One of the most common applications of 
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nuclear methods is to estimate the bulk density of the surrounding material in diverse 

applications ranging from wireline formation logging in petroleum engineering to quality control 

of compacted soils, cast in drilled hole (CIDH) foundations, and asphalt pavements (Faul and 

Tittle 1951; Stroup-Gardiner and Newcomb 1988; McCook and Shanklin 2000; Liebich 2004; 

Sanders et al. 1994). Typically, a gamma-gamma logging tool is used in these applications. The 

flux of gamma rays that reaches a detector decays exponentially with distance from the source 

and with the number of electron scatterers in the travel path assuming Compton scattering is 

the primary mechanism (Tittman and Wahl 1965; Keys 1989; Schlumbeger 1991): 

𝐺𝐺 = 𝐺𝐺𝑣𝑣𝑒𝑒−𝑛𝑛𝑒𝑒𝐶𝐶𝑠𝑠𝑚𝑚 (3-50) 

where G is the gamma ray flux measured at the detector in counts per second (cps)/cm2, Go is 

the initial gamma ray flux emitted from the source in cps/cm2, ne is the number density of 

electrons in electrons/cm3, Cs is the cross section of each scatter center in cm2, and x is the 

distance from source to detector in cm. The density of electrons in the material is in turn directly 

related to bulk density: 

𝑁𝑁 𝑍𝑍 
𝑛𝑛𝑓𝑓 = 𝜌𝜌𝑏𝑏 (3-51) 

𝐴𝐴 

where N is the Avogadro constant (6.02 x 1023 electrons/mole) of the material, Z is the atomic 

number of the material (no units), A is the atomic weight of the material in g/mole, and ρb is the 

bulk density of the material in g/cm3. Based on Eqs. 3-50 and 3-51, materials with a smaller 

electron number density (i.e., smaller bulk density) will result in less attenuation of the gamma 

rays and a higher gamma ray count. A useful parameter related to the electron density can be 

defined as follows: 

2 𝑛𝑛𝑓𝑓 𝜌𝜌𝑓𝑓 = (3-52) 
𝑁𝑁 
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where ρe is the effective electron number density in units of mole/cm3. Eq. 3-51 can then be 

modified based on this new parameter: 

2 𝑍𝑍 
𝜌𝜌𝑓𝑓 = 𝜌𝜌𝑏𝑏 (3-53) 

𝐴𝐴 

This transformation allows the measured electron density from the gamma-gamma log to 

transform directly to bulk density because the ratio of Z/A is typically very close to 0.5 for most 

common elements that make up earth materials (Bertozzi et al. 1981). However, hydrogen 

(present in water) has a ratio of Z/A closer to 1. This signifies that electron density index of 

water is 11% larger than its bulk density would imply based on these equations. To account for 

this, Gaymard and Poupon (1968) proposed that the density inferred from gamma ray scattering 

be modified as follows: 

𝜌𝜌𝑎𝑎 = 1.0704𝜌𝜌𝑓𝑓 − 0.188 (3-54) 

where ρe is the “apparent” number density. In modern gamma-gamma logging tools, two 

detectors are used to measure the gamma ray flux at different distances from the source. The 

readings taken at the detector farthest from the source is used to estimate the density of the 

surrounding material by combining Eqs. 3-50 – 3-54 (Fig. 3.55). The difference between the 

readings at the farthest detector and from the closer detector can be analyzed to correct for the 

rugosity of the borehole walls and the effects of any drilling fluid caked onto the walls (Tittman 

1986; Ellis 1987; Gearhart 1989). A key aspect of gamma-gamma logging is also ensuring proper 

calibration of the equipment on material of known bulk densities. Calibration can be performed 

in test pits like the American Petroleum Institute neutron pit in Houston, TX or in commercially 

available pits across the country. For on-site calibration, test blocks of material with 

predetermined densities can be employed. 
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Figure 3.55: Example density log from gamma-gamma testing (Yearsley et al. 1991). 

A few items are worthy of discussion regarding operation of a gamma-gamma log. First, the 

equations presented are necessary in estimating bulk density from older instruments that 

display gamma measurements in counts per second. Most modern equipment displays its 

measurements in the standard American Petroleum Institute (API) unit, which is based on a 

reference standard of an artificially radioactive concrete block at the University of Houston, TX 

that is defined to have a radioactivity of 200 American Petroleum Institute (API) units. Based on 

the calibration, the equipment provides an automatic output of the density measurement along 

with the measured API of the material. It should also be noted that an estimate of porosity is 

often included with the output based on assumptions regarding the pore fluid and the specific 

gravity of the minerals present in the tested material. Surface-based gamma-gamma logging 

equipment (i.e., surface nuclear gauge) relies on the same concepts of the borehole method, 

but also typically includes instrumentation to perform neutron logging to estimate moisture 

content. Great care is placed in nuclear gauge documentation to highlight the calibration 

process (e.g., Rawitz et al. 1982; Ellis et al. 1985; Ward and van Deventer 1993; ASTM 
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D7759/D7759M – 14). When properly calibrated, the measured densities from both borehole-

and surface-based tools agree well with other measurements (Figs. 3.56 – 3.57). 

Figure 3.56: Example of comparisons between lab bulk ρ and those obtained using gamma-
gamma logging at two test sites in Alberta, Canada (Hoffman et al. 1991). 

Figure 3.57: Example of comparisons between γ obtained using sand cone testing and surface 
nuclear gauge testing at a test site in Schenectady County, New York (Mintzer 1961). 
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3.1.9 POROSITY 

The amount of pore space in a soil is a useful parameter for a number of engineering 

applications as it is directly related to several aspects of soil behavior, including relative density, 

permeability, and strength. The following sections describe the relationships that exist between 

geophysical measurements and porosity of soils and/or rock. Typically, these relationships have 

been established for porosity since many are derived from research in the geophysics area 

(particularly as related to rock porosity). However, porosity can easily be converted to the void 

ratio parameter more commonly discussed within the context of geotechnical engineering. 

3.1.9.1 Seismic Methods 

As previously noted, travel times obtained from seismic methods allow an estimate of the 

elastic wave velocities of earth materials (and therefore their moduli). These moduli are affected 

by the different phases in a multi-phase material such as soil/rock. For example, the bulk 

modulus of a saturated soil is a combination of the bulk modulus of the soil skeleton, the fluid in 

the pore space (typically water), and the bulk modulus of the minerals that make up the soil 

grains. As a result, the relative amount of void space can affect the measured velocities of 

porous media, as demonstrated in the Biot-Gassmann low frequency asymptotic solution for P-

wave velocity of a saturated porous solid material (Biot 1956a, Biot 1956b): 

(3-55) 

where Bsk is the bulk modulus of the soil skeleton, Bw is the bulk modulus of water, Bg is the bulk 

modulus of the minerals that make up the soil grains, Gsk is the shear modulus of the soil 

skeleton (same as the saturated soil since the presence of fluids does not affect shear modulus), 

η is the porosity of the soil, ρg is the mass density of the minerals that make up the soil grains, 

and ρw is the mass density of water. Note that both η (geotechnical) and ϕ (geology/petroleum 

engineering) will be used interchangeably in this document to represent porosity and recall that 

porosity is directly related to void ratio [i.e., η = e/(1+e)]. Fig. 3.58 presents the effect of porosity 

on P-wave velocity based on the Biot-Gassmann solution in Eq. 3-55 for a saturated soil with VS 
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less than approximately 400 m/s. Relationships such as these allow the estimation of porosity 

based on measured velocities from geophysical measurements. 

Figure 3.58: VP and η relationship based on Biot-Gassmann solution (adapted from 
Santamarina et al. 2001). Note: Gs = 2.65, Bg >> Bsk (appropriate for soils with VS ≲ 400 m/s). 

Other researchers have utilized the theories developed by Biot to explore the variation of P-

wave velocity with porosity. For example, Foti et al. (2002) and Foti and Lancellotta (2004) used 

Biot theory to develop a direct expression to determine porosity based on measured P-wave 

and S-wave velocities: 

(3-56) 

Eq. 3-56 assumes that the soil grains are incompressible and that no relative motion occurs 

between the solid and fluid phases in the soils (valid at low frequencies). The only term in Eq. 3-

56 that does not have associated standard values is the Possion’s ratio (ν) of the soil, which 

typically varies between 0.1 to 0.4 in most soils depending on stiffness and drainage conditions. 

However, Foti et al. (2002) demonstrated that the results were relatively insensitive to ν. Foti et 

al. (2002) and Foti and Lancellotta (2004) verified Eq. 3-56 based on laboratory porosity 

measurements of high quality undisturbed samples and VP and VS results using bender elements. 
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Eq. 3-56 was then applied to crosshole and downhole field measurements at a number of field 

sites in Italy and Canada and compared to laboratory measurements of porosity on high quality 

undisturbed samples. Foti and Lancellotta (2004) generally found good agreement (typically 

within an average of 10% difference) between estimates of porosity using Eq. 3-56 and those 

obtained independently via sampling and laboratory testing (Fig. 3.59). 

(a) 

(b) 

Figure 3.59: Comparison of results using Foti et al. (2002) relationship between velocity andη: 
(a) Sample field site in Florence, Italy; and (b) All data in Foti and Lancellotta (2004). 

In general, the wave velocities of earth material are dependent on multiple factors not directly 

highlighted in Eqs. 3-55 and 3-56, including overburden stress, grain size and distribution, 
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structure, and degree of saturation (Zimmer et al. 2006). Therefore, empirical relationships have 

been developed from data that incorporate some of these effects directly. Some of these 

relationships explicitly relate VP or VS (or their ratio) directly to porosity (or void ratio). For 

example, Salem (2000) developed an empirical relationship based on in situ seismic refraction 

measurements of glacial deposits in northern Germany: 

𝑉𝑉𝑝𝑝 = 4.0665 − 0.042617𝜙𝜙 (3-57) 
𝑉𝑉𝑠𝑠

where ϕ represents the porosity expressed as a percentage (Fig. 3.60 presents the raw data and 

statistical information regarding Eq. 3-57). 

Figure 3.60: Relationship between VP/VS ratio and porosity proposed by Salem (2000). 

Hunter (2003) compiled velocity and porosity data from boreholes logged by the Geological 

Survey of Canada (GSC) and proposed a series of empirical relationships: 

−𝑉𝑉𝑝𝑝⁄542.4 (3-58) 𝜙𝜙 = 0.2714 + 4.192e 

𝜙𝜙 = 1.396 − 0.1600 ln 𝑉𝑉𝑠𝑠 (3-59) 

(3-60) 
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Hunter (2003) found that the VS data was better constrained than VP data. Care should be 

exercised with these relationships as there is significant scatter in the data (Fig. 3.61). 

(a) (b) 

(c) 

Figure 3.61: Velocity variations with porosity for Holocene and Pleistocene sediments in 
Hunter (2003): (a) VP data; (b) VS data; (c) VP/VS data. 

Other studies have incorporated a number of other parameters into the velocity-porosity 

relationship and can be used to estimate porosity/void ratio assuming information about the 

other parameters is known or inferred [e.g., Taylor Smith (1986) as demonstrated in Fig. 3.62]. 
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Figure 3.62: Variation of VP with pressure and e for various soils (after Taylor Smith 1986). 

One of the simplest approaches has been to relate velocity to both porosity/void ratio and 

stress. For example, Robertson et al. (1995) proposed an empirical relationship based on fitting 

VS data for reconstituted samples of Ottawa sand: 

(3-61) 

where A, B, and n are empirical coefficients (A = 381, B = 259, and n = 0.52), e is the void ratio, σ’ 

is the effective stress, and pa is atmospheric pressure. Robertson et al. (1995) cautioned that the 

empirical coefficients determined in their study were limited to clean, uncemented, freshly 

deposited Ottawa sand and should be established for other sediments through additional 

laboratory testing (for example see Zimmer 2003). Jarvis and Knight (2002) proposed a similar 

relationship for sands based on seismic reflection measurements and comparisons to laboratory 

void ratio measurements on frozen undisturbed samples from an aquifer in British Columbia: 

𝑉𝑉𝑠𝑠𝑒𝑒 = 2.6 − 1 (3-62) 
37𝜎𝜎4
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where σ is the confining pressure. Jarvis and Knight (2002) found excellent agreement using this 

relationship and were able to evaluate the spatial distribution of hydraulic properties of the 

aquifer in their study. 

Plasticity Index (PI) k  

0 0.00 

20 0.18 

40 0.30 

60 0.41 

80 0.48 

≥ 100 0.5 

Table 3.15: Variation of OCR exponent k with PI for Hardin and Black (1968) empirical 
relationship between σʹ, e, and G (after Hardin and Drnevich 1972). 

Other relationships have included a number of other factors that characterize soil structure. In 

such cases, knowledge of various parameters related to soil structure (e.g., OCR, stress state, 

etc.) in addition to velocity estimates would allow determination of void ratio and porosity 

information. For example, Hardin and Black (1968) introduced an empirical relationship 

between effective pressure, porosity, and shear modulus of soil for low pressures (<0.7 MPa) 

based on resonant column testing: 

(3-63)  

where Ge
i,j is the shear modulus on a plane with principal stresses of σi' (direction of 

propagation) and σj' (direction of particle motion), ν is the Poisson’s ratio, Sij is a multiplier that 

accounts for textural factors and structural anisotropy (can vary from as low as 700 for cohesive 

soils to larger than 1400 for uniform granular or cemented soils), n accounts for the effects of 

stress and is typically close to 0.5 for many soils, pa is the atmospheric pressure, k is a function of 

plasticity index (PI) and is generally close to 0 for sands and increases as PI increases (Table 

3.15), OCR is the overconsolidation ratio, and F(e) is a function that accounts for the effects of 

voids on the shear modulus (Hardin and Black 1968; Hardin and Black 1969; Hardin and Drnevich 
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1972; Yu and Richart 1984; Hardin and Blandford 1989; Hryciw and Thomann 1993; Zimmer 

2003). A number of relationships have been proposed for the functional form of F(e), including 

F(e) = (1+e)/(2.97 – e)2 (Hardin and Drnevich 1972), F(e) = 0.3 + 0.7e2 (Hardin and Blandford 

e1.3 1989), and F(e) = (Jamiolkowski et al. 1991). Kramer (1996) suggested based on the 

laboratory data that Sij/2(1+ ν) ≈ 625  was a good estimate for most applications of Eq. 3-63. 

Determination of VS from seismic reflection/refraction measurements and knowledge of the 

effective stress (i.e., depth) and stress history of the soil would allow an estimate of void ratio 

using Eq. 3-63 and 3-2. 

The mechanical behavior of rocks can differ significantly from soils. For example, cementation at 

grain contacts and the presence of fractures play a major role in rock mechanics. Owing to these 

differences, a number of researchers have attempted to develop rock-specific relationships 

between velocity and porosity. These studies were driven by the increasing need to evaluate 

lithology and rock formations during continuous well logging for petroleum exploration. 

Therefore the velocities in these studies were often obtained by downhole geophysics (e.g., 

sonic logging) or using pulse techniques with instrumentation such as transducers on laboratory 

samples subjected to in situ effective stresses. However, the proposed relationships can be 

applied to the P- and S-wave velocities obtained from other seismic methods to determine 

porosity variation for bedrock at a site (at a reduced resolution in depth interval relative to sonic 

logging). Domenico (1984) provides a review of empirical relationships proposed between rock 

porosity and velocities. One of the earliest was the “time-average” equation proposed by Wyllie 

et al. (1956, 1958) based on ultrasonic testing of natural and synthetically-created laboratory 

samples: 

1 𝜙𝜙 1 − 𝜙𝜙 
= + (3-64) 𝑉𝑉𝑝𝑝 𝑉𝑉𝑓𝑓 𝑉𝑉𝑝𝑝,𝑎𝑎 

where VP is the measured P-wave velocity, Vf is the P-wave velocity of the fluid in the pore 

space, VP,m is the P-wave velocity of the solid rock matrix (i.e., velocity of the mineral grains), 

and ϕ represents porosity. Wyllie et al. (1956, 1958) cautioned that Eq. 3-64 was developed for 

“clean” water-saturated sandstones and is not suitable for carbonate rocks subject to fractures 

and large cavities. Additionally, the relationship is less suitable at low confining pressures and 
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when the rock is poorly consolidated (Castagna et al. 1993). Therefore, Eq. 3-64 should not be 

applied to estimate porosity of soils. Application of Eq. 3-64 assumes a-priori knowledge of the 

P-wave velocity of the rock matrix (i.e., mineral grains), which is non-trivial, particularly in cases 

of mixed lithologies. For relatively “pure” rocks of a single mineralogy, Table 3.16 can be utilized 

to approximate Vm. Eq. 3-64 can be rearranged into a more general expression: 

1 (3-65) = 𝐴𝐴 + 𝐵𝐵𝜙𝜙 
𝑉𝑉 

where constants A and B are determined empirically. The A constant represents the dependency 

of porosity on the solid rock matrix, while B captures a number of other contributing factors 

such as consolidation, pore geometry, and effective overburden stress (Domenico 1984). 

Mineral ρ (g/cc) VP (km/s) VS (km/s) 

Calcite 
2.71 

2.71 

6.53 

6.26 

3.36 

3.24 

Dolomite 2.87 7.05 4.16 

Halite 2.16 4.50 2.59 

Muscovite 2.79 5.78 3.33 

Quartz 
2.65 

2.65 

6.06 

6.05 

4.15 

4.09 

Anhydrite 2.96 6.01 3.37 

Table 3.16: Reported mineral properties (as adapted from Castagna et al. 1993). Velocities are 
averaged to represent zero-porosity isotropic aggregates. 

The functional form of Eq. 3-65 has been shown to apply to either compressional or shear wave 

velocity (e.g., King and Fatt 1962; Gregory 1963; Pickett 1963; Domenico 1984; Castagna et al. 

1985). Based on the data from Pickett (1963), Domenico (1984) performed regression analysis 

on velocities of sandstone and limestone and estimated the A and B parameters for VP as 163 

and 365, respectively, and for VS as 224 and 889, respectively, where the velocities are 

expressed in m/s (see Figs. 3.63 – 3.64 and Table 3.17). 
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Figure 3.63: Reciprocal of VP and VS as a function of porosity for sandstones (Domenico 1984). 

Figure 3.64: Reciprocal of VP and VS as a function of porosity for limestones (Domenico 1984). 
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Table 3.17: Summary of regression constants A and B for use in empirical relationships 
between porosity and seismic velocity (Domenico 1984). 

A number of additional relationships between velocity and porosity have been proposed over 

the years to improve or expand on the Wyllie et al. (1956) time-average equation. Some of these 

expressions maintained the functional form in Eq. 3-65, but expanded the database into other 

rock types (e.g., Rafavich et al. 1984; Wang et al. 1991). Other researchers established new 

functional forms for the velocity-porosity relationship (e.g., Watkins et al. 1972; Raymer et al. 

1980; Tosaya 1982; Castagna 1985) (Table 3.18). Additionally, a number of studies increased the 

complexity of the empirical models to account for other factors that can affect the relationship 

between velocity and porosity, including clay content (Tosaya 1982; Han et al. 1986; Castagna et 

al. 1993) and effective overburden stress (Eberhart-Phillips et al. 1989). This area of research is 

ongoing with studies continuing to explore the effects of porosity on rock structure and velocity 

(e.g., Freund 1992; Jones 1995; Khaksar et al. 1999; Khaksar and Griffiths 2000; Berryman et al. 

2002; Fabricius et al. 2007; Fournier and Borgomano 2009; Gomez et al. 2010). Given the many 

factors that affect the velocities of rocks (e.g., mineralogy, clay content, depositional 

environment, particle size/shape/packing, degree of cementation, stress state/history, presence 

of fluids, etc.) there is a significant amount of uncertainty in applying any general porosity-
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velocity relationship to field data. Calibration of the models presented in this section with direct 

measurements is highly recommended. 

Reference Compression Shear 

Wyllie et al. (1956) 
1 𝜙𝜙 1 − 𝜙𝜙 

= + 
𝑉𝑉𝑝𝑝 𝑉𝑉𝑓𝑓 𝑉𝑉𝑝𝑝,𝑎𝑎 

-

Raymer et al. (1980) 𝑉𝑉𝑝𝑝 = 𝜙𝜙𝑉𝑉𝑓𝑓 + (1 − 𝜙𝜙)2𝑉𝑉𝑝𝑝,𝑎𝑎 -

Castagna (1985) - 𝑉𝑉𝑠𝑠 = (1 − 𝜙𝜙)2𝑉𝑉𝑠𝑠,𝑎𝑎 

Tosaya (1982) 𝑉𝑉𝑝𝑝 = 𝜙𝜙𝑉𝑉𝑓𝑓 + (1 − 𝜙𝜙)2𝑉𝑉𝑝𝑝,𝑎𝑎 𝑉𝑉𝑠𝑠 = 3.7 − 6.3𝜙𝜙 − 2.1𝐶𝐶 

Domenico (1984) 
1 

= 0.163 + 0.365𝜙𝜙 
𝑉𝑉𝑝𝑝 

1 
= 0.224 + 0.889𝜙𝜙 

𝑉𝑉𝑠𝑠 

Watkins et al. (1972) 
1.56−𝜙𝜙 
0.175 𝑉𝑉𝑝𝑝 = 𝑒𝑒 -

Castagna et al. (1993) 𝑉𝑉𝑝𝑝 = 5.81 − 9.42𝜙𝜙 − 2.21𝐶𝐶 𝑉𝑉𝑠𝑠 = 3.89 − 7.07𝜙𝜙 − 2.04𝐶𝐶 

Han et al. (1986) 𝑉𝑉𝑝𝑝 = 5.59 − 6.93𝜙𝜙 − 2.18𝐶𝐶 𝑉𝑉𝑠𝑠 = 3.52 − 7.07𝜙𝜙 − 1.89𝐶𝐶 

Eberhart-Phillips et 
al. (1989) 

1 
𝑉𝑉𝑝𝑝 = 5.77 − 6.94𝜙𝜙 − 1.73𝐶𝐶 2 + 

0.446(𝑃𝑃𝑓𝑓 − 𝑒𝑒−16.7𝑃𝑃𝑒𝑒 ) 

1 
𝑉𝑉𝑠𝑠 = 3.70 − 4.94𝜙𝜙 − 1.57𝐶𝐶 2 + 

0.361(𝑃𝑃𝑓𝑓 − 𝑒𝑒−16.7𝑃𝑃𝑒𝑒 ) 

Note: VP,m = P-wave velocity of solid mineral (km/s), VS,m = S-wave velocity of solid mineral 
(km/s), C = fractional clay content, Pe = effective pressure (MPa) 

Table 3.18: Summary of velocity-porosity relationships for sandstones (adapted from Batzle et 
al. 2007). 

3.1.9.2 Electromagnetic Methods 

Given the three phases (solids, water, and air) present in earth materials, measurements of 

relative permittivity (i.e., dielectric constant) using electromagnetic methods represent a 

composite value affected by each of the phases. This interdependence between permittivity and 

material phases helps to account for the wide range of factors that can affect the permittivity. 

For example, dielectric properties of geologic materials have been shown to be sensitive to 

frequency and temperature (e.g., Chung et al. 1970; Saint-Amant and Strangway 1970), 

presence of water (Topp et al. 1980; Malicki et al. 1996; Roberts and Lin 1997; Mukhlisin and 

Saputra 2013), mineralogy (e.g., Hansen et al. 1973), fabric (e.g., Tuck and Stacey 1978; Hawton 
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and Borradaile 1989), and bulk density (e.g., Olhoeft and Strangway 1975). Therefore, a number 

of correlations have been developed for earth material properties based on successful 

acquisition of dielectric permittivity. This section specifically discusses geophysical 

measurements acquired using electromagnetic methods and their relationship to porosity. 

To account for the composite nature of earth materials, dielectric models have been developed 

to predict permittivity based on assumptions regarding the interdependence and properties of 

its constituents (e.g., see Alharthi and Lange 1987; Knoll 1996; Sihvola 1999; Martinez and 

Byrnes 2001). One of the most commonly referenced models is a volumetric mixing model 

known as the Complex Refractive Index Method (CRIM), which can be used to estimate porosity 

of the material: 

𝜀𝜀𝛼𝛼 = 𝑆𝑆𝑤𝑤𝜂𝜂(𝜀𝜀𝑤𝑤 )𝛼𝛼 + (1 − 𝑆𝑆𝑤𝑤 )𝜂𝜂(𝜀𝜀𝑎𝑎 )𝛼𝛼 + (1 − 𝜂𝜂)(𝜀𝜀𝑠𝑠)𝛼𝛼 (3-66) 

In Eq. 3-66, ε represents the relative composite permittivity of the soil-water-air mixture, εw 

represents the water (i.e., equal to 81 at 100 MHz), εa represents air (i.e., equal to 1), εs 

represents the solids, Sw is the degree of saturation of the mixture, η is the porosity, and α is an 

experimental fitting parameter that accounts for the orientation of the electrical field relative to 

the soil layering (i.e., often assumed to be equal to 0.5 but varies between -1 for perpendicular 

and +1 for parallel orientation) (Birchak et al. 1974; Roth et al. 1990; Knoll 1996; West et al. 

2003). As presented, Eq. 3-66 is actually often referred to the power-law (Sihvola 1999) and the 

CRIM equation is a special case where a value of 0.5 is input for α. A few complications arise in 

application of the CRIM equation. First of all, a key input is the permittivity of the solids phase. 

This can be measured under ideal conditions using laboratory samples. However, access to such 

testing is not always feasible and appropriate values must be selected from ranges provided in 

the literature (e.g., Cassidy 2009; Reynolds 2011). Additionally, the water table must be 

accounted for since the saturation is a necessary input in Eq. 3-66. If the variation of saturation 

is not well established at all depths, then at a minimum the depth to the water table is 

necessary. Using that information, the travel time corresponding to unsaturated zones near the 

surface must be subtracted from the total travel time using the average direct ground wave 
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velocity to only account for fully saturated conditions. In that manner, Sw can be set equal to 1 

and the measured EM velocity can then be used to estimate a value to input for ε in Eq. 3-66. 

A number of studies have demonstrated applicability of the CRIM equation to estimate porosity. 

For example, Lai et al. (2006) performed laboratory measurements using GPR to estimate 

porosity of pavements and soils using the CRIM equation. Bradford et al. (2009) used GPR 

measurements to estimate porosity at the Boise Hydrogeophysical Research Site and 

demonstrate the advantages of 3D tomographic velocity inversions. Recently, Mount et al. 

(2014) utilized GPR data from the Everglades National Park in south Florida and the CRIM 

equation to estimate spatial variability in the porosity of the limestone that forms the upper 

portion of the Biscayne Aquifer. 

There is inherent overlap between equations developed for porosity (e.g., CRIM) and those 

developed for water content (e.g., Malicki et al. 1996). Essentially, these equations can be used 

interchangeably in situations where the soil is fully saturated since volumetric water content 

would be equal to the porosity. So the development and application of these relationships was 

driven by a subtle difference in the motivation of the researchers (i.e., water content versus 

porosity). For example, two of the applications described in this section for CRIM were focused 

on aquifers. In these cases porosity measurements represent the volumetric capabilities of the 

system, a key aspect in understanding the hydrogeological conditions of the aquifer. 

3.1.9.3 Resistivity Methods 

Electrical resistivity (ER) testing estimates the electrical properties of the subsurface by utilizing 

electrodes to inject current into the ground surface and to take measurements of the 

corresponding voltage potentials. From this information, the subsurface spatial distribution of 

material resistivity (i.e., how strongly the material opposes flow of electric current) is obtained 

after an inversion process is performed on the collected field data. The results from ER are 

useful in a number of applications, including the determination of stratigraphy and geologic 

structures (e.g., Colella et al. 2004; Slater and Reeve 2002), locating karst features (e.g., 

Ramakrishna 2011), water salinity studies (e.g., Amidu and Dunbar 2008; Toran et al. 2010), and 

non-destructive testing purposes for pavements and concrete structures (e.g., Forough et al. 

2013; Tucker et al. 2015). As previously mentioned, the primary measurement from ER testing is 
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the resistivity of the subsurface materials. Multiple factors influence the resistivity of earthen 

materials, including presence/salinity of water, soil mineralogy, and properties related to soil 

structure (e.g., porosity) (Abu-Hassanein et al. 1996). Therefore, correlations have been 

developed for a number of these earth material properties based on successful acquisition of 

resistivity. This section focuses specifically on the relationship between resistivity and porosity. 

Figure 3.65: Strong correlation between electrical resistivity and η for a soil (Oh et al. 2014). 

Figure 3.66: Strong correlation between electrical resistivity and volumetric water content for 
various soil types (Samouelian et al. 2005). 

In granular soils, the individual grains tend to behave as electrical insulators and current is 

conducted primarily through movement of ions within the electrolytic pore water in the void 

spaces. As a result, the distribution of voids and water present in that pore space each have a 

large impact on the measured resistivity of a soil (e.g., Figs. 3.65 – 3.66). A number of 

researchers have therefore explored the link between these parameters and have proposed 

equations that relate resistivity and porosity of a soil (Table 3.19). 
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Table 3.19: Summary of published relationships between conductivity (i.e. inverse of 
resistivity) and porosity (Shah and Singh 2005). 

One of the most well-known of these relationships was proposed by Archie (1942). This 

empirical relationship was developed using borehole resistivity logs and estimated the bulk 

resistivity for a single conducting phase (i.e., water) distributed within a non-conducting phase 

(i.e., soil/rock skeleton). A general form of Archie’s Law can be expressed as follows: 

𝜌𝜌 = 𝑎𝑎𝜌𝜌𝑓𝑓𝜂𝜂−𝑎𝑎𝑆𝑆−𝑛𝑛 (3-67) 

where ρ represents the bulk resistivity, ρf the resistivity of the pore fluid, η the porosity, S the 

saturation, m is an empirical fitting parameter related to cementation and grain shape, n is an 

empirical fitting parameter related to saturation, and a is a fitting parameter related to the 

tortuosity of the pore space. Some formulations (such as Archie’s original presentation) omit the 

parameter a altogether as it can often take on values close to 1. Typically, the cementation 

exponent increases with a decrease in the connectivity of the pore fluid (Kwader 1985; Glover et 

al. 2000), and the presence of clay causes higher m values (Jackson et al. 1978). As noted in 

Table 3.20, various researchers have proposed values for m depending on soil/rock type, 

including 1.8 for kaolinite, 2.11 for illite, 3.0 for sodium montmorillonite, 1.6 – 1.7 for silty-

sandy-clay mixtures, 1.3 – 1.6 for clean sand, 1.6 – 2.0 for sandstone, 1.09 for porous dolomite, 

1.2 – 1.3 for fractured limestone, and 1.5 – 2.3 for irregularly shaped particles (Atkins and Smith 
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1961; Timur et al. 1972; Jackson et al. 1978; Campanella and Weemees 1990; Salem and 

Chilingarian 1999; Kim et al. 2011). The saturation parameter n typically varies from 1 to 2.5 and 

is usually assigned a value close to 2. The original formulation for Archie’s Law was developed 

for saturated conditions, indicating that the porosity term (η) in Eq. 3-67 can be replaced with 

volumetric water content (θ). Eq. 3-67 was originally developed based on measurements in 

sandstone, but has proven applicable as long as the pore fluid resistivity is low and there are 

relatively small quantities of conducting clay minerals present in the soil (i.e., clean sands and 

gravels) (Bryson 2005). 

Table 3.20: Summary of published values for Archie’s Law cementation factor, m. (Lesmes and 
Friedman 2005). 

In cohesive soils, current flow also involves surface conduction in the diffuse double layer of ions 

surrounding the clay (Santamarina et al. 2001). Given this knowledge, there is some 

disagreement in the literature regarding the most appropriate relationship from which to 
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determine porosity of clayey soils. A number of researchers have proposed use of Archie’s Law 

in its original form or with minimal modifications (Atkins and Smith 1961; Jackson et al. 1978; 

Campanella and Weemees 1990; Salem and Chilingarian 1999; Shah and Singh 2005). Shah and 

Singh (2005) specifically note that the effects of surface conduction are inherently built into the 

cementation fitting parameter m in Eq. 3-67. However, others have suggested that Archie’s 

formulation oversimplifies resistivity in clays and have proposed electrical mixing models that 

specifically contain a term to account for surface conductivity (e.g., Sen et al. 1988; Johnson et 

al. 1986; Waxman and Smits 1968; Sen and Goode 1992). The Waxman and Smits (1968) 

relationship, for example, accounts for the additional surface conduction based on modeling the 

pore-fluid and pore-skeleton system as two electrical resistors in parallel: 

𝑎𝑎𝜌𝜌𝑓𝑓𝜂𝜂−𝑎𝑎𝑆𝑆−𝑛𝑛 
𝜌𝜌 = (3-68) 

𝑆𝑆 + 𝜌𝜌𝑓𝑓𝐵𝐵𝑅𝑅 

The new term B accounts for the conductance of opposite charge ions to the surface charge of 

the diffuse double layer and can be obtained empirically (e.g., Waxman and Thomas 1974). Q is 

the cation exchange capacity per unit pore volume of the clay. The BQ terms together describe 

the surface conductivity along the double layer and the units are Siemens per meter. Efforts 

have been made to relate the surface conductivity to Atterberg limits of clays to allow an 

estimate of the BQ terms [e.g., Abu-Hassanein et al. (1996) and Bryson (2005)]. 

Given the wide range of resistivity values and the many parameters that affect these values, it is 

advisable to calibrate the relationships provided in Eqs. 3-67 and 3-68 for site conditions. This is 

especially the case if the goal is direct evaluation of porosity. Another approach is to utilize 

these relationships to track changes in porosity (and/or water content if the soil is assumed 

saturated) across a site over a specified period of time (e.g., Chambers et al. 2014). In these 

cases, it is likely that the parameters in Eqs. 3-67 and 3-68 will remain constant over the area of 

interest throughout testing and any changes in resistivity will be directly a result of changes in 

porosity. 
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3.1.9.4 Gravity Methods 

The primary application of gravity measurements is to evaluate the density of the underlying 

earth materials. However, by making inferences regarding the distribution of fluids in the pore 

space as well as the pore fluid and grain densities, gravity measurements can be used to 

evaluate porosity for the soil or rock based on the application of basic soil mechanics phase 

relationships: 

𝜌𝜌 = 𝐺𝐺𝑠𝑠𝜌𝜌𝑓𝑓(1 − 𝜂𝜂) + 𝜂𝜂𝑆𝑆𝜌𝜌𝑓𝑓 (3-69) 

where ρ is the density estimated from gravity measurements, Gs is the specific gravity of the 

minerals, ρf is the density of the pore fluid, η is the porosity of the strata, and S is the saturation 

within the pore space of the strata. Assuming the pore space is completely saturated with fluid, 

a simplified expression can be developed: 

𝜌𝜌𝑠𝑠 − 𝜌𝜌 
𝜂𝜂 = 100 (3-70) 𝜌𝜌𝑠𝑠 − 𝜌𝜌𝑓𝑓 

where ρs is the density of the minerals and the other factors are as described for Eq. 3-69. Given 

the robustness of gravity measurements and the wide scale of appreciable gravity 

measurements, this approach has seen applications ranging from estimating formation 

porosities for petroleum engineering purposes [e.g., Beyer and Clutsom (1978), Fig. 3.67], to 

estimating the porosity of crustal rocks for oceanic investigations (e.g., Johnson et al. 2000), and 

investigating the diagenetic processes associated with changes in carbonate rock porosity 

(Halley and Schmoker 1983). 
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Figure 3.67: Density and porosity profiles calculated from BHGM in Gebo Oil Field, Hot springs 
County, Wyoming (Beyer and Clutsom 1978). Profile values are averaged by formation. Range 
of average to maximum interval porosity is shown for five formations logged in detail. 
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3.1.9.5 Nuclear Methods 

Of the different nuclear methods previously discussed in this document, neutron logging is the 

method most closely associated with determination of porosity (and water content). Neutron 

logging has a long history in the petroleum industry as a wireline tool to characterize rock 

formations in the search for hydrocarbons (e.g., Dewan and Allaud 1953; Stick et al. 1962). Much 

of the proceeding discussion on the theoretical basis of neutron logging as related to 

measurements of porosity has been adapted from numerous sources with similar discussions 

(Goldberg et al. 1955; Tittle 1961; Tittman et al. 1966). The reader is encouraged to review these 

sources of information for additional details that are beyond the scope of this document, 

including the effects of various correction factors. 

Neutron logs contain a source of high energy (i.e., fast) neutrons in a probe and two detectors 

that record the interactions that occur at two distances away from the source. The emitted high 

energy neutrons (typically americium-beryllium) begin to slow down as they collide with the 

nuclei of elements composing the propagating medium. Once these fast neutrons have 

undergone enough collisions, their kinetic energy approaches the average kinetic energy of the 

atoms in the propagating medium based on the ambient temperature. At this point, the fast 

neutron is in equilibrium with the surrounding material atoms and is considered a slow (or 

thermal) neutron. The straight-line distance necessary for a fast neutron to reach this 

equilibrium state is a characteristic of the propagating medium and is referred to as the slowing-

down length. Fast neutrons that have not reached the slowing-down length are also referred to 

as epithermal neutrons since their temperature is still greater than the average thermal 

conditions of the other atoms in the medium. Hydrogen most effectively slows down the 

neutrons since its mass is very similar to the neutrons. Therefore, neutron logging is most 

sensitive to the amount of hydrogen in the material. Since the hydrogen in most earth material 

is primarily contained in water in the pore space or bonded to clay minerals, neutron logging can 

be readily used to estimate porosity (and, by extension, water content). However, other 

elements do interact with neutrons to a lesser degree (e.g., boron, lithium, cadmium, chlorine 

and iron), so mineral composition ideally should be estimated when interpreting test results. 

Additionally, earth materials with high organic content may cause issues with the measurements 

because the hydrogen content of the organic matter will contribute to the total count rate. 
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The manners in which measurements from neutron logging are used to estimate porosity 

depend significantly on the type of tool employed in the study. Most modern equipment such 

as the compensated neutron log (CNL) contains two neutron detectors that respond to thermal 

neutrons. The hydrogen content (and porosity, by extension) is estimated based on a correlation 

to the ratio of the count rate recorded by the near and far detectors in the CNL tool (Fig. 3.68). 

Figure 3.68: Calibration between the ratio of neutron count for a CNL tool and the porosity of 
the formation (Alger et al. 1972). 

Wireline CNL tools for logging well bores in the petroleum industry are typically calibrated at the 

API test pit in Houston, TX or in other commercially available test pits. Additionally, calibration 

can be performed based on reconciliation with cored samples from the same well. Most modern 

neutron logging tools allow the calibration to be automatically applied so that the output in 

from field efforts is already in estimates of porosity (Fig. 3.69). Surface-based neutron 

measuring tools also exist in practice, often for the purpose of estimating water content. For 

example, the surface nuclear gauge has a long history in geotechnical engineering to measure 

moisture content for compaction quality control based on neutron logging (Mintzer 1961). 

Calibration for these tools is discussed in ASTM D7759/D7759M – 14 and is typically performed 

under controlled settings in the laboratory with a set of reference soils whose water contents 

are well-determined by other methods (e.g., oven drying). Additional information is provided in 

the discussions on mass density and water content estimates from nuclear methods. 
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Figure 3.69: Example output of porosity (in limestone equivalent units) based on calibration of 
a neutron logging tool (Berendsen et al. 1988). 

3.1.10 WATER CONTENT 

The amount of water present in earth materials affects several aspects of behavior, particularly 

in clayey soils whose mineralogy makes them particularly susceptible to hydration, flocculation, 

and/or dispersion. Therefore, the measurement of water content is fundamental to a wide-

range of engineering applications, including compaction. Geophysical methods may be 

particularly useful as they can provide estimates of water content in an efficient nondestructive 

manner, which can allow for rapid measurements of the temporal and/or spatial variations in 

water content across a site. The following sections describe the relationships that exist between 

geophysical measurements and water content. 

3.1.10.1 Electromagnetic Methods 

In general, permittivity is a measure of polarizability of a medium when subjected to a time-

varying electric field. Water molecules in soils possess dipoles that impart this polarizability 
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property to soil (Curtis 2001). As a result, there is a strong correlation between the amount of 

water in a soil and its dielectric properties (Fig. 3.70). 

(a) 

(b) 

Figure 3.70: Strong correlation between soil permittivity and volumetric water content: (a) 
Curtis (2001); and (b) Mukhlisin and Saputra (2013). 

A previous discussion was provided in the mass density section of this document regarding the 

use of TDR to estimate water content (and mass density). The methodology and calibration 

procedures presented in that section can certainly be applied in a more general context, but is 

typically relegated to its original intended purpose of compaction quality control since the TDR 

probe is limited in depth of penetration. For more general applications, a number of 
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relationships have been proposed to correlate the measured permittivity of a soil to its 

volumetric water content (θ). The volumetric water content (θ) is related to the gravimetric 

water content (w) as typically used for geotechnical purposes by Eq. 3-71: 

𝜌𝜌𝑑𝑑 𝜃𝜃 = 𝑏𝑏 = 𝜂𝜂𝑆𝑆 (3-71) 𝜌𝜌𝑤𝑤 

where ρd is the dry density (i.e., bulk density, as computed from dry mass of solids divided by 

total volume), ρw is the density of water, η is the porosity, and S is the saturation. Note that it is 

possible to evaluate saturation levels based on determination of volumetric water content, 

assuming information regarding porosity (or void ratio) is known. Huisman et al. (2003) provides 

an excellent review that provides significant background on the use of electromagnetic methods 

for determining water content. One of the relationships most commonly used for geotechnical 

purposes was proposed by Topp et al. (1980): 

𝜃𝜃 = (−530 + 292𝜀𝜀 − 5.5𝜀𝜀2 + 0.043𝜀𝜀3) × 10−4 (3-72) 

𝜃𝜃 = (−252 + 415𝜀𝜀 − 14.4𝜀𝜀2 + 0.22𝜀𝜀3) × 10−4 (3-73) 

where θ is the volumetric water content and ε is the apparent permittivity (i.e., dielectric 

constant) of the soil as measured using electromagnetic propagation velocity estimates. Eq. 3-72 

is intended for sands and Eq. 3-73 is formulated for organic soils. These empirical equations fit 

the variability of water content using a direct relationship between θ-ε. Other relationships exist 

that include other parameters such as porosity and/or density in the statistical regression. Such 

relationships obviously necessitate additional information relative to the Topp et al. (1980) 

equations above, but can offer superior performance in estimating water content. A useful 

example of such a relationship was proposed by Malicki et al. (1996), which can be expressed as 

both a function of bulk density or porosity: 

√𝜀𝜀 − 0.819 − 0.168𝜌𝜌𝑏𝑏 − 0.159𝜌𝜌𝑏𝑏2 
𝜃𝜃 = (3-74) 

7.17 + 1.18𝜌𝜌𝑏𝑏 
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√𝜀𝜀 − 3.47 + 6.22𝜂𝜂 − 3.82𝜂𝜂2 (3-75) 
𝜃𝜃 = 

7.01 + 6.89𝜂𝜂 − 7.83𝜂𝜂2 

Eqs. 3-74 and 3-75 are preferred for clayey soils over the relationships proposed by Topp et al. 

(1980). Mukhlisin and Saputra (2013) and Robinson et al. (2003) provide a thorough summary of 

the proposed relationships between permittivity and water content (for both single parameter 

and multiple parameter equations) (Table 3.21). 

Table 3.21: Summary of published relationships between permittivity and water content as 
illustrated in Figs. 3.71 – 3.72 (Mukhlisin and Saputra 2013). 

Figs. 3.71 – 3.72 illustrate the analysis Mukhlisin and Saputra (2013) performed to evaluate the 

various θ-ε relationships using a common data set. Mukhlisin and Saputra (2013) found that no 
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single relationship could model the θ-ε behavior across all data ranges. However, at relatively 

small values of water content, many of the relationships agreed favorably with the data set and 

provided similar estimates. Of the proposed relationships that take porosity into account, the 

Malicki et al. (1996) formulation proved superior at capturing water content dependence on 

permittivity and porosity across multiple ranges. The majority of these relationships between 

water content and permittivity were calibrated using Time Domain Reflectometry (TDR), which 

operates at a high frequency range (e.g., 500 MHz – 1000 MHz). Additional discussion regarding 

water content measurements with TDR was discussed previously with regards to estimates of 

mass density. As mentioned in that discussion, high clay content soils can cause dispersion in 

electromagnetic waves (e.g., West et al. 2003). This dispersion leads to frequency variations in 

permittivity, particularly at the low range of electromagnetic wave frequency (e.g., 100 Hz and 

lower). Therefore, care must be exercised in applying the θ-ε relationships developed using TDR 

when the permittivity is obtained using lower frequency GPR antennas for soils with significant 

clay content. Site-specific calibrations of the proposed θ-ε relationships should be considered to 

improve accuracy of water content predictions in those situations. 

Figure 3.71: Comparison of single parameter relationships between soil permittivity and 
volumetric water content (Mukhlisin and Saputra 2013). Note: References for each equation 
in the plot is provided in Table 3.21. 
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Figure 3.72: Comparison of multi-parameter relationships between soil permittivity and 
volumetric water content (Mukhlisin and Saputra 2013). Note: References for each equation 
in the plot is provided in Table 3.21. 

3.1.10.2 Resistivity Methods 

As previously noted, the resistivity of a soil is drastically affected by the amount of water 

present in the pore space because water acts as an electrical conductor. Implicit in a number of 

the relationships proposed between resistivity and porosity is that water tends to be present in 

that pore space. In fact, the original formulation for Archie’s Law (Eq. 3-67) was developed 

assuming saturated conditions, which means that the porosity term could have also been 

substituted by the volumetric water content. Given the inherent link between porosity and 
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water content as well as their combined effects on resistivity, many of the studies in this section 

are similar to those presented where resistivity was used to estimate porosity. Often, the 

differences between studies of water content and resistivity result from a subtle difference in 

application of the results. This is not unlike the case of radar methods where a similar link exists 

between porosity and water content for permittivity. 

A number of relationships have been proposed by various researches over the years to quantify 

the effects of water content on resistivity. Gupta and Hanks (1972) developed a simple linear 

empirical relationship between water content and resistivity based on laboratory 

measurements: 

𝜌𝜌 = 𝑎𝑎 + 𝑏𝑏𝜃𝜃 (3-76) 

where a and b are empirical constants that can be established by fitting temporal data of water 

content and resistivity. Goyal et al. (1996) suggested values of 50 and -0.1 for a and b, 

respectively. 

Figure 3.73: Example of field calibration curve to estimate volumetric water content from 
measured resisitivity (adapted from Michot et al. 2003). 

A number of researchers have utilized a linear form as in Eq. 3-76 or developed their own field 

or lab calibrated empirical relationships (e.g., Fig. 3.73) to estimate water content from 

resistivity and examine temporal fluctuations in water content (e.g., McCarter 1984; Kalinski and 
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Kelly 1993; Goyal et al. 1996; Fukue et al. 1999; Hymer et al. 2000; Zhou et al. 2001; Binley et al. 

2002; Walker and Houser 2002; Michot et al. 2003; Cosenza et al. 2006; Al Hagrey et al. 2004; 

Shah and Singh 2005; Zhu et al. 2007; Wenninger et al. 2008; Brunet et al. 2009; Kibria and 

Hossain 2012; Oh et al. 2014). Table 3.22 summarizes the results from many of these studies 

and catalogs the recommended empirical constants. 

Table 3.22: Summary of published relationships between resistivity and water content 
(Calamita et al. 2012). 

Based on these results, various alternative functions in addition to the linear function in Eq. 3-76 

have been proposed for the form of the resistivity-water content relationship, including multi-

order polynomials, exponential, and power law relationships. As an example, Cosenza et al. 

(2006) found that a power law relationship best fit their data when water content 

measurements from field samples were compared with inverted resistivity results: 

𝜌𝜌 = 1.187𝑏𝑏−2.444 (3-77) 
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where w represents the gravimetric (mass) water content as typically utilized in geotechnical 

practice. Rhoades et al. (1976) added an additional term to the linearized relationship presented 

in Eq. 3-76 to account for the electrical current conducted by adsorbed water on the surfaces of 

clay particles: 

1 1 1 
= (𝑎𝑎𝜃𝜃2 + 𝑏𝑏𝜃𝜃) + (3-78) 

𝜌𝜌 𝜌𝜌𝑤𝑤 𝜌𝜌𝑠𝑠 

where ρs represents the resistivity of the solid matrix, ρw represents the resistivity of the pore-

water, and a and b are coefficients that depend on texture and mineralogy of the solid phase of 

the soil. Using Eq. 3-78, Kalinski and Kelley (1993) were able to accurately predict volumetric 

water content ranging from 0.2 to 0.5 for a soil with a clay fraction of 20%. Finally, Archie’s Law 

has been recently reexamined as applied to the determination of volumetric water content (e.g., 

Shah and Singh 2005; Grellier et al. 2007). In Shah and Singh (2005) a relationship was proposed 

specifically for fine-grained soils that did not directly incorporate a soil matrix conductivity term 

as in Eq. 3-68 because the effects of surface conductivity were included into the Archie’s Law 

cementation factor: 

𝜎𝜎𝑏𝑏 = 𝑐𝑐𝜎𝜎𝑤𝑤𝜃𝜃𝑎𝑎 (3-79) 

where σb is the bulk conductivity of the soil, σw is the pore-water conductivity, and c and m 

represent the fitting factor and cementation factor, respectively. Shah and Singh (2005) 

observed values of c and m equal to 1.45 and 1.25, respectively, for the soil in their study with 

clay fraction less than 5%. For soils with larger amounts of clay, c and m could be estimated as 

function of the clay fraction. 

𝑐𝑐 = 0.6𝐶𝐶𝐿𝐿0.55 (3-80) 

𝑐𝑐 = 0.92𝐶𝐶𝐿𝐿0.2 (3-81) 
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where CL is the percentage of clay fraction in the soil. Shah and Singh (2005) found that the 

generalized form of Archie’s Law fit their data better than the relationship proposed by Rhoades 

et al. (1976). 

Based on the previous discussion, it is clear that resistivity is a useful parameter to evaluate the 

presence of moisture in the pore space of soils. This area continues to receive significant 

attention with recently published studies continuing to add to the database (e.g., Kibria and 

Hossain 2012; Oh et al. 2014). However, care should be exercised in relying on a general 

relationship to estimate water content, particularly when the relationship is an empirical 

formulation. Site specific calibration of such relationships is recommended for practical use as 

many factors related to soil conditions can affect ρ-θ behavior in addition to water content. 

3.1.10.3 Nuclear Methods 

Much of the previous discussion in this document regarding the neutron logging method and 

estimation of porosity is directly applicable to estimates of water content. The neutron logging 

method responds to hydrogen contained in the pore-fluid of the material. Estimates of porosity 

in the recorded logs are actually derived from assumptions regarding the mineralogy of the 

tested material in relationship to the hydrogen content/ratio obtained during neutron testing. 

Calcite is commonly chosen as a default mineral, such that limestone is the reference rock in use 

for typical neutron porosity logs. In material with different mineralogy, the limestone calibrated 

neutron log is no longer accurate and it must be rescaled based on an appropriate mass density 

of the minerals making up the tested material. For surface testing, the surface nuclear gauge 

test uses the neutron method to estimate the water content and the gamma-gamma method to 

estimate mass density. An appropriate calibration performed on reference materials of known 

water content (e.g., ASTM D7759/D7759M – 14) ensures that the surface nuclear gauge 

provides a usable estimate for water content. When used in this manner, previous studies have 

demonstrated good agreement between the water contents estimated from laboratory or field 

drying methods and those estimated from the nuclear gauge using the neutron approach (e.g., 

Fig. 3.74). 
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Figure 3.74: Example comparison of w obtained using a surface nuclear gauge with respect to 
laboratory measured values using an oven (Berney et al. 2011). 

3.1.11 PERMEABILITY 

Hydraulic conductivity (i.e., permeability) is an important parameter that reflects the ability of a 

soil to transmit water. It is a key input into a number of geotechnical and transportation 

applications, including estimates of infiltration, evaluation of soil drainage conditions, and site 

dewatering, among others. A number of geophysical measurements are sensitive to the same 

factors that affect how water flows through the pore spaces in earth materials. The following 

sections describe relationships that have been developed that exploit this link and allow 

estimation of permeability using various geophysical measurements. 

3.1.11.1 Resistivity Methods 

Many of the factors that affect hydraulic conductivity (e.g., saturation/water content, pore 

continuity, shape, and tortuosity, etc.) also affect resistivity of the soil. Therefore, a logical 

extension is that a relationship exists between permeability and resistivity, whereby 

measurements of resistivity can be used to estimate this parameter. Given the substantial range 

in permeability and the relative uncertainty and issues regarding in situ and laboratory 

measurements, ERI and other methods that can measure resistivity would present a useful 

approach to quickly estimate permeability across a site if a unique relationship can be 

established to resistivity. A number of researchers have investigated such an approach, 

particularly as related to the quality control of compacted clays and the evaluation of aquifer 
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hydrogeological properties (Worthington 1977; Kelly 1977; Heigold et al. 1979; Mazac et al. 

1985; Huntley 1986; Mazac et al. 1990; Sadek 1993; Abu-Hassanein et al. 1996; Rinaldi and 

Cuestas 2002; Bryson 2005; Miller et al. 2010). In terms of general trends, Mazac et al. (1990) 

concluded that an inverse relationship exists between permeability and resistivity for clean 

sandy soils. For example, a dense saturated clean sand will exhibit a lower value for permeability 

and larger resistivity than the same clean sand in a loose configuration. However, for clayey soils 

a direct relationship is expected between permeability and resistivity due to the changes in 

surface conductance with grain size (Abu-Hassanein et al. 1996). An increase in clay content 

decreases permeability and increases surface conductivity effects, which in turn decreases 

resistivity. 

Unfortunately, given the discrepancies described so far, it has been difficult to develop a general 

direct relationship between resistivity and hydraulic conductivity that is applicable across 

multiple soil types and conditions. Sadek (1993) argues that such a relationship is inherently 

non-unique because the same electrical resistivity can be measured for soil specimens with 

completely different structures (and therefore hydraulic conductivities). However, a number of 

sources over the years have highlighted the ability to develop site-specific empirical 

relationships. For example, Kelly (1977), Abu-Hassanein et al. (1996), and Niwas and Celik (2012) 

each found that a unique relationship could be established in their studies (only for a small 

subset of the soils in Abu-Hassanein et al. 1996) (Figs. 3.75 – 3.77). The functional form of similar 

site-specific empirical relationships has often been expressed as a power-law expression: 

𝑘𝑘 = 𝑎𝑎𝜌𝜌𝑐𝑐 (3-82) 

where k is the permeability and the a and c parameters are regression coefficients based on 

specific site and soil conditions (Cassiani and Medina 1997 ). Figure 3.78 presents an example of 

such a correlation based on data presented in Heigold et al. (1979). The exponent c is typically 

less than 1 for sandy soils and larger than 1 for clayey soils. 
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Figure 3.75: Relationship between resistivity and hydraulic conductivity (k) at sites tested in 
Kelly (1977). 

Figure 3.76: Relationship between resistivity and hydraulic conductivity (k) for four soils 
tested in Abu-Hassanein et al. (1996). Note: The results for soils A and B are non-unique. 
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Figure 3.77: Relationship between resistivity and hydraulic conductivity (k) for aquifer tested 
in Niwas and Celik (2012). 

Figure 3.78: Relationship between resistivity and hydraulic conductivity (k) for aquifer tested 
in Heigold et al. (1979). 

Other expressions have been used in addition to a power law functional form. For example, 

Miller et al. (2010) established an exponential relationship between saturated hydraulic 

conductivity and resistivity based on field measurements at two flood plain sites using a direct-

push permeameter and the United States Bureau of Reclamation gravity permeability method 

(USBR 1985): 

𝑘𝑘 = 0.114𝑒𝑒0.024𝜌𝜌 (3-83) 

where k is the saturated permeability in m/day and ρ is the resistivity expressed in Ω–m (Fig. 

3.79). Others have linearized the expression by presenting the permeability-resistivity 
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correlation and performing regressions on a log-log plot (Frohlich et al. 1996; Niwas and Celik 

2012) (Figs. 3.80 and 3.81). No matter the functional form, in each of the preceding cases the 

empirical constants for the regression were not universal as they were developed for site-

specific conditions. 

Figure 3.79: Relationship between resistivity and saturated hydraulic conductivity (k) 
established from direct-push permeameter and the USBR gravity method at two flood plain 
sites in Miller et al. (2010). 

Figure 3.80: Relationship between resistivity and hydraulic conductivity (k) for aquifer tested 
in Frohlich et al. (1996). 
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Figure 3.81: Relationship between hydraulic conductivity (k) and formation factor (Urish 
1981). 

Other researchers have noted that the relationship between permeability and resistivity is 

indirect, meaning that there is a stronger correlation between resistivity and another property 

that ultimately also impacts permeability. For example, Rinaldi and Cuestas (2002) explored the 

relationship in the laboratory between various geotechnical parameters and conductivity (i.e., 

inverse of resistivity) for a silty clay soil sampled in Cordoba, Argentina. Rinaldi and Cuestas 

(2002) noted a stronger correlation between hydraulic conductivity and porosity. The best fit 

function for the porosity-permeability relationship was then incorporated into Archie’s Law to 

obtain a relationship between resistivity and permeability: 

(3-84) 

where a and m represent the tortuosity and cementation factors, respectively, b and g are 

empirical fitting constants, and F is the formation factor (ratio of bulk formation/soil resistivity 

to the electrolyte/fluid resistivity). Based on the laboratory test results, Rinaldi and Cuestas 

(2002) obtained the following values for the empirical constants: a = 0.66, m = 2.49, b = 2.0 x 

106, and g = 28.22, where k was expressed in cm/s. Notable is the fact that Eq. 3-84 was derived 

indirectly after incorporating a more distinct porosity-permeability relationship present in the 
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Rinaldi and Cuestas (2002) experimental data. Additionally, Eq. 3-84 highlights the fact that 

permeability is a function of the formation factor and not solely the resistivity of the bulk soil 

sample. As highlighted in Figs. 3.81 – 3.83, several studies over the years have supported this 

finding (e.g., Shockley and Garber 1953; Croft 1971; Plotnikov 1972; Worthington 1975; Heigold 

et al. 1979; Mazac and Landa 1979; Kosinski and Kelly 1981; Urish 1981; Allessandrello and 

Lemoine 1983; Kwader 1985). Therefore, it is possible for a soil compacted to the same unit 

weight to have different resistivity values but similar k and F values (i.e., the relationship is non-

unique based solely on soil resistivity). Rinaldi and Cuestas (2002) found that a direct 

relationship is possible only for samples saturated with an electrolytic at medium to large 

concentration. 

Figure 3.82: Various relationships between hydraulic conductivity (k) and formation factor 
(Mazac et al. 1985). 
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Figure 3.83: Relationship between hydraulic conductivity (k) and formation factor (Kwader 
1985). 

In view of the preceding discussions, broad use of any of the highlighted relationships between 

permeability and resistivity is not recommended until additional research provides greater 

insight and a robust generalized expression that reduces uncertainty in predicting permeability. 

There is evidence to support that such an expression may not be feasible given the inherent 

non-uniqueness of the relationship (e.g., Sadek 1993). Therefore, in situations where ERI will be 

implemented as a rapid, non-invasive evaluation method to estimate permeability, 

laboratory/field calibration for a given soil is necessary to establish a working functional form 

and ensure that the empirical relationship is unique based on specific site conditions. Such site-

specific correlations can provide useful estimates within the typical ranges of uncertainty 

associated with permeability. Moreover, once such a correlation is established, the lower costs 

associated with surface electrical resistivity methods in relation to additional boreholes can be 

exploited to allow larger spatial coverage when estimating permeability across a site. 

3.1.11.2 Gravity Methods 

The gravity method has been increasingly used to monitor aquifers, oil and gas reservoirs, 

geothermal reservoirs, and carbon sequestration activities over a wide range of sizes and 
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conditions. In these applications, the focus is typically on using repeated time-lapse gravity 

measurements to examine reservoir dynamics, including the spatial distribution of migrating 

fluid, based on density changes (e.g., Allis and Hunt 1986; Pool and Eychaner 1995; Pool and 

Schmidt 1997; Hare et al. 1999, 2008; Ferguson et al. 2007, 2008; Alnes et al. 2008; Davis et al. 

2008; Gasperikova and Hoversten 2008; Vevatne et al. 2012; Dodds et al. 2014). The growing 

utilization of “four-dimensional” (4D) gravity monitoring (i.e., time-lapse measurements) has 

sparked increased coverage of the technique with a workshop taking place at the 77th SEG 

Annual International Meeting in 2007 and a special section of within a recent volume of 

Geophysics (Biegert et al. 2008). The permeability of the underlying earth materials plays an 

important role in these applications since the ability of porous earth materials to allow fluid flow 

is controlled by this property. In the context of reservoir dynamics, the term permeability is not 

used interchangeably with hydraulic conductivity as is routinely the case for geotechnical 

purposes. Instead, permeability is related to hydraulic conductivity based on the following 

expression: 

𝜇𝜇 
𝜅𝜅 = 𝐾𝐾 (3-85) 𝜌𝜌𝑔𝑔 

where κ is the permeability (in units of length squared), K is the hydraulic conductivity familiar 

from geotechnical applications (i.e., units of velocity), μ is the dynamic viscosity of the fluid, ρ is 

the mass density of the fluid, and g is the acceleration due to gravity. Permeability is a complex 

parameter that can depend on factors outside of those that tend to affect gravity 

measurements as well. As a result, estimating permeability using gravity measurements is a 

complicated process that often requires assumptions to be made or complementary information 

regarding the measured zone (e.g., reservoir, aquifer, etc.). For example, Damiata and Lee 

(2006) used numerical modeling to simulate drawdown of a shallow unconfined aquifer and 

examine the gravitational attraction of a drawdown cone (Fig. 3.84). Damiata and Lee (2006) 

found that high-resolution gravity surveying can augment hydraulic testing by spatially 

monitoring the development of the drawdown cone in lieu of an extensive system of monitoring 

wells or piezometers. Therefore, gravity measurements have enough resolution to allow the 

improvement of permeability estimates in conjunction with drawdown tests. 
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Figure 3.84: Numerically simulated drawdown and gravitational response due to pumping 
groundwater from an unconfined aquifer (Damiata and Lee 2006). 

Blainey et al. (2007) demonstrated synthetically that, although time-lapse gravity measurements 

have sufficient signal-to-noise ratio to detect changes in hydrologic conditions, they are 

incapable of adequately constraining estimates of permeability on their own. Chapman et al. 

(2008) used repeated high precision gravity measurements to monitor infiltration events for 

aquifer recharge at a site in Utah. As part of the study, reductions in gravity measurements were 

simulated by analytical solutions for the decay of a groundwater mound through a saturated 

porous media. The results from these simulations allowed a relatively accurate prediction of 

hydraulic conductivity for the alluvial materials that formed the aquifer. Glegola et al. (2012a, 

2012b) used a stochastic approach to simulate reservoir behavior and study the feasibility of 

integrating 4D gravity data to estimate reservoir parameters such as permeability (among 

others). Again, it was found that gravity measurements perform better in estimating 

permeability when other information is incorporated regarding the reservoir (e.g., pressure 

data). Finally, Capriotti and Li (2015) developed a method to directly invert time-lapse gravity 

data to estimate permeability in conjunction with injection-production data. In their approach, 

the time-lapse gravity data serves as the input into the inverse problem, the reservoir spatial 
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distribution of permeability serves as the desired output, and the injection-production data 

provides boundary conditions for fluid-flow modeling in combination with assumptions 

regarding the saturation of the reservoir materials. The inversion constructs the permeability 

distribution so that the gravity and production data are satisfied simultaneously (Fig. 3.85). 

Despite the efforts in the aforementioned studies, much work remains to reliably utilize gravity 

measurements to estimate permeability of earth materials. However, given the resolution and 

potential spatial coverage of gravity measurements, gravity techniques show tremendous 

promise as a robust and cost effective field technique to characterize the in situ hydrological 

properties of subsurface earth materials, particularly when compared with more elaborate field 

methodologies such as drawdown tests. 

Figure 3.85: Permeability recovered using inversion of simulated time-lapse gravity 
measurements at 121 stations and a rate-controlled well with pressure injection data 
(Capriotti and Li 2015). 

3.1.12 CLAY CONTENT 

The amount of clay present in a soil can have a large impact in a number of engineering 

applications. For example, significant clay content in a sand reduces its susceptibility to 

liquefaction during dynamic loading. Therefore, clay content is an important parameter for use 

in transportation applications. 

3.1.12.1 Electromagnetic Methods 

In the case of electromagnetic methods, the clay fraction of a soil can significantly alter the 

propagation of electromagnetic signals. Electrical conductivity increases as the cation-exchange 
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capacity (CEC) of a clay increases (Saarenketo 1998). As electrical conductivity increases, more 

of the energy in the electromagnetic field of a radar signal is consumed during propagation 

through the medium. Therefore, electromagnetic signals attenuate more rapidly and travel 

slower in soils with significant clay content, particularly those dominated by high CEC minerals 

(e.g., montmorillonite). The large effect of clay on electromagnetic signals signifies that 

electromagnetic methods (GPR in particular) have significant potential as a rapid, non-invasive 

technique to estimate clay content over a broader scale across a site than point measurements 

from traditional subsurface investigation techniques. For example, evaluation of sub-asphalt 

compacted soil layers may be a suitable application of such investigations based on the broader 

range of coverage GPR offers and the limitations that would exist on the depths of investigation 

due to significant attenuation of electromagnetic signals in clays. 

Despite the widespread awareness that clays affect GPR signals and the potential advantages of 

using GPR for estimating clay content in roadway applications, only a limited number of studies 

have attempted to systematically quantify clay content using GPR. Tosti et al. (2013) examined 

multiple approaches to estimate clay content based on an evaluation of acquired GPR signals in 

clayey soils. In that study, three soils were mixed with various percentages of bentonite clay 

(varied from 2 to 25% by weight) and compacted into test boxes. Radar signals were propagated 

into the soils using two different GPR instruments at 500 MHz and 1–3 GHz frequency range. 

Tosti et al. (2013) utilized shifts in the peak of the radar signal frequency spectrum and 

estimates of permittivity using full-waveform inversion and time-domain signal picking 

techniques to estimate the clay content of the soils. Figure 3.86 demonstrates the results based 

on analysis of the shifts in the peak of the signal frequency spectrum. Similar results were also 

noted in Benedetto and Tosti (2013). De Benedetto et al. (2012) statistically estimated clay 

content across a site based on a hybrid kriging interpolation technique applied to 

electromagnetic induction (EMI) data and GPR instantaneous amplitude (i.e., envelope) data 

(Fig. 3.87). In comparison to 36 soil cores taken at the site, De Benedetto et al. (2012) found 

generally good spatial agreement between measured and predicted clay content. Based on 

these studies, it is evident that GPR shows promise as a tool to estimate clay content in near-

surface soils. Further development is necessary in order to ensure robustness of the technique 

for application in practice. 
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Figure 3.86: Shift in the peak of the frequency spectrum of radar signals based on soil clay 
content in Tosti et al. (2013). Note: A1, A2, A3 refers to AASHTO classification of tested soil 
prior to addition of bentonite clay. 

Figure 3.87: Map of clay content using GPR and EMI data (adapted from De Benedetto et al. 
2012). 

3.1.12.2 Resistivity Methods 

As previously noted, clay content of a soil is an important parameter for transportation 

applications as clayey soils tend to present particular challenges in geotechnical design (e.g., 

settlement, swelling, etc.). Much like the case for radar methods, the presence of clays can 

significantly impact the electrical properties of soils. Generally, the presence of clay tends to 

decrease resistivity as the high specific surface area of clays improves surface conductance 
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(Kwader 1985). In fact, various modifications have been proposed that include terms to model 

the increased surface conductance in clayey soils in the original porosity-resistivity and water 

content-resistivity relationships referenced in this document. 

Given the effects of clay content on resistivity, it is evident that ERI can be used to delineate 

clayey soils during site investigations. However, a few studies have gone further and have 

investigated the ability to directly estimate clay content based on measured resistivity values. 

For example, Abu-Hassanein et al. (1996) explored the ability of ERI to evaluate compacted clay 

liners for landfill applications. As part of the study, ten clayey soils were tested for various 

geotechnical index properties, mineralogy, and compaction characteristics. The soils were then 

compacted in the lab and their resistivity values were measured using a custom built apparatus 

that essentially doubled as a compaction mold. Abu-Hassanein et al. (1996) found a general 

trend of decreasing resistivity as the clay fraction of the tested soils increased (Fig. 3.88). For the 

soils tested in their study, resistivity was relatively insensitive to changes in clay fraction above 

approximately 35%. Additionally, one of the soils did not follow the observed trend due to the 

significant presence of coarse particles (i.e., gravels). Once the coarse particles were removed 

and only the percent passing the #200 sieve was tested, the soil no longer proved to be an 

exception to the observed trend in Fig. 3.88. These results demonstrate the importance of 

calibrating resistivity measurements to specific soil conditions. 

Figure 3.88: Resistivity as a function of clay fraction for soils in Abu-Hassanein et al. (1996). 
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More recently, Long et al. (2012) explored the relationship between resistivity and several 

geotechnical parameters (including clay content) for Norwegian quick clays. The resulting trends 

in this study complemented the results from Abu-Hassanein et al. (1996) (Fig. 3.89). Long et al. 

(2012) found that clay contents larger than 50% typically resulted in extremely low resistivity 

values (e.g., ≈ 5 Ω-m). However, there was larger scatter in their data, particularly at larger clay 

contents, and the proposed polynomial trend line exhibited a relatively low coefficient of 

determination (Fig. 3.89). Neither Abu-Hassanein et al. (1996) nor Long et al. (2012) provided 

the functional form used for their trend lines. In either case, the results were empirical and 

specific to the site conditions in their studies. 

Figure 3.89: Resistivity as a function of clay fraction for soils tested in Long et al. (2012). 

Another study where clay content was examined and compared to measured resistivity values 

was presented in Shevnin et al. (2007). In this case, as part of this research a generalized 

theoretical resistivity model was developed for sandy-clay soils based on a binary mixing model 

(for details, see Shevnin et al. 2007). The model depends on inputs of soil porosity, CEC of clay, 

and estimates of the geometrical structure of the soil. The predicted resistivity-clay content 

relationship was compared with laboratory samples of sand-clay mixtures that were prepared 

with various percentages of bentonite and saturated with water of various salinity 

167 



 
 

   

    

 

    

 

  

       

 

   

   

 

 

     
 

     

 

    

  

  

concentration levels (Fig. 3.90). Shevnin et al. (2007) found very good agreement between their 

model and the results obtained in the laboratory. Generally, the clay content was overestimated 

when it varied between 10% and 40% and underestimated above 60% (Fig. 3.90). The average 

error in their estimates of clay content was approximately 19%. Moreover, they applied their 

proposed resistivity model to fit data from real field samples from the Mexican Petroleum 

Institute and a number of oil-contaminated sites. Based on the quality of the fit, Shevnin et al. 

(2007) found that practical application of the proposed technique could determine a limiting 

resistivity that differentiated between contaminated and clean soils. However, the proposed 

model necessitates knowledge or inference of soil parameters that are not always available or 

easy to measure (e.g., CEC), which can decrease its accuracy and limit its applicability. 

Figure 3.90: Resistivity as a function of clay fraction and salinity (Shevnin et al. 2007). 

Based on the aforementioned discussion, it is clear that clay content can have a large effect on 

measured resistivity. All studies demonstrated that resistivity decreases as the clay content 

increases (Abu-Hassanein et al. 1996; Shevnin et al. 2007; Long et al. 2012). However, there is 

difficulty in developed a generalized expression that directly relates clay content to resistivity. 

The recommendation is that a functional form be established for this expression based on site-
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specific empirical correlations using the combined results of laboratory testing for clay content 

and measured field resistivity using ERI. 

3.1.13 ATTERBERG LIMITS 

Atterberg Limits provide a wealth of information regarding a soil and help distinguish between 

non-plastic silts and plastic clays. Establishing these index properties is often among the initial 

steps in a subsurface investigation since many aspects of geotechnical behavior demonstrate 

some dependence on liquid limit (LL) and plastic limit (PL) (e.g., swell potential, strength, 

compressibility, etc.). These limits are essentially special values of water content that signify 

transitions in soil behavior. Since relationships exist between water content and other 

geophysical measurements (particularly electrical/electromagnetic), it is unsurprising that 

research has been performed to investigate the relationship between geophysical 

measurements and Atterberg Limits. 

3.1.13.1 Resistivity Methods 

Many of the factors that affect resistivity are also associated with variations in LL and PL [and 

therefore plasticity index (PI)]. For example, resistivity is affected by a soil’s capability to 

conduct electrical current on water adsorbed on the particle surfaces (e.g., Waxman and Smits 

1968; Rhoades et al. 1976; Johnson et al. 1986; Sen et al. 1988; Sen and Goode 1992). As a 

result, clayey soils tend to exhibit smaller resistivity values relative to sands and gravels. The 

combined BQ terms in Eq. 3-68 provide an estimate of this surface conductivity and efforts have 

been made to relate the terms to Atterberg Limits (Abu-Hassanein et al. 1996; Bryson 2005): 

𝐿𝐿𝐿𝐿 = 𝛼𝛼1(𝐵𝐵𝑅𝑅)𝛽𝛽1 (3-86) 

𝑃𝑃𝑃𝑃 = 𝛼𝛼2(𝐵𝐵𝑅𝑅)𝛽𝛽1 (3-87) 

where LL and PI are expressed as a decimal, BQ is in units of Siemens/m, and the α and β terms 

each represent empirical regression constants. Based on the data from Abu-Hassanein et al. 

(1996), Bryson (2005) found that α1 = 3.33, β1 = 1.59, α2 = 13.93, β2 = 3.08. Eqs. 3-86 and 3-87 

imply an inverse proportionality between resistivity and Atterberg limits, one in which increases 

in LL and PI lead to decreases in resistivity as a result of the corresponding increases in surface 
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conductivity. The activity (A) of a soil also relates to the relative amount of surface conductivity 

and is directly proportional to PI based on the formulation proposed by Skempton (1953): 

𝑃𝑃𝑃𝑃 
𝐴𝐴 = (3-88) 

𝐶𝐶𝑆𝑆 

where A is the activity, PI is the plasticity index, and CF is the clay fraction (percentage by weight 

of soil less than 2 μm). Highly active soils (primarily clays of the smectite group) will exhibit 

values of A larger than 1.25 and are generally more chemically reactive and susceptible to 

volume changes (Holtz and Kovacs 1981). Table 3.23 provides estimates of the activities of 

various clay minerals. Again, an inverse relationship is established whereby increases in PI will 

decrease resistivity due to the increased activity levels and greater surface conductance (Abu-

Hassanein et al. 1996). 

Mineral Activity 

Na-montmorillonite 4 – 7 

Ca- montmorillonite 1.5 

Illite 0.5 – 3 

Kaolinite 0.3 – 0.5 

Halloysite (dehydrated) 0.5 

Halloysite (hydrated) 0.1 

Attapulgite 0.5 – 1.2 

Allophane 0.5 – 1.2 

Mica (muscovite) 0.2 

Calcite 0.2 

Quartz 0 

Table 3.23: Activities of various clay minerals (after Skempton 1953 and Mitchell and Soga 
2005). 

Ultimately, both A and BQ (and therefore surface conductance) are related to the specific 

surface area (SSA) of a soil. The SSA represents the ratio of the total surface area of a particle 

relative to its mass. The liquid limit (LL) and plastic limit (PL) reflect the SSA of the soil, the 
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thickness of the diffuse double layer of water, and the fabric that tends to form under the 

prevailing pore fluid conditions (Mitchell 1993; Muhunthan 1991). Therefore it is anticipated 

that equations exist that directly relate SSA to the LL of a soil (Farrar and Coleman 1967): 

𝐿𝐿𝐿𝐿 = 19 + 0.56𝐴𝐴𝑠𝑠 (3-89) 

where As is the SSA of a soil expressed in m2/g. Generally, larger specific surface areas (SSA) 

improves surface conductance and decreases resistivity (Kwader 1985). Given the direct 

relationship between SSA and LL as expressed in Eq. 3-89, again an inverse correlation in noted 

between an Atterberg limit and resistivity. 

Considering the preceding discussion regarding the interrelatedness of Atterberg limits and 

various factors that affect conductance/resistivity (i.e., clay activity, surface conductance, SSA), 

various researchers have explored the development of direct relationships to estimate LL and PL 

(and/or PI) from resistivity measurements. However, a generalized relationship has not been 

established in the literature and efforts to develop empirical relationships have had mixed 

results despite the strong theoretical basis pointing to an inverse resistivity-plasticity 

relationship. Abu-Hassanein et al. (1996), Bery (2014), and Kibria and Hossain (2014) each found 

a distinct relationship for the soils in their study (Figs 3.91 – 3.93). 

In the case of Abu-Hassanein (1996), the resistivity values decreased for increasing values of LL 

and PI. However, the tested soils were less sensitive to increases in LL and PI at higher values of 

LL and PI (i.e., 35 for LL and 20 for PI) (Fig. 3.91). As was the case with clay content, one of the 

soils significantly deviated from the measured LL and PI until the coarse fraction was removed. 
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Figure 3.91: Resistivity as a function of Atterberg limits for soils in Abu-Hassanein et al. (1996). 

Bery (2014) compared time-lapse resistivity measurements to geotechnical subsurface testing 

results for a slope monitoring project in Penang Island, Malaysia. Based on the results of 32 soil 

samples, an inverse relationship was noted and a linear function was fitted for each of the 

trends for Atterberg limits: 

𝑏𝑏𝐼𝐼 = 𝑎𝑎𝜌𝜌 + 𝑏𝑏 (3-90) 

where wI represented the Atterberg limit (i.e., either LL, PL, or PI), ρ is the measured resistivity, 

and a and b were empirical regression constants (Fig. 3.92). Bery (2014) established values of a 

and b for each Atterberg limit: a = -0.06 and b = 91.84 for LL, a = -0.018 and b = 45.89 for PL, a = 

-0.041 and b = 45.95 for PI. However, there was significant scatter in the data and relatively 

mediocre fit as a result. 
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Figure 3.92: Resistivity as a function of Atterberg limits for soils tested in Bery (2014). 

Finally, Kibria and Hossain (2014) explored the relationship between resistivity and PI for various 

artificial soil samples created by mixing two types of commercially available bentonite (i.e., 

Volclay Na-bentonite and Panther Creek Ca-bentonite) with fine sand at various percentages 

(from 20% to 100% bentonite by weight). For a given saturation level, the resistivity decreased 

as PI increased (i.e., as more bentonite was added to the sample) (Fig. 3.93). Kibria and Hossain 

(2014) also noted differences in the PI-resistivity relationship based on mineral content (i.e., Na 

versus Ca in the bentonite). In the case of Na-bentonite, resistivity decreased by as much as 64% 

as PI increased from 40 to 226 (at 40% saturation). For Ca-bentonite, the change was more 

drastic over a smaller increase in PI at the same saturation level (i.e., 190% reduction in 

resistivity for PI increase from 7 to 55). These results demonstrate that the development of 

resistivity-plasticity empirical relationships may have to account for more factors in addition to 

LL and PI. 

(a) (b) 

Figure 3.93: Resistivity as a function of Atterberg limits for artificial soils tested in Kibria and 
Hossain (2014): (a) samples prepared with Na-bentonite; and (b) samples prepared with Ca-
bentonite. 
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Not all studies highlighted strong correlations between Atterberg limits and resistivity. Several 

factors can impact measured soil resistivity levels, including porosity, water content, and 

conductivity of fluid within the pore space as discussed in previous sections. Changes in some of 

these parameters do not necessarily reflect changes in LL, PL, or PI. For example, Giao et al. 

(2003) explored the relationships between various geotechnical parameters (i.e., organic 

content, water content, PI, unit weight, etc.) and resistivity for clays in the Nakdong River plain 

in South Korea. In this study, the PI results exhibited significant scatter and no conclusive trend 

with the measured resistivity levels (Fig. 3.94). 

Figure 3.94: Resistivity as a function of PI for soils tested in Giao et al. (2003). 

Kibria (2011) was able to establish a consistent inverse trend for the soils tested in that study, 

but this trend only predicted very small differences in resistivity for changes in LL and PI (i.e., the 

results were relatively insensitive to resistivity) (Fig. 3.95). Long et al. (2012) noted a fairly 

conclusive inverse relationship between resistivity and PI. Low PI marine clays tended to exhibit 

much smaller resistivity than corresponding high PI marine clays (Fig. 3.96). However, again 

there was significant scatter in the data and a clear trend line could not be established. These 

results demonstrate the difficulty in establishing consistent empirical relationships between 

Atterberg limits and resistivity. Though the results from Abu-Hassanein et al. (1996), Bery 

(2014), and Kibria and Hossain (2014), and even Long et al. (2012) support the basic theory that 

increases in LL and PI will decrease resistivity, other factors can influence the results and 

increase the amount of scatter in the data. More studies are necessary that are similar to Kibria 

and Hossain (2014) where soil plasticity is manipulated in the laboratory on controlled samples. 
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Such an approach would allow more control of the variables affecting resistivity in addition to LL 

and PI and would better elucidate the sensitivity of the results to these index parameters. The 

results from laboratory studies could then allow the development of more robust empirical 

models for the field. In the meanwhile, care must be exercised when utilizing field calibrated 

resistivity-plasticity relationships due to the relatively large scatter in the results. 

Figure 3.95: Resistivity as a function of Atterberg Limits for soils tested in Kibria (2011). 

Figure 3.96: Resistivity as a function of PI for marine soils tested in Long et al. (2012). 

3.1.13.2 Electromagnetic Methods 

Much of the preceding discussion related to the factors affecting resistivity measurements is 

directly relevant to soil electromagnetic properties as well. For example, the propagation of 

electromagnetic waves in soils is also influenced by clay activity, surface conductance, and the 
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SSA of a soil. A number of studies have explored the use of electromagnetic methods 

(particularly GPR) to delineate soils with different material properties, including Atterberg Limits 

(e.g., Carreon-Feyre et al. 2003; Rogers et al. 2009). Additionally, some researchers have 

indirectly explored the effects of Atterberg Limits on electromagnetic measurements. For 

example, Thomas et al. (2010a,b) studied the electromagnetic properties of fine grained soils 

using TDR to examine how electromagnetic dispersion (i.e., changes in apparent permittivity 

with frequency) was influenced by differences in Liquid Limit and shrink/swell potential. Thomas 

et al. (2010a,b) found that electromagnetic dispersion was greater in soils with larger LL. 

Additionally, electromagnetic dispersion for soils at water contents equal to their LL appear to 

depend on both LL and linear shrinkage. LL related to the high-frequency values in the 

electromagnetic dispersion curve and the linear shrinkage affected how much increase occurred 

in the high-frequency values as the signal frequency was reduced. Other studies have examined 

the effects of the dielectric constant of the pore fluid on the measured properties of different 

clay soils, including LL and PI (e.g., Fernandez and Quigley 1985; Fernandez and Quigley 1988; 

Acar and Olivieri 1989; Kaya and Fang 1997). In many cases, these studies were performed 

within the context of examining contamination in soils and the permeability of clay 

liners/barriers. However, despite these studies and the strong link between electromagnetic 

properties and Atterberg Limits, a direct relationship between the Atterberg Limits of a soil and 

relative permittivity from geophysical measurements has not proven feasible so far due to the 

many factors that influence both properties. For example, Spagnoli et al. (2011) found that the 

effects of the pore fluid dielectric constant on LL were inconsistent depending on mineralogy of 

the clay (Fig. 3.97). Additional research efforts will be necessary to isolate the effects of 

Atterberg Limits on electromagnetic properties of soils. Such efforts will improve our capabilities 

to predict LL and PL from electromagnetic geophysical methods. 
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Figure 3.97: LL as a function of pore fluid dielectric constant for different monomineralic clays 
(adapted from Spagnoli et al. 2011). 

3.2 APPLICATIONS RELATED TO SHEAR WAVE VELOCITY MEASUREMENTS 

This section discusses applications that utilize shear wave velocity (VS) and the time-averaged 

shear-wave velocity in the upper 30 meters of the Earth’s crust (VS30). These applications include 

site response analysis using site terms in conjunction with a ground motion model, one-

dimensional ground response analysis, and liquefaction triggering evaluation. The scale and 

resolution of various geophysical methods is an important aspect, particularly when 

measurements of VS are concerned. Therefore, this section starts with a discussion on how scale 

and resolution affect wave velocity measurements and then discusses specific applications 

related to VS. 

3.2.1 DIFFERENCES IN SCALES AND RESOLUTION AMONG GEOPHYSICAL METHODS 

Different geophysical methods provide a significant range in resolution that must be considered 

for a particular application. Different methods mobilize different volumes of soil, and measure 

the average wave velocity within the mobilized volume. The mobilized volume is a function of 

wavelength and sensor spacing, as shown in Fig. 3.98. Suspension logging provides an average 

vertical wave speed of the soil adjacent to the borehole wall over a sensor spacing of about 1m. 

Cross-hole testing measures the average horizontal shear wave and/or p-wave velocity between 

adjacent boreholes typically spaced meters apart. Downhole testing measures the vertical shear 

177 



 
 

 

   

 

    

 

 

 
 

 

 
  

 

    

  

  

 

  

  

wave and/or p-wave velocity between the ground surface and the receiver. Enhanced insights 

into stratigraphy may be achieved by computing differences in travel time between multiple 

recordings as the receiver is lowered down the borehole. Surface wave methods utilize varying 

resolution, with short wavelengths and close receiver spacing used to measure the Rayleigh 

wave velocity of shallow layers, and long wavelengths and sensor spacing used to measure 

deeper layers. 

Downhole Crosshole Suspension Logging 

Source 

Receiver 

Receiver Source 

Receivers 
Receiver 

Surface Wave 

Source 

Receiver Receiver 

Figure 3.98: Difference in scale and resolution among various geophysical methods for 
measuring VS. 

Selection of a particular method depends on the application. Borehole methods are well-suited 

to identifying stratigraphic details. For example, the suspension logging profile would identify 

the gray shaded layers in the profile in Fig. 3.98. The cross-hole method would accurately 

identify the horizontally continuous gray shaded layer, but would provide an average wave 

speed shallower in the profile where a layer intersects only two of the three boreholes. When 

using these high resolution methods, multiple measurements may be required to characterize 
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sites with significant horizontal variability. For example, thin gray shaded layers would be missed 

using a single suspension log, downhole, or cross-hole measurement. 

Surface wave measurements, by contrast, average a larger volume of soil, providing an overall 

picture of the site. However, due to this averaging, surface wave methods may be unable to 

accurately measure the velocity of a layer whose thickness is small relative to its depth. For 

example, Fig. 3.99 shows three VS profiles with a constant VP profile, along with dispersion 

curves for the first four modes of Rayleigh wave propagation. The VS profiles generally exhibit 

the same trend of increasing velocity with depth, but Profile 1 exhibits significant variation 

about this trend whereas Profile 3 is smooth, and Profile 2 is intermediate. At a depth of 8m, the 

VS value for Profile 1 is only about 100m/s, whereas it is about 200m/s for Profile 3. Surface 

wave methods are therefore poorly suited to identifying the presence of thin soft layers. For 

example, the layer at 8m depth might be considered liquefiable for Profile 3, and non-liquefiable 

for Profile 1. The presence of this layer would be detected using a borehole method. For this 

reason, surface wave measurements should not be used when high resolution stratigraphic 

detail is desired. Surface wave methods utilize frequencies that are similar to earthquake ground 

motions. By averaging a similar volume of soil, surface wave methods provide a better indication 

of the velocity structure that will be mobilized by earthquake waves compared with borehole 

methods. 

Figure 3.99: Three different VS profiles produce essentially the same first-mode Rayleigh wave 
dispersion curve. 
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Considering that different methods provide different resolutions, the best practice is to combine 

geophysical measurements with geotechnical site investigation information to obtain a more 

comprehensive understanding of the site. Thin problematic layers are less likely to be missed 

using this approach. 

3.2.2 UNCERTAINTY IN GEOPHYSICAL METHODS AND VARIOUS PROXIES 

Uncertainty in geophysical measurements can be conceptualized as arising from intramethod 

variability, meaning variability among measurements of a single method at the same site, and 

inter-method variability, meaning uncertainty between or among different geophysical 

measurements at the same site. As defined by Moss (2008), intramethod uncertainty is caused 

by inversion of surface wave dispersion curves, curve-fitting procedures, sensor errors, travel 

time picks, etc. Inter-method variability is attributed to differences in the scale of the different 

measurement techniques, difficulties in measuring shallow sediments using invasive methods, 

and soil-disturbance effects associated with invasive methods. 

Method Coefficient of Variation 

Downhole, suspension logging, and seismic 
cone penetration testing 

1% to 3% 

Spectral analysis of surface waves 5% to 6% 

Correlation with geologic unit 20% to 35% 

Table 3.24: Coefficients of variation for measuring VS30 using various geophysical methods 
(Moss 2008). 

Moss (2008) quantified intramethod uncertainty in VS30 for both non-invasive and invasive 

geophysical methods, as well as for correlations with surface geology, using the coefficient of 

variation (COV), i.e., the standard deviation divided by the mean of dataset. Table 3.24 provides 

a list of COV values of different methods. Invasive methods such as suspension logging or 

downhole measurements are associated with the least amount of uncertainty, with COV values 

on the order of 1-3%, while for surface-wave methods (SASW, MASW) COV was found to be on 

the order of 5-6%. Furthermore, Moss (2008) found that the ratio of VS30 measured by a non-

invasive method to that measured by an invasive method tends to be higher than 1 at soft sites, 
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and lower than 1 at stiff sites. Moss (2008) postulated that this trend may be caused by soil 

disturbance during invasive methods, with strain softening of softer soils causing a decrease in 

VS30, and strain-hardening in stiffer soils causing an increase in VS30. It was shown that near-

surface effects (such as low confining pressure in the upper few meters of soil) did not 

contribute much to intra-method variability (Moss 2008). 

Moss (2008) also studied VS30 relations based on surface-geology correlations, and found that 

the COV is generally about 20-35%, with COV increasing with mean VS30. The reason for such 

high uncertainty is attributed to the combined errors in measurement, modeling, and spatial 

variability of VS. One should be wary of using such correlations, and it is stressed that the shear 

wave velocity at a site should be directly measured, rather than correlated via proxy, whenever 

possible. 

3.2.3 MEASUREMENT OF VS30 FOR COMPUTING SITE AMPLIFICATION FACTOR 

The primary factors that influence earthquake ground motions are source, path, and site effects. 

Site effects refer to the characteristics of the near-surface soil and rock that can significantly 

alter the amplitude and frequency content of seismic waves. Anderson et al. (1996) note that 

the upper 30 m of a site can significantly alter earthquake ground motion despite the fact that 

the upper 30 m generally accounts for less than 1% of the distance to the earthquake source. 

This underscores the importance of the time-averaged shear-wave velocity in the upper 30 

meters of soil (VS30), which is computed as: 

30 𝑐𝑐 
𝑉𝑉𝑆𝑆30 = 

𝑛𝑛 ℎ𝑓𝑓 (3-91) ∑𝑓𝑓 𝑉𝑉𝑆𝑆𝑓𝑓 

where hi and VSi are the thickness and shear wave velocity of layer i, respectively, in a profile 

with n layers in the upper 30 m. Note that while VS30 may be computed with British units (by 

replacing the denominator with 100 ft), SI units are used in several applications related to site 

amplification based on input of VS30. Therefore, the authors advise consistent use of the SI 

system when applying methods described within this section. Note that VS30 is not defined as the 
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arithmetic mean of the VS profile in the upper 30 m, but rather is equal to 30 m divided by the 

travel time of a vertically propagating shear wave through the upper 30 m. 

The seismic provisions in building codes are periodically updated based on recommendations 

within the NEHRP Provisions and Commentary (BSSC 2009). One important aspect of the NEHRP 

Provisions and Commentary is the specification of design-basis ground motions. These ground 

motions are derived for rock site conditions at 0.2 sec and 1.0 sec period from probabilistic 

seismic hazard analysis (PSHA) and then modified by site amplification factors. These site 

amplification factors are based in large part on the seminal studies of Borcherdt (1994) using a 

reference shear wave velocity of 1050 m/s for a uniform site condition. Borcherdt (1994) 

originally showed consistent correlations between site amplification and VS30, leading to its 

adoption in the NEHRP Provisions and Commentary. The NEHRP Provisions originally outline site 

classes defined by binned ranges of VS30, which are available in the Caltrans Seismic Design 

Criteria (SDC) (Caltrans 2013) and reproduced in Table 3.25. It is important to note that these 

site classes are also used in both the current ASCE 7-10 Standard Minimum Design Loads For 

Buildings and Other Structures (ASCE 2013) and the California Building Code (CBSC 2013). 

Soil Profile 
Type Soil Profile Description* 

A Hard rock with measured shear wave velocity VS30 > 1,500 m/s (5000 ft/s) 
B Rock with shear wave velocity 760 m/s < VS30 < 1,500 m/s (2,500 < VS30 < 5000 ft/s) 

C 
Very dense soil and soft rock with shear wave velocity 360 m/s < VS30 < 760 m/s (1,200 < VS30 < 2,500 
ft/s) or with either standard penetration resistance N > 50 or undrained shear strength su ≥ 100 kPa 
(2,000 psf) 

D 
Stiff soil with shear wave velocity 180 m/s < VS30 < 360 m/s (600 < VS30 < 1,200 ft/s) or with either 
standard penetration resistance 15 ≤ N ≤ 50 or undrained shear strength 50 < su < 100 kPa (1,000 < su 

< 2,000 psf) 

E 
A soil profile with shear wave velocity VS30 < 180 m/s (600 ft/s) or any profile with more than 3 m (10 
ft) of soft clay, defined as soil with plasticity index PI > 20, water content w ≥ 40 percent, and 
undrained shear strength su < 25 kPa (500 psf) 

F 

Soil requiring site-specific evaluation: 
1. Soils vulnerable to potential failure or collapse under seismic loading; i.e. liquefiable soils, quick 
and highly sensitive clays, collapsible weakly cemented soils 
2. Peat and/or highly organic clay layers more than 3 m (10 ft) thick 
3. Very high-plasticity clay (PI > 75) layers more than 8 m (25 ft) thick 
4. Soft-to-medium clay layers more than 36 m (120 ft) thick 

*Note: The soil profile types shall be established through properly substantiated geotechnical data. 
Key: VS30 = time-averaged shear wave velocity through upper 30 m; su = undrained strength; PI = plasticity index; N = 
SPT blowcount. 

Table 3.25: NEHRP Site Classes (after Caltrans 2013). 

182 



 
 

     

     

       

      

   

   

 

  

    

    

     

 

       

       

        

 

  

   

   

  

   

   

  

     

 

     

    

 

   

    

   

   

Ground motion models (GMMs, formerly called “Ground Motion Prediction Equations” [GMPEs] 

and “attenuation relations”) are empirical models that consider the effects of seismic source, 

travel path, and local site conditions on ground motion intensity measures (GMIMs), such as 

peak ground acceleration, PGA, peak ground velocity, PGV, or pseudo-spectral acceleration, PSa, 

at a specified oscillator period, among other GMIMs, at a given site. Generally, GMMs output 

the geometric mean of the two horizontal components of motion (see Bozorgnia et al. 2014 for 

a list of GMM model developer teams), but some newer models also give the vertical motion 

(e.g., PEER 2013). The development of GMMs has its origins in the 1980s and 1990s based on 

seminal works by Campbell (1981), Youngs et al. (1988), Joyner and Boore (1988), Idriss (1991), 

Boore et al. (1993), Sadigh et al. (1993), Campbell and Bozorgnia (1994), Abrahamson and Silva 

(1997), Boore et al. (1997), Campbell (1997), and Sadigh et al. (1997). These models have since 

undergone revisions as part of the “Next Generation of Ground-Motion Attenuation Models” 

(NGA) phase 1 project concluded in 2008 (see Power et al. 2008 for an overview) and NGA-

West2, NGA-East, and NGA-Subduction projects (see Bozorgnia et al. 2014 for an overview). 

Douglas (2015) provides a holistic review of published GMM models from around the world, 

including their functional forms, what data are used to derive coefficients used in the model 

regression, and explanations of various source-, path-, and site-related input parameters. 

Caltrans’ ARS Online software makes use of the average of two NGA GMM models, Campbell 

and Bozorgnia (2008) and Chiou and Youngs (2008), to compute seismic hazard and response 

spectra for any location California, based on user-specified latitude/longitude coordinates and 

the VS30 at that location (Caltrans 2013). It is important to note that as part of the NGA-West2 

project, the Campell and Bozorgnia and Chiou and Youngs GMMs were updated to apply to a 

broader database of earthquake ground motion recordings at various magnitudes and distances 

(Bozorgnia et al. 2014; Campbell & Bozorgnia 2014; and Chiou and Youngs 2014). 

Early GMMs (e.g., Abrahamson and Silva 1997) used various qualitative site classes, ranging 

from as simple as “rock” versus “soil”, to including potentially vague descriptors such as “stiff” 

or “soft”, to including geologic ages (such as Holocene, Pleistocene, Quaternary, etc.), as the 

GMM developer is at liberty to select any site classification scheme desired. However, an effort 

was made in developing the NGA project to use VS30 for computing GMM site terms, which is 

considered to be more diagnostic in determining site amplification than the broad and 

ambiguous soil and rock categories previously used (Power et al. 2008). The decision to use VS30 
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for development of site amplification factors in GMMs stems from a movement towards use of a 

single representative parameter that captures the signature of a given site. This ideology was 

upheld in the development of the NGA-West2 site database, which retained VS30 as the primary 

site parameter, as it effectively describes first-order site effects, both linear and nonlinear, and 

is arguably the most easily-determinable site parameter, when compared with site period or 

basin depth. Seyhan et al. (2014) provides further justification of use of VS30. 

It is evident that the continuous nature of a numeric value such as VS30 will eliminate confusion 

associated with selecting a qualitative descriptor for a given site. It also alleviates issues that 

potentially arise when the VS30 of a given site falls close to one of the NEHRP site class 

boundaries. For example, Wills et al. (2000) created intermediate site classes for development 

of a site condition map of California based on surface geology and VS30, because mean values of 

common types of geology fall near site class borders (e.g., the Franciscan Complex has a 

distribution of VS30 values that cross the B/C site class border [760 m/s]). It has also been shown 

that site amplification factors from the current NEHRP provisions have discrepancies compared 

to those used in NGA GMMs (Seyhan and Stewart 2012). 

In some cases, a VS measurement is made to a depth less than 30 m, and must be extrapolated 

to 30 m to compute VS30. Kwak et al. (2017) summarized five such methods, and assessed their 

accuracy using a world-wide data set in which VS was measured to at least 30 m. These profiles 

were extrapolated to 30 m based on shallow portions of the profile measured to a depth Z. The 

methods generally produced unbiased estimates of VS30, meaning that the average of the error 

in the extrapolation was close to zero. However, the standard deviation of the error term 

increased as the depth of the VS profile decreased. Hence, when VS30 is needed for a particular 

application, the VS profile should be measured to 30 m to avoid introducing unnecessary 

uncertainty into the prediction. However, these extrapolation methods are useful when existing 

VS profile data is available, and new measurements are impractical or impossible to obtain. 

Site amplification factors describe both linear (e.g., Boore et al. 1997, Walling et al. 2008) and 

nonlinear (e.g., Choi and Stewart 2005, Walling et al. 2008, Seyhan and Stewart 2014) ground 

response to earthquake shaking. Nonlinearity in site response occurs because strong ground 

shaking softens the soil and increases its damping, thereby altering the characteristics of 
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earthquake waves that propagate through the soil to the surface. Nonlinearity is most 

pronounced for soft sites shaken by strong ground motions, as shown in Fig. 3.100 from Seyhan 

and Stewart (2014). The strong ground motion database contains very few recordings from soft 

sites shaken with strong ground motion. Therefore, nonlinear site amplification functions are 

commonly constrained by one-dimensional ground response analysis. 

Figure 3.100: Site amplification models for various spectral periods and various VS30 values 
(Seyhan and Stewart 2014). PGAr is the peak horizontal acceleration corresponding to a 
reference site condition of VS30 = 760 m/s, and ln(F) is the natural logarithm of the 
amplification factor. 

3.2.4 MEASUREMENT OF VS PROFILES FOR GROUND RESPONSE ANALYSIS 

One-dimensional ground response analysis (1D GRA) models the vertical propagation of shear 

waves through a horizontally layered soil profile. A key input parameter to these models is the 

distribution of shear wave velocity with depth; knowledge of VS30 alone is inadequate for 

running a 1D GRA. The simulations may be performed using equivalent-linear or nonlinear 

methods, and involve input of modulus reduction and damping behavior for each soil layer. 
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Details of the theory and application of 1D GRA is beyond the scope of this report. Rather, this 

report focuses on use of geophysical methods to obtain a shear wave velocity profile for input 

into a 1D GRA. 

The Caltrans (SDC) calls for site-specific response analysis (e.g., 1D GRA) for sites characterized 

as NEHRP soil class types E and F (Table 3.25) for final design. Also, site-specific analysis is 

required for type F sites for preliminary design; with recommendations provided to extend use 

of these procedures to type E sites as well (Caltrans 2013). Generally, the Type E preliminary 

design spectra will exceed spectra developed using a 1D GRA, which is the reason why the 

Caltrans SDC recommends performing a 1D GRA for preliminary spectrum development. 

GMMs (conditioned on VS30) provide predictions of site response based on global averages 

(referred to as ergodic), which can be biased for a particular site (Stewart et al. 2014). The 

ergodic assumption may be a poor predictor of site response at sites with a strong impedance 

contrast (e.g., a soil profile resting on shallow rock), or at soft sites that are not well-represented 

in the empirical ground motion database. A 1D GRA can therefore reduce uncertainty (but not 

eliminate uncertainty, as discussed later) compared with an ergodic site term. A comprehensive 

study which navigated the literature and sought to provide guidelines for performing 1D GRA is 

presented by Stewart et al. (2014). 

A key input to a 1D GRA is a VS profile that defines VS from the surface to a depth deemed 

adequate for the analysis. In general, 1D GRA models permit specification of an elastic bedrock 

condition at the base of the profile. Hence, the depth of exploration should extend into stiff 

material that will mobilize small strains in response to imposed earthquake ground motions 

such that the elastic bedrock assumption is reasonable. At sites with shallow rock, this depth is 

easy to determine. In deep basins, the bottom of a 1D GRA is often determined as the depth 

where VS exceeds a threshold value, ideally as 760 m/s, though often lower due to practical 

considerations. For these reasons, a VS profile for a 1D GRA may need to extend deeper than 30 

m, depending on site geology. 

Borehole methods tend to provide a vertical profile of VS at a point within a site. The degree to 

which the profile is representative of the site depends on geologic conditions, and the 
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associated scale of fluctuation. In some cases, scales of fluctuation within a particular geologic 

unit are available in the literature (e.g., Thompson et al. 2007 for San Francisco Bay area 

sediments). When such studies are not available, knowledge of site geology can aid the 

interpretation of the horizontal scale of fluctuation and guide the horizontal sampling interval. 

Note that the horizontal scale of fluctuation is generally much larger than the vertical scale of 

fluctuation due to the manner in which soils are deposited. To account for variability within a 

site, ideally multiple profiles should be measured and analyzed to gain insights into the influence 

of spatial variability on the resulting ground surface motions. If multiple measurements are 

impractical or unavailable, there are methods for randomizing a measured VS profile to account 

for spatial variability. For example, Toro (1995) presented a method for developing probabilistic 

models of the site velocity profiles for site response studies in which the depth to the layer 

contacts and the VS values are treated as random variables. Values of VS among the layers are 

spatially correlated. 

Surface wave measurements average a larger volume of soil than borehole methods, and utilize 

wavelengths that are similar to those mobilized during earthquake shaking. Fewer surface wave 

measurements may therefore be required to characterize a site because each measurement 

averages a large volume of soil. However, surface wave inversions are non-unique, meaning that 

many shear wave velocity profiles may be consistent with a measured dispersion curve. Many 

computer programs for inverting surface wave dispersion data are capable of providing many 

profiles that are consistent with the dispersion curve. Griffiths et al. (2016) performed a study in 

which many profiles were selected to be consistent with a measured surface wave dispersion 

curve. The dispersion curve was termed the "site signature" and they found that selecting VS 

profiles consistent with the site signature produced significantly less variability in surface motion 

than other methods for randomizing VS profiles (e.g., Toro 1995). They conclude that the site 

signature provides important information that should be incorporated into selection of random 

profiles for ground response analysis. 

One-dimensional ground response analysis does not capture all of the physical process that 

affect site response. Ground motion at a site is affected by a complex interaction of 2D and 3D 

effects, including basin-edge effects, topographic effects, inclined body waves, surface-waves, 

and complex geologic conditions that differ significantly from horizontally layered stratification. 
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Furthermore, low frequency waves mobilize wavelengths that are often significantly longer than 

the thickness of profile used in a 1D GRA study, and are influenced by deep soil and rock 

structures that cannot be captured in 1D GRA models. Thompson et al. (2012) utilized multiple 

earthquake records from 100 KiK-net sites in Japan to study the degree to which site response 

was one-dimensional at the strong motion sites. They computed transfer functions from the 

measured ground motions, and also developed theoretical transfer functions consistent with 

the site velocity profiles. They found that of the 100 sites, 69 sites exhibited low inter-event 

variability thereby providing a suitable means for separating site effects from source and path 

effects. Of these 69 sites, only 16 exhibited site response that was consistent with one-

dimensional wave propagation. Furthermore, they found that surface wave dispersion curves 

were spatially variable within sites that exhibited non-1D wave propagation, and spatially 

consistent within sites that were consistent with 1-D wave propagation. Therefore, making 

multiple surface wave measurements within a site may provide insights into the extent to which 

ground motions can be accurately modeled by 1D GRA. Afshari and Stewart (2016) performed a 

similar study for vertical arrays in California, and found that only 4 of the 12 sites examined to 

date exhibit a reasonably good fit between measured and theoretical amplification functions. 

They found that 1D GRA was able to reduce uncertainty in the site term compared with ergodic 

site factors, but only at spectral periods shorter than about 1.0s. At longer periods, the 

uncertainty reverted to the ergodic values. 

Considering the complex processes that influence site response, it is not surprising that 1D GRA 

often produces biased predictions, particularly at sites with complex geologic conditions. 

Nevertheless, 1D GRA can improve upon the ergodic predictions provided by empirical site 

amplification functions, particularly at soft sites and at sites with a strong impedance contrast. 

Many different geophysical methods can be used to provide the VS profile required as an input 

to 1D GRA codes, and engineers are urged to consider analyzing multiple profiles that are 

consistent with the anticipated scale of horizontal variation. 

Small strain damping is an important consideration for input to 1D GRA, and can be directly 

measured using geophysical methods (e.g., Press and Healy 1957; Mok et al. 1988; Stewart and 

Campanella 1993; Rix et al. 2000; Wang et al. 2006; Yang et al. 2011). Most commonly, small-

strain damping is inferred from the amplitude of the measured waveforms at various distances 
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from the seismic source. Amplitude decreases with distance from the source due to geometric 

attenuation, and due to material damping. Separating out the contribution from material 

damping therefore requires independent knowledge of geometric damping. Wave amplitude 

attenuates more rapidly with distance in soft soils than in stiff soils. Therefore, geometric 

damping is a function of the velocity profile, which complicates the estimation of material 

damping (Foti et al. 2015). 

3.2.5 MEASUREMENT OF VS FOR LIQUEFACTION TRIGGERING EVALUATION 

Recent notable earthquakes such as the 2010 Mw 7.0 Darfield (Canterbury), 2011 Mw 6.2 

Christchurch, and 2015 Mw 7.8 Gorkha (Nepal) earthquakes have continued to remind us of the 

devastating effects of liquefaction of saturated, loose, granular soils. A significant amount of 

ongoing research has been devoted to the study of various aspects of liquefaction, especially 

given the continued influx of data from recent seismic events (e.g., Boulanger and Idriss 2014; 

Maurer et al. 2014; Robertson 2015). 

Liquefaction hazard assessment must address three specific concerns: (1) susceptibility of the 

soil to liquefaction; (2) initiation or triggering of liquefaction; and (3) effects and damage caused 

by soil liquefaction. Susceptibility of a soil to liquefaction depends on soil type, with 

cohesionless "sand-like" soils generally considered susceptible to liquefaction and cohesive 

"clay-like" soils considered susceptible to cyclic softening (Idriss and Boulanger 2008). An 

assessment of susceptibility can only be made based on direct observation of a soil sample, 

either by visual manual classification, or by laboratory testing. Borehole geophysical methods 

facilitate assessment of liquefaction susceptibility based either on trimmings retrieved as the 

borehole is advanced, or based on SPT samples taken during drilling. Downhole methods that 

utilize the cone penetrometer (e.g., SCPT) provide a soil behavior type index that may be used to 

assess liquefaction susceptibility. Non-invasive methods generally do not provide a means of 

assessing liquefaction susceptibility, and independent knowledge of the soil type is therefore 

required to utilize VS to perform a liquefaction triggering evaluation using non-invasive 

techniques. Independent knowledge may be obtained by supplemental site investigations, 

including drilling and sampling, or by knowledge of site geology. 
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For soils that are deemed susceptible to liquefaction, the factor of safety against liquefaction 

triggering is computed as the ratio of the cyclic resistance ratio (CRR) to the cyclic stress ratio 

(CSR). Alternatively, the probability of liquefaction may also be computed from the CRR and CSR. 

Shear wave velocity is utilized in a number of different methods for computing CRR, and also 

influences CSR due to its role in site response. 

3.2.5.1 Correlations Between VS and CRR 

Although CRR is most commonly correlated with penetration resistance measurements, 

correlation with VS provides some fundamental benefits (Table 3.26). Development of excess 

pore pressure during undrained loading is fundamentally a strain-driven phenomenon (Dobry et 

al. 1982). When cyclic shear strains exceed a threshold, pore pressures develop and eventually 

may lead to liquefaction. Mobilized shear strains are fundamentally related to the shaking 

intensity and to the soil stiffness. In fact, the shear strain amplitude for shear waves propagating 

through an unbounded elastic medium is equal to PGV / VS, where PGV is the particle velocity 

amplitude. The presence of the free surface, where shear strain must be zero even when PGV is 

non-zero, alters this relationship for application to liquefaction problems, but the relation 

between shear strain and shear wave velocity is nevertheless fundamental. It is not surprising, 

therefore, that VS correlates with CRR. 

Table 3.26: Advantages and disadvantages of various field tests for assessment of CRR. 

Models directly relating VS to CRR initiated in the 1990's (e.g., Robertson et al. 1992, Kayen et al. 

1992, Lodge 1994), though these efforts were preceded by relations between VS and the 

threshold acceleration required to develop pore pressure (Dobry et al. 1982), and based on SPT-

VS correlations (Seed et al. 1983). The database of VS profiles at liquefaction sites has continued 

to grow with time, resulting in more recent correlations by Andrus and Stokoe (2000) and Kayen 

et al. (2013). These two more recent relationships are discussed in more detail herein. 
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3.2.5.1.1 Andrus and Stokoe (2000) 

The relationship by Andrus and Stokoe (2000) is provided by Eq. 3-92: 

  K V  2  1  
c S1  1  

CRR = a   + b  * − *  MSF (3-92) 
   V K V  V   100  S1 − c S1 S1  

Where VS1 = VS(Pa/σv')0.25 is the overburden-corrected shear wave velocity, VS 
*
1 is the limiting 

upper value of VS1 for cyclic liquefaction occurrence, a and b are curve-fitting parameters, MSF is 

the magnitude scaling factor, and Kc is a correction factor caused by cementation and ageing. 

Based on evaluation of case history data, the values of VS 
*
1 were found to be dependent on fines 

content, FC, as illustrated in Eqs. 3-93 below: 

VS 
*
1 =215 m/s,   for sands with FC ≤ 5% (3-93a) 

VS 
*
1 = 215 – 0.5(FC – 5) m/s, for sands with 5% < FC < 35% (3-93b) 

* (3-93c) VS1 = 200 m/s,   for sands and silts with FC ≥ 35% 

Furthermore, Andrus and Stokoe found that a = 0.022 and b = 2.8 provided reasonable bounds 

for the case history data. Furthermore, Andrus and Stokoe suggest using MSF = (Mw/7.5)-2.56 , 

where Mw is moment magnitude. The value assigned to Kc should be 1.0 for Holocene soils, and 

average estimates of Kc are 0.6 to 0.8 for Pleistocene-age soils. Andrus and Stokoe suggest 

caution and use of engineering judgment in assigning a Kc value lower than 1.0. 

3.2.5.1.2 Kayen et al. (2013) 

Kayen et al. (2013) defined the cyclic resistance ratio as a function of probability of liquefaction 

using Eq. 3-94: 

2.8011 ' −1 (0.073 ⋅V ) − 2.6168 ⋅ ln (M ) − 0.0099 ⋅ ln (σ ) + 0.0028 ⋅ FC − 0.4809 ⋅Φ  ( P )  S1 w vo L  CRR = exp   (3-94) 1.946     

191 

https://Mw/7.5)-2.56
https://VS(Pa/�v')0.25


 
 

     

     

      

    

      

          

  

 

 

   
    

 

    

   

 

 

 

     

 

        

VS(Pa/σv')0.25 Where VS1 = is the overburden corrected shear wave velocity, σvo ' is the in-situ 

vertical effective stress, FC is fines content, and PL is the probability of liquefaction. For 

deterministic application, Kayen et al. suggest using PL = 15%. The Kayen et al. relationship for PL 

= 15% and various Mw values is compared with the Andrus and Stokoe relationship for Mw = 7.5 

in Fig. 3.101. The Andrus and Stokoe relationship tends to ascend more abruptly as VS1 increases 

above about 200 m/s, and is lower than the Kayen et al. Mw = 7.5 relationship at VS1 values less 

than about 210 m/s. 

Figure 3.101: Comparison of Andrus and Stokoe (2000) and Kayen et al. (2013) relationships 
for CSR as a function of VS1. 

3.2.5.2 Influence of VS on CSR 

Seed and Idriss (1971) expressed the CSR as follows: 

(3-95) 

where PGA is the peak horizontal ground acceleration, g is the acceleration due to gravity, and rd 

is a shear stress reduction factor due to the deformable dynamic response of the soil column 

(Idriss and Boulanger 2008). Shear wave velocity influences the PGA term because a VS30 value 
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must be selected to define an ergodic site term when using a GMM, or because a VS profile is 

needed when running a 1D GRA. These site response issues were discussed in the previous 

section and are not repeated here. The rd term also depends on VS because it is related to the 

dynamic response of the soil column. The degree to which VS factors in to rd expressions varies 

by method. Cetin et al. (2004) explicitly include VS 
*
,12m (i.e., the average shear wave velocity in 

the upper 12m) as given in Eq. 3-96: 

 −23.013 − 2.949 ⋅a + 0.999 ⋅M + 0.0525 ⋅V *  max w S ,12m 1+ *   0.341⋅ −( d +0.0785⋅VS +7.586)  ,12 m  16.258 + 0.201⋅e  r = ±ε (3-96) d  −23.013 − 2.949 ⋅amax + 0.999 ⋅M w + 0.0525 ⋅VS 
*
,12m  

rd 

1+ *   0.341⋅(0.0785⋅VS ,12 m +7.586)  
 16.258 + 0.201⋅e  

Where amax is the peak horizontal acceleration in units of g, Mw is moment magnitude, d is 

depth, and εrd is a normally distributed random variable with zero mean and standard deviation 

defined by Eq. 3-97. The Cetin et al. (2004) relationship for rd was adopted in the VS triggering 

procedure by Kayen et al. (2013). 

0.850 σ = d ⋅0.0198 for d < 12.2 m ε rd 

(3-97) 
12.20.850 σ = ⋅0.0198 for d ≥ 12.2m ε rd 

Idriss (1999) formulated an rd expression in terms of depth and moment magnitude, but not 

shear wave velocity. This expression forms the basis of the Idriss and Boulanger (2008) SPT- and 

CPT-based liquefaction triggering procedures, and was based on suites of 1D GRA performed on 

various soil profiles using a variety of ground motions. 

3.2.5.3 Considerations for VS-based Liquefaction Triggering Evaluation 

A key benefit of using VS field techniques for assessment of liquefaction triggering potential is 

that it is related to the small-strain shear modulus, Gmax. VS may therefore be useful for other 

engineering evaluation procedures, in addition to liquefaction triggering evaluation, such as 

settlement analysis, soil structure interaction applications, and others. A second benefit of VS-

based liquefaction triggering procedures is that VS measurements are less sensitive to fines 
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content than penetration resistance measurements. The presence of fines within a matrix of 

coarser-grained soil particles has little effect on VS because the shear waves are carried by 

interparticle contacts and the fines do not significantly participate in the wave propagation 

mechanism (the effect, of course, becomes large as the fines content increases and the coarse 

grained particles are floating in a matrix of fine particles). The fines, however, more significantly 

influence penetration resistance measurements because the soil becomes more compressible, 

and excess pore pressures dissipate more slowly. The fines corrections commonly applied in 

liquefaction triggering evaluation procedures generally reflect two distinct phenomena: (1) the 

influence of fines on penetration resistance or VS, and (2) the influence of fines on liquefaction 

resistance. Because the influence of fines on VS is small, the fines correction more directly 

corresponds to the influence of fines on liquefaction resistance. 

Andrus and Stokoe (2000) outline potential disadvantages in using VS methods for liquefaction 

evaluation. First, the fact that small-strain shear waves fail to induce liquefaction-inducing 

excess pore-water pressure buildup (unlike the more destructive penetration tests) renders 

them more sensitive to weakly-cemented soils or silty soils above the water table (in which 

negative pore-water pressures can increase effective stresses and thus increase VS). Second, as 

physical samples cannot be obtained directly from geophysical methods, potentially-non-

liquefiable layers with clays or higher non-plastic FC may be missed. Finally, the likelihood of 

overlooking thin, potentially liquefiable strata increases when using test intervals that are too 

large. These concerns should be considered when planning a site investigation for purposes of 

liquefaction resistance analysis, and in such cases having supplementary data from penetration 

resistance tests is recommended. 

3.3 ESTIMATING VS FROM PENETRATION RESISTANCE MEASUREMENTS AND FROM PROXIES 

Shear wave velocity (VS) occasionally must be estimated at a site where a geophysical 

measurement is unavailable and cannot reasonably be obtained. In such circumstances, VS can 

be estimated based on correlations with penetration resistance, or with various proxies such as 

surface geology, ground slope, or elevation. This chapter discusses correlations between VS and 

penetration resistance, followed by a discussion of proxy-based methods. These methods are 

shown to provide highly uncertain estimates of VS, which may significantly influence ground 

motion predictions. We therefore provide an example in which uncertainty in VS30 is propagated 
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through a GMM to obtain distribution functions representing surface motion for various 

methods for estimating VS30. The primary conclusion from this section is that VS should be 

measured whenever possible, and correlations with penetration resistance or proxy-based 

methods should only be used when direct measurements cannot reasonably be obtained. 

3.3.1 CORRELATIONS BETWEEN VS AND PENETRATION RESISTANCE 

Compared with penetration resistance, VS is more sensitive to cementation, in situ stresses, and 

age, and less sensitive to fines content. It is therefore no surprise that the correlation between 

VS and penetration resistance tends to be poor. Nevertheless, correlation with penetration 

resistance does provide an incremental improvement in estimating VS30 compared with 

correlations with surface geology or geomorphology, and can be quite good when calibrated 

within a particular site, and is therefore valuable in some contexts. This section focuses first on 

explaining appropriate and inappropriate uses of correlation between VS and penetration 

resistance, then presents a number of correlations that have been formulated including one that 

is specific for Caltrans bridge sites, and finally presents the ground motion uncertainty that 

arises from prediction errors in various methods of obtaining VS30. 

An example of appropriate use of correlations between VS and penetration resistance is 

screening a large number of bridges to identify a manageable subset for seismic hazard 

evaluation. Caltrans owns approximately 13,000 bridges, most of which were constructed 

before 1970. Traditional geotechnical site investigations including measurements of penetration 

resistance (SPT blow count and/or CPT tip resistance) were performed at these bridge sites, 

results of which are available in logs of test borings. However, shear wave velocity profiles were 

not measured at most of these sites. Measuring VS30 at the thousands of bridge sites where 

geophysical measurements were not made is not reasonable for seismic hazard screening. In 

this case, utilizing the correlation between VS and penetration resistance would be more 

accurate than proxy-based correlations, and could therefore be utilized to improve the 

screening procedure. 

An example of inappropriate use of correlations between VS and penetration resistance is design 

of a new bridge or detailed retrofit evaluation of an existing bridge. In these cases, a direct 

geophysical measurement is generally feasible, and should be performed to significantly reduce 

195 



 
 

    

 

 

       

        

      

   

       

 

   

 

 

      

     

      

       

      

     

   

        

  

   

      

    

      

 

   

      

        

   

 

the error in the resulting VS30 value. Correlation with penetration resistance should never be 

used when a direct geophysical measurement is feasible. 

3.3.2 PUBLISHED RELATIONS BETWEEN VS AND PENETRATION RESISTANCE 

Many studies have been performed to derive relations between VS and blow count (N) from 

various regions around the world. Brandenberg et al. (2010) and Wair et al. (2012) summarized 

many of these studies, and equations are not reproduced in this report for brevity. Most 

published relations utilize the functional form VS = β0·Nβ1 , where the constants β0 and β1 were 

determined by statistical regression of a data set. Significant differences among these relations 

indicate regional variability. Therefore, relations formulated for a specific region should be 

utilized when available. 

Although the functional form VS = β0·Nβ1 is common, it ignores the fact that VS and penetration 

resistance scale differently with overburden pressure. Note that (N1)60 = N60(σv'/pa)m , and VS1 = 

VS(σv'/pa)n , where m ≠ n in general. Therefore a "uniform" soil profile with constant (N1)60 and 

VS1 will exhibit a relation between VS and N60 that depends on overburden stress, and directly 

correlating VS with N60 is problematic. Acknowledging the overburden scaling problem, a 

number of relations have explored using various combinations of overburden-corrected values. 

Sykora and Koester (1988) evaluated a relation between VS and (N1)60, and found the correlation 

to be poorer than the relation directly between VS and N60 because both VS and N60 vary with 

overburden stress, whereas (N1)60 does not. Andrus et al. (2004) correlated the overburden-

corrected shear wave velocity with overburden-corrected blow count values using a functional 

form VS1 = β0·(N1)60
β1 for Holocene clean sands. This functional form is superior because it 

removes the effect of overburden since both VS1 and (N1)60 are independent of overburden 

stress, provided that the exponents m and n are known. 

Brandenberg et al. (2010) utilized SPT blow counts and suspension logs at Caltrans bridge sites 

to develop a relation defining VS as a function of N60 and σv' because independent knowledge of 

the m and n was not available. The functional form adopted by Brandenberg et al. (2010) is re-

arranged here as shown in Eq. 3-98: 
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′𝛽𝛽2 𝑉𝑉𝑠𝑠 = 𝛽𝛽0𝑁𝑁60 
𝛽𝛽1𝜎𝜎𝑣𝑣 (3-98) 

where β0, β1, and β2 are regression constants that depend on soil type (Table 3.27). The 

regression also included an inter-boring random effect term, η, with zero mean and standard 

deviation τ, and an intra-boring variation term, ε, with zero mean and standard deviation σ. 

Soil 
Type β0 β1 β2 σ τ 

Sand 57.1 0.096 0.236 0.57-0.07·ln(σv') if σv'≤200kPa 
0.20 if σv'>200kPa 

0.217 

Silt 43.9 0.178 0.231 0.31-0.03·ln(σv') if σv'≤200kPa 
0.15 if σv'>200kPa 

0.227 

Clay 54.3 0.230 0.164 0.21-0.01·ln(σv') if σv'≤200kPa 
0.16 if σv'>200kPa 

0.227 

Table 3.27: Regression parameters (Brandenberg et al. 2010). 

Figure 3.102 shows the relations among VS, N60, and σv' from Brandenberg et al. (2010). These 

figures show clearly that the relation between VS and N60 is not very strong, as reflected by the 

standard deviations in Table 3.27. This observation supports the conclusion that such 

correlations should not be used when a geophysical measurement can be reasonably obtained. 

Soil Type β0 β1 β2 

Sands 30 0.23 0.23 

Clays & Silts 26 0.17 0.32 

Gravels - Holocene 53 0.19 0.18 

Gravels - Pleistocene 115 0.17 0.12 

Table 3.28: SPT-stress-VS correlation equations (Wair et al. 2012). 

Wair et al. (2012) summarized various relations for relating VS to SPT blow count and CPT tip 

resistance. Their recommendations for SPT blow count utilize the same functional form as 

Brandenberg et al. (2010), and the constants are provided in Table 3.28. These relations produce 
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different predictions of VS relative to those by Brandenberg et al. (2010), which is a reflection of 

the inherent uncertainty in the correlations. Wair et al. (2012) did not quantify prediction errors 

in the same manner as Brandenberg et al. (2010). 

Figure 3.102: Results of regression equations for VS as a function of N60 and σʹv for (a) sand, (b) 
silt, and (c) clay, with trend lines corresponding to the mean and ±1σ for σv' and N60 

(Brandenberg et al. 2010). 

In addition to the SPT-based relations, Wair et al. (2010) also provided relations between VS and 

CPT tip resistance, qt or qc, and sleeve friction, fs, and overburden stress, σv'. They recommend 

computing VS as the average value of equations provided by Mayne (2006), Andrus (2007), and 
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Robertson (2009). Details of these methods are not reproduced in this report for brevity, but are 

summarized by Wair et al. (2010). 

Wair et al. (2012) suggest that site-specific relations between VS and CPT data may be developed 

according to the functional form in Eq. 3-99, in which the constants β0, β1, β2, and β3 must be 

obtained by regression of a known dataset containing both geophysical measurements and CPT 

data. 

′𝛽𝛽2 𝑉𝑉𝑠𝑠 = 𝛽𝛽0𝑞𝑞𝑎𝑎
𝛽𝛽1𝑓𝑓𝑠𝑠

𝛽𝛽3𝜎𝜎𝑣𝑣 (3-99) 

Benefits of this procedure are that (i) much of the uncertainty in the correlation between VS and 

penetration resistance is eliminated due to the site-specific calibration of the regression 

constants, and (ii) CPT soundings can be obtained rather quickly at many locations, permitting VS 

to be estimated at multiple locations within a geological unit without having to make multiple 

geophysical measurements. Although this procedure may be reasonable at short separation 

distances within a single geological stratum, errors may arise at larger distances, or when 

geological conditions change within a site. More research is required to quantify these errors. 

3.3.3 PROXIES FOR VS30 

In many cases, geophysical measurements and penetration resistance measurements are not 

available at a site where VS30 must be estimated. This is common for mapping applications, and 

is also the case at many strong ground motion recording stations. In these cases, VS30 may be 

approximated from proxies that include geologic mapping, topographic slope, and/or terrain 

classes. These methods involve significant uncertainty, and should only be used when 

geophysical measurements and cannot reasonably be obtained at a particular site. Recent 

examples of proxy-based methods for estimating VS30 are Yong (2016) for California, Seyhan et 

al. (2014) for the NGA-West 2 project, Parker et al. (2017) for Central and Eastern North 

America, and Ahdi et al. (2017) for the Pacific Northwest and Alaska. This report focuses on 

application of geophysical measurements to geotechnical problems. Therefore details of the 

proxy-based methods are omitted from the report, and readers are referred to other sources of 

literature for details of these models. 
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3.4 ESTIMATING VS FROM LABORATORY TESTING 

Under certain circumstances, field-based geophysical methods may provide less than ideal 

coverage or may suffer from limitations that prevent adequate estimates of VS. For example, in 

surface wave methods such as MASW and SASW, the amount of uncertainty in VS increases and 

the resolution capabilities decrease as the depth of investigation increases. Seismic refraction is 

incapable of resolving the VS of a layer where a stiffness inversion exists (i.e., stiff over soft 

strata). Finally, the recorded wavefields from seismic reflection may be complex due to 

overlapping reflections from multiple soil layers and/or may suffer from poor signal to noise 

ratio. Borehole-based geophysical methods may be useful in such circumstances. However, as 

described in previous sections, borehole methods are not without their own limitations, 

particularly related to costs, coupling between the borehole wall and casing, and logistical 

constraints. Therefore, in a number of cases, laboratory testing may prove quite useful in 

overcoming these issues and estimating VS and/or VP. In the case of material damping, 

laboratory methods are well-suited as they allow testing in a controlled environment that better 

address the inherent difficulties in measuring damping in dry, saturated, or cemented soils (e.g., 

Toksoz et al. 1979). For example, laboratory conditions can reduce uncertainty in the effects of 

geometric attenuation and reflections/scattering due to heterogeneities present in the wave 

path. 

3.4.1 RESONANT COLUMN TESTING 

Resonant column testing (ASTM D4015) has been used for over 50 years to determine the 

relationship between shear modulus, material damping, and shear strain in soils. Richart et al. 

(1970) provides a good discussion of the early history regarding development of resonant 

column testing. It is the most commonly used laboratory apparatus for measuring the small-

strain properties of soils (Kramer 1996). Much of the current ASTM standard for this test 

method is derived from the seminal work of Drnevich et al. (1978). In this test, a solid or hollow 

cylindrical soil sample is placed into what is typically a fixed-free apparatus (Fig. 3.103). The 

bottom of the specimen is affixed to a rigidly fixed base and the top of the specimen is affixed to 

a driving plate that applies a torsional input excitation. A sinusoidal torque with a range of 

excitation frequencies is typically applied to the specimen, though random noise (Amini et al. 

1988) and impulse loading (Tawfiq et al. 1988) have also been employed previously. By 

measuring the response of the specimen to this input excitation in the time and frequency 
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domain, the resonant (i.e., fundamental) frequency is obtained (Fig. 3.104). The VS of the 

specimen can then be estimated by solving the equation of wave motion in a prismatic rod (see 

Richart et al. 1970 or Kramer 1996 for details): 

𝑃𝑃 𝜔𝜔𝑛𝑛ℎ 𝜔𝜔𝑛𝑛ℎ 
= 𝑡𝑡𝑎𝑎𝑛𝑛 (3-100) 

𝑃𝑃𝑣𝑣 𝑉𝑉𝑠𝑠 𝑉𝑉𝑠𝑠 

where I is the mass polar moment of inertia of the specimen, Io the mass polar moment of 

inertia of the torsional loading system attached to the top of the specimen, h the height of the 

specimen, ωn the fundamental angular frequency (ωn = 2πfn), and VS the shear wave velocity. 

Figure 3.103: Schematic of a resonant column device (Drnevich et al. 2015). 

Figure 3.104: Example of a soil specimen’s frequency response from resonant column testing 
(Khan et al. 2008). 
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Assuming that testing is performed at very small strains, the VS as computed from Eq. 3-100 can 

be used to represent the in-situ VS and is related to the small strain shear modulus (Gmax) based 

on Eq. 3-2. Damping is estimated from the frequency response curve using a half-power 

bandwidth approach or from a logarithmic decrement approach after subjecting the sample to 

free vibration (see Kramer 1996 for details on these methods). Once resonant response has 

been obtain at one value of torque, the torque is then adjusted (which changes the level of 

applied shear strain) and the specimen is again excited through a range sinusoidal excitations 

with different frequencies. Testing in this manner continues and allows estimates of shear 

modulus and damping at different shear strain levels (Fig. 3.105). 

Figure 3.105: Example of shear modulus and damping ratio results from resonant column 
testing (Werden et al. 2013). 
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The resonant column test is capable of exciting the specimen at strain levels ranging from 10-5% 

to 0.5%, which allows it to develop modulus reduction and damping curves for use in soil 

dynamics applications (e.g., earthquake engineering, traffic vibrations, machine foundations, 

etc.). It should also be noted that the apparatus can apply axial loading in a similar manner as 

the torsional loading, which yields estimates of the constrained modulus. However, resonant 

column testing is used so rarely in this manner that ASTM D4015 removed this discussion in the 

latest revision to the standard. The apparatus is often housed in a pressure chamber that allows 

testing to be performed at a range of confining stresses representative of various depths within 

a soil profile. A significant amount of literature exists regarding resonant column testing, 

including references related to developments in the methodology and/or available testing 

systems (e.g., Drnevich et al. 1978; Drnevich 1985; Avramidis and Saxena 1990; Cascante et al. 

2003; Kumar and Clayton 2007), interpretation of results (e.g., Amini et al. 1988; Tawfiq et al. 

1988; Cascante and Santamarina 1997; Ashlock et al. 2013; Werden et al. 2013), and different 

applications of the method (e.g., Prange 1981; Acar and El-Thahir 1986; Macari and Hoyos 1996; 

Kramer 2000; Hardin and Kalinski 2005; Senetakis et al. 2012; Castelli and Lentini 2017). Despite 

the strong history of this test method, its use is largely confined to academic settings where 

researchers explore the fundamental behavior of soils or to large critical projects (e.g., nuclear 

power plant project). Much of this can be attributed to the large costs and highly specialized 

nature of the equipment. Other, even more specialized testing equipment exists to measure 

shear modulus and damping [e.g., the Dual Specimen Direct Simple Shear (DSDSS) device as 

discussed in Doroudian and Vucetic (1995)]. However, the availability and costs of such 

equipment even further limit their applications to academic settings. 

3.4.2 TRANSDUCERS AND BENDER ELEMENTS 

In addition to resonant column testing, wave velocity has also been measured in the laboratory 

using transducers and/or bender elements (Fig. 3.106) in a through transmission setup (typically 

referred to ultrasonic pulse testing) (Fig. 3.107). In such cases, an incident wave is input into one 

side of a specimen with known geometry and the arrival time is recorded on the other side of 

the specimen. Care must be exercised regarding data interpretation as there is some ambiguity 

in which part of the received signal best represents the arrival time of the wave, particularly for 

shear waves (e.g., see Lee and Santamarina 2005a for discussion) (Fig. 3.108). The use of 

multiple reflections can aid this determination and allow for consistency in how travel time is 
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defined (Lee and Santamarina 2005a). Additionally, transducers and bender elements both 

exhibit a near field response, where the waves are not fully developed and signal amplitudes 

fluctuate spatially instead of decaying from geometric spreading (e.g., Lee and Santamarina 

2005a; Lee and Santamarina 2005b) (Fig. 3.109). 

(a) (b) 

Figure 3.106: Sensors for estimating VS in the laboratory: (a) Transducers (www.olympus-
ims.com); and (b) Bender elements (www.piezo.com). 

Figure 3.107: Schematic and associated electronics for through transmission ultrasonic pulse 
testing with transducers/bender elements (Brignoli et al. 1996). 
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Figure 3.108: Typical S-wave signal and potential interpretations for arrival time: (A) first 
deflection; (B) first bump maximum; (C) zero after first bump; and (D) first major peak (Lee 
and Santamarina 2005a). 

Figure 3.109: Near field effect on signal amplitude along the centerline of a typical P-wave 
transducer (Lee and Santamarina 2005b). 

Once the arrival time is determined, the wave velocity (VP or VS) is then estimated by simply 

dividing the length of the specimen by the arrival time of the corresponding wave. Estimates of 

velocity using transducers and/or bender elements can be as much as 3% - 10% larger than 

those obtained in resonant column testing due to the different frequencies used during testing 

(Stokoe et al. 1994). Transducers and bender elements both rely on the phenomenon of 

piezoelectricity to accomplish these measurements. Piezoelectricity was first observed by Curie 

and Curie (1880) and refers to the voltage potential that occurs in certain ceramic materials due 

to an applied mechanical stress. It results from lack of symmetry in the crystalline structure of 

the ceramic or from the electrically polar nature of crystals (Lee and Santamarina 2005a). As the 

amount of crystal asymmetry increases, the piezoelectric effect increases as well, which leads to 

increasingly larger voltage output for a given applied mechanical stress. Moreover, this process 

works in the inverse direction, whereby an application of a voltage potential across the 

crystalline structure of the ceramic causes it to distort. The polarization direction of the crystal 
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changes the sign of the voltage output and, by extension, the direction of mechanical 

deformation. 

Figure 3.110: Schematic of typical ultrasonic transducer (Lee and Santamarina 2005b). 

Figure 3.111: Example of P-wave signal generated by S-wave transducers (Brignoli et al. 1996). 

Transducers are composed of a piezoelectric element [e.g., lead zirconate titanate (PZT)], a 

backing block that controls the extent with which the piezoelectric element vibrates after 

excitation, and a matching layer that optimizes the energy transferred from the piezoelectric 

element to the medium (Fig. 3.110). Both VS and VP can be measured for the soil by employing 

transducers that generate shear waves and compression waves, respectively. Care must be 

exercised when interpreting the first time of arrival because spurious motions can be present, 

particularly for shear wave transducers where it is practically impossible to prevent some 

amount of compressive wave energy from being generated (Brignoli et al. 1996) (Fig. 3.111). 
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Additionally, the source and receiver transducers should be separated by at least two 

wavelengths to reduce near-field effects, particularly in VS measurements (Sanchez-Salinero et 

al. 1986). 

Some of the earliest instances of measuring VS using an ultrasonic pulse arrangement with shear 

wave transducers occurred in the 1960s (e.g., Lawrence 1963; Nacci and Taylor 1967; Sheeran et 

al. 1967). Since that time, its usage has been more widely adopted (e.g., Stephenson 1978; 

Cockaerts and De Cooman 1994; Brignoli et al. 1996; Nakagawa et al. 1996; Fioravante 2000; Inci 

et al. 2003). In many cases, suppliers of geotechnical testing equipment can provide modules for 

their equipment that contain transducer-based systems, including sensors, automated data 

acquisition systems, and other peripheral hardware for operation. However, based on recent 

publications, it appears that bender elements have become more popular than transducers for 

estimating VS in soils. 

(a) 

(b) 

(c) 

Figure 3.112: Schematic representation of bender elements: (a) Typical components; (b) Series 
type wiring; and (c) Parallel type wiring (Brandenberg et al. 2006). 

Bender elements consist of two conductive outer electrodes, two piezoceramic sheets between 

the electrodes, and a conductive metal shim at the center (Fig. 3.112). Depending on how the 

bender elements are wired, they can behave in “parallel” or “series” operational modes. For 

series type bender elements, the two piezoelectric layers are connected at the outer electrodes, 

which results in their poling directions being opposite to one another (Fig. 3.112b) Parallel type 
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bender elements have the voltage wire connected to the conductive metal shim and the outer 

electrodes share a common ground (Fig. 3.112c). This wiring results in the piezoelectric sheets 

sharing the same poling direction and twice the level of displacement for the same applied 

voltage. Given this behavior, parallel type bender elements are well suited to behave as a source 

of shear waves and series type bender elements as the receiver. Bender element testing to 

estimate wave velocity of laboratory samples was first introduced in the 1970s (Shirley and 

Anderson 1975; Shirley and Hampton 1978; Shirley 1978). In some ways, bender elements are 

preferable for this application as they tend to be smaller, operate at lower frequencies, and can 

more readily be adapted to interface with a typical triaxial, direct shear, and/or oedometer 

testing apparatus. Bender elements also develop larger deformations (and stronger input 

signals) for a given voltage excitation when compared to shear wave transducers (Brignoli et al. 

1996). Moreover, shear wave transducers can suffer from limitations related to poor coupling, 

weak directivity, high operating frequency [typically in the ultrasonic range (>20 kHz)], and/or 

impedance mismatch (Lee and Santamarina 2005a). However, bender elements must be 

installed so that they penetrate the sample being tested, which may cause issues with stiffer 

soils and soils with large particles/aggregates (Brignoli et al. 1996). Since its inception in the 

1970s, bender element testing has experienced increased rates of usage for estimating VS in 

small-scale (e.g., triaxial, oedometer) and/or large-scale (e.g., centrifuge model) laboratory 

samples (e.g., Dyvik and Madshus 1985; Fam and Santamarina 1995; Jovičić et al. 1996; 

Pennington et al. 1997; Lee and Santamarina 2005a; Brandenberg et al. 2006; DeJong et al. 

2006; Zhou and Chen 2007; Montoya et al. 2012; El-Sekelly et al. 2014). As with transducers, 

many geotechnical testing equipment suppliers offer bender element systems as add-on 

modules for testing equipment [typically for their strength testing equipment (e.g., triaxial 

apparatus)]. 

3.4.3 APPLICABILITY OF LABORATORY TESTING 

Laboratory measurements of VS, VP, and/or damping may be desirable under certain 

circumstances related to the feasibility of field geophysical measurements. Generally speaking, 

measuring the in situ geophysical properties of a soil is preferable with field-based methods that 

are non-destructive since testing occurs at the same stress and drainage conditions. These 

approaches are more efficient and they avoid the limitations of sample disturbance that are 

inevitably present whenever drilling and sampling occur to procure laboratory specimens. In 
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fact, in many cases, laboratory samples may be reconstituted or subjected to remolding in an 

attempt to better replicate field density conditions at the expense of maintaining soil 

fabric/structure (Kramer 1996). Moreover, laboratory samples only represent a distinct depth 

and/or location within the site. This implies that laboratory measurements of geophysical 

parameters are likely to provide less overall information regarding general site conditions as the 

samples may only cover a limited area of the site. There is also always concern as to whether a 

given sample is truly representative of the strata of interest. Field based geophysical methods 

sample a much larger area and are likely to “average” local variations in geophysical properties 

that may highly affect a particular sample. Additionally, laboratory testing systems must be 

appropriately assembled. In the case of resonant column testing, this means that the apparatus 

must be appropriately calibrated and the specimen must be placed in a membrane while 

minimizing disturbance. For bender element or transducer testing, adequate coupling must be 

ensured between sensor and specimen and electrical coupling issues must be addressed with 

adequate shielding. Despite these issues, laboratory measurements do provide some 

advantages. For instance, conditions in the laboratory are much more controlled and data 

interpretation is often more straight forward. The desired dimensions for laboratory 

investigations are drastically reduced in scale to centimeters from the tens of meters necessary 

in the field, which leads to a corresponding increase in resolution. These effects often 

considerably reduce the amount of uncertainty present in geophysical laboratory 

measurements. However, this must always be balanced against the limitations related to sample 

disturbance and limited spatial coverage of the measurements as previously described. 

3.5 APPLICATIONS RELATED TO NON-DESTRUCTIVE TESTING (NDT) 

As previously noted in this document, there is significant overlap between geophysical methods 

as applied to earth materials and for non-destructive testing (NDT) purposes. Transportation 

agencies acknowledge the similarities between geophysical methods and NDT in practice (e.g., 

Fig. 1.4). In many cases, there is no formal distinction between geophysics and NDT. For the 

purposes of this document, geophysical methods measure the properties of natural earth 

materials and NDT evaluate properties of engineered materials (e.g., pavement, concrete, 

structural fills, etc.) as suggested by Wightman et al. (2003). The following sections briefly 

describe important applications of NDT for transportation infrastructure and their 

corresponding geophysical methods. A comprehensive discussion regarding NDT is beyond the 
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scope of this document and the reader is encouraged to review the references described in each 

section and other extensive literature on the topic (e.g., Wightman et al. 2003; Von Quintus et 

al. 2009). 

3.5.1 QUALITY ASSURANCE OF PAVEMENT CONSTRUCTION 

Nearly all state DOTs perform quality assurance on pavement construction by measuring density 

with coring samples and smoothness with profilographs (Cominsky et al. 1998; Von Quintus et 

al. 2009). NDT methods have seen increased usage for assessing the quality of hot mix asphalt 

(HMA) overlays and flexible pavement construction due to their ability to evaluate pavement 

material properties in a time-efficient manner with limited disruptions to traffic operations. 

Additionally, NDT methods can potentially address some of the challenges associated with 

properly evaluating the influx of new technologies in asphalt pavements (e.g., recycled products, 

binder additives, stone matrix asphalts, warm mix asphalts, etc.). Finally, NDT methods can be 

used to monitor long-term condition of existing pavements as a form of early stage 

deterioration detection (Wightman et al. 2003). In this manner, NDT can serve as a component 

of network-level pavement management efforts. 

Typical NDT technologies for evaluation of pavement include deflectometers, GPR, impact echo, 

ultrasonic pulse velocity, infrared thermography, intelligent compactors, lasers, non-nuclear and 

nuclear density gauges, permeameters, and ultrasonic seismic devices (Tables 3.29 – 3.30). A 

detailed discussion of the operation of all these NDT technologies is outside the scope of this 

study on geophysics and earth material properties and the reader is encouraged to refer to 

multiple references available regarding NDT in pavements (e.g., Wightman et al. 2003; Von 

Quintus et al. 2009). However, one particular item of note is that many of the NDT methods 

share similar characteristics with geophysical testing methods previously highlighted in this 

document. For example, GPR as used for pavement assessment relies on higher frequency 

antenna to focus on the immediate near surface, but is otherwise identical in practice to GPR as 

used in geophysical studies. Many of the seismic wave systems (e.g., ultrasonic pulse velocity) 

rely on testing techniques that share many of its fundamental features with seismic 

reflection/refraction approaches. In fact, the overlap between the two areas has continuously 

increased as many of the recent development in seismic geophysical methods (e.g., SASW, 

MASW, etc.) have been simultaneously studied within the context of earth materials and 
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pavements. For example, since its inception in the 1990’s, there has been growing interest in 

using MASW to evaluate the stiffness of pavements and underlying subgrades as an 

investigative quality assurance tool (e.g., Park et al. 2001; Ryden and Lowe 2004; Alzate-Diaz and 

Popovics 2009; Lin and Ashlock 2015). Given these links, it is expected that future new 

developments in geophysical methods will continue to improve the current state of practice for 

quality assurance of pavement materials. 

Table 3.29: Summary of NDT methods used to evaluate pavement properties for quality 
control (Von Quintus et al. 2009). 
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Table 3.30: Summary of NDT methods for pavement evaluation, including information 
regarding costs, training needs, portability, etc. (Schmitt et al. 2013). 

In addition to density and smoothness, critical field construction-related characteristics that 

influence flexible pavement quality, stability, and durability include mix segregation, in-place 

compaction, layer thickness, temperature segregation, layer interface bonding, and layer moduli 

(Schmitt et al. 2013) (Table 3.31). As previously noted, many state DOTs rely on laboratory tests 

on coring samples or on field tests that provide information regarding volumetric properties 

(e.g., density, presence of voids, thickness, etc.) and smoothness of the asphalt layer. The 

current Mechanistic-Empirical Pavement Design Guide (MEPDG) uses layer modulus as a key 

material property for structural design of flexible pavements. Layer modulus has also been 

demonstrated to be more objective for characterization of asphalt layers because it 

incorporates the effects of temperature and loading frequency on pavement performance 

(Nazarian et al. 2005). Therefore, there has been increasing interest in procedures to measure 
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the modulus of each pavement layer shortly after placement during construction (Celaya and 

Nazarian 2006). This shift from an empirical to a performance-based mechanistic design has 

partially driven the increased interest in NDT technologies as many can be used to estimate 

modulus (Table 3.29). However, it should be noted that Von Quintus et al. (2009) demonstrated 

significant differences in the field values of moduli measured using NDT when compared to 

results from laboratory tests on coring samples (Tables 3.32 – 3.33). However, the results 

generally correlated well with increases in laboratory measured moduli exhibiting similar 

increases in NDT measured moduli. It is expected that efforts will continue in the future to 

address the challenges in applying NDT methods and corresponding moduli measurements for 

quality assurance of asphalt pavements. 

Table 3.31: Summary of material properties used for design and acceptance of flexible 
pavements and HMA overlays (Von Quintus et al. 2009). 
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Table 3.32: Adjustments between moduli measured using laboratory methods and field NDT 
methods for unbound layers (Von Quintus et al. 2009). 
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Table 3.33: Adjustments between moduli measured using laboratory methods and field NDT 
methods for HMA layers (Von Quintus et al. 2009). 

3.5.2 DETERMINATION OF CONCRETE CONDITION/INTEGRITY 

The use of reinforced concrete is ubiquitous on transportation projects across a wide range of 

scales and applications (e.g., bridge decks, retaining walls, concrete pavements, foundations, 

etc.). This signifies that measuring the properties of concrete is an important aspect of quality 

assurance for many transportation related projects. The compressive strength of concrete is 

typically the property of interest when evaluating concrete structures, though other concrete 

properties such as air void content, surface roughness, density, and chloride content among 

others may be relevant depending on application. For new structures, a common approach for 

quality assurance is to simultaneously cast samples of the concrete used in the structure for 

future evaluation of compressive, flexural, and tensile strengths. There are a number of 

disadvantages to this approach, including the delay in availability of results (i.e., at least 28 

days), differences in the concrete samples relative to the actual structure, and dependence of 
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concrete strength properties on sample size and shape (Bungey et al. 2006). In a similar manner 

to asphalt pavements, many DOTs also employ coring methods to retrieve samples of concrete 

as a quality assurance method during construction and as an investigative method on potentially 

problematic in-service concrete structures. However, this approach suffers from similar 

limitations related to inefficiency and the point source nature of such a measurement. 

Given the aforementioned limitations, NDT methods have long been utilized to evaluate 

concrete properties. Though somewhat dated, Carino (1994) thoroughly reviews the historical 

development of NDT methods for evaluating concrete. The relationship between NDT results 

and the desired concrete property is typically indirect and a reliable correlation must be 

established. Discussion on all the available correlations between NDT measurements and 

concrete properties is outside the scope of this document, but the reader is referred to existing 

references that highlight these relationships (e.g., Malhotra and Carino 2004; Bungey et al. 

2006). Since NDT methods only indirectly evaluate concrete properties, it has typically been 

advised that multiple NDT methods be used so that secondary measurements can mitigate the 

influence of uncertainty in a primary measurement (Breysse 2012; Sbartai et al. 2012). 

Additionally, NDT methods have often been combined with “semi-destructive” tests that may 

cause localized surface zone damage or require the removal of surface finishes (Bungey et al. 

2006). Table 3.34 provides a list of various testing methods (including NDT, partially destructive, 

and destructive methods) available to evaluate concrete properties for quality assurance 

purposes. Generally, this list includes penetration tests, rebound tests, pull out tests, dynamic 

tests, and radioactive methods. 
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Table 3.34: List of principal testing methods to evaluate concrete properties (Bungey et al. 
2006). 
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(a) (b) 

Figure 3.113: Example of correlations between concrete compressive strength and: (a) 
rebound hammer index; and (b) seismic velocity (Mikulic et al. 1992). 

Many of the NDT methods highlighted as useful for pavement testing purposes in the previous 

section are either directly applicable to concrete or share many similarities with comparable 

concrete evaluation methods (e.g., GPR, impact echo, infrared thermography, etc.). Similar to 

previous discussions related to earth materials, electromagnetic and electrical NDT methods in 

concrete (e.g., GPR, ERI, etc.) are often used to evaluate the presence of anomalous features. 

They can establish the presence of voids, cracks, and delamination of steel for damage detection 

(Hugenschmidt and Mastrangelo 2006; Barnes et al. 2008) or determine water or chloride 

content for corrosion evaluation (Saleem et al. 1996; Sbartai et al. 2006; Sbartai et al. 2007). 

Radiation-based methods have been in use since at least the 1960s to assess density as either a 

proxy for strength or to locate the presence of voids and defects in concrete construction (Preiss 

1965; Preiss and Caiserman 1975; Rucker 1990; Liebich 2004; Winters 2014). Given that the 

unconfined compressive strength of weaker rocks fall within range of typical concrete 

compressive strength, it is unsurprising that there is significant overlap between 

NDT/geophysical methods to measure these properties. The most common methods to evaluate 

concrete compressive strength include seismic NDT methods such as the ultrasonic pulse 

velocity (UPV) or pulse-echo techniques or partially destructive methods such as the Schmidt 

hammer (i.e., rebound hammer) (Breysse 2012) (Fig. 3.113). The results from these methods 
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(i.e., seismic velocity and rebound hammer index) correlate very well with concrete compressive 

strength. The correlations between seismic velocity and compressive strength of concrete use 

similar functional forms to those presented for UCS of rock. Breysse (2012) provides a good 

summary of these relationships, including a useful discussion on variability and uncertainty of 

the velocity measurements in typical seismic-based NDT methods for concrete integrity testing. 

From a geotechnical perspective, the most likely encounter with concrete integrity testing using 

NDT is in quality assurance of cast-in-drilled-hole (CIDH) shaft foundations. Given the “blind” 

process and potential for construction defects, many state DOTs specify nondestructive testing 

of newly constructed CIDH foundations, particularly for shafts drilled and placed under wet 

construction conditions. A key step in acceptance of NDT techniques can be traced back to the 

Baker et al. (1993) FHWA report on cast in place foundations. Since that time, the field of NDT 

for foundation integrity has undergone tremendous technological advances. Many of the 

aforementioned NDT techniques from Table 3.34 can be used to evaluate the integrity of drilled 

shaft foundations. Generally, NDT for this application can be applied either at the ground 

surface or within inspection tubes installed with the rebar cage during shaft construction. 

Surface techniques such as the sonic echo (SE) test (i.e., impact echo test, pile integrity test) or 

impulse response (IR) test rely on inputs of stress waves applied to the top of the shaft and 

measurements of reflected wave energy in the time or frequency domain. However, these 

techniques can suffer from limitations related to uncertainty in size and location of any 

anomalies, particularly any toe defects since excessive attenuation of the stress wave may 

prevent reflections from the toe of long shafts (Iskander et al. 2001; Hertlein and Davis 2007). 

Down-hole methods such as cross-hole sonic logging (CSL), single-hole sonic logging (SSL), cross-

hole tomography (CT), gamma density logging (GDL) [also known as gamma-gamma logging 

(GGL)], sonic caliper, parallel seismic integrity testing (PSIT), and thermal integrity profiling (TIP) 

can address these limitations. CSL, SSL, and CT are essentially seismic-based tests with origins in 

geophysical borehole logging that have been repurposed for NDT applications. The PSIT method 

is similar to CSL except it relies on signals received in a borehole adjacent to the constructed 

shaft. Testing equipment and instrumentation for these methods can be slightly different than 

the geophysics counterparts to account for the testing conditions within a drilled shaft, but the 

methodologies are essentially unchanged. The sonic caliper approach uses acoustic waves 

generated within the excavation to estimate the shape of the excavation, assess verticality, and 
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estimate concrete volume prior to concrete placement. As previously highlighted, GDL measures 

the backscatter of gamma rays a set distance away from the emitter and the gamma counts are 

calibrated to material density. Significant reductions in density can then be used to identify 

anomalies from shaft construction. Caltrans specifies GDL as the primary NDT approach used in 

quality assurance of drilled shafts. The most recent addition to the suite of available NDT test is 

the TIP method, which relies on measuring the heat developed by the shaft during the concrete 

hydration period. Differences in the temperature profile relate to the shape of the shaft and 

alignment of the rebar cage (Mullins 2010). When combined with construction logs, the thermal 

results can be converted into effective radius measurements to detect anomalies across the 

entire cross section and evaluate alignment of the rebar cage (Winters and Mullins 2012). This is 

a consistent issue with both CSL and GDL as these methods cannot provide as extensive spatial 

coverage with their measurements of anomalous features. CSL can only really acquire 

information regarding the concrete in between the two access tubes and GDL only investigates a 

limited zone in the immediate vicinity of the access tube (Olson et al. 1998; Hertlein and Davis 

2007). 

Table 3.35: List of principal NDT testing methods to evaluate CIDH foundations and general 
assessments of their capabilities (Winters 2014). 

As with pavement evaluation, each of these NDT method offer different advantages and 

limitations, which may affect selection of the appropriate technology based on anticipated shaft 

concerns (Table 3.35). The use of multiple methods is advised, particularly since uncertainty in 

the NDT measurements can lead to “false positives” where anomalous areas are detected in a 

well-constructed drilled shaft (Iskander et al. 2001; Hertlein and Davis 2007). Moreover, a single 
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NDT method may not perform well enough to adequately determine the extent of any 

anomalous features and additional testing may be necessary to evaluate whether the anomaly 

will have a negative effect on shaft capacity. 

Continued on Next Page 

221 



 
 

 

   

 

   

   

  

   

    

 

     

       

   

 

    

  

   

     

   

     

    

    

       

   

   

  

     

       

  

  

 

 

4. CONCLUSIONS 

The current state of geophysical practice allows a large amount of information to be determined 

regarding conditions at a site, including stratigraphy, ground water conditions, and the presence 

of subsurface anomalies. The preceding sections of this document also demonstrated the wide 

range of capabilities to estimate earth material properties using geophysical methods. As such, 

geophysical methods can provide a wealth of information to guide efforts in transportation 

projects, including foundation design, construction of earth retaining systems, and placement of 

embankments. In the case of seismic design and site characterization, seismic geophysical 

methods such as seismic refraction, SASW, MASW, and borehole methods provide higher quality 

information regarding VS when compared to correlations with blowcounts. Additionally, many of 

the concepts central to various geophysical methods form the basis for a number of NDT 

techniques that are applicable to a number of highway related issues. 

Though geophysical methods offer tremendous value for estimating earth material properties in 

transportation projects, they are by no means a magic bullet that can address all problems 

encountered in practice. Moreover, they are not meant to entirely replace standard drilling, 

sampling, and laboratory testing efforts on geo-related projects. The goal of any geo-

professional involved with subsurface characterization should be judicious application of 

geophysics as a cost effective approach to augment other exploration efforts. With that in mind, 

the purpose of this document was not to dwell on any one particular methodology and its 

limitations, but instead present in a concise manner the different relationships that exist in the 

literature between geophysical measurements and earth material properties. The reader is 

encouraged to seek further documentation on particular methods in appropriate general 

reference documents as previously described in this document (e.g., Sharma 1997; Wightman et 

al. 2003; Butler 2005; Dal Moro 2014). Without focusing on one particular method, however, it 

is important to discuss future needs and developments to address current limitations in various 

geophysical methods. The following sections provide this discussion. The goal is to provide the 

reader with general ideas regarding how the current state of practice can stand to improve and 

what research avenues are likely to be pursued to the benefit of the geophysical and 

transportation community. 
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4.1 FUTURE NEEDS AND DEVELOPMENTS 

Though earth material properties can be measured using geophysical methods, the preceding 

sections also demonstrated that there are a number of limitations in all geophysical methods 

and that care must be exercised in their use. In many cases, these limitations present an area of 

need for academic research as well as the development of appropriate guidance documents. 

The incorporation of new technologies can also potentially address areas of weakness in the 

current state of geophysical practice. A detailed discussion of all potential research avenues is 

outside the scope of this document. However, the following sections discuss general trends 

related to geophysical research and developments as well as the role of guidance documents in 

increasing the prevalence of geophysical measurements for transportation projects. In addition 

to this discussion, it is interesting to review previous assessments in the literature regarding the 

state of practice in near surface geophysical measurements. The reader is encouraged to review 

such sources (e.g., Dobecki and Romig 1985; Steeples 2001) to highlight the rapid pace in 

advancements over the last several decades. 

4.1.1 GUIDANCE DOCUMENTATION AND TRAINING 

Putting aside the limitations of various geophysical methods, one of the key areas of need 

regarding the use of geophysics to benefit transportation projects is additional guidance 

documentation and training. In many cases, there is a general disconnect between geophysics 

and geotechnical engineering since geophysical methods are not routinely addressed in typical 

civil engineering curricula or in professional development opportunities. This means that those 

responsible for making engineering decisions regarding geotechnical aspects of transportation 

projects have not developed an appropriate level of comfort with geophysical methods. As 

previously highlighted in the rationale for this document, very little exists in the literature that is 

explicitly written for an audience with a cursory understanding of most geophysical methods but 

a particular need for guidance regarding their measurements. Most sources of information are 

either too introductory in nature or aimed at experienced geophysical practitioners looking to 

explore special topics not routinely incorporated into typical engineering problems. Guidance 

documents such as ASTM standards provide general information regarding best practices. 

However, information about different geophysical methods are scattered across multiple 

references and they often do not provide the level of detail necessary to understand how the 

measurements are applied in engineering practice. This document is intended to provide a 
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snapshot of this current state of practice. It is anticipated that future efforts will need to update 

or develop similar reference documents as new technologies develop and/or new capabilities 

are acquired. There is also no universal approach that works for all applications of geophysics in 

transportation projects because each deployment of a geophysical technique and each site 

condition are unique. This highlights the need for reliable sources that document case histories 

and discuss successful implementation of geophysics under a wide range of conditions in 

transportation projects. However, is also important that researchers and practitioners 

document unsuccessful applications of geophysical methods in the literature. Those who work 

with geophysical methods must understand not only the circumstances that favor their use but 

also those that may hinder their use. Unsuccessful case studies can often prove to be just as 

valuable in that context because they help to establish limits on the various geophysical 

techniques. Finally, continued efforts must be made to ensure that the aforementioned 

products reach the practicing community via the development of webinars and in-person 

seminars/trainings/professional development opportunities. 

4.1.2 IMPROVEMENTS IN ANALYTICAL AND DATA INTERPRETATION METHODS 

Future efforts should also focus on research to address current limitations in many geophysical 

methods. This will likely require new developments in both analytical and interpretation 

capabilities as well as advances in technology. In many cases, the uncertainty in geophysical 

measurements can stem from issues related to how the data is analyzed or interpreted. For 

example, measurements in seismic refraction tomography, SASW, MASW, and ERI (and even 

GPR in some cases) are subjected to inversion algorithms that attempt to match theoretical 

models of the subsurface to the measured signals. These inversion procedures are often 

inherently ill-posed, nonlinear, and mix-determined, which means that a unique solution is not 

possible with the acquired data. A-priori information can help constrain the inversion and 

improve the potential for a unique accurate solution. However, a-priori information is not 

always available. Issues with non-uniqueness of the inversion are also possible even when more 

complex approaches are used to match the data, such as the full waveform inversion technique 

for MASW, SASW, and GPR (e.g., Virieux and Operto 2009; Busch et al. 2012). The inversion is 

typically performed using an optimization algorithm (often a linearized least-squares approach) 

to locate the best fit between theoretical and experimental data. The initial starting model 

heavily influences the results In the case of linearized local approaches (e.g., Socco et al. 2010). 
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As a result recent research efforts have concentrated on global search methods such as uniform 

Monte-Carlo, genetic algorithm, simulated annealing, and neighborhood algorithms (e.g., Foti et 

al. 2009; Godio 2016; Jiang et al. 2016) that search a broad parameter space and avoid the 

problem of getting stuck in local minima. These algorithms must still search for models within a 

predetermined inversion parameter space. This means that the search parameters and the 

entire space of possible solution profiles must be defined in advance. This task is not trivial 

because the parameters cannot be overly broad or else the inversion will pursue entirely 

unrealistic models. However, too many constraints on the global inversion will neglect 

potentially viable solutions. Therefore, appropriately defining the parameter space for global 

inversion algorithms represents an area of need related to data analysis that warrants future 

research efforts. Some work in this area has been initiated within the context of surface wave 

inversions (e.g., Cox and Teague 2016). Other studies have explored the use of novel inversion 

techniques with other geophysical data such as electrical resistivity and seismic data (e.g., Zhou 

et al. 2014; Sabeti et al. 2017). Since so many geophysical methods inherently rely on the 

solution of an inversion problem, it is expected and necessary that future continual refinements 

occur in this broad area. 

Other topics with similar research needs related to data analysis and interpretation include the 

following: 

• Combining multiple datasets: 

One manner to counteract the issues of non-uniqueness during inversion is to 

simultaneously invert multiple datasets [e.g., simultaneous inversion of P- and Rayleigh 

wave data (Boiero and Socco 2014), P-wave and microgravity measurements (Coutant et al. 

2012); P-wave and GPR data (Al-Shuhail and Adetunji 2016); P-wave and resistivity data 

(Gallardo and Meju 2003); resistivity and radar data (Linde et al. 2006); etc.]. The purpose of 

joint inversion is to develop one objective function for optimization based on the individual 

objective functions representing each of the data sets. In this manner, joint inversion can 

reduce the number of acceptable models and can produce mutually consistent estimates of 

the various unknown parameters because the results must explain all data simultaneously 

(Julia et al. 2000). Different measurements have different capabilities (e.g., resolution, 

sensitivity, etc.) and the incompatibilities for one type of data can often be resolved by 
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another (Julia et al. 2000). Additionally, noise sources and their impacts on data quality 

often differ between methods so that adding another method can improve the results more 

than adding more data of the same method. However, additional research is needed to aid 

in identifying the most appropriate coupling strategies for joint inversion of various 

geophysical data types (e.g., direct parameter relationship, cross-gradient approach, etc.). In 

addition to using multiple geophysical datasets in joint inversion, geotechnical site 

investigation information (i.e., stratigraphy, penetration resistance) can also be 

incorporated into inversions of surface measurements. Penetration resistance 

measurements do not suffer a reduction in resolution with depth, and therefore present an 

interesting possibility for enhancing the resolution of joint inversions. 

• Use of higher dimensional studies: 

As computational power has increased and instrumentation/deployment costs have 

decreased, there has been a growing shift towards implementing higher dimensional 

geophysical surveys, including fully 3D surveys (e.g., Friedel et al. 2006; Radzevicius 2008; 

Loke et al. 2014; Wang et al. 2015) and/or incorporating time as a fourth dimension (e.g., 

Abdelwahab et al. 2011; Chambers et al. 2014). Future studies will likely continue to exploit 

the additional information offered about site conditions from these surveys. However, the 

analytical techniques currently employed for simpler surveys must be revised to account for 

the multi-dimensionality of the problem. This is a non-trivial task as the extra dimension(s) 

can introduce another layer of uncertainty in data processing and considerably increase the 

computation time. Additional efforts are necessary to continue optimizing analytical efforts 

when geophysical testing is extended into higher dimensions. 

• Geospatial representation: 

Geophysical studies can generate a large amount of spatially variable data. This is actually 

an important advantage of geophysics over the standard laboratory/drilling approach to 

subsurface characterization. Even though geophysical measurements may contain more 

uncertainty and are less direct than other measurement types, the bulk amount of data 

obtained allows better quantification regarding the level of uncertainty. Statistically, there is 

also increased likelihood that the quantity of measurements from geophysics may allow 

estimates of earth material properties to regress towards their means. However, accurate 
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interpretation of this data is affected by the manner in which it is represented and any 

statistical analyses employed for that purpose. Given this link, interest in geospatial 

representation and analysis of geophysical data has increased. In more instances, 

geophysical measurements are processed within a geospatial analytical framework using 

computer-based geographic information system (GIS) tools either in isolation (e.g., Chik and 

Taohidul Islam 2013) or in combination with other sources of information [e.g., remote 

sensing data (Rashid et al. 2012), geotechnical data (Ball et al. 2015), geochemical data 

(Moura et al. 2012), etc.]. Additional work is required in this area to explore the most 

effective geospatial analysis techniques for processing geophysical data and to develop 

documentation regarding best practices. This is particularly the case when attempting to 

account for uncertainty and variability in site conditions as reflected in the geophysical 

measurements. 

• Automation efforts to aid in data interpretation: 

Geophysical data must of course be interpreted to provide information regarding site 

conditions and earth material properties. Similar to geotechnical boring data, this step is not 

trivial as there is significant subjectivity involved at multiple stages. Decisions must be made 

regarding intermediate steps in the data post-processing that can highly influence the 

corresponding results from the analysis. For example, the acquired dispersion image in 

MASW must be interpreted to determine what constitutes the fundamental mode and what 

represents higher mode partitioning in order to identify appropriate phase velocities and 

obtain accurate VS profiles in MASW method. This may be quite complicated in situations 

where “mode-kissing” can occur due to interference of different modes near certain 

frequency points (Gao et al. 2016). Similar discrepancies can occur in the analytical 

procedures for other geophysical methods (e.g., picking first arrivals in seismic refraction 

and borehole seismic/radar methods). Additionally, once the final results from data 

processing have been derived, there can be ambiguity with what conclusions are supported 

by these results. As computational power has improved, additional support from 

approaches using intelligent systems has been pursued to potentially improve data 

interpretation and remove some of the subjectivity. For example, a number of studies have 

explored the use of machine learning, artificial neural networks, and genetic algorithms to 

classify objects in results from GPR, seismic methods, and well logging methods (e.g., Pasolli 
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et al. 2008; Pasolli et al. 2009; Ayala-Cabrera et al. 2011; Singh 2011; Braeuer and Bauer 

2015; Sabeti et al. 2017). These methods and similar concepts may see further refinements 

and be applied to other geophysical techniques in future studies. Of course, care must be 

exercised with these automation efforts to ensure they are used to complement and not 

eliminate the role of user experience. 

4.1.3 TECHNOLOGICAL IMPROVEMENTS 

Many limitations in geophysical results arise from issues related to data analysis and 

interpretation as previously described. These often hinder the motivation to use geophysical 

methods for situations in which they may prove useful. However, even if all analytical issues 

related to geophysical methods were to be addressed in the future, there are always limitations 

related to hardware, testing methodology, and deployment capabilities that can be addressed. 

Technological advances in these areas have the potential to improve the capabilities of various 

geophysical methods and increase their appropriate usage in transportation projects. For 

example, improvements in speed of data acquisition, equipment and deployment costs, and 

sophistication of sensors can all remove impediments to successful usage of geophysics for 

engineering purposes. 

One area that has seen constant technological improvements has been in the area of hardware, 

equipment, and instrumentation. Breakthroughs in instrumentation and computer-processing 

techniques have greatly improved the capabilities of various geophysical methods. For example, 

the increase in computational power for computers has driven the rise in the more complex 

analytical approaches previously described. Additionally, sensors are now capable of much 

higher resolution as analog-to-digital converters have improved. New sensor technologies have 

been developed, including non-planted sensors for different geophysical testing methods [e.g., 

seismic methods (Pugin et al. 2004); electrical resistivity (Kuras et al. 2006)] and fiber optic 

sensors (e.g., Daley et al. 2013; Munn et al. 2017). Multicomponent instrumentation has 

become more cost effective and readily available. Data acquisition systems have 

correspondingly enjoyed the benefits of greater number of channels, storing larger amounts of 

data, and/or wirelessly streaming data. It is anticipated that instrumentation technology will 

continue experiencing breakthroughs in computational capabilities, sensor miniaturization, 

reductions in power requirements, improvements in battery technologies, data telemetry 
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capabilities, and developments of novel sensor technologies. The effects of these efforts are 

very likely to include improvements in data quality, increased productivity, and reductions in 

costs, which should continue to make geophysics an attractive approach for transportation 

projects. Technological hardware improvements in the future may also allow geophysics to 

provide useful information in previously uncharted transportation applications. 

Another technological area that is currently receiving research interest in the field of geophysics 

and will likely continue to do so in the future is the application of robotics such as unmanned 

aerial vehicles (UAV) (i.e., drones), unmanned ground vehicles (UGV), and remotely operated 

underwater vehicles (ROV). For example, a recent SAGEEP conference included an entire session 

devoted to the use of UAVs in geophysics given their rise in prominence (Zamudio et al. 2016). 

Generally, geophysical applications with robotics have focused on integrating instrumentation 

such as magnetic, electromagnetic, and radar sensors (e.g., Arcone et al. 2016; Gavazzi et al. 

2016; Eröss et al. 2017). However, there is has been recent interest in also automating the 

acquisition of seismic data using UAVs in particular (e.g., Sudarshan et al. 2016). Finally, it should 

be noted that remote sensing techniques as described in this document and the use of 

unmanned robotics are complementary and a number of studies have begun to merge these 

two technologies together (e.g., Watts et al. 2012; Colomina and Molina 2014; Lee et al. 2016). 

The use of unmanned robotics presents a number of advantages over traditional survey 

methods. For example, the need for manual labor in acquiring data is reduced, which can 

potentially reduce safety issues and costs, particularly for remote and difficult to access sites. 

Moreover, the automation capabilities allow for temporal consistency in repeated 

measurements at the same site. In some engineering applications, such temporal measurements 

are necessary to evaluate how earth material properties change with time. Given these 

advantages, the use of robotics presents a potentially viable alternative to address future needs 

in geophysical data acquisition for engineering purposes. 

4.1.4 EFFORTS RELATED TO EARTH MATERIAL PROPERTIES 

Previous sections in this document highlighted several relationships between the measurements 

from various geophysical methods and earth material properties. However, in a number of 

cases, these correlations were highly empirical and suffered from a large amount of scatter. 

Additionally, there are some earth material properties relevant to transportation projects that 
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should affect geophysical measurements for which relationships have not been directly 

proposed. Future research efforts should explore refinements in existing relationships and the 

development of new correlations to earth material properties. In that manner, future 

geophysical testing may be able to contribute to transportation projects in an even more 

effective manner. 

In terms of existing relationships discussed in this document, improvements may be realized by 

continued development of case histories and/or laboratory studies where the corresponding 

earth properties are correlated to their respective geophysical measurement. For example, the 

effects of clay content/mineralogy on electrical and electromagnetic geophysical measurements 

were previously noted in this document (e.g., Abu-Hassanein et al. 1996; Shevnin et al. 2007; De 

Benedetto et al. 2012; Long et al. 2012; Tosti et al. 2013). This link was also exploited to explore 

the use of these methods to predict Atterberg Limits of soils (Abu-Hassanein et al. 1996; Giao et 

al. 2003; Bryson 2005; Kibria 2011; Long et al. 2012; Bery 2014). However, in many cases, a 

distinct functional form for these relationships was either elusive or significantly affected by 

scatter in the data. Some of this can be partly explained by the emphasis on field geophysical 

measurements and the general lack of comprehensive testing under highly controlled laboratory 

environments. Alternatively, improvements may be realized by technological advancements that 

fundamentally enhance measurement capabilities in electrical and electromagnetic geophysical 

measurements. These efforts may lead to more effective correlations between clay content 

information and electrical/electromagnetic measurements, as well as other relationships 

between geophysical measurements and earth material properties. However, even with 

technological improvements and additional case studies, some scatter will always exist in the 

data because geophysical measurements are influenced by multiple factors related to the earth 

materials. Therefore, future research efforts should consider the natural variability in earth 

material properties and provide some information regarding confidence in the proposed 

relationships. An example of such an approach was previously noted in Uzielli et al. (2013) 

where the proposed ϕp-VS relationship was examined within a probabilistic framework, allowing 

for the development of probabilities of non-exceedance when applying the relationship. 

It is also expected that future efforts may explore the development of new relationships 

between earth material properties and geophysical measurements. Generally speaking, 
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geophysical measurements will respond to factors related to the manner in which individual 

particles are in contact (i.e., soil/rock structure). Some of these factors have either been 

explicitly discussed in this document (e.g., porosity) or implicitly incorporated in some 

relationships (e.g., texture). However, in a number of cases, relationships that are reasonably 

expected to exist between geophysical measurements and earth material properties have not 

been developed. For example, links between various geophysical measurements and the 

following earth material properties have not been formally developed: soil type; gradation; 

angularity; relative density; stress history (i.e., OCR); sensitivity; swell/shrink potential; and 

undrained shear strength ratio (i.e., Su/σ’vo). As before, refinements may be necessary in either 

the available technologies or in data analysis/interpretation to improve confidence in the 

geophysical measurements necessary to develop such relationships. For example, given the 

current state of practice, there may just be too much uncertainty in seismic measurements to 

develop a link between seismic velocity and stress history as articulated in the OCR of a soil. In 

some cases, the appropriate datasets may be available but have yet to be analyzed to 

specifically isolate the effects of some of the aforementioned soil/rock properties. Finally, the 

difficulty in isolating the effects of particular soil/rock properties may necessitate the 

development of dedicated datasets from field case studies or specialized laboratory testing. 
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