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ABSTRACT 

This research aims to analyze the performance and design the control parameters for on-ramp 
metering of congested merging bottlenecks. One important motivation of ramp metering, 
variable speed limit, and other centralized and decentralized traffic control strategies is to 
prevent capacity drop, which occurs at active bottlenecks. 

Locally, we analyze and design ramp metering of an isolated merging bottleneck. We use a 
simple link queue model to describe traffic dynamics with an ordinary differential equation 
combined with a capacity drop model. This enables us to establish important system properties 
such as equilibrium states, reachability, and closed loop stability when PI-ALINEA algorithm is 
applied. We identified the set of equilibrium states and we show that for specific demand 
patterns there could be two equilibrium states. We establish reachability conditions, defined as 
the capability of steer the system to an uncongested state, and show that it is dependent on the 
initial state so there could be a situation in which is possible to avoid congestion, but once it is 
congested it is not possible to dissipate. Using the PI-ALINEA algorithm, we studied the closed 
loop response and we show the stability range, that is, for any initial condition it can steer to and 
settle at the desired state. Using Cell Transmission Model simulations, we validate the 
reachability property and closed loop stability. 

Globally, we analyze the performance of several bottlenecks. With an example for a freeway 
segment with two bottlenecks, we demonstrate that successful control of some active bottlenecks 
can worsen the overall road network's performance; this is a paradoxical behavior of traffic 
control systems similar to the Braess paradox, where additional links can worsen a system's 
performance. In particular, we show that the overall performance of the system in stationary 
states becomes worse after the successful control of the upstream active bottleneck, if the 
following two conditions are satisfied. First, before control, only the upstream bottleneck is 
active; i.e., a queue appears only upstream to this bottleneck. Second, after the successful control 
of the upstream bottleneck, the downstream bottleneck is activated by a larger discharging flow-
rate from the upstream bottleneck, and the formed queue spills back to the former and congests 
the upstream bottleneck. We simplify the sufficient conditions to demonstrate that such a 
paradoxical behavior occurs under a wide range of conditions with respect to capacity drop 
magnitudes, turning ratios, and demand levels. Thus, without careful analysis of their system-
wide effects, some local control strategies can be myopic; this motivates us to define the price of 
myopia to quantify the potential negative effects of myopic control strategies. With numerical 
simulations we verify that such a paradoxical behavior also occurs under dynamic and random 
conditions when the upstream bottleneck is controlled by a local feedback variable speed limit 
strategy. This study highlights the necessity of holistic analysis and control of a highly nonlinear 
traffic system. 
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Chapter 1 
Introduction 

On freeways, congestion usually occurs during peak hours [Schrank et~al. (2012)], 
causing accidents/incidents, delays, higher fuel consumption, and air pollution [Golob and 
Recker (2003)]. Ramp metering is one of the possible techniques to improve freeway 
performance, as demonstrated in field deployments (e.g, [Papageorgiou et~al. (1997)],[Levinson 
and Zhang (2006)]) and simulation studies (e.g., [Jin and Zhang (2001)], [Sun and Horowitz 
(2006)], [Papamichail et~al. (2010)]). There are two mechanisms that ramp metering helps to 
reduce total travel time. 

1. The first is related to the queue spill back mechanism. When a queue starts from a 
bottleneck, propagates upstream and reaches an upstream off-ramp, vehicles 
leaving at that off-ramp are delayed due to congestion ahead [Papageorgiou and 
Kotsialos (2000)]. These vehicles exiting from off-ramp do not go through the 
bottleneck, but are nonetheless impacted. By holding vehicles on on-ramps, ramp 
metering might prevent, or at least postpone, the queue from reaching that off-
ramp and consequently reducing the total travel time. 

2. The second is related to the capacity drop phenomenon, a drop in the discharge 
flow rate of a merge bottleneck when its upstream section gets congested [Cassidy 
and Bertini (1999)] while its downstream section is uncongested. The magnitude 
of the drop varies, and a typical value is around 10% [Chung et~al. (2007)]. As 
the flow rate is lower, vehicles take longer to pass through the bottleneck, and the 
total travel time is increased. Again, by storing the vehicles on on-ramps, ramp 
metering might prevent or postpone the onset of the congestion and, therefore, 
capacity drop. 

It is not an easy task to quantify the share of each mechanism on the overall improvement 
[Papageorgiou (1998)]. Few empirical studies have related the impact of ramp metering on 
capacity drop. An important study is reported in [Cassidy and Rudjanakanoknad (2005)] that 
shows that through a more restrictive metering rate, it is possible to recover the discharge flow 
rate to capacity on a isolated merge bottleneck. Simulation studies have considered the effect of 
the capacity drop implicitly or explicitly. Using second order models, in [Smaragdis et~al. 
(2004)] it was shown that variations of ALINEA were able to sustain a higher outflow for local 
control. Similar models have been used for coordinated control as in [Papamichail et~al. (2010), 
Kotsialos et~al. (2002)]. More recently, capacity drop was taken explicitly and integrated in 
model based controllers (see [Han et~al. (2015), Maggi et~al. (2015)]). 
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  1.2 Local Ramp Metering 

 
 

  
   

 
   

   
 

    
    

  
   

  
  

  
  

 
 

   
 

   
  

  
 

  
    

     
 

  
 

   
   

   
 

  

  

As for other control systems, it can be helpful to analytically study the effect of capacity 
drop on the system dynamics controlled by an on-ramp meter. Through these studies, system 
properties can be established in closed form solution helping us to understand important features 
of the system. This ultimately can be used for general guidelines such warranties of a 
deployment, parameters tuning of established algorithms, and provide insights to the design of 
new algorithms. 

An interesting study on closed-loop ramp metering and its operating regime is reported in 
[Gomes and Horowitz (2003)]. Using the Cell Transmission Model [Daganzo (1995)], it was 
shown that different ramp metering algorithms can be analyzed from operation "modes" and its 
transitions. It was established controllability and observability with respect to detector 
placement. The analysis, the authors claim, suggests that ALINEA [Papageorgiou et al. (1991)] 
is a superior strategy compared to %-Occ. 

The set of equilibrium states and their characteristics in a single freeway was studied in 
[Gomes et~al. (2008)]. It was shown that all equilibrium states leads to the same flow rate on the 
bottlenecks, but keeping those bottlenecks uncongested is beneficial as it diminishes the 
aforementioned queue spill back effect. They show that through ramp metering, it is possible to 
steer the system to an uncongested equilibrium state and therefore reducing delays. 

Closed loop stability for ramp metering also has been the subject of recent research, in 
particular on ALINEA and its variations. Through linearization and Lyapunov theory, stability is 
established for PI-ALINEA in [Wang et~al. (2014)]. For PI-Controllers and a class of systems 
that local ramp metering fits in, stability was also derived [Karafyllis and Papageorgiou (2014)]. 
The aforementioned study [Gomes and Horowitz (2003)] also establishes stability range for 
ALINEA. 

All of these studies have not considered the capacity drop. Its understanding is an 
essential step in order to analyze and design ramp metering algorithms especially for local ramp 
metering control. We attempt to fill some of the gaps by analytically studying essential open and 
closed loop (with PI-ALINEA control law) properties. This is enabled by using models that are 
simple and yet capable of reproducing essential traffic flow characteristics. A link queue model 
[Jin (2012)] is used for the traffic dynamics inside the merging segment. This model is an 
approximation of the LWR model and extends the cell demand and supply functions to a link. 
Second, a simple model is incorporated to replicate the outcome of the capacity drop 
phenomenon at a merge bottleneck [Jin et~al. (2015)], that is, a decrease in flow on onset of 
congestion. The combined model lead to a switched linear ordinary differential equation 
[Liberzon (2012)]. We were able to establish the following: 
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   1.3 Global Ramp Metering 

 
 

   
 

  
 

   
    

 
 

    
 

  

 
  

  
   

    
 
 
 

  
  

   
  

  
    

 
  

  

 
  

  
 
 

   
   

   
  

1. The system has hysterical nature with respect to the demand pattern. Demand 
higher than the capacity triggers the congestion; however, in order to clear a 
formed congestion, it is necessary a demand lower than the current, and lower, 
capacity; 

2. Depending on the amount of the capacity drop, it might not be possible for a local 
ramp controller to be effective in order to eliminate the congestion. In this 
situation, while the meter can at some extent change the proportion of the delays on 
on-ramp and mainline freeway, it is not able to clear the congestion; and 

3. If the controller is able to effectively eliminate the congestion, the stability region 
of the widely applied and studied (PI-)ALINEA algorithm is derived. 

As we know, transportation systems are highly nonlinear, and naive strategies may not 
always lead to better system performance. A sublime example is the occurrence of the Braes 
paradox [Braess et~al. (2005)], which reveals that the addition of a link can deteriorates the 
whole system’s performance. Then one may wonder whether successful control of one or more 
active bottlenecks is always beneficial to the whole system. In this study, we present one 
example to show that it may not be the case. That is, we demonstrate the existence of a 
paradoxical behavior in traffic control systems, where the successful control of individual active 
bottlenecks could actually deteriorate the overall system’s performance. Such a paradoxical 
behavior of traffic control systems can lead to wrong investment decisions and worse traffic 
congestion and therefore warrants a better understanding. 

Here we consider a simple example in a freeway corridor with two bottlenecks. We 
demonstrate that, in stationary states, the overall performance of the system can be worsened 
after the introduction of a local control for the upstream bottleneck, if the network satisfies the 
following conditions before and after control. Before control, only the upstream bottleneck is 
active, and the downstream bottleneck is uncongested; that is, congestion only develops at the 
upstream bottleneck before control. Then a naive solution is to develop a local control strategy 
for the upstream bottleneck. For example, we can apply the variable speed limit (VSL) strategy 
developed in [Jin and Jin (2015)]. However, we can show that the system’s total discharging 
flow-rate is smaller, if after control the downstream bottleneck is activated by a larger 
discharging flow-rate from the upstream bottleneck, and the formed queue spills back to the 
former. With the help of a macroscopic capacity drop model [Jin et~al. (2015)], we demonstrate 
that such a paradoxical behavior occurs under a wide range of conditions with respect to capacity 
drop magnitudes, turning ratios, and demand levels. That is, under the sufficient conditions such 
a VSL strategy is myopic, and we further compare the total travel times before and after the 
myopic control and define the price of myopia to quantify its negative effects. With dynamical 
and random demand patterns, we carry out numerical simulations to examine the existence of 
such a paradoxical behavior and calculate the corresponding price of myopia. 
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 2.1 System Description and Model 

 
 

 

  
  

     
        

   
    

 

  

     
   

     
     

     
 

 
   

 
 
 
 
 

     
    

    

Chapter 2 
Reachability and Stability for Local Ramp Metering System 

The system under study is depicted in Figure 2.1 and referred to as a merge bottleneck, 
containing three components: the merge gore between the on-ramp and the freeway at x = 0 , the 
bottleneck (lane drop) located downstream at x = L , where the on-ramp acceleration lane ends, 
and the merging segment between the merge and the bottleneck. 

Figure  2.1: Schematic of merge bottleneck and the model variables. 

The state variable is the average density in the merging segment, k(t) . The inputs include 
the mainline demand, du (t) , and the on-ramp demand, dr (t) . The total demand is denoted by 

d (t) = d (t) + d (t) . In addition, f (t) is the mainline in-flux, f (t) the on-ramp in-flux, and u r u r 

g(t) the out-flux. The metering rate is denoted by r(t) . On the upstream boundary and on-ramp 
any unserved traffic is modeled as point queues [Jin (2015)], where 𝑄𝑄𝑢𝑢(𝑡𝑡) and 𝑄𝑄𝑟𝑟(𝑡𝑡) are the 
respective queue sizes. 

The traffic dynamics inside the merging segment can be described by the Lighthill-
Whitham-Richards (LWR) model [Lighthill and Whitham (1955), Richards (1956)], which has 
been successfully applied to analyze the initialization, propagation, and dissipation of traffic 
congestion with spatial and temporal density waves (kinematic waves). However, the LWR 
model is a partial differential equation, more specifically a hyperbolic conservation law, for 
which the control problem is not well studied. In this study, we resort to an approximate model, 
the Link-Queue Model (LQM) [Jin (2012)], which only considers dynamical variations of 
spatially average densities and is therefore an ordinary differential equation. In [Jin and Jin 
(2014)], this model has been successfully applied to analyze and design the variable speed limit 
strategy, and the results are validated in the LWR model thorough Cell Transmission Model 
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simulation. Thus we follow the same approach by studying the control of merge bottlenecks with 
the LQM: 

k(t) = 1 ( f (t) − g(t)), (1) 
L 

where f (t) and g(t) are the in and out-fluxes. Equation  (1) can be viewed as a reservoir in 
which level increases or decreases based on the in- and out-fluxes difference. The fluxes are 
computed based on demand and supply concepts [Daganzo (1995), Lebacque (1996)] 

D(t) = min{v k(t),v k } (2) f f c 

S(t) = min{(v f kc ,ω(k j − k(t))}, (3) 

which are respectively the increasing and decreasing parts of the triangular fundamental diagram 
[Newell (1993)]: 

q(k) = min{v f k,ω(k j − k)}, (4) 

where q(k) is the flow-rate, v f the free flow speed, k j the jam density, and ω the shock-wave 

ωk
speed. The density which yields maximum flow is kc = j ; at this point the flow is the 

v f +ω 
capacity, C = v f kc . Ramp, acceleration lane, and freeway lanes share the same characteristics, as 

v f and ω . We denote k jl , kcl and Cl as per-lane jam-density, critical density, and capacity. 

Note that k = nk , k = nk and C = nC , where n is the number of lanes. Also, hereafter Cj jl c cl n l 

refers to downstream capacity unless stated otherwise. The density that yields capacity is k = kcd 

. Figure 2.2 presents the fundamental diagram at each segment. 

Figure 2.2: Fundamental diagram of upstream, downstream, and merging segments. 
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On the upstream and on-ramp unserved vehicle are modeled as point queues: 

Q u (t) = du (t) − fu (t) (5) 

Q r (t) = dr (t) − fr (t), (6) 

where the demands are computed [Jin (2015)]: 

(7) 

(8) 

where 𝜖𝜖 = lim Δ𝑡𝑡. 
Δ𝑡𝑡→0+ 

The on-ramp vehicles are assumed to have absolute priority, and the on-ramp flux is 
given by: 

𝑓𝑓𝑟𝑟(𝑡𝑡) = min{𝐷𝐷𝑟𝑟(𝑡𝑡), 𝑆𝑆(𝑡𝑡), 𝑟𝑟(𝑡𝑡)}, (9) 

the remaining supply can be used for the upstream flow 

f (t) = min{D (t), S(t) − f (t)}, (10) u u r 

and the total in-flux is f (t) = fu (t) + fr (t) . We also denote as Dm (t) = Du (t) + Dr (t) as the total 

demand on the merge. Note that f (t) = min{Dm (t), S(t)} . 

At the downstream boundary of the merging segment, the out-flux is determined by: 

g(t) = min{D(t),C(1−∆H (k(t) − kcd ))}, (11) 

where H (x) is the Heaviside function: 

1, x ≥ 0
H (x) =  (12) 

0, x < 0 

and ∆ is the capacity drop ratio. 

It is assumed that there is no congestion on the downstream mainline freeway, i.e., the 
merge bottleneck is active. Note that the capacity drop model proposed in [Jin et~al. (2015)] is 
used here to replicate the capacity drop phenomenon: when there is no queue on the merging 
segment, the out-flux can reach the downstream capacity, but if a queue forms, the out-flux is the 
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  2.2 Why Ramp Metering? The Impact of the Capacity Drop on Delay 

 
 

  
 

 

 

  
  

   

    
    

  
  

  

 

  
   

  

   

   

  The relative improvement of avoiding the  capacity  drop is  given by:  

dropped capacity g(t) = C(1−∆) . An important aspect is that the drop ratio, ∆ , is exogenous 
and should be determined for each case. 

From the presented model, it is possible to assess the impact of capacity drop by 
comparing the drop and not drop case. It is assumed that any transitory period is small compared 
to the total time considered. We consider two cases, one discharging at capacity, C , and another 
at dropped capacity, C(1−∆) . The total demand, d = du + dr = αC is assumed to be over 
capacity (i.e., α > 1) by t = T and zero thereafter. 

In Figure 2.3 cumulative curves N (t) are depicted. The continuous line is the cumulative 
arrival. The dashed lines are the departure rates for the case in which it discharges at capacity, C 
and the case discharging at dropped capacity, C(1−∆) . The vertical difference between the 
arrival and departure curve is the instantaneous queue. This queue could be at on-ramp, mainline, 
or both depending on the upstream and ramp demand and the metering rates. 

Figure  2.3: Arrival (continuous) and departure (dashed) cumulative curves. The outflow 
(departure) could be either at capacity, C , or at dropped capacity, C(1−∆) . 

The areas between the arrival and departure curve are the total delay: 

1 2Dnd = CT [(α −1)α ] (13) 
2 

1 2 (α + ∆ −1)αDd = CT [ ] (14) 
2 1−∆ 
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2.3 When Ramp Metering Is Effective? The Equilibrium States and 
Reachability Property 

 2.3.1 The equilibrium states and their Behavior 

 
 

   

   
   

  
 

   
      

  
 

  

   
   

 

   

 

       

  

      

   

        

  

         

   

D α (1− ∆) α ∆nd 1 1D(%) = 1− = = (15) 
Dd α1 − ∆ α + ∆ −1 

For example, if α = 1.1 (that is, demand 10 % higher than capacity) and ∆ = 0.05 , the 
improvement is 36%; if the drop amount ∆ = 0.1 , the difference goes to 55%. Therefore, a well 
designed ramp meter can drastically decrease the delay. The question turns to which conditions 
should be satisfied to achieve such reduction. 

The ramp meter is effective if it can lead the system to a desired state. In particular, as the 
delay is lower when the out-flux is higher, the goal is to discharge at capacity. First, we show the 
equilibrium states and its characteristics. It is shown that keeping at uncongested equilibrium 
states is beneficial. Then, we show in which conditions it is possible to lead the system to the 
uncongested equilibrium state. 

We analyze the equilibrium states of the systems subject to constant metering rate ( 
r = Cr for no control case) and ignoring the on-ramp and mainline queues. In this case the total 
demand is constant: 

Dm = d̂ = du + min(r, dr). (16) 

The system reaches equilibrium states classified as follows: 

ˆ 
• If d̂ < C(1−∆) , the system reaches an uncongested equilibrium density keq = d < k1 v f 

from any initial state. 

ˆ• If C(1−∆) ≤ d ≤ C , the system reaches an uncongested equilibrium density 
ˆ 

keq = d 
∈[k1, kcd ] from an initial state k(0) ≤ kcd . v f 

ˆ• If C(1−∆) ≤ d ≤ C , the system reaches a congested equilibrium density keq = k from 

an initial state k(0) > kcd . 

• If d̂ > C , the system reaches a congested equilibrium density keq = k from any initial 

state. 
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Figure 2.4: Transition in equilibrium states subject to the change in the demand level. Yellow 
dots highlight the boundaries between states. Uncongested states are 1 and 2; congested states 

are 3 and 4. 

These states and transition between states are represented in Figure 2.4. The system shifts 
to state 1 whenever d̂ < C(1−∆) either initially at state 2 or 3. Similarly, reaches state 4 when 

d̂ > C either from states 2 or 3. However, it shifts to state 2 when C(1−∆) ≤ d̂ ≤ C and initially 
at state 1. Likewise, reaches state 3 for the same demand level, but initially on state 4. 

Even though the model is based on continuous variables, its essential operating regimes 
and its transitions can be characterized by a finite state machine. Note that a complete cycle can 
be done clockwise, but it is not possible on the other way around. This fact shows the inherent 
hysteresis: when the system is initially at state 2, it is necessary a demand greater than capacity ( 
d̂ > C ) to reach state 3; however, it is necessary demands lower than the dropped capacity (i.e., 
ˆ < ˆd C(1−∆) ) to return to state 1 again and then a demand to C(1−∆) ≤ d ≤ C . It is not possible 

to switch between state 3 and 2 without state 1 as intermediate. 

It is clear that keeping in state 2 has advantages over state 3. In state 2 yields higher out-
flux while keep the bottleneck uncongested. However, to shift state 3 to 2 is not straightforward. 
As it needs to shift to state 1 first, the system needs a sharp reduction in demand in order to 
recover the capacity. 

The hysteretical nature of transportation networks have been discussed with empirical 
evidence in [Geroliminis and Sun (2011)]. However, the capacity drop phenomenon it happens 
on a single merge and is not outcome of the capacity drop phenomenon and not queue spill back. 

13 



 2.3.2 Equilibrium States Classification 

 
 

  
  

  
 

     

   

  
   

 

     
   

     

   

   

 
   

   

     
    

  
   

    
 

  
 

  
  

The equilibrium state can be characterized over different aspects regarding its 
equilibrium. We analyze for convergence and stability. 

Under constant demand, the system is convergent [Gomes et~al.(2008)Gomes, Horowitz, 
Kurzhanskiy, Varaiya, and Kwon]: given constant demand d , it always converges to one 

d̂equilibrium state, either the k = or congested k = k . Any density in the interval eq,u eq,c v f 

(kcd , k ) is an unstable equilibrium state for d̂ = C(1−∆) . 

For stability, we analyze based on Lyapunov stability [Astrom and Murray(2010)] in 
which an equilibrium state is stable if the initial condition is close to an equilibrium, it will 
remain close to this equilibrium. In this case, the small perturbation could be either at the state 
variable, density, or in the demand. 

With respect to demand level there are two cases in which it fails. It initially at critical 
density and d̂ = C , a demand d̂ +γ where γ is small and greater than zero will lead the system 

to the congested equilibrium k . Likewise, if k(0) > kcd and d̂ = C(1−∆) ; a demand d̂ −γ will 

d̂ −γlead the system to k = << k . In this sense, it can be classified as bistable: the system has 
v f 

two distinct equilibrium points depending on the sign of the perturbation on the demand. 

In this case a perturbed demand lead to distinct equilibrium states, but the same is true for 
ˆa small perturbation on density. If C(1−∆) ≤ d ≤ C and k = kcd . A small perturbation positive 

don density leads to k while a negative leads to k = .eq,u v f 

Figure 2.5 depicts the bifurcation diagram considering d as bifurcation parameter 
[Wiggins (2003)]. Continuous line represents stable equilibrium and dashed lines unstable 
equilibrium. Bifurcations have been discussed for traffic network in [Daganzo et~al. (2011)] and 
[Jin (2013)]. The existence of multiple stationary states in a network in [Jin (2015)] and multiple 
equilibrium states in a single freeway as in [Gomes et~al. (2008)] implies bifurcations. However, 
all of them the underlying principle is a queue spill back effect which means that flows reduces 
on upstream links or sections due to a congestion downstream. In this case, the possibility of 
multiple equilibrium states arise in a single merge and affects also the downstream flow. 

As mentioned and it also can be seen on the bifurcation diagram that k(0) > kcd and 
C(1−∆) is an unstable equilibrium state. The fact it is unstable it does not change the operation 
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  2.3.3 Reachability with dynamic metering rates 

 
 

 
  

 

     

    
  

    
  

 

   
    

  
  

    

  
    

  
  

    

                                                 
       

    

regimes in 4 as the stable equilibrium states are the ones likelier to be observed in practice 
[Daganzo et~al. (2011)] and therefore more important to be studied. 

Figure 2.5: Bifurcation diagram: the set of equilibrium states for varying demands. 

For demands between the capacity and the dropped capacity, the system can be either 
congested or uncongested. In order to shift it is needed a demand lower than the dropped 
capacity for a sustained period. As the metering rate can limit the on-ramp demand, we ask the 
following question: in which condition the ramp meter is able to avoid the congestion? If initially 
congested, in which condition is it possible to dissipate the congestion? 

We use the terminology of control theory in which reachability is the capability to reach 
an arbitrary state 1 through any function r(t) [Astrom and Murray (2010)] that satisfies the 
constraints (this case r ≤ r(t) ≤ C ). When there exists at least one r(t) that satisfies this min l 

condition, the state it is reachable. For unconstrained linear systems, a general test is often used 
[Kalman et~al. (1960)]. However, the system under analysis is switched and r(t) constrained. 

In this case, the goal is to keep the system uncongested and therefore discharging at 
capacity. Then, the test consists in keeping k(t) ≤ kcd . Let Z the set of points such k(t) ≤ kcd , 
then Z is reachable if the controller is able to lead the system to at least one element of Z . We 
assume here constant demands, either upstream, d (t) = d , or ramp, d = (t) = d .u u r r 

Theorem 2.3.1 Z is reachable for d < C(1−∆) − r for any initial condition.  u min 

1 The term controllability and reachability are often exchangeable depending on the textbook [Astrom and Murray (2010)], here we follow the 
definition as in [Sun et~al.(2002)Sun, Ge, and Lee]: controllability is related to reaching the origin and reachability is related to an arbitrary state. 
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Proof. If k(t0 ) > k1 , g(t) = C(1−∆) . Setting r(t) = rmin , 

f (t) = min{v f k ,ω(k j − k(t), du + rmin} . As long as du < C(1−∆) − r , f (t) < C(1−∆) and c min 

k(t) < 0 and eventually, at t = t1 , k ≤ kcd . Once it is uncongested, either initially or at t = t1 , it 
1will remain if r(t) ≤ C − du because k(t) = ( f (t) − min(C,v f k(t)) and g(t) ≥ f (t) at boundary, 
L 

k = kcd , and k(t) ≤ 0 so k(t) ≤ kcd for t > t1 . + 

Theorem 2.3.2 Z is reachable for du < C − rmin if k(t0 ) < kcd 

Proof. With r(t) = C − rmin , follows the same condition of Theorem 4.1 for t > t1 . 

+ 

Outside this region, the controller is no longer effective. For example, if the system is in 
State 3 and du > C − (1−∆) − rmin , even with r(t) = rmin it does not switch to any of the 

uncongested states (1 or 2). In this case, a drop in the upstream demand, du , is necessary to 
relieve the congestion. 

Though still able to control k(t) , there might exist unserved demand. In order to keep at 
full capacity, the metering rate can be set to levels lower than ramp demand forming a queue that 
may spillover to local streets. 

Theorem 2.3.3 For Z reachable, all demand is served for d < C . 

Proof. If Z is reachable implies that eventually k(t) ≤ kcd and it can operate at capacity. 

After this instant, r(t) = C − du (t) can be set. The maximum influx is 

f (t) = d + min(r(t),C − d and f (t) ≤ d (t) + C − d , thus f (t) ≤ C . If d = d + d < C , then u u u u u r 

d < C − d , so r(t) ≥ d and both upstream and ramp demand are served.             +r u r 

When demand exceeds capacity, queues will grow either on on-ramp or upstream. Case 
d + d > C , setting the metering rate as r = C − d the upstream and ramp flux would be u r u 

f = d and f = r respectively. The on-ramp queue would evolve as: u u r 

Q r = dr (t) − fr (t) = dr − r = du + dr − C ≥ 0, (17) 

The queue would steadily increase. In practice, this queue has a maximum length in order 
to avoid the congestion to spill over to local streets. Often, the meter has a queue override feature 
that forces a higher metering rate to avoid long queues on on-ramps. It is not considered 
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2.4 How to Lead the System to the Desired State? Closed-Loop Analysis and 
Parameter Design 

 
 

 
 

  
 

 

  
  

   
 

  
 

  

   

    

   

   
    

 
    

 
 

    
   

 

    

  

 

explicitly here. However, at this point either delay will increase on local streets, due to queue 
spill back, or at mainline due to the capacity drop (see  (15) . 

When reachability is not guaranteed, the control system is able, at some extent, to change 
the share of the delays on on-ramp or mainline freeway, but it will discharge at dropped capacity. 

This result, while in this case for a single merge, differs from [Gomes 
et~al.(2008)Gomes, Horowitz, Kurzhanskiy, Varaiya, and Kwon]. It was shown that there could 
be multiple equilibrium states for a bottleneck with demand larger than capacity. As the capacity 
drop phenomenon was not considered, the resulting flow rate at the bottleneck is unique and 
always at capacity. Considering the capacity drop phenomenon, the flow rate is lower when the 
bottleneck is congested. 

Also on that study, it was proven that it is possible to steer the system towards the 
uncongested equilibrium state. It is a similar to what we defined on this study for reachability. 
While in the modeling considered here, it was introduced a minimum metering rate rmin , even for 

r = rmin = 0 if du > C(1−∆) it is not possible to dissipate the congestion. 

On the case of coordinated control, du is function of metering rates on upstream on-

ramps on previous time. Clearly, if rmin = 0 on all on-ramps it is possible to induce a 

du = 0 < C(1−∆) . However, if the flow induced by rmin > 0 on all upstream on-ramps lies in the 
interval (C(1−∆),C) it is possible to avoid the capacity drop, but not recover from it. 

This also shows the impact of the minimum metering rate. A higher minimum metering 
rates can make Z not reachable. For this purpose, ideally rmin = 0 ; however, usually agencies 
might impose higher minimum metering rates due to other operational issues, such as Caltrans in 
California [Sun and Horowitz(2005)]. 

The model equations are combined with PI-ALINEA [Wang et~al. (2010)] in order to 
analyze the response in closed-loop. First, the PI-ALINEA algorithm is briefly described. 
Second, the choice of set-point, ko , and the equilibrium states are discussed. Then, we show for 

which parameters, K p and Ki , the system in closed loop is stable. A Poincaré map analysis is 

presented for the case which the response is oscillatory. 
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ALINEA [Papageorgiou (1991)] is a feedback control algorithm based on PID Controller 
family. The metering rate is updated based on the observed occupancy just before the lane-drop. 
While the traditional ALINEA is an I-controller, in this study we consider the extended PI-
ALINEA [Wang et~al. (2010)], which considers a PI-Controller rather than an I-Controller. 
Also, the ALINEA control law is considered in discrete time. In this study we consider the 
continuous PI-Controller, given by [Astrom and Murray (2010)]: 

r(t) = K pe(t) + Ki ∫
t
e(τ )dτ , (18) 

0 

where K p and Ki are the proportional and integral coefficients respectively, and the error, e(t) , 

is the difference between the real-time density k(t) and the target density ko (t) : 

e(t) = ko (t) − k(t). (19) 

In addition, the control signal r(t) is bounded: 

r ≤ r(t) ≤ C . (20) min l 

Thus, it is necessary to determine the following parameters: the coefficients K p and Ki , 

the target density ko (t) , and the minimum metering rate rmin . 

From the analysis of equilibrium states, the fundamental diagram, and the PI-ALINEA 
control law (Eq. 18), we can find the optimal set point: 

1. if d > C the maximum out-flux is when k(t) = kcd with out-flux g(t) = C ; 

2. if d ≤ C and k(t) ≥ kcd the system could have been operating with the same out-

flux, but at free-flow speed ( k ≤ kcd ). In this case any set point less or equal to kcd will force the 
freeway to operate at free-flow speed; and 

3. if d ≤ C and k(t) ≤ kcd the system will not operate at capacity; however, any 
control action in the direction of a higher flux (i.e., increase of metering rate) is always desirable 
or at least does not affect the performance. The integral effect will push the metering rate to 
r(t) = Cl as long as the set point, ko , is such that k(t) < ko ≤ kcd . 
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 2.4.3  Closed Loop Response and Stability 

 
 

   
  

 
      

 
  

 
   

   

  
    

 

  

     

  

   

        

      

    

     

     

   

    
 

 

  
 

Therefore, the set point ko = kcd always leads the system to its maximum throughput in 
steady state, considering no fluctuation in demand or modeling errors. 

The equilibrium states depend on the PI-controller set-point and demand. From Equation 
(18) , the PI-Controller holds constant metering rate r(t) when e(t) = 0 , as long as Ki > 0 . In 

other words, the PI-Controller assures that the only equilibrium point is k(t) = ko = kcd . 
However, this state may not be reachable depending on demand patterns. 

If the demand is high enough to not match the reachability condition (see Section 2.3.2), 
it is not possible to avoid the congestion and capacity drop. Indeed, when k(t) > kcd , r(t) will 

steadily decrease until the lower bound r(t) = rmin . Once du (t) > C(1−∆) − rmin , the influx will be 

higher than out-flux until k(t) = k , which is the equilibrium state in this case. Once Z is 
reachable again (i.e., d < C(1−∆) − r ) , the density will start do decrease and eventually u min 

k(t) ≤ kcd . 

On the other hand, the set-point might not be reached for low demands. For k(t) < kcd the 

metering rate will steadily increase until the upper bound r(t) = Cl , but as long as d (t) < C it is 
d (t)always possible to serve the demand and the equilibrium state is k(t) = . 
v f 

For stability analysis, we assume: 

• Z is reachable so that there is a r(t) that can lead to the set point; 

• the ramp flux is determined by the metering rate (i.e., fr (t) = min(r(t), dr (t)) = r(t) ). 

The on-ramp queue evolve as Q r (t) = dr (t) − r(t) and will not be included in the state space; 

• the upstream queue is ignored and assumed to be zero and fu (t) = du (t) . In this case 

it is implicitly assumed that du (t) reflect any queue or unserved vehicles up to time t . 

Also, the upstream demand is split in a constant and a variable term: d (t) = d +δ (t)u u0 

and we define excess density as x(t) = k(t) − kcd and excess demand as v(t) = r(t) + du0 − C . The 
on-ramp queue is not included on the state variable as it is a direct consequence of the 
assumption . 

Combining equations  (1) , (9) , (11) , and the control law  (18) , the system can be 
described as: 
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1 x(t) = (r(t) + d +δ (t) − v x(t) − C) (21) u0 fL 

K 
r(t) = − p (r(t) + d +δ (t) − v x(t) − C) − K x(t), (22) u0 f iL 

which is valid for x(t) ≤ 0 . Similarly, for x(t) > 0 : 

1 x(t) = (r(t) + du0 +δ (t) − C(1−∆)) (23) 
L 

K pr(t) = − (r(t) + du0 +δ (t) − C(1−∆)) − Ki x(t). (24) 
L 

Setting excess density and demand as the state variables, Y (t) = [x(t),v(t)]T , we have the 
following switched affine system [Lin and Antsaklis (2009)]: 

Y = A1Y + B1 + Pδ (t), x(t) ≤ 0, (25) 

Y = A2Y + B2 + Pδ (t), x(t) > 0, (26) 

where 

 v f 1   1 
−  0  L L LA1 =   , B1 =   , P =   , 

 K p K p  0 − K p v f − Ki −
 L   L  L  

 1   C∆ 0   L LA2 =  , and B2 =   .K p − K pC∆− K −    
 i L   L  

The demand variation is treated as perturbation, δ (t) , which is assumed zero throughout 
å T å Tthis analysis. The equilibrium points are Y1 (t) = [0,0] for  (25) and Y2 (t) = [0,−C∆] for  (26) . 

In both cases x = 0 is the equilibrium point; however, Y1 
å is ideal because the out-flux is greater. 

Locally, the dynamic is determined by the eigenvalues of the respective matrix Ak ( 
k = 1,2 ): 
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v f + K p (v f + K p )
2 − 4Ki− ± 2 − 

L L Lλ(A1) = σ1n ± jω1 = , (27) 
2 

K p K p 
2 − 4Ki− ± − 

L L2 Lλ(A ) = σ ± jω = , (28) 2 2n 2 2 

where λ(Ak ) denotes the eigenvalues of matrix Ak . 

Through the nature of the eigenvalues in respect to the sign of its real part and whether it 
is a complex number and the initial condition after switching between regimes, the stability is 
derived. The complete derivation is in the Appendix I. 

The stability is guaranteed by two basic condition. After switching from congested to 
uncongested state, it remains uncongested and converges to Y1 

å . Also, if initially congested it 
should be guaranteed that the system will eventually switch to the uncongested state. 

The first condition is guaranteed by real and negative eigenvalues. While it is possible a 
switch to the congested state depending on the initial conditions, an eventual transition back to 
the uncongested state always will be Y (0) = [0,−C∆ +ε ] , ε > 0 and for this initial condition real 
and negative eigenvalues will lead the system to the origin. 

The second condition, is to assure that the system initially congested eventually switches 
to the uncongested regime. In this case, a real and negative eigenvalue can settle the system on 
the congested side. Complex eigenvalues guarantees a transition. In the specific case where 
eigenvalues are real and positive, the system always switches back as long as Ki > 0 due to the 
saturation. As the real part is positive, the system initially diverges from x = 0 and reaches 
r(t) = Cl ; at this point K p x(t) keeps constant while the integral term increases; when the integral 

term exceeds the proportional, the system is pushed to the congested side. 

Combining all these cases, the system is stable and converge to Y1 
å when: 

K p > −v f (29) 

K p 
2 (v f + K p )

2 

H (K p ) ≤ Ki ≤ (30) 
4L 4L 

An interesting fact is that the drop amount, ∆ , does not influence the eigenvalues. So, 
these results would be the same as long as the drop amount is greater than zero. 
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Another addressed case is when eigenvalues of A1 and A2 are all complex numbers. In 
this case, whatever the initial conditions, it has x(t) = ansin(ωnt) and it always cross the line 

π x = 0 at . In the new region, it changes ωn and an , but not the functional form and it always 
ωn 

switches back after half a period. We use Poincaré Map [Wiggins(2003)] analysis to analyze the 
behavior of the oscillations over multiple cycles. 

Consider the Figure 2.6, we assume the initial condition at Y (0) = [0,v1]T . It follows a 
sinusoidal trajectory and intercepts again x = 0 in the point Y2 = [0,v2 ] . This process repeats 

until point Y = [0,v ]T and so on. At each segment, v = f (v ) and therefore v = f (v ) .3 3 i 1 i−1 i 2 i−2 

After obtaining f2 (v) it is possible to compute when it will cross the segment x = 0 coming 
from the same dynamic region after n cycles and what is the asymptotic behavior when n →∞ . 

With the response given by Equation 2 and  (48) and  (49) , v2 and v3 are obtained: 

π v 
πσ

ω 
1 

v = Y ( ) = 1 e 1 , (31) 2 ω1 ω1L 

π π v2 + C∆ 
πσ

ω 
2 

v = Y ( + ) = ( )e 2 . (32) 3 ω ω ω L1 2 1 

Combining both equations: 

πσ πσ πσ1 2 2+
ω ω ω1 2 2v3 = v1e + C∆e . (33) 

πσ 2 

å å C∆e ω2 
Equation  (33) has one fixed point ( v = v = v ) at v = , configuring a stable 1 3 πσ πσ1 2+ 

1− e ω1 ω2 

πσ πσ limit cycle. Also note that if 1 + 2 is positive, the trajectories will increase over time; when 
ω1 ω2 

å π πnegative it asymptotically goes to v . The period is + .
ω1 ω2 
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Figure 2.6: Phase diagram x(t) x v(t) with initial condition in Y (0) = [0,v1]T . 

πσ πσ 1 2 åOn the other hand, for + is negative, the system will approach v = v as t →∞ .
ω1 ω2 
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    3.1 Capacity Drop and Variable Speed Limit Control 

 
 

 
 

 

  

   

  

  
  

  

   
   

  
 

 

   
  

 3.1.1 Capacity drop and stationary states at lane-drop bottlenecks 

    
    

   
  

  
    

   
 

Chapter 3 
Paradoxical Behavior of Global Traffic Control Systems 

Figure  3.1: A freeway network 

In this study, we consider a freeway network illustrated in  Figure 3.1 , where there is an 
upstream lane-drop bottleneck at L1 , a diverge between the mainline freeway and an off-ramp at 
L2 , a merge between the mainline freeway and an on-ramp at L3 , and a downstream lane-drop 

bottleneck at L4 . The two lane-drop bottlenecks, the diverge, and the merge divide the freeway 
into six links, which are labeled from upstream to downstream as links 0,1,,5 . The capacities 
of links 2, 3, and 5 are assumed to be the same as C , which is smaller than the capacities of links 
0, 1, and 4. Here we assume that link 5 is always uncongested; i.e., no queues will spill back 
from the further downstream part of the network. 

The freeway demand is denoted by d1(t) , and the on-ramp demand by d2 (t) . At the 
diverge, the turning ratio of vehicles to the off-ramp is denoted by ξ (t) ∈[0,1] . 

It is well known that, if traffic is congested upstream to a lane-drop bottleneck at either 
L1 or L4 , the discharging flow-rate is smaller than the downstream capacity [Banks (1991), Hall 
and Agyemang-Duah (1991)]. Generally, the maximum discharging flow-rate for such a 
bottleneck can reach up to 2300 vphpl in free-flow traffic [Federal highway administration 
(1985), Hall and Agyemang-Duah (1991)], but when the upstream link is congested, the 
discharging flow-rate can be dropped by a magnitude in the order of 10% [Persaud et~al. (1998) 
Cassidy and Bertini (1999), Bertini and Leal (2005), Chung et~al. (2007)]. The capacity drop 
magnitude of an isolated active bottleneck is relatively stable for a location, but fluctuations in 
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discharging flow-rates can be caused by interactions among several bottlenecks [Kim and 
Cassidy (2012)]. 

In the literature various mechanisms have been proposed to explain the occurrence of 
capacity drop. For examples, an acceleration zone can be observed around the bottleneck [Banks 
(1991)], and capacity drop can be a consequence of the way drivers accelerate away from the 
upstream queue [Hall and Agyemang-Duah (1991), Papageorgiou et~al. (2008)]; it could be 
caused by an extensive queue on the shoulder lane upstream to the merging point, sharp declines 
in vehicle speeds, and increases in lane-changing activities [Cassidy and Rudjanakanoknad 
(2005)]. 

It is well known that, in the Cell Transmission Model [Daganzo (1995)], the upstream 
traffic becomes congested when the upstream demand exceeds the downstream supply. In [Jin 
et~al. (2015)], a simple kinematic wave model with a discontinuous boundary flux function in 
terms of the upstream demand and the downstream supply was proposed to explain capacity drop 
at the macroscopic level. In this model, capacity drop immediately occurs when the upstream 
demand is greater than the downstream supply, and the capacity drop magnitudes are given 
exogenously. As shown in  Figure 3.1 , the capacity drop magnitudes at the two lane-drop 
bottlenecks are denoted by ε1 and ε 2 respectively. Here 1 ≥ ε1 ≥ 0 and 1 ≥ ε 2 ≥ 0 : a capacity 
drop magnitude of zero means no capacity drop. 

In [Jin et~al. (2015)], the macroscopic capacity drop model was shown to yield stationary 
states consistent with observations. In particular, a lane-drop bottleneck with capacity drop can 
be stationary in three traffic states, as shown in  Figure 3.2 (a). First, the bottleneck is 
uncongested, if both upstream and downstream links are uncongested (stationary states are 1-1’ 
in the figure); in this case, the discharging flow-rate is determined by the upstream link’s demand 
and can be as high as the downstream link’s capacity. Second, it is active, if the upstream link is 
congested, but the downstream link uncongested (stationary states are 2-2’ in the figure); in this 
case, the discharging flow-rate always equals the dropped capacity. Third, it is congested, if both 
upstream and downstream links are congested (stationary states are 3-3’ in the figure); in this 
case, a queue spills back from the downstream link, and the discharging flow-rate is determined 
by the downstream link’s supply and cannot be higher than the dropped capacity. 
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  3.2.2 Variable speed limit control 

 
 

   

   
   

     
    

   

   
    

 
  

    
  

   
    

  
  

 
  

 
 

 

    
   

 
 

  
    

     
 

                                                 
     

     
 

  

     

Figure  3.2: Stationary states at a lane-drop bottleneck: (a) Before control; (b) After control 

For the freeway network shown in  Figure 3.1 , under certain situations it is possible that 
traffic is congested upstream to L1 but uncongested downstream. That is, the upstream 
bottleneck at L1 is active [Daganzo (1999)], but the downstream one at L4 uncongested. In this 
case, capacity drop occurs at L1 , and the discharging flow-rate is only (1−ε1)C , which is 
smaller than the capacity of link 2. 

Naively, we would introduce a control strategy for the active upstream lane-drop 
bottleneck, so that the discharging flow-rate can be increased to C . In addition, since the 
downstream bottleneck is not active initially, one would think that there is no need to introduce 
any control for this location. 

For example, variable speed limits (VSL) can be effectively implemented to improve the 
throughput at the upstream lane-drop bottleneck [Greenberg and Daou (1960), Cascetta et~al. 
(2011), Carlson et~al. (2011), Carlson et~al. (2013)]. Theoretically, for the network in  Figure 
3.1 , where u(t) denotes the variable speed limit upstream to the upstream lane-drop bottleneck, 
capacity drop at the upstream bottleneck can be totally prevented, since a VSL strategy can 
completely control the upstream demand. 2 

Therefore, after successful control of the upstream bottleneck, the three types of 
stationary states are shown in  Figure 3.2 (b). Compared with those before control, the active 
state becomes critical, in which the discharging flow-rate equals the downstream link’s capacity. 
Note that, after control, the upstream states are for those on link 0, not link 1, where transitional 
states exist due to the VSL control. 

However, such local control strategies usually do not consider the impacts on other parts 
of the network. Thus they can be myopic if they worsen a system’s performance. We refer to this 
phenomenon as a paradoxical behavior of a traffic system, as at the first glance one would expect 
that successful control of an active bottleneck should improve the system’s performance. 
Another important reason for the occurrence of such a paradoxical behavior is that such 
strategies are helpless when the downstream part of a bottleneck is congested; i.e., by just 
managing the upstream demand, they cannot effectively alleviate traffic congestion when the 
downstream part is congested. 

2 In reality the upstream lane-drop bottleneck can also be a part of a merge bottleneck as the downstream bottleneck. In this case, integrated 
control strategies based on both VSL and ramp metering can be implemented to prevent the occurrence of capacity drop [Hegyi 
et~al.(2005)Hegyi, De~Schutter, and Hellendoorn, Zhang et~al.(2006)Zhang, Chang, and Ioannou, Allaby et~al.(2006)Allaby, Hellinga, and 
Bullock, Lu et~al.(2010)Lu, Varaiya, Horowitz, Su, and Shladover, Carlson et~al.(2010)Carlson, Papamichail, Papageorgiou, and Messmer]. But 

in this study for the purpose of simplicity we just consider a lane-drop bottleneck at L1 . 
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3.2 Sufficient Conditions for the Existence of the Paradoxical Behavior in 
Stationary States and Price of Myopia 

 
 

 

  
  

 
 

   

    
  

     

      
  

      
 

 

 
    

   

    
    

 

   

   
 

In this section, we assume that the demands, d1(t) = d1 and d2 (t) = d2 , and the turning 
ratio, ξ (t) = ξ are all time-independent. We present a set of sufficient conditions for the 
occurrence of a paradoxical behavior in stationary states, when traffic conditions are time-
independent on all links. By comparing the system’s performance before and after successful 
upstream control, we demonstrate that such a local control is myopic under these conditions. 
Without loss of generality, we assume the road is initially empty. 

 3.2.1  Sufficient conditions before and after control 

In this subsection, we determine conditions with respect to capacity drop magnitudes, ε1 

and ε 2 , turning ratios, ξ , and demand levels, d1 and d2 , such that the network satisfies the 
following conditions: 

• Before control, only the upstream bottleneck is active, and the downstream 
bottleneck is uncongested; that is, congestion only develops at the upstream bottleneck. 

• After control, the upstream bottleneck’s capacity drop is prevented, but the 
downstream bottleneck is activated, and the formed queue further congests the upstream 
bottleneck.  

Before control, if the upstream bottleneck is active in stationary states, then the freeway 
demand d1 has to be high enough: 

d1 > C, (1) 

and the discharging flow-rate at L1 equals the dropped capacity, (1−ε1)C . Therefore, the off-
ramp flow-rate equals (1−ε1)ξC , and link 3’s stationary flow-rate equals (1−ε1)(1−ξ )C . If the 
downstream bottleneck is uncongested, then the total demand at the merge cannot be higher than 
link 5’s capacity; i.e.,  

(1−ε1)(1−ξ )C + d2 ≤ C. (2) 

It is straightforward to verify that, when both  (1) and  (2) are satisfied, the upstream bottleneck 
is active, and the downstream one uncongested in stationary states. 
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   (ii) the turning  ratio is not too large:   

 
 

  
 

    

   

  
 
 

   
 

   

     

    

  
    

 

 

   

  
  

 

        
      

   

   

                                                 
      

 

After successful control of the upstream bottleneck, then the capacity drop is effectively 
prevented for the bottleneck, and its discharging flow-rate is increased to C . If 
(1−ξ )C + d2 > C ; i.e., if 3 

d2 > ξC, (3) 

then the demand for the downstream bottleneck exceeds link 5’s capacity, and the bottleneck is 
activated with a discharging flow-rate of (1−ε 2 )C . Once the downstream bottleneck becomes 
active, a queue forms on link 4 and spills back to link 3. Assuming that on-ramp vehicles have 
the absolute priority to merge at L3 [Daganzo(1995), Jin(2010)] and the on-ramp demand, d2 , is 
not larger than the dropped capacity of the downstream bottleneck; i.e.,  

d2 < (1−ε 2 )C, (4) 

then link 3’s stationary flow-rate is (1−ε 2 )C − d2 > 0 . The queue further spills back to link 2, 
(1−ε 2 )C − d2whose stationary flow-rate equals , assuming that vehicles do not change their 

1−ξ 
routes and the turning ratio is still ξ . In this case, the discharging flow-rate of the upstream 
bottleneck is determined by link 2’s flow-rate, which is smaller than C from  (3) . If we assume 
that the discharging flow-rate is smaller than the dropped capacity; i.e., 
(1−ε 2 )C − d2 < (1−ε1)C , which leads to  

1−ξ 

(1−ε1)(1−ξ )C + d2 > (1−ε 2 )C, (5) 

then the upstream bottleneck becomes congested in stationary states. It is also straightforward to 
verify that, given  (3) , (4) , and  (5) , the network satisfies the aforementioned condition after 
control. 

Lemma 3.2.1 Conditions (2) - (5) are equivalent to the following three sets of 
conditions: (i) there exists capacity drop at both bottlenecks: 

1 > ε1 > 0, (6) 

1 > ε 2 > 0; (7) 

3 Otherwise, if (3) is not satisfied, then after successful control of the upstream bottleneck both bottlenecks become uncongested in stationary 
states. 
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  3.2.2 Existence of paradoxical behavior and price of myopia 

 (iii) the on-ramp demand is in a reasonable range:       

 
 

   

   

   

   

     
   
   
 

     

  
  

  
 

  
    

     
 

  
   

  
 
 
 

  
 

   
 

 
  

0 ≤ ξ < 1−ε 2; (8) 

d2 > max{ξC, (1−ε 2 )C − (1−ε1)(1−ξ )C}, (9) 

d2 < (1−ε 2 )C, (10) 

d2 ≤ C − (1−ε1)(1−ξ )C. (11) 

Proof. From conditions  (2) - (5) we find that the on-ramp demand, d2 , has two upper 
bounds: C − (1−ε1)(1−ξ )C and (1−ε 2 )C , and two lower bounds: ξC and 
(1−ε 2 )C − (1−ε1)(1−ξ )C . For d2 to exist, the two lower bounds have to be smaller than the 
two upper bounds. Therefore we can derive  (3.1) and  (8) . Once these conditions are satisified, 
the range of q2 is given by (3.1) . + 

Note that the requirements on both capacity drop magnitudes in  (3.1) and the turning 
ratio in  (8) are quite mild. For example, there is no need for the downstream bottleneck’s 
capacity drop magnitude to be larger, and relatively small turning ratios to the off-ramp can also 
be easily achieved in reality. Among the conditions on the demand levels,  (1) is easy to be 
satisfied, but the on-ramp demand d2 needs to be in a reasonable range, defined in  (3.1) . For 
example, on a two-lane free-way, C ≈ 4000 vph, if we let ε1 = ε 2 = ξ = 0.1 , then the range of the 
on-ramp demand is 400 < d2 ≤ 760 vph, which is reasonably large. Therefore,  (1) ,  (8) , (3.1) , 
and  (3.1) represent a quite wide range of conditions. 

When the network satisfies the two conditions before and after control in the preceding 
subsection, both of the two bottlenecks end up with worse stationary states after successful 
control of the upstream bottleneck, since the state of the upstream bottleneck changes from 
active to congested, and that of the downstream bottleneck from uncongested to active. 
Therefore, the total discharging flow-rate of the network is expected to be smaller after control, 
and the corresponding travel time in the system is larger. This leads to the paradoxical behavior 
that successful control of an active bottleneck worsens the system performance. In this 
subsection, we demonstrate the existence of such a paradoxical behavior and quantify the 
negative effects of such myopic local control strategies, under the sufficient conditions given by 
(1) , (8) ,  (3.1) , and  (3.1) . 

Before control, the upstream bottleneck is active, and its discharging flow-rate is 
(1−ε1)C , the off-ramp flow-rate is (1−ε1)ξC , and link 3’s stationary flow-rate is 
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(1−ε1)(1−ξ )C ; the downstream bottleneck is uncongested, and its discharging flow-rate equals 
d2 + (1−ε1)(1−ξ )C . Thus the network’s total discharging flow-rate before control equals the 
off-ramp flow-rate plus the downstream bottleneck’s discharging flow-rate, which is the 
upstream bottleneck’s discharging flow-rate plus the on-ramp demand 

g = (1−ε1)C + d2. (12) 

In contrast, after control, the network’s total discharging flow-rate equals the upstream 
bottleneck’s discharging flow-rate plus the on-ramp demand  

(1−ε )C − d 1−ε ξ2 2 2ĝ = + d2 = C − d2. (13) 
1−ξ 1−ξ 1−ξ 

Theorem 3.2.2 Under (1) , (3.1) , (8) , and  (3.1) , successful control of the upstream 
bottleneck leads to smaller total discharging flow-rate of the network; i.e., 

ĝ < g. (14) 

That is, successful local control actually leads to worse system performance. 

Proof. The conclusion is guaranteed by  (5) or (3.1a). Note that, even though other 
conditions in  (1) ,  (3.1) , (8) , and  (3.1) are not directly used in the proof of  (14) , they are 
essential for calculating both g and ĝ . One can verify that the off-ramp flow-rate and the 
discharging flow-rate of the downstream bottleneck are both smaller after control. In this sense, 
(1) , (3.1) ,  (8) , and  (3.1) are sufficient conditions for the existence of the paradoxical behavior 
in the network.             + 

The deterioration of the system’s performance is solely caused by the VSL control law or 
other local control methods, which simply aim to maximize the throughput of the upstream 
active bottleneck. Therefore such strategies are myopic and impose a price of myopia. During a 
period of T , we denote the system’s total travel times before and after control by τ and τ̂ , 
respectively. Then we define the price of myopia as the ratio of the increased travel time to the 
original travel time; i.e., 

τ̂θ = −1, (15) 
τ 

which is similar to the price of anarchy caused by selfish route choice behavior that leads to the 
Braess paradox [Roughgarden (2005)]. Therefore, when θ > 0 , a local control strategy has 
negative effects on the overall system. 
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



In stationary states, when both freeway and on-ramp demands, d1 and d2 , are constant, 
and traffic conditions in the network in Figure 3.1 are stationary during T . Then the total 
queueing times (excluding the free-flow travel times) before and after control are respectively 

1  d + d 2 1 2τ = T ⋅ −1,
2 g  

1  d + d 2 1 2τ̂ = T ⋅ −1. 
2 ĝ  

Thus the price of myopia in stationary states is 

d1 + d2 (1−ε1)(1−ξ )C + d2 − (1−ε 2 )Cθ = ⋅ . (16)
d − (1−ε )C (1−ε )C −ξd1 1 2 2 

For example, d1 = 1.5C , ε1 = ε 2 = ξ = 0.1 , and d2 = 0.15C , then g = 1.05C , and ĝ = 0.9833C ; 
and the price of myopia is θ = 0.19 . In this case, the myopic control increases the total queueing 
time by 19%. 

Theorem 3.2.3 For the network in Figure 3.1 with constant demands, successful control 
of the upstream bottleneck leads to a positive price of myopia in (16) , when (1) , (3.1) , (8) , 
and (3.1) are satisfied. In addition, θ increases in both d2 and ε 2 but decreases in d1 and ε1 . 
Therefore, its upper- and lower-bounds independent of the demands can be calculated in terms 
of ε1 , ε 2 , and ξ as in the following: 

(1−ε1)(2 −ε 2 ) ε 2 2 − (1−ε1)(1−ξ )θ < , θ ≤ , (17)
ε (1−ε ) ε 1−ε −ξ + (1−ε )(1−ξ )ξ1 2 1 2 1 

ε 2 −ε1 +ε1ξθ > max{ ,0}. (18)
1−ε 2 −ξ 2 

where ε1 , ε 2 , and ξ satisfy  (3.1) and (8) . 

Proof. From  (16) , when (1) , (3.1) , (8) , and (3.1) , we can show that d1 − (1−ε1)C > 0 , 
(1−ε )C −ξd > 0 , and (1−ε )(1−ξ )C + d − (1−ε )C > 0 . Thus θ > 0 in (16) . It is also2 2 1 2 2 

straightforward to show that θ increases in both d2 and ε 2 but decreases in d1 and ε1 . 
Furthermore, since θ increases in d2 and decreases in d1 , it reaches the upper-bound when 
d = C and d = min{(1−ε )C,C − (1−ε )(1−ξ )C} , and the lower-bound when d1 = ∞ and1 2 2 1 

d2 = max{ξC, (1−ε 2 )C − (1−ε1)(1−ξ )C} . Hence we obtain the range of θ given in (3.3) . 
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  3.3 Paradoxical Behavior under Dynamic and Random Conditions 

 
 

   
    

 
   

 

  
 
 

   

   

      
   

     

    

     

  

  

   

   

Constant demands and parameters allow for straightforward proof of the existence of the 
paradoxical behavior and calculation of the price of myopia in stationary states, as shown in the 
preceding section. In this section, we demonstrate that such a paradoxical behavior also exists 
with dynamic demand levels and random capacity drop magnitudes and turning ratios, as in the 
real world. 

For the same network in  Figure 3.1 , we assume that all links have the same length of 
600 m. The numbers of lanes for links 1 to 5 are 3, 2, 2, 3, and 2, respectively. We use the 
following triangular fundamental diagram [Munjal et~al. (1971), Haberman (1977), Newell 
(1993)]: 

Q(a(x), ρ) = min{v ρ , w(a(x)k j − ρ)}, (19) f 

where ρ is the traffic density, and a(x) is the number of lanes at x . Here the parameters are 
from [Yang et~al. (2011)]: the free-flow speed v f = 30 m/s, the shock wave speed in congested 

traffic w = 35/8 m/s, the jam density k j = 1/7 veh/m/lane. Then the critical density is 

wkc = k j = 1/55 veh/m/lane, and the capacity of links 2 and 3 is C = 2kcv f = 12/11 veh/s 
v + wf 

for two lanes. The fundamental diagrams for a = 2 and a = 3 are shown in  Figure 3.3. 

Figure  3.3: Fundamental diagrams 
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  3.3.1 Simulation set-up 

 
 

 
  

  
   

   

  

     
 

  

 
 

  
  

     

 
      

   

   

   

   

    

       

We assume that the capacity drop magnitudes and the turning ratio have an average value 
of 0.1 and independently follow a uniform distribution between 0.095 and 0.105 . Their average 
values of these parameters satisfy  (3.1) and  (8) . We choose d2 (t) , such that its average value 
during the peak period also satisfies  (3.1) : 

0.1C < d2 ≤ 0.19C. (20) 

t 4500 − tWe set d1(t) = max{0, min{ ,1, }}⋅ d1 , which simulates a peak-period demand 
900 900 

pattern during an hour. In addition, we let the average mainline freeway demand during the peak 
period, d1 = 1.2C , and multiply d1(t) by a uniform random variable between 0.95 and 1.05 to 
add randomness to the demand pattern. Similarly, we set 

t − 900 4500 − td2 (t) = max{0, min{ ,1, }}⋅ d2 , which starts later than d1(t) . We also multiply 
900 900 

d2 (t) by a uniform random variable between 0.95 and 1.05 to add randomness to the demand 
pattern. In our simulations, the network is empty initially. 

In this study, we just simulate traffic dynamics on links 1, 2, 3, and 4, without 
considering link 5, which is always uncongested. We first discretize each link into n = 20 cells 

600with the cell length of ∆x = = 30 m and a corresponding time-step size ∆t = 1 s. We apply 
n 

the Cell Transmission Model [Daganzo (1995)] to simulate traffic dynamics on all cells ( 
i = 1,,4n ): 

j+1 j ∆t j jρ = ρ + (µ −ν ), (21) i i i i∆x 

δ i
j = Q(ai ,min{ρi

j , aikc}), (22) 

σ i
j = Q(ai , max{ρi

j , aikc}), (23) 

j j j jµi =ν i−1 = min{δ i−1,σ i }, i ≠ 1, n +1,2n +1,3n +1 (24) 

where the CFL number v f 
∆t 

≤ 1 [Courant et~al.(1928)Courant, Friedrichs, and Lewy], ρ j is 
∆x i 

the average density in cell i at j∆t , ai the number of lanes in cell i , µi
j the in-flux of cell i 
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during [ j∆t, ( j +1)∆t], ν i
j the out-flux of cell i during [ j∆t, ( j +1)∆t], δ i

j the demand of cell i 

at j∆t , and σ i
j the supply of cell i at j∆t . 

In addition, we assume that there are two point queues with infinite holding capacities at 
the mainline freeway entrance (at x = 0 ) and the on-ramp (at x = L3 ). The queue lengths at j∆t 

~ j j 0 0are denoted by λ1 and λ2 , respectively. Initially λ1 = λ2 = 0 . We denote their demands by d1 
j 

~ and d2 
j , respectively. Then from a standard point queue model [Jin (2015)], we have 

~ j j λ1 
j 

d1 = d1 + ∆t 
, (25) 

j~ j j λ2d2 = d2 + , (26) 
∆t 

where d1 
j is the mainline freeway demand at j∆t , and d2 

j is the on-ramp demand at j∆t . 

At the upstream boundary of cell 1, we apply a PI-controller to determine the variable 
speed limit and calculate the in-flux as follows [Jin and Jin (2015)]: 

j j−1 j j−1 ju = u −α (ρ − ρ ) + β (k − ρ )∆t, (27) n n 1 n 

u j = max{u , min{u j ,v }}, (28) min f 

j~ u wj j jµ1 = min{d1 ,σ1 , j a1k j }, (29) 
u + w 

where u j is the variable speed limit at j∆t , umin = 0.5 m/s is the minimum variable speed limit, 

α = 0 and β = 4 are the coefficients of the PI-controller, and k1 = 2kc is the target density 
which leads to the maximum discharging flow-rate at the upstream bottleneck. Here the VSL 

ju wstrategy adds an additional constraint on the boundary flux: j a1k j ; when u j = v f , the 
u + w 

constraint equals the capacity of cell 1, and it is equivalent to the case without upstream control. 
Thus it is reasonable to set the initial VSL as u0 = v f . Note that here the variable speed limit is 

adjusted based on the feedback of traffic conditions in cell n , which is the last cell in link 1. 
With such a local feedback scheme and the target density, this VSL strategy is myopic, without 
considering the potential impacts on the downstream bottleneck. k1 and the corresponding speed 
limit, u0 , are illustrated in  Figure 3.3 . 
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At the lane-drop bottleneck between cells n and n +1, we apply the capacity drop model 
in [Jin et~al. (2015)] to calculate the boundary fluxes: 

j j j j j jν = µ = min{δ ,σ , (1−ε ⋅ H (δ −σ ))C}, (30) n n+1 n n+1 1 n n+1 

where H ( y) is the Heaviside function: 

0, y ≤ 0
H ( y) =  

1, y > 0 

That is, when δ j > σ j , the maximum discharging flow-rate is dropped to (1−ε )C ; otherwise, n n+1 1 

the maximum discharging flow-rate is C . But the boundary flux is also bounded by the 
downstream supply, when link 2 is congested. This is the dynamic version of the capacity drop 
model described in Section 3.1, and the queue spillback effect from link 2 to link 1 is also 
captured. 

At the diverge between cells 2n and 2n +1 , we apply the first-in-first-out diverge model 
in [Daganzo (1995)] to calculate the boundary fluxes: 

j 
j j 2n+1ν 2n = min{δ2n , 

σ 
j }, (31) 

1−ξ 

j j jµ =ν (1−ξ ), (32) 2n+1 2n 

j j jqoff =ν 2nξ , (33) 

where ξ j is the turning ratio at j∆t , and qoff 
j the out-flux at the off-ramp. Here we assume that 

the off-ramp is always uncongested. 

At the merge between cells 3n and 3n +1, we apply the priority-based merge model in 
[Jin (2010)] to calculate the boundary fluxes: 

j j j jµ = min{δ + d ,σ }, (34) 3n+1 3n 2 3n+1 

~ j j j jν = min{δ , max{0,σ − d }}, (35) 3n 3n 3n+1 2 

~ j j jq = min{d ,σ }, (36) on 2 3n+1 

where qon
j is the in-flux from the on-ramp. Here we assume that the on-ramp has the absolute 

merging priority; i.e., the on-ramp demand is satisfied before the mainline freeway demand. 

35 



 3.3.2 Simulation results 

 
 

   
   

   

   
  

  

   

   

   

 
     

   

   

      

   
   

    

   

 
 

  
  

  
   

   
     

  

At the lane-drop bottleneck downstream to cell 4n , we apply the same capacity drop 
model as  (30) : 

j j jν 4n = min{δ4n , (1−ε 2 ⋅ H (δ4n − C))C}, (37) 

Note that here we assume that link 5 is always uncongested, and its supply is always C . Thus, 
when d j > C , the maximum discharging flow-rate is dropped to (1−ε )C ; otherwise, the 4n 2 

maximum discharging flow-rate is C . 

We can update the two queues as in the following: 

j+1 j j jλ1 = λ1 + (d1 − µ1 )∆t, (38) 

j+1 j j jλ = λ + (d − q )∆t. (39) 2 2 2 on 

Then we calculate the arrival and departure cumulative flows of the whole traffic system 
as 

j j−1 j jA = A + (d1 + d2 )∆t, (40) 

j j−1 j jD = D + (ν 4n + qoff )∆t, (41) 

where A j is the cumulative arrival at j∆t , and D j the cumulative departure at j∆t . Here we 

set A0 = D0 = 0 . We will simulate the traffic dynamics until the network becomes empty again 
and assume that the maximum number of time steps is J . Then the total travel time can be 
calculated from cumulative arrival and departure flows as 

J 

τ = ∑(A j − D j )∆t. (42) 
j=1 

We first set d2 = 0.05C . From the analysis in Section 3.2, we expect that a successful 
control strategy can deactivate the upstream bottleneck without activating the downstream one 
during the peak period. Thus in this case the VSL control is beneficial, improving the system’s 
performance. The simulation results are shown in  Figure 3.4 . Note that in the contour plots of 
densities, values smaller than 1 represent uncongested traffic conditions and congested 
otherwise. From the figures we can see that, before control, only the upstream bottleneck is 
activated; after control, the upstream bottleneck becomes uncongested, without activating the 
downstream one. In this case, the VHTs (vehicle hours traveled) in the system are 730 before 
control and 523 after control, and the price of myopia in  (15) equals − 28% . That is, the VSL 
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control strategy improves the system’s performance by 28%. This verifies that the VSL strategy 
implemented in  (27) is effective. 

Figure  3.4: Simulation results with d2 = 0.05C 

We then set d2 = 0.15C . From the analysis in Section 3.2, we expect that successful 
control of the upstream bottleneck can deactivate the upstream bottleneck but activate the 
downstream one during the peak period, and the paradoxical behavior occurs. The simulation 
results are shown in  Figure 3.5 . From the figures we can see that, before control, only the 
upstream bottleneck is activated. But after control, the upstream bottleneck is first cleared, but 
the downstream one is activated, and a queue spills back to links 2 and 3. In this case, the VHTs 
in the system are 733 before control and 792 after control. In this case the price of myopia equals 
7.9%; i.e., the VSL control is myopic and increases the total travel time by 7.9%. 
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Figure  3.5: Simulation results with d2 = 0.15C 

We finally set d2 = 0.5C . The simulation results are shown in  Figure 3.6 . From the 
figures we can see that, before control, both bottlenecks are activated. After control, the upstream 
bottleneck is partially cleared, but the congestion time of the downstream one is prolonged. In 
this case the VHTs in the system are 1752 before control and 1787 with control. In this case the 
price of myopia equals 2%, and the VSL control also leads to worse system performance. 
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Figure  3.6: Simulation results with d2 = 0.5C 

In  Figure 3.7 , we show the prices of myopia for different on-ramp demands. For each 
on-ramp demand, we simulate 100 random scenarios and calculate the average price of myopia. 
From the simulation results we can see that the on-ramp demand plays a critical role in 
determining the price of myopia: a control strategy is beneficial with low on-ramp demand levels 
(e.g., d2 = 0.05C ), and the price of myopia is larger with medium on-ramp demand levels (e.g., 

d2 = 0.15C ) than with high on-ramp demand levels (e.g., d2 = 0.5C ). Such a nonlinear 
relationship can be explained from traffic dynamics at both bottlenecks: with low demand levels, 
successful control of the upstream bottleneck deactivates the upstream bottleneck but doesnot 
activate the downstream bottleneck, and leads to better system performance and, therefore, 
negative prices of myopia; with medium demand levels, successful control of the upstream 
bottleneck activates the downstream bottleneck and leads to worse system performance and 
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therefore large prices of myopia; with high demand levels, both bottlenecks are congested 
without control, and control of the upstream bottleneck has minimum effect on the system and 
leads to relatively small prices of myopia. 

Figure  3.7: Prices of myopia vs on-ramp demands 
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Chapter 4 
Conclusions and Future Research 

 4.1 Local Ramp Metering 
In this report, by combining a simple link queue model to describe traffic dynamics of a 

merge bottleneck, we were able to show analytically the hysteresis imposed by the capacity drop 
phenomenon, the reduced reachability region, and the stability range when the merge is 
controlled by PI-ALINEA. 

The reachability is a direct consequence of the hysterisis imposed by the capacity drop 
phenomenon. The maximum metering rate in which the capacity drop can be avoided is greater 
than the metering rate necessary to recover from the capacity drop. A quite possible scenario is 
being possible to avoid the capacity drop, but if a disturbance on the system leads to capacity 
drop, it might not be possible to recover from it unless the upstream demand ceases. This result 
is general and regardless of the control strategy. 

This is a disadvantage of ramp metering compared to variable speed limit. A reduced 
speed lower the upstream flow while a lower metering rate reduces the ramp flow. In general, the 
ramp demand is a small share of the total demand and reducing may not be enough to reduce the 
total demand. On the other hand, variable speed limit moves the congestion upstream which can 
hit upstream off-ramps first. Ramp metering moves the congestion from the lane drop to on-
ramps, therefore avoiding the congestion 

We derived the stability range for the (PI-)ALINEA, one of the most studied ramp 
metering algorithms. Considering the capacity drop phenomenon, ALINEA can lead the system 
to the density in which yields maximum throughput if it is in the stability region, that is, 
theoretically, the target density can be the critical downstream density. In practice, a "slightly 
undercritical" [Papageorgiou et~al.(1997)Papageorgiou, Hadj-Salem, and Middelham] is set. 
From the model proposed it is possible to show the reason: the asymmetrical effect of a small 
disturbance; a small decrease on the upstream demand leads to a small decrease on the out-flux; 
a small increase, however, can trigger the capacity drop and severely decrease the out-flux. 
Therefore, a slightly undercritical target occupancy avoids the capacity drop at expense of lower 
out-flux. 

In the future, we will be interested in the ramp metering problem subject to stochastic 
disturbances in both upstream demands and downstream capacity. In addition, we will be 
considering the impacts of the on-ramp queue overriding rule as well as practical implementation 
issues. 
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 4.2 Global Ramp Metering 

 
 

   
  

 
 
 
 

  
   

    
  

 

 
  

 
   

 
 

  
  

 

   
 
 
 

  
 
 
 

  
 

  
 

   
 

    

In this report, we used an example of a freeway control system to demonstrate the 
occurrence of a paradoxical behavior, in which successful control of an active bottleneck could 
lead to worse system performance. We first discussed stationary states at a bottleneck with 
capacity drop and the impacts of local feedback control strategies. Then we derived sufficient 
conditions in terms of demands, capacity drop magnitudes, and turning ratios for the occurrence 
of such a paradoxical behavior in stationary states. We further defined the price of myopia, as the 
increased percentage in the total travel time caused by myopic traffic control strategies. With 
Cell Transmission Model simulations, we demonstrated that under dynamic and random 
conditions such a paradoxical behavior still occurs. We found that a local control strategy can be 
beneficial with low demand levels, and the price of myopia is higher with medium demand levels 
than with high demand levels. 

This study definitely establishes that myopic traffic control strategies can be detrimental 
to the whole system. It also reveals one underlying mechanism of such a paradox: successful 
local control activates the downstream, otherwise dormant, bottleneck, and the resulted queue 
further blocks the upstream bottleneck. Moreover, we demonstrate that the phenomenon occurs 
under a wide range of conditions in a simple network. One may argue that the model network is 
quite small, but the occurrence of the paradox in such a small network exactly suggests that it 
can be more prevalent in a larger network with more complicated interactions. In addition, a new 
concept, the price of myopia, the price of myopia, was introduced to quantify such negative 
effects of myopic control strategies. The analytical and simulation methods developed in this 
study can also be useful to examine the effects of various traffic control strategies for a large 
road network. 

The paradox in this study is analogous to the Braess paradox, where the total travel time could be 
increased by adding a new road to a network [Braess et~al.(2005)Braess, Nagurney, and 
Wakolbinger]. Therefore, analysis and quantification of such a paradox can have confound 
implications for traffic control as that of the Braess paradox for network design. This study 
clearly shows that coordinated traffic control is not only beneficial, but also necessary, for a 
complex road network, as otherwise we may have to pay a price of myopia. However, to define 
the right scope of coordination is a critical question to answer before designing coordinated 
control strategies. For example, one insight obtained from this study is that one needs to include 
all bottlenecks that can be potentially activated by the control strategy. Otherwise, we may still 
have to pay a price of myopia. For a large network, we can start with identifying activate 
bottlenecks and quantify the price of myopia before and after various control strategies. Once the 
scope of coordination is determined, one may want to augment the local control law in  (27) with 
global information feedback, e.g., from cell 4n on link 4; another approach is to implement 
control at both bottlenecks. Another insight is that we may be able to improve traffic flow by 
creating artificial bottlenecks at certain locations. In the future, we will also be interested in 
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possible paradoxical behaviors in other traffic control systems, including signalized arterial 
networks and distributed control with connected and automated vehicles. 
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