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Abstract 

Peer-to-peer ridesharing is a recently emerging travel alternative that can help accommodate the 

growth in urban travel demand, and alleviate some of the cunent problems such as excessive 

vehicular emissions. Prior ridesharing projects suggest that the demand for ridesharing is usually 

shifted from transit, while its trne benefits are obtained only if the demand shifts from private 

autos. This project studies the potential ofefficient real-time ride-matching algorithms to 

augment demand for transit by reducing private auto use. The Los Angeles Metro red line is 

considered for a case study, since it has recently shown declining ridership. A mobile application 

with an innovative ride-matching algorithm is developed as a decision support tool that suggests 

transit-1ideshare and rideshare routes. The app also facilitates peer-to-peer communications of 

users via sma1i phones. For successful ride-sharing, strategically selecting locations for 

individuals to get on/off rideshare vehicles is crucial, along with the pricing structure for rides. 

These can be adjusted dynamically based on the feedback from the app-users. A parametric 

study of the application ofreal-time ride-matching algo1ithms using simulated demand in 

conjunction with the SCAG model for the selected study area is conducted. 
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1 Introduction 

One of the main issues faced by major cities in the US today is congestion. In addition to directly 

impacting travelers by increasing travel times and reducing travel time reliability, congestion 

leads to higher levels ofGreen House Gas (GHG) emissions which are damaging to people's 

health and the enviromnent. One of the solutions as to how to reduce congestion is to eliminate 

vehicles from roads by putting individuals who are traveling along the same routes in the same 

vehicles. 

Although carpooling has been around since the invention of cars, the nature of carpooling which 

requires making arrangements in advance of the travel and committing to those anangements for 

a period of time, make it UI1attractive to many individuals. Dynamic ridesharing is a modernized 

form ofcarpooling that is on-demand, a one-time commitment, and does not require making 

arrangements far in advance of the trip. 

In recent years, ridesharing (including carpooling) in the US has experienced a slight increase in 

mode share, reaching a mode share of 11% in 2008. Although this increase in ridesharing seems 

to be a step forward in the direction of a greener transpo1tation system, this is not necessarily the 

case. The modal shift due to introduction ofridesharing is as impo1tant or more. The benefits of 

ridesharing depend tremendously on this model shift. The benefits would be high in tenns of 

reducing congestion and GHG emissions if the demand is being shifted from p1ivate vehicles to 

rideshare systems, but may not be significant if the ridesharing demand is being shifted from 

transit. In addition, introduction ofridesharing can lead to emergence ofmore complex multi­

modal alternatives, such as the transit-rideshare mode. 

Study of the many government-funded ridesharing systems indicate that ridesharing systems, as 

they work today, are competitive to transit systems (Levofsky and Greenberg, 2001; Nelson 

Nygaard 2006). The goal of this project is to assess the potential ofridesharing in being a 

complement to the transit, feeding it instead ofshifting demand away from it. We analyze the 

potential of such multi-modal travel using a parametric study with simulated demand based on 

the cunent Southern California Assosiation of Governments (SCAG) model of a selected area 

(LA Metro red Line catchment area), and develop an app using an advanced 1ide-matching 

algorithm. 
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2 

The reason why we consider the LA Metro red line (Figure l(a)) to study potential ride-share 

based demand augmentation is the noticeable reduction ofridership (shown in Figure l(b)) in 

recent years. This indicates potential opportunities for additional demand-inducement strategies 

using rideshare options. 

The success ofa multi-modal transit-rideshare system can be considerably influenced by the 

architecture of the designed system, namely locations where the ridesharing service is offered, 

price ofridesharing, and the matching method used by the system. In this rep01t, we elaborate on 

this system architecture, and show case the impact of such targeted architecture on transit 

ridership augmentation for the LA Metro red line. 

Literature Review 

Peer-to-peer ridesharing initially emerged in the US in 1990s. The earlier ridesharing projects 

where not very successful for a variety ofreasons, including the difficulty ofcommunication 

betweenpeer riders and drivers, lack of incentives, and secmity and privacy concerns. Table 1 

summarizes a number of ridesharing projects, and points out the reasons for their failure. The 

new wave of shared-mobility start-up companies have managed to get past the majority of 

obstacles faced by the previous generation ofridesharing systems, mainly thanks to new 

technologies that make communication between individuals seamless, promise security and 

privacy to users, and enable automatic online payments. 
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Figure l (a) Los Angeles Metro red line 

V') 

C 
6 

0 

OI) 

·= ~ 5 
-0 
~ 
0 

a:) 4 
£ 
C 
0 

~ 
~ 

3 
-0 
C 
2 2t<l u 
8 
0 
~ 1 

0 

■ Red/Pmple Line 

■ Blue Line 

■ Green Line 

Gold Line 

Figure l(b) Ridership trends ofLA metro 

Figure 1. Case study aTea: Los Angeles Metro red line 

6 



One of the attractions of1idesharing/ridesoursing services, especially in densely populated cities, 

is access to on-demand transportation. Therefore, in order to be successful, a ridesharing 

company needs to match riders with drivers in real-time, while hying to maximize the number of 

se1ved riders. This calls for a powerful, fast, yet flexible ride-matching algorithm. 

In practice, the match making between riders and d1ivers is mostly based on the origin and 

destination locations, i.e. a rider and a driver are matched if their origin and destination locations 

are both within a certain proximity ofeach other. An example of such ridesharing systems is 

Ca1ma. This method of matching leaves out three main factors that if taken into consideration 

can substantially increase the number of se1ved riders. 

A 1idesharing operator can increase the performance of a ridesharing system by using a 1ide­

matching method than can: (1) prescribe the best possible route to drivers that can put them in 

spatiotemporal proximity of riders, (2) allow drivers to carry multiple riders, and (3) suggest 

multi-hop options to riders where riders can transfer between multiple drivers/modes of 

transportation. Most studies in the literature consider the simplest matching method which pairs a 

single rider with a single dtiver (Agatz et al., 2011). Not only does this approach lead to under­

utilizing the limited supply in the network ( dtivers ), but more impo1tantly it does not allow for 

combining ridesharing with other modes of transpmtation, which is the purpose of this study. 

Similarly, ride-matching algorithms that allow each dt·iver to cany multiple riders, but assume 

that riders start and end their trips in the same vehicle (Herbawi and Webber, 2012; Febbraro et 

al., 2013) cannot be used in a multi-modal setting. 

The only ride-matching methods that can be used in a multi-modal setting are those that provide 

the possibility for riders to transfer between dt·ivers. A driver in this context can be any mode of 

n-ansportation, i.e. public transit, or private vehicles. Agatz et al. (2009) provide a mathematical 

formulation of a matching algorithm that allows for n-ansfers, but do not discuss any solution 

methods to solve this problem. Masoud and Jayakrishnan (2015a) propose a decomposition 

algorithm to solve the matching problem with transfers to optimality. Their methodology, 

however, is suitable for problems in a rolling-horizon framework, and not for highly dynamic 

systems. Other studies that consider the possibility of transfers (Herbawi and Weber, 201 la and 

201 lb) use heuristic solutions. Masoud and Jayakrishnan (2015b) propose a dynamic 

programming (DP) algorithm that can solve the problem ofride-matching with transfers to 
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optimality in a matter ofseconds. In addition, this algorithm allows for each diiver to have 

multiple riders on board at each point in time, and optimally routes di·ivers to put them in 

spatiotemporal proximity ofriders. Because of these nice properties, and the ability of the 

algorithm to provide optimal solutions in real-time, we use this DP algorithm for matching riders 

and di·ivers in this study. 

In the rest ofthis report, we first provide a summa1y of the assumptions and requirements to use 

the DP algorithm proposed by Masoud and Jayakrishnan (2015b ). We then discuss how different 

inputs of this algorithm can be generated using a combination ofGIS-based and clustering 

methods. We run simulations to quantify the impact ofpromoting a multi-modal system 

composed ofrideshaiing and transit on transit ridership augmentation, and rideshaiing demand. 

Next, we present the details ofa mobile application developed to promote the transit-1ideshai·e 

alternative. Finally, we discuss a set of survey questions that will be used in the next phase of the 

project to access the attractiveness of such system to users. 
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Table 1. Hist01y ofridesharing 

Project name time location location propetties technology marketing incentives reasons of failure suggestions 

Bellevue Sma11 
Traveler 
(Haselkorn et al., 
1995) 

Phase 
1: 
1993 
Phase 
2: 
1995 

Washington dense 
employment 
location in the 
city's downtown 
area, where the 
majo1ity of 
commuters travel 

voice-
activated 
matching 
service 

- - lack of flexibility lack 
of convenience, 
Time consmning 
searching and 
confirming process, 
Lack ofc1itical mass, 
Lack ofawai·eness 

Tangible incentives, 
Guaranteed ride home, 
Confirming rides one hour 
before the depatture time, 
Prescreening process, 
Stations where people can 

meet 

Los Angeles Sma11 
Traveler (Giuliano et 
al., 1995) 

1994 Los 
Angeles, 
California 

- kiosks - - Lack of sense of 
secmity, 
No marketing, 
Ineffective technology 
(voice mail and waiting 
for return calls) 

-

Coachella Valley 1994 riverside, - Kiosks - - lack of interest -
Transaction Network California 
(Levofsky and 
Greenberg, 2001) 

Sacramento Dynainic 1994 Sacramento - Email and - - Security concerns, Pre-screening process, 
Rideshai·ing project , California cellphone Inadequate marketing, Fixed payment scheme 
(Kowshik et al. 1993) number Lack ofproper 

incentives 

Seattle Sma11 
Traveler (Dailey et 
al. 1999) 

1996 Seattle, 
Washington 

University of 
Washington 
(farnilia1ity with 
communication 

- Yes 
(toward 
the end) 

- - Mai·keting 

techniques and 
schedule of 
classes) 

RideNow (Nelson 2005 Dublin/Pleas - Phone Yes Free Cumbersome system, Sustained mai·keting, 
Nygaai·d Consulting anton BART Shott notification time Parking spaces as an 
Associates and California tickets, frame that1 the 15 incentive where applicable, 
RideNow, Inc, 2006) Guai·antee tninutes An easy-to-use system 

d tide More lead time 
home 
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Project name time location location properties technology marketing incentives reasons offailme suggestions 
Goose Networks Co. 
(Heinrich, 2010) 

- San 
Francisco, 
California 

For the employees 
of the Genentech 
Co., 

SMS 
texting 

$4 per day 
commute 
incentive 
program 

Competitive modes( the 
well-equipped busses 
offered by Genentech), 
Required a high level of 
customer service that 

-

was hard to sustain. 
Avego (Heinrich, 2011 University From Carrigaline iPhone app, - - - -
2010; University Cork, to Cork (highly Internet 
College Cork (UCC) Ireland used, other modes access 
official student news) not available) 

Go520 (Sate funded, 2011 Washington SR520 conidor ,a Apps, Yes free gas Length ofthe pre- -
by A vego) phase 1 crowded conidor internet- cards, screening process 
(RTrip; O'Sullivan enabled iPhone 
2011) cellphones chargers, 

Avego 
credits, 

Go520 (Private 
funded, by Avego) 
phase 2 (RTrip; 
O'Sullivan 2011) 

2011 Washington Route connecting 
Capitol Hill in 
Seattle to 
Overlake in 
Radmond, where 
the Microsoft 
campus was 
located. 

Apps, 
Internet-
enabled 
cellphones. 

- Gas cards, 
gift cards, 
drawings, 
free 
Avego 
credits, 
Guarantee 
dRide 

- involvement ofTDMs and 
employers, 
to build the critical mass 
crowded conidors to build 
the critical mass 

Home 
WeGo(Wego 
1-ideshare) 

2013 California, 
San 
Francisco 

- - - Different 
incentives 
for 

- -

Bay area different 
reg10ns 



3 Ridesharing System 

In a ridesharing system, we have a set ofriders who are looking for a ride, and a set of drivers 

who are willing to use the empty seats in their vehicles to cany passengers in exchange for a 

monetaiy compensation. 

We define a set of locations in the network, where individuals can stait and end their trips ( called 

go-points), and riders can transfer between drivers (called transfer points). Lessons learnt from 

the failure ofprevious peer-to-peer ridesharing systems (Table 1) suggest that it is better for 

1iders to be picked up/dropped off at pre-specified stations, than their homes ( or the exact 

location where the nips start/end) for two reasons (Heinrich, 2010). First, these locations could 

be hard to find for drivers, causing missed rides. In addition, drivers could have difficulties in 

finding pai·king spots. Second, some drivers and riders would understandably be reluctant to 

reveal their home addresses to others. 

Upon registering in the system, riders and drivers provide information on their origin and 

destination go-points, a travel time window bounded from below by their earliest depaiture times 

from their origin go-points and from above by their latest aITival times at their destination go­

points, and a notification deadline by which they need to be informed whether they have been 

matched or not. Figure 2 displays a ridesharing instance. 

Drivers are asked to provide the capacity oftheir vehicles, and riders have the option to specify 

the maximum number ofti·ansfers they ai·e willing to make. For the pmpose of this study, we 

assmne each vehicle can cany four passengers, and that riders do not set a limit on the number of 

ti·ansfers (we later report the statistics on the nmnber of transfers in our case study ofLA). 

When the notification deadline ofa rider approaches, the rideshai·ing system solves a matching 

problem that includes the rider, and all the drivers whose travel time windows intersect with the 

travel time window of the rider. In the ridesharing instance in Figure 2, for exainple, all drivers 

are eligible to be included in the matching problem solved for the 1ider. 

11 



LatestArrival Notification Earliest 
deadline departure arriaval 

l li 
l l 

Driver 3 - K- [ ] 

Driver 2 [ -1 i• 
-1Driver 1 - ~ 

Rider J 

Time 
Figure 2. An example of a ridesharing instance 

Ifa chiver is matched with a rider, the part of the ch·iver's route that is committed to the rider is 

fixed. Other parts of the driver's route, however, are flexible and can be optimized for the 

subsequent riders. Figure 3 displays an example of such a ch·iver. The ch·iver in this figure (shown 

in blue) is traveling from origin Oto destination D. This chiver has been matched with a rider, 

but his/her route from O to O', and from the D' to D can still be optimized to put the ch·iver in 

spatiotemporal proximity of other riders that register at the system at a later point in time. In 

other words, this previously matched driver now enters the ride-matching problem as three 

separate drivers, one that travels from Oto O', one that travels from O' to D', and one that travels 

from D' to D. The travel time window for each of these three drivers is determined based on the 

committed portion of the ch·iver's route, and his/her original travel time window. Note that the 

capacity of the vehicle going from O' to D' has ch·opped by one unit. 
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Figure 3. Partially fixed driver route 

After determining drivers who are eligible to be included in a rider's matching problem, the 

system uses the DP algorithm to solve the matching problem, and announces to the rider within 

the matter of a few seconds (at most), whether the rider has been matched, and the itinerruy of 

the 1ider is case ofa successful match. 

Dynamic Programming (DP) Algorithm 

The DP algorithm tries to find a (multi-hop) path for a rider by optimally routing drivers. Transit 

lines can enter the model as inflexible drivers (since their routes and schedules are fixed and 

cannot be optimized). 

The DP algorithm rnns on a time expanded network. By introducing stations, we are in fact 

discretizing the two-dimensional continuous-space network into a set ofone-dimensional 

discrete locations. In addition to that, we discretize the study time horizon into a set of time 

periods. We use 5-minute time periods in this study. In a network that is discretized in time and 

space, we denote a node ni = (ti, sJ as a tuple of time period and station, and a link as a tuple 
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(ti, si, tj, sj). Such a link can be interpreted as a trip that sta1ts at go-point si at time period ti, 

and ends at go-point sj at time period tj. 

For each 1ider, we identify the set of links that can be traveled both by the rider and at least one 

driver/transit line given the time constraints of the 1ider and drivers/transit line. Figure 4 shows 

an example of a time-expanded network for a rider. Nodes in this figure are shown as rectangles, 

and links as arcs connecting the nodes. In this example, the rider is starting his/her trip from go­

point 5, and is traveling to go-point 12. The rider' s earliest departure time from the origin go­

point is the 3rd time period, and his/her latest anival time at the destination go-point is the 39th 

time period. Drivers/transit lines that can potentially cany the rider on each link (i.e. leg of the 

trip) are noted next to the link. 

The role of the DP algorithm is to search on this graph for the least expensive path (based on a 

cost function) that takes the rider from origin O to destination D, given the constraints posed by 

the rider (e.g. max number of transfers requested by the rider). The cost function we use in this 

study is sum offour components: (i) a distance-based fare, (ii) dollar value of travel time, (iii) 

dollar value of additional penalty for waiting time, and (iv) dollar value ofpenalty for transfers. 

We consider the default value of $20/hr for value of time (VOT), $0.25/mile distance-based fare, 

$1. 5 fare for use of transit, $0 .1 as the monetary equivalent ofadditional penalty for waiting for 

each time period (in addition to the value of time), and $0.1 as the monetary equivalent of the 

penalty for each transfer. In section 0, we perform sensitivity analysis over the VOT and the 

distance-based fare. 

14 
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Figure 4. Time-expanded network 

Two of the most important inputs to the DP algorithm are the set of stations and links. In the rest 

of this section, we elaborate on how we identify the set of stations and links in the LA network. 

4.1 Stations 

Stations are pre-specified locations in the transportation network where individuals can start and 

end their trips, and/or riders can transfer between d1ivers/transit. In this study, we have three 

types of stations listed in Table 2. In the rest of this section, we discuss the role of each type of 

station, and the methodology on how we identified them in the LA network. 
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-----------------------------------------------------------------------------------------------

Table 2. Types of stations 

Station type Symbol Description 

Go-points Points where individuals can start/end their trips. 

Go-points are a subset ofcentroids in the LA 

County 

Transfer points Points were individuals can transfer between 

vehicles and/or transit. Sr E SG 

Red line stations LA metro red line stations. SR E SG,SR E Sr 

4.1.1 Go-points 

In order to identify go-points, we used the auto trip tables in the LA County from the Southern 

California Association of Govermnents (SCAG) planning model. The SCAG region has a total of 

over 4000 TAZs (i.e. 16 million OD pairs). Our goal is to identify significant OD pairs in terms 

of level of demand, and use this information to identify the go- and transfer points in the 

network. For this pmpose, we identified OD pairs in the SCAG trip tables with hourly trip rates 

higher than 10. We limited our analysis to auto demand only, because the focus of the study is to 

identify potential modal shift from drive-alone to rideshare and rideshare-transit alternatives. The 

SCAG trip tables used are listed below: 

• Drive Alone 

• SR2HOV 

• SR3 HOV 

• SR2 Non-HOV 

• SR3 Non-HOV 

Figure 5 shows the origin and destinations of the OD pairs with auto demand higher than 10 per 

hour. We consider these origins and destinations as go-points. 
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Figure 5. Go-points 

4.1.2 Transfer points 

Transfer points are stations where individuals can transfer between ridesharing vehicles and/or 

the LA Metro red line stations. We select a subset ofgo-points that fulfil two criteria as transfer 

points. Transfer points should be distributed in the network such that (i) they are located closer to 

go-points with higher levels of demand, and (ii) they are distributed in the network as evenly as 

possible. Toward this end, we use Algorithm 1 to determine the set of transfer stations. 

The algorithms starts by initializing the set of transfer points by the set ofred line stations. An 

additional 40 number of transfer points are picked from the set of go-points and added to the set 

of transfer points, one at a time, in an iterative process. We experimented with the number of 

transfer points and came to the conclusion that 40 transfer points provide a nice balance between 

the number of transfer points (too many transfer points increase the running time of the 

algorithm), and the degree ofnetwork coverage (too few transfer points can cause in-sufficient 

network coverage). 

17 



At each iteration, the algorithm selects the go-point with the lowest person-travel distance 

required for travel from the rest of the go-points. The selected go-point requires the least effort 

for other individuals traveling to it for a transfer, and therefore is set as a transfer point. In order 

to ensure that transfer points are not too close to each other, the algorithm then eliminates from 

the set ofgo-points the stations within 4 miles distance from the newly selected transfer point. 

The algorithm then moves forward to the next iteration where the next transfer point is selected. 

The algorithm stops when the set of the remaining go-points becomes empty, or the limit of40 

transfer points (besides the red line stations) is reached. Figure 6 displays the three set of 

stations in the network. 

Algorithm 1. Identifying transfer stations 

ST= SR 

Sb= Sc\SR 
Fors E SR 

del ={k E Sc: ds,k :5 2 miles} 

Sc= Sc\del 
End For 
Set Done~ 0 

Fort= 40 
While Done= 0 

Fors E Sb 

NS= argminiEsb{w[,; X d;_D 
ST= ST u NS 

del ={k E Sb: dNs,k :5 3.5 miles} 

Sb= Sb\del 

IfSb= 0 
Done~ 1 

EndIF 
End For 

End While 

End For 
* 1 wi 5 : travel demand from station i to stations 

* 2 di,s: travel distance from station i to station s 
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Figure 6. Transfer points 

4.2 Link Sets 

We introduce three link sets that connect different types of stations (i.e. go-points, transfer 

points, and red line stations) in the network. Figure 7 demonstrates the three families of link sets. 

The first link set displayed in Figure 7(a) connects transfer points to each other. The second link 

set (Figure 7(b )) connects go-points to their corresponding transfer points identified in Algorithm 

1. Figure 7(c) demonstrates the third link set that connects red line stations to their nearby go­

points. This link set connects each of the go-points confined within a 2.5 mile radius ofat least 

one of the red line stations to the red line stations within their 2.5 miles radius. 

Each go-point in the network is connected to at least one transfer point (link sets 2 and 3). In 

addition, all transfer points are connected to each other (link set 1). This indicates that there is a 

path between any two go-points in the network. Link set number 2 implies that the sh01test path 

of a rider who is traveling between two go-points (that are not are not within 2.5 miles radius of 

the red line) includes traveling to the transfer point corresponding to the origin go-point; next, 

traveling from this transfer point to the transfer point corresponding to the destination go-point; 
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and finally traveling from there to the destination go-point itself. Another implication of link set 

2 is that since all go-points coffesponding to the same transfer point are connected to each other, 

ifa rider needs to make a short trip between two such go-points, no transfers are required. 

For practical reasons, it is assumed that transfers for trips that originate from or are destined to 

go-points within a 2.5 radius of the red line stations are limited to the metro red line stations 

only. Hence, link set 3 connects such go-points to red line stations directly. This link set is 

appropriate to use, because we wish to promote the 1ideshare-transit option. In the contrary, if the 

goal was for ridesharing to replace transit, we could introduce links that connect such go-points 

to each other, rather than to transit stations. 

Ridesharing as transit feeder 

In this section, we study the modal shift from drive-alone to rideshare and rideshare-transit 

alternatives using simulations. Simulations are done for the morning peak hour in LA. Origin­

destination tiip tables used in simulations are obtained from the SCAG planning model, and 

spread throughout the three-hour morning peak period based on a unifmm dist1ibution. 

For each simulation run, we randomly select our set of riders and drivers. In all simulation runs, 

we use 1,000 riders. We change the number ofdrivers from 1,000 to 80,000 in order to study the 

impact of1ider to driver ratio on the matching rate. 

As mentioned in section 4, we use default values of $20/hr for value of time, and $0.25 for each 

mile of ridesharing. In addition, we consider a $0.1 penalty for each transfer, and for each time 

period ofwaiting in transfers. 

In each simulation run, we serve the 1,000 tiders on a first-come, first-se1ved basis, using the DP 

algorithm. Note that the DP algotithm finds the min-cost path for riders based on the cost 

function defined in section 4. Whether this path is more favorable to the rider compared to an 

outside option (which we consider to be drive-alone in this study) in looked at afterwards. In 

other words, even though we use a cost function in the DP algorithm, the output ofthe algorithm 

that indicates whether a rider can be served or not only depends on whether his/her trip has 

spatiotemporal proximity with trips of dt·ivers/red line. We then study in section 6, what 

percentage of the riders that can be theoretically served based on the spatio temporal 
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characteristics of their trips, can be served in practice taking into consideration the cost of the 

trip and the cost of the competing alternative (e.g. drive-alone). 

Figure 7(c) Link set 3: Links connecting red line stations to the nearby go-points 

Figure 7. Link sets 

5.1 Matching rate 

In order to study the impact ofnumber of drivers on the matching rate, we ran a set of 

simulations. All simulation mns include 1,000 riders, while the number of drivers are changed 

from 1,000 to 80,000 in different runs. Other parameter values in all simulations are default 

values. Results are displayed in Figure 8. 
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Figure 8(a) displays the percentage of served riders as a function ofnumber of drivers. As 

intuition suggests, the percentage of served rider requests increases with the number ofdrivers. 

Percentage ofse1ved riders, however, grows with number of drivers at a rate slower than linear. 

For example, with 5,000 increase in the number of drivers (going from 5,000 to 10,000 drivers), 

we witness a 22% increase in the percentage of served rider. However, in order to expe1ience 

another 22% increase in the percentage ofserved riders, we have to have a 10,000 increase in the 

number drivers (going from 10,000 to 20,000 drivers). 

Figure 8(b) displays the number ofse1ved riders and matched diivers as a function ofnumber of 

di·ivers in the system. This figure sheds light on the performance of the system under different 

levels of supply (i.e. number ofdi·ivers). When the number ofdrivers is the lowest, the number 

ofmatched riders and di·ivers is about the same, implying that most hips are being served 

without transfers (this conclusion is confirmed by looking at the number of transfers for each 

level ofsupply in Figure 10, as we will discuss in the following section). At such low level of 

supply, the number of drivers is too small for multi-hop routes to be fo1med for riders. Up to a 

certain level (20,000 di·ivers), the number ofmatched 1iders and di·ivers increases with the 

number ofdi·ivers in the system. The higher number of matched drivers compared to served 

1iders in supply levels below 20,000 drivers suggests that multi-hop routes are being f01med, as 

confinned by Figure 10. Finally, when the supply level becomes really large, and most of the 

demand is being se1ved, there is no need for more costly multi-hop routes anymore, and the 

number ofmatched riders and di·ivers start to converge again. 

Figure 9 shows the percentage ofriders who use the transit-rideshare option. As this figure 

suggests, this percentage reaches its peak at around 20,000 drivers, and remains stable after a 

small di·op afte1wards, following the same trend witnessed in Figure 8(b ). Although in the first 

glance it might seem like the percentage of individuals using ridesharing as a means to connect 

to transit is not significant, it should be noted that the trip tables used for simulations are drive­

alone trip tables, and the individuals using the ti·ansit-1i deshare option are actually increasing the 

cunent level of transit 1idership. Furthermore, keep in mind that having as little as 1.7% of drive­

alone trips switch to transit would translate to a considerable increase in transit ridership. 

According to SCAG trip tables, 750,000 single occupancy vehicles travel dming the morning 

peak hours in LA County in a working day. This adds up to a total of about 12,500 additional 
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tTips, just by the Metro red line. This number of trips distributed evenly between the roughly 50 

Metro red lines during the morning peak hour indicates an additional 250 passengers in each 

train. 

Figure 8(a) Percentage of served riders Figure 8(b) Number of served riders and 
matched drivers 

Figure 8. Matching rate as a function ofnumber drivers 
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Figure 9. Percentage ofriders using ridesharing as transit-feeder 

Figure 10 shows the OD pairs that could potentially use the transit-rideshare alternative. Links in 

this figure connect such OD pairs. It is interesting to note that the OD pairs that could use the red 

line are limited to those with both origin and destination locations in the vicinity of the red line 

stations. Assuming such results can be replicated for other Metro lines, since the entire Metro 

system offers a good coverage of the LA County, a considerable modes hare for the transit­

rideshare alternative could be speculated. 
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5.2 System performance 

Performance of the proposed system is partially a function of the matching rate, covered in 

section 5 .1. However, measures ofquality of service, such as number of transfers by riders, and 

the average occupancy ofvehicles are additional good metrics to assess system perfonnance. 

Figure 11 demonstrates the number of transfers under different levels ofsupply. This figure 

suggests that when the number ofdrivers is too low or too high, transfers are very limited, and 

most riders can be served with zero transfers. However, in the middle ranges more transfers are 

required. As discussed in the previous section, at very low supply levels there are not enough 

drivers in the system to form multi-hop routes, and at very high supply levels almost all rides can 

be served without any transfers, and therefore an overwhelming number of hips end up being 

single-hop. In the middle ranges, however, ti·ansfers are necessa1y to obtain higher matching 

rates ( as shown in Figure 8(b) ). A look at figure 11 reveals that even in the middle ranges most 

riders experience zero ti·ansfers, with a few percentage experiencing 1 h"ansfer. The maximum 

number of transfers ever witnessed was 3. 

Figure 12 displays the most frequently used transfer points. This figure has been created based 

on the simulation results for a ridesharing system with 20,000 number of drivers, since such a 

system was shown to have the highest number of transfers. This figure suggest that the most 

important transfer points coincide with some of the red line stations, which implies good 

decision making in determining the station locations by Metro. This figure can also be a guide in 

revising the transfer points in our models. 
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Figure 10. OD pairs that use the LA Metro red line 
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Figure 11. Number of transfers 
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Figure 12. Most frequently used transfer points 

Figure 13 shows the average vehicle occupancy as a function of supply level. This figure 

suggests that the average occupancy ofvehicles decreases as the number ofdrivers in the system 

increases, which is intuitive, since at lower levels of supply riders are more probable to share the 

limited resources. The maximum vehicle occupancy, however, follows the previously observed 

trend ofinitially experiencing a rise, followed by a decline. Notice that the minimum vehicle 

occupancy is always higher than 2, since each matched driver carries at least one 1ider. At the 

maximum occupancy of5, the vehicle capacity is being fully utilized (e.g. the vehicle is carrying 

the driver and 4 1iders). 
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6 Pricing 

We consider a ve1y simple pricing scheme ofdistance-based fares for riders. If a rider uses the 

rideshare-transit option, for the part ofhis/her route that is covered by transit, the per-mile fare 

will be replaced with a fixed transit fare of $1.75. This fare is what riders actually have to pay to 

the system, and is different from the cost function that is used by the DP algorithm to find the 

optimal path for 1iders. As discussed in the previous sections, this cost function is assumed to be 

a linear combination of four components, all converted into dollar amounts: 
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Figure 13. Average vehicle occupancies 

1. Per mile fare charged (in dollars) 

2. Monetary value of the travel time, computed as the production of the travel time (in 

hours), and value of time (VOT, in dollars per hour) 

3. Penalty per transfer, which is assumed to be 10 cents 

4. Penalty for each time period ofwaiting during transfers, which is assumed to be 10 cents 

for each time period (of 5 minutes). Note that this is in addition to the VOT cost. 

The DP algorithm uses the aforementioned cost matrix to find the optimal route for each rider. 

Note that whether the algorithm finds a route for a rider does not depend on the composition of 
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this cost function. After computing the best route for a rider using the DP algorithm, we compare 

the cost of this route with that of the ofdrive-alone mode, assuming that if not participating in 

the ridesharing system a rider travels using a private car through his/her shortest path. The cost 

of the drive-alone option is calculated as sum of the monetaiy expense of the trip (which is 

considered to be $0.56/mile) and the value of the rider's time spent on the trip. Note that 

components 3 and 4 that were used to estimate the rideshai·ing cost do not apply to the drive­

alone alternative, due to the unnecessity ofmaking transfers. 

The matching rates reported in section 5.1 were only based on the spatiotemporal coverage of 

riders' trips by drivers/Metro red line, and were independent ofthe trip cost. In reality, the cost 

of ridesharing could end up being higher than the cost of the alternative mode of drive-alone. 

Figure 14(a) shows the percentage ofserved riders in systems with different number ofdrivers, 

under different distance-based fai·es and VOT values. The matching rates shown in this figure are 

obtained by running the DP algorithm, and therefore are not dependent on the distance-based 

fares and VOT values. 

Figure 14(b) shows the percentage ofriders who can be matched, but will choose not to use the 

ridesharing system due to its higher cost. This figure suggests that for a given distance-based 

fee, the percentage ofriders who reject the ridesharing option increases with VOT. This result is 

intuitive, since the rideshare alternative typically has a higher travel time. For a given VOT, a 

higher distance-based fai·e results in a higher rejection rate, since the monetaiy cost of 

rideshai·ing starts approaching the cost of the drive-alone alternative. 

Mobile application 

The emergence of smaiiphones enables us to easily access various transportation information 

se1vices using mobile applications. This has brought significant opportunities to enhance 

mobility services in the transportation field. Mobile applications can play a pivotal role in 

promoting public transportation by fostering multimodal synchronizations. The ridesharing 

application designed in this project is capable offacilitating interactions between riders and 

drivers under location-based services, making it easy for riders to inquire about their trips in real­

time. 
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Figure 14(a) Mathcing rates based on spatiotemporal compatiblity of trips 
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Figure 14(b) Percentage of riders who do not use the rideshare alternative despite a match 

Figure 14. Impact of value of time and distance-based fare on the riders' approval rate of 
proposed matches 

The data architecture of the mobile application is designed to handle multiple data sources. 

Specifically, the design includes a four-layer data structure that could integrate transit and 

rideshare modes, although the flexible structure of the design makes the framework capable of 

integrating additional modes of transportation, such as bikesharing. 

Figure 15 demonstrates the four layers of data structure. The bottom layer consists ofmap data 

that can be used as background location information. This map layer is powered by Google maps 

API, which enables us to get an up-to-date map service. The second layer is a static layer, and 

consists ofnetwork data (e.g. nodes and links). The third layer contains transient dynamic 

information about timetable of the LA Metro red line and ridesharing go-points. The second and 

third datasets are stored in a database on a se1ver. The fourth layer is highly dynamic; it collects 

drivers' Clment routes and riders' travel needs in real-time. Both static and dynamic layers are 

used when the engine processes the DP algorithm to match d1ivers and riders. This four-layer 

data structure is also used to visualize itineraries ofmatched rider in the mobile application. 
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Figure 15. Layer configuration of the Mobile application 

The mobile application is developed using various developing tools: MA TLab, Python 2. 7, 

MongoDB 3.2, and Android Studio 2.0. The core matching algorithm is coded in the MATLab. 

Python programming manages the database. In addition, Python enables the interaction between 

the MATLab engine (installed on the server) and the mobile application. 

The communication between the server and the mobile application is processed through the 

HTTP RESTful APL From this http-based API, the mobile application transmits the dynamic 

data, such as users' ride request information, to the server. The ride-matching engine on the 

se1ver finds the optimal matching and the conesponding rider and driver itineraries. The server 

then sends the matching results to the mobile application. HTTP RESTful API waits for the 

server to send out the results. The type ofresults can be defined in a specific fonnat Gson or 

xml). The mobile app then visualizes the results on the digital map in a device. This application 

is developed from a rider' s point ofview, i.e. drivers' trips are encoded in the app, although it is 

straightforward to extend the app to accept driver trips as input as well. 

Figure 16 displays the overall design of the mobile application. To increase users' convenience, 

we make an effort to minimize user activities in the mobile application. The key principal is to 

present the results, requiring minimal touching actions from users. In this mobile app, users can 

obtain their matched route results within 3 actions. In the initial screen (activity #1), a user can 

swipe the map to find his/her destination. After the destination is set, the app will ask about the 
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origin and late aITival time, as shown in the activity #2 (we assume that the moment a user 

requests a ride, is also the notification deadline for the trip, as well as the trip's earliest departure 

time). Once the results are presented to the rider, he/she has to accept/ reject the proposed ride 

(activity #3). 

Figure 16. Mobile application user interface design 

Setting user's trip information can also be done on the trip preferences screen, as shown in 

Figure 17. In addition, a user can find his/her trip history and favorites trips on the preference 

screen. Finding an origin/a destination can be done in two alternate ways. Firstly, a location flag 

is always shown at the center of the screen. Users can set their destination by swiping their touch 

screen and locating the flag to their destination. Alternatively, users can use a textbox which is 

connected to Google place autocomplete se1vice APL This API matches and suggests on full 

words as a user types. Ifall inputs are entered and a user touches the direction icon, the matched 

results are shown. The two alternate ways of registering a trip are displayed in figure 17. 
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Figure 17. Trip preference and origin/destination setting 

Figure 18 shows an example ofan itinerary for a rider. The mobile application provides the 

itinera1y summary in a pop-up text box. The itinera1y includes travel time, number ofdrivers, 

and CO2 reductions to aid the user in making a decision. A route combination is visualized on 

the map, so the users can easily identify the place where they hop in and hop off. Finally, users 

have to touch the like or dislike icon on the screen. This user' s preference is transmitted to the 

se1ver with the itinerary information in order to analyze user behavior. This will allow us to 

improve the system to attract more people. 
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Figure 18 Screen example: matched results 

Survey 

In order to conduct a user acceptance study of the proposed system, we have prepared a set of 

survey questions. The survey is designed for individuals who use the LA Metro red line. During 

the survey, a smart phone programmed with the mobile application discussed in the previous 

section will be made available to the smvey participants. Participants will be asked to try the app 

by requesting a trip, and will be asked follow up questions on their opinion on the location ofgo­

and transfer points, ridesharing cost, and the ease ofworking with the app. 

Considering the fact that the next phase ofthe project extends the existing work by adding 

bikesharing to the transit-rideshare alternative, we have delayed conducting the survey to the 

next phase, in order to include questions regarding bikesharing as well, and do a more 
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comprehensive study of the proposed system. In the rest ofthis section, we present the set of 

questions currently designed for the transit-rideshare alternative. 

8.1 Screening questions 

1- How far are your trip origin and destination away from the red line stations? 

In case both the origin and destination stations were not within walking distance to the 

red line stations, proceed to the next question. Otherwise, the individual is not a good 

candidate for the survey. 

2- How do you travel from your origin to the red line station of your choice, and from your 

destination red line station to your final destination? 

Explain the transit-rideshare alternative in a few sentences. 

3- Would you be interested in tiy ing the app? 

Ifyes, proceed to the remaining sections ofthe survey. Otherwise, finish the survey with 

question 4. 

4- What are the reasons why you will not consider using such an app? 

8.2 Feedback on the App 

The survey partidpant will be presented with either the rides haring app, or the website in which 

the app functionalities are imbedded. Survey takers either select their origin and destination 

stations from a set ofpre-defined go-points on a map, orjust type in the addresses. Furthermore, 

participants in the survey specify the latest time they have to arrive at their destination station. 

The app either finds an itineraryfor individuals, or let them know that none exists. In the case of 

availability ofan itinerary, app also gives individuals a quote on the price ofthe trip. The survey 

takers are then presented with the following questions. 

5- How do you feel about the price of the proposed route? ( very low, low, appropriate, 

high, very high) 

Ifthe answer was not "appropriate" proceed to question 6. Otherwise proceed to 

question 7. 

6- At what price would you be willing to travel according to the proposed itinerary? 

7- How does the travel time of the proposed itinerary compare to that ofyour cunent trip 

mode? (much lower, lower, the same, higher, much higher) 
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8- How do you feel about the distribution of go-points in the app (very bad, bad, neutral, 

good, very good) 

Ifthe answer is "bad" or "very, bad" proceed to question 9. Othe,wise, proceed to 

question 10. 

9- What is the reason why you are not pleased with the distribution of stations? ( too much 

walking, not accessible through walking, dangerous area, other) 

10- Would you consider using ridesharing for your work commute trips? (Yes, No, NA) 

11- Would you consider using ridesharing for your non-commute trips? (Yes, No) 

8.3 Current travel status 

12- How many one-way trips a day do you make on average? 

13- For how many of these trips do you have a car available, and use the car for 

transportation? 

14- For how many of these trips do you have a car available, and choose NOT to use the car 

for transportation? 

15- What are the reasons for choosing not to use a car when available? Select as many as 

applicable ( congestion, environmental concerns, cost of travel, other) 

16- Do you commute to work on a regular basis (more than twice per week)? (Yes, No, NA) 

17- How do you commute to work? Select as many as applicable (public transit, walk, 

bicycle, personal vehicle, carpool, other, NA) 

18- What is your major mode of transportation, i.e. larger portion ofyour trips (rail/bus, 

commuter rail, personal vehicle, bicycle, walking, carpool, transportation network 

companies such as Uber and Lyft) 

19- Ifyou do not use rail/bus, what is the reason? Select as many as applicable (not 

accessible, not comfortable, lack ofprivacy, high transfer time, high travel time, lack of 

punctuality) 

20-Ifyou use rail/bus, what is the reason? Select as many as applicable ( suitable price, 

punctuality, travel time, free to perform other tasks, comfortable, other) 

21- Ifyou are using public transit, how do you pay for it? (purchase monthly/annual bus pass, 

receive bus passes from your company, pay on a daily basis) 

35 



22- What is your current monthly expenditure on public transportation? (less than 50, 50-

100,100-200, over 200) 

23- What is your family' s monthly out ofpocket expenditure on personal vehicles (ignoring 

lease costs if applicable)? (less than 100, 100-200, 200-300, over 300) 

8.4 Socio demographic info 

24- Gender (M, F, NA) 

25-Age (Less than 25, 25-35, 35-45, higher than 45) 

26- To what degree are you employed? (student, part time employee, full time employee, 

unemployed) 

9 Conclusion 

In this project, we proposed a system architecture that included strategically selecting a set of go­

points for ridesharing, and a pricing scheme, to promote ridesharing as a solution for the last mile 

problem faced by transit agencies. We used the LA Metro red line as a case study, and showed 

that there exists a range of distance-based rideshaiing fai·es for which people would prefer 

ridesharing to driving alone. In addition, we showed that for hips with both origin and 

destination close to the Metro red line, rideshai'ing can in fact be used to feed transit. Finally, we 

developed a user-friendly mobile application that can suggest rideshai·e and/or t:ransit-rideshare 

routes to passengers using a few simple actions from the user' s part. 
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