
 
16. ABSTRACT 

Electric vehicles (EV) are promoted as a foreseeable future vehicle technology to reduce dependence on fossil fuels and greenhouse 
gas emissions associated with conventional vehicles. This paper proposes a data-driven approach to improving the electrification 
rate of the vehicle miles traveled (VMT) by a taxi fleet in Beijing. Specifically, based on the gathered real-time vehicle trajectory 
data of 46,765 taxis in Beijing, we conduct time-series simulations to derive insight for the public charging station deployment plan, 
including the locations of public charging stations, the number of chargers at each station, and their types. The proposed simulation 
model defines the electric vehicle charging opportunity from the aspects of charge time window, charging demand and charger 
availability, and further incorporates the heterogeneous travel patterns of individual vehicles. Although this study only examines 
one type of fleet in a specific city, the methodological framework is readily applicable to other cities and types of fleets with similar 
dataset available, and the analysis results contribute to our understanding on electric vehicles’ charging behavior.  Simulation 
results indicate that: i) locating public charging stations to the clustered charging time windows is a superior strategy to increase the 
electrification rate of VMT; ii) deploying 500 public stations (each includes 30 slow chargers) can electrify 170 million VMT in 
Beijing in two months, if EV’s battery range is 80 km and home charging is available; iii) appropriately combining slow and fast 
chargers in public charging stations contributes to the electrification rate; iv) breaking the charging stations into smaller ones and 
spatially distributing them will increase the electrification rate of VMT; v) feeding the information of the availability of chargers at 
stations to drivers can increase the electrification rate of VMT; and vi) the impact of stochasticity embedded in the trajectory data 
can be significantly mitigated by adopting the dataset covering a longer period. 
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1. INTRODUCTION 

Electric vehicles (EV) have drawn great attention in recent years because of the concern of traffic 

emissions and petroleum dependence (Krupa et al., 2014; Karplus et al., 2010). EVs include battery 

electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV). Loosely speaking, BEVs 

incorporate a large on-board battery, which can be charged via a cord to a power grid, and the 

battery provides energy for an electric motor to propel the vehicle. Besides the electric motor, 

PHEVs are also equipped with an internal combustion engine generator that provides electricity to 

the motor once the initial battery charge is exhausted. Almost all major vehicle manufactures have 

their EV models available in the market, and a fast-growing adoption of EVs is expected (Querini 

and Benetto, 2014). For example, China hopes the accumulated sale volume of BEVs and PHEVs 

will reach five million by 2020 (China State Council, 2012). As for Beijing, one of the biggest 

cities in China, there are about 36,000 electric vehicles being in use by the end of 2015, of which 

23,500 were adopted in the year of 2015 alone. Among all the EVs, about 16,2000 vehicles are 

serving for public transportation such as transit and taxi; and the rest are used by private owners 

or companies. 

However, there still exist several bottlenecks blocking the rapid development of EVs, such as the 

high cost of EV batteries, lack of charging infrastructure, and shortage of battery range. Moreover, 

it’s currently difficult for the EV market alone to conquer all of these obstacles. Considering the 

environmental benefits brought by EVs, many government agencies provide incentive policies, 

such as offering purchase subsidies and deploying public charging infrastructure, to promote the 

adoption of EVs (He et al., 2015; Motavalli, 2010; GLOBLE-Net, 2012). 

To assist policy makers with optimally deploying public charging infrastructure, various 

approaches have been proposed in the literature.1 The flow-capturing models locate charging 

stations to maximize the amount of travelers whose paths pass by at least one station (e.g., Hodgson, 

1990; Berman et al., 1992, 1995; Hodgson and Berman, 1997; Shukla et al., 2011). Another 

approach optimizes the locations of public charging stations to maximize the social welfare, based 

1 For a more detailed review of the literature on the public charging station deployment, see He (2014). 

7 

 

 



on the network equilibrium that captures the EV drivers’ spontaneous adjustments to the charging 

station deployment and interactions of travel and recharging decisions (e.g., He et al., 2013a b c, 

2015; Jiang et al., 2012; Jiang and Xie, 2014). However, both above approaches make assumptions 

of EV drivers’ behavior, which remains to be verified by the real-world data. Recently, real-world 

driving profiles have been utilized to represent the drivers’ travel patterns, estimate their public 

charging needs, and then determine the station locations (e.g., Dong et al., 2013; Andrews et al., 

2012; Dong and Lin, 2012). Nevertheless, due to the limited sample size of driving profiles (the 

sample size is often in the hundreds), it is difficult to provide conclusions at the city level based 

on the results of these studies (Cai and Xu, 2013). 

Using the large-scale trajectory data of 11,880 taxis in Beijing, Cai et al. (2014) conducted 

simulations to explore how to locate public charging stations among the existed gas stations of 

Beijing. The electrification rate, defined as the ratio of miles PHEVs travel in all-electric mode 

over the total driving miles, is adopted to evaluate different location plans. The simulation results 

show that the total number of parking events or average parking vehicle-hour per day serves as a 

good criterion to locate charging stations. Utilizing the real-time and large-scale trajectory data to 

reveal the inherent heterogeneity of individual travel patterns, their research is among the first 

attempts to apply the “big data” mining techniques to the deployment of public charging stations 

for PHEVs. 

Inspired by the above study and recognizing the important role Beijing is playing in the massive 

adoption of electric vehicles, this paper gathers the real-time vehicle trajectory data of 46,765 taxis 

in Beijing from October 1st to November 30th in 2014 and carries out a case study for Beijing. 

Note that it is very likely that public fleets, such as taxis and buses, adopt EVs early. Applying the 

‘big data” mining techniques, we simulate taxi drivers’ travel and recharging behavior to 

quantitatively depict the relationship among the electrification rate of vehicle miles traveled (VMT) 

by PHEVs, battery range of PHEV, and public charging station deployment plans. In order to 

improve the electrification rate of VMT and based on the simulation results, we further provide 

policy guidelines for public charging infrastructure deployment planning, including the locations 

of public charging stations, the number of chargers at each station and their types. Compared to 

Cai et al. (2014), our paper’s contribution lies in the following three aspects. First, we consider the 
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number of chargers at each public charging station is limited and hence PHEVs can charge 

batteries only if there are still unoccupied chargers available at stations. Therefore, our simulations 

are capable of accurately modeling the real-time operations of public charging station and 

reflecting the interactions of different PHEVs’ charging behavior2. However, it is necessary for 

accurately estimating the electrification rate of VMT because recharging a PHEV battery is time- 

consuming and the times PHEV drivers choose for recharging has a large degree of overlap. 

Second, based on the proposed simulation framework, we further quantify the contribution of 

introducing the intelligent charging guidance system for improving the electrification rate of taxi 

VMT in Beijing. This analysis can offer insight for the development of a “smart charging” program 

that is devoted to applying the information technology to improving the utilization efficiency of 

public charging stations in the future. Third, this paper validates the dataset through addressing the 

stochasticity embedded in the vehicle trajectories among different days. Note that although this 

paper only examines one type of fleet in a specific city, the proposed data-driven approach is 

readily applicable to other cities and types of fleet with similar datasets available. 

For the remainder of this paper, Section 2 introduces the dataset and provides the time-series 

simulation model. In Section 3, different simulation results are analyzed to derive insights for the 

deployment of public charging stations, and the dataset is also validated. Section 4 concludes the 

paper. 

2. DATA AND TIME-SERIES SIMULATION MODEL 

Using Beijing as a case study and assuming the travel behavior of drivers remains unchanged after 

adopting PHEVs, we utilize the vehicle trajectory data of 46,765 taxis to characterize the 

heterogonous travel patterns of individual PHEV drivers. It is reported that Beijing plans to deploy 

170,000 EVs on roads and build 10,000 fast chargers by 2017 (XinhuaNet, 2014). On the basis of 

this dataset, we conduct time-series simulations to model PHEV drivers’ operations and charging 

behavior, and then discuss how to locate public charging stations and guide charging behavior. 

2 Note that considering the impact of public charging stations’ limited capacity will inevitably cause great 
computational challenges, especially for our case with 46,765 taxis. 
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2.1 Data Description and Preprocessing 

To better characterize the heterogeneous travel patterns of individual taxi drivers, we examine the 

real-time vehicle trajectory data of 46,765 taxis in Beijing from October 1st to November 30th in 

2014, collected by smartphones and on-board devices.3 The dataset includes 3.37 billion data 

points, which track each taxi’s location (longitude and latitude) and speed (km/hour) every 30 

seconds. Table 1 shows one sample of the records in the dataset. To clean up the raw data, we 

remove the points that are duplicated and incorrect. 

Figure 1. GPS trajectory sample 

3 The total number of taxis in Beijing is approximately 66,000 (Huo et al., 2012; Zheng et al., 2011). 
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 Table 1. Record Sample 
 ID Time stamp Speed (km/hour) Longitude Latitude 
 84471 201411120715 32 116.8198 40.3431 1 

Figure 1 depicts the GPS trajectory of a randomly selected taxi in blue lines from October 1st to 

November 30th in 2014, which covers most parts of the roads in Beijing. 

 

 



In this research, we focus on PHEVs, which are still capable of driving by consuming gasoline 

fuel after the battery is out of charge. It is hence assumed that the travel behavior of taxi drivers 

remains unchanged after adopting PHEVs. Note that this assumption is also adopted by many 

previous studies (e.g. Dong et al., 2014; Cai et al., 2014). In addition, considering the dataset will 

be iteratively utilized in the following simulation, we thus develop an approach to compress it. 

Generally, recharging EVs is much more time-consuming than refueling a conventional gasoline 

vehicle. For instance, 20 hours are needed to fully recharge a 24 kWh battery at the power level of 

1.2 kW, whereas a charger with 60 kW power level still needs 24 minutes (He et al., 2014; ETEC, 

2010). Therefore, we assume that a PHEV will not recharge if the dwelling time at an intermediate 

stop is less than 30 minutes. Based on this criterion, the trajectory of a vehicle could be divided 

into several trips. Specifically, we first order each vehicle’s trajectory data points by time. Next, 

for each vehicle, we cut the trajectory into separate trips at the points corresponding to parking 

where the duration is more than 30 minutes. For each trip, we only record the time stamps and 

locations of its origin and destination, as well as the calculated trip distance, and all the resting 

data points are deleted. As a result, the data size is significantly reduced, which greatly speeds up 

the simulations described in the next section. 

2.2 Definition of Charging Opportunities 

Given the public charging station deployment plan, we focus on conducting time-series 

simulations to estimate the electrification rate of VMT for PHEV taxis. First of all, we define the 

PHEV charging opportunity from the aspects of time window, charging demand and charger 

availability. In the simulation model, a PHEV will recharge its battery if and only if all the 

following three conditions are met: 

i. The PHEV is in a charging time window and its duration is no less than 30 minutes. Note that 

we define charging time window as the time slot after a trip ends and before the consecutive 

trip starts. 

The state of charge (SOC) of PHEV’s battery is below a predefined threshold. 

There are available chargers in the public charging station. 

ii. 

iii. 

The above second condition implies that analyzing charging behavior of a PHEV needs to track 

its SOC. Namely, the amount of electricity a PHEV charges affects when and where its next 
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charging demand occurs, leading to the fact that we could not study each charging behavior 

separately but needed to conduct a time-series simulation to analyze its trip chain. Furthermore, 

from the above third condition, it is possible that one charger’s occupation by one vehicle 

eliminates another vehicle’s charging opportunity. In other words, the third condition reveals that 

the charging behaviors of different vehicles are correlated and hence we cannot analyze each 

vehicle separately. To summarize, the above analyses suggest modeling charging and operations 

of a PHEV taxi fleet needs a time-series simulation model that takes into account all the vehicles 

simultaneously. However, the big dataset (46,765 taxis for two months) inevitably creates a 

computational burden and challenge for conducting this time-series simulation. In the following 

section, we will describe the simulation model, as well as how to solve it efficiently. 

2.3 Time-series Simulation Model 

Assume the extracted trip-chain information from the dataset sufficiently represents the travel 

patterns of PHEV drivers. We simulate their traveling and charging behaviors in this section. After 

the simulation, the electrification rate of VMT can be thereby estimated. Figure 2 shows the flow 

chart of the simulation model. Once again, we emphasize that the time-series simulation model 

requires that drivers follow the existing trip-chain profile and will consider recharging only when 

the three conditions defined in Section 2.2 are satisfied. In the simulation, time is discretized, and 

as the time step propagates, each PHEV’s SOC is updated accordingly. The update is implemented 

through utilizing three tables, i.e., time window chart, station operation chart, and vehicle driving 

profile. When a PHEV’s SOC falls below the pre-determined threshold, we check if there is a 

charging time window and also search the nearby charging station to verify the availability of 

chargers. If all these conditions are satisfied, the vehicle will be recharged and the above three 

tables are updated correspondingly. 
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Figure 2. Simulation model flow chart 

The details of the simulation model are shown as follows: 

Step 1: Set t = 0,  SOC(  = 1,  ∀i. Choose the time step as five minutes. 
Step 2: Set the threshold SOC as 0.2. At time index t, find the PHEVs with charging demand, i.e., 

SOC below 0.2. 

Step 3: For any PHEV with charging demand, identify its nearest charging station, which implies 

drivers tend to choose the nearest station for recharging.4 Due to the fact that the roads in 

Beijing are typically vertical and horizontal, we calculate the Manhattan distance between a 

PHEV and a charging station. 

Step 4: Send the PHEV to the identified station. If there is at least one charger available within 

five minutes of arrival, recharge the vehicle. The recharging time equals the minimum time 

needed  to  replenish  the  battery  and  the  remaining  time  of  the  charging  time window. 
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stations to seek for charging opportunities. In Section 2.4, we will discuss an intelligent charging guidance system, 
devoted to assisting drivers to better choose stations. 

 



Otherwise, the PHEV will continue its trip, consuming electricity first and then utilizing the 

gasoline after the electricity is exhausted. 

Step 5: Set t = t + 1. If t is the end of the simulation period, end the simulation. Otherwise, go 

to Step 2. 

In the above simulation procedure, the most time-consuming part is finding all PHEVs with 

charging demands. The naïve way of doing this is to check the SOC of each PHEV at each time 

step, which leads to roughly 260 million checks of PHEV SOC in our dataset and greatly increases 

the time of running the simulation model. Here, we introduce a more efficient method, which we 

refer to as the Tetris method. Specifically, we first construct the time window chart whose rows 

and columns respectively correspond to time steps and vehicle IDs, as shown in Figure 3. While 

running the simulation model, we use this chart to assist us with efficiently identifying the charging 

demands of PHEVs by following the procedure below: 

i. 

ii. 

We initiate the values of all the elements in this table at zero. 

Taxi drivers do not charge their vehicles during traveling. So, we replace zero by -1 in the 
elements whose corresponding vehicles are traveling and their SOC is above the predefined 
threshold. 

During the simulation, if a vehicle chooses to charge in a station, we replace zero by the station 
number in the elements that correspond to the entire charging period. Recall that the vehicle’s 

charging time equals the minimum of needed charging time and available charging time. 

After finishing charging, the PHEV continues to travel. Let i denote the trip immediately after 

finishing charging. Based on the vehicle driving profile, we can easily find the trip j, at which 
the SOC of the PHEV begins to drop below the threshold again. Replace zero by -1 in the 

elements between trips i and t. 

For vehicle k, let Ck represent the number of row where zero first appears in the elements. Find 

the vehicle with the smallest Ck and conduct the charging opportunity check for it. Run 
steps ii-v iteratively. 

iii. 

iv. 

v. 

Figure 3 further illustrates Steps iv and v of the Tetris method. 
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Figure 3. Tetris method 

2.4 Public Charging Station Location and Intelligent Charging Guidance System 

Public charging stations should be located to best satisfy the recharging needs of PHEVs. We 

cluster the locations of charging time windows of PHEVs and then locate charging station to each 

cluster. For instance, if we plan to locate 50 public charging stations, we will apply the K-means 

method to partition the locations of charging time windows into 50 clusters and then locate a station 

at the centroid of each cluster.5 Note that this locating method is consistent with the suggestion by 

Cai et al. (2014), that the number of parking events serves as a good criterion to locate stations. 

Figure 4 shows the location plans corresponding to 50, 100, 300 and 500 stations, in which each 

dot represents a charging time window belonging to a PHEV. To further explore the location plan, 

we locate these stations in the electronic map of Beijing and observe whether these locations suit 

the clusters and parking lots of Beijing well, indicating the clusters of charging time windows 

indeed reveal the possible future charging needs. 

5 We do not require the station locations to sit in the existed gasoline stations in consideration of the fact that the 
existed gasoline stations do not necessarily have enough space to accommodate many PHEVs that simultaneously 
recharge their batteries. 
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Figure 4. Location plan of public charging stations 

Recall that in the proposed simulation model, PHEVs with charging demands always choose the 

nearest stations to seek for charging opportunities in spite of the utilization levels of the stations, 

specifically if PHEV drivers have no access to the real time charging information. Hereinafter, we 

refer to it as the nearest-station strategy. However, with the development of information and 

smartphone technology, an intelligent charging guidance system is becoming possible (Charge 

Point, 2016). In essence, the intelligent charging guidance system can not only feed the charger 

availability information to drivers but also provide guidance for their charging station choices. In 

this paper, besides the above nearest-station strategy, we also consider the possible adoption of the 

intelligent charging guidance system. Through a smartphone application or on-board equipment, 

drivers can conveniently connect to the intelligent charging guidance system to check the 

utilization levels of all charging stations. The system will also navigate a vehicle to the station that 

currently has the most available chargers within a pre-defined distance to the vehicle. In Section 

3, we will quantify the effects of introducing such a system. 
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2.5 Simulation Environment 

To provide guidelines for the charging station deployment planning, we run the simulation model, 

varying the number of charging stations, the number and types of chargers for each station, and 

battery ranges. Table 2 lists the values or ranges of the parameters in the simulations (Morrow et 

al., 2008; Dong et al., 2014): 

Table 2. Parameter values 
Parameter Value 

Fast charger power 
Slow charger power 

Number of charging stations 
Number of fast chargers at each station 
Number of slow chargers at each station 

Battery range 
SOC threshold 

60kW 
6kW 

50-500 
0-4 

10-60 
10-80km 

0.2 
  Driving efficiency 0.2kWh/km  

3. RESULTS 

In this section, we first show the simulation results of the base scenario, i.e., 500 stations, 30 slow 

chargers (each with the charging power of 6 kW) at each station, no intelligent charging guidance 

system, battery with the range of 80 km, and home charging available.6 Then, we conduct the 

sensitivity analyses with respect to the number of chargers per station, charger types, and the 

availability of home charging and intelligent charging guidance system. 

3.1 Simulation Results of Base Scenario 

We apply the K-means clustering method to locating the public charging stations. From the 

simulation results, the electrification rate of VMT reaches 54.3%, equivalent to electrifying 170 

million vehicle miles. We also run the simulation with the 500 public charging stations uniformly 

deployed, and the electrification rate of VMT is only 42.6%, which further justifies the proposed 

approach of locating public charging stations to the clusters of PHEVs’ charging time windows. 

6 Consistent with Cai and Xu (2013), home charging occurs when the duration of charging time window exceeds eight 
hours. 
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Figure 5 illustrates the average number of chargers utilized at midnight and noon respectively 

during these two months. Each red circle represents a charging station, and its shade corresponds 

to the average number of occupied chargers (the depth of the color increases with the number of 

occupied chargers). It can be observed that more public chargers, especially in business areas, are 

occupied at noon than midnight, which could be explained by the fact that many taxis do not 

operate during night and hence prefer home charging or the public charging stations in suburban 

areas. 

Noon Midnight 

Figure 5. The average number of utilized chargers 

Figure 6 illustrates the daily average aggregate charging power in public charging stations in 

November. Consistent with Figure 5, the charging power reaches the daily peak at around 13:00. 

After midnight, there also exists a peak time, implying public charging stations are also utilized at 

night (mostly in suburban areas as demonstrated in Figure 5). 

Figure 7 depicts the distribution of average daily utilization levels among public charging stations. 

For each station, the daily utilization level is defined as the ratio of the total amount of energy 

PHEVs recharge at it over the amount of energy it can provide in one day (calculated as the total 

power of chargers multiplied by 24 hours). From Figure 7, the median utilization level is 0.15, 

demonstrating the public charging station’s daily utilization level is not high in general. This could 

be possibly explained by the temporal and spatial imbalance of PHEV drivers’ recharging behavior, 

revealed in Figures 5 and 6. 
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Figure 8. The influence of charging infrastructure’s quality 
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3.2 Sensitivity Analyses 

3.2.1. Home-charging 

We first evaluate the impact of the availability of home charging on the electrification rate of VMT. 

We define the electrification gap as the difference between the electrification rates of VMT with 

and without home charging. Figure 8 compares the electrification gaps under the combination of 

different battery ranges and charging infrastructure plans, among which the poor, normal and good 

charging infrastructure plans all correspond to locating 500 stations. However, the numbers of 

slow chargers at each station are 10, 20 and 30 for the poor, normal and good charging 

infrastructure plans, respectively. It can be observed that when the battery range is below 20 km, 

the values of the electrification gaps for all the three plans are below 0.06, but the values of 

electrification gaps increase with the battery range. The values of the electrification gaps under the 

poor charging infrastructure plan are the highest among the three plans. From these observations, 

we can conclude that: the effect of promoting home charging is limited when the battery range of 

PHEVs is not large enough; in the early stage of EV development when the public charging 

infrastructure is not sufficient, promoting home charging is a relatively promising way to improve 

the electrification rate of VMT. 

 

 

 

 

 

 



3.2.2 Charger types 

As demonstrated in Table 2, a fast charger is ten times as efficient as a slow charger. However, its 

deployment cost and requirement on the electricity circuit are also higher. If deploying fast 

chargers in stations is possible, we explore how to determine the specific numbers of both types. 

Fixing the total number of stations at 500 and setting the total charging power at each station to 

180 KW (the same as base scenario), Figure 9 compares the electrification rates of VMT for four 

different charger plans under different battery ranges. The four plans respectively deploy 30 slow 

chargers, 2 fast and 10 slow chargers, 1 fast and 20 slow chargers, and three fast chargers, at each 

located charging station. We observe some interesting results: i) when the battery range is less than 

30 km, the difference among different plans is not obvious; ii) as the battery range continues to 

grow, the electrification rate of VMT corresponding to the plan of 2 fast and 10 slow chargers is 

the highest, followed by 1 fast and 20 slow chargers and then 30 slow chargers. This is because 

the recharging time of most PHEVs is limited and fast chargers can further extend their electric 

miles. Furthermore, the plan of three fast chargers performs the worst among the four plans. This 

could be caused by the fact that the number of chargers is not sufficient enough to simultaneously 

accommodate several PHEVs’ recharging when their arrival time at the station is close, which 

often happens in business areas. We note that this observation corresponds to the scenario where 

PHEV drivers are only willing to wait at most five minutes at stations if there are no chargers 

available. 7 To summarize, without changing the total power of a public charging station, 

introducing the appropriate number of fast chargers will contribute to the electrification rate of 

VMT, but replacing all slow chargers with fast chargers may not necessarily increase the 

electrification rate of VMT. 

7 We assume PHEV drivers will not wait a long time at charging stations for available chargers in consideration of the 
following aspects. First, PHEVs are still capable of operating even after their electricity is exhausted, hence, 
recharging their batteries is not mandatory for completing following trips. Second, besides recharging, PHEV drivers 
may plan to conduct some other activities such as eating and resting during the time window. If so, it may not be 
desirable for them to spend all the dwelling time waiting at public charging stations. 
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Figure 9. Impacts of charger types 

3.2.3 The station scale 

With regard to the station scale, there are generally two trends: One is to construct huge stations 

with many chargers at each station and the other is to build more small stations with fewer chargers. 

Without the sensitivity analyses, it’s difficult to determine the scale of stations to best satisfy the 

charging needs. 

Fixing the total charging power, we vary the number of stations from 50 to 1000. Inspired by 

Figure 9, we mix fast and slow chargers at each station. Table 3 shows the number of charger types 

under different station numbers. Figure 10 compares the electrification rates of VMT for different 

charging station numbers under different battery ranges. In spite of the battery range, as the station 

number increases and the station scale decreases, the electrification rate firstly increases and then 

remains nearly unchanged, which intuitively makes sense because the charging stations need to be 

spread out sufficiently to spatially satisfy the fleet charging demands. Moreover, if economies of 

scale exist in charging station deployment, 500 public charging stations will best fit our case as 

the marginal increase of the electrification rate is relatively small after 500. 
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Table 3. Numbers and types of chargers 
Station Number Number of slow chargers at 

each station 
Number of fast chargers at 

each station 
50 
100 
300 
500 
600 
750 
900 
1000 

100 
50 
20 
10 
15 
10 
7 
5 

20 
10 
3 
2 
1 
1 
1 
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Figure 10. Impacts of station scales 
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3.2.4 Intelligent charging guidance system 

Recall that we mentioned the possible adoption of an intelligent guidance system. In particular, 

the system is capable of feeding the information of charger availability at each station to PHEV 

drivers and navigating them to the stations with the most available chargers within a pre-defined 

distance to the vehicle. Figure 11 compares the electrification rate gaps between the nearest-station 

strategy and intelligent charging under different battery ranges. As expected, adopting the 

intelligent charging guidance system can increase the electrification rate of VMT by around 0.027 

as it improves the possibility for PHEV drivers to find available chargers. Moreover, we also 

observe that the increase rate is not sensitive to battery range. 
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Figure 11. Impacts of intelligent charging guidance system 
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3.2.5 Contours of electrification rate of VMT 

To explore the relation among the electrification rate of VMT, battery range, and the total number 

of public chargers, we fix the total number of public charging stations as 500 and depict the 

contours of electrification rate of VMT in Figure 12 by varying the number of slow chargers at 

each station from zero to 30, and battery range from 10 km to 80 km. If denoting 𝐺𝐺, 𝐸𝐸 and  𝑁𝑁 as 

the electrification rate, battery range, and the number of slow chargers respectively, we can observe 

that 67 > 0, > 0, 67
;  

< 0, 67
;   

< 0.  It  reveals  that  the  electrification  rate  increases  with  the 67 
6;8 6;: 68 6: 

battery range or the total number of chargers, and the rate of returns on increasing battery range or 

the number of chargers diminishes as these two factors (𝐸𝐸 and 𝑁𝑁) increase. Moreover, we also see 
67; > 0, which could be explained because these two factors support each other, i.e., one factor 

686: 

will perform better when the other is at a high level. Lastly, based on the map of contours, we can 

identify all the possible combinations of 𝐸𝐸 and 𝑁𝑁 to achieve a target electrification rate. This could 

potentially support the decision-making process when a taxi fleet company electrifies its vehicles. 

24 

    

 

 



Figure 12. Contours of electrification rate of VMT 

3.2.6 Dataset validation 

The proposed simulation model is based on the trajectory data of a taxi fleet. In practice, taxis’ 

trajectories vary from day to day. To explore the impact of the stochasticity embedded in the taxi 

trajectory data on the electrification rate of VMT, we respectively divide the dataset into eight, 

four and two components. Each of the eight, four and two components correspond to one week, 

one half month, and one month of the two months, respectively. Then, the simulation is run 

independently for each component to estimate the electrification rate of VMT. Figure 13 compares 

the standard deviation of the estimated electrification rates. For instance, if we divide the dataset 

into eight components (each one corresponds to one week), the standard deviation of eight 

estimated electrification rates are 0.0271, 0.0273 and 0.0263 under the battery ranges of 40km, 

60km and 80km, respectively. It can be observed that as the length of the dataset’s corresponding 

period increases, the standard deviation of the estimated electrification rates decreases. For the 

one-month-long dataset, the standard deviation is as small as 0.0158, implying that the impact of 

stochasticity from the trajectory data could be substantially mitigated by adopting the dataset 

covering a longer period. 
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Figure 13. Impacts of the length of dataset’s corresponding period 
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4. CONCLUSION 

Using the two-month trajectory dataset of 46,765 taxis in Beijing, this study proposes a time-series 

simulation model to accurately quantify the electrification rate of VMT by taxi fleet, which 

considers not only the capacity of public charging stations but also the possible adoption of 

intelligent charging guidance system. We further cluster the charging time windows of PHEVs to 

locate public charging stations. Based on the proposed simulation model, we lastly estimate the 

impacts of charger type, charging station scale, home charging, and intelligent charging guidance 

system on the electrification rate of VMT by taxis in Beijing. Main findings are summarized as 

follows. 

 For the base scenario of 500 public stations, 30 slow chargers at each station, no intelligent 

charging guidance system, battery with the range of 80 km, and home charging available, the 

electrification rate of VMT reaches 54.3%, equivalent to electrifying 170 million vehicle miles 

in Beijing. 

When the public charging infrastructure is not sufficient, facilitating home charging is a 

promising way to increase the electrification rate of VMT especially for the high range PHEVs. 

Without changing the total power of charging stations, introducing an appropriate number of 

 

 
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fast chargers will contribute to the electrification rate of VMT, but replacing all slow chargers 

with fast chargers may not necessarily increase the electrification rate of VMT. 

Breaking the charging stations into smaller ones and spatially distributing them will increase 

the electrification rate of VMT, but its marginal effect becomes relatively small after the 

number of stations exceeds 500. 

Adopting an intelligent charging guidance system can increase the electrification rate of VMT 

by around 0.027. 

The impact of stochasticity embedded in the trajectory data could be substantially mitigated 

by adopting the dataset covering a longer period. 

 

 

 

This study assumes the PHEV’s SOC decreases linearly with the traveled distance. We will further 

extend the simulation framework by adopting more sophisticated models to track SOC of PHEVs 

(e.g., Yang et al., 2015). Another future study is to investigate how to design the intelligent 

charging guidance system to improve the electrification rate of VMT. For instance, besides 

navigating PHEVs to currently available chargers, we could explore adding additional features 

into the guidance system such as making reservations for charging, and predicting the utilization 

levels of charging stations in the future. 
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	Electric vehicles (EV) have drawn great attention in recent years because of the concern of traffic emissions and petroleum dependence (Krupa et al., 2014; Karplus et al., 2010). EVs include battery electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV). Loosely speaking, BEVs incorporate a large on-board battery, which can be charged via a cord to a power grid, and the battery provides energy for an electric motor to propel the vehicle. Besides the electric motor, PHEVs are also equipped with 
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	or companies. 

	However, there still exist several bottlenecks blocking the rapid development of EVs, such as the high cost of EV batteries, lack of charging infrastructure, and shortage of battery range. Moreover, it’s currently difficult for the EV market alone to conquer all of these obstacles. Considering the environmental benefits brought by EVs, many government agencies provide incentive policies, such as offering purchase subsidies and deploying public charging infrastructure, to promote the 
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	To assist policy makers with optimally deploying public charging infrastructure, various approaches have been proposed in the literature.1 The flow-capturing models locate charging stations to maximize the amount of travelers whose paths pass by at least one station (e.g., Hodgson, 1990; Berman et al., 1992, 1995; Hodgson and Berman, 1997; Shukla et al., 2011). Another 
	To assist policy makers with optimally deploying public charging infrastructure, various approaches have been proposed in the literature.1 The flow-capturing models locate charging stations to maximize the amount of travelers whose paths pass by at least one station (e.g., Hodgson, 1990; Berman et al., 1992, 1995; Hodgson and Berman, 1997; Shukla et al., 2011). Another 
	approach optimizes the locations of public charging stations to maximize the social welfare, based 

	1 For a more detailed review of the literature on the public charging station deployment, see He (2014). 
	1 For a more detailed review of the literature on the public charging station deployment, see He (2014). 
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	on the network equilibrium that captures the EV drivers’ spontaneous adjustments to the charging station deployment and interactions of travel and recharging decisions (e.g., He et al., 2013a b c, 2015; Jiang et al., 2012; Jiang and Xie, 2014). However, both above approaches make assumptions of EV drivers’ behavior, which remains to be verified by the real-world data. Recently, real-world driving profiles have been utilized to represent the drivers’ travel patterns, estimate their public charging needs, and
	on the network equilibrium that captures the EV drivers’ spontaneous adjustments to the charging station deployment and interactions of travel and recharging decisions (e.g., He et al., 2013a b c, 2015; Jiang et al., 2012; Jiang and Xie, 2014). However, both above approaches make assumptions of EV drivers’ behavior, which remains to be verified by the real-world data. Recently, real-world driving profiles have been utilized to represent the drivers’ travel patterns, estimate their public charging needs, and
	on the results of these studies (Cai and Xu, 2013). 

	 
	Using the large-scale trajectory data of 11,880 taxis in Beijing, Cai et al. (2014) conducted simulations to explore how to locate public charging stations among the existed gas stations of Beijing. The electrification rate, defined as the ratio of miles PHEVs travel in all-electric mode over the total driving miles, is adopted to evaluate different location plans. The simulation results show that the total number of parking events or average parking vehicle-hour per day serves as a good criterion to locate
	Using the large-scale trajectory data of 11,880 taxis in Beijing, Cai et al. (2014) conducted simulations to explore how to locate public charging stations among the existed gas stations of Beijing. The electrification rate, defined as the ratio of miles PHEVs travel in all-electric mode over the total driving miles, is adopted to evaluate different location plans. The simulation results show that the total number of parking events or average parking vehicle-hour per day serves as a good criterion to locate
	for PHEVs. 

	Inspired by the above study and recognizing the important role Beijing is playing in the massive adoption of electric vehicles, this paper gathers the real-time vehicle trajectory data of 46,765 taxis in Beijing from October 1st to November 30th in 2014 and carries out a case study for Beijing. Note that it is very likely that public fleets, such as taxis and buses, adopt EVs early. Applying the ‘big data” mining techniques, we simulate taxi drivers’ travel and recharging behavior to quantitatively depict t
	Inspired by the above study and recognizing the important role Beijing is playing in the massive adoption of electric vehicles, this paper gathers the real-time vehicle trajectory data of 46,765 taxis in Beijing from October 1st to November 30th in 2014 and carries out a case study for Beijing. Note that it is very likely that public fleets, such as taxis and buses, adopt EVs early. Applying the ‘big data” mining techniques, we simulate taxi drivers’ travel and recharging behavior to quantitatively depict t
	Cai et al. (2014), our paper’s contribution lies in the following three aspects. First, we consider the 
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	number of chargers at each public charging station is limited and hence PHEVs can charge batteries only if there are still unoccupied chargers available at stations. Therefore, our simulations are capable of accurately modeling the real-time operations of public charging station and reflecting the interactions of different PHEVs’ charging behavior2. However, it is necessary for accurately estimating the electrification rate of VMT because recharging a PHEV battery is time- consuming and the times PHEV drive
	number of chargers at each public charging station is limited and hence PHEVs can charge batteries only if there are still unoccupied chargers available at stations. Therefore, our simulations are capable of accurately modeling the real-time operations of public charging station and reflecting the interactions of different PHEVs’ charging behavior2. However, it is necessary for accurately estimating the electrification rate of VMT because recharging a PHEV battery is time- consuming and the times PHEV drive
	readily applicable to other cities and types of fleet with similar datasets available. 

	For the remainder of this paper, Section 2 introduces the dataset and provides the time-series simulation model. In Section 3, different simulation results are analyzed to derive insights for the deployment of public charging stations, and the dataset is also validated. Section 4 concludes the 
	For the remainder of this paper, Section 2 introduces the dataset and provides the time-series simulation model. In Section 3, different simulation results are analyzed to derive insights for the deployment of public charging stations, and the dataset is also validated. Section 4 concludes the 
	paper. 

	2. DATA AND TIME-SERIES SIMULATION MODEL 
	2. DATA AND TIME-SERIES SIMULATION MODEL 

	Using Beijing as a case study and assuming the travel behavior of drivers remains unchanged after adopting PHEVs, we utilize the vehicle trajectory data of 46,765 taxis to characterize the heterogonous travel patterns of individual PHEV drivers. It is reported that Beijing plans to deploy 170,000 EVs on roads and build 10,000 fast chargers by 2017 (XinhuaNet, 2014). On the basis of this dataset, we conduct time-series simulations to model PHEV drivers’ operations and charging 
	Using Beijing as a case study and assuming the travel behavior of drivers remains unchanged after adopting PHEVs, we utilize the vehicle trajectory data of 46,765 taxis to characterize the heterogonous travel patterns of individual PHEV drivers. It is reported that Beijing plans to deploy 170,000 EVs on roads and build 10,000 fast chargers by 2017 (XinhuaNet, 2014). On the basis of this dataset, we conduct time-series simulations to model PHEV drivers’ operations and charging 
	behavior, and then discuss how to locate public charging stations and guide charging behavior. 

	2 
	2 

	Note that considering the impact of public charging stations’ limited capacity will inevitably cause great 
	Note that considering the impact of public charging stations’ limited capacity will inevitably cause great 

	computational challenges, especially for our case with 46,765 taxis. 
	computational challenges, especially for our case with 46,765 taxis. 
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	2.1 Data Description and Preprocessing 
	2.1 Data Description and Preprocessing 

	To better characterize the heterogeneous travel patterns of individual taxi drivers, we examine the real-time vehicle trajectory data of 46,765 taxis in Beijing from October 1st to November 30th in 2014, collected by smartphones and on-board devices.3 The dataset includes 3.37 billion data points, which track each taxi’s location (longitude and latitude) and speed (km/hour) every 30 seconds. Table 1 shows one sample of the records in the dataset. To clean up the raw data, we 
	To better characterize the heterogeneous travel patterns of individual taxi drivers, we examine the real-time vehicle trajectory data of 46,765 taxis in Beijing from October 1st to November 30th in 2014, collected by smartphones and on-board devices.3 The dataset includes 3.37 billion data points, which track each taxi’s location (longitude and latitude) and speed (km/hour) every 30 seconds. Table 1 shows one sample of the records in the dataset. To clean up the raw data, we 
	remove the points that are duplicated and incorrect. 

	Table 1. Record Sample 
	Table 1. Record Sample 

	ID 
	ID 

	Time stamp 
	Time stamp 

	Speed (km/hour) Longitude 
	Speed (km/hour) Longitude 

	Latitude 
	Latitude 

	84471 
	84471 

	201411120715 
	201411120715 

	32 
	32 

	116.8198 
	116.8198 

	40.3431 1 
	40.3431 1 

	Figure 1 depicts the GPS trajectory of a randomly selected taxi in blue lines from October 1st to 
	Figure 1 depicts the GPS trajectory of a randomly selected taxi in blue lines from October 1st to 
	November 30th in 2014, which covers most parts of the roads in Beijing. 

	Figure 1. GPS trajectory sample 
	Figure 1. GPS trajectory sample 

	3 The total number of taxis in Beijing is approximately 66,000 (Huo et al., 2012; Zheng et al., 2011). 
	3 The total number of taxis in Beijing is approximately 66,000 (Huo et al., 2012; Zheng et al., 2011). 
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	In this research, we focus on PHEVs, which are still capable of driving by consuming gasoline fuel after the battery is out of charge. It is hence assumed that the travel behavior of taxi drivers remains unchanged after adopting PHEVs. Note that this assumption is also adopted by many previous studies (e.g. Dong et al., 2014; Cai et al., 2014). In addition, considering the dataset will be iteratively utilized in the following simulation, we thus develop an approach to compress it. Generally, recharging EVs 
	In this research, we focus on PHEVs, which are still capable of driving by consuming gasoline fuel after the battery is out of charge. It is hence assumed that the travel behavior of taxi drivers remains unchanged after adopting PHEVs. Note that this assumption is also adopted by many previous studies (e.g. Dong et al., 2014; Cai et al., 2014). In addition, considering the dataset will be iteratively utilized in the following simulation, we thus develop an approach to compress it. Generally, recharging EVs 
	1.2 kW, whereas a charger with 60 kW power level still needs 24 minutes (He et al., 2014; ETEC, 2010). Therefore, we assume that a PHEV will not recharge if the dwelling time at an intermediate stop is less than 30 minutes. Based on this criterion, the trajectory of a vehicle could be divided into several trips. Specifically, we first order each vehicle’s trajectory data points by time. Next, for each vehicle, we cut the trajectory into separate trips at the points corresponding to parking where the duratio
	the simulations described in the next section. 

	 
	2.2 Definition of Charging Opportunities 
	2.2 Definition of Charging Opportunities 

	Given the public charging station deployment plan, we focus on conducting time-series simulations to estimate the electrification rate of VMT for PHEV taxis. First of all, we define the PHEV charging opportunity from the aspects of time window, charging demand and charger availability. In the simulation model, a PHEV will recharge its battery if and only if all the 
	Given the public charging station deployment plan, we focus on conducting time-series simulations to estimate the electrification rate of VMT for PHEV taxis. First of all, we define the PHEV charging opportunity from the aspects of time window, charging demand and charger availability. In the simulation model, a PHEV will recharge its battery if and only if all the 
	following three conditions are met: 

	i. 
	i. 

	The PHEV is in a charging time window and its duration is no less than 30 minutes. Note that we define charging time window as the time slot after a trip ends and before the consecutive trip starts. 
	The PHEV is in a charging time window and its duration is no less than 30 minutes. Note that we define charging time window as the time slot after a trip ends and before the consecutive trip starts. 
	The state of charge (SOC) of PHEV’s battery is below a predefined threshold. 
	There are available chargers in the public charging station. 

	ii. 
	ii. 
	iii. 

	The above second condition implies that analyzing charging behavior of a PHEV needs to track 
	The above second condition implies that analyzing charging behavior of a PHEV needs to track 
	its SOC. Namely, the amount of electricity a PHEV charges affects when and where its next 
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	charging demand occurs, leading to the fact that we could not study each charging behavior separately but needed to conduct a time-series simulation to analyze its trip chain. Furthermore, from the above third condition, it is possible that one charger’s occupation by one vehicle eliminates another vehicle’s charging opportunity. In other words, the third condition reveals that the charging behaviors of different vehicles are correlated and hence we cannot analyze each vehicle separately. To summarize, the 
	charging demand occurs, leading to the fact that we could not study each charging behavior separately but needed to conduct a time-series simulation to analyze its trip chain. Furthermore, from the above third condition, it is possible that one charger’s occupation by one vehicle eliminates another vehicle’s charging opportunity. In other words, the third condition reveals that the charging behaviors of different vehicles are correlated and hence we cannot analyze each vehicle separately. To summarize, the 
	section, we will describe the simulation model, as well as how to solve it efficiently. 

	 
	2.3 Time-series Simulation Model 
	2.3 Time-series Simulation Model 

	Assume the extracted trip-chain information from the dataset sufficiently represents the travel patterns of PHEV drivers. We simulate their traveling and charging behaviors in this section. After the simulation, the electrification rate of VMT can be thereby estimated. Figure 2 shows the flow chart of the simulation model. Once again, we emphasize that the time-series simulation model requires that drivers follow the existing trip-chain profile and will consider recharging only when the three conditions def
	Assume the extracted trip-chain information from the dataset sufficiently represents the travel patterns of PHEV drivers. We simulate their traveling and charging behaviors in this section. After the simulation, the electrification rate of VMT can be thereby estimated. Figure 2 shows the flow chart of the simulation model. Once again, we emphasize that the time-series simulation model requires that drivers follow the existing trip-chain profile and will consider recharging only when the three conditions def
	tables are updated correspondingly. 
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	Figure
	Figure 2. Simulation model flow chart 
	Figure 2. Simulation model flow chart 

	The details of the simulation model are shown as follows: 
	The details of the simulation model are shown as follows: 

	Step 1: Set t = 0,  SOC(  = 1,  ∀i. Choose the time step as five minutes. 
	Step 1: Set t = 0,  SOC(  = 1,  ∀i. Choose the time step as five minutes. 

	Step 2: Set the threshold SOC as 0.2. At time index t, find the PHEVs with charging demand, i.e., SOC below 0.2. 
	Step 2: Set the threshold SOC as 0.2. At time index t, find the PHEVs with charging demand, i.e., SOC below 0.2. 
	Step 3: For any PHEV with charging demand, identify its nearest charging station, which implies drivers tend to choose the nearest station for recharging.4 Due to the fact that the roads in Beijing are typically vertical and horizontal, we calculate the Manhattan distance between a PHEV and a charging station. 
	Step 4: Send the PHEV to the identified station. If there is at least one charger available within 
	five minutes of arrival, recharge the vehicle. The recharging time equals the minimum time needed  to  replenish  the  battery  and  the  remaining  time  of  the  charging  time window. 

	4 It is assumed that without the information of nearby charging stations’ utilization, drivers will choose the nearest stations to seek for charging opportunities. In Section 2.4, we will discuss an intelligent charging guidance system, devoted to assisting drivers to better choose stations. 
	4 It is assumed that without the information of nearby charging stations’ utilization, drivers will choose the nearest stations to seek for charging opportunities. In Section 2.4, we will discuss an intelligent charging guidance system, devoted to assisting drivers to better choose stations. 

	13 
	13 

	 
	 

	Otherwise, the PHEV will continue its trip, consuming electricity first and then utilizing the gasoline after the electricity is exhausted. 
	Otherwise, the PHEV will continue its trip, consuming electricity first and then utilizing the gasoline after the electricity is exhausted. 
	Step 5: Set t = t + 1. If t is the end of the simulation period, end the simulation. Otherwise, go 
	to Step 2. 

	 
	In the above simulation procedure, the most time-consuming part is finding all PHEVs with charging demands. The naïve way of doing this is to check the SOC of each PHEV at each time step, which leads to roughly 260 million checks of PHEV SOC in our dataset and greatly increases the time of running the simulation model. Here, we introduce a more efficient method, which we refer to as the Tetris method. Specifically, we first construct the time window chart whose rows and columns respectively correspond to ti
	In the above simulation procedure, the most time-consuming part is finding all PHEVs with charging demands. The naïve way of doing this is to check the SOC of each PHEV at each time step, which leads to roughly 260 million checks of PHEV SOC in our dataset and greatly increases the time of running the simulation model. Here, we introduce a more efficient method, which we refer to as the Tetris method. Specifically, we first construct the time window chart whose rows and columns respectively correspond to ti
	demands of PHEVs by following the procedure below: 

	i. 
	i. 
	ii. 

	We initiate the values of all the elements in this table at zero. 
	We initiate the values of all the elements in this table at zero. 
	Taxi drivers do not charge their vehicles during traveling. So, we replace zero by -1 in the elements whose corresponding vehicles are traveling and their SOC is above the predefined threshold. 
	During the simulation, if a vehicle chooses to charge in a station, we replace zero by the station number in the elements that correspond to the entire charging period. Recall that the vehicle’s charging time equals the minimum of needed charging time and available charging time. 
	After finishing charging, the PHEV continues to travel. Let i denote the trip immediately after finishing charging. Based on the vehicle driving profile, we can easily find the trip j, at which the SOC of the PHEV begins to drop below the threshold again. Replace zero by -1 in the elements between trips i and t. 
	For vehicle k, let Ck represent the number of row where zero first appears in the elements. Find the vehicle with the smallest Ck and conduct the charging opportunity check for it. Run 
	steps ii-v iteratively. 

	iii. 
	iii. 

	iv. 
	iv. 

	v. 
	v. 

	Figure 3 further illustrates Steps iv and v of the Tetris method. 
	Figure 3 further illustrates Steps iv and v of the Tetris method. 
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	Figure 3. Tetris method 
	Figure 3. Tetris method 

	2.4 Public Charging Station Location and Intelligent Charging Guidance System 
	2.4 Public Charging Station Location and Intelligent Charging Guidance System 

	Public charging stations should be located to best satisfy the recharging needs of PHEVs. We cluster the locations of charging time windows of PHEVs and then locate charging station to each cluster. For instance, if we plan to locate 50 public charging stations, we will apply the K-means method to partition the locations of charging time windows into 50 clusters and then locate a station at the centroid of each cluster.5 Note that this locating method is consistent with the suggestion by Cai et al. (2014), 
	Public charging stations should be located to best satisfy the recharging needs of PHEVs. We cluster the locations of charging time windows of PHEVs and then locate charging station to each cluster. For instance, if we plan to locate 50 public charging stations, we will apply the K-means method to partition the locations of charging time windows into 50 clusters and then locate a station at the centroid of each cluster.5 Note that this locating method is consistent with the suggestion by Cai et al. (2014), 
	indeed reveal the possible future charging needs. 

	5 We do not require the station locations to sit in the existed gasoline stations in consideration of the fact that the existed gasoline stations do not necessarily have enough space to accommodate many PHEVs that simultaneously recharge their batteries. 
	5 We do not require the station locations to sit in the existed gasoline stations in consideration of the fact that the existed gasoline stations do not necessarily have enough space to accommodate many PHEVs that simultaneously recharge their batteries. 
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	Figure
	Figure 4. Location plan of public charging stations 
	Figure 4. Location plan of public charging stations 

	Recall that in the proposed simulation model, PHEVs with charging demands always choose the nearest stations to seek for charging opportunities in spite of the utilization levels of the stations, specifically if PHEV drivers have no access to the real time charging information. Hereinafter, we refer to it as the nearest-station strategy. However, with the development of information and smartphone technology, an intelligent charging guidance system is becoming possible (Charge Point, 2016). In essence, the i
	Recall that in the proposed simulation model, PHEVs with charging demands always choose the nearest stations to seek for charging opportunities in spite of the utilization levels of the stations, specifically if PHEV drivers have no access to the real time charging information. Hereinafter, we refer to it as the nearest-station strategy. However, with the development of information and smartphone technology, an intelligent charging guidance system is becoming possible (Charge Point, 2016). In essence, the i
	3, we will quantify the effects of introducing such a system. 
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	Figure
	2.5 Simulation Environment 
	2.5 Simulation Environment 

	To provide guidelines for the charging station deployment planning, we run the simulation model, varying the number of charging stations, the number and types of chargers for each station, and battery ranges. Table 2 lists the values or ranges of the parameters in the simulations (Morrow et 
	To provide guidelines for the charging station deployment planning, we run the simulation model, varying the number of charging stations, the number and types of chargers for each station, and battery ranges. Table 2 lists the values or ranges of the parameters in the simulations (Morrow et 
	al., 2008; Dong et al., 2014): 

	Table 2. Parameter values 
	Table 2. Parameter values 

	Parameter 
	Parameter 

	Value 
	Value 

	Fast charger power Slow charger power 
	Fast charger power Slow charger power 
	Number of charging stations Number of fast chargers at each station Number of slow chargers at each station 
	Battery range SOC threshold 

	60kW 
	60kW 
	6kW 50-500 
	0-4 
	10-60 
	10-80km 
	0.2 

	  Driving efficiency 0.2kWh/km  
	  Driving efficiency 0.2kWh/km  

	3. RESULTS 
	3. RESULTS 

	In this section, we first show the simulation results of the base scenario, i.e., 500 stations, 30 slow chargers (each with the charging power of 6 kW) at each station, no intelligent charging guidance system, battery with the range of 80 km, and home charging available.6 Then, we conduct the sensitivity analyses with respect to the number of chargers per station, charger types, and the 
	In this section, we first show the simulation results of the base scenario, i.e., 500 stations, 30 slow chargers (each with the charging power of 6 kW) at each station, no intelligent charging guidance system, battery with the range of 80 km, and home charging available.6 Then, we conduct the sensitivity analyses with respect to the number of chargers per station, charger types, and the 
	availability of home charging and intelligent charging guidance system. 

	3.1 Simulation Results of Base Scenario 
	3.1 Simulation Results of Base Scenario 

	We apply the K-means clustering method to locating the public charging stations. From the simulation results, the electrification rate of VMT reaches 54.3%, equivalent to electrifying 170 million vehicle miles. We also run the simulation with the 500 public charging stations uniformly deployed, and the electrification rate of VMT is only 42.6%, which further justifies the proposed 
	We apply the K-means clustering method to locating the public charging stations. From the simulation results, the electrification rate of VMT reaches 54.3%, equivalent to electrifying 170 million vehicle miles. We also run the simulation with the 500 public charging stations uniformly deployed, and the electrification rate of VMT is only 42.6%, which further justifies the proposed 
	approach of locating public charging stations to the clusters of PHEVs’ charging time windows. 

	6 Consistent with Cai and Xu (2013), home charging occurs when the duration of charging time window exceeds eight hours. 
	6 Consistent with Cai and Xu (2013), home charging occurs when the duration of charging time window exceeds eight hours. 
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	Figure
	Figure 5 illustrates the average number of chargers utilized at midnight and noon respectively during these two months. Each red circle represents a charging station, and its shade corresponds to the average number of occupied chargers (the depth of the color increases with the number of occupied chargers). It can be observed that more public chargers, especially in business areas, are occupied at noon than midnight, which could be explained by the fact that many taxis do not operate during night and hence 
	Figure 5 illustrates the average number of chargers utilized at midnight and noon respectively during these two months. Each red circle represents a charging station, and its shade corresponds to the average number of occupied chargers (the depth of the color increases with the number of occupied chargers). It can be observed that more public chargers, especially in business areas, are occupied at noon than midnight, which could be explained by the fact that many taxis do not operate during night and hence 
	areas. 

	Noon 
	Noon 

	Midnight 
	Midnight 

	Figure 5. The average number of utilized chargers 
	Figure 5. The average number of utilized chargers 

	Figure 6 illustrates the daily average aggregate charging power in public charging stations in November. Consistent with Figure 5, the charging power reaches the daily peak at around 13:00. After midnight, there also exists a peak time, implying public charging stations are also utilized at 
	Figure 6 illustrates the daily average aggregate charging power in public charging stations in November. Consistent with Figure 5, the charging power reaches the daily peak at around 13:00. After midnight, there also exists a peak time, implying public charging stations are also utilized at 
	night (mostly in suburban areas as demonstrated in Figure 5). 

	Figure 7 depicts the distribution of average daily utilization levels among public charging stations. For each station, the daily utilization level is defined as the ratio of the total amount of energy PHEVs recharge at it over the amount of energy it can provide in one day (calculated as the total power of chargers multiplied by 24 hours). From Figure 7, the median utilization level is 0.15, demonstrating the public charging station’s daily utilization level is not high in general. This could be possibly e
	Figure 7 depicts the distribution of average daily utilization levels among public charging stations. For each station, the daily utilization level is defined as the ratio of the total amount of energy PHEVs recharge at it over the amount of energy it can provide in one day (calculated as the total power of chargers multiplied by 24 hours). From Figure 7, the median utilization level is 0.15, demonstrating the public charging station’s daily utilization level is not high in general. This could be possibly e
	revealed in Figures 5 and 6. 
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	Figure 6. Daily aggregate average charging power 
	Figure 6. Daily aggregate average charging power 
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	Figure 7. Distribution of average daily utilization levels for public charging stations 
	Figure 7. Distribution of average daily utilization levels for public charging stations 
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	3.2 Sensitivity Analyses 
	3.2 Sensitivity Analyses 

	3.2.1. Home-charging 
	3.2.1. Home-charging 

	We first evaluate the impact of the availability of home charging on the electrification rate of VMT. We define the electrification gap as the difference between the electrification rates of VMT with and without home charging. Figure 8 compares the electrification gaps under the combination of different battery ranges and charging infrastructure plans, among which the poor, normal and good charging infrastructure plans all correspond to locating 500 stations. However, the numbers of slow chargers at each st
	We first evaluate the impact of the availability of home charging on the electrification rate of VMT. We define the electrification gap as the difference between the electrification rates of VMT with and without home charging. Figure 8 compares the electrification gaps under the combination of different battery ranges and charging infrastructure plans, among which the poor, normal and good charging infrastructure plans all correspond to locating 500 stations. However, the numbers of slow chargers at each st
	the electrification rate of VMT. 

	Figure 8. The influence of charging infrastructure’s quality 
	Figure 8. The influence of charging infrastructure’s quality 
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	Electrification gap 
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	3.2.2 Charger types 
	3.2.2 Charger types 

	As demonstrated in Table 2, a fast charger is ten times as efficient as a slow charger. However, its deployment cost and requirement on the electricity circuit are also higher. If deploying fast chargers in stations is possible, we explore how to determine the specific numbers of both types. Fixing the total number of stations at 500 and setting the total charging power at each station to 180 KW (the same as base scenario), Figure 9 compares the electrification rates of VMT for four different charger plans 
	As demonstrated in Table 2, a fast charger is ten times as efficient as a slow charger. However, its deployment cost and requirement on the electricity circuit are also higher. If deploying fast chargers in stations is possible, we explore how to determine the specific numbers of both types. Fixing the total number of stations at 500 and setting the total charging power at each station to 180 KW (the same as base scenario), Figure 9 compares the electrification rates of VMT for four different charger plans 
	electrification rate of VMT. 

	7 We assume PHEV drivers will not wait a long time at charging stations for available chargers in consideration of the following aspects. First, PHEVs are still capable of operating even after their electricity is exhausted, hence, recharging their batteries is not mandatory for completing following trips. Second, besides recharging, PHEV drivers may plan to conduct some other activities such as eating and resting during the time window. If so, it may not be desirable for them to spend all the dwelling time
	7 We assume PHEV drivers will not wait a long time at charging stations for available chargers in consideration of the following aspects. First, PHEVs are still capable of operating even after their electricity is exhausted, hence, recharging their batteries is not mandatory for completing following trips. Second, besides recharging, PHEV drivers may plan to conduct some other activities such as eating and resting during the time window. If so, it may not be desirable for them to spend all the dwelling time
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	Figure 9. Impacts of charger types 
	Figure 9. Impacts of charger types 

	3.2.3 The station scale 
	3.2.3 The station scale 

	With regard to the station scale, there are generally two trends: One is to construct huge stations with many chargers at each station and the other is to build more small stations with fewer chargers. Without the sensitivity analyses, it’s difficult to determine the scale of stations to best satisfy the 
	With regard to the station scale, there are generally two trends: One is to construct huge stations with many chargers at each station and the other is to build more small stations with fewer chargers. Without the sensitivity analyses, it’s difficult to determine the scale of stations to best satisfy the 
	charging needs. 

	Fixing the total charging power, we vary the number of stations from 50 to 1000. Inspired by Figure 9, we mix fast and slow chargers at each station. Table 3 shows the number of charger types under different station numbers. Figure 10 compares the electrification rates of VMT for different charging station numbers under different battery ranges. In spite of the battery range, as the station number increases and the station scale decreases, the electrification rate firstly increases and then remains nearly u
	Fixing the total charging power, we vary the number of stations from 50 to 1000. Inspired by Figure 9, we mix fast and slow chargers at each station. Table 3 shows the number of charger types under different station numbers. Figure 10 compares the electrification rates of VMT for different charging station numbers under different battery ranges. In spite of the battery range, as the station number increases and the station scale decreases, the electrification rate firstly increases and then remains nearly u
	the marginal increase of the electrification rate is relatively small after 500. 
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	Recall that we mentioned the possible adoption of an intelligent guidance system. In particular, the system is capable of feeding the information of charger availability at each station to PHEV drivers and navigating them to the stations with the most available chargers within a pre-defined distance to the vehicle. Figure 11 compares the electrification rate gaps between the nearest-station strategy and intelligent charging under different battery ranges. As expected, adopting the intelligent charging guida
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	observe that the increase rate is not sensitive to battery range. 
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	To explore the relation among the electrification rate of VMT, battery range, and the total number of public chargers, we fix the total number of public charging stations as 500 and depict the contours of electrification rate of VMT in Figure 12 by varying the number of slow chargers at each station from zero to 30, and battery range from 10 km to 80 km. If denoting 𝐺𝐺, 𝐸𝐸 and  𝑁𝑁 as 
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	identify all the possible combinations of 𝐸𝐸 and 𝑁𝑁 to achieve a target electrification rate. This could potentially support the decision-making process when a taxi fleet company electrifies its vehicles. 
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	The proposed simulation model is based on the trajectory data of a taxi fleet. In practice, taxis’ trajectories vary from day to day. To explore the impact of the stochasticity embedded in the taxi trajectory data on the electrification rate of VMT, we respectively divide the dataset into eight, four and two components. Each of the eight, four and two components correspond to one week, one half month, and one month of the two months, respectively. Then, the simulation is run independently for each component
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	covering a longer period. 
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	Using the two-month trajectory dataset of 46,765 taxis in Beijing, this study proposes a time-series simulation model to accurately quantify the electrification rate of VMT by taxi fleet, which considers not only the capacity of public charging stations but also the possible adoption of intelligent charging guidance system. We further cluster the charging time windows of PHEVs to locate public charging stations. Based on the proposed simulation model, we lastly estimate the impacts of charger type, charging
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	follows. 
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	For the base scenario of 500 public stations, 30 slow chargers at each station, no intelligent charging guidance system, battery with the range of 80 km, and home charging available, the electrification rate of VMT reaches 54.3%, equivalent to electrifying 170 million vehicle miles in Beijing. 
	For the base scenario of 500 public stations, 30 slow chargers at each station, no intelligent charging guidance system, battery with the range of 80 km, and home charging available, the electrification rate of VMT reaches 54.3%, equivalent to electrifying 170 million vehicle miles in Beijing. 
	When the public charging infrastructure is not sufficient, facilitating home charging is a promising way to increase the electrification rate of VMT especially for the high range PHEVs. 
	Without changing the total power of charging stations, introducing an appropriate number of 
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	fast chargers will contribute to the electrification rate of VMT, but replacing all slow chargers with fast chargers may not necessarily increase the electrification rate of VMT. 
	fast chargers will contribute to the electrification rate of VMT, but replacing all slow chargers with fast chargers may not necessarily increase the electrification rate of VMT. 
	Breaking the charging stations into smaller ones and spatially distributing them will increase the electrification rate of VMT, but its marginal effect becomes relatively small after the number of stations exceeds 500. 
	Adopting an intelligent charging guidance system can increase the electrification rate of VMT by around 0.027. 
	The impact of stochasticity embedded in the trajectory data could be substantially mitigated 
	by adopting the dataset covering a longer period. 
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	This study assumes the PHEV’s SOC decreases linearly with the traveled distance. We will further extend the simulation framework by adopting more sophisticated models to track SOC of PHEVs (e.g., Yang et al., 2015). Another future study is to investigate how to design the intelligent charging guidance system to improve the electrification rate of VMT. For instance, besides navigating PHEVs to currently available chargers, we could explore adding additional features into the guidance system such as making re
	This study assumes the PHEV’s SOC decreases linearly with the traveled distance. We will further extend the simulation framework by adopting more sophisticated models to track SOC of PHEVs (e.g., Yang et al., 2015). Another future study is to investigate how to design the intelligent charging guidance system to improve the electrification rate of VMT. For instance, besides navigating PHEVs to currently available chargers, we could explore adding additional features into the guidance system such as making re
	levels of charging stations in the future. 
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