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The Terms of the Task Order 
 

The Department of Transportation (Caltrans) Task Order was based on the original 
UCTC research grant proposal, which was written in April 2013. The Task Order was to 
develop a conceptual and analytical framework for calculating the optimal curbside 
parking occupancy rate, and to illustrate its application to a spatially uniform downtown 
area in stationary state. The performance tests were to be three technical reports. The 
first was to present the conceptual/analytical framework for calculating the optimal target 
curbside parking occupancy rate in a spatially uniform downtown area, treating 
alternative search strategies. The second was to apply an agent-based traffic 
microsimulation model to calculate numerically the optimal curbside parking occupancy 
rate under alternative scenarios, including alterative search strategies. The third was to 
apply queuing theory to derive analytical solutions of the optimal curbside occupancy 
rate under alternative scenarios, including alternative search scenarios. 

 
 

Actual Output Delivered 
 

The actual output under the Task Order was one published paper and one technical 
report. 

• The published paper was 
Arnott, R. 2014. On the optimal target curbside parking occupancy rate. Economics of 

Transportation 3: 133-144. 
The Economics of Transportation is the leading international journal in the economics of 
transportation. The paper developed a conceptual and analytical framework for 
calculating the optimal curbside parking occupancy rate around a circle. 

• The technical report was 
"Cruising for Parking Around a Circle", Richard Arnott and Parker Williams. 
The technical report employed stochastic microsimulation to investigate the probability 
distribution of cruising-for-parking times around a circle, as a function of the expected 
occupancy rate, the probability distribution of parking duration, and the number of 
parking space. 

 
Electronic versions of both the journal article1 and the technical report are included as 
attachments to the final report e-mail. 

 
Informal Description of the Research Findings and Their Importance 

 
1. "On the optimal target curbside occupancy rate" 

 
Consider a uniform downtown area in which the demand function for curbside parking is 
uniform over time. What is the optimal curbside meter rate? If a local transportation 

 
1 Please note that funding from the grant is not acknowledged since the research was 
undertaken during a period when the grant funds were frozen due to contract negotiations 
between Caltrans and the University of California, Berkeley. 
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authority sets the curbside meter rate too low, there will be excessive cruising for 
parking. Not only does this result in wasted time cruising for parking (and walking from 
the parking space to the destination, and back) but also cars cruising for parking 
contribute to traffic congestion. If a local transportation authority sets the curbside rate 
too high, trips that have social value will not be undertaken. 

 
Donald Shoup proposed that the local transportation authority adjust the meter rate until 
an optimal target curbside parking occupancy rate is achieved. What is the optimal 
curbside parking occupancy rate? The published paper is the first to develop the 
conceptual and analytical framework to answer this question. The short answer is that 
there is not a magic number for the optimal target curbside occupancy rate. Rather, the 
optimal rate increases with the demand for curbside parking relative to capacity. Imagine 
plotting marginal social benefit and marginal social cost against the occupancy rate. The 
optimal occupancy rate occurs at their intersection point. Since the marginal social 
benefit curve is downward sloping and the marginal social cost curve is upward sloping, 
an increase in demand for curbside parking, which entails the marginal social benefit 
curve shifting up, results in an increase in the optimal occupancy rate. 

 
The San Francisco curbside parking experiment, SFpark, adaptively adjusted the curbside 
meter rate on a block-by-block and time-of-day basis until what was judged to be optimal 
rates were achieved. SFpark found that the mean occupancy rates associated with the 
optimal meter rates varied considerably, which is consistent with the theoretical results of 
the grant research. Hopefully SFpark's findings, buttressed by the theoretical results of 
the grant research, will persuade other jurisdictions that adjusting curbside meter rates to 
achieve a common target curbside parking occupancy rate is ill advised. 

 
2. "Cruising for parking around a circle" 

 
There has recently been considerable interest in cruising for curbside parking as a 
contributor to downtown traffic congestion. How important is it? This has proved a 
difficult question to answer since cars cruising for parking cannot be distinguished from 
the general traffic flow through direct observation. A common approach has been to 
assume that the probability of finding a particular curbside parking space vacant equals 
the average curbside vacancy rate. The report refers to this assumption as the "binomial 
approximation". The report uses stochastic microsimulation to gauge the validity of the 
approximation. In particular, it compares the probability distribution of cruising-for- 
parking times that are generated through microsimulation with that implied by the 
binomial approximation. While this is not the first research to incorporate cruising for 
parking into a microsimulation model, it is the first to use microsimulation to focus on 
cruising for parking and to estimate the distribution of cruising-for-parking times, albeit 
in a very simple setting. 

 
The research has two main findings. The first is that the binomial approximation leads to 
underestimation of average cruising-for-parking time, and at high occupancy rates to very 
considerable underestimation. This finding is consistent with the intuition that motivated 
the research, but the degree of underestimation was unexpected. When the mean 
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occupancy rate is 2/3, the actual mean cruising-for-parking time is 140% that obtained 
under the binomial approximation; the corresponding number with a mean occupancy 
rate of 5/6 is 300%, and with a mean occupancy rate of 11/12 is 850%. These results 
have two important implications for downtown traffic management. The first is that the 
time lost due to cruising for parking is indeed potentially considerable. The second is 
that mean cruising-for-parking time rises considerably more rapidly with the occupancy 
rate than according to the binomial approximation, being 27 times as high with a mean 
occupancy rate of 11/12 as with a mean occupancy rate of 2/3. The clear implication is 
that meter rates should be increased on those blocks with high mean occupancy rates in 
order to avoid high cruising-for-parking costs. 

 
The second main finding was unexpected. Even though each simulation ran 1,000,000 
cars through the system, simulating 500 hours of traffic flow, the mean cruising-for- 
parking time differed significantly between simulations with the same parameter values. 
This result led to the hypothesis, which was confirmed by more detailed examination, 
that mean cruising-for-parking time is strongly influenced by rare but extreme events 
("disasters") in which curbside parking becomes almost gridlocked. Purely by statistical 
accident, there are times when not only does curbside parking become saturated but also 
a stock of cars cruising for parking accumulates. To some extent the finding is an artifact 
of the design of the simulations, which did not provide drivers with the option of parking 
off street when curbside parking is very difficult to find. Nevertheless, the finding does 
underscore the importance of aggregate stochasticity in curbside parking, which signals 
the potential value of the truly responsive curbside parking pricing advocated by William 
Vickrey in the 1950's: Adjust curbside parking fees on a real-time basis in response to 
realized local occupancy rates, so as to allow for one vacant parking space on each block 
almost always. Doing so would nip incipient curbside parking gridlock in the bud. 

 
 

Comparison of Actual Output Delivered to That Specified in the Task Order 
 

In terms of topic, the actual output delivered corresponds closely to that specified in the 
task order. Unfortunately, not as much progress was made as was hoped for. The most 
significant task order goal that was not met was that neither the research on the optimal 
target curbside parking occupancy rate nor that on cruising for parking was extended to 
two-dimensional space. The PI underestimated the conceptual difficulty in doing so. 
Cars that cruise for parking in one direction on the outside of a circle have no option but 
to continue cruising. However, cars that cruise for parking in an isotropic downtown area 
have many options. The simplest is to drive to the destination block and then to circle the 
block. At low expected occupancy rates, that is likely the best option, but at higher 
expected occupancy rates it is almost certainly not. Solving for the optimal cruising-for- 
parking search strategy appears intractable. The simplest approach is to ascertain through 
simulation which of a number of heuristic strategies, when used by everyone, works best 
at different mean occupancy rates. A more sophisticated approach is to investigate the 
evolutionarily stable strategy, again by simulation. Cellular automata are endowed with 
different search strategies. Those that search most effectively reproduce most rapidly, 
while those that search least effectively die off. Another more sophisticated approach is 
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allow drivers to experiment and learn. A common difficulty with these more 
sophisticated approaches is that the effectiveness of a strategy for one agent may depend 
on the mix of strategies employed by other agents. Thus, the equilibrium or the optimum, 
as the case may be, may entail a mix of strategies. "Cruising for parking around a circle" 
uncovered the considerable stochastic variability of cruising-for-parking times, and the 
importance at high mean occupancy rates of extreme events. Intuitively, adjustment may 
be unstable if agents' choices of strategy are sensitive to such events. In principle, an 
alternative is to observe the cruising-for-parking strategies that drivers actually use. The 
difficulty with this approach is that cruising-for-parking strategies are difficult to observe 
simply because it is difficult to observe when a car is cruising for parking. 

 
Another task order goal that was not met was that closed-form analytical solution of the 
distribution of cruising-for-parking times was not obtained, even for one dimension. It 
turned out that neither queuing theory nor Markov process theory has yet been developed 
to the point where analytical solutions can be obtained without making approximating 
assumptions that might alter qualitatively the solution. The PI decided instead to devote 
more time to stochastic microsimulation, because it was bearing fruit. 
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a b s t r a c t  
 

Donald Shoup, following Vickrey, has long advocated cashing out free and underpriced parking. How 
should this be implemented for curbside parking in practice, considering the stochasticity of curbside 
parking vacancies? Shoup has proposed adjusting meter rates such that, for each block and time period, 
a target (average) curbside parking occupancy rate of 85% is achieved. This paper develops a simple 
structural model of stochastic steady-state curbside parking in an isotropic space, solving for the 
surplus-maximizing occupancy rate and the corresponding meter rate. By increasing curbside occu- 
pancy, a curbside parker imposes a curbside parking externality. The optimal meter rate internalizes this 
externality. The central comparative static result is that, ceteris paribus, the optimal occupancy and 
meter rates are higher, the higher is demand relative to curbside parking capacity. This suggests that, in 
practice, the occupancy rate should be higher in more trafficked locations and at busier times of the day. 

& 2014 Elsevier Ltd. All rights reserved. 
 

 

 
 
 

1. Introduction 
 

Even on a particular city block at a particular time of day, the 
number of vacant curbside parking spaces varies substantially  
from day to day. At a point in time, the block's curbside parking 
vacancy rate is the realization of complex curbside parking arrival 
(birth) and departure (death) stochastic processes. There may be a 
special event on that block that generates a higher than usual 
arrival rate for a period of time before that event starts, and a 
concentration of departures when it is over. Or purely by chance, 
an abnormally high number of people may choose to have lunch  
at a particular restaurant on that block. To further complicate 
matters, there is spatial autocorrelation in the vacancy rate on 
neighboring blocks, as drivers, unable to find curbside parking on 
their destination block, search/cruise for parking on neighboring 
blocks. 

The stochasticity of vacant curbside parking spaces is practi- 
cally important. Even when the average vacancy rate on a 
particular city block at a particular time of day is, say, 10%, there 
will be days when drivers whose destination is on that block have 
to spend considerable time cruising for a curbside parking space. 
So as to avoid being late for an appointment, a driver may respond 

to this lack of reliability1 in curbside parking search time by 
departing home earlier and/or starting to search for parking well 
before reaching the destination block. 

Vickrey (1954) was the first economist to address the impor- 
tance of the stochastic nature of the curbside parking vacancy rate. 
He advocated responsive curbside parking pricing to deal with the 
phenomenon. The parking meters on a block would be simulta- 
neously monitored, and the meter rate would be adjusted respon- 
sively to achieve an ex post curbside vacancy rate, such that there 
would almost always be a vacant curbside parking space on each 
block, which would virtually eliminate the time wasted in cruising 
for parking and the added congestion it causes. Vickrey's proposal 
never went beyond the drawing board because it was technolo- 
gically ahead of its time. Recently Shoup (Shoup 1999, 2006; King  
et al., 2007) has been advocating differentiating  the  curbside  
meter rate by block and time of day so as to achieve a common 
target curbside parking occupancy rate (hereafter, target occu- 
pancy rate); he has proposed a rate of 85%. Implementing his 
proposed scheme would require extensive data collection but no 
high technology. A modified version of his proposed scheme is 
being implemented on an experimental basis in San Francisco 
(SFpark.org; Millard-Ball et al., 2014; Pierce and Shoup, 2013). 

 
 

 
 

☆This paper is dedicated to the memory of Herbert Mohring, in recognition of his 
seminal contributions to urban transport economic theory. 

E-mail address: richard.arnott@ucr.edu 

1 Since this paper employs social surplus analysis, it implicitly assumes that 
drivers are risk neutral. Even though drivers are risk neutral, there are still costs 
associated with the stochasticity, and hence unreliability, of finding a curbside 
parking space. Taking into account that most drivers are risk averse would add 
another cost of unreliability. 

 
http://dx.doi.org/10.1016/j.ecotra.2014.07.001 
2212-0122/& 2014 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.ecotra.2014.07.001
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Nomenclature 

 
a  x; e; z arrival  time  at destination 
e departure time relative to beginning of scheduled 

appointment 
f meter rate 
g z; Q pdf of cruising-for-parking distance, conditional on Q    
r throughput 
s cruising-for-parking speed 
uc user cost 
v in-transit travel speed 
w walking speed 
x distance before destination cruising for parking 

initiated 
z cruising for parking distance (random variable) 
DðFÞ trip demand per unit time-distance 
E1; E2 equilibria 
EIðx; Q Þ    expected  in-transit  travel  time 
ESðQ Þ expected cruising-for-parking time 
ESDCðx; e; Q Þ expected schedule delay cost 

ETTCðx; Q Þ expected travel time cost 
EW  x; Q   expected walking  time cost 
F full price of a trip 
L visit duration 
Mðx; eÞ cruising-for-parking   distance   corresponding   to   on- 

time arrival 
MSC marginal social cost 
P parking spaces per unit distance (curbside parking 

capacity) 
Q curbside parking occupancy rate 
TC total cost 
X r social benefit as a function of throughput 
α value of travel time 
β value of time early 
γ value of time late 
δ distance from origin to destination 
η demand shifter 
λ Lagrange multiplier on steady-state condition 
Z intermediate notation 

 
 

Averaged over time and space, does a target occupancy rate of 
85% maximize social surplus, or should it be higher or lower? 
Should the target occupancy rate vary depending on the time of 
day, perhaps being lower in the morning when the expected  
arrival rate exceeds the expected departure rate, or depending on 
location, perhaps being higher at locations with shorter average 
parking durations? 

This paper takes a first step towards determining the optimal 
(surplus-maximizing) target occupancy rate analytically. Assume 
that space is isotropic and that the economy is in stochastic steady 
state, so that the optimal target occupancy rate is invariant over 
time and space. Its determination can be viewed as the solution of  
a problem involving three modules. The first relates to the out- 
comes of alternative search strategies, taking as given the prob- 
ability distribution of different patterns of parking occupancy over 
space. The second derives the probability distribution of different 
patterns of occupancy over space from the stochastic processes 
determining trip generation and termination, under alternative 
search strategies. The third derives the surplus-maximizing target 
occupancy rate under alternative search strategies. Solution of this 
problem would be formidably difficult. To generate a problem that 
is manageable, I construct a model, building on that in Arnott and 
Rowse (1999), which assumes that parking spaces are uniformly 
distributed around the circumference of a circle, trip originations 
are generated by a time-invariant Poisson process at a rate that is 
uniform around the circle, the distance between trip origins and 
destinations is constant, cars travel in only one direction towards 
the destination and in the opposite direction on  the  return  
journey, and the visit length at the destination is constant. Under 
these assumptions, a driver's search strategy is simple: after 
initiating search, take the first vacant parking space encountered.   
A driver then has only two decisions to make, how long before her 
appointment time to initiate her trip, and how far before her 
destination to initiate search. The probabilities of encountering the 
first vacant space at the first parking space, the second parking 
space, and so on, after parking search is initiated, as a function of 
the average occupancy rate (averaged over time and space), can 
then be solved for, at least computationally. 

The parking planner controls the curbside occupancy rate only 
indirectly via the curbside meter rate. Adding a demand function 
relating the Poisson rate at which trips are initiated to  the  
expected full price of a trip permits determination of equilibrium 

and social surplus, as functions of the curbside meter rate, and 
thence of the optimal curbside meter rate and the optimal target 
occupancy rate. 

Because the underlying stochastic processes generating the 
actual patterns of curbside parking occupancy vary over both 
space and time and are much more complex than the simple 
stochastic process assumed in the model, and because actual two- 
dimensional parking search strategies are much more complex 
than the simple one-dimensional search strategy  implied  by  
our model, considerable work – data collection and analysis, and 
theoretical development – will need to be done before optimal 
target occupancy rates can be determined in policy practice. I hope 
nonetheless that this paper adds value in providing some con- 
ceptual foundation for their determination. 

Section 2 provides a brief review of relevant literature. Section 3 
presents the model. Section 4 derives analytically the optimal target 
curbside occupancy rate, taking as given the probability distribution 
of the number of occupied curbside parking spaces searched prior to 
finding a vacant space, conditional on the average occupancy rate. 
Section 5 discusses directions for future research, and Section 6 
concludes. 

 

2. Literature review 
 

Several papers have investigated models of rush-hour traffic 
dynamics in which individuals have a common desired  arrival 
time at a common destination, are perfectly informed about the 
availability of curbside parking spaces on a radial artery, and can 
choose between vacant parking spaces. Arriving earlier provides a 
larger choice set of vacant parking spaces but increases schedule 
delay. Arnott et al. (1991) consider such a model of morning rush- 
hour travel to a common downtown location, with bottleneck 
congestion upstream of downtown parking spaces. By varying the 
meter rate across time and location, the planner can control the 
order in which parking spaces are occupied, which affects the time 
pattern of congestion at the bottleneck. Zhang et al. (2008, 2011)  
and  Qian  et   al.  (2012)   provide  various  extensions  of  Arnott   
et al. (1991) to examine alternative downtown parking policies. 
Anderson and de Palma (2004) explore a model similar  to Arnott  
et al. (1991) without a bottleneck but with congestible parking on 
side streets, one section of which considers cruising for parking. 



 

- - 
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Arnott and Inci (2006, 2010), Arnott and Rowse (2009, 2013), 

and Arnott et al. (2013) present a series of related models that 
investigate the interaction between cruising for underpriced curb- 
side parking and traffic congestion in an isotropic downtown area 
in stationary state. Curbside parking spaces reduce the road space 
available for travel, and cars cruising for parking contribute to 
traffic congestion. Arnott and Inci (2006) explore a model with 
only curbside parking, and Arnott and Inci (2010) examine the 
stability of the model's equilibria. Arnott and Rowse (2009) 
consider a model with both curbside and garage parking, and 
consider spatial competition between parking garages, and Arnott 
and Rowse (2013) extend that model to consider curbside parking 
time limits and heterogeneity among parkers. Arnott et al. (2013) 
present an integrative diagrammatic analysis focusing on first- and 
second-best optimal curbside parking capacity. All the above 
Arnott, Inci, and/or Rowse papers assume that expected cruising 
for parking search time is given by CL/P where C is the density per 
unit area of cars cruising for parking, L is the parking duration, and 
P is the density of curbside parking spaces, and that walking time 
between the parking space and the destination is zero. This 
specification assumes that, at all locations, parking spaces become 
available to a driver who is cruising for parking according to a 
spatially uniform and time-invariant Poisson process with rate 
P=ðCLÞ.  Under  this  assumption,  the  optimal  search  strategy  is  to 
drive to the destination block and wait until a space becomes 
available. Since expected cruising for parking time is CL/P, inde- 
pendent of parking location, the optimal search strategy mini- 
mizes expected walking distance. 

Arnott and Rowse (1999) are the first economics paper to 
investigate curbside parking search at a microscopic level. Indivi- 
duals and curbside parking spaces are uniformly distributed 
around the circumference of a circle. An individual waits at home 
for offers, each of which provides a fixed award, which can be 
collected by going to a specified, stochastically determined loca- 
tion and remaining there for a fixed period of time. Upon receipt of 
an offer, she must immediately decide whether to take it up. 
Conditional on taking it up, she departs immediately, decides how 
far from her destination to start cruising for parking, and  then 
takes the first vacant parking space, walking from there to her 
destination. Having collected the award, she returns to her parking 
space, drives home, and awaits the next offer. The paper solved for 
equilibrium curbside parking occupancy rates, demonstrating 
possible multiplicity of equilibria. A weakness of the paper, which 
the authors recognized, is that, to achieve tractability it assumes 
that the probability that a particular curbside parking space is 
vacant equals the average curbside parking vacancy rate; that is, 
the authors assumed away the spatial autocorrelation of occupied 
curbside parking spaces. 

The importance of the spatial autocorrelation of occupied 
curbside parking spaces is the focus of Levy et al. (2013). They 
compare the results of an analytical model of parking search 
similar to Arnott and Rowse (1999), PARKANALYST, in which every 
driver is confronted with averaged conditions, with the results of a 
traffic microsimulation model, PARKAGENT, which treats the 
spatial autocorrelation of occupied curbside parking spaces. Their 
simulation results demonstrate the quantitative importance of 
taking into account this spatial autocorrelation. Fig. 1 reproduces 
Fig. 4 of their paper. It plots average cruising for parking time 
against the average occupancy rate. In PARKANALYST, parking 
search time becomes significant only when the average occupancy 
rate is close to 100% (for example, with a occupancy rate of 99%, a 
driver cruising for parking would expect to drive by 99 occupied 
parking spaces before locating a vacant space, while with  a  
parking occupancy rate of 90%, a driver cruising for parking would 
expect to drive by only 9 occupied parking spaces). In PARKAGENT, 
in contrast, parking search time starts to be non-negligible with an 

 

 
Fig. 1. Average cruising time as a function of the parking occupancy rate. 
PARKANALYST vs PARKAGENT. This figure is reproduced from Fig. 4 of Levy et al. 
(2012). In the current context, the difference between the various PARKAGENT 
graphs is unimportant. 

 
 

average occupancy rate of about 85%, and at around 93% is 
approximately the same as that in PARKANALYST with a 99% rate. 

 
 

3. The model 
 

Consider an isotropic spatial economy organized on the cir- 
cumference of a circle (an “racetrack economy”) of infinite radius.2 
Trips  are  originated around the  circle  at a  uniform  Poisson   rate 
that is determined endogenously. Each trip entails travel in one 
direction3 around the circle to a destination a distance δ from 
where the trip originated, a visit at the destination of duration L at 
an appointed time, followed by a return journey in the opposite 
direction to the trip origin. All trips are by car, and a driver must 
park her car curbside in the vicinity of her destination, and walk 
from her parking location to her destination, and later back again 
before driving back to the trip origin. Curbside parking spaces are 
uniformly distributed around the circle with density P per unit 
length. From experience, the driver knows the probability dis- 
tribution of the number of occupied parking spaces she will 
encounter after initiating cruising for parking before finding a 
vacant parking space. But she has no information on the realized 
configuration of occupied parking spaces at the time she com- 
mences her outbound journey and receives no information during 
her journey. Furthermore, she does not exploit information from 
the pattern of occupied parking spaces that she encounters on 
her journey to update the probability distribution. Under these 
assumptions, there is a single rational search strategy. Start 
searching for parking a distance x from the destination, where x 
is chosen by the driver to minimize expected trip price, and take 
the first vacant parking space. There is a meter rate of f per unit 
time parked. To simplify, traffic congestion is ignored. In-transit 
travel speed is v, cruising-for-parking speed is s, and walking 
speed is w with v 4 s 4w. 

Each trip involves an appointment at a specified time. If the 
driver arrives at the appointment early or late, she encounters a 
schedule delay cost. The α β γ treatment of the value of time is 
employed; each unit of travel time costs her α (whether in transit, 
cruising for parking, walking, or visiting at the destination), each 

 
2 The space can just as well be an infinite line. The reason I choose the circle is 

that numerical simulation of the model requires working with a finite space, and 
working with a circle of finite radius is a manageable way of dealing with the 
exceptionally unlucky driver who unsuccessfully cruises for parking for a distance 
exceeding the length of the space. 

3 Allowing a car that is cruising for parking to turn around after it has passed 
the destination complicates the algebra without adding insight. 
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unit of time early costs her β, and each unit of time late costs her γ. 
Consistent with intuition and the empirical literature, it is assumed  
that  γ 4β.  She  decides  how  long  before  the  specified 
appointment time, e, to initiate the trip, as well as x, so as to 
minimize the expected full price of a trip, F, which includes the  
cost of time on the trip, schedule delay cost, and the curbside 
parking payment. The expected trip duration equals the expected 
time spent on the trip to the destination, the time spent at the 
destination, and the expected time spent on the return trip. The 
expected time spent on the trip to the destination equals the time 

of a trip, ETTC, equals the expected duration of a trip times the 
value of time. Thus, 

ETTCðx; Q Þ ¼ α½ESðQ Þþ EWðx; Q Þþ EIðx; Q Þþ L] ð4Þ 

To calculate expected schedule delay cost, time is measured 
relative to the appointment time; viz. t ¼ 0 is appointment time. A 
driver departs at t ¼ -e and arrives at the destination after driving 
to a distance x before the destination, cruising for  parking, and 
then walking from the parking space to the destination. Thus, the 
arrival time, a, as a function of x, e, and z is given by 

driving before initiating cruising for parking, plus the expected 
 aðx; e; zÞ ¼ -e þ

δ-x     z      jz -xj
 ð5Þ 

from the curbside parking space to the destination. The expected 
time spent on the return trip equals the expected time spent 
walking from the destination to the curbside parking space plus 
the expected return driving time. Expected parking  duration 
equals the time spent at the destination plus the expected time 
walking from the curbside parking space to the destination and 
back again. 

We now derive expressions for the components of the indivi- 
dual's full trip price. Here and throughout the paper, subscripts 
denote  partial   derivatives.   z   is   cruising-for-parking   distance, 
a continuous random variable4 whose probability distribution 
depends on the parking occupancy rate, Q : gðz; Q Þ. It is assumed 
that the probability distribution is monotonically decreasing ðgz ðz; Q 
Þo0Þ and that an increase in the occupancy rate decreases the 
probability that the rst vacant parking spot is found within a given 
distance of cruising for parking ðGQ ðz; Q Þo0Þ. 

Given the informational assumptions, expected cruising-for- 
parking distance is EzðQ Þ¼ 0

1 zgðz; Q Þ dz. Since cruising-for- parking speed is s, expected cruising-for-parking time is 

The schedule delay cost is – βa with early arrival and γa with late 
arrival. A driver chooses e such that she arrives early with some 
probability, and there is always some probability of late arrival. 

There are two cases to consider. In the first, the driver  who 
finds a parking space as soon as she starts cruising for parking 
arrives early. Since cruising-for-parking speed exceeds walking 
speed, in this case the driver who finds a parking space right at the 
destination arrives even earlier. In the second case, the driver who 
finds a parking space as soon as she starts cruising for parking 
arrives late, but the driver who finds a parking space right at the 
destination arrives early.6 I treat only the first case in the paper, 
since I judge it to be the more realistic.7 The first  case  applies 
under the following assumption: 

 
A-1:  aðx; e; 0Þ ¼ - e þððδ- xÞ=vÞþðx=wÞo0 

The primitive condition under which this case applies is 
8 αw 9 
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reaching her destination. Thus, she may park either before or after 
reaching her destination. Walking distance between the parking 
location and the destination (and, on the return journey, between 
the destination and the parking location) is therefore z x . Since 
walking speed is w, the corresponding expected walking time for 
the entire journey, EW, is 

The derivation is available in Arnott (2013, Appendix B). Let Mðx; eÞ 
denote the z corresponding to on-time arrival, as a function of x 
and  e,  i.e.  aðx; e; Mðx; eÞÞ ¼ 0.  Under  A-1,  as  z  increases,  the  driver 
arrives increasingly early up to z ¼ x, after which she arrives 
decreasingly early, until she arrives on time at z M x; e , after 
which she arrives increasingly late. When z ox, her walking time 

x  x -z 
EW x Q 2 g z Q dz 2 

1 z -x
g  z  Q   dz 
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is ðx - zÞ=w and she arrives early; when x o z o Mðx; eÞ, her walking 
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ð  Þ time   is   ðz - xÞ=w   and   she   arrives   early;   when   z 4 Mðx; eÞ,   her 

walking  time  is  ðz - xÞ=w  and  she  arrives late. Thus,  Gðx; Q Þ is  the 
Since  a  driver's  destination  is  a  fixed  distance  δ from  the 

location at which the trip is originated, and since in-transit travel 
speed is v, the in-transit travel time to the destination prior to 
initiating  cruising  for  parking  is  ðδ- xÞ=v.  The  return  in-transit 

probability that a driver finds a curbside parking space before 
reaching her destination, and G M x; e ; Q  is  the  probability  that 
she arrives at her destination early. 

Using (5), her expected schedule delay costs are 
travel distance equals the distance of the parking space from 
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The expected duration of the trip is the sum of expected 
cruising-for-parking time, expected walking time, expected 

Mðx;eÞ þ v þ w 
þ 

s   
- 

w v 
ð7Þ 

in-transit travel time, and visit time. The expected time cost 
 

4 In fact, z is a discrete random variable, corresponding to the discreteness of 
parking locations, but to simplify the algebra I shall treat it as continuous. 

5 To simplify the algebra, I ignore the possibility that the driver may choose to 
start cruising for parking as soon as she leaves home. With a very high occupancy 
rate, this may be optimal. Thus, I am implicitly assuming that this does not occur 
with the optimal target curbside occupancy rate. 

 

6 It might appear that there is a third case in which both a driver who finds a 
parking space as soon as she starts cruising for parking and a driver who finds a 
parking space right at the destination arrive late. Then all drivers would arrive late. 
But with the cost of time early being lower than the cost of time late, which has 
been assumed, this cannot be optimal since a driver's expected trip cost would be 
reduced by departing earlier. 

7 I have no data to support this judgment. It seems counter-intuitive that a 
driver who finds a parking space as soon as she starts cruising for parking would 
arrive late. That it seems so suggests that this case is uncommon. 

          0 the  trip  origin,  which  equals  δ- x þ z.  Thus,  the  expected  return 
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where 

δ (
1  1

 l 
1

 
 1 
l- 1 

When the efficient meter rate is imposed, each driver faces the 
social cost of her travel, and makes socially efficient decisions not 
only about how many trips to take but also about how far in 

 
Her expected curbside parking payment is f ðL þ EWðx; Q ÞÞ. 

It is hard to keep track all the cases – cruising past the 
destination but arriving early, etc. – and hence  of  the  limits  on 
the integrals. Figs. 2 and 3 aim to help. Fig. 2 provides a “location 
line” for the three relevant cases under A-1: finding a vacant 
parking space before reaching the destination (case A); finding a 
vacant parking space after passing the destination but still arriving 
early (case B); and finding a vacant parking space after passing the 
destination and arriving late (case C). Location is measured relative 
to the destination. Fig. 3 provides the time lines for those three 
cases. Time is measured with respect to the start of the appoint- 
ment scheduled at the destination. 

 
 

4. Analysis of the model 
 

Before proceeding with the model's analysis, it will be useful to 
step back for a moment and to consider why equilibrium in the 
model may be inefficient. Since there is no traffic congestion in the 

cruising for parking (x). 
This section looks first at the driver's optimization problem, 

then at equilibrium, and then at the social optimum and its 
decentralization. 

 
4.1. A driver's optimization problem 

 
A driver has two decision variables, e the length of  time prior  

to her appointment that she initiates her inbound trip, and x the 
distance  from  her  destination  at  which  she   initiates  cruising 
for parking. She chooses e and x, taking as given the average 
occupancy rate, Q, and the probability distribution, g z; Q , asso- 
ciated with it, so as to minimize the expected full price of a trip. 
The expected full price of a trip equals the expected opportunity 
cost of the trip time, ETTC, plus the expected schedule delay cost, 
ESDC, plus the expected curbside parking payment, which equals 
the per-unit-time meter rate times the expected parking duration, 
which equals the visit duration plus expected walking time. Thus, 
the driver's optimization problem is 

model, there is no congestion externality. The only inefficiency is a 
parking externality. When a driver occupies a curbside parking 

min F̂ x; e; Q 
x;e 

Þ¼ ETTCðx; Q Þþ ESDCðx; e; Q Þþ f ðL þ EWðx; Q ÞÞ ð9Þ 

space, she reduces the number of vacancies, and hence increases 
other drivers' costs. Since the externality is linearly proportional to 
the duration of  time a driver occupies a curbside parking space,  
the appropriate policy  instrument  to internalize the externality  is 
a meter rate per unit time set at the external cost a driver imposes 
on others from occupying a curbside parking space per unit time. 

 

< 

Note that e enters only ESDC. 
Using (7), the first-order condition with respect to e is 

βGðMðx; eÞ; Q Þ- γð1- GðMðx; eÞ; Q ÞÞ ¼ 0    or    GðMðx; eÞ; Q 
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Fig. 2. The location line. The location coordinate is measured with the destination as 0. δ is the distance from the trip origin to the trip destination. Cruising for curbside 
parking is initiated a distance x before the trip destination (and therefore at location x). Cruising for parking distance is z. 
If z o x, the driver finds the first vacant curbside parking space before reaching her destination, and the walking distance from the curbside parking space to the destination is 
x - z. 
If z 4 x, the driver finds the first vacant curbside parking space after passing by her destination, and the walking distance from the curbside parking space to the destination is 
z - x. 
Mðx; eÞ is the cruising-for-parking distance corresponding to on-time arrival. If z o Mðx; eÞ, the driver arrives at the destination early; if the inequality is reversed, she arrives 
at  the destination  late. Under  A-1, a driver  who parks  before her destination  arrives  early, i.e. Mðx; eÞ 4 x. 
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Fig. 3. The time line. 
Case A: 1. The time coordinate is measured with respect to the appointment time (marked as 0 below the time line and n above the time line). A driver departs e units of time 
prior to her appointment. Her trip comprises six segments. The first, in-transit segment lasts until she starts cruising for parking, and, since she travels at speed v during this 
segment, takes ðδ - xÞ=v time units. The second, cruising-for-parking segment lasts for the distance she cruises for parking divided by cruising-for-parking speed s: z=s. In the 
third segment, she walks from her parking location to her destination. Since z o x, walking distance is x - z, and, since her walking speed is w, this segment occupies ðx - zÞ=w 
units of time. The fourth segment is the appointment, which is assumed to last L units of time. The fifth segment is the return walk from the destination to the parking 
location.  The last segment is  the  drive home,  a distance  δ- x þ z, which  takes ðδ - x þ zÞ=v  units of  time. 
2. Under A-1, in this case she always arrives early, so that her visit at the destination starts before the scheduled appointment time. Her time early is 
e - ðδ- xÞ=v - z=s -ðx - zÞ=w. 
Case B: In this case too, the driver always arrives early for her appointment, but she parks beyond her destination so that her walking distance is ðz - xÞ=w. Her time early is 
e - ðδ- xÞ=v - z=s -ðz - xÞ=w. Mðx; eÞ is  that value of z  that results in on-time arrival (a  time early of 0). 
Case C: In this case, the cruising for parking distance is sufficiently long that driver parks sufficiently far beyond her destination that she arrives late. Her time late is 
ðδ- xÞ=v þ z=s þðz - xÞ=w - e. 

 
GðMðx; eÞ; Q Þ is the probability of a driver arriving early. Increasing 
e by one unit results in expected arrival at the destination a unit 
time earlier, conditional on being early, with an expected increase 
in schedule delay cost of βG M x; e ; Q , and expected arrival at the 
destination a unit time less late, conditional on being late, with an 
expected decrease in schedule  delay  cost  of  γ 1  G  M  x; e  ; Q  . 
The driver  chooses  e  to  equalize  these  two  magnitudes.  Thus,  
if the unit time late cost is four times the unit time  early cost,  
which roughly accords with the estimated magnitudes, the driver 
chooses e so that she will arrive early 80% of the time. 

The first-order condition with respect to x is 

ETTCx þ ESDCx þ fEWx  ¼ 0 ð11Þ 

where, from (1) to (4), 

ETTCx ¼ α½EWx þ EIx] ¼ α
 
4Gðx; Q Þ-2 

- 
2 
l
 

Gðx; Q Þ is the probability that a driver finds parking before reach- 
ing  her  destination  (and  therefore  arrives  early),  GðMðx; eÞ; Q Þ- 
Gðx; Q Þ is the probability that she parks beyond her destination 
and is early, and 1 G M  x; e  ; Q  is the probability that she arrives 
late (and therefore parks beyond her destination). A unit increase 
in x results in the driver: (a) Walking two units distance further, 
conditional on finding parking before reaching her  destination, 
and two units of distance less far, conditional on not finding 
parking   until   after   passing   her   destination,    and    therefore 
in  an  expected  distance  of  4G  x; Q  2 units further, resulting   
in   an   increase   in   expected   walking   and   parking   cost   of    
α f   4G  x; Q   2 ; (b)  Driving  in  transit  two  units  distance  less 
far, at a saving in in-transit travel time cost of 2α=v; (c) Conditional 
on parking prior to reaching her destination  (and  therefore 
arriving  early),   experiencing   a   decrease   in   time   early  cost of 
βð1=w - 1=vÞ;   conditional   on   parking   beyond   her   destination 

w v 

EWx  ¼ 4Gðx; Q Þ-2 
 

ð12Þ 
and arriving  early,  incurring  an  increase  in  time  early  cost  of  
β 1=w 1=v ; and conditional on arriving late  (and  therefore 
parking beyond her destination), experiencing a decrease in time 

and from (7) (the derivation is given in Arnott (2013, Appendix A)), 
ESDCx ¼ -β

(
 1 
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1
 

Gðx; Q Þþβ
(

 1     1
  

GðMðx; eÞ; Q Þ- Gðx; Q ÞÞ 

late cost of γð1=w þ1=vÞ. Combining (10) and (14) yields 
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1- GðMðx; eÞ; Q ÞÞ ð13Þ The solution to the driver's optimization problem is given by 
w þ v ð 

Combining (11)–(13) gives 
(8), (10), and (15), which provides three equations in three 
unknowns, x, e, and M. We write the solutions in compact form 

4Gðx; Q Þ-2    2α 
(
 1 1

 
 as x ¼ xðQ ; f Þ and e ¼ eðQ ; f Þ. Letting F denote the minimized full 
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1- GðMðx; eÞ; Q ÞÞ ¼ 0 ð14Þ which is obtained by substituting x ¼ xðQ ; f Þ and e ¼ eðQ ; f Þ into (9). 
 The equation gives the technological relationship between the full 

trip price, we have that Gðx; Q Þ 
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Table 1 
Comparative static properties of the driver's optimization problem. 

f Q α β γ v s w δ L 

x - þ ?a þ 0 - 0 þ 0 0 
e þ ? ?a - þ þ - - 0 0 

    Mðx; eÞ 0 þ 0 - þ 0 0 0 0 0  

a  xα  has the same  sign as  fw=v - βð1 þ w=vÞ, and eα  is opposite in sign  to xα . 

 
trip price and the occupancy rate. We refer to it as the technology 
function. 

The comparative static properties of the driver's optimization 
problem are recorded in Table 1. 

The derivations are provided in Arnott (2013, Appendix C).  
Here we discuss the comparative statics properties of the driver's 
optimization problem with respect to two variables of particular 
interest, f and Q. 

How x depends on exogenous parameters can be determined 
from (14). xf o0. The intuition is as follows. A rise in the curbside 
meter rate causes a driver to place relatively more weight on 
reducing expected parking time and relatively less on reducing 
expected travel time and expected schedule delay. With an infinite 
curbside meter rate, x is chosen to minimize expected walking 
time, which is achieved with x such that Gðx; Q Þ¼ 1=2. But with a 
finite meter rate, x is chosen so that Gðx; Q Þ 41=2, which implies 
initiating cruising for parking farther from the destination than 
with Gðx; Q Þ¼ 1=2, since doing so reduces both expected in-transit 
travel time and expected schedule delay cost. It can also be shown, 
as intuition suggests, that xQ 40. 

From (10), holding Q fixed, M x; e , the distance a driver cruises 
for  parking  for  on-time  arrival,  is  independent  of   f.   Thus,  
Mxxf    Meef   0.  Since  from  (8)  Mx 40 and  Me 40, and  since xf 
o0, ef 40. eQ is of ambiguous sign, depending on how an increase   
in   Q   affects   GQ ðz; Q Þ=gðz; Q Þ  when   evaluated   at   z ¼ x 
compared to at z ¼ Mðx; eÞ. 

 
4.2. Stochastic steady-state equilibrium 

 
Equilibrium is determined as the solution of two equations in 

two unknowns. The first, the technology function, relates the full 
trip price to the occupancy rate and is given by (16), but with Q 
endogenous. The second is the stochastic steady-state condition 
that, in expectation, the demand for curbside parking time per 
unit distance–time, which equals the rate at which trips are 
initiated per unit distance–time times the average curbside park- 
ing duration, equals the expected number of occupied parking 
spaces per unit length. The rate at which trips are initiated per unit 
distance-time, D, depends on the full trip price: D ¼ DðFÞ. Expected 
curbside parking duration equals visit duration plus expected time 
spent walking from the curbside parking space to the destination 
and  back  again,  L þ EWðxðQ ; f Þ; Q Þ,  where  EW ðx; Q Þ is  given  by  (2) 
and xðQ ; f Þ was obtained in the previous subsection. Thus 

DðFÞðL þ EWðxðQ ; f Þ; Q ÞÞ ¼ QP ð17Þ 

Since F D - 1 QP= L EW x Q ; f ; Q , this condition relates the 
willingness to pay for a trip to the occupancy rate. 

It is tempting to interpret (16) as a supply curve and (17) as a 
demand curve. But the relevant measure of quantity is throughput, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Graphical procedure for calculating the stochastic steady-state equilibria. 
Note: The diagram is qualitative. It is not drawn by graphing functions of the model 
for specific parameter values. 

 
 
 

which I refer to as the steady-state condition. Eq. (17) may then be 
written as DðFÞ¼ r, which is a conventional demand relation. 

While I shall work with (16) and (17) in the algebraic analysis, 
in the diagrammatic analysis I shall focus on r - F space. Fig. 4 

presents a four-quadrant diagram. Quadrant II displays (16), which 
relates F to Q. Quadrant IV displays (18), which relates r to  Q. 
Quadrant III is the 45-degree line. Quadrant I is the panel of 

particular interest, since it permits a supply–demand interpreta- 
tion of (16) and (17). The demand curve is an ordinary demand 

curve, and slopes downward. The supply curve has upward- 
sloping and backward-bending portions, and is akin to the supply 

curve of traffic congestion (Walters, 1961), for which the upward- 
sloping portion corresponds to congested traffic flow and the 
backward-bending portion to hypercongested traffic flow. The 
situation here is almost8 completely analogous, except that the 

congestion occurs in parking rather than in traffic flow. Thus, I 
shall refer to congested and hypercongested parking. Parking is 
congested (hypercongested) if the elasticity of expected parking 
duration with respect to the occupancy rate is less than (greater 

than) one. To understand why the supply curve has the shape it 
does, consider the extreme situation where the parking occupancy 
rate is close to 100%. Expected walking distance from the curbside 
parking space to the destination is very long, resulting in a very 
long expected parking duration, and hence a very low throughput. 

Fig. 2 displays two equilibria, E1 and E2. Adapting the analysis in 
Arnott and Inci (2010), which is based on a natural adjustment 

process, the equilibrium E1 is congested and stable,9 while equili- 
brium E2 is hypercongested and unstable. There may be other 

equilibria as well on the backward-sloping portion of the supply 
curve. All such interior equilibria are hypercongested, and alter- 

nate between stable and unstable. There is always a gridlock 

not occupancy. Throughput, r, is the steady-state rate at which cars    
enter and exit the system per unit length, and is related to 
occupancy according to 

r r Q  f 
QP 

18 
ðL þ EWðxðQ ; f Þ; Q ÞÞ 

8 The analogy is not complete since here, unlike in Walters' (1961) analysis of 
traffic congestion where the individual driver chooses only trip frequency, the 
individual driver chooses not only trip frequency but also x and e. 

9 It is possible that the demand curve intersects the supply curve only on its 
backward-sloping portion. In this case, the lowest equilibrium, which corresponds 
to E 1, is hypercongested and stable. 
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Table 2 
Comparative static properties of the stable, con- 
gested equilibrium, E1. 

 
 

f η 
 

 

Q - þ 
r ?a þ 
F ?a þ 

 
 

a The signs of rf and Ff are opposite. 

 
 
 

equilibrium as well, at an infinite price and zero throughput.10 The 
optimum, decentralized via the optimal meter rate, corresponds to 
an equilibrium of type E1. 

The comparative static derivatives are complicated since there 

4.3. Social optimum 
 

The social optimum occurs where the marginal social cost of 
throughput equals the marginal social benefit. Here,  since  there 
are no externalities on the demand side, the marginal  social  
benefit at a given level of throughput is given by the correspond- 
ing point on the demand curve. Calculating marginal social cost is 
complicated by the fact that per driver cost depends on the 
occupancy rate rather than throughput. We proceed as follows. 
First, we define minimized total cost as a function of throughput: 

T̂C ðrÞ ¼ min r½ETTCðx; Q Þþ ESCDðx; e; Q Þ] 

s:t: QP - rðL þ EWðx; Q ÞÞ ¼ 0 ð19Þ 

where EW x; Q , ETTC x; Q ,  and ESDC  x; e; Q  are given by (1)–(4), 
(7), and (8). Then 

are three potential channels through which a change in an 
exogenous parameter affects an endogenous variable, through x, MŜCðrÞ ¼  dT̂ C ðrÞ 

dr 
e, and Q. Arnott (2013, Appendix D), derives the comparative static 
derivatives with respect to f and η, where η is a demand shifter, 
which I term “demand intensity”, with higher η corresponding to a 
higher demand curve. The comparative static properties of the 
stable, congested equilibrium, E1, are given in Table 2. 

The effects of an increase in demand on the stable, congested 
equilibrium can be seen from Fig. 4. The demand curve shifts out, 
and the supply curve does not change position. Thus, the increase 
in demand unambiguously increases both throughput and the full 
price of a trip. Furthermore, since throughput and the occupancy 
rate are positively related when parking is congested, the increase 
in demand unambiguously increases the occupancy rate. 

The effects of an increase in the meter rate on the stable 
congested equilibrium are more complicated. The meter rate 
increase shifts the supply curve but has no effect on the demand 
curve. The immediate effect of a unit increase in the meter rate is  to 
shift the supply curve up by the expected parking duration (which 
is analogous to a congestion toll shifting the supply curve up by 
the amount of the toll).11 But (unlike in the conventional analysis of 
the congestion toll), there are other effects as well due  to the 
margins of choice, departure time, e, and the distance before the 
destination that cruising for parking is initiated, x. The increase in 
the meter rate causes the driver, in her choice of e and x, to put 
more weight on parking costs relative to the other types of costs, 
which results in a decrease in her expected parking duration. The 
decrease in expected parking duration in turn decreases the 
occupancy rate, which in turn affects expected parking duration. 
The overall effect of these changes on throughput and  the  full 
price is ambiguous. If the proportional fall in the occupancy rate is 
less than the proportional fall in parking duration,  throughput 
rises (see (18)) and the full price falls (since equilibrium moves 
down the stationary demand curve). If, furthermore, the propor- 
tional rise in the meter rate exceeds the proportional fall in the 
occupancy rate, meter revenue rises. Thus, one possibility is a 
double dividend result, in which the gain in social surplus from 
raising the meter rate exceeds the increase in the meter revenue 
collected. 

 
10 As the occupancy rate goes to one, a driver expects to cruise for parking for 

an infinite period of time, walk an infinite distance between the parking space and 
the destination, and park for an infinite duration. The throughput demanded equals 
zero since the expected full price is infinite. The throughput supplied is zero since 
the expected turnover rate, the reciprocal of the expected parking duration, 

The above procedure calculates the direct control total cost 
function, assuming that the planner chooses x and e. But it is the 
individual driver and not the planner who chooses x and e. Thus, 
the total indirect control cost function should be calculated, taking 
into account that x and e are chosen by individual drivers, with the 
planner having only indirect control of x and e, through the meter 
rate. It turns out, however, that this complication is immaterial 
since, when the planner chooses the meter rate optimally, drivers 
choose the socially optimal x and e. Thus, to simplify the analysis, I 
solve for the direct control social optimum, and then for the optimal 
meter rate that decentralizes it. 

Where X(r) is the total social benefit derived from r trips per  
unit area-time (the area under the demand curve), the direct 
control social welfare optimization problem is 

max    XðrÞ- r½ETTCðx; Q Þþ ESDCðx; e; Q Þ] 
s:t:    QP - rðL þEW ðx; Q ÞÞ ¼ 0  λ ð20Þ 

where λ is the shadow price on this form of the steady-state 
condition. The first-order conditions are 

r : X 0 - ETTC - ESDC - λðL þ EWÞ ¼ 0 
Q  :  - r½ETTCQ þ ESDCQ ]þλðP - rðEWQ ÞÞ ¼ 0 
x :  - r½ETTCx þ ESDCx]-λrðEWxÞ ¼ 0 
e :  - r½ESCDe] ¼ 0 ð21Þ 

Note four things. First, it is evident from the first-order 
condition with respect to r  that λ is the shadow price of a  curbside 
parking space per unit time. Second, the first-order condition with 
respect to e is the same as the corresponding driver's first-order 
condition, (10). Third, from (11), the driver's first-order condition 
with respect to x is the same as the corresponding first-order 
condition for the social optimum when the meter rate is set equal  
to the shadow price of parking. Thus, as claimed, drivers make 
socially efficient decisions with respect to both x and e when the 
meter rate is set equal to the shadow price of parking. The  
intuition is straightforward. There is only one externality in the 
model, the parking externality. When this is internalized, drivers 
make  socially  efficient  decisions.  Fourth,  the  problem  is decom- 
posable. The first step entails calculating T̂ C    r   per (19), the second 
step  entails maximizing X r T̂ C r , with respect to r. 

From the first-order condition with respect to Q, the shadow 
price of a curbside parking space equals 

r½ETTCQ þESDCQ ] 
equals zero. 

11 If this were the end of the story, the rise in the supply curve with no change 
λ 

P - rðEWQ Þ ð22Þ 

in the demand curve would result in a decrease in throughput, associated with 
which would be a decrease in consumer surplus. If the meter rate is below the 
optimal level, increasing it increases social surplus, which requires that the increase 
in meter revenue more than offset the decrease in consumer surplus. 

The interpretation of this shadow price as the parking extern- 
ality cost requires some care. First, the λ in (22) is exactly the same 
as the λ in (19), since the externality is a production externality. 

¼ 



 

ð   - Þ 

ð  þ ð  ð   ð Þ ð ÞÞ 

4 ; 4 ; 

ð Þ 

R. Arnott / Economics of Transportation 3 (2014) 133–144 141 

 
Second, the externality operates through Q and not  directly 
through r. Instead, a marginal increase in r affects Q, and the 
marginal increase in Q generates the external  costs by increasing  
all drivers' trip cost. Third, while there are two values of Q that 
solve the steady-state condition for a given r, one associated with 
hypercongested parking, the other with congested parking, in 
determining the social optimum only the congested value of Q is 
relevant. Thus, we may express how the social cost minimizing Q 
varies  with  r,  per  (19),  as  Q ¼ Q nðrÞ,  and  similarly  we  may  write 
e ¼ enðrÞ and x ¼ xnðrÞ. Then total cost can be rewritten as 

TĈ ðrÞ ¼ rZðxnðrÞ; enðrÞ; Q nðrÞÞ 

where 

ZðxnðrÞ; enðrÞ; Q nðrÞÞ ¼ ETTCðxnðrÞ; Q nðrÞÞþ ESDCðxnðrÞ; enðrÞ; Q nðrÞÞ 

Since the derivatives with respect to xnðrÞ and enðrÞ equal 0 via the 
Envelope Theorem 

MŜC ðrÞ ¼ ZðxnðrÞ; enðrÞ; Q nðrÞÞþ ZQ ðxnðrÞ; enðrÞ; Q nðrÞÞrQ n
0 
ðrÞ 

where,    from    the    steady-state    condition,    rQ n
0 
ðrÞ ¼ ðL þ EWÞr= 

P rEWQ . The first term on the right-hand  side  is  the  marginal 
driver's trip cost, and the second is the parking  externality  cost,  
which is analogous to the familiar  congestion  externality  cost. 
Raising throughput by 1 unit increases the occupancy rate by 
Q n

0 
ðrÞ,  which  raises  each  inframarginal  driver's  cost  by  ZQ ðxnðrÞ; 

enðrÞ; Q nðrÞÞQ n
0 
ðrÞ, and inframarginal drivers' total cost by ZQ ðxnðrÞ; 

enðrÞ; Q nðrÞÞrQ n
0 
ðrÞ. 

The social optimum is decentralized simply by setting  the  
meter rate equal to λn. 

In the standard diagrammatic analysis of the traffic congestion 
externality, the marginal congestion externality cost equals the 
vertical distance between the marginal social cost of a trip and the 
user cost. Here, a driver's user cost depends on her choice of x and 
e, which depends on the meter rate. Define the user cost function 
when the meter rate is set equal to the value of λ, evaluated at the 
social optimum, λn, to be 

ûcðr; λn Þ ¼ r½ETTCðxðQ̂ ðr; λn Þ; λn Þ; Q̂ ðr; λn ÞÞ 

þESDCðxðQ̂ ðr; λn Þ; λn Þ; eðQ̂ ðr; λn Þ; λn Þ; Q̂ ðr; λn ÞÞ; Q̂ ðr; λn ÞÞ] 

 
where   Q̂   r; λn      corresponds   to   the   congested   solution   to   the 
steady-state condition when the meter rate is set equal to λn. 

Fig. 5 presents the  social  optimum  diagrammatically  in  a 
form familiar from the analysis of congestion pricing. The social 
optimum occurs at the  intersection  of  the  demand  curve  and  
the marginal social cost curve, msc. The curve uc is the user cost 
curve when the meter rate is set at the optimal level,  per  the  above 
definition. When the  meter  rate  is  set  at  the  optimal  level,  the  
supply  curve  is  the  user  cost  curve  shifted  up  by 
λn  L     EW  x  Q̂   r; λn  ; Q̂   r; λn    . And the equilibrium when the meter 
rate is set at the optimal level coincides with the optimum. 

The comparative static derivatives of the social optimum with 
respect to η, which we term demand intensity and which corre- 
sponds to an outward shift in demand, are12 

 

 
Fig. 5. Decentralization of the social optimum. Note: The diagram is qualitative. It is 
not drawn by graphing functions of the model for specific parameter values. 

 
 

One  comparative static  result  is central: 
 

Proposition 1. The socially optimal target curbside parking occu- 
pancy rate is increasing in demand intensity. 

This result is central since it implies that the search for a 
universal socially optimal curbside parking occupancy rate is a will 
o' the wisp. The intuition is straightforward. A shift upwards in the 

marginal social benefit curve in Fig. 3 implies an increase in 
optimal throughput. Furthermore, since it is optimal for parking to 

be congested rather than hypercongested, the rise in optimal 
throughput is associated with an increase in the occupancy rate.13 

Most other comparative static derivatives are ambiguous in sign.14 
For one thing, from (21) most contain terms in ETTCQQ, 

ESDCQQ, and/or EWQQ, each of which depends on GQQ, about which 
no assumption has been made. 

It is tempting to argue, on the basis of the central result, that in 
real-world situations, the optimal occupancy rate should be higher 
during peak than in off-peak hours, or at more rather than less 
congested locations. Those conjectures may prove sound.15 but I 

 
13 This result was derived under A-1, that a driver who finds a vacant curbside 

parking space as soon as she starts cruising for parking arrives at her destination 
early. It is also valid under the alternative assumption, that a driver who finds a 
vacant curbside parking space as soon as she starts cruising for parking arrives at 
her destination late. Under both assumptions optimal throughput is increasing in 
demand intensity, and the optimal occupancy rate is increasing in optimal 
throughput, which are all that is needed for the result. 

14 Rather obviously, a doubling of all monetary variables has no effect on the 
optimum r, Q, x, e, and M, but causes a doubling of F. 

15 The comparative static result that an increase in demand intensity leads to a 
higher optimal curbside occupancy rate can likely be generalized somewhat 
beyond the specific model considered in the paper. The result that an increase in 
demand intensity leads to higher optimal throughput applies in any generalization 
for which the marginal social cost curve and the demand curve can be portrayed as 
in Fig. 3. From the literature on the bottleneck model, we know that, with identical 
individuals, the reduced form of the morning rush-hour optimum in this paper's 
model can be so displayed (Arnott et al., 1991). Taking as given the throughput over 
the entire rush hour, N, using optimal control theory one can solve for the optimal 

dr 0 
dη 
dλ 

dQ 0 
dη 
dF 

dx 
dη ?; 

de 
dη ?; 

dMðx; eÞ 
dη 40; 

time pattern of departures over the rush hour, and the corresponding total social cost, 
TCn ðNÞ, and hence the marginal social cost, MSCnðNÞ. Furthermore, since, in the 
corresponding decentralized social optimum, in which the optimal time-varying 
meter  rate  is  applied,  all  drivers  face  the  same  trip  price  (which  equals  MSCnðNÞ), 

dη 40;     dη 40 ð23Þ the demand function, D(N), is well defined. The socially optimal level of throughput 
over the rush hour, Nn, is then obtained as the point of intersection of MSCnðNÞ and 

Note that the increase in η affects the driver's choice of x and e 
through an increase in both Q and f. 

 
12 The derivations may be obtained from the author upon request. 

D(N), from which the optimal time-varying meter rate may be backed out. In steady 
state, the expected occupancy rate remains constant over time. In the morning rush 
hour, however, the expected occupancy rate varies over the rush hour. I conjecture, 
but have not proved, that an increase in demand intensity causes the occupancy 
rate as a function of time to shift upward. The same argument applies when there 
are constraints on the form of the time-varying meter rate, for example, that it be 
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think it is premature to base policy on them. First, the real world   
is more complex than the model here, including intra-day traffic 
dynamics, heterogeneity of drivers and street space, and two- 
dimensional rather than one-dimensional search. Second, the 
central  comparative  static  result  relates  to  a  change  in  a  single 
exogenous  variable,  η,  whereas,  in  the  real  world,  exogenous 
variables typically do not change one at a time; for example, more 

congested locations may have a systematically lower or higher 
curbside parking density, depending on curbside parking policy, 

and peak-period drivers may have a higher value of time than off- 
peak drivers. Third, there are scale effects in cruising for parking.16 

Nevertheless, since negative results generalize from the more 
specific to the more general, one may safely conclude that, in real- 

world situations, the  optimal  target  curbside  occupancy  rate  is  not 
constant over time and space. 

 

5. Directions for future research 
 

In discussing directions for research, I have in mind what  
would need to be done to extend the model for use in practical 
applications, such as SFpark. 

Incorporating traffic congestion: The interaction between curb- 
side parking and traffic congestion is practically important, and 
should be considered in any model that aims to derive a realistic 
optimal target curbside parking occupancy rate. In a series of 
related papers, Arnott and Inci (2006, 2010), Arnott and Rowse 
(2009, 2013), and Arnott et al. (2013), Arnott, Inci, and Rowse have 
developed a sequence of related models that treat the interaction 
between curbside parking, garage parking, and traffic congestion 
in a isotropic, two-dimensional area in steady state.17 The model of 
this paper could be augmented to include the interaction between 
curbside parking and traffic congestion in the same way as was 
done in Arnott and Inci (2006). 

With traffic congestion added, the optimal amount of curbside 
to allocate to parking (optimal curbside parking capacity) can be 
determined both when traffic congestion is efficiently priced and 
when it is not, as was done in Arnott et al. (2013) with their less 
sophisticated treatment of curbside parking. For each level of 

 
(footnote continued) 
constant over the morning rush hour or that there be a single step, as long as the 
level of the meter rate can be varied so that the common trip price equals MSC(N). 
The same argument also applies when the paper's model is generalized to include 
traffic congestion, in which case decentralizing the optimum requires not only an 
optimal time-varying meter rate but also an optimal time-varying toll. Further- 
more, this argument can be extended to situations in which there are constraints 
on the forms of both the time-varying meter rate and congestion toll, as long as the 
level of either can be varied so that the common trip price equals MSC(N). 

Intuitively, for the steady state, the result should apply with user heterogeneity 
with respect to α, β, γ, δ, L, and tn, with each user group having a separate demand 
function, when each group's demand intensity increases. For morning rush-hour 
traffic dynamics, the situation is more complicated since different user groups 
depart in a particular sequence. With user heterogeneity, the issue arises as to 
whether the optimal time-varying meter rate can be differentiated according to 
user type. 

16 In the analysis of traffic congestion, it is often assumed that travel time 
depends on the ratio of flow to capacity flow (or of traffic density to capacity 
density), so that a doubling of both has no effect on travel time. In the analysis of 
curbside parking search, the analogous result would be that, holding fixed the 
occupancy rate, a doubling of the density of cars cruising for parking and of 
curbside parking capacity has no effect on cruising-for-parking time. But this is 
incorrect. It has no effect on the expected number of curbside parking spaces 
searched before a vacant spot is found, but since the distance between parking 
spaces is halved, expected cruising-for-parking distance and cruising-for-parking 
time are halved. 

17 The papers provide an unsophisticated treatment of curbside parking search. 
Either parking is unsaturated everywhere, in which case curbside parking search 
costs are zero, or parking is saturated everywhere, in which case expected curbside 
parking search time equals the stock of cars cruising for parking per unit area 
divided by the turnover rate per unit area. 

demand, social surplus is solved for as a function of curbside 
parking capacity, with account being taken that drivers decide on 
trip frequency, as well as x and e, taking the occupancy rate and 
meter rate as fixed, so as to maximize their private surplus. 

Garage parking: Arnott and Rowse (2009) added private garage 
parking to the Arnott–Inci model of downtown parking and traffic 
congestion. That paper ignores the costs of searching for parking 
inside parking garages, and provides two treatments of private 
garage location and costs. In the simpler treatment, garage parking 
is provided continuously over space at constant cost and priced at 
this cost (Bertrand competition). In the more sophisticated model, 
garages are discretely spaced due to economies of scale in garage 
construction, and consequently have market power. Garage park- 
ing could be introduced into the model of this paper in either of 
these two ways. Since SFpark  is  adjusting  parking  prices  so  as 
to achieve a target occupancy rate not only curbside but also in 
public parking garages, the model would be more useful if it were 
extended to treat search for parking inside parking garages. 

Rush-hour dynamics: One earlier paper, Arnott et al. (1991), and 
several recent papers (Qian et al., 2012; Zhang et al., 2008, 2011) 
have been written that extend Vickrey's bottleneck model of rush- 
hour traffic congestion to include parking. The papers provide 
different simplified treatments of parking and cruising for parking. 
The model of this paper, with its more sophisticated treatment of 
parking, could be extended relatively straightforwardly to treat 
rush-hour traffic and parking dynamics via the bottleneck model. 
Doing so would permit investigation of whether the target curb- 
side parking occupancy rate should differ according to the stage of 
the rush hour. 

Two-dimensional space: This paper had two  main  goals.  The 
first was to develop a structural model of curbside parking that has 
the potential of being extended to the point where it can  be  
applied in practical policy contexts. The second was to make the 
general point that there is no universal optimal target curbside 
parking occupancy rate. The paper has, I think, achieved these 
modest goals. But the model is still far from practical application. 
One of its most obvious deficiencies is  that  it  almost  trivializes 
the curbside parking search problem by treating it as one- 
dimensional. But practically curbside parking search is two- 
dimensional, and two-dimensional parking search is much more 
difficult to treat satisfactorily than one-dimensional parking  
search. A first step in  analyzing two-dimensional parking search   
is to model it in an isotropic space (an infinite plain or the surface of 
a sphere). A driver's optimal parking search strategy (e.g., drive to 
the destination block, and cruise around the block until a parking 
space opens up) depends on other drivers' search strate- gies, 
which suggests that there may be multiple equilibria. 

Anisotropic space: The monocentric city is perhaps the simplest 
interesting anisotropic space. Arnott et al. (1991) and Anderson and 
de Palma (2004) have analyzed curbside parking in the mono- 
centric city model. Drivers park from the CBD either inwards or 
outwards depending on the meter rate structure. Parking inwards is 
more efficient since it concentrates the distribution of arrivals, 
conditional on the distribution of departures. While analysis of 
curbside parking in the monocentric city model generates impor- 
tant general insight, for policy purposes what is of interest is the 
actual street network, which requires downtown traffic microsimu- 
lation models to deal with. Thus, an important topic on the research 
agenda is to strengthen these models' parking modules, for instance 
by accommodating heterogeneity in search strategy. 

Heterogeneity: It remains to be seen how important driver 
heterogeneity is in determining the optimal target curbside park- 
ing occupancy rate. 

Estimating the g z; Q function: SFpark is collecting comprehen- 
sive data on the occupancy histories of public parking garages and 
individual parking meters. These data are insufficient to measure 
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social surplus. To measure social surplus, it is necessary to relate 
aggregate travel costs to the observables, such as the curbside 
occupancy rate and the distribution of curbside parking times. This 
paper's model indicates that the form of gðz; Q Þ is central to this 
relationship. All previous theoretical work has assumed this 
function to be negative exponential (where z is treated as 
continuous) or binomial (where z  is  treated  as  discrete).  But  
Levy et al. (2013) persuasively demonstrate that this assumption 
may lead to a severe downward bias in the estimation of curbside 
parking search time as a function of the occupancy rate. The form 
of this function depends on the curbside parking search strategy. 
Determining its form analytically under alternative parking search 
strategies appears to be very difficult. A more promising avenue is 
to estimate it from microsimulation, for first isotropic networks, 
then different idealized types of anisotropic networks, and then real 
networks. 

Curbside capacity, parking time limits, and the nonlinear pricing of 
curbside parking: Recent policy discussion has focused on cashing out 
free and heavily subsidized curbside parking by raising meter rates 
until curbside occupancy rate targets are met, with little attention 
being paid to other aspects of curbside parking policy, such as 
curbside parking capacity, curbside parking time limits, and the 
nonlinear pricing of curbside parking. In an extended calibrated 
numerical example, Arnott et al. (2013) illustrate that, in heavily 
congested downtown areas where garage parking is available, it may 
be optimal to eliminate curbside parking altogether, at least on the 
most congested streets, especially when curbside parking is substan- 
tially underpriced. When drivers differ in visit length and the value of 
time, when curbside parking is underpriced, and when garage 
parking is available, Arnott and Rowse (2013) show that curbside 
parking time limits both decrease cruising for parking and increase  the 
parking turnover rate, both of which make shopping downtown more 
attractive. Curbside parking time limits along with a curbside parking 
meter rate generate a form of non-linear pricing of curbside parking. 
Today's hi-tech parking meters permit  the  implementation of 
arbitrary non-linear curbside parking pricing. 

Endogenous parking duration: To the extent that the driver has 
the ability to do so, she chooses a visit duration such that the 
marginal benefit of extending the visit a unit of time equals the 
marginal cost. The marginal cost is the meter rate plus the 
opportunity cost of time, and the marginal benefit is independent 
of the occupancy rate. If the meter rate is raised (lowered) to reach 
the target occupancy rate, visit duration is shorter (longer). 

The model assumes that the driver arranges only one appoint- 
ment or activity per trip. But as the full price of a trip increases, it is 
more likely that the driver chooses to undertake more than one 
activity per trip. Suppose, for the sake of argument, that she has 
decided to take a trip, and to arrange two appointments per trip. She 
then has the choice between parking separately for each appoint-  
ment or parking only once, and then walking from the first to the 
second appointment. The choice is made by backward  induction. 
After  the  first  appointment is over,  depending  on  where  she 
found parking, she decides between walking directly to her second 
appointment, returning to her parking spot and then searching for 
parking for her second appointment, and abandoning her second 
appointment, on the basis of expected cost. She makes her decisions 
whether to take the trip at all, and conditional on taking the trip, 
chooses x for the first appointment and e, so as to maximize her 
surplus, which depends on the probabilities of these three outcomes. 

 

6. Conclusion 
 

Policy makers are coming to recognize the importance of parking 
policy in the management of downtown auto congestion. One aspect 
of parking policy that has recently received considerable attention is 

 
efficient curbside parking pricing. The general rule is that the 
market-clearing price is the efficient price. This rule applies to 
curbside parking, but because of the stochasticity associated with 
curbside parking entry and exit, its implementation would require 
responsive pricing, in which the meter rate on a particular block at a 
particular time of day would depend on the particular realization 
of the stochastic process. Such pricing would be informationally 
demanding, hard to implement, and annoying to drivers. A more 
practical policy is to set meter rates ex ante. The efficient ex ante 
meter rate would balance the efficiency cost of having the meter rate 
below its market-clearing level when realized demand is high 
(cruising for parking costs) and the efficiency cost of having the 
meter rate above its market-clearing level when demand is low 
(unutilized curbside parking capacity). 

How should the efficient ex ante meter rate on a  particular 
block and for a particular period of the day be determined in 
practice? Donald Shoup has advocated setting block- and time- 
period specific meter rates so that a common average curbside 
parking occupancy rate is achieved. The cities of San Francisco and 
Los Angeles are implementing a variant of Shoup's proposal on an 
experimental basis (SFpark and LA Express Park, respectively). 

This paper developed a simple, structural model of curbside 
parking to investigate the theoretical basis for an optimal target 
curbside parking occupancy rate rule. Parking takes place on the 
outside of a circle, and only the (stochastic) steady state is  
analyzed. The analysis contained three elements. The first solved 
for drivers' optimal strategy in cruising for parking, taking as  
given the probability function for the number of curbside parking 
spaces searched before a vacant space is  found,  which  depends 
on the curbside occupancy rate, as well as the meter rate. The 
second solved for steady-state equilibrium in which, in expecta- 
tion, occupied parking spaces per unit length (the occupancy rate 
times the density of parking spaces per unit length) equal 
throughput per unit length times expected parking duration (visit 
duration plus expected time walking between the parking space 
and the destination). In equilibrium, there is an uninternalized 
parking externality since each driver increases the curbside 
occupancy rate, increasing other drivers' average distance cruising 
for parking and walking between the parking and destination 
locations. And the third solved for the social optimum. Analo- 
gously to Walters' well-known diagrammatic analysis of steady- 
state traffic congestion (1961), at the optimum the marginal social 
cost of throughput equals the marginal social benefit, and the 
optimum can be decentralized by imposing a meter rate that 
internalizes the parking externality, such that a driver faces the 
marginal social cost of a trip. The model's central comparative  
static result is that the optimal curbside parking occupancy rate is 
higher, the higher is the level of demand intensity. This suggests 
the conjecture that in practice the optimal occupancy rate is higher 
at busier locations and at busier times. 

The paper provides the conceptual basis not only for determin- 
ing the optimal target curbside parking occupancy rate but  also  
for undertaking welfare analysis of other policies related to 
curbside parking. Much remains to be done, however, in extending 
the model in the direction of realism, before it can usefully be 
implemented in specific policy contexts. 

SFpark is gradually adjusting meter rates by block and time of 
day until target curbside occupancy rates are achieved. Compre- 
hensive data are being collected on the occupancy experience of 
every parking meter and every public parking garage in the 
programs. But to undertake welfare analysis, it is necessary to 
relate occupancy rates to driver costs, including cruising-for- 
parking time costs, walking costs, and schedule delay costs. One 
approach is to collect the data needed to estimate these relation- 
ships directly. An alternative approach is to apply a structural 
model, such as an extended version of this paper's model. A crucial 
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element of both approaches is to estimate cruising-for-parking 
search strategies. 
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Abstract 
There has recently been considerable interest in cruising for curbside parking as a major 
contributor to traffic congestion in the downtown areas of major cities. This paper 
focuses on the expected search time for a curbside parking space. The literature has 
employed three different approaches to estimate expected cruising-for-parking time: 
direct measurement, inference based on the equilibrium condition that (for the marginal 
parker) the expected cost of curbside parking equals the expected cost of garage parking, 
and inference based on the observed occupancy rate of curbside parking and an assumed 
statistical relationship between expected cruising-for-parking time and the curbside 
parking occupancy rate. The last approach typically obtains estimates of expected 
cruising-for-parking times that are lower, and with high occupancy rates much lower, 
than those estimated using the other two approaches. This paper takes a step towards 
resolving this inconsistency by demonstrating, through computer simulation of cars 
cruising for parking around a circle in stochastic steady state, that an approximating 
assumption in the derived statistical relationship between expected cruising-for-parking 
time and the curbside parking occupancy rate leads to underestimation of average 
cruising-for-parking time, and at high occupancy rates very considerable 
underestimation. The paper also identifies several "effects" that contribute to the 
approximating assumption being an increasingly poor one as the occupancy rate 
increases. 
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Highlights 
 

• Stochastic simulation of cruising for curbside parking round a circle. 
 

• Previous work has used the approximation that curbside vacancies occur 

independently. 

• That approximation leads to severe underestimation of mean cruising-for-parking 

times. 

• Identifies four effects that lead to underestimation. 
 

• Results point to potential benefits of responsive curbside parking pricing. 
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Cruising for Parking around a Circle1 

 
The pioneering work of Donald Shoup (2005) has stimulated considerable discussion of 

cruising for curbside parking as a major contributor to traffic congestion in the downtown 

areas of major cities. The literature contains estimates that the proportion of cars 

traveling on downtown city streets during the business day that are cruising for parking is 

30% or even higher. Such estimates are not obtained from sidewalk observation since 

cars that are cruising for parking cannot be distinguished from cars in transit, but are 

instead obtained either by following a sample of cars or through model-based inference. 

 
 
The density of cars cruising for parking in the downtown area is related to the rate at 

which cars in transit in the downtown area start cruising for parking and the expected 

search time of a car that searches for parking. This paper focuses on this expected search 

time. The literature has employed three different approaches to estimate expected 

cruising-for-parking time: direct measurement, inference based on the equilibrium 

condition that (for the marginal parker) the expected full price (which equals the money 

price plus the opportunity cost of time) of curbside parking equals that of garage parking, 

 

1 The authors would like to thank the U.S. Department of Transportation and Caltrans for 
their financial support of this research under a UCCONNECT grant (Department of 
Transportation Contract No. 65A0528), and Matthew Fitzgerald for excellent research 
assistance.  Arnott would like to thank Tian Qiong for participating in earlier, 
preliminary joint analytical and simulation work on the topic, when, from April 2012 to 
April 2013, Qiong was an academic visitor to UCR. In that work, Qiong and the author 
treated the topic from the perspective of multi-server queuing theory. After Qiong 
returned to China, Derek Qu, then a graduate student in computer science at the 
University of California, Riverside, very ably continued the computer simulations for a 
short period of time. Arnott would also like to thank Amihai Glazer for having taken him 
to task in a seminar at the University of California, Irvine for the inconsistency in the 
approximations he employed in calculating expected cruising-for-parking times between 
Arnott and Rowse (1999) and Arnott and Rowse (2009). 
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and inference based on an assumed statistical relationship between expected cruising-for- 

parking time and the curbside parking occupancy rate. 

 
 
Most of the studies that employ direct measurement of cruising for parking are reviewed 

in Shoup (2005, Chapter 11). There are two reasons to be skeptical of the results. The 

first is that it is difficult to identify cars that are cruising for parking. One approach is to 

delineate a study area, follow random cars that enter the study area, identify them as 

searching for parking if they park curbside in the study area, and measure their travel 

times within the study area. This approach fails to identify cars that are indeed searching 

for curbside parking in the study area but end up parking either outside the study area or 

in a parking garage. It also fails to identify when cars that park curbside in the study area 

initiate cruising for parking. The second reason to be skeptical of the results is that the 

study areas were not randomly selected, but were chosen instead because cruising for 

parking was perceived to be a severe problem there. 

 
 
The second approach to estimate expected cruising-for-parking time was employed in 

Arnott and Rowse (2009, 2013). It is based on a model in which risk-neutral drivers 

choose between ubiquitous curbside and garage parking. Curbside parking is fully 

saturated, so that a car enters a curbside parking space immediately after it is vacated2, 

 
 
 

2 Arnott and Rowse assumed that each car cruising for parking experiences a vacant 
parking space according to a Poisson process with a rate equal to the turnover rate of 
parked cars per unit area divided by the stock of cars cruising for parking per unit area. 
When parking durations are negative exponentially distributed, the authors conjecture 
that the simulation model of this paper has this property in the limit as the expected 
occupancy rate approaches 100%. 
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while garage parking can be obtained without search. In equilibrium, drivers sort between 

curbside and garage parking such that their full prices are the same for "marginal" parkers 

-- those who are indifferent between curbside and garage parking. In most cities except 

those in the Netherlands, curbside parking is considerably cheaper than garage parking. 

An alternative statement of the parking equilibrium cost condition is then that, for a 

marginal parker, the curbside cruising-for-parking time cost equals the savings in the 

money cost from parking curbside. In the case of identical individuals, the expected 

cruising-for-parking time equals the savings in the money cost from curbside parking 

divided by the common value of time. Consider an example with identical drivers in 

which the parking duration is one hour, the meter rate is3 $1.000/hr, the one-hour garage 

parking fee is $10.00, and the value of time is $30.00/hr. Since the saving in the money 

cost of curbside parking is $9.000, the equilibrium expected cruising-for-parking time is 

0.3000 hrs. 

 
 
The third approach considers a situation in which curbside parking is not saturated but is 

instead described by an expected occupancy rate. The central assumption is that the 

probability that each curbside parking space is occupied equals the expected occupancy 

rate, independent of history and of the occupancy status of neighboring curbside parking 

spaces. We term this the binomial approximation. It generates a geometric distribution 

for the number of parking spaces searched before finding a vacant space (including the 

vacant space). The number of parking spaces searched corresponds to the number of balls 

drawn from an urn with replacement (or with an infinitely large number of balls) before a 

 
 

3 Throughout the paper, numbers are presented to the fourth significant digit. 
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"vacant" ball is drawn. Let q denote the probability that a ball is labeled "occupied", so 

that 1 - q is the probability that a ball is labeled "vacant". The probability of finding the 

first vacant space on the first draw (i.e., the first parking space searched) is 1 - q; the 

probability of finding the first vacant space on the second draw is q(1 - q), which is the 

probability that the first space searched is occupied times the probability that the second 

space searched is vacant, etc. The expected number of parking spaces searched before 

finding a vacant space (including the vacant space) is4 1/(1 - q). Thus, the expected 

numbers of parking spaces searched (including the vacant space) with curbside parking 

vacancy rates of 20%, 10%, 5%, and 1% are 5, 10, 20, and 100 respectively. Expected 

cruising-for-parking time can then be obtained by applying estimates of the average 

distance between parking spaces and of cruising-for-parking speed. As an example, 

assume that the distance between curbside parking spaces is 21.12 ft (1/250 ml) and that 

cruising-for-parking speed is 8.000 mph. Then the average cruising-for-parking time 

between parking spaces is 1/2000 hrs or 1.800 seconds. Shoup (2006) proposed5 that 

curbside meter rates be set to achieve a curbside parking occupancy rate of 85%. Under 

 
 
 

4 Let the expected number of draws before drawing a vacant ball (including the draw with 
the vacant ball) be S. S = (1)(1 - q) + (2)[q(1 - q)] + (3)[q2(1 - q)] --- = (1 - q){1 + 2q + 
3q2 ---}. Multiplying both sides by q yields qS = (1 - q){q + 2q2 + 3q3  ---}. Subtracting 
qS from S yields (1 - q)S = (1 - q){1 + q + q2 --- }. Since the value of the infinite sum in 
the curly brackets is 1/(1 - q), S = 1/(1 - q). 

The variance, skewness, and Fisher kurtosis of the geometric distribution are q/(1 
- q)2, (1 + q)/q1/2, and 6 + (1 - q)2/q (Wikipedia: Geometric distribution). 
5 Shoup's work has stimulated a number of downtown parking experiments. The best 
known is SFpark. The City of San Francisco has been adjusting curbside meter rates by 
block and by time of day to achieve a target curbside parking occupancy rate. Shoup 
(2006) originally proposed a target curbside parking occupancy rate of 85%. The City has 
been adjusting this rate by block and time of day to achieve what it judges to be optimal 
rates.  They vary substantially but the average is considerably lower than 85% (Pierce 
and Shoup, 2013). 
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the binomial approximation and the above parameter assumptions, applying the Shoup 

rule would generate expected cruising-for-parking time of only 12.00.seconds (1.800 X 

1/(1 - 0.8500)). 

 
 
All the recent papers that derive the expected cruising-for-parking time from the 

occupancy rate, including Arnott and Rowse (1999), Anderson and de Palma (2004), 

Geroliminis (2015), and Du and Gong (2016), have employed the binomial 

approximation. 

 
 
Levy, Martens, and Benenson (2012) simulates a situation in which drivers search for 

parking in a residential neighborhood on their return from work, and in which therefore 

the occupancy rate increases as the evening proceeds. They compare the average realized 

number of parking spaces searched in their simulation model, PARKAGENT, as a 

function of the realized occupancy rate, to the expected number of parking spaces 

searched under the binomial approximation, as a function of the expected occupancy rate. 

When the realized occupancy rate in their simulation model is above 85%, the simulated 

average number of parking spaces searched is considerably higher than the expected 

number under the binomial approximation with that occupancy rate. Though their 

analysis is not steady state, and though their conclusions rest on the soundness of their 

simulation model, the discrepancy between their simulated numbers and those obtained 

under the binomial approximation is sufficiently large to cast doubt on the accuracy of 

the binomial approximation. 
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There are further reasons to doubt the accuracy of the binomial approximation. The 

following four apply even if entry to the parking search area is indeed generated by a 

time- and space-independent Poisson process. 

1. The binomial approximation takes the occupancy rate over the parking area as 

being constant over time. But with a finite parking area, which we assume and is 

realistic, stochasticity results in fluctuations in the realized occupancy rate. We shall 

show that taking this into account results in an expected cruising-for parking time that 

exceeds that obtained under the binomial approximation6. 

2. The binomial approximation is based on the assumption that the occupancy 

probabilities of adjacent parking spaces are statistically independent. But since parking 

spaces are spatially ordered, the probability that a particular parking space is occupied is 

higher if its upstream neighbor is occupied7. This positive spatial autocorrelation leads to 

more concentrated bunching of occupied parking spaces than would occur under the 

binomial approximation. 

3. The binomial approximation does not account for competition between cars 

cruising for parking. 

 
 

6 If a person cruising for parking experiences a realized occupancy rate of q^ throughout 
his search, under the binomial approximation, his expected search time per fn. 5 is 1/(1 - 
q^). Thus, if the realized occupancy rate changes slowly relative to search time, under 
the binomial assumption the average expected search time equals the reciprocal of the 
harmonic mean of the realized vacancy rate, which, per Jensen's Inequality, exceeds the 
reciprocal of the mean vacancy rate. 
7 If a parking space is vacant, then the probability that it is occupied during time unit t 
equals the probability that a car enters the track adjacent to the parking space during time 
unit t, plus the probability that a car entered the track adjacent to the immediately 
upstream parking space during the time unit t - 1 and found it occupied, plus the 
probability that a car entered the track adjacent to the next upstream unit in time unit t - 2 
and found it occupied at time unit t - 2 and then found the parking space downstream 
from it occupied at time unit t - 1, and so on. 
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4. Since the parking area is finite, a car may have to circle the block to find a vacant 

parking space. If it does so, then the probability of its finding a vacant parking space on 

its second circuit is lower than the unconditional probability of its finding a vacant 

parking space on its first circuit. 

There are also good, practical reasons to doubt that entry into a parking search area is 

well described by a time- and space-independent Poisson process. 

5. The demand for parking is derived from the demand for activities, which are not 

uniformly distributed over time and space.  Some locations are busier than others, and 

any location is busier at some points of the day than at others. Holding constant the mean 

vacancy rate, systematic spatial and temporal variation in the demand for parking and 

hence in the vacancy rate therefore increases expected cruising-for-parking time. Put 

alternatively, the mean vacancy rate experienced by someone cruising for parking is 

higher than that measured by an external observer8. 

6. The expected cruising-for-parking times generated by the binomial approximation 

square with neither experience nor policy discussion. In particular, expected cruising- 

for-parking times calculated according to the binomial assumption seem consistently too 

low. Experience suggests that in a section of town where the average curbside occupancy 

rate is, say, 80%, finding a vacant curbside parking space reasonably close to one's 

destination may quite frequently be difficult. In contrast, under the binomial 

approximation, the expected number of parking spaces searched before finding a vacant 

 
 
 
 

8 The demand for parking at a sports arena is an extreme example. The typical user 
experiences a crowded parking lot, even though the vacancy rate averaged over the day is 
high. 
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space (including the vacant space) is only five. Policy discussion in Shoup9 (2005) and 

elsewhere indicates that cruising for parking is perceived to be a serious problem in 

downtown areas, and yet the expected cruising-for-parking times under the binomial 

assumption are modest, except as the occupancy rate approaches one. 

 
 
In this paper, we consider a stylized model that abstracts from the spatial and temporal 

inhomogenieties discussed in 5. above. Space is the circumference of a circle of finite 

length, which we refer to as "the track". Parking spaces are evenly spaced points around 

the track. The arrival of drivers is generated by a time-independent and space- 

independent Poisson process, and where it enters is uniformly distributed around the 

track.  Each driver cruises clockwise around the track at an exogenous speed and takes 

the first vacant parking space she encounters, parks there for a period of time that is 

determined by a draw from a time- and space-independent probability distribution (which 

may or may not be negative exponential), and then exits the system. The expected 

curbside parking occupancy rate is calculated as the expected total time that cars are 

parked around the track per unit time divided by the maximum total time that cars can be 

parked around the track per unit time. The expected total time that cars are parked per 

unit time equals the Poisson arrival rate of drivers times the expected parking duration, 

and the maximum total time per unit time simply equals the number of parking spaces 

 
 
 

9 Table 11-5 in Shoup (2005) reports that average cruising-for-parking time over the 16 
studies of cruising for parking that he located was 8.1 minutes, about 500 seconds. Our 
calibration of the numerical simulations, presented below, implies that it takes 1.800 
seconds to travel from one parking space to the next. Applying this figure implies that 
the expected number of parking spaces searched is 278. Under the binomial 
approximation, this corresponds to an occupancy rate of 99.64%. 
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round the track. The natural measure of a unit of time in the model, which we adopt, is 

the time it takes to travel from one parking space to the next. 

 
 
While our simulation model operates in continuous time and continuous space, Figure 1 

portrays a modified version of it in which both time and space are discretized. The Figure 

shows a sample state of the model. The upper row of boxes represents sections of the 

track on which cars travel, searching for a parking space. The lower row of vertically 

aligned boxes represents curbside parking spaces. Cars travel from left to right, one 

parking space per time step. Since the track is in fact circular, the rightmost box is joined 

to the leftmost box. A road box is white if there are no cars on the corresponding track 

section at time step t. A road box is yellow if there are one or more cars on that track 

section at time step t, with the number in the box indicating the number of cars (which we 

term a cohort) on that track section. A curbside parking box is white if the curbside 

parking space there is vacant/unoccupied and is blue if it is occupied. Later, in Figure 3, 

we shall display the same diagram over successive time steps to illustrate how the system 

might evolve over time. 

 
 

   

            

   

                
 

 

  
 

  
 

  
 
 
Figure 1: A Discrete Representation of a Sample State of the Simulation Model 
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. 
 
Our model incorporates three important simplifying assumptions. First, it is spatially 

symmetric (except that parking spaces are points). Second, its equilibrium describes a 

(stochastic) steady state with exogenous, time- and space-independent Poisson (and 

therefore history-independent) processes generating entry to the track and exit from a 

parking space, conditional on entry to it. Third, as modeled, a driver's parking search 

"strategy" is trivial; she starts searching for parking as soon as she enters the track, and 

keeps on driving in the same direction until she encounters a vacant parking space, where 

she parks. In reality, even one-dimensional parking search is more complicated than this. 

With an exact destination, a rational driver does not start cruising for parking until a 

certain distance from her destination (Arnott and Rowse, 1999; Arnott, 2014), and if 

parking search is not unidirectional, a driver may decide to turn around and backtrack. 

Parking search strategy in two dimensions is considerably more complex. 
 
 

We chose our assumptions to achieve a balance between comprehensibility, accuracy, 

and realism. We could have made the model even simpler.  First, we could have 

described space more simply as a spatially ordered set of discrete parking spaces and time 

as discrete, as is done in Figure 1, in which case cruising for parking would be modeled 

as a multi-server queuing system, with unserved users moving from one server to the next 

between time periods10. We decided not to do so since the discretization of time and 

 
 
 
 
 

10 Indeed, this is how Arnott and Qiong, and Arnott and Qu modeled the problem in their 
work. 
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space causes artificial difficulties in the between period modeling of events11.  Second, 

we could have ignored that servers are spatially ordered, or could even have collapsed the 

multi-server queue into a single-server queue, but both kinds of simplification might 

affect the qualitative properties of equilibrium. 

 
 
The central issue that the paper addresses is whether, in stochastic steady state, the 

interaction between the time- and space-independent Poisson entry process, the time- and 

space-independent process of exit from a parking space, conditional on entry to it, and 

cruising for parking generates a time- and space-independent vacancy generation process. 

If it does, the binomial approximation is sound. If it does not, then a more sophisticated 

representation of the vacancy generation process is needed. 

 
 
We originally explored exact analytical solution of the model, but had no substantive 

success. In the next section, we cast our model in the contexts of queuing theory and 

Markov chains, and then explain the difficulties in exact analytical solution. We then had 

the choice between investigating analytical solution under simplifying assumptions or 

proceeding to simulation. We decided to employ simulation since, without an analytical 

 
 
 
 

11 For example, the modeler needs to make the choice as to which happens first between 
time periods (between the "current" period and the "next" period), the vacation of parking 
spaces that occurred during the current period or the assignment of drivers who were 
waiting in a queue at the beginning of the current period. The modeler also needs to make 
the choice as to whether entrants to the system between periods are treated in the same 
way as drivers who were waiting in a queue at the beginning of the period. Since these 
sequencing decisions are not present in a continuous time model, they are an artifact of 
discretization. They may affect the qualitative properties of equilibrium, and even if they 
do not they invite confusion. 
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solution of the proper model, we would have no way of judging how accurate were the 

analytical solutions under the approximations. 

 
 
Our basic finding is that the binomial approximation is a bad one. The base case 

parameter values are recorded in Table 1 below. There are 100 parking spaces around the 

track, with each parking space being represented as a point. The Poisson entry rate of 

cars to the track is 1/30 per time unit, the distribution of parking times (stay lengths) is 

negative exponential with mean 2000 (or put alternatively the Poisson exit rate from an 

occupied parking space is 1/2000 per time unit). The entry point of a car is random, and 

uniformly distributed around the track. The expected total parking duration per unit of 

time equals the entry rate times expected parking duration, which equals 66.67. The 

maximum parking duration per unit of time is simply equal to the number of parking 

spaces, 100. Thus, the expected occupancy rate is 2/3.  A unit of time is the period it 

takes to travel from one parking space to the next. Accordingly, the expected time it 

takes for an entering car to reach the first parking space is 0.5000 time units, the second 

parking space is 1.500, ----. Hence, the expected cruising-for-parking time equals the 

expected number of curbside parking spaces searched (including the last, successful 

search) minus 0.500. Under the binomial approximation, with an occupancy rate of 2/3, 

the expected number of curbside parking spaces searched (including the last, successful 

search) is 3.000 (see fn. 4), which corresponds to an expected cruising-for-parking time 

of 2.500. In contrast, for the central base case simulation, which is the focus of section 4, 

the simulated mean cruising-for-parking time is 4.164, so that the ratio of the simulated 

mean cruising-for-parking time to the expected value obtained under the binomial 
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approximation is 1.666. The variance of the cruising-for-parking time under the 

binomial approximation is 6.000 (see fn. 4) and in the simulation is 33.32, for a ratio of 

5.553. 

 
Number of parking spaces P 100 
Distance between parking spaces  1 (normalized distance unit) 
Travel time between parking spaces  1 (normalized time unit) 
Poisson entry rate to track µ 1/30 (per normalized time unit) 
Poisson exit rate from occupied parking 
space 

λ 1/2000 (per normalized time unit) 

(Implied) expected occupancy rate q 2/3 
 

Table 1: Base Case Parameter Values 
Notes: We have taken a normalized distance unit to be 1/250 ml (21.12 ft), and a 
normalized time unit to be 1/2000 hr (1.800 seconds) 

 
 
As the expected occupancy rate increases (generated by a proportional increase in the 

entry rate, all other parameters being held constant), so too does the ratio of the simulated 

mean cruising-for-parking time to the expected value obtained under the binomial 

approximation. With an expected occupancy rate of 11/12, the expected cruising-for- 

parking time under the binomial assumption is 11.50 and the corresponding simulated 

mean is 100.6, giving a ratio of 8.753. The corresponding variances are 132.0 and 

115800, for a ratio of 877.3. Thus, the binomial approximation gets worse as the 

expected occupancy rate increases. 

 
 
Since we were unsuccessful in obtaining analytical results, we can only go so far in 

explaining why the probability distribution of simulated cruising-for-parking time differs 

from the distribution obtained under the binomial approximation. Consequently, the 

paper focuses on describing the simulation results and the ways in which the simulated 
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results differ from those obtained under the binomial approximation, from a variety of 

statistical perspectives. 

 
 
The computer code was written so that all but two of the simulations are reproducible. 

This was achieved by recording the realizations of all the random variables used to 

generate each of the reproducible runs. Making runs reproducible permits other 

researchers not only to check our results, but also to supplement them by applying other 

statistical tools to the same data that we generated. 

 
 
Section 2 places the model in the context of queuing and Markov process theory. Section 

3 presents the simulation algorithm. Section 4 records the quantitative results of the 

central base-case simulation and compares them to the results obtained under the 

binomial approximation, using a variety of statistical approaches. Section 5 undertakes a 

variety of comparative stochastic steady-state exercises, examining how the simulated 

probability distributions of search times change with changes in exogenous parameters. 

Section 6 discusses directions for future research, and presents some concluding remarks, 

including comments on the policy insights from the research. 

 
 
2. Placing the Model in the Context of Queuing and Markov Process 

Theory 
 
This section draws heavily on Gross, Shortle, Thompson, and Harris (2008). 

 
 
2.1 Queuing Theory 
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One might think that an approximation of our model that discretizes location, in which 

each parking space is viewed as a server that is occupied if the space is occupied and free 

if the parking space is vacant, and in which queues may form at each server, would be 

analytically solvable using queuing theory. 

 
 
There is a standard notation used in the queuing theory literature. A queuing process is 

described by a series of symbols and slashes, such as A/B/X/Y/Z, where A indicates the 

arrival-time distribution, B the probability distribution of service time, X the number of 

parallel service channels, Y the restriction of system capacity, and Z the queue discipline. 

In our parking model: i) since arrivals at the track are generated by a time-independent 

Poisson process, the arrival-time distribution is negative exponential with the exponent 

equal to the Poisson arrival rate, so that, according to queuing theory notation, A = M (for 

Markovian); ii) since each parking space is a separate service channel, X = P, where P is 

the number of parking spaces round the track; iii) in the base case, the probability 

distribution of service time is negative exponential with mean equal to the expected 

parking stay time or duration, so that B = M; iv) since there is no restriction on capacity, 

Y = ∞; and v) the queue discipline is not a conventional one12, so that we set Z = ?. Thus, 

 
 
 

12 Among cars that are currently between a particular parking space and its clockwise 
neighbor, the car that is closest to the clockwise neighbor parking space will have priority 
in parking; the queue discipline is FCFS (first come, first served) in this respect. 
However, if a car enters the system between that parking space and its clockwise 
neighbor, its queuing priority is determined by the location where it enters relative to the 
location of other cars in the clockwise neighbor's queue; since the location of the entering 
car is random, the queue discipline is RSS (random selection service). 

Furthermore, in this discretized version of our model, servers are spatially 
ordered, with unserved cars in a queue at a server at time t being in the queue at the 
clockwise neighboring server at time t + 1. 
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the parking model is similar to a M/M/P/∞/? queuing process. In the standard multi- 

server queuing process, the servers are assumed to be parallel, by which is meant there is 

a single queue for all the servers together. However, the parking model here has a 

different multi-server queuing process13. Thus, though our parking model can be viewed 

as a queuing model, it is not a standard queuing model, and indeed we have found no 

queuing model in the literature that describes it. 

 
 
2.2 Markov Process Theory 

 
A Markov process is a memoryless stochastic process, in the sense that the stochastic 

evolution of the system after time t is completely determined by the state of the system at 

time t. Markov processes are classified according to the index set of the process (whether 

time is discrete or continuous) and the nature of the state space of the process (whether 

there is a finite or infinite number of states of the system). 

 
 
When the parking stay time is a negative exponential distribution, our parking model 

describes a continuous-time (and continuous-space), infinite Markov process. Since there 

are no absorbing states, we conjecture but have not proved that our model has a limiting 

distribution14 (hence, the model has a stationary distribution and the Markov process is 

 
 
 

13 From the perspective of a driver cruising for parking, the servers are moving in a 
counter-clockwise direction and the driver is served by the first vacant server that passes 
him by. From the perspective of a server, the cars cruising for parking are moving in a 
clockwise direction. If the server is full, the cars cruising for parking just pass on by, 
while, if the server is vacant, the first car to reach the server takes the vacant parking 
space. 
14 Let s index the possible states. Starting with state s0, let ps,s0(t) denote the probability 
that the system will be in state s at time t. If in the limit as time approaches infinity, 
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ergodic). We are interested in the distribution of curbside parking search times 

associated with the limiting distribution of states of the system. Since our simulations are 

finite, we do not observe the limiting distribution but rather a sample of the probability 

distribution of states conditional on the starting state. 

 
 
The dimension of the state space in our model is very high. When the parking stay time 

is a negative exponential distribution, as it is in our base case, the state of the system is 

described by the occupied/vacant status of the spatially ordered parking spaces (which 

entails 2P permutations) and the positions of all the cars that are cruising for parking 

(which may be infinite), each of which is described over the continuous space of the 

track. 

 
 
We could reduce the number of states of the system by approximating our model through 

the use of discrete time or discrete space or both. Suppose that both discretizations are 

employed15. A state is indexed by the spatially ordered parking spaces, and then, for each 

parking space, by its occupancy status and the number of cars queued at it. The state 

transition from one time step to the next would then be determined by the number of 

entries at each parking space, change in the occupancy status of each parking space, and 

the movement of cars queued at each space to its rightmost neighbor (representing the 

cruising of cars). The limiting distribution of the probabilities of the various states and of 

 
 
 

these probabilities are independent of the initial state of the system and characterize the 
limiting distribution of the system. 
15 This discretized model is the same as a variant of the queuing model described in the 
previous subsection with a negative exponential distribution of service times (B = M). 
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the cruising-for-parking search times would then be calculated from the corresponding 

transition matrix. We have not done this is in the paper since the discretization applies 

approximations that might alter the qualitative properties of the limiting distributions. 

 
 
The following cartoons give a rough illustration of alternative ways in which the 

approximation of our model that discretizes time and space can evolve over time and 

space. We collapse time into time steps and space into a discrete set of parking spaces, 

allowing for a group of cars, which we term a cohort, to be at a particular parking space. 

 
 
Figure 2A shows how the cohorts of cars on the left transition to the next time period if 

no cars either enter the track or exit from parking. All except one car advance to the right 

by one parking space. The exception is one of the cohort of cars at space j at time step t - 

1. Since parking space j is vacant at time step t - 1, that car occupies the 
 
 
 

 
Figure 2A Cartoon of Transition from Time Step t - 1 to Time Step t, with no Entries 

and no Exits from Parking 
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Figure 2B Cartoon of the Transitions from Time Step t - 1 to Time Step t with No 
Exits from Parking 
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parking space, so that at time step t, parking space j is occupied and the number of cars in 

the cohort at parking space j + 1 at time step t is one less than the number of cars in the 

cohort at parking space j at time step t - 1. 

 
 
Figure 2B goes one step further and shows how the state of the system at time step t - 1, 

which is displayed on the left, might transition between time steps t - 1 and t, when no 

occupied parking spaces are vacated between the two time steps and when entry to the 

track may occur at parking space i + 1. The cartoons on the right correspond to 

alternative states at time step t. The "?" in space i + 1 at time step t - 1 indicates that two 

states of the system at time t - 1 are considered, one in which space i + 1 is occupied at 

time step t - 1 (the first and third cartoons on the right), and the other in which space i + 1 

is vacant at time step t - 1 (the second and fourth cartoons on the right). In the first 

cartoon on the right, parking space i + 1 is occupied at time step t and there are no entries 

at that space; since space i + 1 was occupied at time step i - 1, all k cars that were at 

occupied parking space i at time step t - 1 are at occupied space i + 1 at time step t. In the 

second cartoon, parking space i + 1 is occupied at time step t and there are no entries at 

that space; since space i + 1 was vacant at time step t - 1, one of the k cars that was at 

occupied parking space i at time step t - 1 takes vacant space i + 1 at time step t, with the 

other k - 1 cars continuing to cruise for parking.  The third cartoon is like the first 

cartoon, except that p cars enter at occupied space i + 1, with the result that the cohort at 

that space increases from k to k + p and all cars in the cohort continue cruising for 

parking.  The fourth cartoon differs from the second cartoon in the same way that the 

third cartoon differs from the first. 
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Figure 3 depicts the variant of the model with discretized time and space as it was 

displayed in Figure 1, showing a sample set of transitions from time step 1 through time 

step 4, including entries to the track and exits from parking. At time 1, there are 7 

occupied spaces on the track, which has 16 spaces, with two searching cars at occupied 

space 3, and three cars at occupied space 14. Between time steps 1 and 2, all the 

searching cars advance clockwise one parking space without encountering a vacant space, 

and there are no entries and exits. Between time steps 2 and 3, one car enters at space 3, 

two cars advance from space 4 to 5, which is occupied, a car exits parking at space 10, 

and three cars advance from space 15 to 16, with one parking in space 16 since it was 

vacant at the beginning of the time step. Between times 3 and 4, one car advances to 

space 4, which is occupied, one of the cars that advances from space 5 to 6 parks in space 

6 since it was vacant, a car exits parking at space 14, and two cars advance from space 16 

to space 1, which is occupied. 

 
 
 
 

Time 1 
 
 

Time 2 
 
 

Time 3 
 
 

Time 4 
 
 

Figure 3: Depiction of the Evolution of the State of the Simulation Model 
Notes: The space is in fact circular, so that a car that exits on the right simultaneously 
enters on the left. 
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The number in a yellow box is the number of cars at the space during the time 
unit, and is termed a cohort. 

. 
 
3. The Simulation Algorithm 

 
Having treated how a discretized version of the model advances over time makes it easier 

to explain how the algorithm to solve the continuous version of the model, the one that is 

simulated, works. 

 
 
Some details of the algorithm are chosen to either speed up computation or to ease data 

storage requirements. The python code for the simulation model is presented in Appendix 

1, along with a hyperlink to the source code, which is also available at 

http://math.ucr.edu/~parker/CruisingForParking/. All calculations are done at 32 bit 

floating point precision. Here we describe the pseudo-code or program logic. 
 
 

Each simulation starts by generating a pattern of occupied and vacant parking spaces 

around the track consistent with the binomial approximation16, and zero cars cruising for 

parking17. The algorithm proceeds one time unit at a time, starting at t = 1. Within each 

time unit, the algorithm has three stages: exogenous evolution, unconflicted endogenous 

 
 

16 In particular, the parking status (vacant vs occupied) of each space is generated by an 
independent draw from a binomial distribution, with the remaining parking duration of 
each occupied space then generated by independent draws from the negative exponential 
distribution of parking durations. 

The cruising-for-parking times of those cars parked at t = 0 do not enter the 
calculation of mean cruising-for-parking time. 
17 Strictly this is not consistent with the binomial approximation. However, later we shall 
derive that the expected number of cars cruising for parking under the binomial 
approximation is µ/(1 - q) + 0.5µ, which with the base case parameters is 0.1167. Thus, 
for this and indeed all the other simulations, this assumption is innocuous. 

http://math.ucr.edu/%7Eparker/CruisingForParking/
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evolution, and resolution of conflict, where a conflict is a situation in which more than 

one car that is cruising for parking passes the same vacant parking space. 

1. Randomly generate18 the cars that enter between t - 1 and t, identifying each car 

by its entry order, and recording its entry time and location. Recall which parking spaces 

were unoccupied at time t - 1, which parking spaces remain occupied throughout the time 

unit, and the "vacation" time of each of occupied parking spaces that is vacated during 

the period. Advance all cars that were cruising for parking at time t - 1 one space. 

2. For each of the cars that were cruising for parking at time t - 1, determine whether 

the single parking space it passed by during the time unit was occupied when it passed 

by. If the space was occupied, eliminate that car from the set of cars that are candidates 

for entry into a vacant parking space in that time unit. For each of the cars that entered 

the track during the time unit, determine whether it passed by a parking space during that 

time unit, and if it did whether the parking space was occupied at the time the car passed 

by it. Eliminate that car from the set of cars that are candidates for entry into a vacant 

parking if either it did not pass a parking space during the period or it did and the space 

was occupied. At this stage, one has a set of "candidate cars" that have passed this stage 

of the qualification to be matched with a vacant parking space. A "conflict" is a situation 

where more than one car is a candidate for the same vacant parking space.  Assign each 

of the candidate cars that is "unconflicted" to the vacant parking space it passed by during 

 
 
 
 
 

18 In the random simulation runs, the random generation is done separately for each run. 
In the reproducible runs, the random generation is done only for the base case run, with 
the realization of the randomly generated numbers being stored for subsequent runs with 
the same parameter values. 
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the time unit, recording its entry time into curbside parking and calculating its cruising- 

for-parking time and the number of parking spaces it searched. 

3. Resolve each conflict. Among those cars that are candidates for the same vacant 

parking space, assign the parking space to that candidate car that first passed the parking 

space during the time period. Record the car's entry time into curbside parking and 

calculate its cruising-for-parking time and the number of parking spaces it searched. 

4. Randomly generate the parking duration of each of the spaces that was occupied 

during the period, and, adding this to the time at which it was occupied, calculate the time 

at which it will be vacated. Record other relevant statistics for the time unit, such as the 

realized occupancy rate and number of cars cruising for parking at the beginning of the 

time unit, and update the occupancy status of each parking space. 

5. Proceed one time unit at a time until one million cars have been assigned a vacant 

parking space19. 

 

Two types of simulation run were undertaken, which differ in the amount of information 

was collected during the simulation run. "Reproducible runs" record the realizations of 

all the random variables during the run, so that the run can be exactly reproduced. 

Unreproductible or "random: runs do not record these realizations and cannot be 

reproduced. The computation times of random runs are considerably lower since the data 

storage requirements are considerably less. 

 
 

19 One million cars passing through the system corresponds to about 15,000 hours of 
traffic. The Poisson entry rate is one car every 30 time units, which corresponds to 54 
seconds, and 54 million seconds corresponds to 15,000 hours. 

One million cars might seem like overkill, but, as we shall see, it was not. 
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Only two of the simulation exercises that are reported in the paper are random. The first 

undertook 1000 simulations with the base case parameters and different realizations of 

the random variables, each with 100,000 cars finding a vacant parking space, with the 

aim of estimating the variability in output across simulation runs due to different 

stochastic realizations. Results from this set of simulations are shown in Figure 8. The 

second took 100 snapshots of the occupancy status of all the parking spaces, one every 

1000 time units, with the aim of generating a visualization of the temporo-spatial 

evolution of occupied parking spaces. The results are displayed in Figures 9 and 10. 

 
 
For each simulation run, results are recorded only after 10,000 time units (5 hours) have 

elapsed, on the assumption that, after this period of time, the distribution of cruising-for- 

parking times should be little affected by the randomly generated initial condition of the 

track. 

 
A directory of the simulation runs is supplied in Appendix 2. 

 
 
 
4. The Central Base Case Simulation: Different Statistical Perspectives 

The parameters for the base case are given in Table 1. The "central" base case simulation 

is the single, reproducible base case simulation, the results of which are discussed in 

detail in this section. Section 4.1 compares the distribution of cruising-for-parking times 

in the central base case simulation to that obtained under the binomial approximation, as 

well as the moments. Section 4.2 describes various effects, each of which contributes to 

the difference between the two distributions, and measures the importance of each, and 
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then considers pairwise interactions between the effects. Section 4.3 comments on 

disparate aspects of the results. 

 
 
4.1 Comparison of the Simulated Distribution of Cruising-for-Parking Search 

Times to the Distribution under the Binomial Approximation 
 
The parameters for the base case simulation were reported in Table 1. We start in Table 2 

by comparing the moments of the distribution of cruising-for-parking times for the 

central base case simulation to the theoretical distribution based on the binomial 

approximation. All the numbers presented are in normalized time units. The simulated 

results are based on a simulation length of 106 cars, which corresponds to roughly 15,000 

hours, with the results from the first five hours dropped in order to ensure that the 

recorded results are little affected by the randomly generated initial conditions. 

 
 
 Mean Variance Skewness 20 Fisher 

Kurtosis 
Simulated 4.164 33.32 3.589 27.72 

Binomial 
Approximation 

2.500 6.000 2.041 6.167 

 

Table 2: Moments of the Probability Distribution of the Cruising-for-Parking Time for 
the Central Base Case in Normalized Time Units 

 
 
As was noted earlier, the mean from the simulations is 1.666 times as large as the mean 

calculated under the binomial assumption, and the variance, skewness, and Fisher 

kurtosis are all larger too, indicating that the simulated distribution has a fatter tail. 

 
 
 

20 There are different definitions of skewness and kurtosis. The definitions employed 
throughout the paper are those given in fn. 4. 
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We digress briefly to clarify a potential source of confusion. Thus far we have presented 

results in terms of the number of curbside parking spaces searched, including the last, 

successful search. With this definition of the "number of curbside parking spaces 

searched", under the binomial approximation the moments of the distribution of the 

number of curbside parking spaces searched are those given in fn. 4, including the 

familiar result that the mean is 1/(1 - q), where q is the occupancy rate. We derived 

earlier that with this definition, expected cruising-for-parking time is 1/(1 - q) - 0.5. In the 

rest of the paper, however, we define the "number of curbside parking spaces searched" 

as the number of curbside parking spaces searched, excluding the last, successful search, 

which is also the number of occupied spaces searched. We do this so that our plots of the 

number of curbside parking spaces searched start at 0 rather than at 1. Since the number 

of parking spaces searched including the last, successful search is one more than the 

number of parking spaces search excluding the last, successful search, the mean number 

of parking spaces searched including the last, successful search is one more than the 

mean number of parking spaces excluding the last, successful search. Employing the 

alternative definition does not alter the distribution of curbside parking search times21. 

 

We could now compare the cdf for the simulated distribution of the number of curbside 

parking spaces searched to that of the theoretical distribution under the binomial 

approximation. We have chosen not to do so since the probability mass is so 

 
 
 

21 Under the alternative definition of "number of parking spaces searched", the expected 
cruising-for-parking time equals the number of parking spaces searched plus 0.5. 
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concentrated for just a few parking spaces searched. The cdf's show that the simulated 

distribution first-order stochastically dominates the theoretical distribution, consistent 

with the results in Table 2. We found a "ratio plot", which plots a ratio against the 

number of curbside parking spaces searched, to be a more informative way of comparing 

the two distributions. For n curbside parking spaces searched, the numerator in the ratio 

is the realized proportion of cars that encountered n occupied parking spaces before 

finding a vacant parking space, while the denominator is the corresponding expected 

proportion based on the binomial approximation. Figure 4 displays the ratio plot for the 

base case simulation. It shows vividly how much fatter the tail is in the simulated 

distribution than in the theoretical distribution. Consider for example n = 17. Under the 

binomial approximation, the probability that n = 17 is (2/3)17(1/3) = 3.383 X 10-4 

implying that, out of 106 cars, the expected number of cars to encounter 17 occupied 

parking spaces before finding a vacant one is 338.3. The number obtained from the 

simulation is 5049, which is 15 times larger than that obtained under the binomial 

approximation. With n = 25, the number obtained under the binomial approximation is 

13.20 and the number obtained from the simulation is 1515, which is 114 times as large 

as that obtained under the binomial approximation. 

 
 
Whatever the probability distribution of the number of occupied parking spaces searched, 

the probability that a particular entering car immediately encounters a vacant parking 

space equals the contemporaneous vacancy rate. Thus, averaged over cars, the simulated 

probability of n = 0 equals the mean vacancy rate. All of our simulation runs are 

consistent with this observation. 
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Figure 4: Ratio Plot for Occupancy Rate 2/3 

 
 

4.2 Possible Effects Contributing to the Difference in the Distributions of 
Cruising-for-Parking Search Times 

 
 
What is causing the simulated density function for cruising-for-parking time to have a tail 

that is so much fatter than the tail of the density function implied by the binominal 

approximation? Unfortunately, as explained earlier, even though our model specifies the 

stochastic process generating occupancies and vacancies, we have been unable to solve 

analytically for the implied stationary distribution of cruising-for-parking times. We can, 

however, identify several possible effects, each of which tells part of the story. 
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1. The bunching effect 
 
Intuitively, the directed nature of search for a vacant parking space may lead to spatial 

autocorrelation, which we term the pure bunching effect. One measure of this effect is the 

expected number of occupied parking spaces encountered before a vacant space is 

encountered.22 To illustrate how this effect works, compare the number of occupied 

parking spaces searched before finding a vacant parking space under the repeated pattern 

VOOVOOVOO -- with that under VVOOOOVVOOOO --- , both of which have an 

occupancy rate of 2/3. In the former situation, the distribution of the number of occupied 

parking spaces searched before finding a vacant space is 0 with probability 1/3, 1 with 

probability 1/3, and 2 with probability 1/3, for an expected value of 1. In the latter 

situation, the corresponding probabilities are 0 with probability 1/3, 1 with probability 

1/6, 2 with probability 1/6, 3 with probability 1/6, and 4 with probability 1/6, for an 

expected value of 10/6. Another measure of this effect is the expected number of 

occupied spaces in a bunch. In the former example, this number is 2; in the latter 

example, it is 4; and under the binomial approximation, it is 3.23 In the central base case 

simulation, the mean size of a bunch of occupied spaces is 3.887 (and the variance is 

19.24), which indicates that bunches are significantly more clustered in the simulation 

 
 
 

22 Note that this is a measure of bunching from the perspective of a stationary observer, 
which is different from a measure from the perspective of a searching car. To illustrate 
the difference, suppose that bunches remain unchanged and move clockwise at the same 
speed as cars. Then an entering car that finds the first parking space it encounters to be 
occupied will continue to encounter occupied spaces. 
23 Start with an occupied space whose leftmost neighbor is vacant. The probability that 
there is one occupied space in the bunch is the probability that the space after the 
occupied space is vacant, which is 1/3; the probability that there are two occupied spaces 
in the bunch is 2/3(1/3), ---. Thus, the expected value is 1/3 + 2(2/9) + 3(4/27) + 4(8/81) 
--- , which can be shown to equal 3. 
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than under the binomial approximation. We define the ratio of the mean size of a bunch 

in a simulation to the corresponding expected size under the binomial approximation, 

minus one, to be the strength of the bunching effect; here it is 3.887/3.000 - 1 = 0.296. 

The statistic provides a measure of the degree of excess bunching. 
 
 

To get an idea of the importance of the bunching effect in explaining the discrepancy 

between the simulated mean cruising-for-parking time and the expected time under the 

binomial approximation, assume for the sake of argument that the mean number of 

parking spaces searched (including the vacant space) equals the expected number of 

occupied parking spaces in a bunch, which holds under the binomial approximation. Call 

this "assumption A". Under assumption A, the expected cruising-for-parking time in the 

central base case simulation would be 3.887 - 0.5000 = 3.387, and the bunching effect 

would explain a proportion (3.387 - 2.500)/(4.164 - 2.500) = 0.5331 of the difference 

between the mean cruising-for-parking time between the central base case simulation and 

that obtained under the binomial approximation. While the validity of assumption A is 

certainly open to question, this back-of-the-envelope calculation does indicate the 

potential importance of the bunching effect in explaining the discrepancies between the 

simulation results and those obtained under the binomial approximation. 

 
 
Above we have documented the bunching effect for the central base case simulation, and 

taken a first pass at gauging its importance in explaining the discrepancy between the 

simulated mean cruising-for-parking time and that generated under the Poisson 

approximation. But we have not investigated how the bunching effect differs across 
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simulation runs. Nor have we developed theory that explains either how the bunching 

effect occurs or how it affects the discrepancy. 

 
 
2. The Jensen's Inequality effect 

 
Intuitively, if the track has an infinite number of parking spaces around it, by some law of 

large numbers, the occupancy rate should remain at 2/3. With a finite track, however, the 

occupancy rate is stochastic. Suppose, for example, that the occupancy rate is q0 = 1/2 

half the time and q1 = 5/6 the other half. If the stochastic process otherwise satisfies the 

binomial approximation, then the expected number of occupied parking spaces 

encountered before finding a vacant space is 1/2(1/(1 - q0) - 1) + 1/2(1/(1 - q1) - 1) = 3, 

whereas it would be 1/(1 - q) - 1 = 2 with an occupancy rate of 2/3 all the time. This 

result is an application of Jensen's Inequality24 since, under the binomial approximation, 

the function relating the expected number of occupied parking spaces searched to the 

occupancy rate is convex. Intuition suggests that this convexity property should hold for 

the simulations too. Thus, we term this effect the Jensen's Inequality effect. 

 
 
To get an idea of the quantitative importance of the Jensen's Inequality effect, assume for 

the sake of argument that the expected cruising-for-parking time for a car that enters the 

track at a particular time equals the reciprocal on the vacancy rate at that time. Call this 

"assumption B", which adapts the binomial assumption to account for the stochasticity of 

 
 
 

24 In the probabilistic context, Jensen's Inequality states that if X is a random variable and 
f is a convex function, the expected value of f is greater than f evaluated at the expected 
value of X; here X is the occupancy rate, and f is the function relating the expected 
number of occupied parking spaces searched to the occupancy rate. 
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the occupancy rate when the search area is finite. Under assumption B, the expected 

number of parking spaces searched before finding a vacant space (including the vacant 

space) would equal the reciprocal of the harmonic mean of the vacancy rate, and the 

expected cruising-for-parking time would equal this number minus 0.5000. 

 
 

 
Figure 5: Frequency Distribution of the Occupancy Rate: Central Base Case 

 
 
Figure 5 displays the frequency distribution of the occupancy rate for the central base 

case simulation. The corresponding harmonic mean of the vacancy rate is 0.2178. Define 

the ratio of the expected vacancy rate to the harmonic mean of the simulated vacancy 

rate, minus one, to be the strength of the Jensen's Inequality effect. Here it is 

0.3333/0.2178 - 1.0 = 0.5305. 
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Under assumption B, the expected number of parking spaces searched before finding a 

vacant parking space (including the vacant parking space) is 1/0.2179 = 4.589, and the 

expected cruising-for-parking time is 4.089. Thus, under assumption B, the Jensen's 

Inequality effect would explain a proportion (4.089 - 2.500)/(4.164 - 2.500) = 0.9549 of 

the difference between the simulated mean cruising-for-parking time and that obtained 

via the binomial approximation. 

 
 
Applying assumption B likely results in overestimating the importance of the Jensen's 

Inequality since it assumes that each car faces an occupancy rate over its entire search 

equal to the occupancy rate at the time it entered the track. If, to the contrary, 

fluctuations in the occupancy rate are very high frequency, then each car would face an 

occupancy rate over its entire search equal to the expected occupancy rate, in which case 

the Jensen's Inequality effect would disappear. Thus, the importance of the Jensen's 

Inequality effect depends negatively on the frequency of fluctuations in the simulated 

vacancy rate. 

 
 
Figure 6 gives some insight into the importance of short relative to long waves in the 

realized occupancy rate. Panel A plots a moving average of the occupancy rate for the 

central base case simulation run, where the average is over the 100 time units (3 

minutes); panels B and C do the same but with an average over 1000 time units (30 

minutes) and 10,000 time units (5 hours). Together the panels give an idea of the 

periodicity of fluctuations in the occupancy rate. Recall that the mean cruising-for- 

parking time for the central base case simulation run is 4.164 time units (7.495 seconds). 
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Over such a small time period, during which, on average, only 0.1388 cars enter the 

track, with, on average, the same number leaving the track, the occupancy rate will only 

change marginally. Since the average variation in the occupancy rate over a trip is small, 

in the base case simulation it appears that the Jensen's Inequality effect explains some 

95% of the discrepancy between the mean cruising-for-parking time in the central base 

case simulation and the expected cruising-for-parking time obtained under the binomial 

approximation. 

 
 
Figure 6: Different Moving Averages of the Occupancy Rate 
Notes: Panel A: moving average over 100 time units; Panel B: moving average over 1000 
time units; Panel C: moving average over 10,000 time units, each sampled every100 time 
units 



38 
 

 
 
 

 



39 
 

 

3. The competition effect 
 
A searching car's probability of encountering a vacant parking space is negatively related 

to the number of cars circling the track. Consider a cruising car that is one time unit 

upstream from a vacant space. The larger the number of cars on the track, the higher the 

probability that the space will be taken by the time the car arrives at the space. We term 

this the competition effect. The binomial approximation for the expected cruising-for- 

parking time ignores this effect. 

 
 
We now explore the distribution of the number of cars circling the track under the 

approximating assumption that the underlying stochastic process determining the number 

of cars cruising the track is a birth-and-death process with birth rate µ and death rate n(1 - 

q), where n is now the number of cars cruising for parking. Cars enter the track at 

Poisson rate µ. Under the binomial approximation, each of the n cars cruising for parking 

finds a vacant parking space at the Poisson rate 1 - q, and since, also under the binomial 

approximation, these Poisson rates are independent, the aggregate rate at which cars 

cruising for parking "die" (by one of the cars finding a vacant space) is n(1 - q). Let pn(t) 

be the probability that the number of cars cruising for parking at time t is n. Then we 

have that 

pn(t + dt) = pn(t)(1 - n(1 - q)dt - µdt)  + pn-1(t)µdt + pn+1(t)(n + 1)(1 - q)dt for n = 1, ---, ∞ 
 

p0(t + dt) = p0(t)(1 - µdt) + p1(t)(1 - q)dt (1)  

The interpretation of the second equation is as follows. During the increment of time dt, it 

is infinitely more likely that one state transition will occur than that more than one state 

transition will occur. The probability that the number of cars cruising for parking is zero 
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n=0 n 0 

 

at time t + dt is therefore (the probability that zero cars were cruising for parking at time t 

multiplied by the probability that there was no entry to the track during the increment of 

time, 1 - µdt) plus (the probability that one car was cruising for parking at time t 

multiplied by the probability that the car found a vacant parking space, (1- q)dt). The 

interpretation of the first equation is similar. Letting pn be the steady-state probability that 

the number of cars cruising for parking is n, (1) implies the recursion 

pn = (µ/[n(1 - q)])pn-1    for n = 1, ---, ∞. (2) 

From this, we obtain the infinite series 

∑ ∞p  = 1 = p (1 + z + z2/2! ---- ) where z ≡ µ/(1 - q). (3) 
 
The value of the infinite series is ez. Thus, p0 = e-z, p1 = ze-z, p2 = z2e-z/2!, etc. The mean 

number of cars cruising for parking is therefore 

m = 0e-z  + 1(ze-z) + 2(z2e-z/2!) + 3(z3e-z/3!) --- = z. (4) 

In the base case, z = µ/(1 - q) = (1/30)/(1/3) = 0.1, which implies that m = 0.10, p0 = 

0.9048, p1 = 0.9048E-1, p2 = 0.4524E-2, p3 = 0.1508E-3, p4 = 0.377E-5, ---. The variance 
 

is 
 

var = z2e-z + (1- z)2(ze-z) + (2 - z)2(z2e-z/2!) ---, 
 

which after some tedious algebra can be shown to reduce to z, which equals 0.1 in the 

base case. 

 
 
The above approximation ignores that, on average, a car travels 0.5000 distance units 

before encountering a parking space, taking 0.5000 time units. With a Poisson entry rate 

of 1/30 cars per time unit, the expected number of cars on the track that have not yet 

reached the first parking space is 0.5000/30 = 0.01667. Taking this into account, the 
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adjusted binomial approximation of the expected number of cars cruising for parking is 

0.1167. 

 
 

 
 
 
Figure 7: Ratio Plot for the Number of Cars Cruising for Parking for Occupancy Rate 2/3 

 
 
Figure 7 gives the ratio plot of the number of cars cruising for parking in the central base 

case simulation. The corresponding mean number of cars cruising for parking is 0.1221. 

Thus, at least for the central base case simulation, the birth-and-death/Poisson 

approximation for the expected number of cars cruising for parking is quite accurate. 

Even though the probabilities of 2, 3, --- cars cruising for parking is considerably higher 

in the simulation than under the binomial approximation, there is so little weight in the 

right tail that the mean is not much higher. As we shall note later, however, this is not the 
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case with for the simulation run with an expected occupancy rate of 5/6, and may not be 

the case for other simulation runs with an expected occupancy rate of 2/3. 

 
 
The above calculations may be employed to estimate the number of other cars on the 

track when a car is cruising for parking. Under the Poisson/birth-and-death 

approximation, this equals the expected number of cars cruising for parking conditional 

on at least one car cruising for parking, minus one, which can be shown to equal 0.05083. 

Under the binomial approximation, from the perspective of a car cruising for parking, the 

probability that the next parking space will be vacant is 1/3, so that the probability that 

the next parking space will be vacant and that no other cruising car reaches it before the 

car in question is (1/3)(1 - 0.05083/100) = 0.3332. Under these assumptions, therefore, 

with an occupancy rate of 2/3, the competition effect is quantitatively unimportant. 

Applying the same logic but with the observed distribution of the number of cars cruising 

for parking (recorded in Table 3) in the central base simulation gives an expected number 

of other cars on the track when a car is cruising for parking of 0.07474, for which the 

competition effect is also quantitatively unimportant. Again, as we shall note later, the 

competition effect does become important for high occupancy rates, where the mean 

number of cars cruising for parking is considerably higher, and may be significant even 

for some simulation runs with an expected occupancy rate of 2/3. 

 
 
4. The cruising-the-block effect 

 
To illustrate the next effect, suppose that there are only 10 parking spaces round the 

track, that a car has circled the track without finding a vacant space, and that the car is 
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and remains the only car cruising for parking. Under our assumed distribution of parking 

stay times, conditional on the car having circuited the track without having found a 

vacant space, the probability that the first parking space it encountered upon entering the 

track is still occupied on its second circuit is one minus the probability that it was vacated 

during the car's first circuit (that probability is ∫0
10 λe-λt dt = 0.004988, where λ = 1/2000 

is the Poisson rate at which a parking space is vacated), which equals e-1/200 ≈ 0.9950. 

The same argument applies to the second and so on occupied spaces that the car 

encountered upon entering the track, and also to its subsequent circuits of the track. The 

obvious term for this effect is the circling-the-block effect. With the negative exponential 

distribution of parking durations, the rates at which occupied parking spaces are vacated 

are statistically independent. The probability that a car makes a second circuit of the 

track without encountering a vacant parking space, contingent on its not having found a 

vacant space on the first circuit and its continuing to be the only car cruising for parking, 

is then approximately (0.995)10 = 0.9512. The probability that it makes an n+1st circuit of 

the track without encountering a vacant parking space on the nth circuit is the same. 

 

Since the probability that a car makes a full circuit of the track is higher, the higher is the 

expected occupancy rate and the smaller the number of parking spaces, the circling-the- 

block effect is more important the higher is the expected occupancy rate and the smaller 

the number of parking spaces. 

 
 
In the central base case simulation, only 27 cars out of the one million circled the block, 

and only 1 of the 27 circled twice. Thus, in this simulation the cruising-the-block effect is 
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of negligible importance. As we shall see, however, this may not be the case for other 

simulations with the same parameter values. In the simulation with the same parameter 

values as in the base case, but with an expected occupancy rate of 5/6 rather than 2/3, 

24,345 cars circled the block at least once, and 1 went around 41 times. In the 

corresponding simulation run with an expected occupancy rate of 11/12, 177,557 cars 

circled the block at least once, and 2 went around over 200 times. 

 
 
5. Interaction effects 

 
Thus far we have identified four different effects, each of which goes part of the way 

towards explaining why the simulated mean cruising-for-parking time significantly 

exceeds that obtained under the binomial approximation: the bunching effect, the Jensen's 

Inequality effect, the competition effect, and the cruising-the-block effect.  We 

considered each of these effects in isolation. But there may also be important interaction 

effects. 

 
 
These interaction effects may cause the combination of pairs of effects on mean cruising- 

for-parking time to be subadditive or superadditive. There are six pairs of effects. Here 

we shall consider only three. 

 
 
The most obvious of the pairwise interaction effects is that between the competition 

effect and the cruising-the-block effect. We argued above that, if there is a single car 

cruising for parking, the probability that it fails to find a vacant parking space on its 

second circuit of the track conditional on its having failed to find a vacant parking space 
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on its first circuit, is (0.995)10 = 0.9512, which is the probability that none of the parking 

spaces it passed by on its first circuit has been vacated by the time of its second circuit. 

Now modify the problem by introducing a second car that enters the system at the time 

the first car has completed its first circuit. The introduction of the second car reduces the 

probability that the first car finds a vacant parking space on its second circuit, conditional 

on having failed to find a vacant parking space on its first circuit. It will fail to find a 

vacant parking space on the second circuit not only if none of the parking spaces it passed 

by on its first circuit has been vacated by the time of its second circuit, but also if one of 

the parking spaces it passes by on its first circuit has been vacated by the time of its 

second circuit but has been taken by the second car. We term the interaction between 

these two effects the multiplication effect because, if the number of cars cruising for 

parking were to persist and if parking were to remain saturated, expected cruising-for- 

parking time would equal the expected cruising for-parking-time with one car cruising for 

parking multiplied by the number of cars cruising for parking. 

 
 
The next pairwise interaction effect we consider is that between the Jensen's Inequality 

effect and the competition effect. Both intuition and the earlier discussion suggest that the 

number of cars cruising for parking and the realized occupancy rate are positively 

correlated. This is demonstrated in Table 3, which for the central base case run displays 

the realized probability distribution of the number of cars cruising for parking and the 

mean occupancy rate conditional on the number of cars cruising for parking. The positive 

correlation between the number of cars cruising for parking and the occupancy rate 

conditional on the number of cars cruising for parking fattens the right tail of the 



46 
 

 

distribution of cruising-for-parking times. For want of a better term, we term this the 

correlation effect. A statistical accident in which fewer than the expected number of cars 

vacate their parking spaces has a direct positive effect on the realized occupancy rate, 

which in turn increases the expected number of cars cruising for parking. A statistical 

accident in which more than the expected number of cars enters the track has a direct 

effect on both the realized occupancy rate and the number of cars cruising for parking. 

Thus, the Jensen's Inequality effect and the competition effect on the expected cruising- 

for-parking time are superadditive. 

 
Number of 
Cars 
Searching, k 

0 1 2 3 4 5 

Probability 
of k Cars 

0.8876 0.1033 0.008248 0.0006532 0.00007457 0.0000087 

Mean 
Occupancy 

0.6622 0.6979 0.7401 0.7923 0.8733 0.8964 

 

Table 3: Probability of k Cars Searching and Mean Occupancy Rate with k Cars 
Searching with Occupancy Rate 2/3 

 
 

The final interaction effect we consider is that between the two effects that appear to be 

of dominant importance in the central base case, for which the expected occupancy rate is 

2/3, the bunching effect and the Jensen's Inequality effect. Earlier we defined the strength 

of the bunching effect to be the ratio of the simulated mean number of occupied parking 

spaces in a bunch to the corresponding expected number under the binomial 

approximation, and the strength of the Jensen's Inequality effect to be the ratio of the 

arithmetic mean of the vacancy rate to the harmonic mean. Under the binomial 

approximation, the expected size of bunches equals the reciprocal of the occupancy rate. 
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If this relationship were to hold true as the realized occupancy rate varies, then the 

strength of the bunching effect would be the same as the strength of the Jensen's 

Inequality effect. The intuition we earlier presented for the pure bunching effect was 

instead based on positive spatial autocorrelation of occupied spaces deriving from the 

directed nature of parking search, independent of the variability in the realized occupancy 

rate. Unfortunately, the excess bunching observed in the simulation confounds excess 

bunching due to the pure bunching effect and excess bunching deriving from variability 

in the realized occupancy rate. Isolating the two sources of excess bunching would 

require simulating cruising for parking on a very large circle, for which excess bunching 

deriving from variability in the realized occupancy rate would be absent. 

 
 
In the base simulation, the strength of the Jensen's Inequality effect (0.530) is greater than 

that the strength of the bunching effect (0.296). One possible explanation is that, contrary 

to our intuition, the pure bunching effect is negative. An alternative explanation that we 

find more plausible is that the mean size of bunches demonstrates greater persistence than 

the realized occupancy rate. 

 
 
4.3 Comments 

 
1. Differences in realized simulation base case runs 

 
When we started our simulations, we fixed the simulation time at 106 time units. But 

then, unexpectedly, we found that the mean cruising-for-parking time was substantially 

different from run to run, so switched to simulations runs in which 106 cars were 

simulated, which as noted earlier corresponds in unnormalized time units to about 15,000 
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hours. To investigate how different the mean cruising-for-parking time is across runs, we 

reran the base case simulation for 105 cars (not the 106 cars that were used in the central 

base case simulation) 1000 times. The top panel of Figure 8 displays the probability 

density function of the means across runs of the number of parking spaces searched, and 

the lower panel the corresponding distribution of the variances.  The only explanation 

that we can think of for why there is so much variability from run to run, despite the large 

number of cars on each run, is "disasters" -- very low probability but extreme events. 

Even for one hundred thousand cars, there may not even be a minor disaster, but a major 

disaster on a run may substantially increase both the mean and the variance of cruising- 

for-parking time. A major disaster is "a perfect storm" that comes about purely by 

chance, when stochastic realizations are such that not only does parking become almost 

completely blocked but also it takes an exceptionally long period for parking to unblock, 

either because the realized entry rate remains abnormally high, or because the rate at 

which parking spaces are vacated remains abnormally low, or because the number of cars 

cruising for parking remains high. The few major disasters that occurred in this set of 

simulation runs can be identified as the right-tail outliers in the Figures. Thus, even 

though the competition effect and the cruising-the-block effect were of negligible 
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Figure 8, Panel A: Distribution of Number of Parking Spaces Searched for 1000 
Simulations with Occupancy Rate = 2/3 

Panel B: Distribution of the Variance of the Number of Parking Spaces 
Notes: Each simulation is for 105 time units. 

Mean of means: 3.633. 95% confidence interval of means25 (3.527, 3.745) 
Mean of variances: 26.79. 95% confidence interval of variances (22.32, 36.53). 

importance in the central base case simulation26, the same may not be the case for other 

simulations with the same exogenous parameter values. 

 
 
 
2. Another perspective on the bunching effect 

 
We started with the broad intuition that, if the parking on an entire block becomes fully 

occupied, whether by statistical accident or by some special event, it will have ripple 

effects in space-time. Cars that were intending to park on that block will move to 

neighboring blocks in their search for curbside parking. This got us to thinking about 

how bunches of occupied parking spaces evolve over space-time. We started with a 

snapshot of the track, such as that shown in Figure 9 below. 

 
 
 
 
 
 

 
 
 
Figure 9: Snapshot of Street with Mean Occupancy Rate 2/3 

 
25 Computed so that 2.5% of the probability mass lies to the left of the interval and 2.5% 
of the mass to the right of the interval. 
26 The mean number of (occupied) parking spaces searched in the central base case 
simulation, 3.664, is very slightly above the mean of the means in top panel of Figure 8, 
3.633. Thus, by happy accident, the central base case simulation is an average run. 
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Notes: White spaces are occupied, black spaces are vacant. There are 70 occupied spaces 
and 30 vacant spaces. The vacant spaces are 2, 3, 4, 6, 7, 14, 17, 21, 23, 24, 25, 26, 27, 
28, 29, 31, 33, 35, 37, 38, 48, 50, 54, 60, 63, 70, 71, 73, 78, 87. 

 
 

We then aimed to examine how bunches evolve -- expanding, contracting, forming, and 

dissolving. We had little success but did obtain one analytical results. Bunches tend to 

move clockwise over time since there is a higher than average probability that the first 

vacant space after a bunch of occupied spaces becomes occupied, and a lower than 

average probability that the first vacant space before a bunch of occupied spaces becomes 

occupied. Under the binomial approximation, the unconditional arrival rate of a car at a 

particular parking space is Poisson at the arrival rate at the track, 1/30, divided by the 

number of parking spaces around the race track, which is 100, times the expected number 

of parking spaces searched before finding a vacant space (including the vacant space), 

which is 3.0, for a total of 1/1000. But conditional on an initial situation where at time t 

there is a bunch of six occupied spaces followed by a vacant space, the rate at which cars 

arrive at that vacant parking space is different. The probability that a car that entered the 

track in the previous time unit passes that vacant space in time interval [t, t + dt] is 

dt/3000; the probability that a car that entered the racetrack during the time unit before 

that passes that vacant spot in the same time interval is dt/3000 times that the probability 

that the left-side neighbor was occupied when the car passed it by, conditional on its 

being occupied at time t, which is approximately 1999/2000; ---. Thus, the expected rate 

at which cars arrive at the vacant parking space is somewhat less than 7/3000. This is the 

rate at which the front edge of the bunch of occupied spaces moves forward. By an 
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Figure 10, Top Panel: Snapshots of the Circle Every 1000 Time Steps with Occupancy 
Rate = 2/3 
Notes: White is occupied, black is vacant 
Figure 10, Bottom Panel: Snapshots of the Circle Every 1000 Time Steps with 

Occupancy Rate = 5/6 
Notes: White is occupied, black is vacant 

 
analogous argument, the probability that the first vacant space before the bunch is 

occupied in the same time interval is less than 1/1000. 

 
Unfortunately, we were unsuccessful in uncovering a body of literature on the temporo- 

spatial evolution of bunches. The best we could do was to take snapshots of the racetrack 

every so many time steps. Figure 10 displays such a snapshot, taken every 1000 time 

units (every half hour) with occupancy rate 2/3 (top panel) and 5/6 (bottom panel). 

Occupied spaces are white, and vacant spaces black. Bunching shows up as positive 

horizontal correlation between white spaces (or black spaces); standard autocorrelation as 

positive vertical correlation; and the type of temporo-spatial autocorrelation discussed in 

the previous paragraph as positive correlation in a northeast direction. To the naked eye, 

bunching and standard autocorrelation are evident but not positive correlation in the 

northeast direction.27 

 

3. Finiteness of the parking circle 
 
Some of the effects that we have identified as contributing to the discrepancy between the 

simulated distribution of cruising-for-parking times and the distribution obtained under 

the binomial approximation arise from the finiteness of the parking circle. In particular, 

 
 

27 While we have not investigated this, at high occupancy rates intuitively bunching 
should also occur among cars cruising for parking. 
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by some law of large numbers, on an infinite circle the mean occupancy rate would be 

constant over time, so that the Jensen's Inequality effect would disappear. As well, the 

circling-the-block effect would disappear. 

 
 
On one hand, if we had known at the time we designed the simulations how much the 

size of the parking circle influences the outcomes, we would have undertaken some 

simulation runs with "large" parking circles, since this would have allowed us to separate 

out the effects the derive from the finiteness of the parking circle from other effects. On 

the other hand, small and medium-sized parking circles are more realistic since actual 

parkers search in the neighborhood of their destinations, which contains only a small or 

medium-sized number of parking spaces. 

 
 
We could have undertaken considerably more statistical analysis of the central base case 

run, and we could have proceeded more formally. Nevertheless, we judge that the 

statistical evidence we have accumulated makes a compelling case that the binomial 

approximation is a poor one, and that the expected cruising-for-parking time calculated 

using it significantly underestimates the true expected cruising-for-parking time. The 

next section investigates the effects of parameter changes one at a time. Among other 

things, it will: i) show that the binomial approximation becomes increasingly poor as the 

occupancy rate increases; ii) provide strong evidence of the circling-the-block effect; and 

iii) present some evidence that the behavior of the parking system is quite sensitive to the 

turnover rate, holding constant the expected occupancy rate, but is insensitive to the 

distribution of stay times, holding constant the average stay time. 
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5. Comparative Stochastic Steady States 
 
We start off by examining how the stochastic steady state changes as the Poisson entry 

rate changes, ceteris paribus. A change in the Poisson entry rate results in a proportional 

increase in the expected occupancy rate. Table 4 shows the moments of the distribution 

of cruising-for-parking times when the vacancy rate is successively halved. In the central 

base case, the occupancy rate is 2/3 and the vacancy rate is 1/3; a halving of the vacancy 

rate to 1/6 results in an increase in the occupancy from 2/3 to 5/6; and a further halving of 

the vacancy rate to 1/12 results in an increase in the occupancy rate from 5/6 to 11/12. 

For each occupancy rate, the results are for only a single simulation run of a million cars, 

and, as we have seen, the results for each case can be quite different across simulation 

runs. The number in each cell is computed from the corresponding simulation run. The 

number in brackets in a cell gives the corresponding number according to the binomial 

approximation. 

 
 

Occupancy Rate Mean Variance Skewness Fisher 
Kurtosis 

2/3 (base case) 4.164 
(2.500) 

33.32 
(6.000) 

3.589 
(2.041) 

27.71 
(6.167) 

5/6 16.70 
(5.500) 

3583 
(30.00) 

15.69 
(2.640) 

425.3 
(6.033) 

11/12 100.6 
(11.50) 

115800 
(132.0) 

12.36 
(2.760) 

294.5 
(6.008) 

 

Table 4: Moments of the Distribution of Cruising-for-parking Times in Normalized Time 
Units 

Notes: For each case, the principal numbers are from a single simulation with 106 cars; 
the numbers in parenthesis are those generated by the binomial approximation. 
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Table 4 demonstrates that the ratio of the mean cruising-for-parking time for a simulation 

to the corresponding expected value obtained from the binomial approximation becomes 

increasingly large as the expected occupancy rate increases. In other words, the binomial 

approximation underestimates the mean cruising-for-parking time by an increasingly 

large proportion, the higher is the expected occupancy rate. 

 
 
We were curious concerning the accuracy of the binomial approximation when the 

expected occupancy rate is low. Figure 11 displays our now-standard ratio plot when the 

occupancy rate is 0.1. The mean cruising-for-parking time is 0.6174. The expected 

cruising-for-parking time according to the binomial approximation is 1/0.9 - 0.5 = 

0.6111. Even though the binomial approximation provides an accurate approximate of the 

actual mean cruising-for-parking time, it still significantly underestimates the fatness of 

the right tail of the distribution. 
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Figure 11: Ratio Plot with a Mean Occupancy Rate = 0.1 

 
 
Figure 12 below presents two pairs of panels. The lower panel on the left shows a 

smoothed (moving average over 100 time steps or 3 minutes) time series for the number 

of cars on the track and the upper panel the corresponding time series for the occupancy 

rate, both for the case where the expected occupancy rate is 2/3, over a period of 10,000 

time steps (5 hours). The corresponding panels on the right are for the case where the 

expected occupancy rate is 5/6. The results confirm the positive correlation between the 

number of cars searching and the occupancy rate, show the greater volatility of the 

number of cars searching than of the occupancy rate, and display the sensitivity of the 

(smoothed) number of cars searching to the occupancy rate. In the central base case 

simulation, the mean number of cars cruising for the parking over the entire simulation 
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run is 0.1221, which is close to the expected number under the binomial approximation. 

When the expected occupancy rate rises to 5/6, the mean number of cars cruising for 

parking over the entire simulation rises sharply to 0.6751, considerably above the 

expected number under the binomial approximation, which is 0.2208. Also, there are 

 

 
 
Figure 12: Smoothed Time Series for Number of Cars on the Track against the 

Occupancy Rate 
Notes: The lower panel on the left shows the smoothed time series for the number of cars 
on the track, and the upper panel the left shows the time series for the occupancy rate, 
both with the occupancy rate = 2/3. The panels on the right show the same with the 
occupancy rate = 5/6. 

 
are rare events in which the number of cars simultaneously on the track exceeds twenty, 

and at one point in time the number exceeds 45. The obvious conjecture is that these rare 

events occur when parking around the track becomes almost completely occupied, so that 
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the cars cruising round the track accumulate, with a significant number of them making 

more than one circuit of the track. The circling-the-block effect is magnified by the 

accumulation of cars searching for parking. This conjecture is consistent with the ratio 

plot of the distribution of number of spaces searched for the full simulation run with an 

occupancy rate of 5/6, which is not shown, in which the maximum number of spaces 

searched is 4120. 

 
 
Table 5 gives the moments for three cases that differ in the number of parking spaces 

around the track, with the entry rate adjusted to maintain the expected occupancy rate. 

The first row repeats the results for the central base case simulation in which the number 

of parking spaces is 100, the second row gives the results when the number of parking 

spaces equal 1000, and the third row the results when the number equals 10. 

 
 

Parameters Mean Variance Skewness Fisher 
Kurtosis 

Central Base 
Case 
P = 100 

4.164 33.32 3.589 27.71 

Base Case except 
P = 1000 and 
Arrival Rate = 
1/3 

3.622 23.98 3.612 22.90 

Base Case except 
P = 10 and 
Arrival Rate = 
1/300 

108.6 190600 9.063 148.4 

 

Table 5: Moments of the Distribution of Cruising-for-parking Times in Normalized Time 
Units with Occupancy Rate 2/3 
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Increasing the number of parking spaces around the track by a factor of 10 relative to the 

base case, holding their spacing the same, has only a modest effect on the moments. 

However, decreasing the number of parking spaces around the racetrack by a factor of 10 

strongly increases both the mean and variance of cruising-for-parking times.  The 

obvious conjecture is that the circling-the-block effect is important with P = 10 but not 

with P = 100 (as we have shown) or with P = 1000. The ratio plots for these cases, which 

are shown in Figure 13, confirm this conjecture. For P = 10, the circling-the-block effect 

would result in a sharp drop in the ratio between the last space before the block is circled, 

which is space 10, and the first space after the block is circled, which is space 11, and 

that is what is observed. 

 
 

 
Figure 13: Ratio Plots: Number of Parking Spaces = 10, 100, and 1000 and Expected 

Occupancy Rate = 2/3 
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Let us consider the parking system when, after a long series of statistical accidents, it 

finds itself in a situation where all 10 parking spaces are occupied and 5 cars are cruising 

for parking. Each of the 10 parking spaces is vacated at the rate 1/2000, for a Poisson 

death rate of occupied parking spaces of 1/200. The Poisson entry rate is 1/300.  Thus, 

the parking logjam will eventually break up, but it may take a long time. From the 

perspective of a driver, the Poisson rate at which she will be the first to pass by a recently 

vacated parking space is 1/1000. If the situation were to persist, the expected cruising- 

for-parking time for the driver would be 1000 (1/2 hour). But the situation will likely not 

persist. In the next increment of time, dt, the probability is dt/200 that the system will 

make a transition from 5 cars circling the block to 4, and dt/300 that it will make a 

transition from 5 cars circling the block to 6. We refer to parking as being saturated when 

a vacated parking space is taken almost immediately by one of the cars that is cruising the 

block. In this saturated state, since each of the cars cruising round the circle has the same 

probability of being the first to encounter the single parking space that has just been 

vacated, the queue discipline is random access, so that the parking system behaves like an 

M/M/1/∞/RSS queuing system.  The common probability of encountering a parking 

space in an increment of time dt is (Pµ/n)dt, where Pµdt is the probability that some 

space is vacated so that Pµ/n is the probability that a recently-vacated space is taken by a 

particular car among the n that are cruising for parking28. 

 
28 The reader might be inclined to dismiss the "small-P" case as unrealistic. In most real- 
world situations, P is large, but also parking spaces are differentiated according to 
distance to the parker's destination, and many parkers are averse to walking long 
distances from their parking space to their destination. Consequently, many parkers do 
follow a circling-the-block strategy (often supplemented with a decision to garage park 
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Table 6 compares the moments of the cruising-for-parking time distribution for three 

situations. The first row displays the results for the central base case. The second row 

displays the results for a case that is identical to the base case except that the entry rate is 

doubled and the mean parking duration halved (while maintaining the negative 

exponential distribution of stay times), resulting in no change in the expected occupancy 

rate but a doubling of the turnover rate. The mean cruising-for-parking time is about 

15% lower with the higher turnover rate, which is consistent with the corresponding ratio 

plot displayed in Figure 14, Panel A. Our tentative explanation is that an increase in the 

turnover rate reduces the persistence of the effects of extreme statistical accidents. 

 
 

Parameters Mean Variance Skewness Fisher 
Kurtosis 

Base Case 4.164 33.32 3.589 27.71 

Base Case but 
Doubling the 
Turnover Rate 

3.611 24.04 3.823 31.57 

Base Case but 
Constant Stay 
Time 

4.159 33.34 3.782 36.46 

 

Table 6: Moments of the Distribution of Cruising-for-parking Times in Normalized Time 
Units 

Notes: For each case, the numbers are from a single simulation with 106 cars. 
 
 
 
 
 
 
 
after a certain number of unsuccessful circles of the block), even though they should 
recognize that the probability of finding a parking space on the second circuit of the 
block is typically much smaller than on the first circuit. 



63 
 

 
 
 
 

 



64 
 

 

Figure 14: Ratio Plots 
Notes: Panel A: Base case compared with base case but double the turnover rate. 

Panel B: Base case compared with base case but constant parking duration. 
 
 
The third row displays the results for the case that is identical to the base case except that 

the parking duration is constant at one hour rather than being negative exponentially 

distributed with a mean of one hour (in terms of the queuing theoretic notation introduced 

earlier, B = D (deterministic) rather than B = M (Markovian)). The mean of the cruising- 

for-parking time with a constant parking duration is not significantly different from that 

with a stay time with the same mean that is negatively exponentially distributed, which is 

visually evident in the corresponding ratio plot in Figure 14, Panel B. Our tentative 

explanation is as follows: On one hand, with a constant stay parking duration, parking is 

less likely to become saturated because the source of stochasticity deriving from variation 

in parking durations is absent; on the other hand, if parking does become saturated, it is 

more likely to persist. 

 
 
At the risk of oversimplification, it appears that the parking system we have examined 

has four phases. In the first phase, the expected parking occupancy rate is modest and the 

system behaves in much the way predicted by the binomial approximation. The binomial 

approximation still severely underestimates the fatness of the right tail of the distribution 

of cruising-for-parking times but there is little probability weight there. In the second 

phase, the expected occupancy rate rises to the point that, via Jensen's Inequality, 

stochastic fluctuations in arrivals and exits generate stochastic fluctuations in the realized 

vacancy rate that raise the expected cruising-for-parking time substantially above that 

predicted according to the binomial approximation. Bunching is a related phenomenon, 
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reflecting localized variations in the realized vacancy rate. In this phase, the circling-the- 

block effect and the competition effect are unimportant. In the fourth phase, by statistical 

accident, parking becomes saturated, with an accumulation of cars circling the track 

hoping to be the first to pass by a parking space that has just been vacated. In this fourth 

phase, the circling-the-block effect and the competition effect dominate the behavior of 

the parking system, which is relatively easy to describe. The third phase, which lies 

between the second and the fourth phases, is the most complicated. Even though parking 

is not saturated, there is still a sufficient accumulation of cars cruising for parking that the 

circling-the-block becomes significant.  If stochastic realizations are favorable, the 

system moves out of this phase into phase two; if they are unfavorable, the system moves 

into phase four. 

 
 
6. Concluding Comments 

 
This paper reported on a voyage of discovery into cruising for parking. It examined 

cruising for parking in about the simplest context possible -- cruising for parking at a 

constant speed around a circle with evenly spaced parking spaces in a stochastic steady 

state, with a temporally and spatially invariant Poisson entry rate and negative 

exponentially distributed parking stay times. Even such a simple model appears to be 

analytically intractable. To investigate its properties, we employed stochastic simulation 

modeling without resort to any ad hoc assumptions. This is in contrast to most previous 

work on cruising for parking which has employed what we termed the "binomial 

approximation", that the probability that each parking space is vacant equals the mean 

vacancy rate, independent of history and the current state of parking around the track. 
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The exploration generated considerable data. Even though we analyzed them with only 

crude statistical tools, our results make a compelling case that, except in low occupancy 

rate situations where cruising for parking is not a problem, the binomial approximation 

causes significant, and in high occupancy situations, severe, underestimation of expected 

cruising-for-parking times. The exploration also uncovered many results that to us at 

least were unexpected, and raised more questions than it answered. 

 
 
There are a number of obvious directions for future research. We proceeded on the 

principle that it is important to understand the basics before adding complications in the 

direction of realism. Along these lines, an obvious direction is to apply more 

sophisticated statistical tools to analyze the data generated by both the simulation runs we 

undertook (which are accessible via the hyperlink 

math.ucr.edu/~parker/CruisingForParking/) and similar runs. For queuing theorists, an 

obvious direction is to apply the full arsenal of queuing theory to our model, or to 

simplified variants of it, attempting to obtain analytical results regarding the properties of 

our model and better analytical approximations for the distribution of cruising-for- 

parking time. 

 
 
The next bold step forward will be to generalize the paper's model to an isotropic, two- 

dimensional space. This generalization is challenging because it qualitatively changes 

the nature of the problem. In the one-dimensional problem we analyzed, a driver is 

simply a cellular automaton that keeps on driving round the circle until finding a vacant 
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parking space. In the two-dimensional problem, in contrast, the driver can adopt a wide 

variety of strategies in searching for a curbside parking space. Attempting to solve for a 

Bayesian Nash equilibrium is unrealistically ambitious. A simple approach is to compare 

the equilibria when all drivers adopt the same strategy. A more sophisticated approach is 

to apply evolutionary game theory, looking for an evolutionarily stable mix of strategies. 

Following Arnott (2014), taking into account that most drivers have a specific destination 

and a desired arrival time, and will decide when to depart and when to start cruising for 

parking trading off in-transit travel time, cruising-for-parking time, walking time, 

schedule delay, and parking costs, would improve the model's realism29. 

 

Because of the difficulty of treating non-stationary dynamics, the analysis of most 

queuing models focuses on the steady state. But it is important to analyze cruising for 

parking in the context of rush-hour congestion dynamics since the expected occupancy 

rate varies systematically over the rush hour (indeed Geroliminis, 2015, does this under 

the binomial approximation). Practically, the best that can be hoped for is simulation 

models that endow cellular automata with some degree of sophistication rather than full 

rationality. 

 
 
The paper's model assumes that drivers just keep on cruising for curbside parking until 

they find a vacant space. But realistically cruisers for parking develop stopping rules for 

 
 
 

29 Arnott (2014) solves for the optimal target (mean) curbside occupancy rate, conditional 
on the form of the distribution of cruising-for-parking times (which depends on the mean 
occupancy rate) It would be interesting to use the distributions of cruising-for-parking 
obtained in this paper's simulations in that paper's model. 
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a combination of reasons: continuing cruising for parking becomes increasingly 

frustrating; continuing cruising for parking will result in being increasingly late for an 

engagement; and continuing cruising for parking results in an accumulation of 

information that a change of action is in order. What those stopping rules are depends on 

the alternatives -- balking (just returning home), changing the sequencing of the day's 

activities, parking in a garage30, and changing the search location. If stopping rules are 

not considered, cruising-for-parking models will consistently overestimate the 

probabilities of extreme cruising-for-parking times. 

 
 
It is important to take account of spatial inhomogeneity. Much of the spatial 

inhomogeneity most relevant to cruising for parking is highly localized, pointing to a 

network simulation approach using complete street networks. 

 
 
Another obvious direction for future research is to provide an integrated treatment of 

cruising for parking and traffic congestion. Cruising for parking affects traffic 

congestion, and traffic congestion affects the speed at which cars cruise for parking. 

Some work along these lines has been undertaken in Gerolominis (2015). 

 
 
Thus far the paper has made scant mention of economics. In cruising for parking, a driver 

not only increases the expected cruising-for-parking time of other cruisers for parking but 

also contributes to traffic congestion. Parking pricing should account for both these 

 
 
 

30 While the paper has cast cruising for parking in the context of curbside parking, 
cruising for parking in parking lots and in parking garages is also important. 
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externalities. Capacity is the other main category of parking policy. How should the rules 

proposed (e.g., in Arnott, Inci, and Rowse, 2016) to choose the amounts of curbside, 

public garage, and private garage parking be modified to account for the more 

sophisticated treatment of cruising for parking that this paper investigates? 

 
 
The simulation results reported in the paper indicate how much extreme stochastic events 

can affect expected cruising-for-parking times. An analogous phenomenon in the context 

of traffic congestion has recently been receiving considerable attention, with policy 

discussion focusing on how hypercongestion (situations in which traffic become so 

congested that traffic flow falls as traffic density rises) should be nipped in the bud 

through enlightened traffic management policies, such as diverting traffic via signal 

phase timing around locations where severe hypercongestion is imminent. How can the 

analogous phenomenon of near-gridlock in curbside parking in a downtown locale (in 

which a stock of cruisers for parking has accumulated) be avoided? The problem is made 

more difficult by the inability to distinguish between cars in transit and cars cruising for 

parking. Over sixty years ago Vickrey (1954) proposed (truly31) responsive curbside 

parking pricing, in which the price of curbside parking on a block is continuously 

adjusted so that at least one parking space is almost always available. At the time the 

policy was impractical, but now, with cell phone apps permitting curbside parking 

 
 
 
 
 

31 Vickrey applied the term "responsive pricing" to pricing that adjusts automatically and 
in real time to stochastic realizations. Shoup uses the term differently, to refer to ex ante 
pricing that is adjusted periodically on the basis of average performance but not in 
response to stochastic realizations 
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reservations (Du and Gong, 2016), such a policy might be implementable without causing 

drivers excessive frustration. 

 
 
In the context of cruising for parking, Levy et al. (2013) characterized the binomial 

approximation as "working with averages", in contrast to their simulation model, which 

took explicit account of stochastic fluctuations. They emphasized the importance of 

taking stochasticity into account, and this paper's simulations have underscored their 

message. The enlightened management of curbside parking needs to take into account 

temporally and spatially localized stochasticity. The same is true of downtown traffic 

congestion more generally. How to accommodate such stochasticity in the design of 

downtown transportation policy is an important general challenge for transportation 

researchers. 
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Appendix 1: Source Code 
 
Source code, available at http://math.ucr.edu/~parker/CruisingForParking/ 

 

from    future  import division 
import numpy as np 

 
#model variables 
#length of block 
n = 100 
#arrival rate 
arrivalRate = 30 
#stay duration 
S = 2000 
#stabilization cutoff. Dont record data before this timestep 
sCutoff = 10000 
#desired number of observations 
numObs = 1000000 
prob = 2/3 
parameter = "2/3" 

 
#Load arrays for reproducibility 
initializationSettings = 
np.load("RandomValuesForReproducibleRun/InitializationSettings"+str(parameter).replace('/','')+".npy" 
).tolist() 
arrivalTimes = 
np.load("RandomValuesForReproducibleRun/ArrivalTimes"+str(parameter).replace('/','')+".npy").tolist() 
stayLengths = 
np.load("RandomValuesForReproducibleRun/StayLengths"+str(parameter).replace('/','')+".npy").tolist() 
arrivalLocations = 
np.load("RandomValuesForReproducibleRun/ArrivalLocations"+str(parameter).replace('/','')+".npy").toli    
st() 

 
#car object 
class car: 

 
def init (self, 

startingLocation, 
startingTime, 
currentTime, 
carId, 
startedSearching, 
foundParking 
): 

self.startingLocation =startingLocation 
self.presentLocation =startingLocation 
self.startingTime = startingTime 
self.currentTime = currentTime 
self.carId = carId 
self.startedSearching = False 
self.foundParking = False 

def startinglocation(self): 
return self.startingLocation 

def presentLocation(self): 
return self.presentLocation 

def startedSeartching(self): 
return self.startedSearching 

http://math.ucr.edu/%7Eparker/CruisingForParking/
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def foundParking(self): 
return self.foundParking 

def currentTime(self): 
return self.currentTime 

def repr (self): 
return "Car id " \ 

+ str(self.carId) \ 
+ " started at " \ 
+ str(int(round(self.startingLocation))) \ 
+ " at time " \ 
+ str(self.startingTime) \ 
+ " Currently at " \ 
+ str(int(round(self.presentLocation))) \ 
+ " with found parking status " \ 
+ str(self.foundParking) \ 
+ " and started searching status " \ 
+ str(self.startedSearching) 

 
#parking space object 
class parkingSpace: 

 
def     init   (self, 

location, 
occupied, 
emptyBy 
): 

self.location = location 
self.occupied = False 
self.emptyBy = 0 

 
#objects required for simulation that are not model parameters 
#array of searchtimes. 
id = 0 
searchTimes = [] 
occupancyRate = [] 
cars = [] 
currentlySearching = [] 
parkingSpaces = [] 
nextArrival = arrivalTimes.pop(0) 
streetSnapshots = [] 

 
#array of cars start it with 15 
for i in range(0,15): 

cars.append(car(arrivalLocations.pop(0),nextArrival,nextArrival,id,False,False))    
id +=1 
nextArrival = arrivalTimes.pop(0) 

 
#array of parking spaces 
for l in range(0,n): 

if(prob > initializationSettings.pop(0)): 
parkingSpaces.append(parkingSpace(l,True,stayLengths.pop(0))) 
print('starting with space ' 

+ str(l) 
+ ' filled, it will be empty by ' 
+ str(parkingSpaces[l].emptyBy)) 

else: 
parkingSpaces.append(parkingSpace(l, False, 0)) 

step = 0 
while( len(searchTimes) < numObs ): 
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print("Currently on step " 
+ str(step) 
+ " with " 
+ str(len(searchTimes)) 
+ " observations") 

#if we run low on cars add more, also make sure they dont arrive too quickly. 
if(len(cars) < 10): 

while(nextArrival - (step+1) < 1): 
cars.append(car(arrivalLocations.pop(0),nextArrival,nextArrival,id,False,False)) 
id+=1 
nextArrival = arrivalTimes.pop(0) 

 
#move cars that begin to search from cars array to currentlySearching 
for c in cars: 

if((c.startingTime < step) and c.startedSearching == False): 
c.startedSearching = True 
currentlySearching.append(c) 
print("Car " 

+ str(c.carId) 
+ " has begun to search ") 

 
#see if the cars in current cars are on empty spaces 
for cs in currentlySearching: 

if(cs.foundParking == False) and (parkingSpaces[int(np.floor(cs.presentLocation))].emptyBy < 
cs.currentTime): 

#found parking 
cs.foundParking = True 
#fill the space 
parkingSpaces[int(np.floor(cs.presentLocation))].occupied = True 
print("parking space " 

+ str(np.floor(cs.presentLocation)) 
+ " is now taken ") 

#get a new exit time 
parkingSpaces[int(np.floor(cs.presentLocation))].emptyBy = (stayLengths.pop(0) + 

cs.currentTime) 
#if we are far enough along record it 
if(step > sCutoff): 

searchTimes.append(step - cs.startingTime) 
#output for console 
print("Car " 

+ str(cs.carId) 
+ " found parking at time " 
+ str(step) 
+ " in location " 
+ str(np.floor(cs.presentLocation)) 
+ " having searched for time " 
+ str(step - cs.startingTime)) 

else: 
#space was full, advance the car 
print("Car " 

+ str(cs.carId) 
+ " advanced from location " 
+ str(cs.presentLocation) 
+ " to location " 
+ str((cs.presentLocation +1)%n)) 

cs.presentLocation = (cs.presentLocation +1)%n 
cs.currentTime +=1 
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#cleanup - remove cars that have found parking, allow new cars to merge onto street in order 
currentlySearching[:] = [x for x in currentlySearching if (x.foundParking == False)] 
cars[:] = [y for y in cars if (y.startedSearching == False)] 
if(len(currentlySearching) != 0): 

currentlySearching = sorted(currentlySearching,key = car.presentLocation) 
 

currentSpacesTaken = 0 
#empty out spaces that were not taken 
for p in parkingSpaces: 

if(p.emptyBy < step) and (p.occupied is True) : 
p.occupied = False 
print("Space " 

+ str(p) 
+ " is now available") 

if(p.occupied == True): 
currentSpacesTaken +=1 

 
#reord ambient data 
if(step > sCutoff): 

occupancyRate.append([currentSpacesTaken/100,len(currentlySearching)]) 

step +=1 

searchTimesToBeSaved = np.array(searchTimes) 
np.save(parameter.replace('/','')+'/'+parameter.replace('/','')+"_searchTimes",searchTimesToBeSaved) 
occupancyRateToBeSaved = np.array(occupancyRate) 
np.save(parameter.replace('/','')+'/'+parameter.replace('/','')+"_occupancyRate",occupancyRateToBeSa  
ved) 

 
 
 
 
 

Appendix 2: Generated Simulation Data 
 
 
There are two types of simulation programs available here -- random and reproducible. 

The random programs allow the user to rerun our simulations with different stochastic 

realizations. The generic title of the random programs is Cruising_For_Parking.py. 

Under this title is a set of files, each corresponding to a different case considered in this 

paper. The top of each file indicates the model parameters employed, with the comment 

#model variables above them. The random programs allow the researcher to generate 

multiple simulation runs for the same case, and hence to explore the impact of 
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microscopic stochasticity on stochastic aspects of the aggregate behavior of the cruising 

for parking system. 

 
 
A reproducible program for a particular case differs from the corresponding random 

program only in that the stochastic realizations that were generated in the single 

reproducible simulation run reported on in the paper are used as data. The set of files for 

the reproducible program have the generic title 

Cruising_for_Parking_ReproducibleXX.py. The XX indicates the case treated in each 

particular file. The reproducible programs will allow the research to check the results of 

the simulation runs reported in the paper, and to apply other statistical tests to those runs. 

For each case, there are two other files. One reports the occupancy rate in the first 

column and the number of cars searching in the second column for each time unit. The 

other reports the search time for each car. Their aim is to permit faster analysis of these 

central series. There is an additional file Random_Values_For_Simulation.py that was 

used to generate all random elements for the reproducible runs. 

 
 
All the runs reported in this paper are reproducible, with two exceptions. Figure 8 was 

done with 1000 randomized simulations, running the simulation inside 

Cruising_For_Parking.py 1000 times and storing only summary statistics. Figures 9 and 

10 are also pulled from a random run, and the street snapshots are saved as 

snapshots23.npy and snapshots56.npy. 



77 
 

 

The directory structure on the site is organized as follows 
 

File Purpose 

Cruising_For_Parking.py Random simulation 

Cruising_For_Parking_ReproducibleXX.py Simulation that will reproduce our work, 
where XX comes from the shorthand in 
the next table. 

Moments_All.py Summary statistics for all reproducible 
simulations 

Random_Values_For_Simulation.py This generated all random elements for 
the reproducible runs. 

SnapshotsXX.py Street snapshots taken from the random 
runs used to generate figures 9 and 10 

 
 
The shorthand naming convention is as follows 

 
Short Hand Description 

23 Occupancy Rate 2/3. Stay lengths are exponentially 
distributed with mean 2000, entry rate is Poisson with 
mean 1/30, track has 100 spaces. 

23Const Occupancy Rate 2/3, Constant stay of 2000 time units 

23D Occupancy Rate 2/3, Doubled entry rate halved stay 
 
length 

23_10spaces Occupancy Rate 2/3, 10 spaces 

23_1000spaces Occupancy Rate 2/3, 1000 spaces 

56 Occupancy Rate 5/6 

110 Occupancy Rate 1/10 

1112 Occupancy Rate 11/12 
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There are also corresponding folders for each line of the shorthand table. Each folder 

contains two files, which will have been generated by 

Cruising_For_Parking_ReproducibleXX.py 

File Contents 

XX_ occupancyRate A time series without fixed length, it 
recorded the occupancy rate in the first 
column and the number of cars searching 
in the second column for however long it 
took to observe 1 million search times. 

XX_searchTimes 1 million observations of how long a car 
took to find parking. 
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BUNCHING IN CURBSIDE PARKING 
 
 
Stimulated by the pioneering work of Donald Shoup (2005), there has recently been a 

sharp increase in the attention being paid to parking policy. For many years, Shoup has 

been advocating "cashing out (free or subsidized) parking" -- pricing parking to "clear the 

market".  In most contexts, clearing the market entails setting the price so that the 

quantity supplied equals the quantity demanded, with no excess demand and no excess 

supply. In markets in which search is important, however, what constitutes efficient 

pricing is not obvious.  Consider, for example, curbside parking, which is the focus of 

this paper. If the curbside parking fee is set high, there will be many vacant parking 

spaces, which entails an inefficient use of scarce curbside parking space. If the price is 

set low, there will be few vacant parking spaces. The utilization rate of curbside parking 

spaces will be high but drivers will expend their own time cruising for parking and then 

in walking from their parking spaces to their destinations, and increase other drivers' time 

by adding to traffic congestion while cruising for parking. Intuitively, the curbside 

parking fee should be set to optimally tradeoff these two types of costs. 

 
 
Shoup's work has inspired a number of curbside parking experiments, the best known of 

which is SFpark (http://sfpark.org)1. These experiments have two broad aims. The first 

is to operationalize the concept of "cashing out parking". The second is to ascertain the 

effectiveness of cashing out free or underpriced curbside parking in reducing the costs 

associated with cruising for parking. Shoup (2006) originally proposed that curbside 

 
 

1 Garage parking, which SFpark also treats, will be ignored in this paper. 
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meter rates be set ex ante by block and by time of day to achieve a common 85% target 

average curbside parking occupancy rate. Block by block and time period by time 

period, SFpark has been adjusting meter rates up and down so as to achieve what they 

perceive to be the optimal tradeoff between unutilized capacity and cruising-for-parking 

related costs. They have tended to choose target average curbside occupancy rates that 

are substantially lower than the 85% originally proposed by Shoup. 

 
 
Arnott (2014) presented a conceptual framework for determining the optimal target 

(average) curbside parking occupancy rate in a (stochastic) steady state in an isotropic 

space with risk-neutral drivers, only curbside parking, and no traffic congestion. The 

optimal (average) curbside parking occupancy rate is determined by three relationships. 

The first relates expected marginal social trip cost to the average curbside parking 

occupancy rate (referred to hereafter simply as the occupancy rate); the second relates 

expected throughput to the occupancy rate; and the third relates drivers' marginal 

willingness to pay for a trip to throughput (the demand function). Combining the first 

two relationships gives a relationship between expected marginal social trip cost and 

throughput. The optimal level of throughout is that for which the expected marginal 

social cost of a trip equals the marginal social benefit, which is taken to be the marginal 

willingness to pay for a trip. The optimal curbside meter rate is that which achieves the 

optimal level of throughput. 

 
 
Relating expected marginal social trip cost to the occupancy rate requires, inter alia, 

 
relating expected cruising-for-parking time to the occupancy rate. The modest goal of 



4 
 

 

this paper is to explore the relationship between expected cruising-for-parking time and 

the occupancy rate for the stochastic steady state of cars cruising for parking round a 

circle. While the goal is modest, some of the qualitative insights gained should have 

broader application, as we shall discuss later. 

 
 
To our knowledge, all previous theoretical work relating expected cruising-for-parking 

time to the occupancy rate have modeled cruising for parking as entailing random draws 

with replacement from a binomial distribution, where a draw entails the search of a 

parking space. We term this the binomial approximation.2  Where q is the occupancy 

rate, the probability of finding the first vacant space on the nth draw3 is qn-1(1 - q), and 

the expected number of draws4 is 1/(1 - q). Thus, for example, with an occupancy rate of 

80%, the expected number of curbside parking spaces searched5 is five. Arnott and 

Rowse (1999) make this binomial assumption, recognizing it as an approximation. 

 
 
 
 
 

2 Since the probability distribution of the number of parking spaces searched is the 
geometric distribution, this might properly be called the "geometric approximation", but 
the term binomial approximation is more informative since "geometric" has a wide 
variety of meanings. 
3 The probability of finding the first vacant space on the first draw (i.e., first parking 
space) is 1 - q. The probability of finding the first vacant space on the second draw is the 
is probability of finding the first parking space occupied, q, times the probability of 
finding the second space vacant, conditional on finding the first parking occupied, which, 
under the assumption of random draws with replacement, equals the unconditional 
probability of finding the second space vacant, 1 - q. Etc. 
4 Let S be the expected number of draws. S = (1)(1 - q) + (2)[q(1 - q)] + (3)[q2(1 - q)] --- 
= (1 - q){1 + 2q + 3q2 ---}. Multiplying both sides by q yields qS = (1 - q){q + 2q2 + 3q3 - 
--}. Subtracting qS from S yields (1 - q)S = (1 - q){1 + q + q2 --- }. Since the value of the 
infinite sum in the curly brackets is 1/(1 - q), S = 1/(1 - q). 
5 When we say "the expected number of parking spaces searched", we include the last 
search, in which the first vacant space is found. 
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Subsequently, other researchers, including Anderson and de Palma (2004) and 

Geroliminis (2015) have made the same assumption. 

 
 
Levy, Martens, and Benenson (2012) consider a situation in which drivers search for 

parking in a residential neighborhood on their return from work, and in which therefore 

the occupancy rate increases as the evening proceeds. They compare the expected 

number of parking spaces searched under the binomial assumption with the realized 

average number of parking spaces searched in their simulation model, PARKAGENT, as 

functions of the realized occupancy rate. They find that, when the realized occupancy 

rate is high, the simulated average number of parking spaces searched is considerably 

higher than the expected number under the binomial approximation. Though their 

analysis is not steady state, and though their conclusion rests on the soundness of their 

simulation model, their paper succeeds in raising doubt about the accuracy of the 

binomial approximation applied to the stochastic steady state, especially at high 

occupancy rates. 

 
 
There are further reasons to doubt the accuracy of the binomial approximation. 

 
1. The binomial approximation takes the occupancy rate as being constant over time. 

 
But even in a stochastic steady state, in which entry occurs according to a time-invariant 

Poisson process, the local occupancy rate would fluctuate because of the stochasticity of 

demand at the local level. 

2. In the context of SFpark, the occupancy rate is measured as the arithmetic average 

over a time period during which the expected occupancy rate can be expected to change. 
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Since the expected number of parking spaces searched is a convex function of the 

contemporaneous occupancy rate, the expected number of parking spaces searched over 

the time period exceeds that which would occur if the occupancy rate had been at its 

average over the entire period. To illustrate, suppose the occupancy rate is 65% half the 

time, and 95% the other half, so that the expected occupancy rate is 80%. Under the 

binomial approximation, the expected number of parking spaces searched is 0.5(1/0.35) + 

0.5(1/0.05) = 1.4286 + 10 = 11.4236 > 5 = 1/0.20. An analogous argument applies when 

the occupancy rate is measured over an area that is spatially inhomogeneous, for example 

including both arterials and back streets, or including areas where congestion is more or 

less heavy. 

3. The expected cruising-for-parking times generated by the binomial approximation 

square neither with experience nor with policy discussion. In particular, the expected 

cruising-for-parking times it generates seem consistently too low. Experience suggests 

that on blocks where the average occupancy rate is, say, 80%, it may nonetheless be 

difficult to find a curbside parking space on that block with reasonable frequency; in 

contrast, according to the binomial approximation, the expected number of spaces 

searched before finding a vacant space in only five. Policy discussion in Shoup (2005) 

and elsewhere indicates that cruising-for-parking is perceived to be a serious problem in 

downtown areas, and yet the expected cruising-for-parking times generated under the 

binomial assumption are modest, except as the occupancy rate approaches one6. 

 
 
 

6 Table 11-5 in Shoup (2005) reports that average cruising for parking time over the 16 
studies of cruising for parking he located was 8.1 minutes, about 500 seconds. Our 
calibration for the numerical simulations, presented below, imply that it takes 1.8 seconds 
to travel from one parking space to the next. Applying this figure implies that the 
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4. The binomial approximation is based on the assumption that the occupancy 

probabilities of adjacent parking spaces are statistically independent. But common sense 

and experience suggest that the occupancy probabilities of adjacent parking spaces are 

both spatially and temporally correlated. Suppose, for example, that a restaurant that is 

normally not crowded is holding a banquet. This will affect the occupancy rate not only 

of the curbside parking space immediately adjacent to the restaurant but along the entire 

block and likely further along, as guests who find the parking space adjacent to the 

restaurant occupied continue to search for parking. According to this line of reasoning, 

occupied parking spaces are likely to be bunched. 

5. Intuitively, the optimal curbside occupancy rate might be different in the morning 

rush hour, when the occupancy rate is increasing (a driver might be tempted to grab a 

parking space while it is still available even if it is at an inconvenient location), than in 

the evening rush hour when the occupancy rate is decreasing (a driver might pass by an 

inconvenient parking space, confident that he will be able to find a parking space nearer 

to his destination). Intuitively too, the optimal occupancy rate may depend on the 

turnover rate, or some other aspect of the probability distribution of parking durations. 

 
 
In this paper, we consider a stylized model that abstracts from most of these complicating 

considerations. Parking spaces are uniformly distributed around a circle. Drivers arrive 

according to a time-independent and space-independent Poisson process. They cruise 

around the circle in one direction at an exogenous speed, and take the first vacant parking 

 
 
 

expected number of parking spaces searched is 278. Under the binomial approximation, 
this implies an occupancy rate of 99.64%. 
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space they encounter7. The issue is whether, in stochastic steady state, the time- and 

space-independent Poisson arrival process generates a time- and space-independent 

vacancy generation process. If it does, the binomial approximation is sound. Put 

alternatively, even though the arrival process is time- and space-independent, does 

bunching occur in space (spatial autocorrelation), in time (temporal autocorrelation), or in 

both? 

 
 
We originally explored exact analytical solution, but had no substantive success. We 

then had the choice between investigating analytical solution under approximating 

assumptions or proceeding to simulation. We decided to start with simulation since, 

without an "exact" solution, we would have no way of judging how accurate were the 

analytical solutions under approximating assumptions. 

 
 
 

7 In earlier unpublished research, Arnott and Qiong Tian, who was visiting the University 
of California, Riverside from the Beijing University of Aeronautics and Astronautics, 
attempted to solve a version of the model with discrete space (evenly spaced parking 
spaces around a circle) and time from the perspective of queuing theory. Each parking 
space is viewed as a server. The state of the system is described by the states of each of 
the sequential servers. A server may be vacant, occupied with no queue, or occupied with 
a queue of varying and potentially infinite length. To simplify, Arnott and Qiong 
assumed that parking durations are negative exponentially distributed, so that the 
probability that a car exits a parking space is independent of how long it has been parked 
there. Between time periods, some cars enter the system according to a space- and time- 
invariant Poisson process, a fraction of parked cars exit the system with the rest staying in 
their parking spaces, and the remaining cars, which are in queues at servers, advance one 
parking space, which corresponds to cruising for parking. The aim was to derive the 
distribution of cruising-for-parking times from the stationary distribution of states of the 
system. Having been unsuccessful in obtaining analytical results, even with 
approximations, Arnott and Qiong started numerical simulation. When Qiong returned to 
China, Arnott and Derek Qu, then a graduate student in computer science at the 
University of California, Riverside and now at Google, continued the work, with some 
success. 
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Our basic finding is that the binomial approximation is a bad one. With the modest 

expected occupancy rate of 2/3, the simulated expected cruising-for-parking time is 3.08 

time units, while that obtained under the binomial approximation is 2.5 time units, a ratio 

of 1.252. As the occupancy rate increases, so too does the ratio of the simulated expected 

cruising-for-parking time to that obtained under the binomial approximation. With an 

expected occupancy rate of 11/12, the simulated expected cruising-for-parking time is 

58.73 time units, while that under the binomial approximation is 11.5 time units, a ratio 

of 5.106 

 
 
In section 2, we present the results from the base simulation run, discussing 

methodological issues relating to describing the outcome statistically. In section 3, we 

present the results for other simulation runs. In section 4, we provide some discussion, 

and in section 5 we conclude. A technical appendix contains a verbal and then a verbal 

flowchart description of the simulation algorithm employed, and a link to the simulation 

program. 

 
2. The Base Case Simulation 

 
 
100 parking spaces are evenly spaced on the circumference of a circle. Each space is 

treated as a point. Speed is measured in units such that a car takes one time unit to travel 

the distance between adjacent parking spaces. For the sake of concreteness, we may 

imagine that the distance between adjacent parking spaces is 21.12 ft, so that the 

circumference of the circle is 0.4 mile, and that cruising-for-parking speed is 8 mph. 
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Then a car travels round the circle in 0.05 hr = 3 minutes =180 seconds. Since there are 

100 parking spaces around the circle, it takes a car 1.8 seconds to travel from one parking 

space to the next, so that a time unit equals 1.8 seconds. 

 
 
Cars arrive on the circle according to a time- and location-independent Poisson process at 

a rate of 1/30 per time unit. The time-independent stay length or parking duration of a car 

is negative exponentially distributed with mean 2000 time units, the same as all locations. 

The expected occupancy rate in stochastic steady state can be calculated as the expected 

total time parked in all parking spaces per unit time divided by the maximum total time 

parked in all parking spaces per unit time (100). Since the entry rate and time parked are 

statistically independent, expected total time parked in all parking spaces per unit time 

equals the expected entry rate to parking spaces (1/3) multiplied by the expected time 

parked per parking space (2000). Thus, the expected occupancy rate is 2/3. 

 
 
To allow for the possibility (which turned out to be the case) that there is substantial 

temporal autocorrelation in the realized occupancy rate, each simulation run has 106 cars 

pass through the system. Since the entry rate is 1/30 car per time unit or (1/30) ÷ 1.8 = 

1/54 car per second or (2/3) x 102 cars per hour, each run simulates (3/2) X 104 = 15,000 

hrs of traffic. The starting point of each simulation had no cars in the system. To avoid 

having the initial conditions affect the calculated distribution of cruising-for-parking 

times, we started to record results after 10,000 time units = 18,000 seconds = 5 hrs. In 

other words, we allowed the system 5 hours to settle into the stochastic steady state 

before starting to record results. 
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Throughout the paper, we record results in terms of the number of curbside parking 

spaces searched. It will be helpful to relate this to cruising-for-parking time. When a car 

first enters, the expected distance traveled before encountering a parking space is 0.5 

distance units, which, according to our normalization, takes 0.5 time units. With a single 

successful search, the expected cruising-for-parking time is 0.5 time units. With two 

searches, the expected cruising-for-parking time is 1.5 time units, 0.5 expected time units 

to reach the first parking space, and then 1.0 time units to travel from the first to the 

second parking space. Thus, in time units, the expected cruising for parking time equals 

the number of parking spaces searched minus 0.5. 

 
 
Under the binomial approximation, with an occupancy rate of 2/3 the expected number of 

curbside parking spaces searched before finding a vacant parking space is 3. Thus, the 

expected cruising-for-parking time is 2.5 time units or 4.5 seconds. 

 
 
How should the simulated distribution of cruising-for-parking times be compared to that 

calculated under the binomial approximation? Since we do not know the functional form 

of the proper distribution, which the simulated distribution provides an estimate of, non- 

parametric statistics are appropriate. We shall compare the distributions using three types 

of non-parametric methods: moments of the distributions, comparison of the probability 

density functions and cumulative distribution functions, and ratio plots. 
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Table 1 compares the first four moments of the two distributions8. The simulated 

distribution is for a single run. The results are consistent with the simulated distribution 

having a fatter right-hand tail than the binomial distribution. 

 
 Mean Variance Skewness Kurtosis 

Simulated 3.579 25.99 4.596 42.61 

binomial 
approximation 

3.0 6.0 2.041 6.167 

 
 

Table 1: Moments of the probability distribution of the number of parking spaces 
searched up to and including the first success, simulated and binomial approximation 
Notes: 
1. Numbers are presented to the fourth significant digit. 
2. Under the binomial approximation, the probability distribution of the number of 
parking spaces searched. The formulae for the mean, variance, skewness, and kurtosis of 
the geometric distribution are 1/(1 - q), q/(1 - q)2, (1 + q)/q1/2, 6 + (1 - q)2/q, where q is 
the occupancy rate (wikipedia. Geometric distribution). 

 
 
Figure 1 gives the probability density function and the cumulative distribution function 

for the simulated and approximated distributions. The negative exponential function with 

parameter 1 - q is the continuous analog of the geometric distribution with success 

probability 1 - q. Only to facilitate visual comparison of the two distributions, the pdf and 

the cdf for the negative exponential distribution with parameter 1/3 are given instead of 

the corresponding pdf and cdf for the geometric distribution. Panel A gives the pdfs and 

Panel B the cdfs. Again, the figures are consistent with the simulated distribution having 

a fatter tail than the binomial/negative exponential distributions. 

 
 
 

8 It should be noted that, whatever the distribution of the number of parking spaces 
searched, up to and including the first vacant space, the probability that the first parking 
space searched is vacant is simply the vacancy rate or one minus the occupancy rate. 
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Figure 1: The cdf and pdf for the approximated distributions 
 
1. Only to facilitate visual comparison of the two distributions, the pdf and the cdf 
for the negative exponential distribution with parameter 1/3 are given instead of the 
corresponding pdf and cdf for the geometric distribution. 
Ratio plots provide an insightful way of examining the fatter tail in the simulated 

distribution than that in the geometric distribution. Each data point gives the ratio of the 

simulated probability that the number of parking spaces searched equals x to the 

corresponding geometric probability. Note that the y-axis is on a power ten scale. Figure 

2 provides the ratio plot for the example under consideration. From the Figure, it is easy 

to see that the simulated distribution has much fatter tails than the corresponding 

binomial distribution. The ratio of the probabilities initially decreases9, then increases 

from a ratio of about one for 6 parking spaces searched, to about 100 for 27 parking 

spaces searched, to about 10,000 for 45 parking spaces searched, and then to about 

1,000,000 for about 52 parking spaces searched. These numbers can be so large since the 

corresponding probabilities with the geometric distribution are so small. For example, in 

the base case, with the geometric distribution the probability that 45 parking spaces are 

searched is (2/3)44(1/3) = 0.5955 X 10-10, so that the correspond simulated probability is 

 
 
 
 
 

9 Since the sum of the probabilities equals one for both distributions, the fatter tail for the 
simulated distribution requires that the probability ratio of the number of parking spaces 
searched be less than one for some numbers of spaces searched. Furthermore, the 
probability ratio must equal 1.0 for a single parking space searched. 
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of the order of 10-6. Note that, overall the simulation period, the maximum number of 

parking spaces searched was 58. 

 
 
Figure 2: The ratio of the simulated probability that the number of parking spaces 
searched equals x to the corresponding probability for the geometric distribution. 
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Figure 2 especially provides a compelling visual argument that the binomial 

approximation is a bad one, and should be avoided, even for the modest occupancy rate 

of 2/3. This raises two obvious questions, the answers to which are obviously related. 

First, what is the exact distribution of cruising-for-parking times around the circle that the 

simulated distribution approximates? Second, why are the tails of the simulated 

distribution so much fatter than those of the geometric distribution? 

 
 
As noted earlier, we have been unsuccessful in providing an answer to the first question, 

even though the "data-generating process" is stationary and known exactly. We suspect 

that analytical solution is either intractable, or if not intractable, at least beyond our 

mathematical capabilities to obtain. We suggest that a promising way to proceed is to run 

a large number of simulations similar to the ones that we have done, several for each set 

of parameter values, for a wide range of sets of parameters values, and then to fit flexible 

functional forms to estimate statistics of interest, such as moments of the distribution as 

functions of such parameters as the expected occupancy rate and the number of parking 

spaces. We have not done this for two reasons.  First, we feel that the paper has 

succeeded in making the qualitative point that the distribution of the number of parking 

spaces searched prior to finding a vacant space is not well approximated by the binomial 

function (in other words, does not conform well to the binomial approximation). Second, 

since the model of this paper considers only a one-dimensional isotropic space, and 

would therefore not be useful in practical application, detailed quantitative analysis of the 

distribution is not justified. In the next stage of our research, which entails search for 
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parking on a Manhattan grid, the model may be sufficiently realistic to warrant detailed 

quantitative analysis of its solution properties. For the same reasons, we judged it not to 

be a good use of time to investigate whether the right tail of the simulated distribution of 

the number of parking spaces searched is well described by extreme value distributions. 

 
 
We have given considerable thought to answering the second question. We did some 

preliminary work investigating the serial correlation or autocorrelation of the occupancy 

rate at individual parking spaces, with time steps of the order of the mean of a parking 

duration to examine temporal persistence. We also considered applying standard spatial 

statistics, such as Moran's I-statistic, to examine the spatial correlation between adjacent 

parking spaces, as well as some form of kernel estimation to spatially smooth the data at 

different levels of spatial resolution in order to investigate the spatial clustering of 

occupied parking spaces10. Pursuing spatial clustering further, we also thought about 

applying the literature in mathematical physics on self-organizing systems. Upon further 

reflection, however, we realized that the bunching of occupied parking spaces occurs not 

just in time or in space but in space-time, and we were unable to find a literature on the 

subject. Furthermore, while the bunching of occupied parking spaces exhibits some of the 

characteristics of self-organizing systems, it is different in that the bunches or clusters in 

 
 

10 Arnott recalls, as a high school student, looking at an onion through a microscope. At 
some magnifications structure was evident, while at others the image was a blur. 
Tomoya Mori has for many years been investigating the clustering of firms by industry in 
Japan (see Mori and Smith, 2015, for discussion of the most recent product of their long- 
term research program). He observes a similar phenomenon. Similarly here, one expects 
to observe structure at some spatial resolutions and disorganization at others. 

Another possible approach is Fourier analysis. According to this approach, sine 
waves of different frequencies and amplitudes are generated by the shock anomalies, and 
interact, sometimes offsetting and sometimes reinforcing one another. 
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space-time do form but then they dissolve and reform elsewhere in complex ways. We 

plan to investigate literature in applied mathematics/mathematical physics that considers 

such problems, semi-chaotic systems, which exhibit some elements of chaos and some 

elements of self-organization. 

 
 
Our inability to get a conceptual handle on the bunching of occupied parking spaces 

frustrated us for two different reasons. First, our model's data-generating process is so 

simple that intuition suggests that its spatial-dynamic behavior should be predictable if 

looked at through the appropriate lens. It may be, but if it is, then we were unsuccessful 

in finding the appropriate lens. Second, everyday experience provides intuition for the 

bunching of occupied spaces. Suppose that, completely by chance, even though the 

average occupancy rate is modest, all the parking on a particular block becomes 

occupied. Drivers who otherwise would have parked on that block continue searching, 

propagating that anomaly in space-time. Furthermore, other drivers might choose to 

circle that block, slowing down the rate at which the anomaly dissipates. Even though 

the phenomenon is part of everyday experience, it seems difficult to characterize. 

 
 
The furthest we succeeded in going was to provide a picture of bunching in space-time, 

which is shown in Figure 3 (it looks like the bar code used on boarding passes). The x- 

axis is the spatial axis, with each number indexing a particular parking space. Moving 

vertically provides snapshots of the occupancy/vacancy pattern over time of a particular 

parking space every so many time units. The y-axis is the time axis, with each cell 
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representing a 1000th time step or units, or one half hour. If one row on the y-axis were to 

describe the parking situation at 9:00 am, then the row above would describe the parking 

 
 
Figure 3: Bunching: Evolution of occupied and vacant parking spaces in space-time 

(base case, occupancy rate 2/3) 
Notes: 
1. The x-axis is the spatial axis, with each number indexing a particular parking 
space. Moving vertically describes the occupancy/vacancy pattern every so many time 
units of a particular parking space. The y-axis is the time axis, with each cell 
representing a 1000th time step or unit, or one half hour. Moving horizontally describes 
the occupancy/vacancy pattern over space at a particular point in time. 
2. The parameters, including the begin-to-record time, are the same as in the base 
case. 
3. Since each time step corresponds to one-half hour, the Figure describes the 
evolution of parking around the circle over a 50 hr period. 
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situation at 9:30 am. Moving horizontally describes the occupancy/vacancy pattern over 

parking spaces at a particular point in time. The bunching of both occupied spaces 

(white) and vacant spaces (black) in space-time is very obvious to the naked eye, but 

even to describe satisfactorily it would require the development of new statistics. 

 
 
The reader may have doubted our wisdom in starting our analysis of cruising for parking 

by examining cruising for parking round a circle, since almost all cruising for parking 

occurs in two-dimensional space. Imagine, however, trying to describe, let alone explain, 

a diagram similar to that of Figure 3, but for a two-dimensional Manhattan network, 

which would result in a three-dimensional version of Figure 3. Even for a one- 

dimensional isotropic space (the outside of a circle) and for the stochastic steady state, 

cruising for parking is evidently a complex phenomenon. 

 
 
3. Further Simulations 

 

In this section, we present simulation results obtained by altering parameter values one at 

a time. 

 
3.1 Altering the arrival rate, and hence the occupancy rate 

 
 
Table 2 gives the moments of the number of curbside parking spaces searched before 

finding a vacant parking space for three Poisson arrival rates: 1/30 in the base case, which 

generates an occupancy rate of 2/3; 1/24, which generates an occupancy rate of 5/6; and 
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11/240, which generates an occupancy rate of 11/12. For each case a single simulation 

run was undertaken. 

Occupancy rate Mean Variance Skewness Kurtosis 

2/3 3.579 (3.0) 25.99 (6) 4.596 (2.041) 42.61 (6.167) 

5/6 13.97 (6.0) 1591 (30) 10.73 (2.008) 166.9 (6.033) 

11/12 59.23 (12.0) 24399 (132) 6.234 (2.002) 58.10 (6.008) 

 
Table 2: Moments of the probability distribution of the number of parking spaces 
searched up to and including the first success, simulated and binomial approximation (in 
brackets) 
Notes: 
1. For the binomial distribution, the formula for the mean, variance, skewness, and 
kurtosis are 1/(1 - q), q/(1 - q)2, (1 + q)/q1/2, 6 + (1 - q)2/q, where q is the occupancy rate 
(wikipedia. Geometric distribution). 

 
 
Four features of the results stand out. First, the ratio of the simulated mean of the number 

of parking spaces searched to the corresponding mean computed under the binomial 

approximation increases with the occupancy rate. Second, the simulated mean of the 

number of parking spaces searched increases approximately as the reciprocal of the 

vacancy rate squared (so that a halving of the vacancy rate results in approximately a 

quadrupling of the simulated mean). Third, the variance appears to increases somewhat 

faster than the reciprocal of the vacancy rate to the fourth power; that the standard 

deviation increases faster than the mean suggests that the tails become fatter as the 

vacancy rate increases, a result that can be confirmed in Figure 4 below, which presents 

the ratio plots. Fifth, in the simulations the skewness and the kurtosis are not monotonic 

in the occupancy rate. Since we undertook only one simulation run for each case, we 

strongly suspect that this is a statistical artifact, in particular that, in the second simulation 
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run, there was an extended period of time during which parking became almost 

completely blocked. Recall that the length of each simulation is 15,000 hrs. Even over 

 
 
 
 



23 
 

 
 
Figure 4: The ratio of the simulated probability that the number of parking spaces 
searched equals x to the corresponding probability under the binomial assumption. 
Truncated at 20 spaces searched 

Panel A: occupancy rate = 5/6 Panel B: occupancy rate = 11/12 
Un-truncated figure 

Panel C: occupancy rate = 5/6 Panel D: occupancy rate = 11/12 
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such a long simulation time, it appears that the impact of anomalous extended periods 

with an exceptionally low vacancy rate can have a significant effect on the computed 

moments of the distribution. 

 
 
Figure 4 is analogous to Figure 2, providing ratio plots for occupancy rates of 5/6 (Panel 

 
A) and 11/12 (Panel B). Panel A shows the same fat tail for the occupancy rate of 5/6 as 

did Figure 2 for the occupancy rate of 2/3. In the simulation, the largest number of 

parking spaces searched was close to 350, which corresponds to a search time of about 

10.5 minutes11. Panel B shows the same fat tail for the occupancy rate of 11/12. In the 

simulation, the largest number of parking spaces searched was about 950, which 

corresponds to a search time of about 28.5 minutes. 

 
 
Figure 5 is analogous to Figure 3, providing a space-time diagram for the evolution of 

occupied and vacant parking spaces for an occupancy rate of 5/6. As in Figure 3, which 

is for an occupancy rate of 2/3, bunching is very evident to the naked eye. In future 

work, we plan to investigate how the realized occupancy rate around the circle evolves 

over time. Intuitively, as the number of parking spaces becomes very large, the realized 

occupancy rate should converge to the expected occupancy rate. Thus, the variance of 

the realized occupancy rate should fall as the number of parking spaces around the circle 

increases. 

 
 

11 Since there are only 100 parking spaces around the circle, this entails traveling round 
the circle 3.5 times. We had intended that traveling round the circle would be a very rare 
event, but the CDF plot (not shown) indicates that the probability is in fact around 2%. In 
future simulation runs, we intend to increase the number of parking places round the 
circle so that this is less likely to occur. 
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Figure 5: Bunching: Evolution of occupied and vacant parking spaces in space-time 
(occupancy rate = 5/6) 

Notes: 
1. The x-axis is the spatial axis, with each number indexing a particular parking 
space. Moving vertically describes the occupancy/vacancy pattern over time of a 
particular parking space. The y-axis is the time axis, with each cell providing a snapshot 
every 1000 time steps or units, or one half hour. Moving horizontally describes the 
occupancy/vacancy pattern over space at a particular point in time. 
2. The parameters, including the begin-to-record time, are the same as in those listed 
in Figure 4, Panel A. 
3. Since each time step corresponds to one-half hour, the Figure describes the 
evolution of parking around the circle over a 50 hr period. 
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3.2 Doubling the entry rate and halving the expected stay length (parking duration) 
relative to the base case. 

 
Since the expected occupancy rate equals the Poisson entry rate times the expected stay 

length, doubling the entry rate and halving the expected stay length leaves the expected 

occupancy rate unchanged. Thus, this section examines the case where the turnover rate 

doubles but the expected occupancy rate remains unchanged. Before undertaking the 

simulation, we conjectured that doubling the turnover rate, while holding the expected 

occupancy rate unchanged, would reduce the mean number of parking spaces searched 

prior to finding a vacant parking space. We reasoned that the mean number of parking 

spaces searched would be sensitive to the number of long strings of occupied parking 

spaces, and that long strings of occupied parking spaces would break down more quickly, 

the higher the parking turnover rate. Indeed, in the limit, holding the occupancy rate 

fixed, as the parking duration approaches zero in the limit, and the entry rate approaches 

infinity, the law of large numbers should result in bunches of occupied parking spaces 

that exceed the mean number of parking spaces searched dissipating almost immediately. 

 
 
It appears that our conjecture was incorrect. Table 3 shows the moments of the simulated 

distribution of the number of parking spaces searched up for the base case (the first row) 

and for the case where, holding constant the occupancy rate, the turnover rate is doubled 

(the second row). While the simulation results are subject to statistical error, which 

apparently may be significant despite the largest size, they suggest that a doubling of the 

turnover rate: i) actually increases the expected number of parking spaces searched, albeit 

only slightly; and ii) decreases the higher moments. 
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Exp. parking 
duration 

Mean Variance Skewness Kurtosis 

2000 time units 
(base case) 

3.579 25.99 4.596 42.61 

1000 time units 3.692 24.24 3.238 16.34 

 
 

Table 3: Probability distribution of the number of parking spaces searched, calculated 
through simulation. Occupancy rate = 2/3. Row 1: Expected parking duration = 2000 
time units (1 hr). Row 2: Expected parking duration = 1000 time units (1/2 hr). 

 
 
The corresponding ratio plots, shown in Figure 6, display the same results from a 

somewhat different perspective. Apparently (the qualification again being statistical 

error) doubling the turnover rate increases the probability of the number of spaces 

searched being between 6 and 40, but decreases the probability of the number of spaces 

being above 40. This suggests that increasing the turnover rate increases the number of 

"very large" bunches but decreases the number of "extremely large bunches". We have 

no explanation for these unexpected results; they merit further examination. 

 
3.3 Further Simulation Work Planned 

 
 
On one hand, in the vast majority of situations, cars cruise for parking in two dimensions 

rather than in one dimension. As well, cruising for parking in two dimensions is 

qualitatively different from cruising in one dimension since in two dimensions but not in 

one dimension the individual driver has a choice between cruising for parking strategies. 

By itself, these considerations suggest that research effort should be allocated to 

exploring cruising for parking in two dimensions, which is the topic of the next phase of 

our research. On the other hand, "one has to walk before one can run". It is important to 
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understand cruising for parking in one dimension before moving on to the considerably 

more complicated situation of cruising for parking in two dimensions. 

 
 
There are many simulation exercises that we could have done, but chose not to do, 

instead choosing to leave these for the two-dimensional case. One example is 

investigating the effects of alternative distributions of parking duration on the distribution 

of the number of parking spaces searched. Another example is balking. One of the 

outstanding issues in the microfoundations of parking search is how drivers choose 

between curbside and garage parking. Arnott and Rowse (2009) assume that drivers 

make this decision ex ante, before starting their trip. Realistically, however, since 

cruising for parking becomes increasingly frustrating with the time searched, even ex 

ante the rational driver may adopt the decision rule that he will park in a garage after a 

certain length of time in his curbside parking search. Furthermore, drivers acquire 

information relevant to their parking en route, and even when cruising for parking, 

acquire information en route relevant to the cruising-for-parking time distribution. As 

well, drivers differ in how they respond to the uncertainty concerning cruising-for- 

parking time. For all these reasons, some drivers can be expected to adopt a balking rule - 

- park in a parking garage after a certain amount of time cruising for parking. Practically, 

balking is important in reducing the amount of cruising for parking. 

 
 
Nevertheless, now that we have the results of the preliminary simulations of cruising for 

parking on a circle, we plan to undertake some additional simulations for this case. 

When we designed our initial round of simulations, we had anticipated that running each 
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simulation for 15,000 hours of traffic would reduce "noise" to an acceptably low level. 

However, this appears not to be the case. "Outliers" -- observations in the extreme right 

tail of the distribution of cruising for parking times -- seem to affect the simulated 

distribution of cruising for parking times even for such long simulation runs. We 

conjecture that this occurs because, in these rare events, a stock of cars cruising for 

parking can accumulate so that any parking space that is vacated is taken almost 

immediately, with the result that it takes a very long time for curbside parking gridlock to 

unlock. One way to deal with this problem is to undertake even longer simulation runs. 

Another is to undertake multiple simulation runs of this length to investigate the 

distribution of the moments of the simulated distribution. Since noise becomes more 

important the higher the occupancy rate, it seems sensible to have longer simulation runs 

the higher the occupancy rate. 

 
 
In hindsight, we made an error of judgment in our choice of how many parking spaces to 

have around the circle. The smaller the number of parking spaces, the more likely is 

parking to become gridlocked or close to gridlocked, so that noise becomes more 

important, and the more persistent are the effects of stochastic fluctuations. A 

sophisticated way to proceed would be to undertake two rounds of simulations, in the 

spirit of optimal sample design. The first round of simulations would estimate the 

probability distribution of the moments of the probability distribution of parking spaces 

searched, as a function of the length of the run, the number of parking spaces round the 

circle, and the occupancy rate. With this information, the second round of simulations 
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would be designed to maximize the statistical value of the information collected, given 

total amount of time devoted to simulation runs. 

 
 
4. Discussion 

 
The broad objective of this research project is to provide a conceptual basis for the 

determination of the optimal target curbside parking occupancy rate that would be 

applied in practice to set curbside meter rates. The problem is a difficult one. Account 

needs to be taken of traffic dynamics over the course of the day, which varies with 

location, heterogeneity in the street network and in drivers, the availability of off-street 

parking, and the interaction between curbside parking and traffic congestion. 

 
 
In keeping with the spirit of microeconomics, we chose to strip the problem to its bare 

essentials, on the principle that one needs to understand the simplest case before adding 

"bells and whistles" in the direction of realism. In the first part of our research, we have 

chosen to analyze cruising for parking round a symmetric circle (an isotropic space), with 

identical drivers, in stochastic steady state, with no interaction between cars in traffic and 

cars cruising for parking. 

 
 
The first paper on this research project, Arnott (2014), presented the conceptual basis for 

determining the optimal target curbside vacancy rate in a very similar12 model, which 

could be used to numerically calculate the optimal rate, as a function of exogenous 

 
12 It differs in that each driver has a randomly-located destination around the circle that is 
independent of where he entered the circle. Furthermore, schedule delay costs are 
considered. 
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parameters and functions, specifically the values of travel time, time early and time late, 

visit length, regular driving speed, speed when cruising for parking, walking speed, and 

the probability distribution of the number of parking spaces searched, conditional on the 

expected curbside parking occupancy rate. 

 
 
The objective of this phase of the research was to solve for the probability distribution of 

the number of parking spaces searched, conditional on the curbside parking occupancy 

rate. At first, we considered solving this problem analytically. We abandoned this line of 

attack. The "proper" problem appeared intractable due to the high dimension of the state 

space (the state of the system is described by not only the occupancy status of each of the 

parking spaces, but also the number and location of cars cruising for parking and the 

remaining parking time at each occupied parking space13 (except for the negative 

exponential distribution for parking duration). Perhaps we could have made analytical 

progress through approximating assumptions, but to determine the accuracy of any 

approximation would require knowing the proper distribution. We therefore proceeded to 

simulation. 

 
 
We had mixed success in our simulation work. On the good side, taken together the 

simulation results provided conclusive evidence that, contrary to a standard assumption in 

the literature, holding fixed the occupancy rate the probability distribution of the number 

of parking spaces searched is not well approximated by the geometric distribution. The 

 
 

13 Except for the negative exponential distribution, which we assumed, for which, from 
the perspective of an outside observer, the expected duration of time until a parking space 
is vacated is independent of the duration of time already parked. 
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true distribution has fatter tails than the geometric distribution, resulting in a higher 

expected number of parking spaces searched. Due to both temporal and spatial 

autocorrelation generated by the true data-generating process, there is more bunching of 

occupied parking spaces than would occur under the geometric distribution, which is 

derived on the assumption of zero temporal and spatial autocorrelation. On the bad side, 

even though each run simulated 15,000 hours of parking round the circle, it appears that 

there is still significant uncertainty concerning the moments of the true distribution. The 

intuitive reason seems to be that cruising on a circle of finite length generates rare 

episodes where parking approaches gridlock, and that even though these episodes are rare 

they generate such high numbers of expected parking spaces searched and extend for 

sufficiently long periods of time that they affect the form of the simulated distribution. 

The problem is remediable by extending the run time of each simulation, running 

multiple simulations, and increasing the number of parking spaces round the circle. Once 

acceptably tight bounds have been determined for the moments of the distribution, as a 

function of the exogenous sets of parameters employed, it will be possible to run a 

regression with the simulated moments of the distribution as the dependent variables and 

the exogenous parameters as the independent variables, and to use the regression results 

to estimate the moments of the distribution for other sets of parameters. 

 
 
The research reported here ignores a phenomenon considered in Arnott (2014) that is 

potentially important at high occupancy rates. When cruising-for-parking times are 

significant, many drivers select parking spaces that are far from their destinations. The 

duration of time a person parks equals the visit duration plus the time it takes her to walk 
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from the parking space to her destination and back again. Unless the visit duration is 

chosen to exactly or more than offset the walking duration, which is unrealistic, an 

increase in the expected occupancy rate increases the expected parking duration. This 

effect per se does not affect the distribution of cruising-for-parking times corresponding 

to the occupancy. However, holding constant the entry rate, an increase in the expected 

parking duration causes the expected occupancy rate to increase, which does affect the 

distribution of cruising-for-parking times. Furthermore, for the same reason a random 

increase in the realized occupancy rate increases expected parking duration, which has a 

positive feedback on the realized occupancy rate. Thus, the endogeneity of parking 

duration amplifies fluctuations in the occupancy rate. These effects would be captured in 

a simulation of cruising for parking based on the model in Arnott (2014), which enriches 

the model of this paper to include schedule delay and the endogeneity of both the 

probability distribution of parking duration and the occupancy rate. 

 
 
Our research has focused on cruising for parking round a circle. In the next phase of our 

research on this project, we shall consider cruising for parking on a Manhattan network. 

All of the issues that arise in considering cruising for parking round a circle arise as well 

on a Manhattan network. But there are two important complications. The first is 

obvious, and was commented on earlier. The state-time analysis of parking occupancy 

needs to be extended from two to three dimensions. The second is that each driver must 

choose a cruising for parking strategy on the Manhattan network. How does a driver 

acquire information on the parking state of the system? How does he forecast the future 

state of the system? In light of his information and his forecast, how does he choose his 
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cruising-for-parking strategy14? In what ways does the parking state of the system, 

including the occupancy rate, depend on the cruising-for-parking strategies that drivers 

adopt? 

 
 
A general issue that arises in modeling downtown parking and traffic congestion is how 

to treat stochasticity. Let us simplify by considering only the stochastic steady state. 

There is a large literature on traffic signal control. The classic models in this literature 

apply stochastic queuing theory to individual intersections in isolation. Stochasticity is 

essential to these models. Suppose, to the contrary, that the arrival rate is deterministic. If 

the arrival rate is greater than the service rate of the intersection, the queue at the 

intersection would grow without limit. If the arrival rate is less than the service rate, 

there would be no queues. But individual intersections do not operate in isolation. 

Instead, there is a network of linked intersections. Suppose that, just by chance, an 

abnormally high number of cars enter a link from either curbside or off-street parking 

spaces on that link in the red stage of the downstream signal cycle, resulting in an 

abnormally long queue at the traffic signal, which takes more than one cycle length to 

service. This stochastic fluctuation will propagate through the network, with the next 

downstream link receiving an abnormally high number of cars on the next signal cycle, 

and also perhaps the links to the right and the left of that signal. Since the stochastic 

 
 
 
 

14 A complication is that a pure strategy equilibrium in the rational choice of cruising-for- 
parking strategy may not exist. Suppose that all drivers but one adopt a common 
cruising-for-parking strategy. It may then be optimal for the remaining driver to adopt a 
different strategy. In this situation, conditional on an equilibrium existing, it will be 
mixed strategy equilibrium. 
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fluctuation is not serviced on a single signal cycle, its impact will persist to the next 

signal cycle, though it will be attenuated. 

 
 
Thus, the network of downtown traffic intersections is a set of linked servers, so that 

random fluctuations propagate through the network. We noted earlier that curbside 

parking spaces too may be viewed as a network of linked servers, though the queuing 

mechanism is different from that of intersections. The two networks of serves share 

some common qualitative characteristics. Importantly, bunching is important on both 

networks. The two networks also interact since both cars in transit and cars cruising for 

parking contribute to traffic density. Thus, it will be fruitful to explore the properties of 

simulation models that treat queuing at intersections, cruising for parking, and traffic 

congestion simultaneously. 

 
 
In a seminal contribution, Geroliminis and Daganzo (2007) showed empirically for a 

neighborhood of Yokohama that the aggregate behavior of traffic is well represented by 

a deterministic macroscopic fundamental diagram. Through both empirical observation 

and simulation, subsequent work has shown that the same is true for neighborhoods in 

other cities, although how tight the fit of observed flow-density pairs over the course of 

the day is to the diagram depends on, inter alia, the similarity of streets in the 

neighborhood. Put alternatively, though stochasticity is important at the level of the 

individual intersection and on the individual link, the aggregate behavior of the network 

of intersections, joined by congestible links, is almost deterministic. Does the same 

qualitative result hold for curbside parking? Our simulations indicated that noise is 
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important for cruising for parking around a circle with 100 curbside parking spaces. Is 

this noise of secondary importance in describing the aggregate behavior of cruising for 

parking at the level of a downtown neighborhood? We shall investigate this question in 

our subsequent work that deals with curbside parking on a Manhattan network. Since no 

reliable method has yet been developed to distinguish between cars cruising for parking 

versus cars in transit, empirically the most promising approach would appear to be to 

estimate fundamental diagrams for all traffic in a variety of neighborhoods, including the 

density of curbside parking spaces and the curbside parking occupancy rate as 

explanatory variables. 

 
 
Our work thus far ignores that cruising for parking affects traffic congestion, which is the 

focus of Arnott and Inci (2006). The third phase of this project too will ignore the 

interaction between cruising for parking and traffic congestion. Geroliminis (2015) 

reports the results of a simulation model that accounts for this interaction, but under the 

binomial approximation. 

 
 
5. Conclusion 

 
This report describes the work undertaken in the second stage of the research project, 

"Towards Inferring Welfare Changes from Changes in Curbside Occupancy Rates: A 

Theoretical Analysis Motivated by SFpark and LA Express Park", Department of 

Transportation Contract No. 65A0528, funding for which is shared with Caltrans. The 

first stage of the research, which was completed before the funds for the project were 

released, presented a model of cruising for parking around a circle, and for its stochastic 
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steady state related welfare to the form of the demand function, the curbside parking 

occupancy rate, and the probability distribution of the number of curbside parking spaces 

searched before finding a vacant parking space. It therefore provided the conceptual 

basis for determining the optimal (ex ante) target curbside occupancy rate in stochastic 

steady state. The results are published in Arnott (2014). 

 
 
This second stage of the project investigated the stochastic steady state probability 

distribution of the number of curbside parking spaces searched before finding a vacant 

parking space, with a particular focus on how this distribution changes with the average 

(ex ante) occupancy rate. It did this primarily through simulation. 

 
 
All previous work on this problem, both theoretical (Arnott and Rowse, 1999; Anderson 

and de Palma, 2004) and simulation (Geroliminis, 2015), made the approximating 

assumption that occupied parking spaces are generated by a spatially and temporally 

invariant Poisson process with a rate equal to the occupancy rate -- intuitively, the 

probability that a particular space is occupied equals the occupancy rate, independent of 

both the occupancy history of that parking space and the occupancy status of neighboring 

parking spaces. We termed this the binomial approximation after the binomial 

distribution, which is derived from this assumption. Thus, for example, with a curbside 

parking occupancy rate of two-thirds, a car cruising for parking is viewed as taking 

independent draws with replacement from an urn in which two-thirds of the balls are 

marked occupied and one-third vacant. Previous simulation work by Levy et al. (2012) 

had strongly suggested that this approximating assumption is an increasingly poor one as 
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the occupancy rate increases, and substantially underestimates the expected number of 

spaces searched for occupancy rates exceeding 85%. 

 
 
Each of our simulations traced the occupancy history of 100 curbside parking spaces 

equally spaced around a circle for 15,000 hours, across simulations varying the time- and 

location-independent entry rate of cars and their expected parking durations so as to 

achieve a preselected average occupancy rate. 

 
 
The principal finding of our research is that the binomial approximation is an 

increasingly bad one as the curbside parking occupancy rate increases. In the base case, 

the mean parking duration was one hour. If the entry rate is chosen so as to achieve an 

occupancy rate of 2/3, under the binomial approximation the expected number of 

curbside parking spaces searched is 3.0 while in the simulation run it is 3.579. With this 

occupancy rate, therefore, the expected number of curbside parking spaces searched is 

underestimated by about 20% ((realized minus approximated) divided by approximated). 

The degree of underestimation increases sharply as the occupancy rate approaches 100%. 

With an occupancy rate of 11/12, the degree of underestimation is 500%; under the 

binomial approximation the expected number of curbside parking spaces searched is 

12.0, while in the simulation it is 59.23. The degree of underestimation of the standard 

deviation behaves similarly. The proximate reason for the discrepancy between the two 

distributions is that the simulated distributions have much fatter tails than the 

approximating distribution. These fatter tails derive from the bunching of occupied 
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parking spaces, which in turn derive from the positive autocorrelation of occupied 

parking spaces in space-time. 

 
 
In designing our research, we had thought that simulating 15000 hours of traffic on the 

circle would allow us to estimate the moments of the simulated distribution to a high 

degree of accuracy. However, this appears not to be the case. It seems that there are 

episodes in which parking around the circle becomes almost gridlocked, and that when 

this occurs the almost-gridlock takes a long time to unlock. While these episodes are rare 

-- less rare the higher the occupancy rate -- they significantly affect the estimated 

distribution. We conjecture that these episodes would be even rarer, and less 

quantitatively important, on a circle with more parking spaces. 

 
 
The optimal target curbside parking occupancy rate proposed by Shoup (2006) and the 

target curbside parking occupancy rates implemented in SFpark are averages over time 

and space (if applied to more than one block). Since the number of expected number of 

curbside parking spaces searched is convex in the realized local occupancy rate, the more 

variable is the realized local occupancy rate, conditional on an average occupancy rate, 

the larger the expected number of curbside parking spaces searched. There are three 

sources of variability in the realized local occupancy rate: i) variation in the average 

occupancy rate across locations that are subject to a common target occupancy rate; ii) 

variation in the average occupancy rate over time within time periods that are subject to a 

common target occupancy rate; and iii) stochastic variation. In our research, we 

considered only stochastic variation. If the two other sources of variation were taken into 
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account too, holding constant the average occupancy rate, the expected number of 

curbside parking spaces searched would normally be larger, perhaps considerably larger, 

than obtained in our simulations. Thus, if use of the binomial assumption seriously 

underestimates the number of parking spaces searched when only stochastic variation is 

taken into account, it even more seriously underestimates the number of parking spaces 

searched when the other two sources of variation are accounted for. 

 
 
The main conclusion of our work is therefore that the binomial approximation should be 

avoided in theoretical and simulation research on cruising for parking. 

 
 
Where to from here? At first glance, it might seem that the way to go is to collect real- 

world data relating the distribution of the number of parking spaces searched to the 

average occupancy rate and to the realized local occupancy rate. The critical weakness 

with this approach is that one cannot distinguish between cars that are cruising for 

parking from cars in transit. With cell phone data, one could in principle trace backward 

in time the history of a downtown parker's journey, albeit with noise. One would identify 

the parker's destination by the location where he stays for an extended period of time 

after parking, and his parking location by where he stops and parks his car. Given the 

distribution of distances between the destination and parking locations, one might be able 

to infer both the "average" cruising-for-parking strategy and the expected number of 

curbside parking spaces searched before finding a vacant space. But cell phone data are 

not available, and the theory relating the distribution of distances between the destination 
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and parking locations to the expected number of curbside parking spaces searched has yet 

to be developed. 

 
 
Thus, the more promising avenue appears to be a priori theoretical analysis. Since a pure 

analytical approach appears to be intractable, we believe that the most promising 

approach is to obtain estimates of the distribution of parking search times from 

simulations based on theoretical models. In this paper, we employed this strategy, basing 

our simulations on a theoretical model of cars cruising for parking round a circle in 

stochastic steady state. In the third and final phase of our research on this project, we 

shall employ the same strategy, but base our simulations on a theoretical model of cars 

cruising for parking on a Manhattan grid network in stochastic steady state. The grid 

model is qualitatively different from the circular model. In the circular model, a driver 

has no decisions to make; he just drives around the circle until he encounters his first 

vacant parking space. In the grid model, in contrast, a driver decides on a cruising-for- 

parking strategy, trading off expected cruising for parking time against expected walking 

time. If the average occupancy rate is low, his optimal strategy might be simply to cruise 

around his destination block until he encounters a vacant space. If he drives all the way 

round the block without finding a space, he may choose to drive around the block again, 

figuring that since the average occupancy rate is low, he is likely to find a space that has 

recently been vacated. If the average occupancy rate is high, a naive driver might 

continue circling his destination block, figuring (incorrectly) that if all the parking spaces 

around his destination block are taken, so too are all the parking spaces around adjacent 

blocks, and that he is better off just waiting for a space around his destination block to 
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open up. A sophisticated driver however would take into account the pattern of spatial 

autocorrelation of occupied parking spaces. 
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TECHNICAL APPENDIX 
The Simulation Algorithm 

 
This appendix provides a purely verbal description of the simulation algorithm and then a 

verbal flow chart description of the simulation. At the very end is a link to the actual 

code that was employed. 

Description of the Algorithm 
 
Given the arrival rate, generate a list of arrival times less than the total running time. 
Create a car object for every arrival time, and uniformly pick a starting location on the 
block. Initialize all parking spaces as occupied with exponentially distributed times until 
they are no longer occupied. Begin the simulation, for every time step less than the total 
running time, we do the following, in the following order: Allow spaces to empty, if a car 
was at a space that is empty, it may pull in and occupy it, and a new departure time for 
the parking space is set chosen from the occupancy time exponential distribution, the car 
is removed from the road.  If the current time step when this occurred is past the 
threshold to record, record the length of time this car was searching. All cars that are at 
spaces that are occupied advance one space modulo the length of our block. 

 
A More Flow-oriented Description 

 
Length of block = n 
Arrival rate = lambda 
Stay length = S 
Length of simulation = T 
Record after time = T0 

 
while(t < T) 

allow spaces to empty 

cars pull onto the road 

If a car is next to a space that is empty, let it pull in. In cases of a tie the space 
goes to who arrived at it first 

If t > T0 
record the difference in time (t - starting time for this car) 

advance all cars one space mod n 

t = t+1 
 

Hyperlink https://github.com/ParkerWilliams/Cruising-For-Parking-1d 

https://github.com/ParkerWilliams/Cruising-For-Parking-1d

	Towards Inferring Welfare Changes from Changes in Curbside Parking Occupancy Rates
	Final Report
	Richard Arnott
	Richard Arnott* and Parker Williams** December 12, 2016
	Abstract
	Highlights


	Cruising for Parking around a Circle1
	2. Placing the Model in the Context of Queuing and Markov Process Theory
	3. The Simulation Algorithm
	5. Comparative Stochastic Steady States
	6. Concluding Comments
	Appendix 1: Source Code
	Appendix 2: Generated Simulation Data

	BUNCHING IN CURBSIDE PARKING
	2. The Base Case Simulation
	3. Further Simulations
	4. Discussion
	5. Conclusion
	TECHNICAL APPENDIX


