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EXECUTIVE SUMMARY 

The need for accurate, comprehensive and timely traffic surveillance information is critical to ensure 

optimal traffic operations and management for advanced traffic management systems (ATMS) operators 

and to help traffic users make well-informed decisions.  Development, field investigation and assessment of 

the latest technologies for traffic surveillance is needed to ensure that this objective is met in the most 

effective way.  There is also a critical need to provide advanced surveillance of commercial vehicles due to 

their significant impact on the environment, road infrastructure and traffic safety.  In fact, there has been a 

strong emphasis by the Federal Highway Administration to better understand commercial vehicle travel and 

its impacts.  This research was divided into two independent studies to address the above-mentioned 

concerns:  a larger one involving the deployment of a Real-time Traffic Performance Measurement System 

(RTPMS), and a smaller-scale field investigation of a new inductive loop technology called the Blade™ for 

advanced commercial vehicle surveillance. 

 

The first study involved the continued development of advanced surveillance applications based on 

inductive vehicle signature technologies using the IST-222 high-speed scanning detector card from IST, 

Inc.  Part of this involved the deployment of the RTPMS developed in this study, which provides advanced 

traffic performance measures by vehicle class.  The system was successfully deployed in a simulated real-

time environment using data collected from a 6.2 mile corridor along the northbound I-405 Freeway in the 

City of Irvine, California, spanning six detector stations to form five continuous sections. 

 

Several performance measures were developed for the RTPMS, which are based on the single loop point 

speed estimation, vehicle reidentification, and vehicle classification models developed in this study.  Two 

single loop speed estimation models were developed using data obtained from the I-5 Freeway in the City 

of Anaheim, California and the I-405 Freeway in the City of Irvine California.  The I-5 Freeway location 

was equipped with double conventional round loop sensors and the I-405 Freeway location had double 

square loop sensors.  Both allowed development and verification of the single loop speed estimation 

models for the corresponding different sensor configurations.  Test results indicate that these models were 

able to provide accurate point speed estimations under peak traffic conditions, even at small aggregation 

intervals of 30 seconds.  This model allows accurate point speed estimates to be obtained even from 

detector stations equipped with single loop sensors. 

 

The vehicle reidentification (RTREID-2) and vehicle classification models developed in this study are 

based on a new signature feature extraction method that retrieves an equal number of Piece-wise Slope 

Rate (PSR) values from each inductive vehicle signature.  Its main advantage lies in the need for only a 

single inductive loop sensor configuration and a procedural simplification in the extraction of vehicle 
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signature features.  The former allows this model to be compatible with the majority of detector 

configurations in California, which are single loop sensors, while the latter addresses data processing 

constraints under a real-time implementation environment.  Although using only information from a single 

loop, the RTREID-2 model was still able to obtain comparable reidentification performance results in a 

simulated real-time demonstration.  This, together with the new vehicle classification model, gives the 

RTPMS the capability to provide performance measures such as section and corridor travel times by 

vehicle class. 

 

A deployment framework was also developed as a part of this study to address the real-time 

implementation challenges of the RTPMS.  Several additional components were developed to achieve this.  

First, a CORBA™ interface was designed to enable real-time extracted signature feature data from several 

detector stations to be simultaneously received by the RTPMS server.  After the signature data are 

processed in the RTPMS server, the vehicle reidentification and classification results are stored in a 

RTPMS database developed in Oracle™.  The prototype Java™-based RTPMS website which is hosted on 

the Testbed web server then queries the database to compute advanced traffic performance measures which 

are displayed in either a graphical or text-based format on the website, depending on user preferences.  An 

actual real-time demonstration of the RTPMS could not be conducted due to the lack of an available 

communications infrastructure at the field detector stations.  However, the accuracy of the travel time 

performance results obtained through this system were strongly corroborated by several floating vehicles 

equipped with global positioning system (GPS) units during the actual data collection.  

 

In the second independent study, a new commercial vehicle classification model was developed based on a 

new inductive loop sensor technology called the Blade™ which has the potential to obtain both axle and 

body configuration information from vehicles.  The model was developed using data obtained from the San 

Onofre Truck Weigh and Inspection Facility.  This study revealed the heterogeneity of commercial vehicle 

types, and proceeded to develop a new commercial vehicle classification scheme framework that accounts 

for the axle as well as body configurations of drive and trailer units of commercial vehicles.  The resulting 

classification model adopts the proposed commercial vehicle vector classification scheme, which uses a 

combination of three sub-classifications to describe each commercial vehicle to provide an unprecedented 

level of detail in classification. 
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CHAPTER 1   INTRODUCTION 

1.1 Overview 

With the new generation of Intelligent Transportation Systems now widely under development, more 

accurate and appropriate real-time traffic data need to be collected from the urban highway transportation 

network and communicated to traffic management centers, traffic operations personnel, travelers, and other 

agencies to exploit their potential benefits.  The focus of PATH TO 5304 was on deploying and 

investigating at a corridor level anonymous vehicle tracking techniques that have been pioneered by the 

authors in previous PATH research.  The objective of the research is to investigate and demonstrate real-

time freeway performance measurement in a major real-world setting.  The research was conducted in two 

phases over approximately two years.  Year 1 of the project focused on investigation of several vehicle 

reidentification and vehicle classification algorithms (utilizing for the first time single round loops) for real-

time freeway performance measurement on I-405N through Irvine, California.  Year 2 of the project 

focused on deployment of the system as part of a simulated real-time traffic performance measurement 

system (RTPMS).  A concurrent but independent investigation of a new type of inductive loop sensor 

called the Blade™ was also performed in the second year of the project at the San Onofre Truck Weigh and 

Inspection Facility.  This study focused on developing a high fidelity commercial vehicle surveillance 

system that is able to profile commercial vehicles based on the combination of their drive unit and trailer 

unit axle and body configurations.  

 

1.2 Report Framework 

This report consists of nine chapters, including this chapter.  Chapter 2 describes the data collection efforts 

performed as a part of this study with a description of each study site and equipment used.  Chapter 3 

presents the groundtruth system setup that was developed for this study.  This chapter also presents the 

traffic pattern analysis for the data collection periods.  Chapter 4 presents a new speed estimation model 

based on inductive vehicle signatures obtained from single inductive loop sensors.  This model shows 

excellent results even in peak hour traffic conditions.  A new classification model based on inductive 

vehicle signatures obtained from single conventional loop sensors is presented in Chapter 5.  Three 

classification schemes are presented using this model, including a simplified scheme that is implemented in 

the simulated Real-Time Performance Measurement System (RTPMS), which is described in detail in 

Chapter 8.  Chapter 6 reports findings from the investigation of a new inductive loop sensor called the 

Blade™.  A comprehensive commercial vehicle classification model was developed as a part of the study, 

which provides an unprecedented level of detail in profiling commercial vehicles.  Chapter 7 describes a 

new vehicle reidentification technique that requires only a single inductive loop sensor configuration and is 
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specifically designed for real-time traffic surveillance.  The vehicle reidentification model developed in this 

study forms the backbone of the performance measurement system described in Chapter 8 that delivers 

real-time section and corridor travel information.  Chapter 9 provides information of the framework of the 

proposed RTPMS, which includes a description of the each module as well as the database and website 

design.  This report concludes with a summary of findings and proposed directions in future research in 

Chapter 10. 
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CHAPTER 2   DATA COLLECTION AND ANALYSIS I 

2.1 Introduction 

This chapter describes the data collection and data reduction methods used in this study.  Three locations 

were used in this study: I-5 freeway in Anaheim, California, I-405 freeway in Irvine, California, and San 

Onofre Truck Weigh and Inspection Facility in San Onofre, California.  The research described in this 

report involved six separate data-collection efforts.  A summary of these data collection exercises is shown 

in Table 2.1.  The following sections provide a detailed description of the scope as well methods used to 

carry out these data collection exercises.  For the purpose of algorithm development, all lanes are numbered 

from left to right and may not correspond to field designations. 

 

2.2 Study Sites 

2.2.1 I-5 Freeway in Anaheim 

The testbed at I-5 in Anaheim consists of a 1.41-mile corridor spanning between two adjacent detector 

stations: Crescent at post-mile 40.01 and Gilbert at post-mile 41.42.  Data was collected in both the north 

and south bound directions at this site.  In the northbound direction (data collection exercise I), the Crescent 

and Gilbert detector stations each has a six-lane freeway cross section as shown in Figure 2.1.  Lane six at 

Crescent is a dedicated exit lane to the La Palma/ Brookhurst freeway exit.  In the southbound direction 

(data collection exercise III), the Gilbert station consists of a seven-lane freeway cross section, with two 

dedicated exit lanes to the La Palma/ Brookhurst freeway exit as shown in Figure 2.2.  The southbound 

freeway at Crescent detector station consists of six lanes.  The freeway at all the above mentioned stations 

has the leftmost lane assigned as a limited-access permanent high-occupancy vehicle lane.  In addition, all 

detector stations are equipped with double-round inductive loop sensors spaced at 20 feet across all lanes.  

This double loop speed trap configuration allows accurate measurement of individual vehicle speeds.  This 

provides an ideal setup for developing and testing single loop speed estimation models. 



Table 2.1.  Summary of Data Collection Exercises 

 Location, Date & 
Time Period 

Control Vehicles Vehicle 
Instrumentation 

Driving 
Technique 

Purpose Detector Stations Post 
Mile 

Loop Config Video

I NB I-5 in Anaheim 
Nov 30 2004 
AM Peak 

Midsize Sedan 
Pickup Truck 
12 Pax Van 

Synchronized 
watch 

Not 
Specified 

Speed Estimation, 
Vehicle Classification, 
Signature Repeatability 

Crescent 40.01 Double Round Yes 
Gilbert 41.42 Double Round No 

II NB I-405 in Irvine 
Mar 11 2005 
AM Peak 

Sports Car GPS log 
-3 Feet Accuracy 
-per second 
polling 

Not 
Specified 

Multi-section REID, 
Vehicle Classification 

Laguna Canyon 1 2.23 Single Square Yes 
Laguna Canyon 2 2.35 Single Round Yes 
Sand Canyon 2.99 Single Square Yes 
Jeffrey (N. Sand 
Canyon) 

3.31 Single Round Yes 

III SB I-5 in Anaheim 
Apr 7 2005 
AM Peak 

Coupe Synchronized 
watch 

Varying 
Speeds 

Speed Estimation Gilbert 41.42 Double Round No 
Crescent 40.01 Double Round Yes 

IV NB I-405 in Irvine 
Nov 16 2005 
PM Peak 

Compact Sedan 
Minivan 
Sports Car 
Pickup Truck 
8 Pax Van 

GPS log 
-3 Feet Accuracy 
-per second 
polling 

Floating-
car 

Multi-section Travel 
Time Estimation 

Laguna Canyon 1 2.23 Double Square No 
Laguna Canyon 2 2.35 Single Round No 
Sand Canyon 2.99 Double Square No 
Jeffrey (N. Sand 
Canyon) 

3.31 Single Round No 

Harvard 6.21 Single Round Yes 
Red Hill 8.40 Single Round No 

V NB I-405 in Irvine 
Nov 17 2005 
AM Peak 

Coupe 
Large Sedan 
Compact Sedan 
Pickup Truck 
8 Pax Van 

GPS log 
-3 Feet Accuracy 
-per second 
polling 

Floating-
car 

Multi-section Travel 
Time Estimation 

Laguna Canyon 1 2.23 Double Square Yes 
Laguna Canyon 2 2.35 Single Round Yes 
Sand Canyon 2.99 Double Square Yes 
Jeffrey 3.31 Single Round No 
Yale 5.01 Single Round Yes 
Spruce 5.05 Single Round No 
Harvard 6.21 Single Round Yes 
Red Hill 8.40 Single Round Yes 

          
VI SB San Onofre 

Weigh Facility 
May 2 2006 – May 
12 2006 

None Not Applicable Not 
Applicable 

Commercial Vehicle 
Classification 

Upstream - Single Round, 
Double Blade™ 

Yes 

Downstream - Single Round, 
Double Blade™ 

Yes 
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Figure 2.1.  Study site for data collection I along Northbound I-5 in Anaheim, California 

 
 

 








































 

Figure 2.2.  Study site for data collection III along Southbound I-5 in Anaheim, California  

Each detector station consists of double round conventional inductive loop sensors embedded in each lane 

of the freeway, which are connected to advanced loop detector cards located in a traffic cabinet located off 

the shoulder of the freeway.  These detector cards are in turn connected via the USB interface to an 

industrial PC running the Windows 2000 operating system located in the traffic cabinet.  These advanced 

detector cards process inductance signals induced by vehicles passing over the loops at 1200 samples per 

second, while a client program logs these signals in binary format to the PC hard drive, to be later retrieved 

for analysis after the data collection. 
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The PCs at each detector station were synchronized with an external clock just prior to each data collection 

to ensure accurate analysis of travel time information.  Where video coverage was provided, the clocks of 

the camcorders were also synchronized with the detector stations to ensure accurate groundtruthing of 

video information with inductance signature records.  The synchronization was performed manually, with 

an expected accuracy within fractions of a second.  It was determined that the drifting of the clocks in each 

device was generally negligible, and did not significantly affect the accuracy of travel time investigation. 

 

2.2.2 I-405 Freeway in Irvine 

The testbed at I-405 in Irvine spans a 6.17-mile corridor in the northbound direction encompassing seven 

detector stations, as shown in Figure 2.3.  The freeway corridor consists of between five and seven lanes, 

and one high occupancy lane.  A buffer lane that separates the high occupancy lane from the other mainline 

lanes exists from the south end of the study corridor and extends to the Jeffrey interchange, except for a 

stretch at the vicinity of the Sand Canyon interchange that allows entry into and exit from the high 

occupancy lane as shown in Figure 2.3.  Three data collection exercises (II, IV and V) were conducted at 

this corridor with various combinations of detector stations instrumented.  For data collection II, 

camcorders were used to monitor traffic from on and off ramps along the corridor in addition to detector 

station locations (as shown in Figure 2.4) to obtain a complete groundtruth dataset. 



 

 


























































































 
 

 





















































 

Figure 2.3.  Study site for data collections II, IV & V along Northbound I-405 in Irvine, California  
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LC1: Laguna Canyon 1 

LC2: Laguna Canyon 2 

SC: Sand Canyon 

JEFF: Jeffrey  

Figure 2.4.  Camcorder locations for data collection II 

Each detector station consists of single square or double round conventional inductive loop sensors 

embedded in each lane of the freeway.  The loops are connected to advanced loop detector cards located in 

a traffic cabinet located off the shoulder of the freeway.  These detector cards are in turn connected via the 

USB interface to an industrial PC running the Windows 2000 operating system located in the traffic 

cabinet.  These advanced detector cards process inductance signals induced by vehicles passing over the 

loops at 1200 samples per second, while a client program logs these signals in binary format to the PC hard 

drive, to be later retrieved for analysis after the data collection. 

 

The PCs at each detector station were synchronized with an external clock just prior to each data collection 

to ensure accurate analysis of travel time information.  Where video coverage was provided, the clocks of 

the camcorders were also synchronized with the detector stations to ensure accurate groundtruthing of 

video information with inductance signature records.  The synchronization was performed manually, with 
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an expected accuracy within fractions of a second.  It was found that the drifting of the clocks in each 

device was generally negligible, and did not significantly affect the accuracy of travel time investigation. 

 

2.2.3 San Onofre Truck Weigh and Inspection Facility 

The southbound I-5 San Onofre Truck Weigh and Inspection in north San Diego County, California, was 

chosen as the data collection site for investigating commercial vehicles due to the high volume and variety 

of commercial vehicles that enter the site daily.  It has a single lane entrance ramp from the southbound I-5 

Interstate Freeway which expands into three lanes approaching the weighing scales followed by a single 

lane exit ramp back to the mainline freeway. 

 

The testbed at this location consists of two temporary detector stations located at the entrance and exit 

ramps between the San Onofre Truck Weigh and Inspection Facility and the southbound I-5 Freeway as 

shown in Figure 2.5.  The upstream and downstream detector stations span a distance of 0.35 miles. 

 

 
 


 
 

 
 

 
 


 

 
 

 

 


 

 

 
 

 
 

 


 
 

 

 

Figure 2.5.  Southbound San Onofre Data Collection Study Site 

 

Each detector station was instrumented with single preformed conventional round loop sensor as well as 

double Blade™ sensors.  Each sensor was connected to advanced loop detector cards.  These detector cards 

were in turn connected via the USB interface to an industrial PC running the Windows 2000 operating 

system.  The equipment at the upstream detector station was housed in an existing traffic cabinet, while the 

equipment in the downstream detector station was set up in a portable configuration.  These advanced 

detector cards process inductance signals induced by vehicles passing over the loops at 1200 samples per 
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second, while a client program logs these signals in binary format to the PC hard drive, to be later retrieved 

for analysis after the data collection. 

 

The PCs at each detector station were synchronized with an external clock just prior to each data collection 

to ensure accurate analysis of travel time information.  The clocks of the camcorders were also 

synchronized to ensure accurate groundtruthing of video information with inductance signature records.  

The synchronization was performed manually, with an expected accuracy within fractions of a second.  It 

was found that the drifting of the clocks in each device was generally negligible, and did not significantly 

affect the accuracy of travel time investigation.  A detailed layout of the sensor configuration is shown in 

Figure 2.6.  Figure 2.7 shows the wiring diagram of equipment used during the data collection exercise at 

both detector station locations. 
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(a) Upstream Detector Station 

 

  
 

 

 

 

   

   

 
 
 

 
 

 

 

 
 
 
 

 
  

 
 

 

(b) Downstream Detector Station 

Figure 2.6.  Detailed layout of the sensor configuration at San Onofre 
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Upstream Detector Station      Downstream Detector Station 

Figure 2.7.  Wiring diagram of equipment setup at San Onofre
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2.3 Control vehicles 

The control vehicles used for the various data collection exercises are shown in Figure 2.8.  In data 

collections I and III, drivers of control vehicles were accompanied by a data logging assistant.  Each 

assistant was equipped with a synchronized watch and recorded the time-stamp and lane information as the 

control vehicle traversed each detector station.  This provided section-based travel time information and 

aided in matching control vehicles with their corresponding recorded vehicle signatures. 

 

In data collections II, IV and V, control vehicles were equipped with a global positional system (GPS) unit 

with an accuracy of within 3 feet. These GPS offered data logging at one-second intervals, and provided 

physical position as well as speed information.  The precise positioning obtained from these units allows 

accurate matching of control vehicle signatures.  In data collections IV and V, drivers of control vehicles 

were instructed to utilize the floating-car driving technique in the traffic stream.  This allowed the GPS data 

to be used for obtaining samples of section and corridor travel times during each data collection period. 
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Figure 2.8.  Control vehicles used for each data collection exercise 
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CHAPTER 3   DATA COLLECTION AND ANALYSIS II 

3.1 Groundtruth System 

The purpose of the groundtruth system is to provide the ability to correctly match vehicles identified on 

video with their corresponding inductive signature record.  This allows accurate datasets to be created from 

the data collection exercises for developing and testing the various inductive signature-based traffic 

surveillance models described in the following chapters. 

 

3.1.1 Equipment Setup 

The groundtruth system consists of four video cassette recorders VCRs, two 14-inch video monitors, two 

30-inch video monitors, and one AMD Athlon personal computer system operating under the Microsoft 

Windows XP operating system as shown in Figure 3.1. 

 

 

Figure 3.1.  Groundtruth system setup 

 

All four VCRs are equipped with a jog function that supports single frame advance playback at a resolution 

of one-thirtieth second steps.  In addition, two of the VCRs also support S-Video inputs and outputs for 

higher resolution video image capability.  The connections between VCRs and video monitors are set up to 

allow pairing of different input and output sources, maximizing the use of the larger video monitors. 

 15 



 

3.1.2 Groundtruth Procedure 

This section outlines the procedure used to obtain accurate groundtruthed datasets.  Signature records are 

first obtained from initial signature preprocessing of the raw data through a pre-determined threshold value 

that distinguishes vehicle data from noise data.  Contiguous clusters of data samples above this threshold 

value are stored as a single vehicle signature record.  The time stamp of each record corresponds to the time 

stamp of the first recorded sample of the signature cluster.  This corresponds to the time when a vehicle is 

about to enter the inductance field of the inductive loop sensor.  Each signature record is assigned lane and 

count index information, where the count index refers to the number of signature records processed from 

the start of the data collection.  Hence, the combination of lane and count index provides a unique 

identification key to each signature record at each detector station. 

 

The next task is determining the authenticity of these vehicle signature records.  This is verified with the 

use of video data obtained from the side-fire camcorders located at the detections.  Due to limitations of 

setup accuracy and variations in loop sensitivity, the timestamp obtained from the video may be offset from 

the signature records by up to 1.5 seconds.  For the purpose of standardization, the reference video time 

stamp of each vehicle refers to the instance where the front bumper crosses the leading edge of the 

inductive loop sensor.  With the use of video frame analysis, the time offset between the inductive signature 

records and the video is then determined to an accuracy within a tenth of a second.  This improved 

precision removes the possibility of erroneous matching between vehicles from video images and their 

corresponding inductive signatures.  It also aids in identifying three types of abnormal signatures: invalid 

signatures, tailgating signatures (single signature records that contain signatures of two or more signatures 

of vehicles traveling closely behind each other) as well as double counted vehicle signatures (two signature 

records in adjacent lanes produced by a single vehicle straddling between two lanes). 

 

3.1.3 I-5 and I-405 Freeway Vehicle Classification and REID 

A comprehensive and detailed vehicle classification scheme was developed to provide an accurate vehicle 

classification dataset for developing vehicle classification models.  This scheme is considerably more 

detailed than the existing FHWA scheme F, which is the state of the practice classification scheme based 

on axle configuration. This proposed classification scheme assigns each vehicle type a numerical class 

value, and distinguishes vehicles by their function and body configuration in addition to axle configuration.  

In addition, each vehicle classification in this proposed scheme corresponds to a particular class based on 

the FHWA scheme, providing necessary backward compatibility.  A list of the proposed classification 

scheme is shown in Table 3.1.  This extensive scheme provides a basis for developing inductive signature-

based vehicle classification models, where the range of vehicle classes would consist of a reduced 
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classification scheme which maximizes classification accuracy with heterogeneity between vehicle classes, 

while maintain a practical level of homogeneity of vehicle types within each vehicle class. 

 

Table 3.1.  Proposed Classification Scheme 

REID Class REID Class Description Corresponding  
FHWA Class FHWA Class Description 

1  Motorcycles 1 Motorcycles 
2  Sedans / Coupes / Sports Cars 2 Passenger Vehicles 
3  4 Tire Pickup 3 4 Tire Single Units 
4  Passenger Coach (Bus) 4 Buses 
5  2 Axle 6 Tire Van Truck 5 2 Axle 6 Tire Single Units 
6  3 Axle Van Truck 6 3 Axle Single Units 
7  4 Axle Single Unit Truck 7 4 or More Axle Single Units 
8  4 Axle Single Box Trailer 8 4 or Less Axle Single Trailers 
9  5 Axle Single Box Trailer 9 5 Axle Single Trailers 
10  6 Axle Single Trailer (Box or Flatbed) 10 6 or More Axle Single Trailers 
11  5 Axle Multi Box Trailer 11 5 or Less Axle Multi-Trailers 
12  6 Axle Multi Box Trailer 12 6 Axle Multi-Trailers 
13  7 Axle Multi Box Trailer 13 7 or More Axle Multi-Trailers 
14  Passenger Vehicle with Trailer 2 Passenger Vehicles 
15  4 Tire Pickup with Trailer 3 4 Tire Single Units 
16  2 Axle 6 Tire Truck with Trailer 5 2 Axle 6 Tire Single Units 
17  3 Axle Truck with Trailer 6 3 Axle Single Units 
18  Loaded Auto Trailer 9 5 Axle Single Trailers 
19  Empty Auto Carrier 9 5 Axle Single Trailers 
20  3 Axle Bobtail Tractor 6 3 Axle Single Units 
21  Goose Neck Trailer 9 5 Axle Single Trailers 
22  30’ School Bus 4 Buses 
23  20’ School Bus 4 Buses 
24  SUV 2 Passenger Vehicles 
25  Minivan 2 Passenger Vehicles 
26  Station wagon / Estate 2 Passenger Vehicles 
27  Limousine 2 Passenger Vehicles 
28  4 Tire Van 3 4 Tire Single Units 
29  Bus + Trailer 4 Buses 
30  2 Axle 6 Tire Pickup 5 2 Axle 6 Tire Single Units 
31  2 Axle 6 Tire Flatbed Truck 5 2 Axle 6 Tire Single Units 
32  2 Axle 6 Tire Tow Truck 5 2 Axle 6 Tire Single Units 
33  3 Axle Concrete Mixer Truck 6 3 Axle Single Units 
34  3 Axle Garbage Disposal Truck 6 3 Axle Single Units 
35  4 Axle Flatbed Trailer 8 4 or Less Axle Single Trailers 
36  5 Axle Flatbed Trailer 9 5 Axle Single Trailers 
37  Gooseneck Moving Van 9 5 Axle Single Trailers 
38  Jeep 2 Passenger Vehicles 
39  5 Axle Construction Single Trailer 9 5 Axle Single Trailers 
40  3 Axle Single Unit Oil Tank Truck 6 3 Axle Single Units 
41  3 Axle 6 Tire Flatbed Truck 6 3 Axle Single Units 
42  5 Axle Construction Multi Trailer 11 5 or Less Axle Multi-Trailers 
43  5 Axle Single Oil Tank Trailer 9 5 Axle Single Trailers 
44  2 Axle Bobtail Tractor 5 2 Axle 6 Tire Single Units 
45  3 Axle Single Unit Dump Truck 6 3 Axle Single Units 
46  3 Axle Single Box Trailer 8 4 or Less Axle Single Trailers 
47  Recreational Vehicle (Bus Type) 4 Buses 
48  2 Axle 6 Tire Recreational Vehicle 5 2 Axle 6 Tire Single Units 
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 REID Class 25 (Minivan) & Class 28 (Van)

  

   
 
REID Class 24 (SUV) & Class 3 (4 Tire Pickup) 

   

   
 
REID Class 3 (4 Tire Pickup) & Class 30 (2 Axle 6 Tire Pickup) 

   

  
 
REID Class 9 (5 Axle Single Box Trailer) & Class 37 (Gooseneck Moving Van) 

  

  
 
REID Class 36 (5 Axle Flatbed trailer) & Class 21 (Goose Neck Trailer) 

  

   

  

  

  

  

 

Figure 3.2.  Commonly misclassified vehicle types 

Undergraduate research assistants were hired to perform groundtruth tasks for vehicle classification and 

vehicle reidentification.  In vehicle classification groundtruthing, data entry errors were reduced by training 

research assistants to distinguish between commonly misclassified vehicles often encountered as shown in 

Figure 3.2. 
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In REID groundtruthing, additional camcorders were used in data collection II to provide additional view 

angles to determine vehicle trajectories between detector stations, identify vehicles entering and exiting 

ramps within the study corridor, as well as observe vehicles occluded from the main detector camcorders as 

shown in Figure 2.4.  This allowed research assistants to obtain a full groundtruth REID dataset of about 

1000 individual vehicles across four detector stations without missed vehicles. 

 

3.1.4 San Onofre Commercial Vehicle Classification 

Due to the variability of commercial vehicles profiles, a new vehicle classification scheme was designed to 

provide higher fidelity profile of commercial vehicle types.  The existing FHWA scheme F classification, 

which consists of 13 vehicle classes, is largely based on axle configuration.  This scheme does not provide 

detail on commercial vehicle types by their function or body configuration.  As a consequence, important 

data relating to commercial vehicle impacts due to their unique functions or configuration may not be 

revealed and understood in sufficient detail. 

 

To address this issue, a new commercial classification scheme consisting of four components was 

developed in this study.  It provides two main distinctions from the FHWA scheme F classification.  First, 

it provides independent classification of drive units and trailer units for multi-unit vehicles.  Second, it 

classifies each unit based on its axle configuration as well as its body type.  The body type classification 

offers a more comprehensive profile of commercial vehicles not achievable via the state of the practice 

FHWA scheme F.  Hence, unlike the FHWA scheme F classification, this scheme distinguishes the axle 

configuration of drive units and trailer units where they exist.  Hence, a two-axle semi-tractor pulling a 

single axle trailer would be distinguished from a three-axle semi-tractor pulling a tandem axle semi-trailer, 

while both vehicle types are recognized similarly under class 8 of the FHWA scheme F as four axle single 

trailers.  Table 3.2 and 3.3 shows the classification scheme of drive and trailer units based on axle 

configuration.  Table 3.4 and 3.5 shows drive and trailer units classification scheme according to body type.  

Figure 3.3 shows the detailed description of a sample 5-axle tractor trailer (FHWA F class 9) that is 

obtained by the new four-component commercial vehicle classification scheme. 
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Table 3.2.  Commercial Vehicle Drive Unit  Axle Configuration Classification Scheme 

Drive Unit Axle Config ID Drive Unit Axle Config 
-1 Invalid Vehicle 
0 Not Processed 
1 Single - Single 4 Tire 
2 Single - Single 6 Tire 
3 Single - Tandem 
4 Single - Triple Tandem 
5 Tandem - Tandem 
6 Triple Tandem - Triple Tandem 

 

Table 3.3.  Commercial Vehicle Trailer Unit  Axle Configuration Classification Scheme 

Trailer Unit Axle Config ID Trailer Unit Axle Config 
-1 Invalid Vehicle 
0 No Trailer 
1 Single on Small Trailer 
2 Tandem on Small Trailer 
3 Single on Semi-Trailer 
4 Tandem on Semi-Trailer 
5 Split Tandem on Semi-Trailer 
6 Triple Tandem on Semi-Trailer 
7 Single-Single on Single Trailer 
8 Single-Tandem on Single Trailer 
9 Four Axles on Semi-Trailer 
11 Single-Single-Single on Two Trailers 
12 Tandem-Single-Single on Two Trailers 
13 Five Axles on Two Trailers 
14 Six Axles on Two Trailers 
15 Seven Axles on Three Trailers 
16 Other Axle Configuration 
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Table 3.4.  Commercial Vehicle Drive Unit Body Classification Scheme 

Drive Unit Body ID Drive Unit Config Drive Unit Type 

-1 Invalid Vehicle Invalid Vehicle 
0 Not Processed Not Processed 
1 Passenger Vehicle Motorcycle 
2 Passenger Vehicle Sedan / Coupe / Estate 
3 Passenger Vehicle SUV 
4 Passenger Vehicle Minivan 
11 Platform Type Low Boy Platform 
12 Platform Type Basic Platform 
13 Platform Type Platform for Auto Transport 
21 Van Type Multi-Stop or Step Van (Degenerated) 
22 Van Type Enclosed Van 
23 Van Type Drop Frame Van 
24 Van Type Insulated Van (Degenerated) 
25 Van Type Open Top Van 
31 Specialized Use Trucks Automobile Transport 
32 Specialized Use Trucks Beverage Truck 
33 Specialized Use Trucks Concrete Mixer 
34 Specialized Use Trucks Dump Truck 
35 Specialized Use Trucks Grain Bodies 
36 Specialized Use Trucks Garbage Truck 
37 Specialized Use Trucks Livestock Truck (Degenerated) 
38 Specialized Use Trucks Oil Field Truck 
39 Specialized Use Trucks Pole, Logging, Pulpwood, or Pipe Truck 
40 Specialized Use Trucks Service Truck 
41 Specialized Use Trucks Dry Bulk Tank Truck (Degenerated) 
42 Specialized Use Trucks Chemical/Dry Bulk Tank Truck 
43 Specialized Use Trucks Utility Truck 
44 Specialized Use Trucks Winch or Crane Truck 
45 Specialized Use Trucks Wrecker 
46 Specialized Use Trucks Yard Tractor 
47 Specialized Use Trucks Other Truck Type 
51 Semi Tractor Conventional 
52 Semi Tractor Extended Cab 
53 Semi Tractor Cab-Over 
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Table 3.5.  Commercial Vehicle Trailer Unit Body Classification Scheme 

Trailer Unit Body ID Trailer Unit Config Trailer Unit Type 

0 No Trailer No Trailer 
11 Platform Basic Platform 
12 Platform Low Boy Platform 
13 Platform Platform with Devices 
14 Platform Box Container Chassis 
21 Van Enclosed Van 
22 Van Drop Frame Van 
23 Van 40' Box Container 
24 Van 20' Box Container 
31 Specialty Open Top Van (degenerated) 
32 Specialty Pole, Logging, Pipe (degenerated) 
33 Specialty Automobile Transport 
34 Specialty Grain Bodies (degenerated) 
35 Specialty Garbage 
36 Specialty Dump 
37 Specialty Chemical/Dry Bulk Tank 
38 Specialty Dry Bulk Tank (Degenerated) 
39 Specialty Concrete Mixer 
40 Specialty Beverage 
41 Specialty Construction 
42 Specialty 5th Wheel 
43 Specialty Other 
51 Vehicle Passenger / Small Vehicle 
52 Vehicle Truck 
61 Small Trailer / Dolly Small Trailer / Dolly 

 

 

 
Classification Type Class Description 

Drive Unit Axle 
Configuration 

3 Single Steering Axle, Tandem Drive 
Axles 

Trailer Unit Axle 
Configuration 

4 Tandem Trailer Axles on Single Semi 
Trailer 

Drive Unit Body 51 Conventional Tractor 

Trailer Unit Body 37 Chemical/Dry Bulk Tank 
 

Figure 3.3.  Example of Commercial Vehicle Vector Classification Scheme 
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A new groundtruth data entry system was designed and developed to manage this new commercial vehicle 

classification scheme to improve groundtruth efficiency as well as reduce potential data entry errors.  This 

system was designed with the Microsoft Access 2000 database platform integrated with a user interface 

based on Microsoft Visual Basic 6.0.  The groundtruth data entry system encompasses a quick query 

system shown in Figure 3.4 coupled with an intuitive graphical user interface with an array of pull-down 

classification selection menus for efficient classification data entry and visual validation of vehicle 

signatures corresponding to each vehicle record.  A screenshot of the commercial vehicle groundtruth data 

entry system is shown in Figure 3.5. 

 

 

Figure 3.4.  Vehicle Classification Signature Data Query input 
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Figure 3.5.  Commercial vehicle classification groundtruth data entry system 

 

3.2 Traffic Pattern Analysis 

This section provides a summary of the groundtruth work that has been completed as well as a description 

and basic analysis of the traffic characteristics from the data collection exercises. 

 

3.2.1 Groundtruth Results 

Table 3.6 shows the summary of groundtruth datasets obtained from each data collection exercise.  Table 

3.7 shows the classification of vehicles groundtruthed from data collection I into six broad vehicle 

categories.  In total, 3915 vehicles were analyzed.  Of these 3805 were classified using the scheme shown 

in Table 3.1.  106 vehicles could not be classified due to occlusion from other vehicles, while four vehicles 

either did not fit any of the described vehicle classifications or there was insufficient visual detail to fit 

them into a single classification.  A more detailed classification summary is shown in Table 3.8.  This 

classification scheme as described in Section 3.1.3 provides sub-classifications under the broad 

classification scheme shown in Table 3.1. 

 

Table 3.9 shows the summary of vehicles groundtruthed across four detector stations for data collection II.  

This data set is to be used for the development of multi-section REID models. 
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Table 3.6.  Summary of Groundtruth Results 

a.  Data collections I-IV 

 Location, Date & 
Time Period 

Detector Stations Post 
Mile 

Config Video Analysis Period Vehicles 
Analyzed 

Vehicles 
Classified 

Comments

I 
NB I-5 in Anaheim 
Nov 30 2004 
AM Peak 

Crescent 40.01 D1-R2 Yes 6:48am – 7:27am 3915 3805  
Gilbert 41.42 D-R No None N/A N/A Data Error 

II 
NB I-405 in Irvine 
Mar 11 2005 
AM Peak 

Laguna Canyon 1 2.23 S-S Yes 6:50am – 7:10am 3314 3314 Irregular signatures on lane 3 
Laguna Canyon 2 2.35 S-R Yes 6:50am – 7:10am 3314 3314 Irregular signatures on lane 6 
Sand Canyon 2.99 S-S Yes 6:50am – 6:57am 1028 1028  
Jeffrey 3.31 S-R Yes 6:50am – 6:57am 1028 1028  

III 
SB I-5 in Anaheim 
Apr 7 2005 
AM Peak 

Gilbert 41.42 D-R No None N/A N/A  
Crescent 40.01 D-R Yes 6:03am – 10:20am 32,294 None  

IV 
NB I-405 in Irvine 
Nov 16 2005 
PM Peak 

Laguna Canyon 1 2.23 D-S No 3:00pm – 7:00pm None N/A  
Laguna Canyon 2 2.35 S-R No 3:00pm – 7:00pm None N/A  
Sand Canyon 2.99 D-S No 3:00pm – 7:00pm None N/A  
Jeffrey 3.31 S-R No 3:00pm – 7:00pm None N/A  
Harvard 6.21 S-R Yes 3:30pm – 7:00pm None None System up after 3:30pm 
Red Hill 8.40 S-R No 4:00pm – 7:00pm None N/A System up after 4pm 

 

1D: Double Loop Configuration, S: Single Loop Configuration 
2R: 6-ft Diameter Round Loop, S: 6x6ft Square Loop, B: Blade™ Loop 
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b.  Data collections V-VI 

 Location, Date & 
Time Period 

Detector Stations Post 
Mile 

Config Video Analysis Period Vehicles 
Analyzed 

Vehicles 
Classified 

Comments

V 
NB I-405 in Irvine 
Nov 17 2005 
AM Peak 

Laguna Canyon 1 2.23 D-S Yes 6:00am – 10:00am 32,462 None  
Laguna Canyon 2 2.35 S-R Yes N/A N/A N/A System Down 
Sand Canyon 2.99 D-S Yes 6:00am – 10:00am 31,238 None  
Jeffrey 3.31 S-R No 6:00am – 10:00am 34,348 N/A  
Yale 5.01 S-R Yes 6:00am – 10:00am 36,669 None  
Spruce 5.05 S-R No 6:13am – 10:00am 35,439 N/A  
Harvard 6.21 S-R Yes 6:00am – 10:00am 40,163 None  
Red Hill 8.40 S-R Yes 6:00am – 10:00am 24,300 None  

          

VI 
SB San Onofre 
Weigh Facility 
May 2 2006 – May 
12 2006 

Upstream - D-B Yes May 2 2006 206   
Upstream - S-R,D-B Yes May 3 2006 1057 1029  
Downstream - S-R,D-B Yes May 3 2006 378 232 Preformed Round Loops Failed 
Upstream - D-B Yes May 4 2006 1394  Preformed Round Loops Failed 
Downstream - D-B Yes May 4 2006    
Upstream - D-B Yes May 5 2006 2661   
Downstream - D-B Yes May 5 2006    
Upstream - D-B Yes May 8 2006 2751   
Downstream - D-B Yes May 8 2006    
Upstream - D-B Yes May 9 2006 2586   
Downstream - D-B Yes May 9 2006    
Upstream - D-B Yes May 10 2006 2671   
Downstream - D-B Yes May 10 2006    
Upstream - D-B Yes May 11 2006 2692   
Upstream - D-B Yes May 12 2006 721   

 

1D: Double Loop Configuration, S: Single Loop Configuration 
2R: 6-ft Diameter Round Loop, S: 6x6ft Square Loop, B: Blade™ Loop 
 

 



Table 3.7.  Condensed vehicle classification summary at NB I-5 Crescent Detector Station on Nov 30 2005 
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Table 3.8.  Expanded vehicle classification summary at NB I-5 Crescent Detector Station on Nov 30 2005 
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Table 3.9.  Summary of groundtruthed vehicles along NB I-405 corridor on March 11 2005 

From \ To Laguna Canyon 2 Sand Canyon Jeffrey
Laguna Canyon 1 3314 1008 1006
Laguna Canyon 2 1008 1006

Sand Canyon 1028  
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Figure 3.6 shows the video and signature data collection periods for the San Onofre data collection exercise 

over nine different days at the upstream and downstream detector locations. 

 

      

















































 

Figure 3.6.  Vehicle signature  and video data coverage for San Onofre data collection exercise 

 

3.2.2 Traffic Characteristics 

Figure 3.7 shows the time-mean speed and traffic flow during the data collection period in data collection 

III in Anaheim (see Table 2.1).  The speeds were obtained via double loop speed traps.  The speed was 

calculated as the distance between the leading edge of the loops (20 feet) divided by the headway between 

pairs of points on the leading edge of signature records from an individual vehicle where the inductance 

magnitude corresponds to 0.5 of the peak magnitude of each inductance signature, as shown in Figure 3.8.  

The coverage of peak and off-peak periods as indicated by the shift in time-mean speeds make this dataset 

a prime candidate for developing speed estimation models. 
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Figure 3.7.  SB I-5 Time-Mean Speed and Traffic Flow at Crescent Detector Station on April 17 2005 

 

 

 












 

Figure 3.8.  Headway between inductance signatures obtained from double loop speed traps 

 

Figures 3.9 and 3.10 show the corridor travel time obtained from control vehicles operating as floating 

vehicles in data collections IV and V.  Each plot shows the travel time to each specified detector station 

from the Laguna Canyon 1 detector station.  Figure 3.11 shows the traffic flow conditions at each detector 

station in data collection exercise V. 
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Figure 3.9.  I-405 Corridor PM Peak Travel Time on Nov 16 2005 from floating vehicles 

 

 


































































































 

Figure 3.10.  I-405 Corridor AM Peak Travel Time on Nov 17 2005 from floating vehicles 
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Figure 3.11.  Traffic Flow at Detector Stations along NB I-405 on Nov 17 2005 

Figure 3.12 shows the variation of traffic flow at the upstream detector station across time-of-day during 

the data collection exercise.  A distinct peak can be observed between 9:30am and 11:30am across all days, 

with a gradual decrease towards the end of the day.  The sudden drops in flow are attributed to closure of 

the facility.  During the peak period, the closure was used to clear the backup of vehicles to prevent them 

from spilling onto the main line freeway.  The drop in flow observed in the afternoon on May 10 2006 

between 3pm and 4pm was due to the closure of the facility to remove the preformed round inductive loop 

sensors at both the upstream and downstream detector station locations.  Figure 3.13 shows the distribution 

of speeds of commercial vehicles crossing the upstream detector station over the data collection period on 

May 3 2006. 
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Figure 3.12.  Traffic Flow at San Onofre upstream detector station 

 





















































 

Figure 3.13.  Speed distribution of vehicles at San Onofre upstream detector station on May 3 2006 
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3.3 Field Problems Encountered 

3.3.1 Unstable 12V Output from Portable Generator 

It was found that the 12V output from the portable generator was unstable and could not be used operate 

the IST-222 detector cards.  The IST-222 cards were sensitive to the power fluctuations from the 12V DC 

outlets of the portable generator and would not power up.  A regulated 12V DC adapter was used to 

connect to the 110V AC output of the portable generator to address this problem.  This provided a more 

stable 12V output that was able to operate the IST-222 detector cards without any power issues. 

 

3.3.2 Failure of Preformed Round Inductance Loops 

The preformed round inductance loops had a significantly shorter operational life compared with the 

Blade™ inductance sensors.  At the upstream location, intermittent failure of the preformed loop sensor 

was observed from 14:51:29 on the first day of operation on May 3 2006.  This was characterized by 

abnormal spikes found within some of the vehicle signatures as shown in Figure 3.14.  Total failure was 

observed the following day on May 4 2006, when no data could be obtained from the sensors.  At the 

downstream location, intermittent failure was first observed one day after the installation on May 4 2006.  

The intermittent failure deteriorated into total failure at 12:43:11 on May 4 2006.  The characteristics of the 

loop sensor failure at the downstream station were found to be similar to those at the upstream station.  Due 

to significant loss of information in the vehicle signatures caused by the intermittent failure, all signatures 

obtained during the intermittent failure period were not suitable for further signature analysis. 

 

 

Figure 3.14.  Vehicle signature from preformed round inductive loop sensor with abnormal spikes 
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In the temporary installation configuration, the t-junction where the lead connects to the inductance loop is 

exposed, and is a weakness point subjected to frequent wheel loads.  This is believed to be the main 

contribution to the premature failure of the sensors. 

 

A new installation configuration shown in Figure 3.15 was proposed by the equipment manufacturer, which 

would require longer lead cables, but would place the weakness point at the center of the lane, away from 

wheel loads.  New loops were provided and delivered at no additional cost by the equipment manufacturer.  

In addition, protective caps were provided to ensure adequate protection to the t-junction.  However, the 

replacement equipment did not arrive in time for use in the remaining duration of the data collection 

exercise. 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 3.15.  Proposed installation configuration of preformed surface-mounted inductive loop sensor 

 

3.3.3 Failure of Blade™ Inductance Sensors 

The Blade™ sensors at the downstream location completely failed between 10 days and 11 days after 

installation.  The sensors at the upstream location were operational as of May 12 2006, 12 days after 

installation.  The failures of these Blade™ sensors are most likely attributable to fatigue due to pavement 

defects.  It was found that the quality of pavement at the downstream location was visibly poorer than the 

upstream location.  The pavement defects include cement spills, quarter-sized cavities and a half-inch offset 

between the pavement and shoulder. 

 

The double Blade™ sensors at the upstream location were found to be defective on June 7 2006.  Since the 

sensors were previously inspected on May 12 2006, the failure would have occurred between these two 

dates.  From inspection of the sensors, the most probably cause of failure is the wearing of the asphaltic 

 35 



tape protection which exposed the Blade™ sensor wires to direct wheel impacts and subsequent breakage 

as shown in Figure 3.16.  This indicates that additional layers of asphaltic tapes may be required for added 

protection to extend the operational lifespan of the temporary Blade™ sensor setup.  It is also observed that 

the sensors wires were clearly exposed where gaps in the pavement are present.  This may indicate that 

these gaps cause additional fatigue to the sensors and contribute to accelerated wear. 

 

 

  

  

Figure 3.16.  Figures showing exposed and broken inductive sensor wires of temporary Blade™ sensor due 
to road wear 

 

3.3.4 Noise effects in Blade™ Sensor Data 

Although Blade™ signature data was collected over a period of ten days, it was found that a significant 

proportion of the data was unusable due to the presence of excessive white noise within the signature data.  

It was generally observed that signature data obtained from the downstream detector station contained more 

white noise than the upstream detector station location.  Post data collection analysis showed that data from 

the upstream detector station on May 3 2006 showed the least amount of white noise influence.  Due to the 

nature of the data collection exercise, these effects were not known at the time of data collection.  As a 

result, the exact cause cannot be fully determined in this study.  However, discussion with the sensor 

manufacturer revealed some potential factors that may have caused the white noise problems encountered, 
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and are described as follows, and are recommended to be addressed in future studies on Blade™ inductive 

sensors for improving data quality: 

 

3.3.4.1 Insufficient turns in lead-in cables 

It was noted that the manufacturer provided lead-in cables with one turn per foot.  Since Blade™ signature 

data are inherently smaller in magnitude due to a smaller inductance field generated by Blade™ inductive 

sensors compared with conventional loop sensors, the signal-to-noise ratio in Blade™ signature data would 

be more significant.  Hence, the number of turns-per-foot for the lead-in cables provided of this data 

collection may have been insufficient to effectively cancel out noise from the data stream. 

 

3.3.4.2 Length of lead-in cables 

The lead-in cables at the upstream detector station were about 30 feet in length, while those at the 

downstream location were about 60 feet in length.  Since noise increases with data transmission distance, 

this may be a factor, especially considering the nominal number of turns in lead-in cables. 

 

3.3.4.3 Temporary installation configuration 

The Blade™ inductive sensors were installed in a temporary configuration for this data collection exercise.  

Due to the surface mount nature of the installation, the sensors were subject to wheel impacts of passing 

vehicles.  The wheel impacts may have a two-fold effect on the data quality.  Each wheel impact may cause 

a slight movement in the sensors.  As a consequence, noise may be generated due to the sensitivity of the 

sensors to movements.  Also, the sustained impact of wheels on the sensors leads to wear on the asphalt 

tape protection as well as the sensor wires, which may affect the integrity of the sensors themselves.  It 

should be noted that these problems may be addressed by adopting a permanent sensor installation 

configuration, where the sensors are embedded within the pavement and protected from wheel impacts of 

passing vehicles. 
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CHAPTER 4   SINGLE LOOP SPEED ESTIMATION 

4.1 Introduction 

The objective of this study is to develop an innovative and transferable speed estimation model from single 

inductive loop detectors.  In this study, individual vehicle speed estimation is proposed instead of 

aggregated values.  Also, rather than assuming a uniform vehicle effective length, each vehicle is assigned 

to one of several predefined vehicle groups.  This procedure clusters vehicles into homogenous types that 

share similar effective vehicle lengths.  Different statistical models are then applied to each cluster to more 

accurately estimate individual vehicle speeds.  Furthermore, even though new detector cards are used, the 

approach is cost effective because existing loop infrastructure can be deployed without incurring any 

additional construction cost.  The use of non-intrusive traffic sensors is also preferred from a privacy 

viewpoint.   

 

In summary, the innovative elements of this study are 

• Individual Speed Estimation 

• Automated Vehicle Grouping for Accurate Vehicle Speed Estimation 

• Reliable Transferability of Speed Estimation Model 

 

4.2 Feature Analysis 

Several feature vectors can be obtained by processing raw signature data.  These feature vectors are divided 

into two categories: vehicle specific feature vector and traffic specific feature vector.  Vehicle specific 

feature vector represents the elements that are unique to individual vehicles and are therefore invariant over 

time or location.  An example of such a feature is vehicle length.  In contrast, traffic specific feature vector 

represents features that can either describe traffic condition or road geometry.  Illustrations of feature 

vectors are presented in Table 4.1 as well as in Figures 4.1 and 4.2.  A major step in feature extraction is 

magnitude normalization.  This normalization helps to identify vehicle presence by retrieving valid 

signature form and by distinguishing from noise data, which would not have been possible from 

conventional binary loop output.  Figure 4.1 illustrates the need for magnitude-axis normalization.   
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Table 4.1.  Signature Feature Vectors Description 

Description
Maximum Magnitude Maximum absolute magnitude (a)

Shape Parameter (SP) b / (b+c)

Degree of Symmetry (DOS) Sum of the distance from median (e) to 
each point that is above "0.5" y value 

Electronic Vehicle Length (f), obtained only when speed is known
Vehicle Statistics (Mean, 

Standard Deviation, Skew 
Kurtosis, Median)

Median, 1st, 2nd, 3rd, 4th moment of 
normalized signature

Occupancy, Duration Total vehicle time on loop
Lane Lane information

Slew Rate Slope value at "0.5" y point (d)
Speed

Vehicle Specific Feature

Signature Feature Vectors

Traffic Specific Feature

 
 

 

 

Figure 4.1.  Before/After Normalization Comparison of Identical Vehicle at Different Lanes (Need of Y-
axis Normalization) 
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Figure 4.2.  Feature Extraction Procedure 
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As mentioned earlier, the proposed speed estimation model is divided into two stages: a vehicle grouping 

module and a statistical module.  An analysis of vehicle signature features was performed to determine the 

optimal input(s) for each module.  The correlation coefficient (CC) is used as a criterion for input selection.   
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Vehicle speed can be expressed as a function of occupancy and effective vehicle length.  When vehicles are 

grouped into homogenous vehicle types that share similar effective vehicle length, accurate speed 

estimation can be achieved using an appropriate g factor, which is in turn highly related to effective vehicle 

lengths.  Hence, the main objective of the vehicle grouping module is to group similar sized vehicles.  

However, vehicle length is only obtainable once the corresponding vehicle speed is known.  Therefore, the 

feature vectors that are highly correlated with vehicle length should be examined for the vehicle grouping 

module.  From Table 4.2, SP, Skew and Median showed high correlation with effective vehicle length – 

with CC values over 0.5 – among other features analyzed.  Another consideration in the choice of feature 

vectors is multi-collinearity.  To address this issue, only SP was selected as an input variable in the vehicle 

grouping module, since it shows the highest CC with vehicle length.  Another major reason to choose only 

one feature vector is the computational load constraint in real-time implementation.  Assuming a moderate 

traffic volume of 1200 vphpl with a 6 lane freeway section, the average traffic volume during 60 seconds is 

around 120 vehicles.  This would take computers equipped with Pentium 2.4 GHz CPU and 1.00 GB RAM 

50 seconds of CPU time to generate the SP feature.  In contrast, the processing for the whole feature vector 

extraction takes about 254 seconds of CPU time.  This would be undesirable in real time deployment, as the 

algorithm computational time is of the essence in travel information systems, since any significant delay 

may render such information obsolete.  

 

Speed-related feature vectors were examined to determine the statistical module inputs.  From Table 4.2, it 

is obvious that features slew-rate (SR) and inverse duration (InvDUR) have a high linear relationship with 

speed.  Figure 4.3 illustrates the relationships among these features.  Figure 4.3a presents different vehicle 

signatures at different speeds from a single control vehicle.  This shows that the signature form is highly 

dependent on vehicle speed.  In this case, SR is the signature feature that varies along with the 

corresponding vehicle speed.  As vehicle speed increases, signature SR becomes steeper suggesting a 

positive relationship between the two variables.  Occupancy or duration is another significant variable that 
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relates to vehicle speed.  Figure 4.3b illustrates two vehicle signatures that have same occupancy/duration 

but operate at different speeds.  If the same g factor were used for these two vehicles, as suggested in 

previous studies, then the result would be the same speed values, yielding potentially significant errors in 

speed estimation.  This strengthens the importance of effective vehicle length in the speed estimation 

process as well as the vehicle grouping module. 

 

Table 4.2.  Correlation Matrix 

 Speed SR InvDUR SP DOS Mean STD Skew Median Kurt Length
Speed 1.000 .893 .925 .011 -.001 .066 .025 -.046 .063 -.020 -.116 

SR .893 1.000 .467 .048 .024 .190 -.074 -.162 .175 .052 -.202 
InvDUR .925 .467 1.000 .200 .178 .276 -.011 -.248 .273 -.011 -.398 

SP .011 .048 .200 1.000 .912 .464 -.161 -.659 .661 .059 -.688 
DOS -.001 .024 .178 .912 1.000 .434 -.073 -.437 .436 -.007 -.404 
Mean .066 .190 .276 .464 .434 1.000 -.295 -.967 .972 .373 -.461 
STD .025 -.074 -.011 -.161 -.073 -.295 1.000 .337 -.225 -.742 .137 
Skew -.046 -.162 -.248 -.659 -.437 -.967 .337 1.000 -.954 -.473 .598 

Median .063 .175 .273 .661 .436 .972 -.225 -.954 1.000 .337 -.639 
Kurt -.020 .052 -.011 .059 -.007 .373 -.742 -.473 .337 1.000 -.025 

Length -.116 -.202 -.398 -.688 -.404 -.461 .137 .598 -.639 -.025 1.000 
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Figure 4.3a.  Identical Vehicle at Different Speeds 

 

Figure 4.3b.  Same Duration for Different Vehicles 

Figure 4.3.  Speeds and Vehicle Feature Vectors 

 

4.3 Study Site and Data Description 

The datasets used in this study were collected from three different locations equipped in a double loop 

configuration.  Speeds from double loop speed traps were used as ground truth speeds for model building 

and testing.  To replicate a single loop configuration, vehicle signature data from one loop was selected. 
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Datasets from two of the locations were collected from a previous study from the Traffic Detector and 

Surveillance Sub-Testbed (TDS2), and is described in the following paragraph.  The third dataset was 

obtained through data collection III from the southbound I-5 freeway in Anaheim as described in Chapter 2. 

 

The TDS2, one of the study sites of this study, consists of two contiguous sites on the seven-lane I-405 

freeway, within the City of Irvine.  The section is about 0.7 mile long and is equipped with different traffic 

sensors in both upstream and downstream.  The overall purpose of the TDS2 is to provide a real-world 

laboratory for the development and evaluation of emerging traffic detection and surveillance technologies.  

There are seven lanes on the upstream site at Laguna Canyon, including one that merges with the adjacent 

lane within the section.  At the downstream site, Sand Canyon, there are two HOV lanes, four mainstream 

lanes and one off-ramp lane.  Standard double square loops (6’×6’) were implemented at these locations.  

The datasets from October 6th to 8th, 2002 at the upstream station were used as a calibration dataset.  The 

analysis time period was four hours - from 6:00 am to 10:00 am. The AM peak was chosen to cover a wide 

range of speeds.  The October 9th, 2002 dataset was chosen to test the spatial and temporal transferability of 

the developed models.  Most of the datasets showed individual true speeds ranging from 22 to 97 mph, with 

an average speed range of 58 to 65 mph and standard deviation around 17.5 mph.  In most cases, the traffic 

flow pattern showed low to moderate flow characteristics within a range of 750 - 1000 vphpl.  Figure 4.4 

shows the TDS2 study site.  From the dataset obtained from data collection III, half of it was randomly 

selected for a calibration set and the rest was used as a testing set.   

 

 

Figure 4.4.  TDS2, I-405 Study Site 
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4.4 Model Development 

4.4.1 Vehicle Grouping Module 

The objective of cluster analysis is to identify a smaller number of groups such that elements belonging to a 

given group are more similar to each other than elements belonging to other groups.  The vehicle grouping 

module attempts to cluster vehicles that share similar vehicle feature vectors, such that vehicles in the same 

group have similar effective vehicle length.  In this study, a one level decision tree technique was applied to 

group vehicles into homogenous clusters.  This step aids in the efficiency of regression models to be 

estimated within each group by accounting for effective vehicle length.  Furthermore, clustering allows the 

developed model to be more sensitive to the vehicle type composition in the field since individual vehicles 

would be assigned to the group that provides the best speed estimation based on its characteristics.  Besides 

selecting a clustering technique, the optimal number of clusters should also be investigated.  The Wilk’s λ 

likelihood ratio, as defined below, is a useful method to determine the optimal cluster size selection.   
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In general, the optimal cluster size is achieved when the marginal Wilk’s λ ratio change is minimal.  In this 

study, a cluster size of six was chosen as the optimal cluster number based on the variation of the Wilk’s λ 

ratio.   

 

4.4.2 Statistical Module 

Based on the feature vector analysis from the previous section, the following linear regression model was 

used to estimate the speed of each individual vehicle i within each vehicle group.  Instead of using Duration 

directly, this variable was transformed into an inverse function for better and clear linear relationship with 

speed. 
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InvDurSRS iiiest cba ⋅+⋅+=_
 

 

where 

Sest_i : Estimated speed of individual vehicle i 

SRi : Slew rate of individual vehicle i 

InvDuri : Inverse duration of individual vehicle i 

a, b, c : Regression parameters 

 

It should be noted that the Duration is not only dependent on vehicle speed but also on detector layouts.  In 

California, detector shapes and sizes follow Caltrans standards, such that round loops (Type E) have a 6’ 

diameter and square loops have a 6’ length at each side.  For identical vehicles at the same speed, Duration 

from a square loop tends to be higher compared to that of a round loop because of loop turn off time 

differences and loop end effects.  Therefore, different regression models for each loop configuration were 

investigated and developed.  In Table 4.3, the final regression models for each case are presented with t 

statistics, F statistics and adjusted R2. 
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Table 4.3.  Regression Model Results 

a.  Square Loop Model 

 Statistical Model 
(t value) 

Adjusted R2 

 
F value 

Group 1  32.564+ 559.121SR + 26.217InvDur 
 (9.866)   (5.317)           (7.496) 

0.585 56.607 

Group 2  34.243+ 1072.902SR + 12.972InvDur 
 (18.538)   (11.497)           (7.014) 

0.640 146.630 

Group 3  8.819+ 1240.652SR + 22.882InvDur 
 (6.024)   (9.621)           (13.417) 

0.822 814.293 

Group 4  -5.912+ 943.585SR + 32.104InvDur 
 (-72.202)   (83.523)         (257.894) 

0.984 400889.76 

Group 5  -6.857+ 419.221SR + 36.846InvDur 
 (-60.151)   (20.034)           (159.647) 

0.986 191414.04 

Group 6  -2.429+ 927.362SR + 28.020InvDur 
 (-3.040)   (9.435)           (25.779) 

0.938 2773.406 

 
b.  Round Loop Model 

 Statistical Model 
(t value) 

Adjusted R2 

 
F value 

Group 1  13.353+ 1723.006SR + 4.303InvDur 
 (15.635)   (10.349)          (8.264) 

0.608 362.482 

Group 2  14.701+ 1149.654SR + 10.269InvDur 
 (22.628)   (9.793)           (14.872) 

0.558 598.136 

Group 3  11.340+ 1333.063SR + 9.138InvDur 
 (16.915)   (13.411)          (17.417) 

0.748 1031.623 

Group 4  4.330+ 961.109SR + 7746.440InvDur 
 (23.355)   (39.632)        (93.096) 

0.949 27748.770 

Group 5  1.445+ 517.214SR + 8.641InvDur 
 (23.459)   (50.231)          (277.763) 

0.960 274966.05 

Group 6  4.197+ 1049.049SR + 6.026InvDur 
 (10.950)   (15.830)          (31.070) 

0.916 4766.411 

 
 

The regression coefficient signs of each input variable were as expected, showing a positive correlation 

with speeds.  It is also interesting to note that in both loop configurations, the adjusted R2 values for group 

4,5 and 6 were greater than 0.9 whereas the other groups showed relatively low values, especially in group 

1 and 2.  This arises from the fact that adjusted R2 is dependent on sample size – in contrast, once the 

sample size is beyond a certain point, usually 120, t-statistics and F-statistics become independent of 

sample size. 
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The threshold value of t-statistics at the significance level of α = 0.05 is 1.960, by following ⎟
⎠
⎞

⎜
⎝
⎛ − pnt ;

2
α .  

In this study, all the t-statistics are greater than this threshold value, so it can be concluded that each input 

variable has a significant effect on the regression models.  Hypothesis tests based on F statistics were also 

performed to evaluate the regression coefficients linear association with dependent variable: speed.  The 

hypotheses are:  
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Because the sample number for each vehicle group is over 120 for all cases, the threshold value of the F 

statistic at α = 0.05 significance level is 19.5.  With this threshold value, we can reject the null hypothesis 

and accept the alternative H1 for all the developed regression models.  The overall speed estimation model 

procedure is shown in Figure 4.5. 
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Figure 4.5.  Overall Procedure 

 

4.5 Result Analysis 

4.5.1 Vehicle Grouping Module 

The vehicle grouping module attempts to cluster vehicles into “homogenous” groups while maximizing the 

heterogeneity between groups.  Therefore, the degree of vehicle feature similarity within groups can be 

regarded as a module performance index.  Because the effective vehicle length is the major factor in speed 

estimation, statistics of vehicle length of each group, especially the standard deviations of vehicle length 

were examined.  Table 4.4 presents statistical results of vehicle length for each group (these were obtained 
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form the ground-truth speed trap speeds).  The AAE and APE columns represent the Average Absolute 

Error and Average Percentage Error in speeds for each group.  The definition of those terms are described 

in the next section.   

 

As shown in Table 4.4, vehicle length variance tends to be positively correlated with the average vehicle 

length of the corresponding group.  In both datasets, vehicle groups 4 and 5 cover a large portion of the 

datasets and most of the vehicle classes were passenger cars, SUVs, and minivans.  As I-5 is a state truck 

route and the location is close to warehouses and big malls, many long vehicles were observed in the 

dataset.  It is also interesting to observe that the speed percentage error was positively related to the vehicle 

length, particularly for the I-5 test dataset.   

 

Table 4.4.  Vehicle Group Statistics 

a. I-405 Vehicle Group Statistics – Upstream Temporal Test Dataset 

 Volume Volume Ratio Length Length STD AAE mph APE % 
Group1 138 0.68 18.855 2.690 5.347 8.317 
Group2 306 1.51 15.533 4.749 5.580 9.909 
Group3 224 1.11 7.758 3.322 5.973 10.582 
Group4 15882 78.45 4.647 0.622 2.217 3.564 
Group5 3484 17.21 4.512 0.563 1.924 3.378 
Group6 212 1.05 5.020 1.920 4.466 8.014 

 20246      
 

 
b. I-5 Vehicle Group Statistics – Test Dataset 

 Volume Volume Ratio Length Length STD AAE mph APE % 
Group1 210 1.36 13.906 5.932 7.370 34.026 
Group2 475 3.07 16.627 4.002 8.876 31.503 
Group3 322 2.08 12.746 4.582 7.390 22.903 
Group4 2843 18.35 5.559 1.525 4.346 10.667 
Group5 11203 72.31 4.691 0.765 2.638 6.220 
Group6 439 2.83 4.764 1.830 3.608 11.029 

15492       
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4.5.2 Statistical Module 

4.5.2.1 Evaluation Criteria 

The following two quantitative performance measurements, Average Absolute Error (AAE) and Average 

Percentage Error (APE), were used to evaluate the performance of the developed models.   

 

Average Absolute Error (AAE) 

 

Average Absolute Error (AAE) measures the mean of absolute speed error estimates for the corresponding 

dataset.   
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Average Percentage Error (APE) 

 

Average Percentage Error (APE) measures the average of absolute percentage speed errors.  Depending on 

the true speed range, different APE values can be derived even with the same AAE values.   
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One of the important aspects of this study is the spatial and temporal transferability of the developed speed 

estimation models.  High transferability permits easy implementation and integration with existing systems 

without the need for elaborate time and site specific calibration procedures.  For this evaluation, the 
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datasets from the I-405 study sites were investigated, since vehicle signatures were collected from two 

different locations on different dates. The dataset from October 9th at the upstream station was used to test 

the proposed model temporal transferability.  The downstream dataset of the same day was applied to 

evaluate spatial transferability.   

 

4.5.2.2 Individual Vehicle Speed Results Analysis 

The average individual speed error is presented in Table 4.5 and results show very promising AAE values, 

less than 3.5 mph for all cases.  The difference in AAE between both datasets was around 1 mph.  While 

the APE % values were quite low, the difference in APE %’s between the two freeways was noticeable.  

This observation may be due to different speed distributions over the datasets, with stop and go traffic 

being significantly more prevalent in the I-5 dataset.   

 

Table 4.5.  Individual Estimated Speed Error Analysis 

Dataset I-405 I-5 
 AAE mph APE % AAE mph APE % 

Calibration 2.16 3.93 3.33 8.67 
Test (Temporal) 2.30 3.78 

Test (Spatial) 2.22 3.55 
3.32 8.68 

 
 

Detailed descriptions of the individual errors for each group were presented in Table 4.4.  It should be 

noted that the speed percentage error increases as vehicle length variance increases.  For example, vehicle 

groups 1, 2, and 3 show relatively high variance in length for both loop detector layouts.  Consequently, the 

corresponding groups’ speed errors also indicate high values.  This is especially noticeable in the I-5 

dataset, where the percentage errors for those groups were quite high compared to the square loop cases.  

These larger errors probably arose from factors due to traffic pattern, which was near capacity for a 

significant portion of the data collection period.  This can be illustrated in the following example: consider 

a vehicle with true speed of 60 mph and estimated speed of 50 mph, and another vehicle with true speed of 

30 mph and estimated speed of 20 mph.  In both cases, the absolute speed errors are identical at 10 mph but 

the percentage error is 16.67% in the case where the true speed is 60 mph and 33.3% in case where the true 

speed is 30 mph.  This explains the relatively high percentage error in the I-5 datasets for long vehicle 

length groups since these vehicles tend to drive at lower speeds.  Also, as mentioned earlier, stop-and-go 

traffic patterns at speeds less than 15 mph were commonly observed.  However, because the portion of 

these vehicle groups is relatively low, its impact on APE is not as significant.  In Figure 4.6, scatter plots of 

the speed results are presented.  The solid lines in both figures denote a 45 - degree line and the estimated 

speeds are concentrated along these lines. 
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I-405 Upstream Temporal Test Dataset   I-5 Test Dataset   

Figure 4.6.  Individual Speed Analysis 

 

4.5.2.3 Aggregated Speed Analysis 

For real-time traffic operations purposes, knowing aggregate speeds during certain short time intervals such 

as 30 seconds or 60 seconds can be extremely valuable.  In Table 4.6, aggregated speed estimation results 

are presented for two such time aggregation intervals.  Even under the shorter aggregation interval of 30 

seconds, the estimation results were encouraging, with APE values less than 3 % across all datasets.  Figure 

4.7 illustrates speed plots over the analysis time period at a 60 second aggregation interval.  The overall 

estimation trend lines follow the true speeds very closely.  Speed drops and changes at the I-5 site can be 

clearly seen, which explains the high standard deviations of the true speed distribution.   

 

Table 4.6.  Aggregated Estimated Speed Error Analysis 

a.  30 Seconds Aggregation Interval 

Dataset I-405 I-5 
 AAE mph APE % AAE mph APE % 

Calibration 0.74 1.38 1.18 2.83 
Test (Temporal) 0.75 1.28 

Test (Spatial) 1.12 1.76 
1.18 2.80 

 

 
b.  60 Seconds Aggregation Interval 

Dataset I-405 I-5 
 AAE mph APE % AAE mph APE % 

 Calibration 0.67 1.26 1.09 2.58 
 Test (Temporal) 0.67 1.16  
 Test (Spatial) 1.18 1.78 

1.08 2.57 
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a.  I-405 : Upstream Temporal Test Dataset 

 

b.  I-405 : Downstream Spatial Test Dataset 

 

c.  I-5 : Test Dataset 

Figure 4.7.  Aggregated Speed Analysis 
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4.6 Remarks and Findings 

This study presented a new single loop speed estimation model system.  The proposed model estimates 

individual speeds in two stages.  Vehicle grouping is first accomplished based on extracted inductive 

vehicle signature features.  The influence of vehicle length on speed estimation is considered at this stage.  

Statistical analysis followed in the next step and each vehicle group was assigned a corresponding speed 

estimation module.  Results for individual vehicle speeds as well as aggregated speeds were most 

promising.  The proposed model transferability test was also performed yielding very encouraging results.  

This provides encouraging initial evidence that the proposed model might be implemented and integrated 

with existing loop systems without extensive temporal and site specific calibration.  In addition, the vehicle 

grouping module can also be operated as an automated vehicle classifier, and could contribute to generating 

essential information for more accurate analysis of road maintenance and air pollution.  Moreover, the new 

detector card that generated the vehicle signatures is cost-effective as it can be integrated with existing loop 

infrastructure.  Also, unlike other sensors that require unique vehicle identity, such as AVI, this system is 

non-intrusive and anonymous. 

 

Considering the current freeway loop system configuration, the proposed single loop speed estimation 

model holds many advantages, including time and cost effectiveness.  
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CHAPTER 5   CONVENTIONAL LOOP SENSOR VEHICLE CLASSIFICATION 

This chapter presents a new vehicle classification model based on the Piecewise Slope Rate (PSR) 

approach.  A heuristic method combined with decision tree and K-means clustering approaches is proposed 

to develop a vehicle classification model.  The features used in the proposed model are extracted from PSR 

values. 

 

5.1 Background 

Vehicle classification is the process of separating vehicles based on given vehicle features according to a 

set of predefined classes.  Vehicle classification information is useful in different transportation 

applications including vehicle reidentification, road management and maintenance, roadway design, 

emissions evaluation, multi-mode traffic modeling development, transportation planning, traffic control, 

traffic signal design (especially for public transit), traffic safety improvement, toll systems assessment, etc.   

 

For example, heavier vehicles such as trucks and oversized vehicles possess different performance 

characteristics from light vehicles and passenger cars.  The former have longer braking distances and 

operate at slower speeds on the average, occupy more road space and cause more damage to pavements.  

Monitoring heavy vehicles on a roadway will help in pavement design improvements, estimating the life of 

current road surface and in scheduling road maintenance.  With vehicle classification information, traffic 

agencies can efficiently allocate resources for roadway design. 

 

Obtaining vehicle classes is also useful for evaluating environmental impacts since the degree of airborne 

and noise emissions vary between different vehicle classes.  Moreover, in terms of traffic flow modeling, 

more reliable modeling and simulation of the real world can be achieved by observing the heterogeneity of 

traffic.  In traffic operations, vehicle class is one of the important traffic measurements.  Thus, it may help 

to convey and predict traffic conditions accurately through traffic control strategies. 

 

In addition, the severity of traffic accidents is highly correlated with vehicle types (Garrott et al., 1999), 

because the speeds are usually significantly different between trucks and passenger cars, and trucks are 

much larger than passenger cars.  Therefore, improvement of freeway safety can also benefit from vehicle 

classification information. 

 

Various detection technologies (Davies, 1986) have been investigated and applied to perform vehicle 

classification, such as imaging-based sensors including infrared imaging, video imaging, and laser range 

imaging systems (Lu et al., 1992; Yuan et al, 1994; Gupte et al., 2002), acoustic signature analysis 
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(Nooralahiyan et al., 1997), magnetic sensor (Cheung et al., 2006), and inductive signature systems 

(Pursula and Pikkarainen, 1994; Sun et al., 2003; Ritchie et al., 2005). 

 

To apply inductive vehicle signature data to vehicle classification, Pursula et al. (1994) firstly proposed a 

classification scheme that consisted of seven vehicle classes.  Their approach adopted a Self-Organizing 

Feature Map (SOFM) and the classification rate of the training data set was around 80%.  More recently, 

Sun et al. (2003) suggested two methods for vehicle classification utilizing the inductive vehicle signature 

data.  One method employed heuristic discriminant algorithms and multi-objective optimization for training 

the heuristic algorithms, and the classification rates were around 81%-91%.  SOFM was applied to the 

second method and results with 80% classification rates were obtained. 

 

These two studies demonstrate the potential of developing vehicle classification models using inductive 

vehicle signature data.  However, both Pursula and Sun’s studies utilized double inductive loop signatures 

for model development.  Although Sun et al. suggested adopting a single loop estimation model for single 

loop data, their model has to be re-calibrated.  Therefore, a new vehicle classification model, which is part 

of RTREID-2, is developed for this study.   

 

The proposed model is not only capable of categorizing vehicle types based on the Federal Highway 

Administration (FHWA) scheme (USDOT, 2007) but is also capable of grouping vehicles into more 

detailed classes.  Since the proposed model is intended for real-time implementation, this study suggests a 

simple but efficient method that is based on a heuristic decision tree approach combined with the K-means 

clustering method. 

 

This heuristic multi-level decision tree method classifies vehicles by applying K-means clustering approach 

to decide on the number of branches at each step using the most distinguishable PSR feature, which is 

extracted from single square loop detector data.  Moreover, a dataset obtained from single round loop 

detector is applied to test transferability of the developed algorithm.  The advantages of the proposed 

method are its transferability without model re-calibration, and employing the current infrastructure.  In 

addition, this approach will also help to enhance the use of single loop detectors for vehicle classification. 

 

5.2 Vehicle Classification Scheme 

There are three vehicle classification schemes applied to develop the proposed vehicle classification model.  

Table 5.1 displays the FHWA classification scheme, which consists of thirteen vehicle classes and the 

figures of each vehicle class are illustrated in Figure 5.1.  In Table 5.2, FHWA-I classification scheme is 

designed based on FHWA classification scheme but extends to fifteen vehicle classes according to data 
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availability.  In Table 5.3, the Real-time Traffic Performance Measurement System (RTPMS) classification 

scheme collapses the FHWA classes into five vehicle classes. 

 

Table 5.1.  FHWA classification scheme 

FHWA Class Description 
1 Motorcycles 

2 Passenger Cars 

3 Two Axle, Four Tire Single Units 

4 Buses 

5 Two Axle, 6 Tire Single Units 

6 Three Axle Single Units 

7 Four or More Axle Single Units 

8 Four or Less Axle Single Trailers 

9 Five Axle Single Trailers 

10 Six or More Axle Single Trailers 

11 Five or Less Axle Multi-Trailers 

12 Six Axle Multi-Trailers 

13 Seven or More Axle Multi-Trailers 

 

Table 5.2.  FHWA-I classification scheme 

FHWA-I Class Description 
1 Passenger Cars 

2 Two Axle, Four Tire Single Units 

3 Buses 

4 Two Axle, 6 Tire Single Units 

5 Three Axle Single Units 

6 Four or Less Axle Single Trailers 

7 Five Axle Single Trailers 

8 Class 1 + Trailer 

9 Class 2 + Trailer 

10 Class 4 + Trailer 

11 Class 5 + Trailer 

12 Bobtail Tractor (Semi Without Any Trailers) 

13 Goose-neck Trailer or Moving Van 

14 30’ Buses 

15 20’ Buses 
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Figure 5.1 FHWA classification scheme 
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 Table 5.3.  RTPMS classification scheme 

RTPMS Class Description 
1 Passenger Cars 

2 Small Single Unit Trucks 

3 Buses 

4 Medium/Large Single Unit Trucks 

5 Trailer Trucks 

 

The FHWA-I classification scheme attempts to distinguish vehicle with trailer from other vehicles and four 

classes are designed to display those cases.  Buses are classified into three classes including regular buses, 

20’ buses, and 30’ buses.  In addition, bobtail tractor, and goose-neck trailer and moving van are classified 

as new vehicle classes due to their apparent characteristics. 

 

The design of the RTPMS classification scheme aims to classify vehicles into few groups so that the 

vehicle classification information can be displayed and understood easily.  Therefore, vehicles are grouped 

into five vehicle classes including passenger cars, small single unit trucks, buses, medium/large single unit 

trucks, and trailer trucks (see Table 5.3). 

 

The proposed vehicle classification model will be developed based on the FHWA-I classification scheme 

(as shown in Table 5.2).  Once vehicle classes are generated for the FHWA-I classification scheme, the 

classification results can be re-assigned to the FHWA classification scheme and RTPMS classification 

scheme according to Table 5.4 and Table 5.5. 
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Table 5.4.  FHWA-I classification scheme vs. FHWA classification scheme 

FHWA-I 
Class 

Description 
FHWA 
Class 

Description 

1 Passenger Cars 2 Passenger Cars 

2 Two Axle, Four Tire Single Units 3 Two Axle, Four Tire Single Units 

3 Buses 4 Buses 

4 Two Axle, 6 Tire Single Units 5 Two Axle, 6 Tire Single Units 

5 Three Axle Single Units 6 Three Axle Single Units 

6 Four or Less Axle Single Trailers 8 Four or Less Axle Single Trailers 

7 Five Axle Single Trailers 9 Five Axle Single Trailers 

8 Class 1 + Trailer 2 Passenger Cars 

9 Class 2 + Trailer 3 Two Axle, Four Tire Single Units 

10 Class 4 + Trailer 5 Two Axle, 6 Tire Single Units 

11 Class 5 + Trailer 6 Three Axle Single Units 

12 Bobtail Tractor (Semi Without Any Trailers) 6 Three Axle Single Units 

13 Goose Neck Trailer or Moving Van 9 Five Axle Single Trailers 

14 30’ Buses 4 Buses 

15 20’ Buses 4 Buses 

 

Table 5.5.  FHWA-I classification scheme vs. RTPMS classification scheme 

FHWA-I 
Class 

Description 
RTPMS 
Class 

Description 

1 Passenger Cars 1 Passenger Cars 

2 Two Axle, Four Tire Single Units 2 Small Single Unit Trucks 

3 Buses 3 Buses 

4 Two Axle, 6 Tire Single Units 2 Small Single Unit Trucks 

5 Three Axle Single Units 4 Medium/Large Single Unit Trucks 

6 Four or Less Axle Single Trailers 5 Single Trailer Trucks 

7 Five Axle Single Trailers 5 Single Trailer Trucks 

8 Class 1 + Trailer 1 Passenger Cars 

9 Class 2 + Trailer 2 Small Single Unit Trucks 

10 Class 4 + Trailer 2 Small Single Unit Trucks 

11 Class 5 + Trailer 4 Medium/Large Single Unit Trucks 

12 Bobtail Tractor (Semi Without Any Trailers) 2 Small Single Unit Trucks 

13 Goose Neck Trailer or Moving Van 5 Single Trailer Trucks 

14 30’ Buses 3 Buses 

15 20’ Buses 3 Buses 
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5.3 Vehicle Classification Algorithm Development 

A heuristic decision tree method combined with K-means clustering method is employed for the 

development of the proposed vehicle classification model in this study.  To split the tree at each level, K-

means clustering method is adopted to decide the number of branches utilizing most distinguishable PSR 

feature.  This approach helps to reduce the dimension of possible vehicle classes at each level.   

 

K-means clustering method creates clusters with a self-organized approach.  The advantages of K-means 

clustering method are “its simplicity, efficiency, and self-organization, as well as its minimization of the 

mean square error” (Looney, 1997).  Although one limitation of this method is that the number K  of 

clusters must be provided, the K  is known in this study.  Since the K  can not exceeds the number of 

vehicle classes at each decision node (denoted as Q ), several runs with different K  values (where the 

) are made and the QK ≤ K  that yields minimum total misclassified cases is selected.  

 

For PSR feature extraction, the PSR values are plotted for each vehicle class and are shown from Figure 5.2 

to Figure 5.6.  As shown in those PSR plots, the first eight PSR values are greater than zero for class 1 and 

class 2, while some of the first eight PSR values for other classes are most likely below zero.  Therefore, a 

feature named PSR_8_IDX is derived to distinguish small vehicle classes (PSR_8_IDX = 1) and large truck 

classes (PSR_8_IDX = 2) as depicted in Equation 5.1 and Equation 5.2.  Furthermore, considering the 

needs for real-time implementation, simple statistics are extracted from PSR values including mean, 

standard deviation, and median. 

 

82,1_8_ L=≤= iforPVPSRifIDXPSR i    (5.1) 

 

82,2_8_ L=>= iforPVPSRifIDXPSR i    (5.2) 

 

where 

 

iPSR :  ith PSR value 

iPSRSORT _ :  ith sorted PSR value 

008.0=PV  
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Figure 5.2 PSR plots:  Class 1, Class 2, and Class 3 
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Figure 5.3 PSR plots:  Class 4, Class 5, and Class 6 
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Figure 5.4 PSR plots:  Class 7, Class 8, and Class 9 
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Figure 5.5 PSR plots:  Class 10, Class 11, and Class 12 
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Figure 5.6 PSR plots:  Class 13, Class 14, and Class 15 

 67 



 

In order to obtain more information from the PSRs, they are categorized into five groups for each 

individual vehicle.  The statistics are calculated for each group: 

 

Group I Features:  MEAN_1_15, STD_1_15, MDN_1_15, XMDN_1_15 (see Equations 5.3-5.6) 

Group II Features:  MEAN_16_30, STD_16_30, MDN_16_30, XMDN_16_30 (see Equations 5.7-5.10) 

Group III Features:  MEAN_1_10, STD_1_10, MDN_1_10, XMDN_1_10 (see Equations 5.11-5.14) 

Group IV Features:  MEAN_11_20, STD_11_20, MDN_11_20, XMDN_11_20 (see Equations 5.15-5.18) 

Group V Features:  MEAN_21_30, STD_21_30, MDN_21_30, XMDN_21_30 (see Equations 5.19-5.22) 
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5.4 Case Study 

5.4.1 Data Description 

To develop the proposed vehicle classification model, the dataset included about 6.5 minutes of vehicle 

signature and video-ground-truthed data was used.  This dataset was divided into two sub-dataset, 

calibration dataset and testing dataset for model development.  The two sub-datasets are illustrated in Table 

5.6.  Since abnormal vehicle signature data were observed in lane 3 at Laguna Canyon 1 and in lane 6 at 

Laguna Canyon 2, those data were discarded to enhance the development process.     

 

After the PSR_8_IDX is computed, vehicles were categorized into two groups:  small vehicles and large 

trucks.  The PSR features that applied to each group are depicted in Figure 5.7.  Thirteen PSR features were 

applied to the small vehicles group, while nine PSR features were applied to large trucks group.  The 

heuristic decision tree thus obtained is illustrated in Figure 5.8 and Figure 5.9.  As shown in Figure 5.8, the 

tree for the small vehicles group has seven levels and twenty-four nodes.  In addition, it can be observed 

from Figure 5.9 that the tree for the large trucks group has three levels and there are fifteen nodes. 
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Table 5.6.  Dataset description 

 Calibration Dataset Test Dataset 
Location Laguna Canyon 1 Sand Canyon Laguna Canyon 2 Jeffrey 

Lane 7 lanes 5 lanes 6 lanes 5 lanes 

Time Period March 11th 2005, 6:50-6:57 AM March 11th 2005, 6:50-6:57 AM 

Loop Configuration Square loop detector Round loop detector 

Dataset traffic count 3718 3914 

 

 

 

Figure 5.7 PSR features applied to small vehicle group and large trucks group 
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Figure 5.8 Vehicle classification flow chart:  small vehicles group 
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Figure 5.9 Vehicle classification flow chart:  large trucks group 



5.4.2 Calibration Results 

The calibration results are tabulated in Table 5.7.  It can be seen from Table 5.7 that the three classification 

schemes yield similar performance.  The results are very encouraging since the proposed model can 

successfully separate small vehicles from large trucks, and classify vehicles based on the FHWA 

classification scheme using single loop detector data without any axle information. 

 

The detailed results according to the three proposed vehicle classification schemes are demonstrated in 

Table 5.8, Table 5.9, and Table 5.10.  Table 5.8 presents the FHWA-I vehicle classification category.  It 

can be observed that classification rates are lower in class 4, class 5, and class 15, which are “Two Axle, 6 

Tire Single Units,” “Three Axle Single Units,” and “20’ Buses” respectively.  The misclassifications 

among class 1, class 2, class 4, and class 15 are due to similarity of signatures.  For class 5, the 

misclassification is caused by varied characteristics within class 5 as observed in Figure 5.3. 

 

The outcomes presented in Table 5.9 and Table 5.10 demonstrate the potential of the proposed vehicle 

classification model.  The FHWA classification scheme and RTPMS classification scheme results are very 

encouraging because the correct classification rates are around 96% for both schemes.  Moreover, for the 

FHWA classification scheme, the worst case still maintains 80% correct classification rate.  

 

Table 5.7.  Vehicle classification result summary:  calibration dataset 

 Correct Classified Vehicle Performance 
FHWA Classification Scheme 3577 96.2% 

FHWA-I Classification Scheme 3577 96.2% 

RTPMS Classification Scheme 3587 96.5% 
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Table 5.8.  FHWA-I vehicle classification category:  calibration dataset 

3577 96.2% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2960 39 0 2 0 0 0 0 0 0 0 1 0 0 0 3002 98.6%

2 75 525 0 6 1 0 0 0 0 0 0 0 0 0 1 608 86.3%

3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 100.0%

4 0 3 0 18 1 0 0 0 0 0 0 1 0 0 0 23 78.3%

5 0 0 0 1 7 0 1 0 0 0 0 0 1 0 0 10 70.0%

6 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 3 100.0%

7 0 0 0 0 1 1 34 0 0 1 2 0 0 0 0 39 87.2%

8 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 100.0%

9 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 6 83.3%

10 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 3 100.0%

11 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 3 100.0%

12 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5 100.0%

13 0 0 0 0 0 1 0 0 0 0 0 0 6 0 0 7 85.7%

14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 100.0%

15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 3 66.7%

3035 568 2 27 10 5 35 3 5 4 5 7 7 2 3

81.6% 15.3% 0.1% 0.7% 0.3% 0.1% 0.9% 0.1% 0.1% 0.1% 0.1% 0.2% 0.2% 0.1% 0.1%

3718
Estimated Vehicle Composition 100%

Performance Volume by 
Class

Classification 
Rate

Predicted Vehicle Class

FH
W

A
-I 

Ve
hi

cl
e 

C
la

ss

Estimated Volume by Class
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3577 96.2% 1 2 3 4 5 6 7 8 9 10 11 12 13

1 - - - - - - - - - - - - - - -

2 0 2962 39 0 2 1 0 0 0 0 0 0 0 3004 98.6%

3 0 76 530 1 6 1 0 0 0 0 0 0 0 614 86.3%

4 0 0 1 6 0 0 0 0 0 0 0 0 0 7 85.7%

5 0 0 3 0 21 2 0 0 0 0 0 0 0 26 80.8%

6 0 0 0 0 1 15 0 0 2 0 0 0 0 18 83.3%

7 - - - - - - - - - - - - - - -

8 0 0 0 0 0 0 0 3 0 0 0 0 0 3 100.0%

9 0 0 0 0 1 3 0 2 40 0 0 0 0 46 87.0%

10 - - - - - - - - - - - - - - -

11 - - - - - - - - - - - - - - -

12 - - - - - - - - - - - - - - -

13 - - - - - - - - - - - - - - -

0 3038 573 7 31 22 0 5 42 0 0 0 0

0% 81.7% 15.4% 0.2% 0.8% 0.6% 0.0% 0.1% 1.1% 0.0% 0.0% 0.0% 0.0%

Performance Volume 
by Class

Classification 
Rate

Predicted Vehicle Class

FH
W

A
 V

eh
ic

le
 C

la
ss

Estimated Volume by Class 3718

Estimated Vehicle Composition 100%  
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Table 5.9.  FHWA vehicle classification category:  calibration dataset 

 

 



 

Table 5.10.  RTPMS vehicle classification category:  calibration dataset 

3587 96.5% 1 2 3 4 5

1 2962 42 0 0 0 3004 98.6%

2 76 566 2 2 0 646 87.6%

3 0 1 5 1 0 7 71.4%

4 0 1 0 9 2 12 75.0%

5 0 1 0 3 45 49 91.8%

3038 611 7 15 47

81.7% 16.4% 0.2% 0.4% 1.3%

Performance Volume by 
Class

Classification 
Rate

Predicted Vehicle Class
R

TP
M

S 
Ve

hi
cl

e 
C

la
ss

Estimated Volume by Class 3718

Estimated Vehicle Composition 100%
 

 

5.4.3 Transferability Analysis 

In order to perform model transferability analysis for round loop configuration, a dataset collected at 

different locations was applied.  The testing results are presented in Table 5.11.  As shown in Table 5.11, 

the three classification schemes again yield similar performances.  Although the performances are degraded 

compared with calibration dataset, the results are very promising since correct classification rates are 

around 93% for the three classification schemes.   

 

Table 5.12, Table 5.13, and Table 5.14 present the classification results in detail according to the three 

proposed vehicle classification schemes.  It can be observed from Table 5.12 that classification rates are 

lower in class 3, class 4, and class 6, which are “Buses,” “Two Axle, 6 Tire Single Units,” and “Four or 

Less Axle Single Trailers” respectively.  For class 4, the misclassifications pattern is similar compared with 

calibration dataset.  For class 3 and class 6, further investigations are needed due to lack of enough 

samples. 

 

Table 5.11.  Vehicle classification result summary:  test dataset 

 Correct Classified Vehicle Performance 
FHWA Classification Scheme 3641 93.0% 

FHWA-I Classification Scheme 3640 93.0% 

RTPMS Classification Scheme 3661 93.5% 
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Table 5.12.  FHWA-I vehicle classification category:  test dataset 

3640 93.0% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3027 124 0 13 0 0 0 0 0 0 0 4 0 0 2 3170 95.5%

2 79 546 1 11 8 0 0 0 0 0 0 1 0 0 1 647 84.4%

3 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 2 0.0%

4 0 4 0 12 3 0 0 0 0 1 0 1 0 0 0 21 57.1%

5 0 1 1 1 6 0 1 0 0 0 0 0 0 0 0 10 60.0%

6 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 2 50.0%

7 0 0 0 0 1 2 34 0 0 0 2 0 0 0 0 39 87.2%

8 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 100.0%

9 0 0 0 0 0 0 1 0 4 0 0 0 0 1 0 6 66.7%

10 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 2 50.0%

11 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 3 100.0%

12 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 2 50.0%

13 0 0 0 1 0 2 0 0 0 1 0 0 2 0 0 6 33.3%

14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 100.0%

15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.0%

3107 675 4 39 19 5 36 2 4 4 5 7 2 2 3

79.4% 17.2% 0.1% 1.0% 0.5% 0.1% 0.9% 0.1% 0.1% 0.1% 0.1% 0.2% 0.1% 0.1% 0.1%

3914

Estimated Vehicle Composition 100%

Performance Volume by 
Class

Classification 
Rate

Predicted Vehicle Class

FH
W

A
-I 

Ve
hi

cl
e 

Cl
as

s

Estimated Volume by Class
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3641 93.0% 1 2 3 4 5 6 7 8 9 10 11 12 13

1 - - - - - - - - - - - - - - -

2 0 3029 124 2 13 4 0 0 0 0 0 0 0 3172 95.5%

3 0 79 550 3 11 9 0 0 1 0 0 0 0 653 84.2%

4 0 1 0 1 2 0 0 0 0 0 0 0 0 4 25.0%

5 0 0 4 0 14 5 0 0 0 0 0 0 0 23 60.9%

6 0 0 1 2 1 10 0 0 1 0 0 0 0 15 66.7%

7 - - - - - - - - - - - - - - -

8 0 0 0 1 0 0 0 1 0 0 0 0 0 2 50.0%

9 0 0 0 0 2 3 0 4 36 0 0 0 0 45 80.0%

10 - - - - - - - - - - - - - - -

11 - - - - - - - - - - - - - - -

12 - - - - - - - - - - - - - - -

13 - - - - - - - - - - - - - - -

0 3109 679 9 43 31 0 5 38 0 0 0 0

0% 79.4% 17.3% 0.2% 1.1% 0.8% 0.0% 0.1% 1.0% 0.0% 0.0% 0.0% 0.0%

Performance Predicted Vehicle Class Volume by 
Class

Estimated Vehicle Composition 100%

Classification 
Rate
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A
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ss

Estimated Volume by Class 3914
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Table 5.13.  FHWA vehicle classification category:  test dataset 

 

 



Table 5.14.  RTPMS vehicle classification category:  test dataset 

3661 93.5% 1 2 3 4 5

1 3029 141 2 0 0 3172 95.5%

2 80 584 4 12 1 681 85.8%

3 0 1 1 2 0 4 25.0%

4 0 1 2 7 2 12 58.3%

5 0 2 0 3 40 45 88.9%

3109 729 9 24 43

79.4% 18.6% 0.2% 0.6% 1.1%

Performance Volume by 
Class

Classification 
Rate

Predicted Vehicle Class

R
TP

M
S 

Ve
hi

cl
e 

C
la

ss

Estimated Volume by Class 3914

Estimated Vehicle Composition 100%
 

 

Despite high misclassification rates occurring in class 3 and class 6, the results are significant enough to 

conclude reliable model transferability.  It is worth noting that the classification performances of the three 

proposed classification schemes are around 93%, which demonstrates the potential of employing the 

procedure of the proposed vehicle classification model for a detection system with single round loop 

configuration. 

 

Moreover, it must be noted that abnormal vehicle signatures were discarded at the model development 

stage as described in Section 5.4.1.  Since these abnormalities may not be recognized and filtered out in 

real-time implementation, the proposed vehicle classification model was also applied to the same test 

dataset but all of the problematic vehicle signatures were included. 

 

Therefore, 282 problematic vehicle signatures observed in lane 6 at Laguna Canyon 2 were added to the 

test dataset.  Because the abnormalities were observed from vehicle types with low profile vehicles (e.g., 

passenger car, minivan, and some trucks), it is expected that the classification rates of those groups will be 

affected more compared with other vehicle classes. 

 

The results are summarized in Table 5.15.  As shown in Table 5.15, although the overall performance for 

the three classification schemes declines, about 90%-91% classification rate could be still obtained.  

Moreover, detailed results for the three schemes are presented in Table 5.16, Table 5.17, and Table 5.18 

 

It can be observed from Table 5.16 to Table 5.18 that as expected, classification rates are degraded for 

“Passenger Cars” and “Two Axle, Four Tire Single Units.”  Furthermore, the results again demonstrate the 

potential of deploying the proposed vehicle classification model in real-time. 
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Table 5.15.  Vehicle classification result summary:  test dataset with problematic vehicle signature 

 Correct Classified Vehicle Performance 
FHWA Classification Scheme 3794 90.4% 

FHWA-I Classification Scheme 3792 90.4% 

RTPMS Classification Scheme 3818 91.0% 

 
 

Table 5.16.  FHWA-I vehicle classification category:  test dataset with problematic vehicle signature 

Vehicle 
Class Descriptions Volume by 

Class
Classification 

Rate
Volume by 

Class
Classification 

Rate

1 Passenger Cars 3170 95.5% 3395 92.8%
2 Two Axle, Four Tire Single Units 647 84.4% 689 82.9%
3 Buses 2 0.0% 2 0.0%
4 Two Axle, 6 Tire Single Units 21 57.1% 24 50.0%
5 Three Axle Single Units 10 60.0% 12 58.3%
6 Four or Less Axle Single Trailers 2 50.0% 2 50.0%
7 Five Axle Single Trailers 39 87.2% 39 87.2%
8 Passenger (Class 2) + Trailer 2 100.0% 2 100.0%
9 Class 3 + Trailer 6 66.7% 6 66.7%

10 Class 5 + Trailer 2 50.0% 3 33.3%
11 Class 6 + Trailer 3 100.0% 3 100.0%
12 Bobtail Tractor (Semi Without Any Trailers) 2 50.0% 5 20.0%
13 Goose Neck Trailer or Moving Van 6 33.3% 7 42.9%
14 30’ Buses 1 100.0% 4 75.0%
15 20’ Buses 1 0.0% 3 0.0%

Problematical Data Excluded Problematical Data IncludedFHWA-I Classification Scheme
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Table 5.17.  FHWA vehicle classification category:  test dataset with problematic vehicle signature 

Vehicle 
Class Descriptions Volume by 

Class
Classification 

Rate
Volume by 

Class
Classification 

Rate

1 Motorcycles - - - -
2 Passenger Cars 3172 95.5% 3397 92.8%
3 Two Axle, Four Tire Single Units 653 84.2% 695 82.7%
4 Buses 4 25.0% 9 33.3%
5 Two Axle, 6 Tire Single Units 23 60.9% 27 51.9%
6 Three Axle Single Units 15 66.7% 20 60.0%
7 Four or More Axle Single Units - - - -
8 Four or Less Axle Single Trailers 2 50.0% 2 50.0%
9 Five Axle Single Trailers 45 80.0% 46 80.4%

10 Six or More Axle Single Trailers - - - -
11 Five or Less Axle Multi-Trailers - - - -
12 Six Axle Multi-Trailers - - - -
13 Seven or More Axle Multi-Trailers - - - -

FHWA Classification Scheme Problematical Data Excluded Problematical Data Included

 
 

Table 5.18.  RTPMS vehicle classification category:  test dataset with problematic vehicle signature 

Vehicle 
Class Descriptions Volume by 

Class
Classification 

Rate
Volume by 

Class
Classification 

Rate
1 Passenger Cars 3172 95.5% 3397 92.8%
2 Small Single Unit Trucks 681 85.8% 728 84.1%
3 Buses 4 25.0% 9 33.3%
4 Medium/Large Single Unit Trucks 12 58.3% 14 64.3%
5 Single Trailer Trucks 45 88.9% 48 87.5%

RTPMS Classification Scheme Problematical Data Excluded Problematical Data Included

 
 

5.5 Summary 

This chapter showed the application of PSR features in developing vehicle classification for real-time 

implementation.  Vehicle class is an important characteristic of traffic measurement and can contribute to 

many important transportation applications including vehicle reidentification, road maintenance, emissions 

evaluation, traffic modeling development, transportation planning, traffic control, traffic safety 

improvement, toll systems assessment, etc. 

 

Considering real-time implementation, a simple but efficient vehicle classification model, which utilizes 

heuristic decision tree combined with K-means clustering method, was suggested.  The proposed real-time 

vehicle classification model is not only capable of categorizing vehicle types based on the FHWA scheme, 

but is also capable of grouping vehicles into more detailed classes.   
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Three vehicle classification schemes, FHWA, FHWA-I, and RTPMS classification schemes, were applied 

to develop the proposed vehicle classification model.  A dataset obtained from square single loop detector 

was utilized to perform vehicle classification task based on the FHWA-I classification scheme.  Moreover, 

a dataset obtained from round single loop detector was applied to test transferability of the proposed model. 

 

The results are very encouraging since the proposed real-time vehicle classification model can successfully 

classify vehicles using single loop detector data without any explicit axle information, and the results 

demonstrate reliable model transferability.  In addition, the advantages of the proposed vehicle 

classification model are its simplicity, and employing the current detection infrastructure.  Furthermore, 

due to the small proportion of large trucks, future studies are suggested to improve classification rates for 

vehicle classes under the large trucks group. 

 

5.6 References 

Cheung, S. Y., Coleri, S., Dundar, B., Ganesh, S., Tan, C.-W., Varaiya, P., 2006.  Traffic measurement and 
vehicle classification with a single magnetic sensor.  Journal of Transportation Research Record, 1917, 
173-181. 

Davies, P., 1986.  Vehicle detection and classification.  Information Technology Applications in Transport, 
VNU Science Press, Haarlem, The Netherlands, 11-40.\ 

Garrott, W.R., Howe, G.J., Forkenbrock, G., 1999.  An experimental examination of selected maneuvers 
that may induce on-road untripped, light vehicle rollover.  National Highway Traffic Safety 
Administration, Washington, D.C. 

Gupte, S., Masoud, O., Martin, R., Papanikolopoulos, N.P., 2002.  Detection and classification of vehicles.  
IEEE Transportation on Intelligent Transportation Systems, 3(1), 37-47. 

Lu, Y., Hsu, Y., Maldague, X., 1992.  Vehicle classification using infrared image analysis.  Journal of 
Transportation Engineering, 188(2), 223-240. 

Nooralahiyan, A.Y., Dougherty, M., McKeown, D., Kirby, H.R., 1997.  A field trial of acoustic signature 
analysis for vehicle classification.  Transportation Research 5C (3/4), 165-177. 

Pursula, M., Pikkarainen, P., 1994.  A neural network approach to vehicle classification with double 
induction loops.  In: Proceedings of the 17th ARRB Conference, Part 4, 29-44. 

Ritchie, S. G., Park, S., Oh, C., Jeng S.-T., Tok, A., 2005.  Anonymous vehicle tracking for real-time 
freeway and arterial street performance measurement.  UCB-ITS-PRR-2005-9, California PATH Research 
Report. 

Sun, C., Ritchie, S. G., Oh, S., 2003.  Inductive classifying artificial network for vehicle type 
categorization.  Computer-Aided Civil and Infrastructure Engineering, 18 (3), 161-172. 

USDOT, 2007.  FHWA Vehicle Classification Scheme F Report.   Referred Website: 
http://www.dot.state.oh.us/techservsite/availpro/Traffic_Survey/SchemeF/FHWA_Scheme_F_Report.PDF. 

 82 

http://www.dot.state.oh.us/techservsite/availpro/Traffic_Survey/SchemeF/FHWA_Scheme_F_Report.PDF


Yuan, X., Lu, Y.-J., Sarraf, S., 1994.  Computer vision system for automatic vehicle classification.  ASCE 
Journal of Transportation Engineering, 120(6), 861-876. 

 83 



CHAPTER 6   BLADE™ SENSOR BASED COMMERCIAL VEHICLE CLASSIFICATION 

6.1 Introduction 

Commercial vehicles typically represent a small fraction of vehicular traffic on most roadways.  However, 

their influence on traffic performance, infrastructure, environment and safety are much more significant 

than their diminutive numerical presence suggest.   For these reasons, there has been a strong emphasis by 

the Federal Highway Administration to better understand commercial vehicle travel and its impacts.  In an 

attempt to achieve this objective, state highway agencies have been encouraged to collect classification data 

in place of simple volume counts whenever possible.  This is because directly measured classification data 

is needed to better understand truck travel on highways, as statistics obtained via traditional factor 

estimates are frequently biased and hence discouraged (TMG, 2001). 

 

The ability to obtain comprehensive high quality commercial vehicle travel data has been limited by the 

available infrastructure, which is largely limited to the use of axle-based classifiers such as piezo sensors or 

pneumatic tubes (TMG, 2001).  The classification potential of such axle-based classifiers is inadequate, as 

there are many different types of commercial vehicles that share similar axle configuration, yet perform 

vastly different functions and have very different travel behavior characteristics.  As a consequence, the 

classifications schemes developed for these systems are unable to classify vehicles directly based on their 

function, severely limiting the ability to profile the wide array of commercial vehicles and understanding 

their travel behavior as well as their impacts on the environment and other road users. 

 

This study describes a prototype implementation of a new high-fidelity inductive loop sensor that is 

relatively easy to install and has the potential to yield highly detailed vehicle inductive signatures.  The 

initial results show the potential of using such an inductive sensor to provide a more comprehensive 

commercial vehicle data profile based on its ability to extract both axle configuration information as well as 

high fidelity undercarriage profiles within a single sensor technology. 

 

6.2 Background 

The current state of the practice uses the FHWA Scheme F classification.  This vehicle classification 

scheme is based on axle configuration, and uses a decision tree approach to identify 13 different vehicle 

classes as shown in Table 6.1.  The state of California adopts a slightly modified scheme from the FHWA 

Scheme F as shown in Table 6.2.  Vehicle axle configurations for both schemes are collected via temporary 

detectors such as Automatic Vehicle Classifiers (AVCs), which are primarily piezo sensors straddled fore 
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and aft by inductive loop sensors.  The loop sensors indicate the presence of a vehicle as it traverses the 

sensors while the piezo sensors determine the axle configuration of the detected vehicle (TMG, 2001). 

 

Table 6.1.  FHWA Vehicle Classification Scheme F 

Class Description 
1 Motorcycles 
2 Passenger Vehicles 
3 Other Two-Axle, Four-Tire, Single-Unit Vehicles 
4 Buses 
5 Two-Axle Six-Tire Single Units 
6 Three-Axle Single Units 
7 Four-or-More Axle, Single Units 
8 Four-or-Fewer Axle Single Trailers 
9 Five-Axle Single Trailers 
10 Six-or-More Axle Single Trailers 
11 Five-or-Less Axle Multi Trailers 
12 Six-Axle Multi Trailers 
13 Seven-or-More Axle Multi Trailers 

 

Table 6.2.  California-Modified FHWA Vehicle Classification Scheme 

Class Description 
1 Motorcycles 
2 Passenger Cars 
3 Other Two-Axle, Four-Tire, Single-Unit Vehicles 
4 Buses 
5 Two-Axle, Six-Tire, Single-Unit Trucks 
6 Three-Axle, Single-Unit Trucks 
7 Four-or-More Axle, Single-Unit Trucks 
8 Four-or-Less Axle, Single-Trailer Trucks 
9 Five-Axle, Single-Semi Trailer Trucks 
10 Six-or-More Axle, Single-Trailer Trucks 
11 Five-or-Less Axle, Multi-Trailer Trucks 
12 Six-Axle, Multi-Trailer Trucks 
13 Seven-or-More Axle, Multi-Trailer Trucks 
14 5 axle , 3 axle tractor pulling a full 2 axle trailer 
15 Unclassified 

 

 

One common misclassification error experienced by axle-based classification schemes is caused by the 

overlap of axle counts and spacing configuration of different categories, such as between buses and trucks 

(Lyles and Wyman, 1983).  In addition, passenger vehicles share common axle configuration with light 
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commercial vehicles, and are usually a major source of misclassification.  A study by Kwigizile et al (2005) 

reported an overall classification error of 9.4 percent using the decision tree approach for the FHWA 

Scheme F classification shown in Table 6.1. 

 

Kwigizile et al (2005) proposed an approach using probabilistic neural networks to obtain optimal axle 

spacing thresholds for the various vehicle classes in the FHWA Scheme F and obtained 6.2 percent errors 

when vehicle weight was not an input.  The remaining errors are still due to axle configuration overlap 

between classes and indicate that vehicle classification is not a separable problem using vehicle axle 

configuration as the sole decision criteria.  

 

There have been several other vehicle classification studies using other detector technologies.  These 

include conventional inductive loop sensors, image-based sensors, acoustic sensors, magnetic sensors and 

advanced inductive loop detector systems. 

 

A simple approach developed by Kwon et al (2003) applied lane-to-lane speed correlation using estimated 

speeds obtained from single inductive loop detectors.  It assumed a known constant speed difference 

between truck and truck-free lanes and provided estimated truck volumes with 5.7 percent error.  It should 

be noted however, that this is not strictly a classification model as it does not identify the individual truck, 

but provides an aggregate estimated truck volume in traffic.  Still, it has the advantage of using existing 

loop detector infrastructure without requiring installation of new detector hardware. 

 

Studies by Lu et al (1992), Harlow and Peng (2001), and Gupte (2002) et al used image-based sensors to 

classify vehicles.  Lu et al developed a classification model using infrared image analysis that distinguished 

four vehicle classes including three commercial vehicle classes with an accuracy of 95 percent.  Harlow 

and Peng’s model was based on a laser range imaging system that identified six classes including three 

commercial vehicle classes with an accuracy of 92 percent, while Gupte et al used video imaging to 

distinguish between cars and non-cars with 70 percent accuracy. 

 

Nooralahiyan et al (1997) performed acoustic signature analysis on vehicles and developed a model that 

was able to distinguish between four different vehicle types, including two commercial vehicle classes with 

82.4 percent accuracy. 

 

A recent study by Cheung et al (2004) investigated the feasibility of magnetic sensors in vehicle 

classification.  The model obtained between 63 to 75 percent accuracy for 6 vehicle classes depending on 

configuration, but was based on only a small sample of 37 vehicles. 
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There has also been a growing interest in vehicle classification using inductive signature systems.  Pursula 

and Pikkarainen (1994) first used the self organizing map architecture to classify vehicles using feature 

vectors obtained from the vehicle inductive signatures.  Later, Oh et al (2002) investigated several models 

and concluded that the backpropogation neural network architecture was superior to probabilistic neural 

networks and self organizing maps using vehicle features developed in their study as input to the models.  

The model distinguished between seven vehicle classes including four commercial vehicle classes and 

obtained 82 percent classification accuracy.  A more recent study by Sun et al (2003) revisited the use of 

self organizing maps.  They used typical vehicle signatures for each defined vehicle category as a template 

for the self-organizing map and was able to obtain also obtain 82 percent accuracy using the same vehicle 

classification scheme as Oh et al (2002). 

 

Even more recently, Ritchie et al (2005) used a decision tree approach to classify vehicles using a scheme 

that follows closely to the FHWA scheme F classification.  They proposed three different sub-models.  A 

total of 17 vehicle classes were defined for the first model.  However due to a lack of vehicle data for four 

of the classes, the resulting model yielded classification performance for 13 of the classes, including the 

distinction of pickup trucks, vans and SUVs into separate classes, and obtained 81.53 percent correct 

classification rate (CCR) using a single loop configuration.  The second model combined pickup trucks, 

vans and SUVs into one vehicle class and obtained 85.43 percent CCR, while the third model further 

condensed passenger cars together with pickup trucks, vans and SUVs and achieved 97.72 percent CCR. 

 

Among the studies reviewed, the axle configuration based models using the FHWA classification scheme F 

presently provide the most comprehensive distinction of vehicle types, with the most number of vehicle 

classes, and provides the highest overall accuracy. This is followed closely by the results recently achieved 

using inductive signature systems to obtain vehicle classifications similar to the FHWA scheme F. 

 

However, caution must be taken when making a direct comparison between the performances of the models 

developed in the studies mentioned, as none of them were focused on a dataset with extensive 

representation of commercial vehicles.  Since passenger vehicles – which is a distinct vehicle class in most 

of the mentioned models – often comprise the major proportion of overall traffic volume, the accuracy of 

the models presented can be biased by the type and distribution of non-passenger vehicles found in the test 

dataset, as this is where models are called to make the distinction.  A case in point would be a dataset where 

80 percent of the vehicles are passenger vehicles and the rest made up of various other vehicle types.  A 

trivial vehicle detection model performing volume counts that assumes all vehicles as passenger cars would 

still achieve an acceptable 80 percent classification accuracy in such a dataset! 

 

From the above studies, it can be concluded that there is presently an insufficient emphasis on 

distinguishing between different commercial vehicle types.  Apart from the current method used based on 
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the FHWA scheme F which identifies ten distinct commercial vehicle classes, none of the other studies 

have been able to classify more than four different commercial vehicle types.  Even then, the classes 

defined by the FHWA scheme F are based on axle configuration, which have little or no bearing to the 

body configuration and function of the commercial vehicle.  This inherent limitation prevents further 

insight into understanding the travel behavior and impacts of the wide array of commercial vehicles 

traveling on the roadways today. 

 

The sensor technology used in this study is known as a Blade™ inductive sensor (IST, 2006).  It is a new 

and emerging inductive loop sensor technology that has been explored in only a few studies at this time.  

The first investigation into this sensor technology was made by Oh et al (2004) on developing a 

reidentification system based on heterogeneous inductive loop sensors.  Later, Park et al (2006) obtained 

wheel base information from Blade™ inductive sensors to develop a two-way and three-way vehicle 

classification model under slow or varying speed conditions.  The two-way model distinguished between 

trucks and non-trucks, while the three-way model added the distinction of sport-utility vehicles.  They 

tested their model on two different sites and were able to obtain between 81 and 85 percent correct 

classification rate for the two-way vehicle classification model and between 57 and 70 percent for the 

three-way model. 

 

6.3 Blade™ Inductive Signature Characteristics 

The Blade™ is a new remote vehicle sensor technology. The physical embodiment of this concept uses two 

matched oscillating LRC circuits whose induction coils are oriented contained within a single, solid ‘sensor 

blade’ that is then embedded in a 3/16 inch wide pavement slot (for a permanent installation). The sensing 

coil is oriented toward the surface of the pavement and the reference coil is oriented toward the base of slot. 

Because the sensing coil is positioned nearer passing vehicles, it responds more strongly to this stimulus 

than the reference coil. Data collection is initiated by simultaneously charging both circuits to a threshold 

voltage using an impulse function and then allowing them to rapidly decay to a base line asymptote. This 

differential signal is amplified and digitized using an A/D converter. 

 

A continuous stream of signed integers is generated by the Blade™ sensor, which can be monitored by a 

dedicated on-board microprocessor. The resulting measurement data produce the vehicle’s inductive 

signature. 

 

The use of Blade™ inductive sensors combines the advantages of axle-based systems as well as inductive 

signature-based conventional loop sensors.  In addition, its short traverse length addresses the integration 

issues found in conventional loop sensors and its full lane coverage ensures uniform data over entire lane 

width of traffic.  Figure 6.1 shows an example of signatures obtained via a conventional preformed round 
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inductive loop sensor and a Blade™ inductive sensor obtained from a single tractor trailer.  This new 

sensor technology combines the ability of obtaining high fidelity inductance signatures of the vehicle 

undercarriage as well as axle configuration information, as shown in Figure 6.2.  This fusion of information 

within a single sensor technology provides the potential for further improvement in vehicle classification 

and other surveillance related studies. 

 

  

 

 



Figure 6.1  Example of Round and Blade™ inductive loop sensor signatures of a tractor trailer 
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Figure 6.2.  Characteristics of a Blade™ inductive signature 

The installation of Blade™ inductive sensors are simpler and less labor intensive compared with piezo 

sensor systems.  They require only a single cut across the roadway as opposed to individual cuts for 

conventional inductive loop sensors before and after each piezo sensor for each lane in additional to the 

installation of the piezo sensors themselves. 

 

6.4 Data Description and Allocation 

The commercial vehicle data used for developing the following classification models was obtained from 

data collection exercise 6 at the southbound San Onofre Truck Weigh and Inspection Facility.  Only data 
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from May 3 2006 collected at the upstream detector station was used for model development and testing as 

the other datasets collected were found to contain excessive white noise and were not suitable further 

analysis.  More information about the data can be found in Section 3.2.  A total of 1029 commercial vehicle 

samples were used in this study.  The speed variation of commercial vehicles for this data set is shown in 

Figure 3.13. 

 

6.5 Axle Configuration Classification Model 

The axle configuration based classification model developed in this study consists of four stages:  Signature 

pre-processing, wheel detection, axle-clustering based on the k-means clustering technique and the final 

axle-configuration model using decision trees. 

 

6.5.1 Axle Configuration Data 

The data used for developing the axle configuration classification model was divided into two parts.  The 

first, which comprised of 720 randomly selected vehicles was assigned as the calibration dataset, while the 

second independent set of 309 vehicles was set aside as the test dataset for evaluating the performance of 

the calibrated model. 

 

6.5.2 Signature Pre-processing 

Prior to pre-processing, each sample point in a signature record contains an inductive magnitude value and 

the time offset of the sample point from the start of the signature record.  The purpose of the pre-processing 

stage is to normalize the magnitude information in each signature, transform the x-axis of the signature 

record from a time-domain axis to a length-domain and minimize fluctuations in the signature caused by 

noise effects.  This facilitates more accurate wheel detection in the following stage of classification. 

 

To normalize the signature, the peak positive inductive magnitude was first obtained from the signature 

record.  Next, the inductance magnitude of each sample in the signature record was divided by the peak 

magnitude, resulting in an inductive signature with a peak magnitude of 1.0.  After this step, the speed of 

the vehicle is obtained by dividing the traversed distance between the double Blade™ inductive sensors 

(1.8 m) by the time stamp difference of the signature records obtained by each sensor from the same 

vehicle.  The length transformation was obtained by multiplying the speed of the vehicle to the time offset 

of each inductive signal sample.  In the final step of signature pre-processing, non-causal moving average 

filtering was applied on the normalized and transformed signature to reduce the effects of noise present in 

the signature record. 
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6.5.3 Wheel Spike detection 

Wheel information in each signature record is typically represented by downward negative spikes in the 

signature.  A recent study by Park et al (2006) detected wheel wells in a Blade™ inductive signature by 

identifying regions in the Blade™ inductive signature where the inductance magnitude is negative.  

However, it was observed that some wheel spikes did not have a negative peak inductance magnitude.  

Hence, using such a method may cause wheel information in a signature to be missed and lead to potential 

errors in classification. 

 

The approach used in this study detects wheel spikes using a combination of wheel spike characteristics in 

the Blade™ inductive signature.  First, a first-order derivative transformation of the inductive signature was 

performed to show the regions along the signature where the gradients are consistently positive or negative. 

 

When defining each region, small gradient discontinuities in the signature were addressed by introducing a 

continuity threshold (CT).  This helped to address possible fragmentation of each region caused by 

persisting noise in the inductive signature after the pre-processing stage.  The CT value determines the 

number of continuous reverse gradient signature samples to ignore when determining a region of positive 

or negative gradient.  Next, a Gradient Threshold (GT) was determined to identify regions where positive 

and negative slopes contained slopes steep enough to be considered a characteristic wheel spike.  A wheel 

spike was then determined if there was a corresponding identified positive gradient region immediately 

following each identified negative gradient region where the first data point of the positive gradient region 

laid within a predetermined proximity threshold of the last data point of the negative gradient region, hence 

determining a downward spike, defined as the peak width threshold (PWT) value.  The location and 

magnitude of the spike was determined as the average of the magnitude and location of the points of the 

positive and negative regions aforementioned. 

 

However, the algorithm described above would occasionally report false wheel spikes as shown in a 

signature example in Figure 6.3.  In the figure, the small circles indicate a detected wheel spike in the 

Blade™ signature.  The spike indicated by the arrow is a falsely detected wheel spike.  These spikes in the 

vehicle signature are sometimes due to undercarriage characteristics found in low profile vehicles or 

trailers.  The nature of these spikes is very similar to normal wheel spikes, with the exception that they 

never have a negative peak inductance magnitude and they do not usually occur in pairs or clusters.  From 

this observation, the model considers spikes as false wheel spikes for downward spikes with a positive peak 

inductance magnitude that do not have a neighboring spike within a distance threshold (in feet) defined as 

the Spike Neighbor Threshold (SNT) parameter. 
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Figure 6.3.  False Wheel Spike in Blade™ inductive signature 

Figure 6.4 shows the sensitivity of the average axle error to the GT and PWT values.  In this analysis, the 

number of axle counts for each vehicle is defined as half the number of spikes detected in the vehicle 

signature.  It can be observed that the accuracy of axle counts is highest at GT values of 197 and 212, and 

has lower performance sensitivity in the proximity of 197.  In general, lower performance sensitivity 

indicates better transferability with potentially less performance degradation, indicating that the GT value 

of 197 is preferable.  A further analysis on axle count accuracy (ACA) defined by the percentage of 

vehicles with the correct number of axles identified shown in Figure 6.5 confirms that the GT value of 197 

is optimal, as it achieves the highest ACA.  The axle count accuracy is less sensitive to the PWT as 

indicated by the vertical bands at GT values of 197 and 212, with the best performance obtained between 

the range of 0.140 and 0.260.  For maximum transferability potential, the PWT is set as at the average value 

of 0.200. 
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Figure 6.4  Sensitivity Analysis of Slope and Spike Width Threshold on Average Axle Count Errors 

 


































































































































 

Figure 6.5  Sensitivity Analysis of Gradient Threshold (GT) and Peak Width Threshold (PWT) on Axle 
Count Accuracy (ACA) 

The result of the wheel detection processing stage reveals the location of wheel spikes along the Blade™ 

inductive signature. 
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6.5.4 Axle Clustering 

The purpose of axle clustering is to determine the membership of each wheel spike to the axle groups in a 

vehicle, which facilitates the axle configuration classification performed at the final stage of this vehicle 

classification model. 

 

In this stage, the k-means clustering technique was used to identify axle groups and their corresponding 

locations within each vehicle.  The k-means clustering technique (Kaufman and Rousseeuw, 1990) is a 

well-known method and was used to compute k representative axle cluster locations called centroids.  The 

number k of clusters represents the number of axle groups in a vehicle.  Each detected wheel spike time is 

then assigned to the cluster corresponding to the nearest centroid.  Hence, wheel spike i is placed into axle 

cluster vi when it is closer to centroid cvi than any other centroid cw: 

 

d(i, cvi) ≤ d(i, cw) for all w = 1, …, k (1) 

 

The k representative clusters should minimize the sum of the dissimilarities [d(i, m)] of all objects to their 

nearest centroid: 

 

Objective function =    (2) ∑
=

n

i
vi

mid
1

),(

 

For determining an accurate axle configuration, the optimal cluster size was determined as the smallest 

cluster size where the axle cluster width (ACW), defined by distance between the first and last wheel spike 

within each axle cluster, is less than a threshold width for all axle clusters.  Hence, for each inductive 

signature, the k-means clustering technique is applied repeatedly with incremental cluster sizes until the 

width of all clusters fall within the width threshold.  The k-means clustering was repeated ten times at each 

cluster size to ensure that optimal axle clustering was obtained at each cluster level.  Figure 6.6 shows an 

inductive signature example where the wheel spikes and axle cluster locations have been determined, 

denoted by circles at the tip of each wheel spike and crosses along the horizontal axis at the center of each 

axle cluster. 
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Figure 6.6  Detected Wheels Spikes and Axle Assemblies (Clusters) in a Blade™ signature 

 

6.5.5 Axle Configuration Classification by Decision Trees 

A new axle configuration classification scheme was developed based on the axle based classification 

scheme used for data groundturthing described in Section 3.1.4.  This new scheme uses a single 

classification value to describe the combined axle configuration of drive units and trailer units (if they 

exist) of vehicles as shown in Table 6.3.   

 

The axle configuration classification model based on this new scheme was developed using the decision 

tree approach to determine the various classes.  Vehicles were first pre-classified into three preliminary 

classes. Class A was defined as single unit vehicles, class B as vehicles with single trailers and class C 

vehicles with multi-trailers.  The number of axle clusters was the decision variable in this preliminary 

classification step.  Vehicles with two detected axle clusters were classified as class A.  Vehicles with three 

or four detected axle clusters were classified as class B and vehicles with five or more detected axle 

clusters were classified as class C. 
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Table 6.3.  New Axle Configuration Classification Scheme 

Axle 
Class Drive Unit Trailer Unit No. Trailers Total Axles FHWA 

F California 

A1-0 

Single Steering, Single Drive Axle 

No Trailer 0 2 3, 5 3, 5 
A1-1 Single Axle Trailer 1 3 8 8 
A1-2 Tandem Axle Small Trailer 1 4, 5 8, 9 8, 9 
A1-3 Tandem Axle Semi Trailer 1 4, 5 8, 9 8, 9 
A1-4 Split-Tandem Axle Semi Trailer 1 4 8 8 
A1-5 Single-Single Full Trailer 1 4 8 8 
A1-6 Single-Tandem Full Trailer 1 5 9 9 
A1-7 Single-Single-Single Multi Trailer 2 5 11 11 
A1-8 Other Multi-Trailer 2 or more 6 or more 12, 13 12, 13 
A2-0 

Single Steering, Tandem Drive Axle 

No Trailer 0 3, 4 6, 7 6, 7 
A2-1 Single Axle Trailer 1 4, 5 8, 9 8, 9 
A2-2 Tandem Axle Small Trailer 1 5, 6 9, 10 9, 10 
A2-3 Tandem Axle Semi Trailer 1 5, 6 9, 10 9, 10 
A2-4 Split-Tandem Axle Semi Trailer 1 5 9 9 
A2-5 Single-Single Full Trailer 1 5 9 14 
A2-6 Single-Tandem Full Trailer 1 6 10 10 
A2-7 Single-Single-Single Multi Trailer 2 6 12 12 
A2-8 Other Multi-Trailer 2 or more 7 or more 13 13 
A3-0 

Tandem Steering, Tandem Drive Axle 

No Trailer 0 4 - 6 7 7 
A3-1 Single Axle Trailer 1 5 - 7 9, 10 9, 10 
A3-2 Tandem Axle Small Trailer 1 6 - 9 10 10 
A3-3 Tandem Axle Semi Trailer 1 6 - 9 10 10 
A3-4 Split-Tandem Axle Semi Trailer 1 6 - 8 10 10 
A3-5 Single-Single Full Trailer 1 6 - 8 10 10 
A3-6 Single-Tandem Full Trailer 1 7 - 9 10 10 
A3-7 Single-Single-Single Multi Trailer 2 7 - 9 13 13 
A3-8 Other Multi-Trailer 2 or more 8 or more 13 13 
Note: Tandem axle refers to two or three axles in an axle assembly     
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The model addresses some of the inherent characteristics of Blade™ inductive signatures observed in this 

study.  First, it was found that a significant number of vehicles inductive signatures did not show distinct 

steering wheel spikes that could be picked up at the wheel detection stage.  To solve this problem, the 

model detects the location of the first axle cluster.  If the location exceeds a distance threshold from the 

front of the vehicle, the first axle cluster is assigned as the driving axle and a dummy steering axle is added 

to the axle configuration to compensate for the missing steering axle.  It was also observed that almost all 

tractors with box container trailers had tandem trailer axles, which did not create any wheel spikes.  To 

address this problem, vehicles longer than a length threshold which had no detected trailer axles were 

assigned with a dummy tandem trailer axle configuration. 

 

Next, the number of axles in each axle cluster is determined by comparing the ACW of each axle cluster 

with a single axle width threshold parameter (SAW).  If the ACW is lower than the SAW threshold, the 

axle cluster is assigned as a single axle.  Otherwise, the axle cluster is assigned as a tandem axle. 

 

Figure 6.7 shows the decision tree of the full axle configuration classification model with the following 

decision parameters defined as follows: 

 

AC: Number of Axle Clusters 

ANi: Number of axles at ith axle cluster from front of vehicle 

CDij: Distance between axle clusters i and j 

 98 



 




    

     

 

Figure 6.7  Axle Configuration Classification Model 
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6.6 Drive Unit Body Signature Classification Model 

6.6.1 Feature Extraction 

The drive unit body signature refers to the continuous positive inductive magnitude region of the vehicle 

signature between the last wheel spike of the steering axle cluster and the first wheel spike of the drive axle 

cluster as shown in Figure 6.2.  This signature region is extracted from the overall length-normalized 

vehicle signature and analyzed for drive unit body classification. 

 

Prior to feature extraction, the drive unit body signature is normalized in the magnitude (vertical) axis.  

This normalization finds the peak positive magnitude in the drive unit body signature and subsequently 

divides all signature sample magnitudes in the drive unit body signature by this peak positive magnitude.  

This results in a normalized drive unit body signature that shares the same shape profile of the raw drive 

unit body signature, but having a peak magnitude of one. 

 

Nine features are extracted from the normalized drive unit body signature as inputs to the classification 

model.  The first input feature represents the length of the drive unit body signature in feet.  The normalized 

drive unit body signature is then reduced to ten equally-spaced representative points.  Since the first and 

last (tenth) points are typically near or at zero magnitude, they were not considered useful for classification 

analysis.  The second input feature represents the normalized magnitude of the second representative point.  

Instead of using the actual normalized magnitudes of subsequent representative points, differences between 

representative points were found to capture the shape of the signature more effectively.  Hence, the third to 

the ninth input features represent the change in normalized magnitude from each previous representative 

point to the corresponding representative point. 

 

6.6.2 Model Architecture 

Two sub-models were used to classify drive units based on the presence of an attached trailer determined 

by the axle configuration classification model:  Sub-model one classifies drive units without attached 

trailers or attached to non-semi configured trailers, while sub-model 2 classifies drive units with attached 

semi-trailers.  This was found to produce better results than a single universal drive unit classification 

model.  This is because the distributions of drive unit types vary significantly for vehicles depending on the 

axle configuration of trailers that they pull.  For example, a trailer unit with a semi-trailer configuration (i.e. 

trailer axles located at the rear of the trailer) can only be pulled by a drive unit with a semi-tractor 

configuration, while a trailer unit with a full trailer configuration (i.e. trailer axles located at both the front 

and rear of the trailer unit) cannot be pulled by drive unit with a semi-tractor configuration. 
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The axle configuration of the trailer of each vehicle is predetermined by the axle configuration 

classification model, and is used as the input to determine which drive unit body sub-model is used for 

classification. 

 

Both drive unit body classification sub-models were designed using the Multi-Layer Feedforward (MLF) 

neural network architecture.  Weight and bias values were updated according to Levenberg-Marquardt 

optimization using the Levenberg-Marquardt backpropogation training method.  Both models consist of 

nine input neurons in the input layer corresponding to the number of input features, and nine output layer 

neurons, with each output neuron representing a Drive Unit Class.  The number of hidden layers as well as 

the number of nodes in each hidden layer was varied to improve classification performance in achieving the 

best model.  Nonlinear squashing functions are used as bounds to the neuron outputs.  The hyperbolic 

tangent function was used between the hidden and output layer and the logistic function applied to the 

output layer. 

 

6.6.3 Multi-Layer Feedforward Neural Network 

6.6.3.1 The Artificial Neuron 

 

The artificial neuron was designed to mimic the first-order characteristics of the biological neuron.  In 

essence, a set of inputs is applied to the neuron, each representing the output of another neuron.  Each of 

these inputs is multiplied by a corresponding weight, similar to a synaptic strength, and all of the weights 

are then summed to determine the response of the neuron.  The summation block cumulates all of the 

weighted inputs algebraically together with a bias value unique to the neuron, producing an output NET as 

shown in Figure 6.8. 

 

Figure 6.8  Artificial Neuron with Activation Function 
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The NET signal is usually further processed by an activation function F to produce the neuron’s response, 

OUT.  Commonly, the F acts as a squashing function, which compresses the range of NET, such that OUT 

does not exceed some low limits regardless of the value of NET. 

 

The artificial neuron has two modes of operation, the training mode and the simulation mode.  The training 

mode conditions the neuron in a controlled environment.  The neuron can be trained to fire (or not), 

depending on the characteristics of input patterns.  Shown a set of inputs, the neurons self-adjust to produce 

desired responses consistently.  A wide variety of training algorithms have been developed, each with their 

own strengths and weaknesses. 

 

Once trained, the network is able to give the desired response not only to patterns that are identical to the 

training data, but also tolerate minor variations in its input.  This ability to see through noise and distortion 

to the pattern that lies within is vital to pattern recognition in the real-world environment (Wasserman, 

1989). 

 

6.6.3.2 Topography 

 

The architecture of the MLF neural network used in this study is shown in Figure 6.9.  It consists of three 

distinct sets of layers of neurons: the input layer, one or more hidden layers and the output layer.  The 

connections of the neurons are unidirectional.  However, there are no connections between neurons within 

the same layer. 

 

 























 

Figure 6.9  MLF architecture 
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The number of neurons in the input and output layers is generally determined by the functional 

requirements of the network.  The number of input neurons corresponds to the number of input parameters 

while the number of output neurons depends on the number of output parameters. The number of neurons 

in the hidden layer is varied to optimize the performance of the model. 

 

6.6.3.3 Levenberg-Marquardt Backpropagation Learning Algorithm 

 

Backpropagation learning algorithms fall into two broad categories: ad hoc techniques and standard 

numerical optimization techniques.  Ad hoc techniques include varying the learning rate, using momentum 

and rescaling variables, while the most popular approaches in standard numerical optimization techniques 

have used conjugate gradient or quasi-Newton (secant) methods.  Although quasi-Newton methods are 

considered more efficient, they require significant storage and computational requirements in larger 

networks.  Nonlinear least squares is another area of numerical optimization that has been applied to neural 

networks.  Most applications of nonlinear least squares to neural networks have been focused on sequential 

implementations where weights are updated after each presentation of an input/output pair.  While useful 

when on-line adaptation is needed, several approximations are required to the standard algorithms where 

weights are only updated after the training data set is completely analyzed. 

 

The Levenberg-Marquardt backpropagation learning algorithm used in this study is an application of 

nonlinear least squares to batch training.  It was found to be more efficient training algorithm, and had a 

higher convergence rate when compared with the conjugate gradient and variable learning rate algorithm, 

and is very efficient when training networks with up to a several hundred weights (Hagan and Demuth, 

1994). 

 

6.6.4 Data Description 

The data is made up of columns of input vectors from each vehicle forming the input matrix and a 

corresponding output representing the drive unit class forming a row vector of target outputs.  Prior to 

training, the vector of target outputs are converted into a target matrix with its column size corresponding 

to the target vector output, and its row size corresponding to the number of drive unit classes.  This results 

in a sparse matrix where each column has only one non-zero entry which equals to one, and the row of that 

entry corresponds to the actual drive unit class of the vehicle.  This matrix is used as the target for training 

the neural network and evaluating the performance of the trained network. 

 

The overall dataset was separated into three independent segments for drive unit body classification model 

development:  training, validation and testing.  The training data is used to calibrate the weights and biases 

of the neural network to recognize the drive unit classification (target) of the training vehicle data.  To 
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avoid over-training, which reduces the flexibility of the model, the model is tested on the independent 

validation data after each batch training iteration.  The training stops when the model performance (as 

determined by the sum squared errors of the model outputs) on the validation data persistently degrades 

beyond an acceptable threshold.  The most recent model parameters prior to the performance degradation 

of the validation data is then determined as the finalized trained model for that training repetition and 

evaluated on the test dataset to determine model performance. 

 

429 and 600 vehicles were used to develop the drive unit body classification sub-model 1 and sub-model 2 

respectively.  The vehicles were randomly allocated for model training, validation and testing purposes.   

 

6.7 Trailer Unit Body Configuration Classification Model 

6.7.1 Feature Extraction 

For vehicles with semi trailer units, the trailer unit body signature refers to the continuous positive 

inductive magnitude region of the vehicle signature between the last wheel spike of the drive axle cluster 

and the first wheel spike of the first trailer axle cluster as shown in Figure 6.2.  However, in vehicles with 

full trailer units, the trailer unit body signature refers to the continuous positive inductive magnitude region 

of the vehicle signature between the last wheel spike of the first trailer axle cluster and the first wheel spike 

of the last trailer axle cluster 

 

6.7.2 Model Architecture 

The Trailer Unit Body Signature Classification Model was designed using Multi-Layer Feed Forward 

neural network architecture described in Section 6.6.3.  The model consists of fifteen input neurons in the 

input layer corresponding to the number of input features, eighteen hidden layer neurons and ten output 

layer neurons, with each output neuron representing a Trailer Unit Class.  Nonlinear squashing functions 

are used as bounds to the neuron outputs.  The hyperbolic tangent function was used between the hidden 

and output layer and the logistic function was applied to the output layer.   

 

6.7.3 Data Description 

664 vehicles were used to develop the trailer unit body classification model.  The vehicles were randomly 

allocated for model training, validation and testing.  The training data is used to calibrate the weights and 

biases of the neural network to recognize the drive unit classification (target) of the training vehicle data.  

To avoid over-training, which reduces the flexibility of the model, the model is tested on the independent 

validation data after each batch training iteration.  The training stops when the model performance (as 
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determined by the sum squared errors of the model outputs) on the validation data persistently degrades 

beyond an acceptable threshold.  The most recent model parameters prior to the performance degradation 

of the validation data is then determined as the finalized trained model for that training repetition and 

evaluated on the test dataset to determine model performance. 

  

6.7.4 Training Process 

The number of nodes in the hidden layer was varied to determine the optimal hidden layer size.  Sizes 

ranging from fifteen to forty at increments of five were used, and twenty five training repetitions were 

performed for each configuration with different initial values. 

 

The classification prediction of the model corresponds to the output neuron with the largest output value 

(closest to 1). 

 

6.8 Results Analysis 

6.8.1 Axle Configuration Classification Model 

Table 6.4 summarizes the calibration and test dataset results for the axle configuration classification model.   

12 out of 27 vehicle classes defined in the model were represented in the calibration dataset.  The calibrated 

model achieved an overall classification accuracy of 99.0 percent correct matches on the calibration 

dataset.  Seven out of 720 vehicles in the calibration dataset were misclassified.  10 vehicle classes were 

represented in the smaller independent test dataset.  Performance of calibrated axle configuration 

classification model on the test dataset was also 99.0 percent.  Only three out of 309 vehicles in the dataset 

were misclassified.  This indicates that the axle configuration classification model developed in this study 

has high potential of transferability and maintaining excellent classification accuracy. 

 

Table 6.5 shows the cross classification results of the calibrated axle configuration classification model on 

the test dataset.  This table clearly shows the cross-classification errors of the three misclassified vehicles in 

the test dataset highlighted in orange, while the numbers of correctly classified vehicles are represented 

along the diagonal entries of the table highlighted in yellow.  One vehicle had a missed small trailer (A1-1 

  A1-0), one had a misclassified trailer unit (A2-3   A2-6) and one had a misclassified drive unit (A2-3 

  A3-3). 



Table 6.4.  Axle Configuration Classification Results 

Axle Class Drive Unit Trailer Unit No. 
Trailers

Total 
Axles FHWA F California Count Classifed 

Correct CCR Count Classifed 
Correct CCR

A1-0 No Trailer 0 2 3, 5 3, 5 230 230 100.0% 110 110 100.0%
A1-1 Single Axle Trailer 1 3 8 8 14 13 92.9% 7 6 85.7%
A1-2 Tandem Axle Small Trailer 1 4, 5 8, 9 8, 9 1 1 100.0% 0 0 -
A1-3 Tandem Axle Semi Trailer 1 4, 5 8, 9 8, 9 9 9 100.0% 9 9 100.0%
A1-4 Split-Tandem Axle Semi Trailer 1 4 8 8 0 0 - 1 1 100.0%
A1-5 Single-Single Full Trailer 1 4 8 8 0 0 - 0 0 -
A1-6 Single-Tandem Full Trailer 1 5 9 9 1 1 100.0% 0 0 -
A1-7 Single-Single-Single Multi Trailer 2 5 11 11 11 10 90.9% 4 4 100.0%
A1-8 Other Multi-Trailer 2 or more 6 or more 12, 13 12, 13 0 0 - 0 0 -
A2-0 No Trailer 0 3, 4 6, 7 6, 7 32 31 96.9% 12 12 100.0%
A2-1 Single Axle Trailer 1 4, 5 8, 9 8, 9 4 3 75.0% 1 1 100.0%
A2-2 Tandem Axle Small Trailer 1 5, 6 9, 10 9, 10 0 0 - 0 0 -
A2-3 Tandem Axle Semi Trailer 1 5, 6 9, 10 9, 10 390 388 99.5% 155 153 98.7%
A2-4 Split-Tandem Axle Semi Trailer 1 5 9 9 15 14 93.3% 6 6 100.0%
A2-5 Single-Single Full Trailer 1 5 9 14 12 12 100.0% 4 4 100.0%
A2-6 Single-Tandem Full Trailer 1 6 10 10 0 0 - 0 0 -
A2-7 Single-Single-Single Multi Trailer 2 6 12 12 0 0 - 0 0 -
A2-8 Other Multi-Trailer 2 or more 7 or more 13 13 0 0 - 0 0 -
A3-0 No Trailer 0 4 - 6 7 7 1 1 100.0% 0 0 -
A3-1 Single Axle Trailer 1 5 - 7 9, 10 9, 10 0 0 - 0 0 -
A3-2 Tandem Axle Small Trailer 1 6 - 9 10 10 0 0 - 0 0 -
A3-3 Tandem Axle Semi Trailer 1 6 - 9 10 10 0 0 - 0 0 -
A3-4 Split-Tandem Axle Semi Trailer 1 6 - 8 10 10 0 0 - 0 0 -
A3-5 Single-Single Full Trailer 1 6 - 8 10 10 0 0 - 0 0 -
A3-6 Single-Tandem Full Trailer 1 7 - 9 10 10 0 0 - 0 0 -
A3-7 Single-Single-Single Multi Trailer 2 7 - 9 13 13 0 0 - 0 0 -
A3-8 Other Multi-Trailer 2 or more 8 or more 13 13 0 0 - 0 0 -

Overall 720 713 99.0% 309 306 99.0%

Single Steering, 
Single Drive Axle

Single Steering, 
Tandem Drive Axle

Tandem Steering, 
Tandem Drive Axle

Calibration Data Test Data
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A1-0 A1-1 A1-2 A1-3 A1-4 A1-5 A1-6 A1-7 A1-8 A2-0 A2-1 A2-2 A2-3 A2-4 A2-5 A2-6 A2-7 A2-8 A3-0 A3-1 A3-2 A3-3 A3-4 A3-5 A3-6 A3-7 A3-8
A1-0 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A1-1 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A1-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A1-3 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A1-4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A1-5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A1-6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A1-7 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A1-8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2-0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2-1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2-3 0 0 0 0 0 0 0 0 0 0 0 0 153 0 0 1 0 0 0 0 0 1 0 0 0 0 0
A2-4 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0
A2-5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
A2-6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2-7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2-8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3-5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3-6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3-7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3-8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Predicted Axle Class
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Table 6.5.  Axle Configuration Test Data Cross-Classification Results 



6.8.2 Drive Unit Classification Model 

Table 6.6 shows the results summary of the drive unit classification MLF neural network sub model 1 

trained using the Levenberg -Marquardt backpropagation learning algorithm.  The training data achieved an 

overall performance of 95.3 percent CCR.  Of the nine drive body classes, only two classes did not achieve 

100 percent accuracy.  The performance of the trained model was significantly lower on the test dataset, 

achieving only 73.7 percent CCR.  It should be noted that classes with poor classification performance 

generally reflected a small overall data representation, and probably led to poor calibration of the 

classification model for those classes. 

  

Table 6.6.  Type I Drive Body Configuration classification results 

  Training Data Test Data 
Drive Unit 

Body Class Description Count Classified 
Correct 

CCR 
(%) Count Classified 

Correct 
CCR 
(%) 

Platform 61 51 83.6 21 15 71.4 D1 
Van 154 154 100.0 53 47 88.7 D2 
Concrete Mixer 4 4 100.0 3 2 66.7 D3 
Gravel / Dump 3 3 100.0 2 0 0.0 D4 
Tank 8 8 100.0 4 1 25.0 D5 
Conv. Tractor 7 7 100.0 4 1 25.0 D6 
Ext. Cab Tractor 10 10 100.0 4 3 75.0 D7 
Cab Over Tractor 1 1 100.0 1 1 100.0 D8 
Other 5 3 60.0 3 0 0.0 D9 

Overall Performance 253 241 95.3 95 70 73.7 
 

Table 6.7 shows the cross-classification results of sub model 1 on the test dataset.  Cross-classification 

errors are shown highlighted in orange, while the numbers of correctly classified vehicles are represented 

along the diagonals of the table highlighted in yellow.  It shows that there is significant cross-classification 

error between platform type drive units (D1) and van type drive units (D2).  Also, because of their 

overwhelming representation in the dataset, many vehicles belonging to other classes were classified into 

these two drive unit classes. 

 

Table 6.7.  Type I Drive Body Configuration test data cross classification results 

   Predicted Class 
 Drive Units  D1 D2 D3 D4 D5 D6 D7 D8 D9 

Platform D1 15 6 0 0 0 0 0 0 0 
D2 5 47 0 1 0 0 0 0 0 Van 
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D3 0 1 2 0 0 0 0 0 0 Concrete Mixer 
D4 1 0 1 0 0 0 0 0 0 Gravel / Dump 
D5 1 0 0 0 1 0 2 0 0 Tank 
D6 0 1 0 0 0 1 0 2 0 Conv. Tractor 
D7 0 1 0 0 0 0 3 0 0 Ext. Cab Tractor 
D8 0 0 0 0 0 0 0 1 0 Cab Over Tractor 
D9 1 1 0 0 0 0 1 0 0 Other 
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Table 6.8 summarizes the classification results of drive unit classification sub model 2.  The training 

dataset obtained an accuracy of 93.0 percent CCR while the independent test dataset achieved 93.6 percent 

CCR.  The performance of the test dataset is likely attributed to significant representation in three of the 

four represented classes.  Table 6.9 shows the cross classification results based on the test dataset. 

 

Table 6.8.  Type II Drive Body Configuration classification results 

  Training Data Test Data 

Description Count Classified 
Correct 

CCR 
(%) Count Classified 

Correct 
CCR 
(%) 

Drive Unit 
Body Class 

Platform 1 0 0 2 0 0 D1 
Van 0 0 - 0 0 - D2 
Concrete Mixer 0 0 - 0 0 - D3 
Gravel / Dump 0 0 - 0 0 - D4 
Tank 0 0 - 0 0 - D5 
Conv. Tractor 58 46 79.3 20 18 90 D6 
Ext. Cab Tractor 251 244 97.2 85 83 97.6 D7 
Cab Over Tractor 48 43 89.6 17 15 88.2 D8 
Other 0 0 - 0 0 - D9 

Overall Performance 358 333 93.0 124 116 93.6 
 

Table 6.9.  Type II Drive Body Configuration test data cross classification results 

   Predicted Class 
 Drive Units  D1 D2 D3 D4 D5 D6 D7 D8 D9 

Platform D1 0 0 0 0 0 1 1 0 0 
D2 0 0 0 0 0 0 0 0 0 Van 
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D3 0 0 0 0 0 0 0 0 0 Concrete Mixer 
D4 0 0 0 0 0 0 0 0 0 Gravel / Dump 
D5 0 0 0 0 0 0 0 0 0 Tank 
D6 0 0 0 0 0 18 1 1 0 Conv. Tractor 
D7 0 0 0 0 0 1 83 1 0 Ext. Cab Tractor 
D8 0 0 0 0 0 1 1 15 0 Cab Over Tractor 
D9 0 0 0 0 0 0 0 0 0 Other 

 

 

6.8.3 Trailer Unit Classification Model 

Table 6.10 shows the results summary of the trailer unit classification MLF neural network model trained 

using the Levenberg -Marquardt backpropagation learning algorithm.  The training data achieved an overall 

performance of 88.2 percent CCR.  The performance of the trained model was similar on the test dataset, 

achieving only 84.1 percent CCR.  Among the classes, the auto transport trailer units (T7) and chemical / 

dry bulk trailer units (T8) performed most poorly, with accuracies of 0 and 40.0 percent CCR respectively. 
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Table 6.10.  Trailer Body Configuration classification results 

  Training Data Test Data 
Trailer Unit 
Body Class Description Count Classified 

Correct 
CCR 
(%) Count Classified 

Correct 
CCR 
(%) 

T1 Basic Platform 41 25 61.0 15 9 60.0 
Low Boy Platform 13 6 46.2 5 3 60.0 T2 

T3 Enclosed Van 202 195 96.5 69 67 97.1 
Drop Frame Van 6 5 83.3 3 2 66.7 T4 

T5 40' Container 65 59 90.8 23 19 82.6 
T6 20' Container 23 22 95.7 9 8 88.9 
T7 Auto Transport 6 5 83.3 3 0 0.0 

Chemical / Dry Bulk 15 11 73.3 5 2 40.0 T8 
Gravel / Dump 5 3 60.0 3 3 100.0 T9 
Towed Vehicle / 
Small Trailer 6 6 100.0 3 3 100.0 T10 

Overall Performance 382 337 88.2 138 116 84.1 
 

From Table 6.11, it can be observed that these types of trailer units are likely to be misclassified as 

enclosed van trailer units (T3).  This shows that the training samples for these classes were insufficient to 

establish proper model recognition of the trailer characteristics.  Table 6.11 also shows that most 

misclassified trailer units are classified as enclosed van trailer units (T3). 

 

Table 6.11.  Trailer Body Configuration test data cross classification results 

  Predicted Class 
 Trailer Units T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Basic Platform T1 9 0 5 0 1 0 0 0 0 0 
Low Boy Platform T2 0 3 2 0 0 0 0 0 0 0 
Enclosed Van T3 1 0 67 0 1 0 0 0 0 0 
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Drop Frame Van T4 0 0 1 2 0 0 0 0 0 0 
40' Container T5 0 0 2 1 19 1 0 0 0 0 
20' Container T6 0 0 0 0 1 8 0 0 0 0 
Auto Transport T7 0 0 2 0 1 0 0 0 0 0 
Chemical / Dry Bulk T8 1 0 2 0 0 0 0 2 0 0 
Gravel / Dump T9 0 0 0 0 0 0 0 0 3 0 
Towed Vehicle / Small Trailer T10 0 0 0 0 0 0 0 0 0 3 

 

6.9 Summary and Recommendations 

The initial investigation of Blade™ inductive sensors indicate they show excellent potential in providing 

commercial vehicle surveillance due to their ability to obtain both axle configuration as well as body 

profile information.  The models developed in this study provide an excellent framework for providing a 

new unprecedented level of detail of commercial vehicle surveillance which harnesses the advantages of 

this new sensor technology, providing insights of the functions of various commercial vehicle types based 

on the breakdown of their drive units and trailer units, in addition to axle configuration information.  In 

addition, the design of these sensors indicate that they would be significantly easier to install and require 

less installation time, requiring only two cuts across a multi-lane facility for a double sensor configuration. 
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However, it should be noted that the results obtained from this study were based on a dataset that does not 

include non-commercial vehicle types and was not conducted at a multi-lane facility.  In addition, the 

sensors used in this study were temporary surface-mounted sensors.  While they were suitable due to the 

investigative nature of this study, they do not reveal the actual potential of permanent embedded ones.  

Hence, a follow-up study should be made to investigate the performance and potential of this new sensor 

technology under a wider variety of conditions. 

 

The potential applications of this sensor technology include freeway facilities with significant 

heterogeneity in commercial vehicle traffic.  The ability to distinguish vehicle types by their function may 

also indicate potential in security applications where high-risk vehicle types require additional detailed 

surveillance. 
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CHAPTER 7  VEHICLE REIDENTIFICATION 

7.1 Introduction 

Traffic operations field computational resources as well as the bandwidth of field communication links are 

often quite limited.  Accordingly, for on-line implementation of Advanced Transportation Management and 

Information Systems (ATMIS) strategies, such as vehicle reidentification, there is strong interest in 

development of field-based techniques and models that can perform satisfactorily while minimizing field 

computational and communication requirements.  A new vehicle reidentification algorithm (REID-2) (Jeng 

and Ritchie, 2005) was oriented toward algorithm simplification.  This algorithm also demonstrates the 

added benefits of improved performance and possesses much broader application potential (to both round 

and square single inductive loops) compared with earlier methods, i.e. REID-1.  However, the basis of 

REID-2 is in directly matching inductive vehicle signatures, which typically consist of 200~1,200 data 

points (stored as integers, and obtained from IST-222 detector cards) per signature.  Therefore, further 

studies were required to investigate if a relatively simple data compression and transformation technique 

could be applied successfully to the raw inductive signatures for each vehicle, and then use the resulting 

transformed vehicle signatures as inputs to vehicle reidentification. 

 

A Piecewise Slope Rate (PSR) approach was suggested to compress and transform the raw vehicle 

signatures (Jeng and Ritchie, 2006).  The results of this investigation, including sensitivity analyses, vehicle 

reidentification performance, and the accuracy of section travel time measurement, are very promising.  

This study suggest that the reduction in both computational effort and computer memory needed to store 

individual signatures with this approach could potentially benefit both the field computational and 

communication requirements for real-time implementation. 

 

This chapter consists of four sections including this introductory section.  The next section describes and 

discuses the background studies of REID-2, and the proposed vehicle transformation approach (RTREID-2) 

and its procedures.  The performance indices used in this studies is described in Section 7.3.  In the 

Freeway Operation section, the proposed approach, RTREID-2 is implemented off-line and the case studies 

include square/square loops, round/round loops, and mixed round/square loops freeway operations.  The 

performance of the RTREID-2 and the results of travel time estimation are also demonstrated. 
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7.2 Methodology 

7.2.1 Background Study of REID-2 

Assume there are two vehicle signatures to be matched as shown in Figure 7.1.  The x-axis and y-axis 

denote signature data samples their corresponding inductance magnitudes respectively.  The vertical 

differences between two signatures are due to the different detectors and external environmental factors 

while the horizontal differences between two signatures are caused by different speeds.  Those differences 

can be eliminated using normalization techniques, which avoid unnecessary estimation processes.  For 

example, the y-axis can be normalized using the maximum magnitude for each vehicle signature; however, 

another issue has to be addressed after data normalization process.  The size of the datasets of each vehicle 

signature may not be the same because the durations that the Inductive Loop Detectors (ILDs) are activated 

may vary, i.e. the same vehicle may travel at different speeds at upstream and downstream detection 

stations. 

 

 













      









































      



























 

Figure 7.1  Vehicle Signatures obtained from Inductive Loop Detectors 

For instance, if the vehicle is traveling at a relatively higher speed, the duration that the ILD is activated is 

shorter and fewer data points are generated.  Similarly, the duration that the ILD is activated is longer and 

more data points are generated if the speed of the vehicle is lower.  To address this issue, an interpolation 

method is suggested.  Based on an assumption that a vehicle maintains a constant speed when it traverses 

an ILD, the speed can be treated as a scalar on the x-axis.  Hence, an equidistance interpolation is capable 

of rescaling the vehicle signatures along the x-axis and calculating the magnitudes corresponding to the 

interpolated data points.  The key point is to match vehicle signatures via computing the vertical 

differences, i.e. the differences of magnitudes for each data point (see Figure 7.1). 
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It is important to notice that the proposed method is based on the hypothesis that the vehicle signatures can 

be seen as the fingerprint of each individual vehicle and all the ILDs are identical.  In other words, a 

vehicle will possess the same normalized signatures when it passes by all the detection stations (Ritchie and 

Sun, 1998).  Therefore, the vehicle reidentification problem can be formulated as Equations 7.1 and 7.2.  

Given a downstream target vehicle signature, the objective is to find the most alike vehicle signature among 

all upstream candidate vehicle signatures. 
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∈)( iAxf DS Target,  mi ,,2,1 K=

∈)( jBxf US Candidate,  nj ,,2,1 K=

where, the function values of and )(⋅f )(⋅f  are the reductions in magnitude, and  and  denote the 

time intervals and, 

iAx iBx

  :  The number of upstream candidate vehicles l

)( iAxf  :  The function of the downstream target vehicle signature (DS Target) 

)( jBxf : The function of the upstream candidate vehicle signature (US Candidate) 

iAxI  and  :  The new data set with interpolated points iBxI

 

However, while the same vehicle will generate exactly the same vehicle signature every time it crosses over 

an ILD in an ideal detection system (Ritchie and Sun, 1998), there are some real-world scenarios that cause 

detection errors and those detection errors may result in a “no match” case: 

 

• Tailgating:  If a vehicle is following another vehicle too closely, the lead vehicle and the tailgating 

vehicle may generate one combined signature instead of two distinct signatures. 
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• Lane changing:  If a vehicle is changing lanes, it may hit the ILD partially.  This will not keep 

vehicle signatures intact, and the traffic characteristic such as the occupancy and the speed will be 

affected. 

• External factors:  Variations in ILD and adjacent environment conditions will bring in 

disturbances.  

 

7.2.2 Procedure of REID-2 

Based on the assumption that a vehicle will possess the same normalized signature when it passes by 

detection stations (Ritchie and Sun, 1998), the key idea of REID-2 is to match vehicle signatures by 

computing and summing the difference in magnitudes for each interpolated data point.  Vehicle matches 

are identified based on search methods applied to the summed magnitude differences, within appropriate 

time windows.  The procedure of REID-2 is illustrated in Figure 7.2. 

 

 116 



 

Figure 7.2  The procedure of REID-2 algorithm 

As shown in Figure 7.2, the inputs are the raw vehicle signature data for a target vehicle and all other 

vehicles that passed by its corresponding upstream detection station(s).  The magnitude of each individual 

vehicle will be normalized using its range and the normalized magnitudes distribute from zero to one.  Only 

a subset of each vehicle signatures that the normalized magnitudes are within the range from 0.2 to 1.0 will 
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be selected in order to eliminate variations between different detection stations caused by the external 

environment factors. 

 

To define a feasible candidate vehicle set, temporal search space reduction that establishes a feasible time 

period for searching possibly matched vehicles at upstream detection stations (Sun et al., 1999; Oh and 

Ritchie, 2003; Oh, 2003) is performed.  Since the aim of temporal search space reduction is to include 

correct vehicles in the candidate vehicle set, estimated travel times are utilized to set up the lower and the 

upper bounds of the desired time window.  After a candidate vehicle set is found, the operation of REID-2 

can be summarized in five steps: 

 

Step 1:  Given a downstream target vehicle signature and an upstream candidate vehicle signature, 

compare the number of data points 

Step 2: Stretch the vehicle signature with fewer data points to make both downstream and 

upstream vehicle signatures have same number of data points using cubic spline 

interpolation method 

Step 3: Compute and sum up the differences of normalized magnitudes between a downstream 

target vehicle and an upstream candidate vehicle 

Step 4:  Find the Average of the total Magnitudes Differences (AMD) 

Step 5:  Perform minimum AMD searching approach 

 

The minimum AMD searching approach aims to maximum the amount of matched vehicles.  Thus, the 

approach firstly defines an upstream candidate vehicle set for a particular downstream vehicle within a time 

window.  In addition, a reverse time window is applied to each upstream candidate vehicle to find its 

corresponding candidate vehicle set at its downstream.  Both upstream and downstream candidate vehicle 

sets are sorted in ascending order according to the magnitude differences.  Starting from looking into the 

first feasible upstream candidate vehicle (i.e. with the minimum AMD), for example, US_3, given the 

downstream vehicle (DS_1), the results of vehicle signatures matching can be categorized into two groups: 

 

• System correct match:  if the first feasible downstream candidate vehicle for US_3 is DS_1, the 

proposed algorithm will treat DS_1 as “system correct match case,” and DS_1 and US_3 will be 

crossed out from the candidate vehicle sets.  Otherwise, the approach will look into the next 

feasible upstream candidate vehicle for DS_1.  The searching procedure is repeated and will be 

terminated when there is no feasible upstream candidate vehicle exists for DS_1.  When the 

searching procedure is terminated, the minimum AMD searching approach will re-search the 

upstream candidate vehicle list, and the first feasible upstream candidate vehicle will be chosen as 

the matched vehicle at upstream. 
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• System no match:  If there is no feasible upstream candidate vehicle after performing the 

searching procedure described above, the proposed algorithm will treat DS_1 as “system no 

match” case. 

 

The process is implemented for all downstream vehicles first, and then the process is implemented for all 

upstream vehicles.  “Iteration” thus consists of one search for downstream vehicles and one search for 

upstream vehicles.  The iterations end when all downstream vehicles are assigned to the aforementioned 

groups.  This minimum AMD searching approach ensures that vehicles can only be matched once, and 

decreases the number of system no match cases.  It must be noted that for the system correct match case, a 

vehicle may be mismatched, and it can be examined via ground-truthed data. 

 

7.2.3 RTREID-2:  REID-2 Modification using Vehicle Signature Transformation 

As mentioned above, raw vehicle signatures are used as the inputs for REID-2, and each signature typically 

consists of about 200~1,200 data points.  The variation of the data points for each vehicle signature mainly 

results from different vehicle lengths and traveling speeds.  Since the purpose of this chapter is to reduce 

the size of the input data for REID-2, any approach that is capable of compressing raw vehicle signatures 

can be considered.  However, in order to compress and transform raw vehicle signatures at the same time 

(i.e., to reduce the data size and keep as much of the information of the raw signature), a set of piecewise 

information obtained from the raw vehicle signature is preferred.  A simple way to compress and transform 

the raw vehicle signature is to use slope rate features.  While various statistics such as mean, median and 

others have some potential for this aim, a slope value is more useful.  This is because the slope feature can 

be seen as a linear approximation to the raw vehicle signature. 

 

Therefore, instead of using the whole raw vehicle signature as the input, the proposed method of RTREID-

2 uses piecewise slope rate (PSR) values to reidentify individual vehicles.  The idea of RTREID-2 is to 

match vehicle signatures by computing and summing the differences among extracted PSR values.  Vehicle 

matches are then identified by applying a search across the averaged PSR differences within appropriate 

time windows.  Given a downstream target vehicle and its corresponding upstream candidate vehicle set, 

the first three steps for REID-2 are therefore modified and the procedure of RTREID-2 can be summarized 

in five steps, as illustrated in Figure 7.3: 

 

Step 1:  Stretch or shrink vehicle signatures to obtain an identical number of data points per 

vehicle signature (assigned arbitrarily; say 840 data points, denoted as CASE_840, as 

shown in Figure 4-1) using a cubic spline interpolation method. 

Step 2:  Calculate slope rate (SR) at a fixed size of interval (assigned arbitrarily; say every 28 data 

points, which will generate 30 piecewise slope rate (PSR) values (or PSR = 30) given 840 
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data points).  For example, assume a data point located at ( ) ( )2236.0  ,28  , 11 =yx .  

Given that the slope rate is calculated every 28 data points, the next data point of interest 

will be located at ( ) ( )4747.0  ,56  , 22 =yx .  Therefore, the slope rate is:  

( )
( )

( )
( ) 007986.0

28
2236.0

=
56

4747.0

12

12
−
−

=
−
−

xx
yy . 

Step 3:  Sum up the differences between the PSRs obtained from the downstream target vehicle 

and the upstream candidate vehicle signatures directly. 

Step 4:  Find the average of the total PSRs differences obtained from Step 3 (AMD). 

Step 5:  Perform a minimum AMD search. 

 

        

 

  

 

 

  

  

  

  

 

  

 

 
  

  

        

 
  

 
  

 
  

  
  

  
 

  

   

         

 

 

  

  

  

 

  

 

  

  

 

 
  

  

      

 
  

 
  

 
  

  
  

  
 

  

    

(a) Step 1:  Data Interpolation (CASE_840) 

 

  

  

 

  

  

  

                         

      
   

     
    

                
   

 
  

 
  


  

 
  

  
 

  

    

 

  

  

  

  

  

  

                      

      
   

     
     

                 
   

 
  

 
  


  

 
  

  
 

  

      

(b) Step 2:  Slope Rate Calculation 

 
 

 

 

 

 

 

 

 

 

 

               

 

 


 
  

 

 

(c) Step 2 (cont):  Piecewise Slope Rate Plot 

                   
          

    

   

    

 

   

   

  

  

  

   

                    

  
   
  
   
  
   


  

  
  

     

                  
         

    

   

    

 

   

  

  

   

   

  

                      

  
   
   
   
  
    


  

  
  

     

 

(d) Steps 3 - 5:  Vehicle Signature Matching 

Figure 7.3  The procedure of RTREID-2 
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7.3 Section Related Performance Measures 

Five performance indices (Oh, 2003) including total matching rate (TMR), correct matching rate (CMR), 

mismatching rate (MR), reliability rate (RR), and mean absolute percentage error (MAPE) of estimated 

travel times are selected for the reidentification performance evaluation: 

 

 vehiclesofnumber  total
 vehiclesmatched ofnumber  total

=TMR     (7.3) 

vehiclesofnumber  total
 vehiclesmatchedcorrect  ofnumber  total

=CMR    (7.4) 

 vehiclesofnumber  total
 vehiclesmismatched ofnumber  total

=MR     (7.5) 

TMR
CMRRR =        (7.6) 

N

N

n nobsTTime
nestTTimenobsTTime

MAPE
∑
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
×

−

= 1
100

,
,,

   (7.7) 

where, 

nobsTTime , : Observed average travel time at time step  (ground-truthed) n

nestTTime ,  : Estimated average travel time at time step  (reidentification algorithm) n

N       : Total number of time steps 

 

The number of interpolation data points is set to 60 points and the PSR is equal to 30 (Jeng and Ritchie, 

2006).  In addition, for some cases the number of interpolation data points is assigned as 840 points and the 

PSR is set to 28 for comparison. 

 

7.4 RTREID-2 for Freeway Operation 

7.4.1 Data Description 

Laguna Canyon 1 (LC1; upstream) and Sand Canyon (SC; downstream) were considered for square/square 

loops case study.  The dataset included about 6.5 minutes of vehicle signature and video ground-truthed 

data.  This dataset was collected under moderate flow traffic (1,458 VPHPL at downstream, and 1,250 

VPHPL at upstream), and consisted of 917 vehicle signatures for each detection station.  834 vehicles 

signatures are utilized as the inputs for RTREID-2 after the vehicle signature quality examination module is 

implemented. The sizes of the time window are the same for all vehicles and are calculated based on the 
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mean travel time between LC1 and SC (see Figure 7.4).  Four different time window restrictions are 

applied as described in Table 7.1. 

 





























 

Figure 7.4  Travel time distribution (sec) between LC1 and SC 

 

Table 7.1.  Time windows for square/square loops analysis. 

Size of Time Window (sec) 6 10 14 20 
37 - 43 35 - 45 33 - 47 28 - 48 Range 
33.40% 59.80% 85.70% 95.70% Coverage 

 

 

For round/round loops case study, the two round loops station, Laguna Canyon 2 (LC2; upstream) and 

Jeffrey (Jeff; downstream) were considered.  The dataset included about 6.5 minutes of vehicle signature 

and video ground-truthed data.  This dataset was collected under heavy flow traffic (1,894 VPHPL at 

downstream, and 1,578 VPHPL at upstream), and consisted of 1,000 vehicle signatures for each detection 

station.  957 vehicles signatures are utilized as the inputs for RTREID-2 after the vehicle signature quality 

examination module is implemented.  The sizes of the time window are the same for all vehicles and are 

calculated based on the mean travel time between LC2 1 and Jeff (see Figure 7.5).  Five different time 

window values are applied as described in Table 7.2. 
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Figure 7.5  Travel time distribution (sec) between LC2 and Jeff. 

Table 7.2.  Time windows for round/round loops analysis. 

Size of Time Window (sec) 10 14 18 22 26 
49 - 59 47 - 61 45 - 63 43 - 65 41 - 67 Range 
55.7% 77.4% 93.2% 97.0% 99.2% Coverage 

 

 

7.4.2 Single-Section Reidentification Performance 

The results of reidentification performance for square/square loops case studies are tabulated in Table 7.3.  

As shown in Table 7.3, the best performance of Case_60 is observed when the time window restriction is 

set to 28 - 48 seconds, which was also applied in the previous studies (Jeng and Ritchie, 2005 and 2006).  

In addition, given same time window restriction, Case_840 performs better than Case_60, but the reliability 

rates (RRs) for both cases are comparable.  Although larger size of interpolation points can generate better 

performances, the computation efforts will be traded off. 
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Table 7.3.  RTREID-2 reidentification performance for square/square loops case 

RTREID-2 Case_60 PSR = 30 Case_840 PSR = 28 
Time Window (sec) 37 – 43  35 – 45 33 – 47 28 – 48 28 – 48 

Correct Matched Volume 175 298 428 452 468 

Mismatched Volume 578 478 365 353 337 

No Matched Volume 81 58 41 29 29 

Total Matched Volume 753 776 793 805 805 

Total Volume 834 834 834 834 834 

Matching rate      

CMR 21.0% 35.7% 51.32% 54.2% 56.2% 

MR 69.3% 57.3% 43.76% 42.3% 40.1% 

NMR (No Matched Rate) 9.7% 7.0% 4.92% 3.5% 3.5% 

TMR 90.3% 93.1% 95.08% 96.5% 96.5% 

RR 23.24% 38.4% 53.97% 56.2% 58.1% 

 

 

Furthermore, it is found that the reidentification performances for this dataset degrade when the results are 

compared with previous study (Jeng and Ritchie, 2006).  The previous study demonstrated a potential of up 

to 81.9% system reliability, while the RR of this case study is 56.2% for Case_60.  However, it must be 

noted that as mentioned in Chapter 2, this dataset is not clean.  The problematic signatures are observed 

from LC1 at Lane 3, which contribute 24.1% of the total number of vehicles.  Those problematic signatures 

are not easy to detect through the signature quality examination module, and 97.5% of the problematic 

signatures are passenger cars, which is the vehicle class seen at all lanes.  The effects are spread out among 

all lanes and throughout the time dimension; thus the reidentification performances are widely affected. 

 

The results of reidentification performance for round/round loops case studies are tabulated in Table 7.4.  

7.5% of the vehicle signatures are found problematic from LC2 at Lane 6.  Since 95.83% of the 

problematic signatures are passenger cars which are the most commonly observed vehicle classes at all 

lanes, the effects are spread out among the space and time dimensions.  Furthermore, it can be seen from 

Table 7.4 that the two cases with 45 – 63 seconds and 43 – 65 seconds time window restriction settings 

perform better than other cases do.  Although, those problematic signatures may account for the 

degradation of the reidentification performances, further investigations are being undertaken to address the 

issues of the qualities of the vehicle signatures data and the improvement of the system reliability. 
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Table 7.4.  RTREID-2 reidentification performance for round/round loops case 

RTREID-2 Case_60 PSR = 30 
Time Window (sec) 49 – 59 47 – 61 45 – 63 43 – 65 41 – 67 

Correct Matched Volume 340 449 485 485 457 

Mismatched Volume 552 462 444 447 482 

No Matched Volume 65 46 28 25 18 

Total Matched Volume 892 911 929 932 939 

Total Volume 957 957 957 957 957 

Matching Rate      

CMR 35.5% 46.9% 50.7% 50.7% 47.8% 

MR 57.7% 48.3% 46.4% 46.7% 50.4% 

NMR (No Matched Rate) 6.8% 4.8% 2.9% 2.6% 1.9% 

TMR 93.2% 95.2% 97.1% 97.4% 98.1% 

RR 38.1% 49.3% 52.2% 52.0% 48.7% 

 

 

7.4.3 Single-Section Travel Time Accuracy Evaluation 

The results of travel time accuracy evaluation for square/square loops case are shown in Figures 7.6 to 7.8.   

In Figures 7.6 and 7.7, the selected results of the estimated travel times given different aggregation time 

periods are demonstrated.  There are 60 aggregation periods ranging from 5-seconds to 300-seconds in this 

research.  It was found that smaller errors and stability could be obtained when the aggregation interval was 

greater than 30 seconds (see Figure 7.6), which is similar to the previous study (Jeng and Ritchie, 2006).  

Figure 7.7 depicts the average travel times for each aggregation time interval.  It can be observed that the 

estimated travel times of the case with the 28 – 48 seconds time window restriction follow the trend of the 

actual travel times well.  In addition, RTREID-2 has a tendency to overestimate the travel time.  This may 

be due to the system not capturing some vehicles traveling at relatively high speed, which was observed 

from the previous study (Jeng and Ritchie, 2006). 

 

The average MAPEs for each aggregation time interval are shown in Figure 7.8.  It can be expected that 

smaller or larger time window restriction settings may bring up greater MAPEs.  Although, in general, the 

average MAPEs are about within the range of 2.4% to 14.3% for RTREID-2, the best case, i.e. with the 28 

- 48 seconds time window restriction setting has the average MAPEs within the range of 2.4% to 5.7%. 
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Figure 7.6  Comparisons of travel times for square/square loops case 

 

















              






















 

Figure 7.7  Average estimated travel time accuracy analysis for square/square loops case 
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Figure 7.8  MAPE for travel time estimation for square/square loops case 

The results of travel time accuracy evaluation for round/round loops case are shown in Figures 7.9 to 7.10.  

In Figure 7.9, the selected results of the estimated travel times given 30 seconds aggregation time periods 

are demonstrated since smaller errors and stability could be obtained when the aggregation interval was 

greater than 30 seconds.  The best performance is found at the case with the 45 – 63 seconds time window 

restriction.  The average MAPEs for each aggregation time interval are shown in Figure 7.10.  The best 

case, i.e. with the 45 - 63 seconds time window restriction setting, has the average MAPEs within the range 

of 3.3% to 6.0%.  In general, the average MAPEs are about within the range of 2.5% to 7.9%. 
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Figure 7.9  Comparisons of travel times for round/round loops case 

 



























     
























 

Figure 7.10  MAPE for travel time estimation for round/round loops case 
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7.4.4 Corridor Travel Time Estimation 

To perform corridor (i.e., from Laguna Canyon 1 to Red Hill) travel time estimation, the corridor is divided 

into five sections including Laguna Canyon 1 – Sand Canyon (LC 1 – SC), Sand Canyon – Jeffrey (SC – 

Jeffrey), Jeffrey – Yale, Yale – Harvard, and Harvard – Red Hill.  The dataset included 3.5 hours vehicle 

signature and GPS data from the northbound I-405 freeway on November 17th, 2005, between 6:00am and 

10:00am.  RTREID-2 is implemented at each single section.  The estimated travel times thus obtained from 

each section are summed up to represent the estimated travel time for the corridor. 

 

The estimated travel times are calculated every 30 seconds.  And then the time window restriction is 

recalculated according to the latest estimated travel times for the past 30 seconds.  The set-up of time 

window restriction, which is identical in the five sections, is described in the followings: 

 

if mean_TT > (TWLB + TWUB)/2 

{ 

 TWUB = mean_TT + 2*std_TT; 

 TWLB = mean_TT + 1.5*std_TT; 

} 

else if mean_TT <  (TWLB + TWUB)/2 – 0.5* std_TT 

{ 

 TWUB = mean_TT - std_TT; 

 TWLB = mean_TT - 3*std_TT; 

} 

else 

{ 

 TWUB = TWUB; 

 TWLB = TWLB; 

} 

where, 

TWUB:  time window upper bound 

TWLB:  time window lower bound 

mean_TT:  mean estimated travel time 

std_TT:  standard deviation of the estimated travel time 

 

As mentioned in the Data Collection section for freeway corridor analysis, RTREID-2 was first 

implemented for each single section along the corridor and the estimated travel times were calculated every 

30 seconds.  Moreover, since travel time information can be directly obtained from RTREID-2, space-
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mean-speed measurements can also be calculated.  The results of section travel times and speed estimations 

are shown from Figures 7.11 to 7.15.  It can be seen from Figure 7.11(a) to Figure 7.15(a) that the 

estimated travel times generally follow the trend of the GPS travel times very well.  Although the estimated 

travel times have some large variations during this congested time period in these five freeway sections, 

large variations of the GPS travel times are also observed during the same period for those sections. 

 

Moreover, as shown in Figure 7.11(b) to Figure 7.15(b), congestion was first observed around 6:40am and 

peaks around 8:00-8:10am when speeds varied between 20 to 30mph.  The congestion was alleviated after 

9:30am, and the traffic in these four sections was back to normal around 10:00am.  The Harvard—Red Hill 

section behaved differently from the other sections.  The congestion at this section was first observed 

around 9:00am and peaks around 9:30am but the speed did not go below 35mph.  The congestion did not 

stay long and the traffic alleviated after 9:40am. 
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(a) Travel time estimation. 

 

 

 

 

 

 

 

 

 

 

 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
  

 
 

 

  
 

 
 

  
 

 

 

 

(b) Speed estimation. 

Figure 7.11  Freeway corridor analysis:  Laguna Canyon 1—Sand Canyon section travel time and speed 
estimations. 
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(a) Travel time estimation. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 
 

 

  
 

 
 

 


 


 

(b) Speed estimation. 

Figure 7.12  Freeway corridor analysis:  Sand Canyon—Jeffrey section travel time and speed estimations. 
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(a) Travel time estimation. 

 

 

 

 

 

 

 

 

 

 

 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 


 

 

  



  

 


 



 

(d) Speed estimation. 

Figure 7.13  Freeway corridor analysis:  Jeffrey—Yale section travel time and speed estimations. 
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(a) Travel time estimation. 

 

 

 

 

 

 

 

 

 

 

 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


  
 


 

 

 
  

  
  

 
 

 


 

(b) Speed estimation. 

Figure 7.14  Freeway corridor analysis:  Yale—Harvard section travel time and speed estimations. 
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 (a) Travel time estimation. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 

 


 
 


 

 

 

(b) Speed estimation. 

Figure 7.15   Freeway corridor analysis:  Harvard—Red Hill section travel time and speed estimations. 
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The corridor travel time and speed estimations were obtained from aggregating the results of the section 

estimations.  More accurate performance evaluation may be fulfilled via ground-truthed data in future 

studies.  The results are presented in Figure 7.16.  It can be seen from Figure 7.16 that the RTREID-2 

results follow the GPS travel times and speeds of the corridor quite closely.  In addition, it can be seen from 

the RTREID-2 results in Figure 7.16(b) that the onset of corridor congestion was around 6:40am and 

reaches morning peak around 8:00am when the speed dropped to 30mph.  The congestion situation lingered 

for one and half hours and the corridor traffic returned to “normal” speeds around 10:00am.   
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(a) Travel time estimation. 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 


 

 

 


 
 

 


 

 

 

(b) Speed estimation. 

Figure 7.16   Freeway corridor analysis:  Corridor travel time and speed estimations. 
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CHAPTER 8   REAL-TIME TRAFFIC PERFORMANCE MEASUREMENT SYSTEM (RTPMS) 

DESIGN AND OPERATION 

8.1 RTPMS Deployment Framework  

As mentioned in Chapter 7, field computational resources and the bandwidth of field communication links 

are often limiting factors in traffic operations.  This was a key consideration in the design of the Real-time 

Traffic Performance Measurement System (RTPMS).  The RTPMS can be divided into two sub-systems: a 

field data preprocessing system and a performance measurement system.  The field data preprocessing 

system includes all field computers that obtain and process raw vehicle signature data.  The performance 

measurement system consists of four servers to generate and display real-time performance measurements.  

The framework of the RTPMS is illustrated in Figure 8.1. 

 

As shown in Figure 8.1, the Data Pre-Processor module in the field data preprocessing system will generate 

two types of data: raw vehicle signatures and RTPMS features.  The raw vehicle signatures are unprocessed 

vehicle signatures obtained from advanced detector cards.  The RTPMS features includes PSR values and 

speed estimation results.  In the performance measurement system, there will be four servers including 

RTREID-2, Data Collector, Testbed Web, and Database.  The Data Collector will communicate with the 

field computers through an interface, which will be programmed in CORBA, and collect the preprocessed 

RTPMS features. 

 

The vehicle reidentification and vehicle classification tasks will be managed on the RTREID-2 server.  The 

raw vehicle signature data obtained from the field as well as the outputs of the RTREID-2 server will be 

sent to the Database server for storage.  The Testbed Web server will obtain necessary information from the 

Database server, execute performance evaluation, and display the traffic performance results. 



Figure 8.1 RTPMS deployment framework 
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8.2 Module Description  

There are six modules in RTPMS, as illustrated in Figure 8.2.  In the field data preprocessing system, the 

raw vehicle signature data is first processed via the Signature Examination Module to detect bad and 

abnormal vehicle signatures.  The RTREID-2 PSR Generation Module is then performed to extract PSR 

values for each vehicle signature while the single loop speed estimation is implemented via the Speed 

Estimation Module. 

 

The PSR values together with the estimated speeds from each field unit are then sent back to RTREID-2 

server through CORBA interface.  RTREID-2 and Vehicle Classification modules are subsequently 

performed to obtain vehicle class and vehicle tracking information for each individual vehicle.  Finally, the 

UCI_PeMS Module queries the RTPMS database to access necessary information, and hence, generate 

performance indices and estimates. 

 

 

 

Figure 8.2 RTPMS modules descriptions 
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8.3 RTPMS Database Design  

The database was developed using the Oracle 10 platform.  Oracle was chosen as it is a stable and reliable 

system for multiple simultaneous data entries and queries.  The database is designed to operate with an 

optimal balance of speed performance and low space requirements.  It consists of two main data structure 

components: static lookup tables and dynamic data tables.  It is also designed with several predefined 

queries to speed up the search for frequently looked up data.  This saves the database significant time that 

would have been required to parse long queries.  Instead, predefined queries reduce the search parameters 

in web-based queries required to obtain data—speeding up the search process.  The use of static lookup 

tables simplifies field implementation and data redundancy, while reducing the growth rate of dynamic data 

tables by reducing their fields to only numerical data types.  The static tables are also designed for 

transferability for implementing the RTPMS on other freeway locations with different lane facilities and 

loop sensor configurations.  Figure 8.3 shows the relationships of tables in the database.  Table 8.1 provides 

a description of fields of each static lookup table while Table 8.2 shows the corresponding information for 

the data tables, which store signature records and vehicle reidentification results. 

  



 

 







































































































































































































































































































 

Figure 8.3.  Relationships of tables in RTPMS database 
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Table 8.1.  RTPMS Database Static Lookup Tables 
Table Field No. Field Type Description Primary Key

RTPMS_LOOKUP_CABINETS 1 CABINET_ID Number(22) Traffic Cabinet ID X
2 CABINET_NAME Varchar2(30) Traffic Cabinet Name
3 IP_ADDRESS Varchar2(15) Traffic Cabinet IP Address
4 NUM_SLOTS Number(22) Number of available detector card slots
5 ROAD_NAME_ID Number(22) Road Name ID
6 POSTMILE Number(22) Post Mile
7 LOCATION Varchar2(32) Cabinet Location
8 LAT_COORD Number(22) Latitude Coordinate
9 LONG_COORD Number(22) Longitude Coordinate

RTPMS_LOOKUP_CORRIDORS 1 CORRIDOR_ID Number(22) Corridor ID X
2 CORRIDOR_NAME Varchar2(64) Corridor Name
3 STATE Varchar2(2) State
4 CITY Varchar2(30) City / Place
5 DIRECTION_ID Number(22) Direction ID

RTPMS_LOOKUP_DET_CARD_CFG 1 CARD_CONFIG_ID Number(22) Detector Card Configuration ID X
2 SCANNING_RATE Number(22) Scanning Rate
3 STREAM_MODE Varchar2(30) Data Stream Mode

RTPMS_LOOKUP_DET_CARD_LN 1 CARD_LN_ID Number(22) Detector Card-Lane ID X
2 DET_CARD_ID Number(22) Detector Card ID
3 FRONT_LOOP_CHANNEL Number(22) Front Loop Channel
4 CARD_CONFIG_ID Number(22) Detector Card Configuration ID
5 SLOT_NO Number(22) Slot Number
6 STATION_ID Number(22) Detector Station ID
7 LANE Number(22) Lane Number (From Median)
8 LANE_TYPE_ID Number(22) Lane Type ID

RTPMS_LOOKUP_LANE_TYPES 1 LANE_TYPE_ID Number(22) Lane Type ID X
2 LANE_TYPE_DESC Varchar2(64) Lane Type Description
3 ALLOW_SOV Number(22) Allow Single Occupancy Vehicle
4 ALLOW_HOV Number(22) Allow High Occupancy Vehicle
5 ALLOW_TRX Number(22) Allow Trucks
6 ALLOW_NTRX Number(22) Allow Non-Trucks

RTPMS_LOOKUP_LOOP_CONFIG 1 LOOP_CONFIG_ID Number(22) Loop Configuration ID X
2 LOOP_CONFIG_DESC Varchar2(30) Loop Configuration Description
3 LOOP_NUM Number(22) Number of Loops
4 SEPARATION Number(22) Leading Edge Separation Distance

RTPMS_LOOKUP_LOOP_TYPE 1 LOOP_TYPE_ID Number(22) Loop Type ID X
2 LOOP_TYPE_DESC Varchar2(30) Loop Type Description
3 WIDTH Number(22) Loop Width
4 LENGTH Number(22) Loop Length

RTPMS_LOOKUP_ROAD_NAME 1 ROAD_NAME_ID Number(22) Road Name ID X
2 ROAD_NAME Varchar2(30) Road Name

RTPMS_LOOKUP_SECTIONS 1 SECTION_ID Number(22) Section ID X
2 UP_STN_ID Number(22) Upstream Station ID
3 DN_STN_ID Number(22) Downstream Station ID
4 SECTION_NAME Varchar2(30) Section Name
5 LENGTH_MI Varchar2(5) Length (Miles)

RTPMS_LOOKUP_SECT_CORR 1 SECT_CORR_ID Number(22) Section-Corridor ID X
2 CORRIDOR_ID Number(22) Corridor ID
3 SECTION_ID Number(22) Section ID
4 SECTION_ORDER Number(22) Section Position in Corridor

RTPMS_LOOKUP_STATIONS 1 STATION_ID Number(22) Detector Station ID X
2 STATION_NAME Varchar2(30) Detector Station Name
3 CABINET_ID Number(22) Traffic Cabinet ID
4 ROAD_NAME_ID Number(22) Road Name ID
5 NUM_LANES Number(22) Number of Lanes
6 LOOP_TYPE_ID Number(22) Loop Type ID
7 LOOP_CONFIG_ID Number(22) Loop Configuration ID
8 DIRECTION_ID Number(22) Direction ID
9 POSTMILE Number(22) Post Mile
10 LAT_COORD Number(22) Latitude Coordinate
11 LONG_COORD Number(22) Longitude Coordinate

RTPMS_LOOKUP_STATION_DIR 1 DIRECTION_ID Number(22) Direction ID X
2 DIRECTION Varchar2(30) Direction

RTPMS_LOOKUP_VEHICLE_CLASS 1 VEHCLASS_ID Number(22) General Vehicle Classification ID X
2 VEHCLASS Varchar2(100) Vehicle Class Description
3 CLASS5_ID Number(22) 5 Class Scheme Vehicle Class
4 CLASS6_ID Number(22) 6 Class Scheme Vehicle Class  
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Table 8.2.  RTPMS Database Data Tables 
Table Field No. Field Type Description Primary Key

RTPMS_REID_OUTPUT 1 ID Number(22) REID Vehicle Record ID X
2 UP_SIG_ID Number(22) Upstream Signature ID
3 UP_LANE_ID Number(22) Upstream Lane
4 DN_SIG_ID Number(22) Downstream Signature ID
5 DN_LANE_ID Number(22) Downstream Lane
6 SECTION_ID Number(22) Section ID

RTPMS_VEH_SIG 1 ID Number(22) Vehicle Signature Record ID X
2 SIG_ID Number(22) Signature ID
3 CARD_LN_ID Number(22) Detector Card-Lane ID
4 DATESTAMP Date Date Stamp
5 TIMESTAMP Number(22) Time Stamp
6 DURATION Number(22) Sigature Record Duration (sec)
7 VEH_CLASS_ID Number(22) General Vehicle Class ID  

 

8.4 System Operation 

Because key data communication links were not operational during development, the implementation of 

RTPMS was conducted off-line in this research.  A simulation of RTPMS was conducted to evaluate its 

feasibility.  The framework is illustrated in Figure 8.4.  After the RTREID-2 server was setup, Data 

collector (i.e., CORBA interface), Database and Testbed Web servers were built by UCI research team 

according to the proposed RTPMS framework.  The tasks of the Data Collector are: 

1) to receive raw vehicle signature data and RTPMS features (named, CORBA Supplier), and 

2)  to feed RTPMS server with RTPMS features (named, CORBA Consumer) 

 

The Data Pre-Processor was designed to emulate field computers.  The functions of Data Pre-Processor 

include simulating the real-time scenario of generating raw vehicle signature data, detecting and 

eliminating irregular and tailgating vehicle signatures data, and extracting PSR values from each vehicle 

signature.  The RTPMS server in this simulation was designed to emulate RTREID-2 server, Database 

server and Testbed Web server.  The RTREID-2 and Vehicle Classification Modules were performed once 

RTPMS features were received from CORBA Consumer, and the results were sent to the Database server.   

 

It was found that amendment was needed for the minimum AMD searching approach described in Step 5 of 

RTREID-2 procedure when implementing RTREID-2 Module in a real-time setting.  This searching 

approach firstly defines an upstream candidate vehicle set for a downstream vehicle within a time window, 

and a reverse time window is applied to each upstream candidate vehicle to find its corresponding 

candidate vehicle set at its downstream (details can be found in Chapter 7). 

 

For a given upstream candidate vehicle, however, it is not possible to properly include all candidate 

vehicles at downstream since the upper bound of the reverse time window may exceed the current 

timestamp.  Accordingly, adjustment was made to hold those vehicles and to postpone the vehicle 

reidentification task until all candidate vehicles could be properly included.  As a consequence some delays 

may occur due to this change as the “current” travel time information will be an estimate obtained from the 

vehicles that can be reidentified in the current time interval. 
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The UCI_PeMS Module, which was embedded in the simulated Testbed Web server, queries the database 

to get necessary information so that performance measurements can be generated.  All of the modules were 

programmed in C/C++ except the UCI_PeMS module, which was programmed in Java.  The display of the 

real-time performance measurements results it can be shown graphically or in text format as reported in the 

following section. 

 

 

Figure 8.4 RTPMS simulation 

 

8.5 Prototype RTPMS Website Design  

The prototype RTPMS website was designed with the Oracle JDeveloper software and interfaces with the 

RTPMS database via Java Database Connectivity (JDBC).  The prototype website is to designed to provide 

an intuitive interface for the user to obtain real-time traffic performance measures, which will be integrated 

into the ITS Testbed website.  Users navigate through the website using the left panel which provides 

selection of detail levels and easy-to-use pull-down menu options for quick selections of facilities and 

locations as well as data aggregation intervals as shown in Figure 8.5.   
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Figure 8.5.  Navigation panel of prototype RTPMS website 

8.5.1 Corridor Detail Level 

Traffic performance measures are provided at the corridor and section level.  Each detail level is described 

in the Sections 8.5.1 and 8.5.2. 

 

Two viewing options are available at the corridor detail level: a graphical display as well as a text-based 

display. 

 

The graphical display provides a qualitative overview of traffic conditions for the selected corridor location 

as shown in Figure 8.6.  This is the default option when choosing the corridor display.  Users are able to 

obtain measures such as corridor travel time by lane type, section speeds by lane type (i.e. mainline and 

HOV lanes), traffic flows at detector stations by lane type and vehicle class proportions at each section.  

The use of colors and polygons visually enhance the information provided for quick assessment of 

prevailing traffic conditions and the emergence of any trouble spots.  The stations locations are plotted 

based on geo-coded coordinates.  This simplifies merging with existing networks for real-world 

implementation.  The corridor travel time for both mainline and HOV lanes are displayed as text following 

the corridor name.  The colored polygons in the display represent the traffic performance measures of each 
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section.  The polygons are split longitudinally by a piecewise continuous black line.  The HOV lanes are 

represented by polygons on the lower left of the line, while the mainline lanes are represented by polygons 

on the other side as shown in Figure 8.6.  The colors of the polygons represent the section space-mean-

speeds, where red represents speeds at or below 15 mph and green represents at or above 75 mph.  The 

speed scale is shown at the lower left corner of the display and provides a speed scale from 15 mph to 75 

mph, with a continuous gradient from green to yellow to red.  The grey polygon background indicates the 

reserve capacity of the facility, which is 2400 vehicles-per-hour-per-lane (vphpl).  Hence, the thickness of 

the colored polygons represents the traffic flow at each station as a fraction of the reserve capacity.  A 

combination of the thickness and color of the polygons give a good representation of the traffic state.  For 

example, a thin green polygon represents low density off-peak conditions, a thick polygon with its width 

close to the grey polygon indicates near capacity flow, while a thin red polygon is a sign of traffic 

congestion with low-flow stop-and-go conditions.  The pie chart above each polygon section represents the 

vehicle class proportions at each section.  Each colored slice in the chart represents a vehicle class, which is 

described in the legend at the bottom of the display adjacent to the speed scale.  A refresh indicator is also 

shown in the upper right corner of the graphical display represented by a sweeping pie chart.  Updates 

occur every time the pie sweeps one full circle. 

 

Figure 8.6.  Graphical display of real-time traffic performance measures at the corridor level of detail. 
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The text-based corridor-level traffic performance measures can be obtained by clicking the “Text-Mode” 

button on the top-left corner of the display.  The text-mode provides numerical performance measures for 

the selected corridor location.  Users can obtain actual corridor travel times by lane types, station traffic 

flows by lane types as well as section-based travel times and space-mean-speeds by lane type as shown in 

Figure 8.7. 

 

 

Figure 8.7.  Text-based display of real-time traffic performance measures at the corridor level of detail. 

 

8.5.2 Section Detail Level 

The text-based section-level display provides numerical performance measures for the selected corridor 

location.  Users can obtain actual section travel times and section-based space-mean-speeds by vehicle 

class grouped by lane types as shown in Figure 8.8.  Vehicle class proportions are also shown for each lane 

type within the selected section. 
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Figure 8.8.  Text-based display of real-time traffic performance measures at the section level of detail. 
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CHAPTER 9   CONCLUSION 

9.1 Summary of Contributions and Findings 

This study has yielded several significant contributions in the area of advanced surveillance technologies: 

 

The single loop based point speed estimation developed in this model provides accurate point speed 

estimates.  The model was tested during morning peak periods and yielded excellent results even with 

aggregation intervals as low as 30 seconds. 

 

Perhaps one of the most significant contributions of this study was developing a real-time framework for 

the inductive vehicle signature-based REID concept and testing it in a simulated real-time deployment.  

The accuracy of the resulting performance measures indicates that such a system has the ability to provide 

ground-breaking section and corridor performance measures such as vehicle class-based section and 

corridor travel times obtained from measured travel times of matched vehicles between detector stations.  

The accuracy and reliability of this system was corroborated by information obtained from GPS-equipped 

floating vehicles deployed during the study period, which included highly congested periods. 

 

Another significant contribution of this study is the modification of the REID algorithm to utilize only a 

single loop detector configuration, equipped with the advanced loop detector cards used in this study.  This 

is a departure from many other travel time estimation studies, which depend on a dual inductive loop 

configuration.  This has important implications, as the majority of the detection infrastructure in California 

is based on the single inductive loop configuration.  This means that it will require only minimal road 

infrastructure modifications to implement this system in California to provide the advanced traffic 

surveillance measures presented in this study. 

 

The investigation of a commercial vehicle surveillance system using the prototype Blade™ inductive 

sensors has also yielded several significant results.  The wheel and undercarriage information extracted 

from the inductive Blade™ signatures was used to develop a commercial vehicle vector classification 

model that provides an unprecedented level of detail for commercial vehicle classification.  This has 

yielded the potential of providing a more in-depth understanding of travel patterns and behavior of 

commercial vehicles.   These preliminary results suggest that this technology should be further 

investigated, as such a surveillance system has the potential to accurately and significantly contribute to 

measuring the safety, environmental, economic and security impacts of commercial vehicle travel. 
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The investigation of the Blade™ sensor has also revealed some findings about the technology at its current 

state of development.  While the technology offers much potential, several issues were experienced due to 

the use of the temporary installation nature of the sensor.  As the sensor was surface-mounted on the 

pavement, it was subjected to wear under wheel impacts of traversing vehicles.  This led to relatively short 

effective sensor lifespan of less than one week in the downstream location and under two weeks in the 

upstream one.  It should be noted that this should not be a significant concern in the permanent installation 

of these sensors, as the sensors will be installed in pavement cuts, which will protect the sensors from 

contact with wheel impacts.  Noise signals were also a concern with these sensors.  Due to the design of 

Blade™ inductive sensors, the inductance fields generated are significantly smaller than those of 

conventional sensors.  As a consequence, noise signals show up more significantly in Blade™ inductive 

vehicle signatures than conventional ones.  The manufacturer has proposed using lead-in cables with higher 

turns per foot to eliminate these effects, but there was insufficient time to conduct another study to verify 

this solution. 

 

9.2 Future Research 

The next logical step in this research project is for a truly online corridor field implementation and testing 

of the RTPMS that was developed.  This entails making all detection station PCs on I-405N (and preferably 

I-405S) operational (replacing those that are defective, upgrading IST cards as needed, changing the OS 

from Windows 2000 to Linux, and providing communications with adequate bandwidth, most likely by 

wireless ISP), instrumenting select arterial detection stations in a similar fashion, and modifying the 

RTPMS for corridor operation (including web-site and data-base modifications).  In addition, a significant 

operational phase for data collection, ground-truthing, algorithm development, and evaluation of RTPMS 

and the detector systems themselves should be included. 

 

It was found in this study that while conventional inductive loop sensors perform sufficiently well to obtain 

good measurements of travel time information under varying traffic conditions, they may not be well suited 

for obtaining accurate origin-destination and route information due to distortion of vehicle signatures under 

stop-and-go situations.  This requires investigation of new sensor technology such as Blade™ inductive 

sensors, which have the potential to address this problem, and may show greater suitability for 

implementation on arterial streets as well.  Coincidentally, the preliminary investigation of Blade™ 

inductive sensors has revealed significant potential in commercial vehicle surveillance applications, and 

indicates a further need to determine the robustness and reliability of the sensor when installed in a 

permanent configuration.  Hence, a permanent installation of Blade™ inductive sensors in an existing 

corridor would assist in addressing these issues. 
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