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ABSTRACT

The objective of this dissertation is to develop a nondestructive evaluation (NDE)
method that could accurately locate and evaluate damage in mass, stiffness and damping
properties of structural members. The method is based on the power (Refer to the
definition in Section 2.2) equilibrium between the undamaged and damaged structural
systems. The method is applicable to a variety of structures and has high tolerance
capacity to noise. To demonstrate the above characteristics of the proposed method, the
following several tasks will be addressed: (1) the application of the proposed method to
different discrete systems with exact deformation data; (2) the application of the
proposed method to different continuous systems with exact deformation data; (3) the
application of the proposed method to discrete and continuous systems with
noise-polluted inputs; (4) the validation of the proposed method using field data. The
damage detection results from Task #1 and Task #2 indicated that the proposed method
can accurately locate and evaluate damage in mass, stiffness and damping of the
structure if exact deformation data were given. The results from Task #3 indicated that
the proposed method is proved to be effective in locating and evaluating damage at least
fewer than 5% white noise. The damage evaluation results from the field experiment
showed that the proposed method is applicable to real-world damage detection by

providing damage locations and estimations of damage severities.
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1 INTRODUCTION

Damage in civil infrastructure can be caused by either aging from daily use or extreme
loads from natural or man-made disasters. It's important to be able to measure damage in
structures as well as protect life and property from the potential losses due to the existing
damage in the structure. Thus, it's necessary to have an efficient non-destructive
evaluation method which can locate and evaluate damage accurately. When compared to
the local damage detection techniques, such as visual and ultrasonic inspection, global
damage detection techniques are more efficient for use on civil infrastructures.
Frequency-domain damage detection and time-domain damage detection techniques are
two major categories of global damage detection techniques. Compared to the
frequency-domain global damage detection techniques, the time-domain global damage
detection techniques can be used to detect not only stiffness damage, but also damping
and mass damage. Also, it's more convenient to apply the time-domain global damage
detection techniques, since this type of global damage detection techniques is based on

response time history, which can be measured directly from field experiments.

1.1 PROBLEM STATEMENT
Since the failure of the civil infrastructures may result in serious life and property loss,
the prediction and evaluation of existing damage in civil structures is critical.

Non-destructive damage evaluation (NDE) techniques can play a key role.

Efficient non-destructive damage detection technique can save human lives, protect

property and reduce maintenance costs and time. Because of this, non-destructive



damage detection techniques have been very well focused over the past few decades.

Non-destructive damage detection method can be categorized as either local methods or
global methods. Local methods are generally based on ultrasonic, visual, or radiograph
inspection. Global methods include damage detection methods based on modal
information or the vibration time history of structures. Local NDE methods have two
critical limitations: (i) the general damage locations need to be known beforehand; (i1)
the general damage locations are accessible. Compared to local NDE methods, the
global NDE methods are more economical and applicable to some specific purposes,

such as life-cycle automated health monitoring.

The global method can also be classified into two sub-categories: (1) global method in
time domain; (2) global method in frequency domain. Compared to the global NDE
method in frequency domain, the global NDE method in time domain is able to directly
use the measured time histories to detect damage in mass, stiffness, and damping without

going through modal analysis.

This study presents a global NDE method in time domain which can be used to detect,
locate, and evaluate the damage in the structure. Further, the structural damage may be

defined as the changes of mass, stiffness, and damping.

1.2 BACKGROUND ON NON-DESTRUCTIVE EVALUATION METHOD
1.2.1 Review of Frequency-Domain Methods
In the past two decades, much research work focusing on damage detection in existed

structures has been carried out. The following discussion briefly reviews significant



research findings.

Adams et al. (1975) proposed a method using the changes of natural frequencies and
damping ratios as indications of damage. The theory is based on the assumption that any
damage in the material could result in shifts of natural frequencies and damping ratios.
The proposed theory has been demonstrated by its application to complex composite

structures.

Loland and Dodds (1976) tried to detect the existences of damage by observing the
changes of frequencies. Since the natural frequencies of a structure are determined by
the geometry, stiffness, and mass of the structure, the natural frequencies may change if
stiffness of members is changed. The proposed method was also validated using the
acceleration records from three different offshore platforms in the southern sector of the
North Sea. The advantages of this method are: (1) the instruments required by the
method is only accelerometers; (2) the post analysis after the data collection is simple
and can be performed automatically by computer. One of the limitations of this method
is that it is hard to locate damaged area only by observing the changes of the frequencies.
Also, the changes of the natural frequencies are controlled by the mass of the structure as
well. If both mass and stiffness of a structure are changed, detect and locate damage may
even harder. Moreover, the sensitivity of this method to the initial stage of members'

damage is unknown. This method cannot provide evaluations to the damage severities.

Cawley and Adams (1979) presented a further study of the NDE method by investigating
the changes of frequencies. Based on the idea that the ratio of the frequency changes in

two modes is only a function of the damage location, the locations of damage can be



found by matching the experimentally measured ratio of frequency changes with the
theoretically determined ratio, which is corresponded to a specified damage location.
The major advantage of this method is that natural frequencies and damping of a
structure need only be measured at any one location of the structure. However, since the
method uses a passive procedure to locate and evaluate the damage by matching the
measured values with the computer simulated values, the amount of computation time

can be significant.

Allemang and Brown (1982) proposed a criterion to detect the existence of damage in
structures by checking the consistency of mode shapes between the damaged and
undamaged structures. The proposed criterion is known as the Modal Assurance
Criterion (MAC). The MAC varies from zero to one, which is determined by the
expression of the MAC. When the MAC is equal to zero, it means no linearly dependent
relationship existed in the mode shapes from the undamaged and damaged structures,
which means the structure may suffer severe damage. On the other hand, when the MAC
is equal to one, it means the mode shapes from the damaged structure is linearly
dependent to the mode shapes from the undamaged structure, which may indicates no
damage or insignificant damage in the structure. This method can be easily performed if
the mode shapes from the damaged and undamaged structures are given. However, the
MAC criterion can only be an approximate primary check, because (1) the differences
between the mode shapes from the undamaged and damaged structures can be so small
that the computed MAC will still be closed to one; (2) this criterion cannot be used to

locate and evaluate damage.

Lieven and Ewins (1988) proposed a similar criterion to detect damage, the Co-ordinate



Modal Assurance Criterion, known as COMAC. The COMAC showed the correlation
between the mode shapes at a selected measurement point of the structure instead of the
overall difference of the two groups of mode shapes. Unlike MAC, COMAC is said to
be able to not only detect the existences of damage but also be able to locate damage.
However, as stated previously, the sensitivity of the mode shapes to small physical
property changes is questionable. With the uncertainty caused by the existence of noise
in the measured data, the COMAC can be impractical to the detections of small physical

property changes in in-service structures.

Rizos et al. (1990) proposed a NDE method based on the flexural vibration. At one of
the natural mode of the structure, based on the recorded vibration amplitudes at two
separated locations, the vibration frequency and an analytical solution of the dynamic
response, the crack can be located and the depth of the crack can be closely estimated.
The theory was validated using a cantilever beam which is 300 mm long and is clamped
to a vibrating table. The damage was simulated as a thin saw cut. Five specimens with
different damage locations and cut depths were tested. The difference between the
measured and the computed values of the crack locations and depth were not larger than

&% for all tests.

Pandey et al. (1991) proposed a damage detection method based on changes of mode
shape curvatures. The method could detect and locate damage according to the
indication from the absolute difference of the mode shape curvatures between the
damaged and undamaged structures. According to this study, the mode shape curvatures
possessed higher sensitivity to damage than the mode shapes. The method was validated

using a finite element cantilever beam model.



Raghavendrachar and Aktan (1992) applied the NDE method based on modal flexibility
to a three-span reinforced concrete bridge. According to the study, the flexibility
coefficients were found to be more sensitive to local damage than natural frequencies

and mode shapes.

Stubbs et al. (1992) proposed a NDE method, known as the Damage Index Method
(DIM), to detect and locate damage in the given structure. The proposed method was
based on equality of the energy fractions between the undamaged and damaged
structures. Mode shape curvatures were used to estimate the element strain energy for
each element. The proposed method required no baseline model and was applicable to
multi-damage locations. The method was validated using a numerical model of an

offshore jacket platform.

Peterson et al. (1993) presented a damage detection method to locate both mass and
stiffness damage. The method worked in modal domain and is based on changes in
measured stiffness and mass matrix which was constructed using Eigen-system
Realization Algorithm and the Common Basis Structural Identification Algorithm. The

method was validated using numerical examples and experimental data.

Pandey and Biswas (1994) presented a NDE method based on the modal flexibility
matrix. The flexibility matrix for the given structure was estimated using a few
low-frequency modes and related frequencies. The damage was indicated by the plot of
the maximum absolute value of the difference flexibility matrix between the damaged

and undamaged structures. Numerical cantilever, simply supported, and free-free ends



beam models were employed to validate the method.

Ko et al. (1994) reported an application of the sensitivity study and MAC/COMAC
analysis to a steel portal frame. The reports stated that the COMAC analysis can be used
as a reliable indicator of the location of damage if the most sensitive correlated mode

shape pairs were used.

Choy et al. (1995) proposed a fault-identification procedure to identify the defect in the
stiftness of beam and the defect in the stiffness and damping characteristics in damping
of the supporting foundation under the beam. The proposed methodology was based on
the measurement of natural frequencies of the system and was limited to detecting the

existences of damage.

Zhang and Aktan (1995) suggested using the changes of uniform flexibility shape
curvatures to detect damage. Instead of computing the curvatures of the mode shapes,
the proposed method computes the flexibility matrices for both the damaged and
undamaged structures and used the difference of curvatures of each column vector from

the flexibility matrices as the damage indicators.

Sheinman (1996) proposed a new damage detection algorithm based on updating the
stiffness and mass matrices using mode data. By comparing the difference between the
undamaged and damaged ones, the damage can be located, and then subsequent
algorithm was required to evaluate the damage. The method was validated using several

numerical examples.



Hjelmstad and Shin (1996) proposed a damage detection method based on system
identification and measured modal response of a structure. The parameters of the
damaged structure were estimated from the modal data by using modal displacement
error method. A data perturbation scheme, based on Monte Carlo method, was used to
assess the damage. The method was validated using a cantilever beam model and a plane

stress model.

Stubbs and Kim (1996) presented a damage detection method to locate and estimate the
severities of damage in structures. The method required only a few modal parameters
from damaged structures and a finite element model. The modal parameters of the
undamaged structure would be provided by the system identification technique by
combining the post-damage modal parameters and modal parameters from the finite
element model. The method was validated using a continuous beam model with only

post-damage modal parameters available.

Cornwell et al. (1999) presented a damage detection method for plate-like structures.
The proposed damage detection was an extension of the Damage Index Method (Stubbs
et al. 1992). The method uses only mode shapes of the undamaged and damaged
plate-like structures and requires no mass-normalization process. The method was

validated using numerical and experimental 2-D plates.

Catbas et al. (2006) proposed a NDE method based on modal flexibility. The method
detected the damage by comparing the displacement profiles of the undamaged and
damaged structure. The displacement profiles were estimated from the frequency

response function measurements of the structure. The method was demonstrated



experimentally on two in-service bridges.

Just et al. (2006) detected the damage in a sandwich composite aluminum beams by
comparing the damping matrix in the damaged case with the one in the undamaged case,
by acknowledging that damping characteristics were more sensitive to the changes in
structures compared with stiffness changes. The damping matrix for the undamaged and
the damaged cases were identified using an updated damping matrix identification
iterative algorithm which was based on analytical mass and stiffness matrices and

experimentally obtained natural frequencies, mode shapes, and damping ratios.

Zhong et al. (2008) proposed a damage detection method based on auxiliary mass spatial
probing using the spectral center correction method. The method used the response time
history of beam-like structures to get modal frequencies. Since this method requires
accurate frequencies and the modal frequencies from the fast Fourier transform method
are not accurate enough due to the leakage effect, the spectral center correction method
is adopted and is able to provide more accurate frequencies. The auxiliary mass was used
to enhance the effects of a crack and the changes of the modal parameters of a damaged

beam. The method was validated using numerical examples.

Curadelli et al. (2008) presented a new damage detection scheme based on instantaneous
damping coefficient identification using wavelet transform. Given the damage in the
structure would cause more obvious changes in damping than in modal frequencies or
mode shapes, the proposed method treated damping changes as damage indicators. The
proposed method was validated by the application to a numerical simulation of 2D

reinforced concrete frame, an experimental reinforced concrete beam, and an



experimental 3D frame model.

Gandomi et al. (2011) presented a new approach to detect and locate damage in plates
based on mode shapes of the damaged and undamaged plates. This new approach used
the governing differential equation on transverse deformation, the transverse shear force
equation, and the invariant expression for the sum of transverse loading of an orthotropic
plate. From the numerical study, it is concluded that the method is especially capable of

detecting and locating damage in orthotropic plates.

Shinozuka et al. (2011) proposed a pipeline rupture detection method based on the
measurement of pipe vibration. In this study, the acceleration data at the surface of the
pipe were measured and analyzed in both time domain and frequency domain. In time
domain, the sudden narrow increase of acceleration amplitude was treated as indication
of damage. In the frequency domain, the damage were indicated by the frequency shifts
which would be traced using a correlation function and the short time Fourier Transform

technique.

1.2.2 Review of Time-Domain Methods

Cattarius and Inman (1997) presented a time domain approach to detect both the mass
and stiffness damage in the unknown structure. The proposed procedure relied on the
comparison of the measured time responses from both the undamaged and damaged
structures. By subtracting the two time responses from one another, the resulting beating
phenomena could be acquired and used as an indication of the existence and extent of

damage reflected in local mass and/or stiffness changes.
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Lopez I1I and Zimmerman (2002) presented a damage detection method in time domain.
The method used the modal minimum rank perturbation theory to compute the
perturbation matrices estimating structural changes from a linear state to another linear
state caused by damage. The method was validated using numerical examples. Although
the method provides good indications of the locations of damage, the evaluation of

damage severities in noise-polluted situation may need further studies.

Majumder and Manohar (2003) provided a time-domain method to detect changes in
structural stiffness. The proposed method used acceleration, velocity, and displacements
data from the vibration response of the detected structure. The source of excitation was
induced by a moving vehicle. A finite element model was built to validate the proposed

method.

Choi and Park (2003) presented a method to locate and evaluate damage in a truss
structure. Based on the response data, the algorithm could size the damage by comparing
the mean strain energy of an element from both undamaged and damaged case at a
specified time period. Data from one complex numerical truss was used to validate the

algorithm.

Ma et al. (2004) proposed a time domain structural health monitoring method. The
method is mainly based on the proposed monitors that designed based on the residual
generator technique. The main characteristic of these monitors is that they are only
sensitive to the damage in the structural components that they are attached to. When
there is damage in the structural component that the monitor is attached, the output will

become nonzero. When there is no damage in the structural component, the output of the
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monitor be closed to zero. In this way, the occurrence of the damage of one structural
component can be detected. And because monitor will be attached to each key member
of the structure, thus the damage will be located within the whole structure. With the
input excitation signals and output structural reaction signals, the damage severities of
the members can be computed using traditional time-domain system identification

techniques.

The method required each structural component to be monitored by a structural health
monitor designed using the residual generator technique. Each structural health monitor
was only sensitive to the damage of the structural component connected to it. An obvious
nonzero output from the monitor indicates the damage in the structural component under
monitored. In this way, the proposed method could detect, locate and quantify structural

damage.

Kang et al. (2005) presented a system identification method in time domain. The
proposed method could be used to estimate the stiffness and damping parameters of
structure using acceleration time history. The method required a priori knowledge of the
mass and dealt with only linear structural behavior. The method was demonstrated on a

numerical two-span truss bridge and an experimental three-story shear building model.

Frizzarin et al. (2010) presented a vibration based damage detection method in time
domain. The proposed method used damping changes as an indication of damage. The
method was validated using a large-scale concrete bridge model subjected to different

levels of seismic damage simulated by shake table tests.
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Gul and Catbas (2011) proposed a time-domain approach to detect, locate, and evaluate
damage in given structure. The approach used statistic techniques to analyze the free
response of the structure. An Auto-Regressive Model with exogenous input model
(known as ARX model) was created for different sensor clusters by using the free
response of the structure. Two different approaches are used for extracting damage
features: 1. the coefficients of the ARX models were directly used as the damage

features; 2. the ARX model fits ratios were used as the damage features.

Zhang et al. (2013) proposed a damage detection method in time domain. The method
was generated based on the statistical moment-based damage detection in frequency
domain. The method required the measurement of displacement responses and external
excitations for both undamaged and damaged structures. The proposed method was

validated using both numerical shear buildings models and shake table tests.

1.2.3 Review of Techniques That Simultaneously Evaluate Mass, Stiffness and
Damping Damage

Lindner and Kirby (1994) proposed a method to detect damage in a beam. The method
assumed to know the model of the undamaged beam. The damaged beam model was
updated from the undamaged model using the dynamic response data by an
identification algorithm. By comparing the parameters in the undamaged and damaged
beam models, the damage could be detected, located, and evaluated. The damage in

stiffness and mass of an Euler-Bernoulli beam were detected.

Kiddy and Pines (1998) provide an approach to simultaneously update the stiffness and

mass matrices. In the approach, the stiffness and mass matrix were updated
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simultaneously by modal data after adding constrain in the damage detection problem. A

numerical example was used to validate the approach.

Lin et al. (2005) applied the Hilbert-Huang transform (HHT) technique for damage
identification to the phase I IASC-ASCE benchmark problem (Johnson et al 2004) for
structural health monitoring. The approach can be used to identify the natural
frequencies, damping ratios, mode shapes stiffness matrix, and damping matrix of a
structure based on the measured noisy acceleration responses caused by ambient

vibration.

Shin and Oh (2007) proposed a nonlinear time-domain system identification algorithm.
The algorithm used the acceleration time history to synchronously evaluate the stiffness
and damping parameters of the structure. The algorithm was validated using both

numerical simulation and laboratory experiments.

Bighamian and Mirdamadi (2013) presented a new approach to simultaneously detect
damage in mass and stiffness in aerospace structures. The presented procedure was only
related to signals and was not related to modal parameters. The system digital pulse
response data related to a selected number of collocated sensor-actuator DOFs to assess

the extent of damage that occurred in the structure.

To find the current research background about the techniques which can simultaneously
evaluate mass, stiffness, and damping damage, the author has searched several major
journals, which are related to non-destructive damage detection techniques, during

2009-2013 period by using “damage” as the keyword in the title. Limited number of
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papers was found. Although there are two or three techniques that may be able to
provide information in mass, stiffness, and damping damage simultaneously but there
wasn’t one NDE technique that will provide detailed damage information in mass,

stiffness, and damping as the one proposed in this proposal.

1.3 LIMITATIONS OF CURRENT NON-DESTRUCTIVE EVALUATION
TECHNIQUES
Vibration-Based Global nondestructive methods could be classified into two major

categories: 1. Frequency-domain methods; 2. Time-domain methods.

The NDE methods in frequency domain are normally based on the modal parameters,
such as modal frequencies, mode shapes or mode-shape curvatures. During the past two
decades, a large number of NDE methods in frequency domain have been created and
developed (e.g. Pandy et al. 1991, Stubbs et al. 1992, Pandy and Biswas 1994 and Zhang
and Aktan 1995). However, the NDE methods in frequency domain have their own

limitations:

(1) Damage detection algorithm based on changes of frequency

This type of algorithms has three major limitations: (1) the changes of the natural
frequencies due to damage are not obvious (Farrar, et al., 1994, Doebling et al. 1996).
Change of the environmental conditions, such as change of humidity and temperature,
will cause the change of the material properties of the structural material such as mass,
stiffness, and damping properties and finally result in the change of natural frequency.
Thus it will be hard to decide whether the changes of natural frequencies are caused by

damage in the structure or the change of environmental conditions. (ii) Different type

15



damage may result in same level changes of natural frequencies. That is same amount of
damage at symmetric locations could cause the same change of frequencies and different
amount of damage at different locations could cause the same changes of frequencies.
Moreover, different combinations of damage in mass and stiffness could also result in

same changes of frequencies.

(2) Damage detection algorithm based on changes of mode shapes

This type of damage detection algorithms is also not ideal. Mainly because mode shapes
of a structure are not sensitive to damage (Huth et al. 2005). This could be demonstrated
by the MAC and COMAC computation shown by Pandey et al. (1991), the nearly
identical results can hardly be used as an indication of damage existence. Moreover,
most of the algorithms based on changes of mode shapes are limited by locating damage
and will not be able to provide detail damage information about each property of the

material (Pandey et al. 1991, Lee et al. 2005).

(3) Damage detection algorithm based on the changes of mode shape curvatures

This type of algorithms might provide the false indications of damage locations when
dealing with higher modes (Pandey et al. 1991), which might cause misjudge of damage
locations. Since there is not a reasonable way to combine all the results from different
mode shape curvatures, the damage detection algorithm will not be able to provide
accurate damage severities estimations. Most of the algorithms in this group are limited
by locating and evaluating general damage and will not be able to detect damage in mass,

stiffness, and damping separately.

(4) Damage detection algorithm based on the changes of modal flexibility
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That the modal flexibility provides a reasonable way to combine the damage information
contained in the natural frequencies and the mode shapes of a structure. This type of
methods may provide indication of damage existences and damage locations. However,
since it's hard to relate the modal flexibility matrix to local stiffness, the accurate
stiffness damage severities are hard to obtain (Pandey and Biswas 1994, Zhang and
Aktan 1995). And obtaining the mass normalized modes could be an issue when the
modes were obtained from ambient data (Farrar and Jauregui 1996). Moreover, the
existing NDE techniques based on modal flexibility are mainly designed for static state,
it is also difficult for this type of method to detect damage in mass and damping

parameters.

(5) Damage detection algorithm based on the changes of modal strain energy

Since the modal strain energy is directly related to the mode shape curvatures. The
algorithms based on modal strain energy may share the same drawbacks as the
algorithms based on mode shape curvatures, such as the false indication of damage
locations. Since there is currently not a reasonable way to combine all the damage
information in each modes, the damage severities from each mode won't be exact
(Stubbs et al. 1992). Also, because the existing NDE techniques based on modal strain
energy are mainly designed for static state, it is difficult for this type of method to detect

damage in mass and damping parameter.

In conclusion, one major drawback of the NDE methods in frequency domain is that
most of the techniques, based on the literature review, are designed to detect stiffness
damage only. Although some of the methods may be able to detect the damage resulting

from mass changes, it is difficult for these methods to locate the mass damage, let alone
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evaluate the mass damage accurately. This is because most of the current NDE methods
in frequency domain are designed to work on static situation. Compared to the mass
damage detection, it may be even harder for the NDE methods in frequency domain to
detect damping damage. The reluctant of the modal parameters (i.e. modal frequencies,
mode shapes and mode shape curvatures) towards damping changes (Hyung 2007)
makes it even harder for the NDE methods in frequency domain to detect the damping
damage. Thus, it is necessary to develop an NDE method in time domain which could

evaluate the damage not only in stiffness but also in mass and damping.

On the other hand, the current existing NDE methods in time domain are not ideal either.
Most of the existing techniques are limited by detecting the existence of damage
(Cattarius and Inman 1997, Frizzarin et al. 2010, Shinozuka et al. 2011, Zimin and
Zimmerman 2009) and locate damage (Trickey et al. 2002, Qu and Peng 2007, Gul and
Catbas 2011,). Just a few methods could detect, locate and evaluate damage (Lopez III
and Zimmerman 2002, Majumder and Manohar 2003, Ma et al. 2004,). It became even
rarer that the NDE methods in time domain could detect and locate damage in mass and
stiffness or in damping and stiffness at the same time (Kiddy and Pines 1998, Shin and
Oh 2007, Bighamian and Mirdamadi 2013). Moreover, according to the current literature
review, just a few methods (Lin et al. 2005), currently, can detect damage in mass,

stiffness, and damping simultaneously.

1.4 RESEARCH OBJECTIVES
According to Rytter (1993), damage evaluation methods can be classified into four levels
and the criterion for each level is defined as following:

Level I (Detection of Damage): A quantitative indication regarding the existence
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of damage in a structure;

Level II (Localization of Damage): A quantitative indication specifying the
location of damage;

Level III (Assessment of the Severity of Damage): A quantitative indication
regarding the severity of damage that was previously located; and

Level IV (Performance Evaluation after Damage): A quantitative analysis
regarding the impact of damage on the performance of structure. (Li

2013)

The objective of the present study is to develop a Level III non-destructive damage
evaluation method in the time domain which can simultaneously detect damage in
stiffness, mass, and damping. To achieve the goal of this study the following tasks are
anticipated:

Task 1 - Theoretical derivation of the nondestructive evaluation algorithm for
discrete systems;

Task 2 - Theoretical derivation of the nondestructive evaluation algorithm for
continuous systems;

Task 3 - Validation of the accuracy of the developed algorithm for discrete
systems using structural deformational data generated from the
dynamic analysis of the finite element models in SAP2000;

Task 4 - Validation of the accuracy of the developed algorithm for continuous
system using structural deformational data generated from the dynamic
analysis of the finite element models in SAP2000; and

Task 5 — Application of the methodology to an existing structure using real-world

data.
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In the current study, the state of damage will be evaluated by two parameters: namely,

the Damage Index (DI) and the Damage Severity (DS). The damage is defined as the

change of mass, stiffness, and/or damping.

1.5 SIGNIFICANCE OF THIS WORK

Most NDE methods proposed to date are only classified as Level I or Level II methods,

which means only the presences of the damage or at most, the locations of the damage

can be detected. From the other side, most of these methods are limited in the detection

of stiffness damage only and are not able to locate or evaluate mass damage and

damping damage. The damage detection algorithm proposed here is a Level III method

that has the following features:

(D
2
€)
(4)
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()

(8)

It may detect damage in local stiffness, mass and damping;

It may provide a clear indicator to locate damage;

It may locate tiny and obscure damage;

It may provide accurate damage severities that are quantitative in value;

An analytical model of the structure is not required;

The data from the field experiment can be directly used to complete the
analyses;

The method is applicable to many types of structures and as well as cases
with multiple damage locations; and

The computation process is rather straight-forward.

According to the features listed above, this algorithm has the potential to be an excellent

Level III non-destructive evaluation method. When fully developed, the method should

20



contribute to reduce property losses and maintenance cost of critical structures.
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2 THEORY OF DAMAGE EVALUATION ON MASS, STIFFNESS,
AND DAMPING FOR DISCRETE SYSTEMS

2.1 INTRODUCTION

In this section, five major sub tasks are addressed. In Section 2.2, the general form of the
Power Method will be developed. In Section 2.3, the specific form of the Power Method
for 1-DOF spring-mass-damper system will be developed; In Section 2.4, the specific
form of the Power Method for 2-DOF spring-mass-damper system will be developed; In
Section 2.5, the specific form of the Power Method for N-DOF (5-DOF)
spring-mass-damper system will be developed; In Section 2.6, the specific form of the
Power Method for an isolated spring-mass-damper system will be developed; In Section

2.7, the overall solution procedure will be provided.

2.2 DEVELOPMENT OF THE GENERAL POWER METHOD

One of the most important concept used in this dissertation is concept of “power”. The
power mentioned in this dissertation is different from the traditional definition of power
in the classical mechanics. The word “power” mentioned in this dissertation represents
the dot product of an external force vector with any given combination velocity vector.
Namely, since the pre-multiplied velocity vector can be arbitrarily selected and is not
necessarily composed by the actual velocities at the force application locations, the
computed power is different from the power defined in the more traditional physical

S€NsSeEs.

For the undamaged and damaged discrete system, the equation of motion under the
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external force can be written as,
[m]{x} + [c]{x} + [k]{x} = {p(D)} (2.1
[ W& +[c 1+ [k 1 = {p" (1)} (2.2)

Given any velocity vector, {A}, the power done by the external forces can be computed

by pre-multiplying each term in Eq. 2.1 and Eq. 2.2. The resulting equations can be

expressed as follows,
(AY [m]{E}+ (A [e] 0} + AV [AT{x} = {AY {p(0)} (2.3)

Y [ S+ A [T A1 =AY (' () 24)

Where for discrete system, the external load vector can be expressed as,

p'(®)

)=y p ) (2.5)

p(?)

0]

P O=1{p" 2.6)

r @
Note, the superscripts, in this dissertation, denote the properties of nodes/joints/lumped

mass points and the subscripts denote the properties of elements/links (i.e. springs and

dash pots). Thus, in the above expression, the superscript, ‘i°, denotes the i degree of
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freedom (i.e. the i mass block) and p'(¢f) represents the external force applied to the

i" degree of freedom.

Assume the applied external loads and velocities are the same for both the undamaged

and damaged system,
{p(}={p (1)} 2.7)

A} = (A} (2.8)

Substituting Eq. 2.7 and Eq. 2.8 into Eq. 2.4 yields,

A Im 1 A [T+ AT 1y =AY {p(0)} (2.9)

Noticing the power done by the external load is the same for both the undamaged and

damaged system. Substituting Eq. 2.9 into Eq. 2.3, yields,
(A} m] (5} + {AY Tel 4} + (A k] o} = {A} [ 14T} +{AY [ T} +HAY TR 1)

(2.10)

The above equation is the connection between the undamaged and damaged system. The
damage severities of mass, stiffness and damping can be estimated from the above

equation using least square method.
To better indicate the location and extent of a damage, the damage index (f) and damage

severity () are used. The damage index (f) is defined as the ratio of the property from the

undamaged system and the counterpart property in the damaged system,
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X
=% 2.11
= (2.11)

Where X is any physical property from the undamaged system; y  is any physical
property from the damaged system; and the asterisk (*) indicates the parameters for

damaged cases.

And the damage severity («) is defined as the ratio of the difference between the stiffness

of the damaged and undamaged structures and the stiffness of the undamaged structure,

a, = 2.12)

Where X is any physical property from the undamaged system; x~ is any physical
property from the damaged system; and the asterisk (*) indicates the parameters for

damaged cases.

From the expression of Eq. 2.11 and Eq. 2.12, the relationship between damage index (f)

and damage severity (a) is found and is given as following

a, = S P (2.13)

2.3 THEORY FOR 1-DOF SPRING-MASS-DAMPER SYSTEMS

For a typical 1-DOF spring-mass-damper system, as shown in Figure 2.1, the system is
composed of one lumped mass, one linear spring, and one linear dash pot. p(¢) is the
external dynamic force acting on the lumped mass at time point ¢ x(¢z) is the
displacement of the lumped mass relative to the ground at time point z. x(¢) is the

velocity of the lumped mass relative to the ground at time point z. X(¢) is the acceleration
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of the lumped mass relative to the ground at time point z.

p(®)
X®
k
— WMWY
m
C AT
00O

e

Figure 2.1. 1-DOF Spring-Mass-Damper System

For the 1-DOF spring-mass-damper system, Eq. 2.10 can be written as,

MXA+ XA+ kxA=m'3 A+ X A+k"x" A

Dividing Eq. 2.14 by m" yields,

£ £

" sae S ghr o xh= A+ S A+ A
m m m m m
Rearranging the Eq. 2.15,
LI WA W2 W) Wy W
m m m m m
Define the following coefficients,
m
b=—=
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(2.15)

(2.16)

(2.17)



B, =— (2.18)
m

B = k* (2.19)
m

B, = —c** (2.20)
m

Bs = ki (2.21)
m

Substituting Eq. 2.17 through Eq. 2.21 to Eq. 2.16 yields,

BXA+ BxA+ fxA— B A—Px A=5"A (2.22)

Writing the Eq. 2.22 at different time point, yields the following groups of equations,

For t=t,,

BGA) |, +B,GA) |, +B,(xA) |, —B (X D) |, ~Bi(x D), = (A, (2.23)
For t=t,,

BGEA)|, +B,GA) |, +B,(xA) |, =B (X D) |, ~Bi(xA)|, =(FD)], (2.24)
For 1=t

BGEA) |, +BGD) |, +B(D) |, —BE D), —A(xD)|, =ED), (229

Arrange the above Equation group into matrix form,
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(F)], (D), (D), -G,

(FA)], (A, (D), -G,

_(XA) |tN (XA) |tN (XA) |tN - (X*A) |tN
Define

(A, (D),

X=|@E)], (A,

((#A)], (@A),

B:

Y =

@D, | (8
Y
- (X*A) |zi ﬂ3
| |a
—(X*A) |tN_N><5 ﬂS 5x1
(xA) s —(x'A) l,
(xA) , —(x'A) ,
(xA) ., —(X'A) i,
B
b
b
B
B
(¥'A) o
(¥'A) ,
(i°A) l,

The above equation may be expressed as,

Xp

=Y

(A,

=1(ED)|,

(XA,

~(x'A)], |

- (X*A) |zi

- ()C*A) |zN N

Nxl1

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

Based on the Least Square Method, the p can be computed from the following equation,
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B=X"X)"'(X"Y) (2.31)

According to the definition of the damage index in Eq. 2.11, the damage indices for

stiffness, mass and damping can be computed as follows,

B, ="c=p, (2.32)
m
C
po=C=m P (2.33)
c ¢ !
m*
k
B = kom b (2.34)
KK B
m*

According to the relationship between the damage severity and damage index of one
element, shown in Eq. 2.13, the damage severities for stiffness, mass and damping can be

computed as follows,

1 1
a, B B (2.35)
)
ac IBC ﬂZ (2.36)
1 Bs
= 1= '
“ By B 237

2.4 THEORY FOR 2-DOF SPRING-MASS-DAMPER SYSTEMS

For a typical 2-DOF spring-mass-damper system, as shown in Figure 2.2, the system is

composed of two lumped masses, three linear springs, and three linear dash pots. p' ()
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and p?(¢) are the external dynamic forces acting on lumped mass 1 and lumped mass 2
respectively. x'(z) and x>(¢z) are the displacements of mass block 1 and mass block 2
relative to the ground at time point z. x'(¢) and x*(¢) are the velocities of mass block 1

and mass block 2 relative to the ground at time point 7. X'(¢) and X*(¢f) are the

accelerations of mass block 1 and mass block 2 relative to the ground at time point ¢.

p'(®) pi(t)
—— ——
x\(t) X(t)
— -
2 k 1 k 2 k 1 g
l'.l'.l'.l'l'l'l'l'A'l'l'l l'l'l'l'l'A'A'A'A'A'A'l l'l'l'l'l'l'l'l'.l'l'l'l /
T ml T m2 T 2
=, =, =, %
i C; C; .
A [¢] [#) [¢] [#)
Z 7 7 7 77

Figure 2.2. 2-DOF Spring-Mass-Damper System

For the 2-DOF spring-mass-damper system, Eq. 2.10 can be written as,
M Tt 0 ](# A’ c,+e, —c, |[x! AT k+k, -k, |lx'
. +9 . +9 .
Nl o m || A —c, ¢ +o ||X? A —k, k|| X
3 AV Tm™ 0 (5" N A" ¢ +c, —c |[X" N A’ ki+k, -k ||x"
Rl o w22 R[] =0 cxe &2 R[ ] -8 Kk ||x

(2.38)

Eq. 2.38 can be rewritten as,
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m' i A +m’ N + e XA +e, (X = 3)A - A+ AN+ kx'A

+ I, (' = x)A = A) + kA

*] ook 3 *) L.k % E N * K * . N * %) % I S 2'39
=m XA +mPEPA + ¢ XA o (37 = X7)A - A+ 57N+ k xTA (239
+h (x = XPYWA - A+ kXA
Dividing Eq. 2.39 by m™ yields,
ml . m2 . C . c . . c . k .
RN+ PN LA+ (YA - A+ 2N+ XA
m m m m
+ k%q (x' = x)(A - A + kil x*A
m m
*) * * £ *
=¥"A + m*l 7N+ c;l A+ cil (" =xX)A -A) + "’11 7N+ kl*l x"A
m m m m m
+—2(x"=x" YA —A2)+k—3*lx*2A2
m m
(2.40)

Rearranging Eq. 2.40 yields

1
m

*]

2
m ..,:» C 1Al C .1 ) Al A2
AN XA+ (- )A-A)+

FA +
m

*2
m .«

* *

1 Al
S A -
m

*1

s

k3

*

*
C *9 %
3 2*2 A2

Define,
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Cy .o k .
il x2A2+ }kl xlAl
m
PG YW =AY+ - A A - (B (A - )
m m m m m

I _x*Z)(Al _Az)__*lx*zAz — 1Al
m

(2.41)

(2.42)



132 = )
c

ﬂ3 = ml*l
c

ﬁ4 = mil
C

ﬁS = m:ll
k

ﬂs = ml*l
k

ﬂ7 = mil
k

,Bs = mil

)
m

139 = ]

c*

;Bw = m1*1
C*

ﬁll = mil

C*

ﬂlZ = m3*1

k*

B = ml*]

k*

1314 = mil

k*

ﬂlS = '’

Substitute Egs. 2.42 through 2.56 into Eq. 2.41, yields,
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(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)



B3N + 028 + fi' A+ (1~ - A+ iR + B
+ 5, (x' _752)(A1 —A2)+,38 x*A? —ﬂ9)'é*2A2 —,Blox*lAl _lgll(x*l _)'C*Z)(Al —Az)
_ﬂlzx*zAz —ﬁmx*lAl —ﬂM(x*l _x*z)(Al _AZ) _ﬂlsx*zAz _ ).é*lAl

(2.57)
Apply Eq. 2.57 at different time point,

For t=1¢,,

B GAY |, +B, (X)), +B; (H'A) |, +B,((F =) A = A)) |, +5; (A,
+ B (A |, 4B, (=)A= A+ ()|, =By (A |, =B (A,

_/3,11(().5*1 _55*2)(& - Az)) |zo _ﬂlz(X*zAz) |x0 _/313(X*1A1) |¢0 _ﬂ14((35*1 _X*z)(Al - Az)) |zo
- ﬂls(X*zAz) |zo = (x*lAl) |t0

(2.58)
For t=¢,,

B GAY |, +5, ()|, +5, (A |, +5, (' =)A= A))|, +5; (A,
+ B (XA, 5, (= NN = A, +B (A |, =, (A |, —B (37,

_ﬂn((x*I _X*Z)(Al _Az)) |zl. _ﬂlz(X*zAz) |zl. _ﬂm(X*IAI) |tl- _1814((X*I _x*z)(Al _Az)) |¢,
_ﬂls(x*zAz) |tt- = (X*IAI) |z,

(2.59)
For t=t¢,,

B G, +B, XY |, +B, (KA |, +B, (' =) A =) |+ (A,
+ B (xlAl) ’tN +5; ((xl —x’ )(Al —A ) |tN +55 (XZAZ) ’;N —Ps (x*zAz) ’tN _ﬁlo(X*lAl) |zN

_ﬂn((x*1 - X*Z)(Al - Az)) |¢N _ﬂlz(X*zAz) |1N _1613(x*1A1) |zN _514(()6*] - X*z)(Al - Az)) |1N
=B (P |, = (A,

(2.60)
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Put the above equation into matrix form, the coefficient matrix can be defined as,

X" =

(A,
(A,
(A,

(' =) A - A,
(A%,
(x'Ah|,

(x' =x)A = A,
(X*A) ],
(52N,
(—x"A),

(- =12 A - A,
(—x2A)|,
(—x"A)],

(—(x" =x)A =A%),
(—x2A)],

(x'AY),
(A,
(x'AY),

(' —)A -A),
(°AY],
(x'A)],

(x'=x)A' =AY,
(*A)],
(—52A)],
(—x"A),

(" =X)A - A,

(=37A) ],
(_X*lAl) |zl.

(—(x" =x)(A - A,

(XA,

(A,
(A%,
(A,

(' =) A - A,
(A%,
(x'AY],,

(x'=x)A = A,
(*A)],.
(—52A)|,
(—x"A)],

(" =) A =A%),
(—52A)|,
(—x"A)],

(—(x"=x)A =AY,
(—xA)|,,

2.61)

The vector of unknowns and the vector of known can be defined as,

34



By
b
s
B,
B
Bs
b
B=1 5 (2.62)
By
Bro
B
B
Bis
B4
Bis

(&'AY,

Y =1 (&"AY), (2.63)

&'AYI,,

The above equation may be expressed as,

Xp=Y (2.64)

Based on the Least Square Method, the f can be computed from the following equation,

B=(X"X)"(X"Y) (2.65)

According to the definition of the damage index in Eq. 2.11, the damage indices for

stiffness, mass and damping can be computed as follows,

35



B, = e B (2.66)
2
m
2
m m' ,Bz
== _ 2 2.67
ﬂm 2 m 2 ﬂg ( )
71’1*1
¢
c 1B
p,=—="-="2 (2.68)
(&} ¢ ﬂlo
m"
C,
c )
p, ===l ==% (2.69)
2 G B
m*l
C3
c 1B
p.==="—== (2.70)
TG Cs ﬂlZ
I’l’l*1
kl
k 1B
p === (2.71)
¢ kl kl ﬁ13
7’}’1*1
k,
k B
p,=—=1==1 (2.72)
"k kB,
m*l
k3
k 1B
B o =—2=0_=I% (2.73)
“ ka k3 1815
I’l’l*1

According to the relationship between the damage severity and damage index of one

element, shown in Eq. 2.13, the damage severities for stiffness, mass and damping can be
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computed as follows,

2.5 THEORY FOR N-DOF SPRING-MASS-DAMPER SYSTEMS

1
A,

1

]

1

B

1

B

1

B,

B
=%
B,
1=FPo_
B,
_1:&_1
B,
=P
P
1=fs
22
1=
B,
1=fs
By

(2.74)

(2.75)

(2.76)

Q2.77)

2.78)

(2.79)

(2.80)

2.81)

For a typical 5-DOF spring-mass-damper system, as shown in Figure 2.3, the system is

composed of five lumped masses, six linear springs, and six linear dash pots. The terms

p'(t) through p’(¢) are the external dynamic forces acting on lumped masses 1 through

5 separately at time point ¢. The terms x'(¢) through x°(f) are the displacements of the

five mass blocks relative to the ground at time point ¢. The terms x'(¢) through x°(¢)
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are the velocities of the five mass blocks relative to the ground at time point z. The terms
¥'(¢) through °(f) are the accelerations of the five mass blocks relative to the ground

at time point 7.

x'(t) xX(t) x3(t) x'(t) X(t)
/ p'®) p’(H) P’(t) p'(t) P’ Z
? k1 kz k3 k4 ks k6 o
Wi A A — A A — —WM—
Sg—IH— m' 34— m T m T m T m T

C, Cz Cs Cy Cs Cs

7 00 00 OO0 00 00
7 /.

Figure 2.3. 5-DOF Spring-Mass-Damper System

For the 5-DOF spring-mass-damper system, Eq. 2.10 can be written as,
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o o o o I
o o o I o

¢ tc,

Tr o« *

I o o
L. © o o

o o
o 3

c, +¢y

-

0

_k2
k, + k,
_k3
0
0

k, +k,

0 ||
0 ||
0 5’
0 ||x*
m’ || ¥
0 0
- 0
c+e, —¢y
—¢, ¢t
0 —Cs
0 0
—k, 0
ky+k, -k,
-k, k,+k
0 —k,
0 o0 ]x"
0 0 [[x7
0 0 [i°
m* 0 ||x
0 m”|i°
0 0
c 0
c,te, —c
—c, ¢ +c
0 —c;
0 0
—k; 0
k;+k, -k,
~k, k,+k;
0 —k;
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0
0
0

—Cs

Cs +6‘6_

0

0

0

_ks
ks + kg |

* *
Cs +C6_

0
_@

*

kS

*

+k6_

=

%)

R X R %

=

w

W

LT TR T
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Eq. 2.82 can be rewritten as,

mFA +m? A + PN +m A P ON

e ' A e, (8 =)A= A+, (3 = NA = A+, (2 — 1) A - AY)

e (X =)A= A) +c XA

X Ak (6 =)A= A+ k(P =YW A = A+ k(- x* YA - A

e (xt =) A =AY+ kXA

=m %A +mPE AN +mP A +m U EA m PN

e 3 A oy (X 2P YWA — A ) ey (87 = X7 WA - A) ey (57 -2 )A - AT
e (X =3P A =AY+ 1A

e XA I (7 =X )A = N+ k(27 = xPYA =AY+ (x7P = x M)A - AY)
(™ = xP YA =AY+ kXA

(2.83)
Rearranging Eq. 2.83 yields,
mEA +m? A+ P SN +m A PPN
e X' A ve, (3 =)A= A+, (17 =)A= A) + ¢, (5 -3 )A - A
e (X =YW A =AY+ N
+h X A k(6 =) A =AY+ (P =)A= A+ k(0 - YA - A"
e (xf =) A =AY+ kXN
—m KA —mBERA —m A —m PR A
— A =T =Y A A= (7 =AW =AY = (27 -2 A - AY
—o (3" = XY A - A) = i A
ki xA =k (X = x )W A =AY (2 = xPYA =AY =k (27— x (A - AY)
ki (x™ = xPYA =AYk XA
=m"x"A
(2.84)

Dividing each term in Eq. 2.84 by m""' yields,
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3 4
m

5

1 2
S N o LS L NS
L -1)A-A —)A-A — XA - A
Cs ,.4 .5\ i4 i C s
(=2 —A5)+—6*1x5A5
m m
+k—ilx1 L2 (x' =) A - A2)+ L (x - XA - A3)+ L (P —x) (A - AY)
m
kS (x4_x5)(A4_A5
m’
_m*z *2 Az m” *3 A3 m™ *4 A4 m” *5 A5
C* I : * o . Lk R N N C* A .k
—_1*IX1A1_ 2 1 2)(Al AZ) 11(x2_x3)(A2_A3)_ 1 3 4)(A3
m m
C* ™ x5 ‘4 5 C* s s
- S E AT A - A -5 A
—k—l*x*lAl— (- XA - A) - *(*2 XA - A - k* X7 —xM)(A -
*1
m m"
k* “ *5 4 ‘5 k* . s
- 21 x T =x")A —A)——ilx A
=i"A
Define,
1
m
ﬁlz *]
m
2
m
ﬂ2: *]
m
3
m
ﬁ3= *]
m
4
m
ﬂ4_ *]
m
5
m
ﬁ5= *]
m

A*)

A

(2.85)

(2.86)
(2.87)
(2.88)
(2.89)

(2.90)
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(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)

(2.102)

(2.103)

(2.104)

(2.105)

(2.106)

(2.107)



p

ﬂ23_
24 .
B _ *l
c*
25 m3
B _ *l
c*
26 m4
B _ |
C*
27 ms
B _ |
C*
28 m6
B _k*l
*
29 MI
p _ k*l
*
30 mz
B _ k*l
.
31 m3
B _ k*l
*
32 m4
B _ k*l
*
33 ms
mé
*]

43

@
.108)

@2
.109)

@
110)

@
111)

@
112)

@
113)

@
114)

@
115)
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116)
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117)

@
118)



Substitute Egs. 2.86 through 2.118 into Eq. 2.85, yields,

B XA+ BN + BN + B XA + B BN

+ B XN+ (3 = YA = A+ Sy (7 = WA =AY+ By (= 5N - A
+ﬂ10(554 -x° )(A4 _A5)+ﬂ1]x5A5

+ Bux' A+ B (x! = YA = A+ B, (¢ = WA =AY+ (= x* A - AY)
+Big(x* =)A= )+ B, x°A

- ﬂl 855*2A2 _ﬂl 955*3A3 - ﬂzojé*4A4 - ﬁzljé*SAS

= Prpi A = By (5 = XY A = A= B, (57 X YWA - A) = By (57 — (N - A
= Brg (B =) (A = A) = B, 1A

- ﬂzz;X*lAl - /329(X*] —x" )(Al - Az) - ﬂ3o(7€*2 —x" )(Az - AS) - B (X*3 —x )(A3 - A4)
= B (x™ = XY A - A) - B x A

3
=i'A

(2.119)

Apply Eq. 2.119 at different time point,

For t=¢,,

B (FAY |, +B, PN) |, +B, (X)) |, +B, (A, +B; (FA)],

+ B, (KA |+, (&' =37)A =) |, +B (B = )WAX -A)) ],

+ B, (&° =5 ) =AY |, +B,,((&" =)A= A))|, +B,,(F°A)],

+ B (x'A) |, +B5(x =)A= A)) |, +B, (7 =X WA =A))],

+ Bis (2 =x)E = A |, +B,6((x* =X WA =) |, +B,,(°A)],
=B (E7X) |, =B (KA |, =By (AN |, =B, (KA, (2.120)
=B (A |, =Bos (X7 =)A= A |, =By (37 —1°)A - A)) |,
= Bos(X7 =) =AY |, =By =)A= )|, =By, (3°A) ],
= Bos (XA | =B (x =x)A = A |, =By (7 =X WA = A,
= By (X7 =x")E = AY))|, =B (2™ =x*)A = A))|, —Bu(xA)],
= (x"A)],
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For t=1,

B FAY |, +B, (A, +B, FN)|, +B, A |, +f5 (X)),

+ B BA) |, 5, (& =X)A =) |+, (=)A=~ A,

+ By (=) & = A, +B,,((x" =5)A =) |, +5,(F°X)],

+ B (A, +B(( = x)A = A, +B,((F =X A A,
+Bi5((7 =)A= A, +B6((x" =x A =) |, +5, (A,
=B GEN) |, =B (PN |, S (FAY |, BT, (2.121)
~ (A |, (@ =)A= A |, —Bou(7 —X7)A A,
= Bos (7 =)A= A |, =Boo((&™ =37 WA = A7), =B, (XA,
=B (TA) |, B (7 = xTNA = A |, oy ((x7 —xT)A =AY,
= By((x7 =)A= A |, ~B((37 = xFNA = A |, B (A,
=(&"AY|,

For t=t¢,,

B GAY |, +B, ()|, +B,(FX)|,, +B, (KA, +B; (FA)],

+ B (KA |, +B, (& =27 A =), +B, (=) A -],

+ By (B =)A= AN |, +B,((F =)A= A)) |, +B,(FA)|,

+ B (A, +B((x =)A= A |, +B,(F =X NE =N,

+ Bi5((x =x YA =AY, +B,6((x" =x YA = A)) |, +B,(°A),

= B(EPA)|, =B (PR |, =B (KA |, =By (A, (2.122)
=B (ETAY |, =By (G =)A= )|, —Bou((F7 =17 =AY,
= Bos (7 —XNA =AY |, —Br(&™ =)A= A)) |, =B, (AN |,
= Bos(x"AY [, Bog(x = xYA = X)), —Byy((x7 = x )X =AY,
=By ((x7 = x A =AY [, =B ((x™ =X YA =), =By (x°A) ],
=(x"AY],
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Put the above equation into matrix form, yields the coefficient matrix

X’ =
[ @A, A, A, |
(@A), (FA)], (&A1,
(A, (A, A,
(=)A=, (@ =AY (F=ED)A-AY,
(=) =A)], o (G =FA =B (G DA =AY
A, (FA%)], (A,
(A, (A, (A1,
(=)A=, (A=A, e (=X A-AY),
(=3 =AY], o (AR (DA =AY
A, (A%, (A,
~(EA), ~(7A), —(FAY,
~(EA)), ~ (A, ~E°A,
@AY, -~ —@E"A),
—(T=EHA =R, e (@D =AY, e (G A =AY,
S((F =AY e (YA A (@ -ETA =AY
(A, ~(°)], —(A,
- (x*lAl-) |t0 . “' - (x*lAl-) |t, ) e - (x*lAl') |tN .
(" =xX)A =AY, (T =XPYA =AY, e (T =X A =AY
—(( XA =AY, (@A =AY (T =AY
B ST - (), -~
(2.123)
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Define
B

B=15 (2.124)

Py
(&'AY,

Y =q(G"AY, (2.125)

(x"AY ],

The above equation may be expressed as,

XB=Y (2.126)

Based on the Least Square Method, the f can be computed from the following equation,

B=X"X)"(X"Y) (2.127)

According to the definition of the damage index in Eq. 2.11, the damage indices for

stiffness, mass and damping can be computed as follows,

m
B = i B (2.128)
2
m
*] ﬂ
B ="m="% (2.129)
m” /818
*1
m
m3
*] ﬂ
p.="e =" (2.130)
m” Bio
*1
m



By,

(2.131)

(2.132)

(2.133)

(2.134)

(2.135)

(2.136)

(2.137)

(2.138)

(2.139)



*] ﬂ
B, =L-=11 2.140
¢ k2 ﬁ29 ( )
*1
m
k3
*] ﬂ
B, === 2.141
s k3 ﬂ30 ( )
m*'
k4
*] ﬂ
B, =L—=-L1 (2.142)
¢ k4 ﬂ31
*1
m
kS
*] ﬂ
B, =2-=8 2.143
b kS ﬂ32 ( )
m*l
k6
*] ﬂ
B, == (2.144)
o kﬁ ﬂ33
]
m

According to the relationship between the damage severity and damage index of one
element, shown in Eq. 2.13, the damage severities for stiffness, mass and damping can be

computed as follows,

a 1 1 ! 1 2.14
= —l=—= 145
. B (2.145)
1 Ji;
a .= 1==2—1 2.146
" 5. 3, ( )
1 B
a .= 1==2-1] 2.147
"5, B, ( )
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B
m* ﬂm4 184
_ ! 1:&_1
" B b
a =L—l=&—l
5 ﬂcl ﬂ6
o =L 185
° c ﬂ7
o = P
“ ﬂ(}} ﬂS
Ll B,
“ ﬂq ﬂ9
Ll B,
“ ﬂcs 1810
B
“ ﬂ06 ﬂll
b
B A
=L 1:&_1
"B, B3
:L 1:&_1
B ﬂk3 ﬂ14
_ B
“T B A
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(2.148)

(2.149)

(2.150)

(2.151)

(2.152)

(2.153)

(2.154)

(2.155)

(2.156)

(2.157)

(2.158)

(2.159)



o, =—- 2.160

"B B (2160
1 B

o =———1="2-1 2.161

o IBk6 1317 ( )

2.6 THEORY FOR ISOLATED SPRING-MASS-DAMPER SYSTEMS

An isolated spring-mass-damper system means a mass block along with the springs and
dash pots attached to it are taken out from a discrete system and considered separately. A
typical isolated spring-mass-damper system is shown schematically in Figure 2.4. The

isolated spring-mass-damper system is composed of one lumped mass, two linear springs,

and two linear dash pots. p'(¢) is the external dynamic force acting on lumped masses at
time point £. x'(¢) is the displacement of the mass block relative to the ground at time
point z. X'(¢) is the velocity of the mass block relative to the ground at time point £.

¥'(t) is the acceleration of the mass block relative to the ground at time point £,

X! (t)
p'(t)
ki(x'(t) - x"'(1)) kiAx'(t) - X(1))
- .
o (X (1) - X(t) C(X (1) - X"(1))
TR

Figure 2.4. Isolated Spring-Mass-Damper System
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For the isolated spring-mass-damper system, Eq. 2.10 can be written as,

Xin X
RIRET Al . AQ
Am X +A [_ ¢ CGtHCy —CuR X +A [_ ki ki +ki+l _ki+1 X;
xi+l xi+1
way (2162)
X
_ A L] Ai * * * * . %] i * * * * *j
=Am'x +A[—ci ¢, +c,,, —c kX +A[—kl. k, +k.,, —k,Kx
*i+1 *i+1
X

Eq. 2.162 can written as,

M3 A +c, (8 —xA +c,, (3 = XA +k (x' —x TN +k (x - x"HA

=m" XA 4o (3" —2TA 4o (3T = xTA 4k (7 —x"YA + k(T = xTHA

(2.163)

Dividing Eq. 2.163 by m; vyields,

) . ) .k . k. ) L
+ Cz* ( i xl I)Al z+1 ( el X_1+l )Al + :F ( i xt I)Al 1+1 ( i _xl+1 )Al
m m m m m

* * * *

wi Co s Conr ow ek ok 4 .
=x*lAl + 1*' (x*l _x*l I)Al +1_+:(x*1 _x*1+l)Al +_1*(x _x*l I)Al + 14;1 (x*z _x*l+l)Az
m' m' m' m'

*q

(2.164)

Rearranging Eq. 2.164, yields,

i

) . ) .k ) k. . L
+ Cz* ( i xt I)Al 1+1 ( ol X_1+l )Al + :‘ ( i xl I)Al 1+I ( i _xl+1 )Al
m m m m m

* * *

.
_ ci*i G XA - 1+1 St (i ¢ %A _k_,-*i(x*i XA - ki:} (= xXTYA = §IA
m m” m m

(2.165)
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Define the following coefficients,

ﬁl = m’ﬁi
C.

ﬁZ = mii
C.

By = n;:
k,

184 = m;i

k' 1

ﬁS = Wll:l
c*

ﬁ6 = ml*,'
C*

i+1

ﬁ7 = n;t,
k;

ﬁS = ml*,'

K

ﬁ‘) = n;Jr*,

Substituting Eq. 2.166 through Eq. 2.174 to Eq. 2.165 yields,

ﬂljéiAi+ﬂ2(xi_X_ifl)A[+ﬁ3(xi_xiJrl)Ai+ﬁ4(xi_xifl)Ai_{_ﬁS(xi_xl#l)Ai

_ﬂé (x*i i x*i—l )Al _ﬁ7 ()-C*i _)-C*i+l )Al _ﬂg (x*i _x*i—l )Az _ﬂg (x*i _x*i+l )Al — x*lAl

(2.166)

(2.167)

(2.168)

(2.169)

(2.170)

2.171)

(2.172)

(2.173)

(2.174)

(2.175)

Writing the Eq. 2.175 at different time point, yields the following groups of equations,
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For t=1¢,,

BGA) |, +B((F =X A, +B((F DA |, +B,((x" —xHA)],
+ B ((x' =x"HA) |, =B (7 =xTHA) |, =B (&7 —xTHA)|, =B —xTHAY,
=By (x" =x"HAY |, = (F"A)],

(2.176)

For t=t,

BGEA) |, +B((X =AY |, +B, (& =AY |, +B,((x' —xHA)|,
+ B ((x" =x"HA) |, =B (G =x"HA) |, =, (T =AY |, —f((x" —xTHAY|,
— By (x" =x"HAY |, = (A,
(2.177)

For t=t¢,,

BGEN)|,, +B, (G =3 DAY, +B,(E =XHA) |, +B,((x" =x"HA)|,
+B5((x =x"DAY |, BT =AY |, B (G XA |, (7 =xTTHAY ],
= By((x" =xTHAY |, = GTA) |,

(2.178)

Arrange the above Equation group into matrix form,

(F'A), (A, (&'A)],

X’ =

(& =),
(& =x"HA)|,
((x' =x"HA) |,
((xi i )Az) |t0
—((G" =2"HAY,
_(()-C*i _)-C*HI)AI‘) |t0
—((x" =x"HAY |,

(XA,

(& =3,
(& =x"HA)|,
((x' =x"™HA)|,
((xi _xi+1)Ai) |t,-

C (@ =XTHAY,
. _((x*i _x*i+1)Ai) |t’
L (T =xTHAY |,
' _((x*i X )Az) |ti
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(&' =x"HA)|,,
(& =x"HA) |,
(x' =x"™HA) |,
((xi _xi+l)Ai) |tN

A 31N
o ((x*z _)-C*Hl)Ai) |IN
A Y 1N
(T =xHA,




(2.179)

Define

B,
B,
Bs
B,
B=15s (2.180)
Bs
B;
By
By

A,

Y =4 (A, (2.181)

(&"A),,

The above equation may be expressed as,

Xp=Y (2.182)

Based on the Least Square Method, the f can be computed from the following equation,

B=X"X)"(X"Y) (2.183)

According to the definition of the damage index in Eq. 2.11, the damage indices for

stiffness, mass and damping can be computed as follows,
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ﬂm = m*i :ﬂl
Ci
i _G_m' _P
e - x P
' cl Ci ﬂ6
*
ci+1
— cH—l — m*l &
% *
Gy Cin B,
m"
k[
ﬁ = ki = m*i =&
* *
. ki ki ﬁ8
m*i
ki+1
IB — ki+1 — m*’ _&
k~ * *
ok ko By
m”

(2.184)

(2.185)

(2.186)

(2.187)

(2.188)

According to the relationship between the damage severity and damage index of one

element, shown in Eq. 2.13, the damage severities for stiffness, mass, and damping can

be computed as follows,

a =—-=1=—-1
B, B
acl—i—l—& 1
‘ ﬂcl- ﬂZ
Q. =L—1=&—1
i ﬁCHI ﬁ3
a, :L—lzﬁ—l
"B B
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(2.189)

(2.190)

(2.191)

(2.192)



Q. :%—1:%—1
k[+l 5

(2.193)
2.7 OVERALL SOLUTION PROCEDURE
To perform the proposed damage detection method to discrete system, the following
steps should be followed:
(1) Derive the linear equation group for the specific discrete system;
(2) Collect the displacement, velocity, and acceleration records required by the
coefficient matrix and the known vector of the linear equation group defined
by step 1;
(3) Use the least square method to solve for the unknown vector; and
(4) Compute for the Damage Indices and Damage severities for each physical

property in the discrete system.
The general process will be clearly demonstrated in Section 3.

2.8 SUMMARY

In this Section, the algorithms of Power Method for 1-DOF, 2-DOF, N-DOF, and
isolated spring-mass-damper system were derived. The damage index for each physical
property in each discrete system was also provided. The derivation processes were
demonstrated in Section 2.2 to Section 2.7. The general application process of the Power
Method on one specific discrete system was provided in Section 2.8. Based on the
analysis in Section 2, the Power Method can be applied to both simple and complex
discrete systems. Moreover, the Power Method can be applied to the whole discrete

system. When the Power Method is applied to the whole system, damage indices for all
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physical properties related to the system can be computed by one group of linear
equations. The Power Method can also be applied to one isolated system, which is a part
of the whole system. In this way, the damage indices of the physical properties related to

the isolated system can be computed separately.
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3 CASE STUDIES OF DAMAGE EVALUATION FOR DISCRETE
SYSTEMS

3.1 INTRODUCTION

The objective of this section is to validate the accuracy of the theory. To achieve this
goal, the theory was validated using exact displacements, velocities, and accelerations of
the undamaged and damaged discrete systems modeled within SAP2000 (version 15).
The exact displacements, velocities, and accelerations are the linear direct integration
results from SAP2000. The Hilber-Hughes-Taylor time integration method was used by
SAP2000. The three parameters of the Hilber-Hughes-Taylor method: Gamma, Beta and
Alpha were set to be 0.5, 0.25, and 0, respectively. Four numerical cases were studied in

this section,

Case #1: the accuracy of the theory will be studied on a 1-DOF spring-mass-damper
system. The algorithm of the Power Method for a 1-DOF spring-mass-damper system is
provided in Section 2.3. The damage is simulated by the changes of mass, stiffness, and

damping coefficient.

Case #2: the accuracy of the theory will be studied on a 2-DOF spring-mass-damper
system. The algorithm of the Power Method for a 2-DOF spring-mass-damper system is
provided in Section 2.4. The damage is simulated by the changes of masses, stiffness,

and damping coefficients at multiple locations.

Case #3: the accuracy of the theory will be studied on a 5-DOF spring-mass-damper
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system. The algorithm of the Power Method for a 5-DOF spring-mass-damper system is
provided in Section 2.5. The damage is simulated by the changes of masses, stiffness,

and damping coefficients at multiple locations.

Case #4: the accuracy of the theory will be studied on an isolated spring-mass-damper
system. The algorithm of the Power Method for an isolated spring-mass-damper system
is provided in Section 2.6. The damage is simulated by the changes of masses, stiffness,

and damping coefficients at multiple locations.

3.2 DAMAGE EVALUATION FOR A 1-DOF SPRING-MASS-DAMPER SYSTEM
In this section, a typical 1-DOF spring-mass-damper system will be developed and used
to validate the accuracy of the Power Method. The numerical models for the damaged
and undamaged 1-DOF mass-spring-damper system were generated using SAP2000. The
1-DOF spring-mass-damper system used in this case study is plotted in Figure 3.1. The
physical properties in the undamaged and damaged systems are listed in Table 3.1. Both
the undamaged and damaged systems are excited by the same external force. The applied
external force is given at each 1E-4 seconds for 0.2 seconds and is plotted in Figure 3.2.
In SAP2000, displacements, velocities, and accelerations of the mass block were
computed every 1E-4 seconds (10,000 Hz) for 0.2 seconds. The displacements,
velocities, and accelerations of the mass blocks in both the undamaged and damaged

systems were plotted in Figure 3.3, Figure 3.4, and Figure 3.5, respectively.

In this case, the computed velocity ( x(¢) ) of the mass block in the undamaged case was

used as the velocity used to compute power ( A) for both undamaged and damaged cases.

The coefficient matrices and known vector, X and Y, were constructed by substituting
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the acceleration (x(¢z)), velocity (x(¢)), displacement ( x(¢)), and velocity used to
compute power (A) into Eq. 2.27 and Eq. 2.29. The coefficient damage index vector, P,
was computed using Eq. 2.31. Then the damage indices for mass, spring, and damper are
computed using Egs. 2.32 through 2.34. The damage severities for mass, spring and
damper are computed using Eqs. 2.35 through 2.37. The estimated damage indices and
the designed damage indices for each physical property are listed in Table 3.2 and are
plotted in Figure 3.6. The estimated damage severities and the designed damage
severities for each physical property are plotted in Figure 3.7. Comparing the estimated
damage indices with the designed damage indices, the proposed method can accurately

locate and size multiple damage in a typical 1-DOF spring-mass-damper system.

p(®)
X(t)
k
T WWWWW—
m
C L
OO

e

Figure 3.1. Property Definition and Load Case of the 1-DOF Spring-Mass-Damper System

Table 3.1. Physical Properties of the 1-DOF Spring-Mass-Damper System

Property Undamaged System Damaged System

m (kip-s*/in.) 2 1.7
¢ (kip-s/in.) 0.8 0.7
k (kip/in.) 10 8
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Applied Excitation Force for 1DOF System
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Figure 3.2. Applied External Load for Both the Undamaged and Damaged Cases
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Figure 3.3. Displacements of the Mass Block under the Given External Load

62



Welocities of Mass Blocks
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Figure 3.4. Velocities of the Mass Block under the Given External Load
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Figure 3.5. Accelerations of the Mass Block under the Given External Load
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Table 3.2. Damage Detection Results for the 1-DOF Spring-Mass-Damper System

Property Damage Index (i)  Damage Severity (ai, %)
m 1.18 -15.00
k 1.25 -20.00
c 1.14 -12.50

14

1.2

Damage Index
= =
[p] (=]

=
=

=
%]

Damage Index for the 1-D0OF Discrete System

]
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]
]
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! I D:signed
I

m C k
Damage Index for Each Property [Bi]

Figure 3.6. Element Damage Indices (B:) for 1-DOF Spring-Mass-Damper System
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Damage Severity for the 1-DOF Discrete System
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Figure 3.7. Element Damage Severities (a;) for 1-DOF Spring-Mass-Damper System

3.3 DAMAGE EVALUATION FOR A 2-DOF SPRING-MASS-DAMPER SYSTEM
In this section, a typical 2-DOF spring-mass-damper system will be built and used to
validate the accuracy of the Power Method. The numerical models for the damaged and
undamaged 2-DOF mass-spring-damper systems were generated using SAP2000. The
2-DOF spring-mass-damper system used in this case study is plotted in Figure 3.8. The
physical properties in the undamaged and damaged systems are listed in Table 3.3. Both
the undamaged and damaged systems are excited by the same external force. The applied
external force is given at each 1E-4 seconds for 0.2 seconds and is plotted in Figure 3.9.
In SAP2000, displacements, velocities and accelerations of the mass blocks were
computed every 1E-4 seconds (10,000 Hz) for 0.2 seconds. The displacements,

velocities, and accelerations of the mass block 1 in both the undamaged and damaged
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systems were plotted in Figure 3.10, Figure 3.11, and Figure 3.12, respectively.

In this case, the computed velocity ( x(¢) ) of the mass block in the undamaged case was

used as the velocity used to compute power ( A) for both undamaged and damaged cases.
The coefficient matrices and known vector, X and Y, were constructed by substituting
the acceleration (x(¢z)), velocity (x(¢)), displacement ( x(¢)), and velocity used to
compute power (A) into Eq. 2.61 and Eq. 2.63. The coefficient damage index vector, P,
was computed using Eq. 2.65. Then the damage indices for mass, spring and damper are
computed using Eqgs. 2.66 through 2.73. The damage severities for mass, spring and
damper are computed using Eqs. 2.74 through 2.81. The estimated damage indices and
the designed damage indices for each physical property are listed in Table 3.4 and are
plotted in Figure 3.13. The estimated damage severities and the designed damage
severities for each physical property are plotted in Figure 3.14. Comparing the estimated
damage indices with the designed damage indices, the proposed method can accurately

locate and size multiple damage in a typical 2-DOF spring-mass-damper system.

p'(®) pi(t)
—— ——
x\(t) X(t)
——
2 k 1 k 2 k 1 g
l'.l'.l'.l'l'l'l'l'A'l'l'l l'l'l'l'l'A'A'A'A'A'A'l l'l'l'l'l'l'l'l'.l'l'l'l /
T ml T m2 T 2
=, =, =, %
i C; C; .
A [¢] [#) [¢] [#)
Z 7 7 7 77

Figure 3.8. Property Definition and Load Case of the 2-DOF Spring-Mass-Damper System
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Table 3.3. Physical Properties of the 2-DOF System

Property Undamaged System Damaged System

m, (kip-s*/in.) 2 1.7
m, (kip-s*/in.) 3 2.9
¢, (kip-s/in.) 0.8 0.7
¢, (kip-s/in.) 0.4 0.23
¢, (kip-s/in.) 0.3 0.33
k; (kip/in.) 10 8

k, (kip/in.) 20 21

ks (kip/in.) 15 15.3

Applied Excitation Force for 2-DOF Discrete System
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: —— 100cos(20xt)
""" 100cos(4xt)
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L]
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Figure 3.9. Applied External Load for Both the Undamaged and Damaged Cases
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Displacements of Mass Block 1
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Figure 3.11. Velocities of the Mass Block 1 under the Given External Load
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Accelerations of Mass Block 1
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Figure 3.12. Accelerations of the Mass Block 1 under the Given External Load

Table 3.4. Damage Detection Results for the 2-DOF Spring-Mass-Damper System

Damage Index (B;, Damage Severity (0;, Damage Index (B,

Propert
perty Esimated) Esimated) Designed)
m 1.18 -0.15 1.18
m, 1.03 -0.03 1.03
Cy 1.14 -0.12 1.14
o 1.74 -0.43 1.74
C3 0.91 0.10 0.91
k; 1.25 -0.20 1.25
k, 0.95 0.05 0.95
ks 0.98 0.02 0.98
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Damage Index for the 2-DOF Discrete System
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Figure 3.13. Element Damage Indices (i) for 2-DOF Spring-Mass-Damper System

Damage Severity for the 2-DOF Discrete System
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Figure 3.14. Element Damage Severities (a;) for 2-DOF Spring-Mass-Damper System
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3.4 DAMAGE EVALUATION FOR AN N-DOF SPRING-MASS-DAMPER
SYSTEM

In this section, a typical 5-DOF spring-mass-damper system is used to simulate an
N-DOF spring-mass-damper system and will be used to validate the accuracy of the
Power Method. The numerical models for the damaged and undamaged 5-DOF
mass-spring-damper systems were generated wusing SAP2000. The 5-DOF
spring-mass-damper system used in this case study is plotted in Figure 3.15. The
physical properties in the undamaged and damaged systems are listed in Table 3.5. Both
the undamaged and damaged systems are excited by the same external force. The applied
external force is given at each 1E-4 seconds for 0.2 seconds and is plotted in Figure 3.16.
In SAP2000, displacements, velocities and accelerations of the mass blocks were
computed every 1E-4 seconds (10,000 Hz) for 0.2 seconds. The displacements,
velocities, and accelerations of the mass block 1 in both the undamaged and damaged

systems were plotted in Figure 3.17, Figure 3.18, and Figure 3.19, respectively.

In this case, the computed velocity ( x(¢) ) of the mass block in the undamaged case was

used as the velocity used to compute power ( A) for both undamaged and damaged cases.
The coefficient matrices and known vector, X and Y, were constructed by substituting
the acceleration ( X(¢)), velocity (x(¢)), displacement ( x(¢)), and velocity used to
compute power (A) into Eq. 2.123 and Eq. 2.125. The coefficient damage index vector,
B, was computed using Eq. 2.127. Then the damage indices for mass, spring and damper
are computed using Egs. 2.128 through 2.144. The damage severities for mass, spring
and damper are computed using Eqgs. 2.145 through 2.161. The estimated damage indices
and the designed damage indices for each physical property are listed in Table 3.6 and

are plotted in Figure 3.20. The estimated damage severities and the designed damage
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severities for each physical property are plotted in Figure 3.21. Comparing the estimated
damage indices with the designed damage indices, the proposed method can accurately

locate and size multiple damage in a typical 5-DOF spring-mass-damper system.

xl(t) X4(1) X*(t) x'(t) x*(t)
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Figure 3.15. Property Definition and Load Case of the 5-DOF Spring-Mass-Damper System
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Table 3.5. Physical Properties of the S-DOF System

Property Undamaged System Damaged System

m, (kip-s*/in.) 2 1.7
m, (kip-s*/in.) 3 2.9
m; (kip-s*/in.) 5 4.7
my (kip-s*/in.) 4 3.8
ms (kip-s*/in.) 1 0.6
¢, (kip-s/in.) 0.8 0.7
¢, (kip-s/in.) 0.4 0.23
c; (kip-s/in.) 0.3 0.33
¢4 (kip-s/in.) 0.7 0.66
cs (kip-s/in.) 0.55 0.5
¢ (kip-s/in.) 0.6 0.4
k; (kip/in.) 10 8

k, (kip/n.) 20 21

ks (kip/in.) 15 15.3
k, (kip/in.) 30 26
ks (kip/in.) 18 16.8
ke (kip/in.) 13 12.3
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Figure 3.16. Applied External Load for Both the Undamaged and Damaged Cases
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Figure 3.19. Accelerations of the Mass Block 1 under the Given External Load
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Table 3.6. Damage Detection Results for the 5-DOF Spring-Mass-Damper System

Property Damage Index (B;, Damage Severity (¢, Damage Index (B;,

Esimated) Esimated) Designed)
my 1.18 -0.15 1.18
m, 1.03 -0.03 1.03
m; 1.06 -0.06 1.06
my 1.05 -0.05 1.05
m; 1.67 -0.40 1.67
Cy 1.14 -0.12 1.14
Cy 1.74 -0.43 1.74
C3 0.91 0.10 0.91
Cy 1.06 -0.06 1.06
Cs 1.10 -0.09 1.10
Co 1.50 -0.33 1.50
k, 1.25 -0.20 1.25
k, 0.95 0.05 0.95
ks 0.98 0.02 0.98
ky 1.15 -0.13 1.15
ks 1.07 -0.07 1.07
ke 1.06 -0.05 1.06
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Damage Index

Figure 3.20. Element Damage Indices (B;) for 5-DOF Spring-Mass-Damper System
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3.5 DAMAGE EVALUATION FOR ISOLATED SPRING-MASS-DAMPER
SYSTEMS

In this section, an isolated spring-mass-damper system is isolated from a 5-DOF system
and is used to validate the accuracy of the Power Method. The numerical models for the
damaged and undamaged 5-DOF mass-spring-damper systems were generated using
SAP2000. The 5-DOF spring-mass-damper system used in this case study is plotted in
Figure 3.15. The physical properties in the undamaged and damaged systems are listed in
Table 3.7. Both the undamaged and damaged systems are excited by the same external
force. The applied external force is given at each 1E-4 seconds for 0.2 seconds and is
plotted in Figure 3.16. In SAP2000, displacements, velocities and accelerations of the
mass blocks were computed every 1E-4 seconds (10,000 Hz) for 0.2 seconds. The
displacements, velocities and accelerations of the mass block 1 in both the undamaged
and damaged systems were plotted in Figure 3.17, Figure 3.18 and Figure 3.19,

respectively.

In this case, the computed velocity ( x(¢) ) of the mass block in the undamaged case was

used as the velocity used to compute power (A) for both undamaged and damaged cases.
The coefficient matrices and known vector, X and Y, were constructed by substituting
the acceleration ( X(¢)), velocity (x(¢)), displacement (x(¢)), and velocity used to
compute power (A) into Eq. 2.179 and Eq. 2.181. The coefficient damage index vector,
B, was computed using Eq. 2.183. Then the damage indices for mass, spring and damper
are computed using Eqgs. 2.184 through 2.188. The damage severities for mass, spring
and damper are computed using Eqgs. 2.189 through 2.193. The estimated damage indices
and the designed damage indices for each physical property are listed in Table 3.8 and

are plotted in Figure 3.23. The estimated damage severities and the designed damage
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severities for each physical property are plotted in Figure 3.24. Comparing the estimated
damage indices with the designed damage indices, the proposed method can accurately

locate and size multiple damage in an isolated spring-mass-damper system.

p'(t)
X'()
ki 1(i+1
— A WWWWWWWWW— ) —WWWWWW——
< m S
Ci Cit
(@) (@)

Figure 3.22. Property Definition and Load Case of the Isolated Spring-Mass-Damper System

Table 3.7. Physical Properties of the Isolated Spring-Mass-Damper System

Undamage Systems

System #3  System #4  System #5

Property System #1  System #2
m; (kip-s*/in.) 2.00 3.00 5.00 4.00 1.00
c; (kip-s/in.) 0.80 0.40 0.30 0.70 0.55
Cit1 (kip-s/m.) 0.40 0.30 0.70 0.55 0.60
k; (kip/in.) 10.00 20.00 15.00 30.00 18.00
ki (kip/in.) 20.00 15.00 30.00 18.00 13.00
Damaged Systems
Property System#1 System#2 System#3 System#4 System #5
m; (kip-s*/in.) 1.70 2.90 4.70 3.80 0.60
ci (kip-s/in.) 0.70 0.23 0.33 0.66 0.50
cit1 (kip-s/in.) 0.23 0.33 0.66 0.50 0.40
ki (kip/in.) 8.00 21.00 15.40 26.00 16.80
kit+1 (kip/in.) 21.00 15.30 26.00 16.80 12.30




Table 3.8. Damage Detection Results for the Isolated Spring-Mass-Damper System

Designed Damage Indices

Property System#1 System#2 System#3 System#4 System #5

m; 1.18 1.03 1.06 1.05 1.67
c 1.14 1.74 0.91 1.06 1.10
Cit 1.74 0.91 1.06 1.10 1.50
k; 1.25 0.95 0.98 1.15 1.07
ki 0.95 0.98 1.15 1.07 1.06

Estimated Damage Indices

Property System#1 System#2 System#3 System#4 System #5

m; 1.18 1.03 1.06 1.05 1.67
C; 1.14 1.74 0.91 1.06 1.10
Ci+1 1.74 0.91 1.06 1.10 1.50
k; 1.25 0.95 0.98 1.15 1.07
ki1 0.95 0.98 1.15 1.07 1.06
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Damage Index for the Isolated Discrete System
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Figure 3.23. Element Damage Indices (B;) for Isolated Spring-Mass-Damper System
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Damage Severity for the Isolated Discrete System
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3.6 SUMMARY

In this section, 1-DOF, 2-DOF, 5-DOF and isolated spring-mass-damper systems were
studied. In each numerical damage detection experiment, different levels of damage in
mass, stiffness, and damping were simultaneously simulated in the related damaged
system. For both the damaged and undamaged systems, the displacements, velocities and
accelerations were exact values (i.e. free from signal noise pollution) and were computed
using linear direct integration method in SAP2000. The algorithms given in the Section 2
were used to compute the damage indices and damage severities in each numerical

experiment.

According to Table 3.2, Table 3.4, Table 3.6 and Table 3.8, all the designed damage in
masses, springs, and dampers were located and evaluated accurately in each numerical
experiment. Moreover, for all numerical experiments, neither false-positive damage
index nor false-negative damage index was found. Namely, for the proposed damage
detection method, if accurate displacement, velocity, and acceleration data are given, all
type of damage will be located and evaluated without any error. In addition, the results
from Section 3.4 and 3.5 indicate that the proposed method is applicable to both integral

discrete system and isolated discrete system.
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4 THEORY OF DAMAGE EVALUATION ON MASS AND
STIFFNESS FOR CONTINUOUS SYSTEMS

4.1 INTRODUCTION

In this section, seven major subtasks are addressed. In Section 4.2, the specific form of
the Power Method for rods is developed; In Section 4.3, the specific form of the Power
Method for Euler-Bernoulli beams is developed; In Section 4.4, the specific form of the
Power Method for plane frames is developed; In Section 4.5, the specific form of the
Power Method for space trusses is developed; In Section 4.6, the overall solution

procedures is provided. In Section 4.7, the summary for Section 4 is made.

4.2 THEORY FOR RODS
4.2.1 Theory for Rods at Isolated Element Nodes
In this subsection, the proposed non-destructive evaluation theory is applied to the axial

and torsional vibration of rods at a single node.

According to finite element method, one rod can be meshed into several elements.

Isolating two nearby rod elements, as shown in Figure 4.1, the modulus of elasticity of the

material for the Element i is denoted as E,. The modulus of elasticity in shear of the
material for the Element i is denoted as G,. The length of the Element i is L,. The area
and the moment of inertia of the cross section of the Element 1 are denoted as 4, and I,
respectively. The torsional constant of the cross section of the Element i is denoted J,.

Let {P'} be the force vector at Node i, where P/ denotes the axial force at Node i, P!
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denotes the torsional moment at Node i. As shown in the free body diagram of Node i in

Figure 4.2, the external loads ({P'}), internal forces ({#} and {F, })and inertial forces

{I'y form a dynamic equilibrium condition for Node i. The dynamic equilibrium

condition can be written as,

I +HE Y+ =1{P) 4.1)

For this subsection, only axial force and torsional moment will be considered. Thus, each
force vector in Eq. 4.1 is composed by two force components: (1) axial force, (2)

torsional moment. Namely, Eq. 4.1 can be developed into,

1! F, F, P
{ II}—‘F{ l,l}—i_{ l+1,1}={ li} (4.2)
1, Fi,4 Fi+1,4 By

Where subscript one (“1”) indicates the force in axial direction of the rod and subscript

four (“4”) indicates the force in torsional direction.

—_——————— _——————

A:, J1 s Gi > Ei Ai+13 JH19 GHDEi"'l
[1] /

1 pil! i-1 @1) @l'a Pi+1, 6}:1
i i1 i+ i+
p4 ] 64 p4, pll’ai p1 1, 611
{ Li \ LH \ @ -Nodei
1 1 1 - Element i
———-—Direction

of Element

Figure 4.1. Two nearby Rod Elements
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Fi+1 4
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< — {(—

L Ii

(D - Node i

[i] - Element i

Figure 4.2. Free Body Diagram of Node i under Axial and Torsional Effects

Similarly, for the damaged case, the dynamic equilibrium condition can be expressed as,

{I"}+{F }+{F, ) ={P"} (4.3)

Where the asterisk (“*””) denotes the quantities from the damaged case.

Given any velocity vectors, {A'} and {A"}, for the undamaged and damaged systems.

The power done by the external forces in the undamaged and damaged systems can be

expressed as follows,
AT+ A YHE S+ AR, =1 P (4.4)

BT AT R+ AT F ) = (A7) P (43)

Assume that the applied external loads and velocities used to compute power at Node i

are the same for both the undamaged and damaged systems,

(A} ={A"} (4.6)

{P'}={P"} 4.7
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Substituting Eq. 4.6 and Eq. 4.7 into Eq. 4.5 yields,

(NI A VA Y+ AN Y {FL = (A TPy (4.8)

Noticing the power performed by the external load is the same for both the undamaged

and damaged systems, substituting Eq. 4.8 into Eq. 4.4 yields,
(ALY A Y F A R = (A T AV A VHELY 49)

Note Eq. 4.9 is equivalent to Eq. 2.10.

For the axial and torsional vibration, the inertial force, {I'}, can be considered using

lumped mass method. Namely,

For the axial vibration,

j i+ Li+ i i Si
e 1)51 = m' (4.10)

ﬂ,
~N
p
=2
I
7~ N\
3
=~
+
3

For the torsional vibration,

{[i } _ (ﬁilo,il’i + ’%HIIO,H—IL
=

24 oy a }5){ =m;d, (4.11)

i+1
Where m;, 1is the linear mass for Element i; [, is polar moment of inertia of the cross

section of Element i.

In SAP2000, however, the torsional inertia force is equal to zero due to the zero mass in
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the torsional direction. To make the theory application better match the later numerical
example (i.e. in SAP2000, the inertial force of a bar element in torsional direction is

neglected), the torsional inertia force will also be neglected. Namely, set

{17} =(0)-0, ={0} (4.12)
Writing Eq. 4.12 and Eq. 4.10 into the matrix form, yields,

; mL. m. L.

) ]’ 11+ i+1 1+1j 0 é‘l
I'y=3"4t= ( ) 4.13
{'} {1}} 2 2 5 (4.13)

0 0

Extracting the physical properties from the above equation, yields,

iy 1114 — mz_l‘z n_/li+1Li+1 10 511 i i1 Gi
{1}—{[;}—( SRR j{o OHS;}_m[M”]{(S} (4.14)

Where m; is the lumped mass of the Node i; [M!] is commonly called the configuration

matrix of the mass matrix.

Similarly, for the damaged system,

. ‘N (mL m. L. \[1 0] (5 N
{11}: I/: =(m,lq +m1+1L1+1] 51* :mz[Moz]{é‘z} (415)
I 2 2 0 0] |d)

The force vectors (i.e. {F}, {F,}, {F'},and {F.})in Eq. 4.19 can also be computed

using stiffness matrices and node displacement vectors,

For axial motion,

88



EA EA] |6
LT
L oLl
EA  E4 5
Fian) = {— ——} o
L L i+1 51
For torsional load,
JG JG] |8
{F:4} I 4,-
L L |09,
JG JG o,
{EHA} = I:_ - _:l ,-jl
L L i+l 54
Similarly, for the damaged case, the force vectors can be computed as,
. EA  EA] &7
{E,]}:|:__ —i| 1*1.
L L || o

\ EA EA| (&7
{F. )= [— ——}
L L i+1 51

\ JG JGT (&8
{Fi,4}=[—— —} { L }
L L&

. JG JGT [&F
{F;'+1,4} = |: - j| ::Jr]
L L i+1 é‘4

Combining Eq. 4.16 and Eq. 4.18 yields,

And
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(4.16)

4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)



i—1
EA EA o

T 0T Y

)= 4 4.24

UG5 . G JG | s (4.24)
L Llé‘!&

Given the relationship between Young’s modulus and shear modulus, the shear modulus

can be expressed as,

E
G- (4.25)
2(1+v)
Substituting Eq. 4.25 into Eq. 4.24, yields,
EA EA 5"
R A
{F, }= JE JE 5‘2 (4.26)
S Y | W
2L(1+0) 20(+0) | | 5
¢ 4
Extracting the common factor out, yields,
5{‘—1
E - A 0 A 0 §i—l
(F, = (zj o 1o L {7 =Kk, 4.27)
; 2(1+0) 2(1+v) | | %
s
Similarly, other force vectors, {F_,}, {F, },and {F,}, can be computed as,
S
E A 0 — A 0 S5
(FL)= (Ej 0 T 0 L | (ka0 @28)
i+l 2(1+v) 20+0) |, |

i+l
4
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For damaged system,

* 51*i_l
E | —A O A 0 5*1'—1
(F, }z(z] S N B L S SR 108 (4.29)
; 2(1+0) 2(1+v) | | O
5
* 51*i
EY A 0 -4 0 5
{E+l}:(2j 0 J 0 — J 6*1_1 :ki+l[K0,i+l]{§i+l} (430)
wl o 2(1+0) 21+0) ., |
§:z+1

Note as shown in the above equations (i.e. Eq. 4.14, Eq. 4.15, and Eqgs. 4.27 through
4.30), the force vectors (ie. {I'}, {F}, {F,}, I}, {F'}, and {F.}) can be

summarized as a combination of a property coefficient, a configuration matrix and a
nodal deformation vector. Because the designed damage are simulated by the changes of
Young’s modulus ( £) and linear mass (m ), other parameters, such as the length of the
element (L), the cross sectional area ( 4), the torsional constant of element (/) and the
Poisson’s ratio are not influenced by damage and remain the same for the undamaged
and damaged elements. Consequently, the configuration matrices for the element stiffness

and element mass are the same for both the damaged and undamaged elements, namely,

[K,.]1=[K,,] 4.31)
(K, u]=[K, ;] (4.32)
(M) 1=[M,] (4.33)

Substitute Egs. 4.31 through 4.33 into Eq. 4.15, Eq. 4.29 and Eq. 4.30, yields,
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Uy =m" M6 (4.34)

{F}=kI[K, {5} (4.35)

{ z+l} k+l[Koz+l]{ +I} (436)

Substitute Eq. 4.14, Eq. 4.27, Eq. 4.28 and Egs. 4.34 through 4.36 into Eq. 4.9, yields,

A m MO+ (A Yk [K 148, A kK, 0 146,

o (4.37)
= (X} m MO A YK TK, ST+ A LK, 16T
Rearranging Eq. 4.37,
m' (A Y MO S + kAN YK, 146, 3+ ki AN YK, 10 146,0) 4.38)
— kAN YK, 46 =k AN VK 146,y = m ™ (A Y M6 '
Dividing Eq. 4.38 by ,,,*,
N M, ]{5}+ AN YK, 14, }+ ’“ HA YK, 0 16,0
p p (4.39)
—m’;,- (A }T[Ko,i]{@*} “EHA YTIK, 6L =AY IM 16T
Define the following coeftficients,
mi
B=— (4.40)
m
p = (4.41)
m
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By = % (4.42)
k'
By = m— (4.43)

ki,
pi="t (4.44)

Substituting Eq. 4.40 through Eq. 4.44 into Eq. 4.39, yields,

BAK Y IMTHS S+ BoAN JTIK, 16, b+ BN VTIK, 0 146,)

g AR A C L)
~ BAN VK, 148 = BN YLK, 146} = 44 YT IM) 15

Writing the Eq. 4.45 at different time point, yields the following groups of equations,

For =1,

BGA Y IM NS DI, +B, (A YTIK, 46, DI, +B (A Y IK, 18D,

Ny \ . . (4.46)
=By (N VTIK, 148 D, =BG YIK, 0 16D |, = (A Y IM 16 |,
For t=1,,
BUA Y IMIE )|, +B, (A YK, 16, DI, +B, (1A VK, 1146, D], wan

— B GA VK, 1D, —B (A Y IK, 0 10D, = (A Y IMITE D),
For t=t,,

BUAYIM O, +B. (A VK, 16, D, +B,(A }TIK, +1]{5+1})|M
— By VIK, 46 D |, =B GA VK, 0 18 D |, = (A} M 146 })I,N
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Arrange the above Equation group into matrix form, yields,

XBp=Y

(4.49)

Where the coefficient matrix of the linear equation group is given as following (note, due to

the limitation of the page size, the transposed form of the matrix is provided),

X" =

NI, e (M08,
GA VK, 16 D], - GAYK, 16D,
WX VIK, 16D, o (8 VK100,
SR VIKAED], -~ VKD,

S VK, 10D, - AT, 186D,

The vector of unknowns and the vector of known are given as,

By
B,
B=15
B
Bs

(A M),

Y =1 (1A M8,

~(A YK, 160D, |

(A IM ™)1,

(A} M, 16D,
(A YK, 146, D,
(A} [K, . 16 +1})|W
~({A V1K, 16 D,

(4.50)

(4.51)

(4.52)

Based on the Least Square Method, the p can be computed from the following equation,

B=(X"X)"(X"Y)
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The damage indices for stiffness, mass and damping can be computed as follows,

(ﬁiLi + n_/li+1Li+1 j
m' 2 2
,Bm,. =— =7 — =0, (4.54)
m mz‘ Li mi+1Li+1
+
2 2
ki
oom”
B, —k’* =— b (4.55)
' ki ki ﬂ4
m’
ki+1
. m"
p, =l S (4.56)
M ki+1 ki+1 ﬂs
m”

4.2.2 Theory for Rods among Multiple Nodes

In this subsection, the proposed non-destructive evaluation theory will be applied to

multiple nodes on a rod. The damage detection to the physical properties (i.e. mass,

stiffness, damping, etc.) related to these nodes will be completed simultaneously. Since

the idea of combining the axial and torsional vibrations has already been demonstrated in

the above sub-section, for simplicity purposes, the torsional vibration will not be

considered in this subsection.

Given two nearby rod elements, as shown in Figure 4.3, the modulus of elasticity of the

material for Element i is denoted as E,. The length of Elementiis L,. The cross sectional

area of Element i is denoted as 4,. Let P’ denotes the external axial force applied at
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Node i. As shown in the free body diagram of Node i in Figure 4.4, the external axial load
(B), internal axial forces (F,, and F,, ) and inertial axial forces /| form a dynamic
equilibrium condition for Node i. The dynamic equilibrium condition can be written as,

I +F, +F,, =P (457)

Where the subscript ‘i’ denotes Node i and the ‘1’ denotes the component in axial

direction.

A, m. A, T
@ |I| @ / i+1] @

pi—l 611
3
P — |
D 3} P 5,
‘ L, { L \
1 1 | @ - Node i
[ - Element i
—-——Direction
of Element

Figure 4.3. Two nearby Rod Elements

f, 1 O Foas
— — ¢
I
(D) - Node i
[i] - Element i

Figure 4.4. Free Body Diagram of Node i under Axial Effects
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For the damaged case, the dynamic equilibrium condition is,

Il*i +F;'T1 Tl = Pl*i (4.58)

Where the asterisk (“*””) denotes the quantities from the damaged case.

Given any node axial velocity, Ail, the power done by the external axial loads in the
undamaged and damaged system can be computed as follows,
Aillli + AilF:',l + AilF;‘H,l = AilRi (4.59)

*l *

A*lill*i + AI E,l + A*liF;‘j—l,l = A*lipl*i (4.60)

For N nodes in the structure, the axial force vector can be written as,

{Ri=1F (4.61)

Given any node axial velocity vector, {Al} , the power done by the external axial loads in

the undamaged system can be computed as following,

T T

A]1 })11 A]1 111 +F1,l +F2,1

(4.62)

i+1,1

{Al}{Pl}: Ail Pli = Ail [1i+F:‘,1+F

AN N AN N
A1 ])1 A1 ]1 +FN,1 +FN+1,1

Similarly, for the damaged system, the power done by the external axial loads can be
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computed as follows,

AR
AP =1 A B (=
AN) RN

-
A,
-

A

ey
A

Il*1 + Fi*I + F2*1

*

i+1,1

I'+F +F

I +F, +F,

+1,1

(4.63)

Assuming the applied external loads and velocities used to compute power are the same

for both the undamaged and damaged system. Namely

(A} =1{A}}

P 1={R}

Substituting Eq. 4.64 and Eq. 4.65 into Eq. 4.63 yields,

T

AR =M R} =1A, [ 1B =14

T

*1 * *
Il +F1,1 +F2,l

i+1,1

I +F +F,

*N * *
Il +FN,1 +FN+1,1

(4.64)

(4.65)

(4.66)

Noticing the power performed by the external load is the same for both the undamaged

and damaged system. Substituting Eq. 4.66 into Eq. 4.62, yields,

T

[11+E1+F21

i+1,1

Al I[+F +F

AN N
Al ]1 +FN,1 +FN+1,1
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T

*; *j *
A] [l +F:',l +

*] * *
[1 +Fl,1 +F2,1

F*

i+1,1

N *N * *
Al [1 +FN,1 +FN+1,1

(4.67)



Note, Eq. 4.67 is equivalent to Eq. 2.10.

Eq. 4.67 can be developed into the following equation,

A11(111 +F11 +F12)+"'+A[1(]1i +F:‘,1 +F

i+1,1

)+"'+A]1V(I1N +Fy, +FN+1,1)

. 5 5 * . s * 5 . % s * (4'68)
:All(lll+E,1+F2,1)+"'+A11([11+F;,1+F;+1,1)+"’+A11V(11N+FN,1+FN+1,1)
Rearranging Eq. 4.68 yields,
A11(111+F11+F12)+'”+Ai1(11i+[7i,1+E+1,1)+"'+A]1\[(IIN+FN,1+FN+1,1) (4 69)

_All(lf1 +F1T1 +F2T1)_"'_Ai1(]:i +F:'T1 +Ei1,1)_"'_AjlvF;,1 _A];/F;Jrl,l =A]1V11*N

However, since two nearby nodes will share the same rod element, the same force vector
will appear twice in the above equation, which means rows in the coefficient matrix are
linearly depend. This will create singularity problem in the later least square analysis. To
avoid the singularity problem, the common terms in the above equation will be extracted

and merged together. This is process is demonstrated by the following derivations,

A more detailed expression for Eq. 4.69 is given as,

NI +F,+F, )+ +F, +F,)+A U +F,+F,))
+ AN+ F o+ Fp )4+ A AT+ Fy L+ Fy )+ A (Y + Fy 4 FyL )
— AU+ R+ F) = A7+ Fyy + Fy) == N (] + F + FL )

AU EL H F ) == AT T Fy + Fy ) - A F - ATE

=A1Y

+1,1

(4.70)

According to Eq. 4.10, Eq. 4.16, Eq. 4.17, Eq. 4.20, and Eq. 4.21,

99



 (mL m. L
{1;}:(’"! i Mt j&; =m'S! (4.10)

2 2
Iy = (mz L + ”_4;12]‘?“ }i"" =m"5, 4.71)
{F )= (%) (=6 +6)) =k(=6," +5/) (4.72)
(Fo) = (%j (61 =61 =k, (8~ 57 4.73)
{F}= [ETAJ (=8, +8") =k, (=6, +68,") (4.74)
{(Foa)= (E—LAJ (6 =6"") =k (5" =) (4.75)

Substituting Eq. 4.10 and Eqgs. 4.71 through 4.75 into the Eq. 4.70, yields,
A (m'S! + k(=6 + 8+ k, (5] = 61))
+ N (m*82 +ky (=) +52) + ky (52 = 52)) +-+
+ N (m' 5] + k(=67 + )+ k., (5 —5))
+ AT (™S vk (=6 + 5+ kL (8 =5 4
+ AN S +ky (=8 + )+ ky (S =5NTY)
—ANm" 8" + k] (=6 + 5+ k(8" =87))
— A M8+ (=6 + )+ k(87 =57)) -
— AN (m"8 k(=8 + 8+ k. (57 —5)
— AT S k(=0 + 8+ ke, (87 =8 )) — -
—AVE (=8N 8T =AYk (87 =5 = AV m NS

(4.76)

Extracting and merging the common term in the above equation, yields,
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Am'S! + + Am' S+ + AV m" 5

+ Ak (=00 + )+ (A, = Ay (8] = 87)++--+ (AT —=A)Dk, (57 = 657)

4ok (AT =AY (Y =)+ Ak (S =S

—Am"S = = Am S = = AV ™ 4.77)
— Ak (=67 + 61— (A = Ak (8" =87 = — (AT = ADK (57 =87

— = (AT = A (57 =6 = Ak (87 =8

ey ey
=A\m "9,

Moving the physical property to the front of each term yields,
m'A S - rm' NS+ +mVAY S
+l A (=00 + ) + k) (A = A8 = 82) +---+ k(AT = A )5 =687
ook (A =AY = 8") + ko, AY (5 -6
_ m*lA‘151*1 ————— m*"Ailé"'l*i e m*N—lAJI\f—lé"l*N—l (4.78)
- kl*All (_51*0 + 51*1 )~ k; (All - Azl )(51*l - 51*2) T ki* (Aifl - Ai1 )(51*{71 - 51*i)
——ky (AJ;H - Ajlv ) =6 - k;’HA]lV (RN

*N AN S*N
=m A0,

Dividing Eq. 4.78 by m™" yields,
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1 i N

ey A6/ trt oy A6/ trt oy Ao
kl Al 0 1 kz Al A2 1 2 ki Ai-l o AQ i-1 i
+ N A1(_51 +§1 )"' m*N (A1 _Al)(51 _51 )+"'+ m*N (A1 _Al)(51 _51)
kN AN-1 AN N-1 N kN+l AN N N+l
+eeet *N(Al —AV)O, T -0 )+ *NAI 0, =6,7)
m m
"l e m*i e e I’I’I*N_1 . .
- m*N Allé‘l1 _“._m_*NAllé‘ll - m*N AIIV_151 M
k1* Al *Q *] k; Al A2 #] *2 ki* Ai-l AQ *i—] *
T Ty A1(_51 +51 )_ N (Al_Al)(51 _51 )_"'_ N (Al _Al)(5l _51 )
m m m
k;, AN-1 AN *N -1 *N k:m AN [ OFN *N+1
T m*N (Al _Al )(51 _51 )_ m*N Al (51 _51 )
S AV

Define the following (4N+1) coefficients,

/81 = *N
m'
ﬂz‘ =N
m"
ﬂN = m*N
k
/BN+I :_]*
my
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(4.79)

(4.80)

4.81)

(4.82)

(4.83)



k.
ﬂ/\m =—

*N
m

bl

ﬂ _ "N+l
2N+l — *N
m

Bonir = Y

,BzN+1+i = N
m

*N-1
ﬂ m
IN T T =
m'y
N
B =
3N+l * N
m
.
k

ﬁ4N+l =N
m

Substituting Eq. 4.80 through Eq. 4.90 to Eq. 4.79 yields,
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(4.84)

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)



BAS! -t BAS 4+ B ASN

+ Byl (=0 + )+ By (A = A8 =87 )+ + By (AT = A8 = 6))

o By (A = ANS T =) + B &Y (8] = 5")

— Bon a0 == Bry N == By A6

~ By (=0, + 8™ = By (A = A6, = 577) =+ = By (AT = A6 = 571)
—= By (AT =AY =8 = B Y (5 =5,

= AVE

(4.91)

Writing the Eq. 4.91 at different time point, yields the following groups of equations,

For t=¢,,

BAS) |, +o+ BAS) |, ++ By (AYS) |, +Bya (A (=6 +5))) |,

+ Bya (A, = AD(S) =8P, +++ B (AT = A(S T =5,

ot By (A =AY =6, +Bona A (5 =8N, ~Bona (A6,
== Lo B8 |, == By (A6 |, =Baya (AL (=6 + ),

—Bona (A =ANS =8|, == By (AT = A8 =8,

— = B (A = AN =5 |, =Bana (A (57 =571
=(AY6™) |,

ly

(4.92)
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For t=t;,

BN, 4+ Bi(KS)) |, 4 By (DY) |, +By (A (=6 + )],

By (B =AN)(S] =), +-+ By (AT =AD& =8,

ot By (AT =AY =8N |, +Boya (A (5 =8N, =Lona (A6,
— = Boyae (K0 |, == By (A6 |, =By (B (=6 + 8,

= Bova (B =A)(S =87, == Loy (AT =A™ =61,

== By (AT =AY =D, B AV (5] =5,

=AM,

(4.93)

For t=1t,,

BN, ++ BN, ++ B(A 6N |, +Bya (B (=5 +5)) ],

+ Bra (A, = AN(S] =8D)) |, +++ By (AT = A6 =5,

oot By (AT = AVNS T =8N |, + B (A) (5 =8N, =Bowa (A0,
== Lo (RO |, == By (AT |, =By (A (=6 + 5",

—Bova (A, =A)S =67 |, == By (AT =A™ =87,

— o= By (A = AYS =D, —Ban B (8 =57,

=(AY6,™) 1,

(4.94)

Arrange the above Equation group into matrix form, yields,

Xp=Y (4.95)
Where the coefficient matrix of the linear equation group is given as following (note, due to

the limitation of the page size, the transposed form of the matrix is provided),
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XT

(Ao,
(A,
(AYSM) ],

(A]1 (_510 + 51| )) |tn
(A} = A)(3! -8,
(AT =AD& =6 ),
(A =AD" =68 ),
(A}1V (51N - 51N+1 )) |t0
- (A6,

- (Ail 6"1*1') |10
- (A77151*N71) |zo
- (All (_51*0 + 51*1 )) |zﬂ

— (A, = A)3" =87,

— (AT =AY =8,

- (A];] (51*N - 51*N+] )) |t0

— (A =AY =5,

A1,
(461,
(AY6M)1,
(All (_510 + 511 )) |tJ
(A, = ADG! = ),
((A[;1 - Ail )(51i_] - 5{ )) |t/
(A =ANG =),

(A}1V (51N - 61NJr1 ) |t_,
-(A6M],

[T

- (Ajl\lilé:l*Nil) |1
- (AII (_51*0 + 51*1 )) ‘tj
— (A, =) =57,

—((AT' =A@ =6,

—((AY =ADYE =6 ),

- (Ajlv (51*N - 51*N+] )) |t,
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(Ao,
(Ao,
(AYS6) 1,

(A]1 (_510 + 51] )) ‘t,\,
((All - Azl )(51] - 512 )) |tN
((Ail_] - Ail )(51i_1 - 5{ )) |f~
(A =AY =51,
(Allv (51N - 51N+I ) |tN
- (All 5]*1) |1N
— (Ao,

- (AII\LIS:I*N%) ‘tN
~ (A5 +6"),,

- ((All - Azl )(51*1 - 51*2 )) |tN

(AT =AY =8,

— (A =AY =5 Y,
- (AI;[ (51*N - 51*]\/+1 )) |;N

(4.96)



The vector of unknown and the vector of known are given as,
By
B
By
ﬁN+1
IBN+i
' (4.97)
ﬁ2N+1
ﬂ2N+2
ﬁZNHH
Bix
ﬂ3 N+1

ﬂ4N+l

(A5,

Y=1@A'6M), (4.98)

(AY6™)],,

Based on the Least Square Method, the B can be computed from the following equation,

p=X"X)"'(X"Y) (4.99)

Then the damage indices for stiffness, mass and damping can be computed as follows,
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(i mL) o
i N
ﬂml =>— _3’ = m*l = n o = i
m, L, " m, L, m m Bavia
2 2 m™y
(n_/lsz ’%HILH—I j mi
+ i *N
ﬂm = % _*2 = m*l = m*, = ﬁl
m[ Li + mz‘+1Li+1 m m ﬁ2N+1+i
2 2 m™N
(n_/lNlLNl n mNLNj m"
5 e N
ﬂmNl y— —*2 T = nZN—I = P
my Ly, " myLy m m Bin
2 2 m™N
myLy + n_1N+1LN+1j
L2 2 m"
ﬂmv - m*L _* L = *N = ﬂN
NEN My by m
2 2
o)
Y
ﬂk = L }k = kl* - " * = ﬁN-H

EA kl-
F :[Ll ko_m™ By
S (EAY Kk B
(th m*N
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(4.100)

(4.101)

(4.102)

(4.103)

(4.104)

(4.105)



[EA) kN+1
I o
L N+l kN+l — m — ﬂ2N+1 (4106)

4.3 THEORY FOR EULER-BERNOULLI BEAMS
In this subsection, the proposed non-destructive evaluation theory will be applied to the

bending vibration of Euler-Bernoulli beam.

According to the finite element method, one beam can be meshed into several elements.

Isolating two nearby beam elements, as shown in Figure 4.5, the modulus of elasticity of

the material for Element 7 is denoted as E, . The length of Element i is L,. The area and
the moment of inertia of the cross section of Element i are denoted as 4, and I, ,
respectively. Let {P'} be the force vector at Node i, where P, denotes the shear force at
Node i, P denotes the bending moment at Node i. As shown in the free body diagram of
Node i in Figure 4.6, the external loads ({P'}), internal forces ({F, } and {F,,}) and

inertial forces {/'} form a dynamic equilibrium condition for Node i. The dynamic

equilibrium condition can be written as,

IV +HAF, J+{FL ={P"} (4.107)

The beam element will only consider shear and moment in two directions. Each force
vector in Eq. 4.107 is composed by two force components: (1) shear force, (2) bending

moment. Namely, Eq. 4.107 can be developed into,
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I F, F P;
{ 2[}_’_{ 1,2}_"_{ l+1,2}:{ 21} (4108)
13 E,3 F'i+1,3 P3
Where subscript two (“2”) indicates shear force and subscript three (“3”) indicates

bending moment.

_——— —_—————

El, i Ei+1, Ii+l
i-1 i-1 i+l it
pf; ’53 p3 ’53 P, ’53

] @l e

]

\|/ - Node i

1 - Element i
-1 +1 Hl —
51 T -~—— Direction
P2 ? V2 p2 ’ 62 P> &, of Element

Figure 4.5. Two nearby Euler—-Bernoulli Beam Elements Considering Shear Force and Bending

Moment

Fos

"
m@

8 F.i2

(D - Node i

I; [i] - Element i
Figure 4.6. Free Body Diagram of Node i Considering Shear Force and Bending Moment
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Similarly, for the damaged case, the dynamic equilibrium condition is,

*

U7 +{F  +AFL ) =P} (4.109)

Where the asterisk (“*””) denotes the quantities from the damaged case.

Given any velocity vectors, {A'} and {A"}, for the undamaged and damaged systems.

The power done by the external forces in the undamaged and damaged systems can be

expressed as follows,
KU+ E S+ AR = AP (4.110)

B+ Y+ B FL = B P (.11

Assume that the applied external loads and velocities used to compute power at Node i

are the same for both the undamaged and damaged systems,

(A} ={A"} (4.112)

{P'y={P"} (4.113)

Substituting Eq. 4.112 and Eq. 4.113 into Eq. 4.111 yields,

NI+ NV (F  +{A Y AFL = (A (P (4.114)

Noticing the power done by the external load are the same for both the undamaged and

damaged system. Substituting Eq. 4.114 into Eq. 4.110 yields,
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NI+ A S+ 8 F, = AU+ AHF A

(4.115)
Note, Eq. 4.115 is equivalent to Eq. 2.10.

The inertia force vectors in this case can be written as following, (note that the inertial

effect associated with any rotational degree of freedom is neglected)

= m,L, MLy 1o 5zl o ipagig &
{I}_H 2 j{ 2 ﬂ{o ng;}‘mWJ{ﬂ (4.116)

Where i, is the linear mass of Element i; 5! is the acceleration in transverse direction at

Node i and §; is acceleration in bending rotation direction at Node i within the plain.

m' is the lumped mass at Node i; [M] is the configuration matrix for the nodal mass.
Similarly, for the damaged system, the inertia force vector can be computed as,

AT mi*l:: n_/liilLZl 10 52*l i g SHi
SR, e

According to the finite element method, the force vectors (i.e. {F, }, {F.}, {F, },and

{F}) in Eq. 4.115 can be computed using stiffness matrices and nodal deformation

vectors,
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i-1
52

El||-12 —-6L 12 —6L| |5
=| = =k [K, .]{5, 4.118
{‘F:} {L3J|:6L 2L2 _6L 4L2 i| 62, z[ O,l]{ 1} ( )
S
o)
EI 12 6L -12 6L o!
F 1= 3l 4.119
{ 1+l} (LS) 1|:6L 4L2 _6L :|+1 6£+1 z+][ oH—l]{ 1+]} ( )
53i+l
Similarly, for the damaged case,
5;‘1'—1
gr\[-12 —-6L 12 —6L]|&| .. .
=k [K .14 4.119
{ } [ j{6[‘ 2L2 —6L 4L2} 52*1 l[ 0,[]{ l} ( )
5
5
. gr) [12 6L -12 6L7 | &
F.l=|— o= K
{ z+l} (Lj;} 1|:6L 4L2 —6L 2L2j|_+1 5;,-“ z+1[ 01+l]{ 1+l} (4120)
é‘;Hl

Where 6, is the displacement in vertical direction at Node i; 5] is the nodal rotation

within the plain at Node i.

Substitute Eqs. 4.116 through 4.120 into Eq. 4.115 yields,
AT m MO Y + AN Yk (K, 46, 3+ A Y ke [K, 0146, ) @.121)
= {N Y m MO N Y KK 6 A Y R K 146, '

Note the force vectors (i.e. {I'}, {F }, {F.}, {I'}, {F'} and {F.}) can be
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summarized as the multiplication of a property coefficient, a configuration matrix and a

node displacement vector. Because the designed damage are simulated by the changes of

Young’s modulus ( £) and linear mass (7 ), the length of element (L) is not influenced

by damage and remain the same for the undamaged and damaged elements.

Consequently, the configuration matrices for the element stiffness and element mass are

the same for both the damaged and undamaged elements. Namely,

[K,.1=[K,,]

*

[Ko,i+1 1= [Ko,i+1 ]

[M;']1=[M;]

o

Substituting Egs. 4.122 through 4.124 into Eq. 4.121 yields,
A MOy + AN 3Tk, K, 146, 3+ A Y (K, 0 146,00
= (A m MO A VTR, 40 A Y LK, 0 160

Moving forward the property constant from each term in Eq. 16 yields,
m' (N T IMIHS S + kAN VTTK, 146, 3+ ke (A TR, 10 146, )
—k AN YTIK, S =k (K YK, o 146y = m™ (A Y M TS

Dividing Eq. 4.126 by m" yields,

N M, ]{5}+ CHNTIK, S, }+k’“ A K, 014603

- k’;,- NI, 040 - k’“ AR 1S = (A YT IM ™S
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(4.122)

(4.123)

(4.124)

(4.125)

(4.126)

(4.127)



Define the following coefticients,

B=— (4.128)
m
k.

Br=—% (4.129)
m

By = L (4.130)
m

Bi= k— (4.131)
m

p, =t (4.132)
m

Substituting Eq. 4.128 through Eq. 4.132 into Eq. 4.127 yields,

BAN Y IM 1S+ BotN YK, 6, b+ BAN VT [K 10146, )

VAT . - , R, (4.133)
—BAN VK, {6, } = BsAN } K, 1 Ot ={A } [M {67}

Writing the Eq. 4.133 at different time point, yields the following groups of equations,

For t=t,,

BUA Y IMTS ), +8, (A Y IK, 48, DI, +4, (A YK, 0186,

. . . . . . (4.134)
=B (A YK, 6 D, —BsUA VK, 0160 D, = (A Y M 16T D),
For t=t,,
BUA Y IMIIS D, +B, (1A Y IK,, 146, DI, +B, (A YK, 146, D],
(4.135)

B GA TR, 16D, ~B (A YTIK, 160D, = (A Y IMIE )],
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For t=t1,,

BUA Y IMITE D, +A. (A Y TK, 16 D, +BGA VK, 16D,

. . . . y I (4.136)
=B GA VIK, 16 D, =Bs (A YK, i O D |, = (A Y M1 D,
Arranging the above linear equation group into matrix form, yields,
Xp=Y (4.137)

Where the coefficient matrix of the linear equation group is given as following (note,

due to the limitation of the page size, the transposed form of the matrix is provided),

X" =
CGAYIMEE, . GEYIMET, . GAIMIETD,
(AYIK, 6D, (AYIK S D], - GAVIK, 16D,
(AYIK, 16D, (YK, W18, (A YK, WD),
—(AY K, 6D, —GAVIK HED, o (A YK, 6D,
SGAYTK, D, o —(A YK 1D, — (A K16 D, |
(4.138)
The vector of unknown and the vector of known are given as,
By
P,
B=15 (4.139)
B,
Ps
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(A IM 167D |,

Y = ({(A Y M1, (4.140)

(A M D),

Using the Least Square Method, the vector of unknown, ‘B’, can be computed from the

following equation,

p=X"X)"'(X"Y) (4.141)

With the vector of unknown computed, the damage indices for stiffness, mass, and

damping can be computed as follows,

[H_/IILI + n_/li+1Li+1 j
m' 2
B, =—= - - =p (4.142)
" m I’)_/ll Lz‘ n_/liHLiJrl
+
2 2
*j L3
p o=k AT P (4.143)

ki ki El - 184
m" ?

1

ki+1 {EYJ
*j 3
LY S/

B : : :
bk ke EI B
r
i+l

3

(4.144)

3

Note, because the proposed damage detection algorithm used no information on the
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boundary conditions of the beam, the damage detection algorithm can be applied to

beams with any support conditions.

4.4 THEORY FOR PLANE FRAMES
In this subsection, the proposed non-destructive evaluation theory will be applied to the

axial and bending vibration of plane frame.

According to the finite element method, one frame structure can be meshed into several

elements. Isolating two nearby plain frame elements, as shown in Figure 4.7, the modulus

of elasticity of the material for Element i is denoted as E, . The length of Elementiis L,.
The area and the moment of inertia of the cross section of Element i are denoted as 4,
and I, , respectively. Let {P'} be the force vector at Node 7, in which B’ denotes the

axial force at Node i, P, denotes the shear force at Node i, P/ denotes the nodal
moment at Node i. As shown in the free body diagram of Node i in Figure 4.8, the external

loads ({P'}), internal forces ({F, } and {F,,})and inertial forces {/'} form a dynamic

equilibrium condition for Node i. The dynamic equilibrium condition can be written as,

U HF, 3+ {F, =P} (4.145)

In this case, degrees of freedom in axial, transversal, and rotational directions will be
taken into consideration. Thus each force vector in Eq. 4.145 is composed by three force

components: (1) Axial force; (2) shear force; (3) bending moment.
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o Fa ] | B B
ot Fopty b= le (4.1406)
E

i i
i,3 F:'+1,3 })3

[’}

w

Where subscript one (“1”) indicates axial force, subscript two (“2”) indicates shear force

and subscript three (“3”) indicates bending moment.

———— e
Ai, Ei’ Ii Ai+17 Ei+15 Ii+1
i-1 i1 i i i+l i+
p;=53 p3’63 p3>63

- - i+l i+l
\k B3 P>
Li Li+1 @ - Node i

'| '| ] (i] - Element i
M gl i i il =itl  ——— Diraction
P, 0, P, >0, P 5, of Element

Figure 4.7. Two nearby Plane Frame Elements

(@) - Node i

i
L [i] - Element i

Figure 4.8. Free Body Diagram of Node i Considering Axial, Shear Forces, and Bending Moment
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Similarly, for the damaged case, the dynamic equilibrium condition is,
(I} +{F }+{F ) ={P"} (4.147)

Where the asterisk (“*””) denotes the quantities from the damaged case.

Given any velocity vectors, {A'} and {A"}, for the undamaged and damaged systems,

the power performed by the external forces in the undamaged and damaged systems can

be expressed as follows,

(AT + (N VAF, b+ (N Y {F, = (A (P} (4.148)

B+ B+ B (L = Y P (4.149)

Assume that the applied external loads and velocities used to compute power at Node i

are the same for both the undamaged and damaged systems,

(A} =1{A"} (4.150)

{P'y={P"} (4.151)

Substituting Eq. 4.150 and Eq. 4.151 into Eq. 4.149 yields,

(N + (N Y+ (N = (A (P (4.152)

Noticing the power performed by the external load is the same for both the undamaged

and damaged system. Substituting Eq. 4.152 into Eq. 4.148 yields,
A+ (A J AR = AT+ AHE (AR (4153)

Note, Eq. 153 is equivalent to Eq. 10.
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In this case, the inertial forces for the undamaged system can be expressed using the
following lumped mass matrix. Note that the inertial effect associated with any rotational

degree of freedom is neglected.

_ _ 1 5,
{If}z{(m";"j{mf“;fﬂ ﬂ 1 oy p=m'[M]]{5'} (4.154)
0| |5

1

where i, is the linear mass of Element i; 4, is the acceleration in axial direction at

Node #; &) is the acceleration in transverse direction at Node i and §! is the rotational

acceleration in bending direction within the plain at Node i.

Similarly, for the damaged system,

{]*l}:|:(m12 iJ_'_(mle i+lJ:| 1 521 :m*i[M:i]{é':*i} (4155)
0] |0

The force vectors (i.e. {F }, {F.,}, {F },and {F.})in Eq. 4.153 can be computed

using stiffness matrices and node displacement vectors,
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51'—1
B AL> Al? ] 511'—1
-—— 0 O — 0 0 2
EI I ] 5#1
{F }=|— 0 -12 -6L O 12 —-6L P t=k[K .]{0.}
1 3 i i 0, i
L . 2 2 51
i 0 6L 2L 0 -—-6L 4L _
g
L i 5
(4.156)
5[
—ALZ ALZ ] 51i
— 0 O — 0 0 2
1 1 oS!
{FH}:(E—fJ 0 12 6L 0 -12 6L b=k (K, 10}
i L 5,4.1 i+ 0,i+ i+
#0 6L 4L 0  —6L 2L "
o,
L i+l il
53
(4.157)
For the damaged case,
_ o 5
T T
. (e I 1 ST e
{F }=|— 0 -12 -6L O 12 —-6L v =k[K {0}
[ 3 i i 0,i i
L) 2 _ 2 2
i 0 6L 2L 0 6L 4L .
0,
5
(4.158)
5"
AL AL T | s
«|— 0 O — 0 0 2
* I ] 5*1 * * *
{Foa)= (E_f] 0 12 6L 0 —-12 6L *3- =k K, 1 {0,}
L 5 i+1 s
“l0 6L 4L 0  —6L 2L it
19
L i+l 5*1_“
3

(4.159)
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Where &/ is the displacement in axial direction at Node i; J,is displacement in

transverse direction at Node #; &, is the nodal rotation in bending rotation direction

within the plain at Node i.

Substitute Egs. 4.154 through 4.159 into Eq. 4.153 yields,
A m IM O s +{A Tk, (K, 146, 3 +HA Y KK 146,03

1

(4.160)

£

= (XY m MOy + (A YT RTK, S+ A Y ke [K 146L )

Note that the force vectors (i.e. {I'}, {F }, {F.,}, {I"}, {F'}, and {F.}) can be

summarized as the multiplication of a property coefficient, a configuration matrix and a
node displacement vector. Because the designed damage are simulated by the changes of
Young’s modulus ( £) and linear mass (m ), other parameters, the length of element (L),
the cross sectional area ( 4) and the moment inertia of the cross section (/ ), are not
influenced by damage and remain the same for the undamaged and damaged elements.
Consequently, the configuration matrices for the element stiffness and element mass are

the same for both the damaged and undamaged elements. Namely,

[K,.]1=[K,,] 4.161)
[K:,m 1= [KO,,'H] (4.162)
[M]=[M]] (4.163)

Substituting Egs. 4.161 through 4.163 into Eq. 4.160 yields,
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(A} m [M ]{5}+{A’} kK, 06,3+ 8 Y kK, 0160
= (A m My + (AT TR ST+ A YT R K a6

Moving forward the property constant from each term in Eq. 4.164 yields,

m' A Y IMO S + ke AN YK, 46, b+ ke ANV TK, 0146, )
— kAN VTR Sy = ki (A YT TR 146 = m ™ (A M 1467

Dividing Eq. 4.165by m™ yields,

N M ]{5}+ SNVIK, i i PN YK, 160}

*

‘%{A" VK16, - "1“ SRR ST, =4 YT M 18

Define the following coefficients,
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(4.164)

(4.165)

(4.166)

(4.167)

(4.168)

(4.169)

(4.170)

(4.171)



Substituting Eq. 4.167 through Eq. 4.171 to Eq. 4.166 yields,

BAN Y IM 10"+ BoAX YT IK, 46, 3+ BtA YT [K o {60}

T 1 U (4.172)
= BAN VIK G 0.} = BAN Y IK, 1S, =AY M 140 ™

Writing the Eq. 4.172 at different time point, yields the following groups of equations,

For t=t¢,,

BUA Y IM1O ), +B, (A YTIK, 1S, DI, +B (A VK, 16D,

o o R, (4.173)
= B GA YK D, =B (A VTK, 16D |, = (A Y IM 107 |,
For t=t,,
BUA Y IMIE D, +B, (1K VK, 146, D, +B(A YK, 186D,
(4.174)

BB YIRS D, ~B (A TR, 160D, = (A Y TMI 167,

For t=1t,,

BN Y MO, +B, (A YK, 146, DI, +B (A VK, 146, D],
(4.175)

=B GA YK 1S D, —BsUA VTR 8D, = (A Y IM T D,

Arranging the above linear equation group into matrix form, yields,
Xp=Y (4.176)
Where the coefficient matrix of the linear equation group is given as following, (note,

due to the limitation of the page size, the transposed form of the matrix is provided)
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X' =

A M,
(A YK, 146, D),

(A YK, 146D,
~ (A YK, 1001,

The vector of unknown and the vector of known are given as,

A VIK, 00D,

B= ﬂ3

(A M),
(A YK, 146 D),

(A IK, 1861,
~(A YK, 16 D,
- ({Al }T[Ko,m] {5;1}) |x,

By
s,

B
B

(A MO D,

(A M),

(AN Y M6 D,

(A M1,
(A YK, 146 D1,
(A K 1S,
~({A YK, 16D,
- ({Al }T[Ku,i+1]{é;il}) |;N_

4.177)

(4.178)

(4.179)

Using the Least Square Method, the vector of unknown, ‘B’, can be computed from the

following equation,

B=(X"X)"(X"Y)

(4.180)

With the vector of unknown computed, the damage indices for stiffness, mass, and

damping can be computed as follows,
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ISR i _ (4.181)
ﬂm m l 7’_11 Lz’ n_/li+1Li+1 ﬂl
+
2 2
k [EIJ
*; L3
B, = 2 - k’; = : _b (4.182)
! ; ; B

Jist (4.183)

4.5 THEORY FOR SPACE TRUSSES
In this subsection, the proposed non-destructive evaluation theory will be applied to
space truss at each joint considering vibrations in the global X, Y, and Z directions

simultaneously.

For a joint in space, as shown in Figure 4.9, assume that there are n bars jointed to the

Joint y and each bar has a defined direction from negative end towards positive end. The
modulus of elasticity of the material for Bar i is denoted as E, . The length of Bariis L,.

The cross sectional area of Bar i is denoted as 4;. The axial force of Bar i is denoted as

F;,. The unit vector in the direction of Bar i is denoted as n, . According to the free

body diagram at Joint y shown in Figure 4.10, the dynamic equilibrium condition for the

undamaged system at Joint y can be expressed as,
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Ui+ F b+ + Fodn b+ + F, {n, b = {P7} (4.184)

Similarly, for the damaged case, the dynamic equilibrium condition at Joint i can be

expressed as,

U7+ F Y+ o+ F n b+ + F, {n, } = (P} (4.185)

Where the asterisk (“*”) denotes the quantities from the damaged case.

(D) - Joint i

_ [i] - Element i
pll s 5; —— Direction
of Element

Figure 4.9. One Joint from a Space Truss with All Bars Joined to the Joint
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(i) - Joint i
[i] - Element i
——Direction
of Element

Figure 4.10. Free Body Diagram of Joint y in Space

Given any velocity vectors, {A’} and {A”}, for the undamaged and damaged systems,

the power performed by the external forces in the undamaged and damaged systems can

be expressed as following,

EY WY AR Y ot (N Edn 3t BV E () =8P (4.186)

Similarly, for the damaged case,
A AT R 0+t AT F 0]+ + A7V F, (n ) = A7) (P

(4.187)
Assume that the applied external loads and velocities used to compute power at Joint y are

the same for both the undamaged and damaged systems,

(N} ={A7} (4.188)
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{P"Y={P7"} (4.189)

Substituting Eq. 4.188 and Eq. 4.189 into Eq. 4.187 yields,
N7+ (N F i+ o+ (XY F )+ N F, () = (TP

(4.190)

Noticing the power performed by the external load are the same for both the undamaged
and damaged system. Substituting Eq. 4.190 into Eq. 4.186 yields,
WY+ NV Fyn et AR YT F 0 Y+ YT F, ) won
=NV N F i+ N F ]+ AN F )

Note, Eq. 4.191 is equivalent to Eq. 2.10.

In this case, the inertial forces can be expressed using the following lumped mass matrix.

Namely,
B B . 67
1043 TN S I /227 TR | 57t =m [MI 1467}
1|67

(4.192)

Where m, is the linear mass of Bar i; &7 is the acceleration of Joint y in x-direction in
the global coordinate system,; 5y7 is the acceleration of Joint y in y-direction in the

global coordinate system and 527 is the acceleration of Joint y in z-direction in the global

coordinate system; m’ is the lumped mass of the Joint y; and [M!] is the
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configuration matrix of the mass matrix.

Similarly, for the damaged system,

1 57
{[*7}: m, L, - m; L, I m,L, 1 5 :m*y[M:y]{é"*y}
2 2 2 2.
1| |0
4
(4.193)
Note, in this case, the [M/] and [M.”] are both 3x3 identity matrices, thus,
(M) ]1=[M]] (4.194)
Substituting Eq. 4.194 into Eq. 4.193 yields,
U7y =m M7} (4.195)

The axial force of the i bar connected the Joint y can be computed as,

EA 5*| (E4) A
F ===l =1]s =] =—1| (" =5 4.196
il [L ][ ]z {5;1} [L J ( il 1,1) ( )

i

where, 51] 1s the axial direction movement of the positive end of the Bar i connected to

Joint y in local coordinate system; 5::1 is the axial direction movement of the negative

end of Bar i connected with Joint y in the local coordinate system. The upward arrow (‘*’)

means the value in the local coordinate.
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According to vector projection, the axial direction movement of the positive end of the i"

bar can be computed as,

5 =1in) {8 (4.197)

The axial direction movement of the negative end of the i bar can be computed as,

S, =1} {57} (4.198)

Substituting Eq. 4.197 and Eq. 4.198 into Eq. 4.196, yields,

F, = (%j n} (16,315 ) (4.199)

Which can be also written as,

Fy =k {n} ({67167} (4.200)

For the damaged system,

F=k'{n}"({87-16}) (4.201)

Substituting Eq. 4.192, Eq. 4.195, Eq. 4.200, Eq. 4.201 into Eq. 4.191

N M IMISy + (8 k() ({873 =46 D imy )+

ANk A8 =48 DAy + o+ (X K, {0, Y (6,3 = (6, 1) ()

= (N m MO+ AN Y6 =48 D )+

N A (S A8 DA+ X e () (18,7 =48, ) ()

(4.202)
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Rearranging Eq. 4.202 yields,

m! N YT [M ST+ AN Y (T (87— {6 D Am }+.

AN (S =48 ) I 4t b (XY 3 (1646, D i, )
SR R R G B A TS Ry SR AR T ST B LA DY
ek AN (6, =48, D Ay = m T (N M) 1{07)

Dividing Eq. 4.203 by m” yields,

PRV M b+ (YT ()4 6 D
m m

+%{A7}’{ni}f<{5i+}—{df}){n,.}+...+%{N}T{n,,}f({é,:}—{(s,:}){nn}

kl

—~--—%{A7}T{HZ}T({5:+}—{5:_}){71:} =N} IM] ST

Define the following coefficients,
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(4.203)

(4.204)

(4.205)

(4.206)

(4.207)



Pra=—t (4.208)

By = % (4.209)
k'

Bionn =5 (4.210)
k*

Bona =m—Zy (4.211)

Substituting Eq. 4.205 through Eq. 4.211 to Eq. 4.204 yields,
BAN Y IMIO y+ BAN Y ({671 =46, D imy } + .
+ B AN Y (6 =8 D A} + ot B AN {0, Y (16,3 =48, ), )
e R N G o B A D T Ny AN 11 K S TR R A YT
== By Y (16,1 =48, D {m} = (N Y [M {67}

(4.212)

Writing the Eq. 4.212 at different time point, yields the following groups of equations,

For t=1¢,,

BN Y IMITO D, +B (N i} (167 =487 {m D, +.-

+ B (N} (673 =187 DI D, ot B (N} {0, 3T (183 =48, Din, D,
=B (N} T ({87 =6 DD, == B G 0] (873 = {6 D i D,
== B (XY} (18,73 =8, D D, = (A Y IM] 17 D),

(4.213)
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For t=t,,

BUNYTIMINE™ D) |, +B (N (18 =187 D {m D) |, +.

+ B (A8 3 (873 =487 DA ), ot B (N} {3 (16,3 = {6, D, D,
=B A Y 0 (87 =48 DD, == B (N Y 0]} = {6 DA D,
= B N} {0} (16,3 =18, D) |, = (XY IM 17 D),

(4.214)

For t=1,,

BUN Y IMI O ) |, +B, (N Y (0} (163 =16, Dim DI, +.-

+ B (N 3 (187 =48 D ) |, ot B (A Y (0,3 (18,3 {8, )i, D,

=B (Y} (67 =8 DD |, == B N Y (187 = {8 DA D,
== B N} (16,3 =16, D, D |, = (XY IM 187 D),

(4.215)

Arranging the above linear equation group into matrix form, yields,
Xp=Y (4.216)
Where the coefficient matrix of the linear equation group is given as following, (note,

due to the limitation of the page size, the transposed form of the matrix is provided),
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X" =

I (N VM7,

N i} (167 = 46, Dim DI,
(N i (487110, D D,

(A} {n, )7 (18,3 =48, D, D,
(A Y (187 =6 Dim D,

(& T (67 =18 D i DI,

N,y (18,73 =18, Dim DI,

(& M8,
(A} (67— 167 Dim D,

(N 3 ({87 {6 D D,

(A} {n, )7 (18,3 =48, D, D,

SR SR AN S U I
- (NS =6 H I D,

S U CERS S A TN T
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(N M1 DI,
(A {3 ({8 =16 D D,

(A {3 ({87 =46 Hin D,

(A} {n, )7 (18,3 =48, D, D,

RO S U CA R A NS SIN

NS DD,

GG A E A T UM I

(4.217)



The vector of unknown and the vector of known are given as,

By
By

ﬂHl

ﬁnﬂ
ﬂn+2

ﬂi+n+1

ﬁ2n+1

(A M7,
(A Y M DI,

(N IMI187 ),

(4.218)

(4.219)

Using the Least Square Method, the vector of unknown, ‘B’, can be computed from the

following equation,

B=X"X)"(X"Y)

(4.220)

With the vector of unknown computed, the damage indices for stiffness, mass and

damping can be computed as follows,
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gt fo M S

" E7A kn kn ﬂ2n+1
L) m”

4.6 OVERALL SOLUTION PROCEDURE

(4.222)

(4.223)

(4.224)

To perform the proposed damage detection method to continuous system, the following

steps should be followed:

(1) Derive the linear equation group for the specific continuous system based on

the power equilibrium at a single joint or among multiple joints;

(2) Collect the displacement, velocity, and acceleration records required by the

coefficient matrix and the vector of knowns of the linear equation group

defined by step 1;

(3) Use the least square method to solve the linear equation group for the vector

of unknown; and

(4) Compute for the Damage Indices and Damage severities for each physical

property based on the vector of unknown computed from Step 3.
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The general process will be clearly demonstrated in Section 5.

4.7 SUMMARY

In this Section, the Power Method for a rod, Euler-Bernoulli beam, plane frame, and
space truss were studied. The derivation processes were provided in Section 4.2 to
Section 4.5 and the overall solution procedure was provided in Section 4.6. In section
4.2.1, the specific form of the proposed method was derived to detect and evaluate
damage in rod elements based on the power equilibrium at each joint. In Section 4.2.2,
the specific form of the proposed method was derived to detect and evaluate damage in
rod elements based on the power equilibrium at multiple joints. In Section 4.3, the
specific form of the proposed method was derived to detect and evaluate damage in
beam elements based on the power equilibrium at each joint. In Section 4.4, the specific
form of the proposed method was derived to detect and evaluate damage in plane frame
elements based on the power equilibrium at each joint. In Section 4.5, the specific form
of the proposed method was derived to detect and evaluate damage in space truss

elements (bars) based on the power equilibrium at each joint.

The advantage of the Power Method is that the method was able to simultaneously detect
damage in physical properties of multiple structural members related to multiple types of
vibrations. In other words,
(1) In real experiment, the vibration is not limited in one direction and one type.
By using the dynamic data from vibration of all related directions, the Power
Method will provide more reliable damage evaluation results; and

(2) The Power Method provides the option of detecting damage in the whole
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structure or at multiple locations of the structure, besides at single location.

This advantage can be used to increase the computation efficiency.
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5 CASE STUDIES OF DAMAGE EVALUATION FOR CONTINUOUS
SYSTEMS

5.1 INTRODUCTION

The objective of this section is to validate the proposed theory for continuous systems
using numerical examples. To achieve this goal, the theory is validated using exact
displacements, velocities, and accelerations of the undamaged and damaged continuous
systems modeled within SAP2000 (Version 15). The exact displacements, velocities, and
accelerations are computed from the linear direct integration in SAP2000. The
Hilber-Hughes-Taylor time integration method was used by SAP2000. The three
parameters of the Hilber-Hughes-Taylor method: Gamma, Beta and Alpha were set to be
0.5, 0.25 and 0, respectively. Five linearly elastic numerical cases are studied in this

section,

Case #1: the accuracy of the theory will be studied on a rod under axial and torsional
vibrations. The rod is fixed at its left end. The damage detection algorithm of the Power
Method for a rod under axial and torsional vibration is derived and is provided in Section
4.2.1. The damage is simulated by the changes of masses and stiffness of specific rod

elements.

Case #2: the accuracy of the theory will be studied on the same rod under axial vibration.
The algorithm of the Power Method for the whole rod under axial vibration is derived
and is provided in Section 4.2.2. The damage is simulated by the changes of masses and

stiffness of specific rod elements.
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Case #3: the accuracy of the theory will be studied on a propped cantilever beam under
bending vibration. The algorithm of the Power Method for an Euler-Bernoulli beam
under bending vibration is derived and is provided in Section 4.3. The damage is

simulated by the changes of masses and stiffness of specific beam elements.

Case #4: the accuracy of the theory will be studied on a two-bay frame. The algorithm of
the Power Method for a plane frame under axial and bending vibration is derived and is
provided in Section 4.4. The damage is simulated by the changes of masses and stiffness

of specific frame elements.

Case #5: the accuracy of the theory will be studied on a simple space truss. The
algorithm of the Power Method for a space truss is derived and is provided in Section 4.5.
The damage is simulated by the changes of masses and stiffness of specific truss

elements.

5.2 DAMAGE EVALUATION FOR A ROD

In Case #1, a rod fixed at its left end is used to evaluate the proposed theory. Figure 5.1
indicates the geometry, and damage scenario under consideration. The geometry of the
cross-section of the rod is shown in Figure 5.2. The modulus of elasticity (E£) of the
material is 29,000 ksi. The modulus of elasticity in shear (G) of the material is 11,154 ksi.
The Poisson’s ratio of the material (v) is 0.3. The torsional constant of the cross section
of (J) is 7.9522. The mass density of the material is 7.345x107 kip-sec?/in*. In this case,

four elements with damaged mass and stiffness are studied.
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The rod is meshed into 12 elements and has 13 equally spaced nodes. The length of each
element is 1.0 inches. For illustrative purposes, typical elements are indicated in Figure
5.1. The damage is simulated by a ten percent (10%) reduction of the modulus of

elasticity and twenty percent (20%) reduction of the mass of Elements 5, 6, 9, and 10.

For each node in the rod model, a dynamic force, 100cos(2n?), is applied in both axial (x1)
and torsional (61) direction. Given the applied load case, the displacement, velocity, and
acceleration time histories in both axial and torsional direction are directly generated
from SAP2000 using linear direct integration method. The computation step is 1E-4
seconds (10,000 Hz) for total 0.2 seconds. For both the undamaged and damaged Rods,
the displacements, velocities and accelerations of the Node /3 in axial direction were

plotted in Figure 5.3, Figure 5.4, and Figure 5.5.

In this case, the computed velocity ( x(¢) ) of each node in the undamaged case was used
as the velocity used to compute power (A) for both the undamaged and damaged cases.
For every two nearby elements, the coefficient matrices (‘X’) and known vector (‘Y’)

were constructed by substituting the acceleration ( X(¢) ), velocity ( x(¢)), displacement
(x(¢)), and velocity used to compute power (A) into Eq. 4.50 and Eq. 4.52. The

coefficient damage index vector, B, related to the two nearby elements, is computed
using Eq. 4.53. Then the damage indices for mass and stiftness are computed using Egs.
4.54 through 4.56. The damage severities for mass and stiffness are computed using Eq.
2.13. For each two nearby elements, the above process is performed. For simplicity
purposes, no overlap element is used. Thus, the proposed theory is only applied to six

pairs of elements. The estimated damage indices and the designed damage indices for
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each physical property are listed in Table 5.1 and are plotted in Figure 5.6 for nodal mass
and Figure 5.8 for element stiffness. The estimated damage severities and the designed
damage severities for each physical property are plotted in Figure 5.7 for nodal mass and
Figure 5.9 for element stiffness. Because the proposed method is applied at the center
node of two nearby elements, only six nodes were taken into consideration (i.e. Nodes 2,
4,6, 8, 10, and 12). Comparing the estimated damage indices with the designed damage
indices, the proposed method can accurately locate and size multiple damage in a rod

with axial and torsional vibrations.

Damaged Element #9
Damaged Element #10

| | | P72z | Tz | |

2 Free End
Fixed
End Element #1 Damage Element #6 Element #12
Damaged Element #5
1" \, 10" \, 1"
A A
12"

Figure 5.1. Geometry, Damage Scenario, and Finite Element Discretization of the Rod
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Figure 5.2. Geometry of the Cross-Section of the Rod
Displacement in Axial Direction at 131" Node
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Velocity in Axial Direction at 131" Node
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under the Given External Load

Acceleration in Axial Direction at 131 Node
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Table 5.1. Damage Detection Results for the Rod under Axial and Torsional Vibrations

Damage Index (B;, Damage Severity (o;, Damage Index (B,

Propert
perty Estimated) Estimated) (%) Designed)
m, 1.00 0.00 1.00
my 1.00 0.00 1.00
mg 1.25 -20.00 1.25
mg 1.00 0.00 1.00
my, 1.25 -20.00 1.25
my, 1.00 0.00 1.00
k; 1.00 0.00 1.00
k, 1.00 0.00 1.00
ks 1.00 0.00 1.00
k, 1.00 0.00 1.00
ks 1.11 -10.00 1.11
ke 1.11 -10.00 1.11
ks 1.00 0.00 1.00
kg 1.00 0.00 1.00
ko 1.11 -10.00 1.11
ko 1.11 -10.00 1.11
ki, 1.00 0.00 1.00
ki, 1.00 0.00 1.00
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Damage Index for the Rod under Axial and Torsional Vibrations
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Damage Index for the Rod under Axial and Torsional Vibrations
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5.3 DAMAGE EVALUATION FOR A ROD AS A WHOLE SYSTEM

In Case #2, the same rod is used to evaluate the proposed theory. The geometry, damage
scenario and finite element discretization under consideration are indicated in Figure
5.10. The geometry of the cross-section of the rod is shown in Figure 5.2. The modulus
of elasticity (E) of the material is 29,000 ksi. The modulus of elasticity in shear (G) of the
material is 11154 ksi. The Poisson’s ratio of the material (v) is 0.3. The torsional constant
of the cross section of (J) is 7.9522. The mass density of the material is 7.345x107

kip-sec?/in*. In this case, four elements with damaged mass and stiffness are studied.

The rod is meshed into 12 elements and has 13 equally spaced nodes. The length of each
element is 1.0 inches. For illustrative purposes, typical elements are indicated in Figure
5.10. The damage is simulated by a ten percent (10%) reduction of the modulus of

elasticity and twenty percent (20%) reduction of the mass of Elements 5, 6, 9, and 10.

For each node in the rod model, a dynamic force, 100cos(2n?), is applied in only axial (x1)
direction. Given the external load case, the displacement, velocity, and acceleration time
histories are directly generated from SAP2000 using linear direct integration method.
The computation step is 1E-4 seconds (10,000Hz) for total 0.2 seconds. The
displacements, velocities and accelerations of Node /3 in both the undamaged and

damaged rods were plotted in Figure 5.11, Figure 5.12, and Figure 5.13.

In this case, the computed velocity ( x(¢) ) of each node in the undamaged case was used

as the velocity used to compute power (A) for both the undamaged and damaged cases.
For all the nodes in the rod, the coefficient matrices (‘X’) and known vector (‘Y’) were

constructed at one time by substituting the acceleration ( X(¢)), velocity ( x(¢)),
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displacement ( x(¢) ), and velocity used to compute power (A ) into Eq. 4.96 and Eq. 4.98.

The coefficient damage index vector, B, related to the each element in the rod was
computed using Eq. 4.99. Then the damage indices for mass and stiffness are computed
using Eqgs. 4.100 through 4.106. The damage severities for mass and stiffness are
computed using Eq. 2.13. For the whole rod, the above process is performed only once.
The estimated damage indices and the designed damage indices for each physical
property are listed in Table 5.2 and are plotted in Figure 5.14 for nodal mass and Figure
5.16 for element stiffness. The estimated damage severities and the designed damage
severities for each physical property are plotted in Figure 5.15 for nodal mass and Figure
5.17 for element stiffness. Because the proposed method is applied at the each node of
the whole rod, thus all nodes, except for the fixed node, were taken into consideration
(i.e. Nodes / through /2). Comparing the estimated damage indices with the designed
damage indices, the proposed method can accurately locate and size multiple damage in

a rod with axial and torsional vibrations.
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Figure 5.10. Geometry, Damage Scenario, and Finite Element Discretization of the Rod
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Velocity in Axial Direction at 131" Node
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Table 5.2. Damage Detection Results for the Analysis of Rod under Axial As a Whole

Damage Index (f;, Damage Severity (o;, Damage Index (p;,

Propert
perty Estimated) Estimated) (%) Designed)
my 1.00 0.00 1.00
m, 1.00 0.00 1.00
my 1.00 0.00 1.00
my 1.11 -10.00 1.11
ms 1.25 -20.00 1.25
mg 1.11 -10.00 1.11
m, 1.00 0.00 1.00
mg 1.11 -10.00 1.11
my 1.25 -20.00 1.25
myq 1.11 -10.00 1.11
my 1.00 0.00 1.00
my, 1.00 0.00 1.00
k, 1.00 0.00 1.00
k, 1.00 0.00 1.00
ks 1.00 0.00 1.00
k, 1.00 0.00 1.00
ks 1.11 -10.00 1.11
ke 1.11 -10.00 1.11
k- 1.00 0.00 1.00
kg 1.00 0.00 1.00
ko 1.11 -10.00 1.11
ko 1.11 -10.00 1.11
ki, 1.00 0.00 1.00
ki, 1.00 0.00 1.00
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Damage Index for the Rod under Axial Vibrations
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Figure 5.14. Damage Indices of Nodal Mass (Bumi) for the Rod under Axial and Torsional

Vibrations
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Figure 5.15. Damage Severities of Nodal Mass (ami) for the Rod under Axial and Torsional
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Damage Index of Element Stiffness [[;*,m]l

Figure 5.16. Damage Indices of Element Stiffness (Pii) for the Rod under Axial and Torsional
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Figure 5.17. Damage Severities of Element Stiffness (axi) for the Rod under Axial and Torsional
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5.4 DAMAGE EVALUATION FOR AN EULER-BERNOULLI BEAM

In Case #3, a propped cantilever is used to evaluate the proposed theory. The geometry,
damage scenario, and load case under consideration are indicated in Figure 5.18. The
geometry of the cross-section of the cantilever is shown in Figure 5.19. The modulus of
elasticity (E) of the material is 29,000 ksi. The mass density of the material is 7.345x1077

kip-sec/in®.

The propped cantilever is meshed into 12 elements and has 13 equally spaced nodes. The
length of each element is 1.0 inches. For illustrative purposes, typical elements are
indicated in Figure 5.18. Four elements with damaged mass and stiffness are studied.
The damage is simulated by a ten percent (10%) reduction of the modulus of elasticity
and twenty percent (20%) reduction of the mass of Element 5 and Element 6 and a five
percent (5%) reduction of the modulus of elasticity and ten percent (10%) reduction of

the mass of Element 11 and Element 12 of the beam.

For each node of the propped cantilever beam, a dynamic point load, 10cos(2mt), is
applied in transverse direction at each node. Given the external load case, the
displacement, velocity, and acceleration time histories are directly generated from
SAP2000 using linear direct integration method. The computation step is 1E-4 seconds
(10,000 Hz) for total 0.2 seconds. The deflections, velocities in transverse direction and
accelerations in transverse direction of Node 7 in both the undamaged and damaged

propped cantilever were plotted in Figure 5.20, Figure 5.21, and Figure 5.22.

In this case, the computed velocity ( x(¢) ) of each node in the undamaged case was used

as the velocity used to compute power (A) for both the undamaged and damaged cases.
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For every two nearby elements, the coefficient matrices (‘X’) and known vector (‘Y’)

were constructed by substituting the acceleration ( X(¢)), velocity (x(¢)), displacement
(x(1)), and velocity used to compute power (A) into Eq. 4.138 and Eq. 4.140. The

coefficient damage index vector, B, related to the two nearby elements was computed
using Eq. 4.141. Then the damage indices for mass and stiffness are computed using Egs.
4.142 through 4.144. The damage severities for mass and stiffness are computed using
Eq. 2.13. For each two nearby elements, the above process is performed. For simplicity
purposes, no overlap element is used. Thus, the proposed theory is only applied to six
pairs of elements. The estimated damage indices and the designed damage indices for
each physical property are listed in Table 5.3 and are plotted in Figure 5.23 for nodal
mass and Figure 5.25 for element stiffness. The estimated damage severities and the
designed damage severities for each physical property are plotted in Figure 5.24 for
nodal mass and Figure 5.26 for element stiffness. Comparing the estimated damage
indices with the designed damage indices, the proposed method can accurately locate

and size multiple damage in a beam with bending vibrations.
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Figure 5.18. Geometry, Damage Scenario, and Load Case for the Propped Cantilever
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Figure 5.20. Deflection of the Node 7 of the Undamaged and Damaged Cases under the Given
External Load
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Figure 5.21. Velocities in Transverse Direction of the Node 7 of the Undamaged and Damaged

Cases under the Given External Load
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Figure 5.22. Accelerations in Transverse Direction of the Node 7 of the Undamaged and

Damaged Cases under the Given External Load
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Table 5.3. Damage Detection Results for the Propped Cantilever

Property Damagf: Index (B;, Damag'e Severity (a;, Damage'Index (i1
Estimated) Estimated) (%) Designed)
m 1.000 0.000 1.000
my 1.000 0.000 1.000
mg 1.250 -20.000 1.250
mg 1.000 0.000 1.000
my, 1.000 0.000 1.000
m, L.111 -10.000 L.111
k 1.000 0.000 1.000
k, 1.000 0.000 1.000
ks 1.000 0.000 1.000
ky 1.000 0.000 1.000
ks L.111 -10.000 1.111
ke L.111 -10.000 1.111
k; 1.000 0.000 1.000
kg 1.000 0.000 1.000
ko 1.000 0.000 1.000
kio 1.000 0.000 1.000
ki, 1.053 -5.000 1.053
ki, 1.053 -5.000 1.053
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Damage Index for Propped Cantilever
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Figure 5.23. Damage Indices of Nodal Mass (i) for the Propped Cantilever
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Figure 5.25. Damage Indices of Element Stiffness (Bii) for the Propped Cantilever
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Figure 5.26. Damage Severities of Element Stiffness (ax;) for the Propped Cantilever
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5.5 DAMAGE EVALUATION FOR A PLAIN FRAME

In Case #4, a two-bay frame is used to evaluate the proposed theory. The structure
includes three types of members: a continuous beam, three columns, and elastic isolators
in between. Three elastic isolators are fixed to the beam and each column is fixed to the
end of each isolator. The elastic isolators are simulated by beam elements with smaller
cross section, shown in Figure 5.28. The cross sections for the continuous beam and the
columns are the same and the geometry of the cross section is shown in Figure 5.19. The
material properties for the all three types of members are the same. The modulus of
elasticity (E) of the material is 29,000 ksi. The mass density of the material is 7.345x1077
kip-sec?/in*. A cosine external point load, 10cos(2nf) kips, is applied on each node of the

frame. The geometry of the structure and the damage scenario are shown in Figure 5.27.

The damage scenario for this case is as follows: (1) both of the two spans of the
continuous beam are damaged; (2) the two left isolators are damaged; and (3) the two
left columns are damaged. The right isolator and right column are intact. The damage are
simulated by a ten percent (10%) reduction of the modulus of elasticity and twenty
percent (20%) reduction of the mass of the damaged elements. The damaged elements in
the damaged two-bay frame include: (1) Element 43, Element 44, Element 103 and
Element 104 on the continuous beam; (2) all elements in the left and middle isolators (i.e.
six elements for each isolator); (3) Element 43 and Element 44 in each of the left two
columns. The damaged isolators are denoted by “Damaged Isolator A” and “Damaged
Isolator B” and the damaged elements on both the beam (43, 44", 103" and 104™) and

the two columns (43" and 44™) are indicated as a solid black in Figure 5.27.

The beam is meshed into 120 elements and has 121 equally spaced nodes. Each of the
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elastic isolators is meshed into 6 elements and has 7 equally spaced nodes. Each column
is meshed into 60 elements and has 61 equally spaced nodes. The length of each element
in the three types of members is 2.0 inches. For illustrative purposes, several typical

elements are indicated in Figure 5.27.

Given the external load case, the displacement, velocity, and acceleration time histories
are directly generated from SAP2000 using linear direct integration method. The
computation step is 1E-4 seconds (10,000 Hz) for total 0.01 seconds. The deflections,
velocities in transverse direction and accelerations in transverse direction of Node 61 in
both the undamaged and damaged propped cantilever were plotted in Figure 5.29, Figure

5.30, and Figure 5.31. (Note, the two-bay frame is a linearly elastic frame)

In this case, the computed velocity ( x(¢) ) of each node in the undamaged case was used
as the velocity used to compute power (A) for both the undamaged and damaged cases.

For every two nearby elements, the coefficient matrices (‘X’) and known vector (‘Y’)

were constructed by substituting the acceleration ( X(¢) ), velocity ( x(¢)), displacement
(x(¢)), and velocity used to compute power (A) into Eq. 4.177 and Eq. 4.179. The

coefficient damage index vector, P, related to the two nearby elements was computed
using Eq. 4.180. Then the damage indices for mass and stiffness are computed using Egs.
4.181 through 4.183. The damage severities for mass and stiffness are computed using
Eq. 2.13. For each two nearby elements, the above process is performed. The estimated
damage indices for nodal mass and element stiffness for the continuous beam are plotted
in Figure 5.32 and Figure 5.34, respectively. The estimated damage severities for nodal

mass and element stiffness for the continuous beam are plotted in Figure 5.33 and Figure
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5.35, respectively.

The estimated damage indices for nodal mass and element stiffness for the Isolator and
Column A are plotted in Figure 5.36 and Figure 5.38, respectively. The estimated damage
severities for nodal mass and element stiffness for the Isolator and Column A are plotted

in Figure 5.37 and Figure 5.39, respectively.

The estimated damage indices for nodal mass and element stiftness for the Isolator and
Column B are plotted in Figure 5.40 and Figure 5.42, respectively. The estimated
damage severities for nodal mass and element stiffness for the Isolator and Column B are

plotted in Figure 5.41 and Figure 5.43, respectively.

The estimated damage indices for nodal mass and element stiffness for the Isolator and
Column C are plotted in Figure 5.44 and Figure 5.46, respectively. The estimated
damage severities for nodal mass and element stiffness for the Isolator and Column C are

plotted in Figure 5.45 and Figure 5.47, respectively.

Comparing the estimated damage indices with the designed damage indices, the

proposed method can accurately locate and size multiple damage in a two-bay frame.
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Figure 5.27. Geometry, Damage Scenario, and Finite Element Discretization for the Two-Bay

Frame
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Figure 5.28. Cross Sectional Geometries of the Three Elastic Isolators
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Deflection at Mode 61
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Figure 5.29. Displacements of the Node 61 on the Continuous Beam for Both the Undamaged and

Damaged Cases under the Given External Load
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Figure 5.30. Velocities of the Node 61 on the Continuous Beam for Both the Undamaged and

Damaged Cases under the Given External Load
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%x10°  Acceleration in Transverse Direction at Node 61
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Figure 5.31. Accelerations of the Node 61 on the Continuous Beam for Both the Undamaged and

Damaged Cases under the Given External Load
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Damage Severity for Continuous Beam
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Figure 5.33. Damage Severities of Nodal Mass (ami) for the Continuous Beam from the Two-Bay

Frame
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Figure 5.34. Damage Indices of Element Stiffness (Px) for the Continuous Beam from the

Two-Bay Frame
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Figure 5.35. Damage Severities of Element Stiffness (ax;) for the Continuous Beam from the

Two-Bay Frame
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Figure 5.36. Damage Indices of Nodal Mass (Bmi) for the Isolator and Column A from the

Two-Bay Frame
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Damage Severity for lsolator and Caolumn A
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Figure 5.37. Damage Severities of Nodal Mass (ami) for the Isolator and Column A from the

Two-Bay Frame
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Figure 5.38. Damage Indices of Element Stiffness (Px) for the Isolator and Column A from the

Two-Bay Frame
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Figure 5.39. Damage Severities of Element Stiffness (aki) for the Isolator and Column A from the

Two-Bay Frame
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Figure 5.40. Damage Indices of Nodal Mass (Bmi) for the Isolator and Column B from the

Two-Bay Frame
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Figure 5.41. Damage Severities of Nodal Mass (ami) for the Isolator and Column B from the

Two-Bay Frame
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Figure 5.42. Damage Indices of Element Stiffness (Bii) for the Isolator and Column B from the

Two-Bay Frame
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Figure 5.43. Damage Severities of Element Stiffness (ax) for the Isolator and Column B from the

Two-Bay Frame
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Figure 5.44. Damage Indices of Nodal Mass (Bmi) for the Isolator and Column C from the
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Damage Severity for Isolator and Column C
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Figure 5.45. Damage Severities of Nodal Mass (ami) for the Isolator and Column C from the

Two-Bay Frame (note: all values are close to zeros, no damage)
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Figure 5.46. Damage Indices of Element Stiffness (Pi) for the Isolator and Column C from the

Two-Bay Frame
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Damage Severity for Isolator and Column C
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Figure 5.47. Damage Severities of Element Stiffness (ax) for the Isolator and Column C from the

Two-Bay Frame (note: all values are close to zeros, no damage)

5.6 DAMAGE EVALUATION FOR A SPACE TRUSS

In Case #5, a space truss is used to validate the proposed theory. The geometry, damage
scenario, and finite element discretization under consideration are indicated in Figure
5.48. There are 18 truss members and eight (8) joints in the space truss. The lower four
(4) joints are pin connected to the ground. Each of the above four (4) joints has three (3)
transitional degrees of freedom (i.e. global X, Y, Z directions). The numbering systems
of joints and of truss members are given in Figure 5.48. To better describe the geometry
of the space truss, the coordinate of each joint in the space truss is also given in Figure

5.48.

The geometry of the cross-section of the truss member is shown in Figure 5.19. The
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modulus of elasticity (£) of the material is 29,000 ksi. The mass density of the material
is 7.345x1077 kip-sec®/in*. In this case, four elements with damaged mass and stiffness
are studied. The damage is simulated by a ten percent (10%) reduction of the modulus of
elasticity and twenty percent (20%) reduction of the mass of both Member 26 and
Member 25, and fifteen percent (15%) reduction of the modulus of elasticity and thirty

percent (30%) reduction of the mass of Member 68.

The load case is simulated by applying four cosine forces in the global X direction at
each of the free joints. For Joint 5, a cosine force, 400cos(2n¢), in the global X direction
is applied. For Joint 6, a cosine force, 100cos(2nf), in the global X direction is applied.
For Joint 7, a cosine force, 200cos(2n?), in the global X direction is applied. For Joint 8,
a cosine force, 300cos(2m?), in the global X direction is applied. Given the external load
case, the displacement, velocity, and acceleration time histories of the movable joints are
directly generated from SAP2000 using linear direct integration method. The
computation step is 1E-4 seconds (10,000 Hz) for total 0.2 seconds. The displacement,
velocity, and acceleration of Joint 6 in global x direction for both the undamaged and

damaged systems were plotted in Figure 5.49, Figure 5.50, and Figure 5.51.

In this case, the computed velocity ( x(¢) ) of each joint in the undamaged case was used

as the velocity used to compute power (A) for both the undamaged and damaged cases.
For each joint, the coefficient matrices (‘X”) and known vector (‘Y’) were constructed
by substituting the acceleration ( X(¢z)), velocity ( x(z)), displacement ( x(¢)), and
velocity used to compute power (A) into Eq. 4.217 and Eq. 4.219. The coefficient
damage index vector, B, related to the two nearby elements was computed using Eq.

4.220. Then the damage indices for mass and stiffness are computed using Eqs. 4.221
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through 4.224. The damage severities for mass and stiffness are computed using Eq. 2.13.
For each joint, the above process is performed. The estimated damage indices and the
designed damage indices for each physical property are listed in Table 5.4 and are
plotted in Figure 5.52 for joint mass and Figure 5.54 for element stiffness. The estimated
damage severities and the designed damage severities for each physical property are
plotted in Figure 5.53 for joint mass and Figure 5.55 for element stiffness. Comparing
the estimated damage indices with the designed damage indices, the proposed method

can accurately locate and size multiple damage in a space truss.
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Figure 5.48. Geometry, Damage Scenario, and Finite Element Discretization for the Space Truss
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Figure 5.49. Displacements of the Joint 6 in Global X Direction for Both the Undamaged and
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Table 5.4. Damage Detection Results for the Space Truss

Property Damag? Index (B;, Damag.e Severity (a;, Damage'Index Bs»
Estimated) Estimated) (%) Designed)
ms 1.052 -4.960 1.052
mg 1.086 -7.919 1.086
my 1.000 -0.003 1.000
mg 1.037 -3.553 1.037
ks 1.000 -0.018 1.000
kg 1.000 -0.012 1.000
kg 0.999 0.081 1.000
kys 1.111 -9.980 I.111
ko I.111 -10.001 1.111
ky; 0.997 0.256 1.000
k36 1.000 -0.007 1.000
k35 1.001 -0.127 1.000
ksg 1.000 -0.006 1.000
kys 1.000 0.003 1.000
k47 1.000 -0.005 1.000
kg 1.001 -0.052 1.000
Kse 1.000 -0.002 1.000
ks7 0.999 0.097 1.000
Kksg 1.000 0.039 1.000
ke7 0.999 0.084 1.000
Kes 1.175 -14.907 1.176
kog 1.002 -0.151 1.000
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5.7 SUMMARY

In this section, numerical models of rod under axial and torsional vibration, rod under
axial vibration only, beam under bending vibration, plane frame under axial and bending
vibration, and space truss under axial vibration were simulated and studied. In each
numerical damage detection experiment, damage in mass, stiffness were simultaneously
simulated in each damaged system. For both the damaged and undamaged systems, the
displacements, velocities and accelerations were computed using linear direct integration
method in SAP2000. The displacements, velocities and accelerations used in the Section
5 are exact data without noise. The algorithms given in the Section 4 were used to

compute the damage indices and damage severities in each numerical case.

For each numerical case, all the designed damage in masses and stiffness were located
and evaluated accurately. Moreover, for all numerical experiments, neither false-positive
damage index nor false-negative damage index was found. Namely, for the proposed
damage detection method, if accurate displacement, velocity, and acceleration data are
given, all type of damage will be accurately located and evaluated. In addition,
according to the results from Section 5.2 and Section 5.3, the proposed method was
proved to be applicable to both the integral continuous system and isolated continuous
system. The proposed method was also proved to be able to detect and evaluation

damage by using measured data from different types of vibrations
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6 STUDIES OF NOISE INFLUENCE TO THE PERFORMANCE OF
THE POWER METHOD

6.1 INTRODUCTION

The objective of this section is to evaluate the accuracy of the theory when the inputs are
noise-polluted. To simulate the noise-polluted inputs, exact accelerations contaminated
by white noise are used as the input acceleration; the input velocities and input
displacements are estimated based on the noise-polluted accelerations. Eight numerical
cases including two noise levels are taken into consideration and general description of

each numerical cases are given as follows,

Case #6.1: The Power Method for n-DOF discrete system was applied on a 5-DOF
spring-mass-damper system. The noise-polluted accelerations were simulated by the
superposition of 1% of white noise and the exact accelerations outputted from the
discrete system. The algorithm of the Power Method for a 5-DOF spring-mass-damper

system is provided in Section 2.5.

Case #6.2: The Power Method for n-DOF discrete system was applied on a 5-DOF
spring-mass-damper system. The noise-polluted accelerations were simulated by the
superposition of 5% of white noise and the exact accelerations outputted from the
discrete system. The algorithm of the Power Method for a 5-DOF spring-mass-damper

system is provided in Section 2.5.

Case #6.3: The Power Method for Isolated discrete system was applied on a 5-DOF
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spring-mass-damper system. The noise-polluted accelerations were simulated by the
superposition of 1% of white noise and the exact accelerations outputted from the
discrete system. The algorithm of the Power Method for a 5-DOF spring-mass-damper

system is provided in Section 2.6.

Case #6.4: The Power Method for Isolated discrete system was applied on a 5-DOF
spring-mass-damper system. The noise-polluted accelerations were simulated by the
superposition of 5% of white noise and the exact accelerations outputted from the
discrete system. The algorithm of the Power Method for a 5-DOF spring-mass-damper

system is provided in Section 2.6.

Case #6.5: The Power Method for whole rod analysis was applied on a fixed-fixed beam.
The noise-polluted accelerations were simulated by the superposition of 1% of white
noise and the exact accelerations outputted from the discrete system. The algorithm of

the Power Method for whole rod analysis is provided in Section 4.2.2.

Case #6.6: The Power Method for whole rod analysis was applied on a fixed-fixed beam.
The noise-polluted accelerations were simulated by the superposition of 5% of white
noise and the exact accelerations outputted from the discrete system. The algorithm of

the Power Method for whole rod analysis is provided in Section 4.2.2.

Case #6.7: The Power Method for isolated rod element analysis was applied on a
fixed-fixed beam. The noise-polluted accelerations were simulated by the superposition
of 1% of white noise and the exact accelerations outputted from the discrete system. The

algorithm of the Power Method for whole rod analysis is provided in Section 4.2.1.
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Case #6.8: The Power Method for isolated rod element analysis was applied on a
fixed-fixed beam. The noise-polluted accelerations were simulated by the superposition
of 5% of white noise and the exact accelerations outputted from the discrete system. The

algorithm of the Power Method for whole rod analysis is provided in Section 4.2.1.

6.1.1 Generation of Noise-Polluted Accelerations

The noise-polluted accelerations are computed using the following equation,

std(a,,,.) 6.1)

a . (t.)=a_ (t.)+wW{t. ) - p-
nozse(z) pu)e(l) (l) p Std(w)

Where a,, (¢;) is the noise-polluted acceleration at time ¢,; a,,(¢,) is the exact

noise pure

acceleration at time f,; w(t,) is the random white noise at time {; 0 is the percent of

noise selected to add into the pure acceleration data; std(x) indicates the standard

deviation of Vector x.

6.1.2 Estimation of Velocity and Displacement
The velocity time histories are estimated based on the filtered noise-polluted acceleration

time histories, using,

a(t,)+af(t,)

v(t) =v(t,) + (t, —1,) (6.2)

Where, the initial velocity and initial acceleration are zeros. Namely, v(0)=0, a(0)=0,

(t, —t,) =dt =0.0001 seconds.

The displacement time histories are estimated based on the velocity time histories from Eq.
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6.2, using,

v(t)+v(t,)

s(t) =s(t,) + (¢, _to) (6.3)

Where, the initial displacement and initial velocity are zeros for the shake table test.

Namely, s(0)=0, v(0)=0, (¢, —t,) =dt =0.0001 seconds.

6.1.3 Normalized Damage Index and Damage Possibility Index

According to the later study, the damage indices for undamaged and damaged elements
can be less than the expected values due to the noise and applied digital band-pass filter.
For these cases, the normalized damage indices might be more illustrative. Given the
normalized damage index, the damage possibility index can be computed based on

standard normal distribution.

The expression of the normalized damage index,

g, =L=* (6.4)

o

Where p is the average value of the B series, and o is the standard deviation of the B;

series.

The standard normal probability density function used to generate damage possibility

index is given as following,

l 7(ﬁl1.i7#)2

Nu=0c=)=———e > 6.5
f(B,; |1u=0,0=1) e (6.5)
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6.2 STUDIES OF NOISE INFLUENCE TO A DISCRETE SYSTEM USING
INTEGRAL METHOD

In this subsection, noise influence to the performance of integrated system method for
discrete systems will be studied. The proposed damage detection algorithm is performed
on a 5-DOF spring-mass-damper system. The numerical models for the damaged and
undamaged 5-DOF mass-spring-damper systems were generated within SAP2000. The
5-DOF spring-mass-damper system used in this case study is plotted in Figure 6.1. The
physical properties in the undamaged and damaged systems are listed in Table 6.1. Both
the undamaged and damaged systems are excited by the same external force. The applied
external forces are given at each 1E-4 seconds for 0.2 seconds and are plotted in Figure 6.2.
In SAP2000, exact accelerations of the five mass blocks were computed every 1E-4
seconds (10,000 Hz) for 0.2 seconds. Then the accelerations of the five mass blocks were
contaminated by 1% and 5% white noise. To reduce the influence from the noise in the
input signals, a band-pass digital filter was used to filter the noise-polluted accelerations.
The velocities of the mass blocks are estimated using Eq. 6.2 based on the filtered
noise-polluted accelerations and the displacements of the mass blocks are estimated using

Eq. 6.3 based on the filtered estimated velocities.

In this case, the computed velocity ( x(¢) ) of the mass block in the undamaged case was

used as the velocity used to compute power (A) for both undamaged and damaged cases.
The coefficient matrices and known vector, X and Y, were constructed by substituting the
acceleration (X(¢)), velocity (x(¢)), displacement ( x(¢) ), and velocity used to compute
power (A) into Eq. 2.123 and Eq. 2.125. The coefficient damage index vector, p, was
computed using Eq. 2.127. Then the damage indices for mass, spring and damper are

computed using Eqs. 2.128 through 2.144. The damage severities for mass, spring and
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damper are computed using Egs. 2.145 through 2.161.

6.2.1 Case #6.1: Discrete System with 1% Noise Pollution Using Integral Method

In this case, the exact accelerations of the mass blocks outputted directly from SAP2000
were contaminated by 1% of white noise. The noise-polluted accelerations of Mass Block
#2 in both the undamaged and damaged cases are plotted in Figure 6.3. The filtered
accelerations, estimated velocities, and estimated displacements of mass Block #2 are

plotted in Figure 6.4, Figure 6.5, and Figure 6.6, respectively.

The estimated damage indices and the designed damage indices for each physical property
are listed in Table 6.2 and are plotted in Figure 6.7. The estimated damage severities and
the designed damage severities for each physical property are also listed in Table 6.2 and
are plotted in Figure 6.8. The normalized damage indices are computed using Eq. 6.4 and
are plotted in Figure 6.9. The damage possibility indices are plotted in Figure 6.10.
Comparing the estimated damage indices with the designed damage indices, the integrated
system analysis method can accurately locate and size multiple damage with 1%

noise-polluted input data from a typical 5-DOF spring-mass-damper system.
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Figure 6.1. Property Definition and Load Case of the 5-DOF Spring-Mass-Damper System
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Table 6.1. Physical Properties of the 5-DOF System for Noise Study

Property Undamaged System Damaged System
m, (kip-s*/in.) 5.8257E-05 4.66E-05
m, (kip-s*/in.) 5.8257E-05 5.24E-05
m; (kip-s*/in.) 5.8257E-05 5.83E-05
my (kip-s*/in.) 5.8257E-05 5.83E-05
ms (Kip-s*/in.) 5.8257E-05 5.83E-05
¢ (kip-s/in.) 0.1 0.05
¢, (kip-s/in.) 0.1 0.05
¢ (kip-s/in.) 0.1 0.1
¢4 (kip-s/in.) 0.1 0.1
¢ (kip-s/in.) 0.1 0.1
¢ (kip-s/in.) 0.1 0.1
k; (kip/in.) 15974.167 14376.750
k, (kip/in.) 15974.167 14376.750
k; (kip/in.) 15974.167 14376.750
k, (kip/in.) 15974.167 14376.750
ks (kip/in.) 15974.167 14376.750
ke (kip/in.) 15974.167 14376.750
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Figure 6.3. Noise-Polluted Accelerations of Mass Block 2 for the Undamaged and Damaged
Models of Case #6.1 (1% Noise): (a) Full Plot and (b) Zoomed in Plot
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Figure 6.4. Filtered Noise-Polluted Accelerations of Mass Block 2 for the Undamaged and
Damaged Models of Case #6.1 (1% Noise): (a) Full Plot and (b) Zoomed in Plot
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Estimated Velocities of Mass Block 2
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Figure 6.5. Estimated Velocities of Mass Block 2 for the Undamaged and Damaged Models of
Case #6.1 (1% Noise): (a) Full Plot and (b) Zoomed in Plot
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Figure 6.6. Estimated Displacements of Mass Block 2 for the Undamaged and Damaged Models
of Case #6.1 (1% Noise): (a) Full Plot and (b) Zoomed in Plot

198



Table 6.2. Damage Detection Results for the 5-DOF Spring-Mass-Damper System (1% Noise
Pollution)

Damage Index (B;, Damage Severity (o;, Damage Index (f;,

Property Esimated) Esimated) Designed)
m; 1.25 -0.20 1.25
m, 1.10 -0.09 1.11
ms 0.99 0.01 1.00
my 1.00 0.00 1.00
ms 1.00 0.00 1.00
Cq 1.99 -0.50 2.00
Cy 1.92 -0.48 2.00
C3 0.99 0.01 1.00
Cy4 1.00 0.00 1.00
Cs 1.01 -0.01 1.00
Co 1.00 0.00 1.00
k, 1.12 -0.11 1.11
k, 1.11 -0.10 1.11
ks 1.00 0.00 1.00
k, 1.00 0.00 1.00
ks 1.00 0.00 1.00
& 1.01 -0.01 1.00
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6.2.2 Case #6.2: Discrete System with 5% Noise Pollution Using Integral Method

In this case, the exact accelerations of the mass blocks outputted directly from SAP2000
were contaminated by 5% of white noise. The noise-polluted accelerations of Mass Block
#2 in both the undamaged and damaged cases are plotted in Figure 6.11. The filtered
accelerations, estimated velocities and estimated displacements of Mass Block #2 are

plotted in Figure 6.12, Figure 6.13, and Figure 6.14, respectively.

The estimated damage indices and the designed damage indices for each physical property
are listed in Table 6.3 and are plotted in Figure 6.15. The estimated damage severities and
the designed damage severities for each physical property are also listed in Table 6.3 and
are plotted in Figure 6.16. The normalized damage indices are computed using Eq. 6.4
and are plotted in Figure 6.17. The damage possibility indices are plotted in Figure 6.18.
Comparing the estimated damage indices with the designed damage indices, the integrated
system analysis method can accurately locate and size multiple damage with 5%

noise-polluted input data from a typical 5-DOF spring-mass-damper system.
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Figure 6.12. Filtered Noise-Polluted Accelerations of Mass Block 2 for the Undamaged and
Damaged Models of Case #6.2 (5% Noise): (a) Full Plot and (b) Zoomed in Plot
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Figure 6.13. Estimated Velocities of Mass Block 2 for the Undamaged and Damaged Models of
Case #6.2 (5% Noise): (a) Full Plot and (b) Zoomed in Plot
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Table 6.3. Damage Detection Results for the 5-DOF Spring-Mass-Damper System (5% Noise
Pollution)

Damage Index (B;, Damage Severity (o;, Damage Index (f;,

Propert
perty Esimated) Esimated) Designed)
m 1.28 -0.22 1.25
m, 1.08 -0.07 1.11
my 1.00 0.00 1.00
my 1.02 -0.02 1.00
ms 1.00 0.00 1.00
C 1.37 -0.27 2.00
Cy 1.64 -0.39 2.00
C3 0.88 0.14 1.00
Cy 0.89 0.12 1.00
Cs 0.86 0.17 1.00
Cs 1.19 -0.16 1.00
k; 1.14 -0.13 1.11
k, 1.09 -0.09 1.11
ks 1.01 -0.01 1.00
k4 1.01 -0.01 1.00
ks 0.99 0.01 1.00
ke 1.00 0.00 1.00
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6.3 STUDIES OF NOISE INFLUENCE TO A DISCRETE SYSTEM USING
ISOLATION METHOD

In this subsection, noise influence to the performance of isolated system method for
discrete systems will be studied. Isolated spring-mass-damper systems from a 5-DOF
system were used to study the accuracy of the Power Method. The numerical models for
the damaged and undamaged 5-DOF mass-spring-damper systems were generated using
SAP2000. The 5-DOF spring-mass-damper system used in this case study is plotted in
Figure 6.1. The physical properties in the undamaged and damaged systems are listed in
Table 6.4. Both the undamaged and damaged systems are excited by the same external
force. The applied external forces are given at each 1E-4 seconds for 0.2 seconds and are
plotted in Figure 6.2. In SAP2000, exact accelerations of the five mass blocks were
computed every 1E-4 seconds (10,000 Hz) for 0.2 seconds. Then the accelerations of the
five mass blocks were contaminated by 1% and 5% white noise. To reduce the influence
from the noise in the input signals, a bandpass digital filter was used to filter the
noise-polluted accelerations. The velocities of the mass blocks are estimated using Eq. 6.2
based on the filtered noise-polluted accelerations and the displacements of the mass

blocks are estimated using Eq. 6.3 based on the filtered estimated velocities.

In this case, the computed velocity ( x(¢) ) of the mass block in the undamaged case was

used as the velocity used to compute power ( A) for both undamaged and damaged cases.
The coefficient matrices and known vector, X and Y, were constructed by substituting the
acceleration ( X(¢)), velocity (x(¢)), displacement ( x(¢) ), and velocity used to compute
power (A) into Eq. 2.179 and Eq. 2.181. The coefficient damage index vector, p, was
computed using Eq. 2.183. Then the damage indices for mass, spring and damper are

computed using Eqgs. 2.184 through 2.188. The damage severities for mass, spring and
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damper are computed using Egs. 2.189 through 2.193.

6.3.1 Case #6.3: Discrete System with 1% Noise Pollution Using Isolation Method

In this case, the exact accelerations of the mass blocks outputted directly from SAP2000
were contaminated by 1% of white noise. The noise-polluted accelerations of Mass Block
#2 in both the undamaged and damaged cases are plotted in Figure 6.19. The filtered
accelerations, estimated velocities and estimated displacements of Mass Block #2 are

plotted in Figure 6.20, Figure 6.21, and Figure 6.22, respectively.

The estimated damage indices and the designed damage indices for each physical property
are listed in Table 6.5 and are plotted in Figure 6.23. The estimated damage severities and
the designed damage severities for each physical property are also listed in Table 6.5 and
are plotted in Figure 6.24. The normalized damage indices are computed using Eq. 6.4
and are plotted in Figure 6.25. The damage possibility indices are plotted in Figure 6.26.
Comparing the estimated damage indices with the designed damage indices, the isolated
system analysis method can accurately locate and size multiple damage with 1%

noise-polluted input data from a typical 5-DOF spring-mass-damper system.
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Table 6.4. Physical Properties of the 5 Isolated Spring-Mass-Damper Systems for Noise Study

Undamage Systems

Property System #1 System #2 System #3 System #4  System #5
m; (kip-s*/in.)  5.826E-05  5.826E-05  5.826E-05  5.826E-05  5.826E-05
c; (kip-s/in.) 0.10 0.10 0.10 0.10 0.10
¢i+1 (kip-s/in.) 0.10 0.10 0.10 0.10 0.10
k; (kip/in.) 15974.17 15974.17 15974.17 15974.17 15974.17
ki+1 (kip/in.) 15974.17 15974.17 15974.17 15974.17 15974.17
Damaged Systems
Property System #1 System #2 System #3 System #4 System #5
m; (kip-s*/in.)  4.661E-05  5243E-05  5.826E-05  5.826E-05  5.826E-05
c; (kip-s/in.) 0.05 0.05 0.10 0.10 0.10
Ci+1 (kip-s/in.) 0.05 0.10 0.10 0.10 0.10
k; (kip/in.) 14376.75 14376.75 15974.17 15974.17 15974.17
ki (kip/in.) 14376.75 15974.17 15974.17 15974.17 15974.17
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Figure 6.19. Noise-Polluted Accelerations of Mass Block 2 for the Undamaged and Damaged
Models of Case #6.3 (1% Noise): (a) Full Plot and (b) Zoomed in Plot
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Figure 6.20. Filtered Noise-Polluted Accelerations of Mass Block 2 for the Undamaged and
Damaged Models of Case #6.3 (1% Noise): (a) Full Plot and (b) Zoomed in Plot
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Figure 6.21. Estimated Velocities of Mass Block 2 for the Undamaged and Damaged Models of
Case #6.3 (1% Noise): (a) Full Plot and (b) Zoomed in Plot
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Figure 6.22. Estimated Displacements of Mass Block 2 for the Undamaged and Damaged Models
of Case #6.3 (1% Noise): (a) Full Plot and (b) Zoomed in Plot
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Table 6.5. Damage Detection Results for the 5 Isolated Spring-Mass-Damper System (1% Noise
Pollution)

Designed Damage Indices

Property System#1 System#2 System#3 System#4 System #5

m; 1.25 1.11 1.00 1.00 1.00
c 2.00 2.00 1.00 1.00 1.00
Cit1 2.00 1.00 1.00 1.00 1.00
k; 1.11 1.11 1.00 1.00 1.00
K 1.11 1.00 1.00 1.00 1.00

Estimated Damage Indices

Property System#1 System#2 System#3 System#4 System #5

m; 1.25 1.11 1.00 0.99 1.00
c 1.91 2.04 0.99 1.00 0.98
Ci+1 1.98 1.00 0.99 0.97 1.02
k; 1.11 1.11 1.00 0.99 1.00
ki 1.11 0.99 1.00 0.99 1.00
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Figure 6.23. Damage Indices (B;) for the 5 Isolated Spring-Mass-Damper System with
Noise-Polluted Accelerations (1% Noise)
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Damage Severty [D;i] for the |solated Discrete Systems
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Figure 6.24. Damage Severities (a;j) for 5-DOF Spring-Mass-Damper System with Noise-Polluted
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Mormalized Damage Index [En i] for the |solated Discrete Systems
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Figure 6.25. Normalized Damage Indices (B.,;) for 5S-DOF Spring-Mass-Damper System with

Noise-Polluted Accelerations (1% Noise)
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Damage Possibility Index [EF i] for the |solated Discrete Systems
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Figure 6.26. Damage Possibility Indices (Bp,i) for 5-DOF Spring-Mass-Damper System with

Noise-Polluted Accelerations (1% Noise)
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6.3.2 Case #6.4: Discrete System with 5% Noise Pollution Using Isolation Method

In this case, the exact accelerations of the mass blocks outputted directly from SAP2000
were contaminated by 5% of white noise. The noise-polluted accelerations of Mass Block
#2 in both the undamaged and damaged cases are plotted in Figure 6.27. The filtered
accelerations, estimated velocities and estimated displacements of Mass Block #2 are

plotted in Figure 6.28, Figure 6.29, and Figure 6.30, respectively.

The estimated damage indices and the designed damage indices for each physical property
are listed in Table 6.6 and are plotted in Figure 6.31. The estimated damage severities and
the designed damage severities for each physical property are also listed in Table 6.6 and
are plotted in Figure 6.32. The normalized damage indices are computed using Eq. 6.4
and are plotted in Figure 6.33. The damage possibility indices are plotted in Figure 6.34.
Comparing the estimated damage indices with the designed damage indices, the integrated
system analysis method can accurately locate and size multiple damage with 5%

noise-polluted input data from a typical 5-DOF spring-mass-damper system.
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Figure 6.27. Noise-Polluted Accelerations of Mass Block 2 for the Undamaged and Damaged
Models of Case #6.4 (5% Noise): (a) Full Plot and (b) Zoomed in Plot
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% 1[]? Filtered Accelerations of Mass Block 2
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Figure 6.28. Filtered Noise-Polluted Accelerations of Mass Block 2 for the Undamaged and
Damaged Models of Case #6.4 (5% Noise): (a) Full Plot and (b) Zoomed in Plot
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Estimated Velocities of Mass Block 2
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Figure 6.29. Estimated Velocities of Mass Block 2 for the Undamaged and Damaged Models of
Case #6.4 (5% Noise): (a) Full Plot and (b) Zoomed in Plot
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Estimated Displacements of Mass Block 2
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Figure 6.30. Estimated Displacements of Mass Block 2 for the Undamaged and Damaged Models
of Case #6.4 (5% Noise): (a) Full Plot and (b) Zoomed in Plot
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Table 6.6. Damage Detection Results for the 5 Isolated Spring-Mass-Damper System (5% Noise
Pollution)

Designed Damage Indices

Property System#1 System#2 System#3 System#4 System #5

m; 1.25 1.11 1.00 1.00 1.00
c 2.00 2.00 1.00 1.00 1.00
Cit1 2.00 1.00 1.00 1.00 1.00
k; 1.11 1.11 1.00 1.00 1.00
K 1.11 1.00 1.00 1.00 1.00

Estimated Damage Indices

Property System#1 System#2 System#3 System#4 System #5

m; 1.25 1.10 1.01 0.97 0.99
C 1.96 1.60 0.87 1.01 0.58
Ci+1 1.68 0.95 0.95 0.52 0.99
k; 1.13 1.09 1.00 0.97 1.00
ki 1.10 0.99 1.01 0.93 0.97
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Damage Index (B, for the Isolated Discrete Systems
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Figure 6.31. Damage Indices (B;) for the 5 Isolated Spring-Mass-Damper System with
Noise-Polluted Accelerations (5% Noise)
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Damage Severty [D;i] for the |solated Discrete Systems
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Figure 6.32. Damage Severities (a;j) for 5-DOF Spring-Mass-Damper System with Noise-Polluted
Accelerations (5% Noise)
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Damage Possibility Index [EF i] for the |solated Discrete Systems
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6.4 STUDIES OF NOISE INFLUENCE TO A CONTINUOUS SYSTEM USING
INTEGRAL METHOD

In this subsection, a fixed-fixed beam is used to evaluate the performance of the proposed
theory in dealing with noise-polluted data. The geometry and damage scenario under
consideration are indicated in Figure 6.35. The geometry of the cross-section of the beam
is shown in Figure 5.19. The modulus of elasticity (£) of the material is 29,000 ksi. The

mass density of the material is 7.345x1077 kip-sec®/in*.

The fixed-fixed beam is meshed into 6 elements and has 7 equally spaced nodes. The
length of each element is 12.0 inches. For illustrative purposes, typical elements are
indicated in Figure 6.35. Two elements with damaged mass and stiffness are studied. The
damage is simulated by a ten percent (10%) reduction of the modulus of elasticity and
twenty percent (20%) reduction of the mass of the first (1%!) and second (2"%) elements on

the beam.

For each node on the beam, a white noise, 100xrandom(-1,1), is used as node force and is
applied in axial direction. The five white-noise forces are the same as the one applied in
the above four cases and are plotted in Figure 6.2. Given the external load case, exact
accelerations of the five nodes were computed at every 1E-4 seconds (10,000 Hz) for 0.2
seconds. Then the accelerations of the five nodes were contaminated by 1% and 5% white
noise. To reduce the influence from the noise in the input signals, a bandpass digital filter
was used to filter the noise-polluted accelerations. The velocities of the mass blocks are
estimated using Eq. 6.2 based on the filtered noise-polluted accelerations and the
displacements of the mass blocks are estimated using Eq. 6.3 based on the filtered

estimated velocities.
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In this case, the computed velocity ( x(¢) ) of each node in the undamaged case was used as

the velocity used to compute power ( A) for both the undamaged and damaged cases. For
every two nearby elements, the coefficient matrices (‘X’) and known vector (‘Y’) were
constructed by substituting the acceleration ( X(¢) ), velocity ( x(¢) ), displacement ( x(¢) ),
and velocity used to compute power (A) into Eq. 4.96 and Eq. 4.98. The coefficient
damage index vector, B, related to the two nearby elements was computed using Eq. 4.95.
Then the damage indices for mass and stiffness are computed using Eqs. 4.100 through

4.106. The damage severities for mass and stiffness are computed using Eq. 2.13.

6.4.1 Case #6.5: Continuous System with 1% Noise Pollution Using Integral
Method

In this case, the exact accelerations of the mass blocks outputted directly from SAP2000
were contaminated by 1% of white noise. The noise-polluted accelerations of Node 2 in
both the undamaged and damaged cases are plotted in Figure 6.36. The filtered
accelerations, estimated velocities and estimated displacements of Node 2 are plotted in

Figure 6.37, Figure 6.38, and Figure 6.39, respectively.

The estimated damage indices and the designed damage indices for each physical property
are listed in Table 6.7 and are plotted in Figure 6.40. The estimated damage severities and
the designed damage severities for each physical property are also listed in Table 6.7 and
are plotted in Figure 6.41. The normalized damage indices are computed using Eq. 6.4
and are plotted in Figure 6.42. The damage possibility indices are plotted in Figure 6.43.
Comparing the estimated damage indices with the designed damage indices, the integrated

system analysis method can accurately locate and size multiple damage with 1%

233



noise-polluted input data from a typical fixed-fixed beam.
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G | | Fixed
Z N End
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Figure 6.35. Geometry and Damage Scenario for the Fixed-Fixed Beam
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Moise-Polluted Accelerations of Mode 2
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Figure 6.36. Noise-Polluted Accelerations of Node 2 for the Undamaged and Damaged Models of

Case #6.5 (1% Noise): (a) Full Plot and (b) Zoomed in Plot
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Filtered Accelerations of Mode 2
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Figure 6.37. Filtered Noise-Polluted Accelerations of Node 2 for the Undamaged and Damaged

Models of Case #6.5 (1% Noise): (a) Full Plot and (b) Zoomed in Plot
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Figure 6.39. Estimated Displacements of Node 2 for the Undamaged and Damaged Models of
Case #6.5 (1% Noise): (a) Full Plot and (b) Zoomed in Plot
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Table 6.7. Damage Detection Results for the Fixed-Fixed Beam (1% Noise Pollution)

Damage Index (f;, Damage Severity (o;, Damage Index (f;,

Prope
perty Esimated) Esimated) Designed)
my 1.15 -0.13 1.25
m, 1.03 -0.03 1.11
my 0.93 0.08 1.00
my 0.93 0.08 1.00
ms 0.93 0.08 1.00
k, 1.02 -0.02 1.11
k, 1.02 -0.02 1.11
ks 0.93 0.07 1.00
ky 0.93 0.08 1.00
ks 0.92 0.08 1.00
K¢ 0.94 0.07 1.00
Damage Index for the VWhole Beam Analysis
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Figure 6.40. Damage Indices (B;) for the Fixed-Fixed Beam with Noise-Polluted Accelerations (1%
Noise)
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Damage Possibility Index for the Whole Beam Analysis
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Figure 6.43. Probability Damage Indices (f,,)) for the Fixed-Fixed Beam with Noise-Polluted

Accelerations (1% Noise)

6.4.2 Case #6.6: Continuous System with 5% Noise Pollution Using Integral
Method

In this case, the exact accelerations of the mass blocks outputted directly from SAP2000
were contaminated by 5% of white noise. The noise-polluted accelerations of Node 2 in
both the undamaged and damaged cases are plotted in Figure 6.44. The filtered
accelerations, estimated velocities and estimated displacements of Node 2 are plotted in

Figure 6.45, Figure 6.46, and Figure 6.47, respectively.
The estimated damage indices and the designed damage indices for each physical property
are listed in Table 6.7 and are plotted in Figure 6.48. The estimated damage severities and

the designed damage severities for each physical property are also listed in Table 6.7 and
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are plotted in Figure 6.49. The normalized damage indices are computed using Eq. 6.4
and are plotted in Figure 6.50. The damage possibility indices are plotted in Figure 6.51.
Comparing the estimated damage indices with the designed damage indices, the integrated
system analysis method can accurately locate and size multiple damage with 5%

noise-polluted input data from a typical fixed-fixed beam.
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Figure 6.44. Noise-Polluted Accelerations of Node 2 for the Undamaged and Damaged Models of
Case #6.6 (5% Noise): (a) Full Plot and (b) Zoomed in Plot
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Figure 6.44. Continued
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Filtered Accelerations of Mode 2
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Figure 6.45. Filtered Noise-Polluted Accelerations of Node 2 for the Undamaged and Damaged

Models of Case #6.6 (5% Noise): (a) Full Plot and (b) Zoomed in Plot
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Estimated Velocities of Mode 2
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Figure 6.46. Estimated Velocities of Node 2 for the Undamaged and Damaged Models of Case
#6.6 (5% Noise): (a) Full Plot and (b) Zoomed in Plot
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Estimated Displacements of Node 2
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Figure 6.47. Estimated Displacements of Node 2 for the Undamaged and Damaged Models of
Case #6.6 (5% Noise): (a) Full Plot and (b) Zoomed in Plot
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Table 6.8. Damage Detection Results for the Fixed-Fixed Beam (5% Noise Pollution)

Damage Index (B;, Damage Severity (o;, Damage Index (f;,

Property . . .
Esimated) Esimated) Designed)
my 0.76 0.31 1.25
m, 0.69 0.45 1.11
my 0.63 0.59 1.00
my 0.61 0.63 1.00
ms 0.62 0.61 1.00
k, 0.68 0.48 1.11
k, 0.68 0.46 1.11
ks 0.62 0.60 1.00
ky 0.62 0.61 1.00
ks 0.61 0.64 1.00
K¢ 0.63 0.58 1.00
Damage Index for the VWhole Beam Analysis
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Figure 6.48. Damage Indices (i) for the Fixed-Fixed Beam with Noise-Polluted Accelerations (5%
Noise)
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Damage Severity for the Whole Beam Analysis
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Figure 6.49. Damage Severities (a;) for the Fixed-Fixed Beam with Noise-Polluted Accelerations
(5% Noise)
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Damage Possibility Index for the Whole Beam Analysis
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Figure 6.51. Probability Damage Indices (f,,)) for the Fixed-Fixed Beam with Noise-Polluted

Accelerations (5% Noise)

6.5 STUDIES OF NOISE INFLUENCE TO A CONTINUOUS SYSTEM USING
ISOLATION METHOD

In this subsection, noise influence to the performance of isolated system method for
continuous systems will be studied. The proposed damage detection algorithm is
performed on the same fixed-fixed beam as used in the above subsection. The geometry
and damage scenario under consideration are indicated in Figure 6.35. The geometry of
the cross-section of the beam is shown in Figure 5.19. The modulus of elasticity (£) of the

material is 29,000 ksi. The mass density of the material is 7.345x1077 kip-sec®/in*.

The fixed-fixed beam is meshed into 6 elements and has 7 equally spaced nodes. The

length of each element is 12.0 inches. For illustrative purposes, typical elements are
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indicated in Figure 6.35. Two elements with damaged mass and stiffness are studied. The
damage is simulated by a ten percent (10%) reduction of the modulus of elasticity and
twenty percent (20%) reduction of the mass of the first (1%!) and second (2"%) elements on

the beam.

For each node on the beam, a white noise, 100xrandom(-1,1), is used as node force and is
applied in axial direction. The five white-noise forces are the same as the one applied in
the above four cases and are plotted in Figure 6.2. Given the external load case, exact
accelerations of the five nodes were computed at every 1E-4 seconds (10,000 Hz) for 0.2
seconds. Then the accelerations of the five nodes were contaminated by 1% and 5% white
noise. To reduce the influence from the noise in the input signals, a bandpass digital filter
was used to filter the noise-polluted accelerations. The velocities of the mass blocks are
estimated using Eq. 6.2 based on the filtered noise-polluted accelerations and the
displacements of the mass blocks are estimated using Eq. 6.3 based on the filtered

estimated velocities.

In this case, the computed velocity ( x(¢) ) of each node in the undamaged case was used as

the velocity used to compute power ( A) for both the undamaged and damaged cases. For
every two nearby elements, the coefficient matrices (‘X”) and known vector (‘Y’) were
constructed by substituting the acceleration ( X(¢) ), velocity ( x(¢) ), displacement ( x(¢)),
and velocity used to compute power (A) into Eq. 4.50 and Eq. 4.52. The coefficient
damage index vector, B, related to the two nearby elements was computed using Eq. 4.49.
Then the damage indices for mass and stiffness are computed using Egs. 4.54 through 4.56.
The damage severities for mass and stiffness are computed using Eq. 2.13. For each two

nearby elements, the above process is performed. Thus, the proposed theory is applied to
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five pairs of elements.

6.5.1 Case #6.7: Continuous System with 1% Noise Pollution Using Isolation
Method

In this case, the exact accelerations of the mass blocks outputted directly from SAP2000
were contaminated by 1% of white noise. The noise-polluted accelerations of Node 2 in
both the undamaged and damaged cases are plotted in Figure 6.52. The filtered
accelerations, estimated velocities, and estimated displacements of Node 2 are plotted in

Figure 6.53, Figure 6.54, and Figure 6.55, respectively.

The estimated damage indices and the designed damage indices for each physical property
are listed in Table 6.9 and are plotted in Figure 6.56. The estimated damage severities and
the designed damage severities for each physical property are also listed in Table 6.9 and
are plotted in Figure 6.57. The normalized damage indices are computed using Eq. 6.4
and are plotted in Figure 6.58. The damage possibility indices are plotted in Figure 6.59.
Comparing the estimated damage indices with the designed damage indices, the isolated
system analysis method can accurately locate and size multiple damage with 1%

noise-polluted input data from a typical fixed-fixed beam.
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Moise-Polluted Accelerations of Mode 2
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Figure 6.52. Noise-Polluted Accelerations of Node 2 for the Undamaged and Damaged Models of

Case #6.7 (5% Noise): (a) Full Plot and (b) Zoomed in Plot

252



Filtered Accelerations of Node 2
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Figure 6.53. Filtered Noise-Polluted Accelerations of Node 2 for the Undamaged and Damaged

Models of Case #6.7 (5% Noise): (a) Full Plot and (b) Zoomed in Plot
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Estimated Velocities of Mode 2
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Figure 6.54. Estimated Velocities of Node 2 for the Undamaged and Damaged Models of Case
#6.7 (5% Noise): (a) Full Plot and (b) Zoomed in Plot
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Estimated Displacements of Node 2
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Table 6.9. Damage Detection Results for the Fixed-Fixed Beam Using Isolated Method (1% Noise
Pollution)

Designed Damage Indices

Property System#1 System#2 System#3 System#4 System #5

m; 1.25 1.11 1.00 1.00 1.00
k; 1.11 1.11 1.00 1.00 1.00
ki1 1.11 1.00 1.00 1.00 1.00

Estimated Damage Indices

Property System#1 System#2 System#3 System#4 System #5

m; 1.13 1.00 0.95 0.98 0.89
k; 1.00 1.00 0.95 0.98 0.88
ki1 1.00 0.91 0.95 0.98 0.89
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Damage Index (B) for the Isolated Beam Element Analysis
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Figure 6.56. Damage Indices (B;) for the Fixed-Fixed Beam with Noise-Polluted Accelerations
Using Isolated Beam Element Analysis Method (1% Noise)
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Damage Severity (c.) for the Isolated Beam Element Analysis
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Figure 6.57. Damage Severities (a;) for the Fixed-Fixed Beam with Noise-Polluted Accelerations

Using Isolated Beam Element Analysis Method (1% Noise)
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Mormalized Damage Index (5_ ) for the Isolated Beam Element Analysis
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Figure 6.58. Normalized Damage Indices (B, for the Fixed-Fixed Beam with Noise-Polluted
Accelerations Using Isolated Beam Element Analysis Method (1% Noise)
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Figure 6.59. Probability Damage Indices (f,,)) for the Fixed-Fixed Beam with Noise-Polluted

Accelerations Using Isolated Beam Element Analysis Method (1% Noise)
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6.5.2 Case #6.8: Continuous System with 5% Noise Pollution Using Isolation
Method

In this case, the exact accelerations of the mass blocks outputted directly from SAP2000
were contaminated by 5% of white noise. The noise-polluted accelerations of Node 2 in
both the undamaged and damaged cases are plotted in Figure 6.60. The filtered
accelerations, estimated velocities, and estimated displacements of Node 2 are plotted in

Figure 6.61, Figure 6.62, and Figure 6.63, respectively.

The estimated damage indices and the designed damage indices for each physical property
are listed in Table 6.10 and are plotted in Figure 6.64. The estimated damage severities
and the designed damage severities for each physical property are also listed in Table 6.10
and are plotted in Figure 6.65. The normalized damage indices are computed using Eq.
6.4 and are plotted in Figure 6.66. The damage possibility indices are plotted in Figure
6.67. Comparing the estimated damage indices with the designed damage indices, the
integrated system analysis method can accurately locate and size multiple damage with 5%

noise-polluted input data from a typical fixed-fixed beam.
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Moise-Polluted Accelerations of Mode 2
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Figure 6.60. Noise-Polluted Accelerations of Node 2 for the Undamaged and Damaged Models of

Case #6.8 (5% Noise): (a) Full Plot and (b) Zoomed in Plot
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Filtered Accelerations of Node 2
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Figure 6.61. Filtered Noise-Polluted Accelerations of Node 2 for the Undamaged and Damaged

Models of Case #6.8 (5% Noise): (a) Full Plot and (b) Zoomed in Plot
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Estimated Velocities of Mode 2
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Figure 6.62. Estimated Velocities of Node 2 for the Undamaged and Damaged Models of Case
#6.8 (5% Noise): (a) Full Plot and (b) Zoomed in Plot
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Figure 6.63. Estimated Displacements of Node 2 for the Undamaged and Damaged Models of
Case #6.8 (5% Noise): (a) Full Plot and (b) Zoomed in Plot

265



Table 6.10. Damage Detection Results for the Fixed-Fixed Beam Using Isolated Method (1%
Noise Pollution)

Designed Damage Indices

Property System#1 System#2 System#3 System#4 System #5

m; 1.25 1.11 1.00 1.00 1.00
k; 1.11 1.11 1.00 1.00 1.00
ki1 1.11 1.00 1.00 1.00 1.00

Estimated Damage Indices

Property System#1 System#2 System#3 System#4 System #5

m, 0.75 0.66 0.51 0.46 0.55
k; 0.67 0.66 0.51 0.46 0.56
ki1 0.67 0.60 0.51 0.46 0.55
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Damage Index (B) for the Isolated Beam Element Analysis
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Figure 6.64. Damage Indices (B;) for the Fixed-Fixed Beam with Noise-Polluted Accelerations
Using Isolated Beam Element Analysis Method (5% Noise)
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Damage Severity (c.) for the Isolated Beam Element Analysis
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Figure 6.65. Damage Severities (a;) for the Fixed-Fixed Beam with Noise-Polluted Accelerations

Using Isolated Beam Element Analysis Method (5% Noise)
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Mormalized Damage Index (5_ ) for the Isolated Beam Element Analysis
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Figure 6.66. Normalized Damage Indices (B, for the Fixed-Fixed Beam with Noise-Polluted
Accelerations Using Isolated Beam Element Analysis Method (5% Noise)
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Damage Possibility Index [ﬁp ) for the Isolated Beam Element Analysis
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Figure 6.67. Damage Possibility Indices (Pp,i) for the Fixed-Fixed Beam with Noise-Polluted
Accelerations Using Isolated Beam Element Analysis Method (5% Noise)
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6.6 EVALUATION OF RESULTS

In this subsection, all the results from the previous subsection of Section 6 will be
summarized and evaluated. Because for some cases, the traditional damage index will be
influenced severely by the existence of noise and the application of band-pass filters, the

results evaluations will be mainly based on the damage possibility indices.

To distinguish the damaged elements from the undamaged elements, the damage
judgement criterion for the Damage Possibility Index is subjectively set as 50%. Namely,
if the Damage Possibility Index is greater than 50%, the element property is considered

to be damaged.

6.6.1 Evaluation of Results for Case #6.1

From Figure 6.7 through Figure 6.10, the damage detection results using the data
contaminated by 1% noise are very close to the designed damage detection results. Only
small discrepancies can be found. The percentage error between the Designed Damage
Possibility Indices and Estimated Damage Possibility Indices are displayed in Table 6.11.
The false negatives reported in Table 6.11 are due to the damage criteria set in the
beginning of the section, not due to noise influence. For this case, since the Damage
Indices and Damage Severities, shown in Figure 6.7 and Figure 6.8 are not severely
influenced by the noise, the damage locations and damage extents can still be well

estimated by using Damage Indices and Damage Severities.
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Table 6.11. Results Evaluation for Discrete System with 1% Noise Pollution Using Integral

Method
Measured Designed
Physical Damage Damage Percentage False False
Properties Possibility Possibility  Error (%) Positive = Negative
Indices, B, ; Indices, B, ;
my 0.6331 0.6217 1.83 0 0
m 0.4443 0.4522 1.75 0 1
my 0.3156 0.3228 2.21 0 0
my 0.3192 0.3228 1.11 0 0
m; 0.3264 0.3228 1.11 0 0
C 0.9966 0.9953 0.13 0 0
Cy 0.9934 0.9953 0.19 0 0
C3 0.3121 0.3228 3.31 0 0
Cy 0.3228 0.3228 0.00 0 0
Cs 0.3300 0.3228 2.23 0 0
Cq 0.3192 0.3228 1.11 0 0
k; 0.4681 0.4522 3.51 0 1
k, 0.4562 0.4522 0.88 0 1
ks 0.3192 0.3228 1.11 0 0
k, 0.3156 0.3228 2.21 0 0
ks 0.3192 0.3228 1.11 0 0
K¢ 0.3336 0.3228 3.36 0 0

6.6.2 Evaluation of Results for Case #6.2

From Figure 6.15 and Figure 6.16, the Damage Indices and Damage Severities are
influenced by the noise. However, the damage designed in mi, my, c1, ¢2, ki, and ko can
still be detected and well estimated and only one false positive is found at cs. The

percentage error between the Designed Damage Possibility Indices and Estimated
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Damage Possibility Indices are displayed in Table 6.12. The false negatives reported in
Table 6.12 are due to the damage criteria set in the beginning of the section, not due to
noise influence. The false positive shown in Table 6.12 is resulted from noise influence.
However, the results displayed in Figure 6.15 through Figure 6.18 are the results from

only one experiment. Better results can be acquired if the experiments can be repeated.

Table 6.12. Results Evaluation for Discrete System with 5% Noise Pollution Using Integral

Method
Measured Designed
Physical Damage Damage Percentage False False
Properties Possibility Possibility  Error (%) Positive = Negative
Indices, B, ; Indices, B, ;
m 0.8340 0.6217 34.14 0 0
m 0.4880 0.4522 7.91 0 1
my 0.3409 0.3228 5.62 0 0
my 0.3783 0.3228 17.20 0 0
ms 0.3264 0.3228 1.11 0 0
C 0.9251 0.9953 7.06 0 0
Cy 0.9977 0.9953 0.23 0 0
C3 0.1492 0.3228 53.78 0 0
Cy 0.1611 0.3228 50.09 0 0
Cs 0.1230 0.3228 61.88 0 0
Cs 0.7088 0.3228 119.62 1 0
k, 0.6179 0.4522 36.63 0 0
k, 0.5160 0.4522 14.09 0 0
ks 0.3446 0.3228 6.76 0 0
k4 0.3594 0.3228 11.36 0 0
ks 0.3156 0.3228 2.21 0 0
ke 0.3336 0.3228 3.36 0 0
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6.6.3 Evaluation of Results for Case #6.3

From Figure 6.23 through Figure 6.26, the damage detection results using the data
contaminated by 1% noise are very close to the designed damage detection results. Only
small discrepancies can be found. The percentage error between the Designed Damage
Possibility Indices and Estimated Damage Possibility Indices are displayed in Table 6.13.
The false negatives reported in Table 6.13 are due to the damage criteria set in the
beginning of the section, not due to noise influence. For this case, since the Damage
Indices and Damage Severities, shown in Figure 6.23 and Figure 6.24 are not severely
influenced by the noise, the damage locations and damage extents can still be well

estimated by using Damage Indices and Damage Severities.
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Table 6.13. Results Evaluation for Discrete System with 1% Noise Pollution Using Isolated

Method
Measured Designed
System  Physical Damage Damage Percentage False False
Number Properties  Possibility Possibility  Error (%) Positive  Negative
Indices, B,;  Indices, B, ;

m; 0.6368 0.6255 1.81 0 0

Isolated Ci 0.9918 0.9955 0.37 0 0

System #1 Cit1 0.9953 0.9955 0.01 0 0

k; 0.4641 0.4562 1.74 0 1

kv, 0.4641 0.4562 1.74 0 1

m; 0.4562 0.4562 0.00 0 1

Isolated Ci 0.9974 0.9955 0.20 0 0

System#2 G 0.3372 0.3264 3.34 0 0

k; 0.4602 0.4562 0.87 0 1

Kiy; 0.3264 0.3264 0.00 0 0

m; 0.3300 0.3264 1.11 0 0

Isolated Ci 0.3192 0.3264 2.20 0 0

System #3 Cit 0.3156 0.3264 3.29 0 0

ki 0.3300 0.3264 1.11 0 0

Kiy; 0.3264 0.3264 0.00 0 0

m, 0.3264 0.3264 0.00 0 0

Kohted o 0.3300 0.3264 111 0 0

System 4 © 0.2981 0.3264 8.67 0 0

k; 0.3264 0.3264 0.00 0 0

ki 0.3228 0.3264 1.10 0 0

m; 0.3300 0.3264 1.11 0 0

Isolated Ci 0.3156 0.3264 3.29 0 0

System #5 Cit1 0.3520 0.3264 7.85 0 0

k; 0.3300 0.3264 1.11 0 0

k| 0.3336 0.3264 2.22 0 0
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6.6.4 Evaluation of Results for Case #6.4

From Figure 6.31 and Figure 6.32, the Damage Indices and Damage Severities are
influenced by the noise. However, the damage designed in mi, ci, ci+1, ki, and ki+1 in
System #1 and m;, ¢i, and k; in System #2 can still be detected and well estimated. Neither
obvious false positives nor false negative was reported in Figure 6.31 and Figure 6.32.
The percentage error between the Designed Damage Possibility Indices and Estimated
Damage Possibility Indices are displayed in Table 6.14. Moreover, neither false negative
no false negative was reported in Table 6.14, either. The current results displayed in Figure
6.31 through Figure 6.34 are the results from only one experiment. Better results can be

acquired if the experiments can be repeated.
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Table 6.14. Results Evaluation for Discrete System with 5% Noise Pollution Using Isolated

Method
Measured Designed
System  Physical Damage Damage Percentage False False
Number Properties  Possibility Possibility  Error (%) Positive  Negative
Indices, B,;  Indices, B, ;
m; 0.7357 0.6255 17.61 0 0
Ci 0.9985 0.9955 0.31 0 0
Isolated
System #1 Cit1 0.9798 0.9955 1.57 0 0
k; 0.5910 0.4562 29.54 0 0
ki 0.5478 0.4562 20.07 0 0
m; 0.5438 0.4562 19.20 0 0
Ci 0.9616 0.9955 3.40 0 0
Isolated
System #2 Cit 0.3594 0.3264 10.13 0 0
k; 0.5398 0.4562 18.33 0 0
ki, 0.4013 0.3264 22.96 0 0
m; 0.4325 0.3264 32.53 0 0
Ci 0.2611 0.3264 20.00 0 0
Isolated
System #3 Cit 0.3520 0.3264 7.85 0 0
k; 0.4168 0.3264 27.72 0 0
Kiy; 0.4286 0.3264 31.32 0 0
m; 0.3745 0.3264 14.75 0 0
Ci 0.4286 0.3264 31.32 0 0
Isolated
System #4 Cit 0.0359 0.3264 88.99 0 0
k; 0.3821 0.3264 17.08 0 0
ki 0.3228 0.3264 1.10 0 0
m; 0.4090 0.3264 25.34 0 0
Ci 0.0548 0.3264 83.21 0 0
Isolated
System #5 Cit1 0.4052 0.3264 24.15 0 0
k; 0.4129 0.3264 26.53 0 0
kv, 0.3821 0.3264 17.08 0 0
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6.6.5 Evaluation of Results for Case #6.5

From Figure 6.40 and Figure 6.41, all the Damage Indices are reduced by certain levels
and all Damage Severities are shifted upward to the positive side. This is resulted from the
application of band-pass filter and the noise influence. Although the damage in mi, mo, ki,
and k> can still be located, the differences between the estimated damage severities and
designed damage severities are obvious. However, this problem can be solved by using the
Normalized Damage Index and Damage Possibility Index. From Figure 6.42 and Figure
6.43, the estimated results matches well with the designed results. Because the designed
Damage Indices for the damage properties are closed to each other, all the damage
possibility indices for the damaged properties are greater than 50%. Consequently, no
false negative is reported in Table 6.15. In addition, no false positive is found using the

Damage Possibility Index.
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Table 6.15. Results Evaluation for Continuous System with 1% Noise Pollution Using Integral

Method
Measured Designed
Physical Damage Damage Percentage False False
Properties Possibility Possibility  Error (%) Positive  Negative
Indices, B, ; Indices, B, ;
my 0.9922 0.9913 0.09 0 0
m 0.7580 0.7611 0.41 0 0
my 0.2676 0.2611 2.51 0 0
my 0.2578 0.2611 1.24 0 0
m; 0.2643 0.2611 1.25 0 0
k; 0.7422 0.7611 2.50 0 0
k, 0.7549 0.7611 0.82 0 0
ks 0.2709 0.2611 3.77 0 0
k, 0.2643 0.2611 1.25 0 0
ks 0.2389 0.2611 8.52 0 0
K¢ 0.2946 0.2611 12.84 0 0

6.6.6 Evaluation of Results for Case #6.6

From Figure 6.48 and Figure 6.49, all the Damage Indices are reduced by certain level and
all Damage Severities are shifted upward to the positive side. This is resulted from the
application of band-pass filter and the noise influence. With the 5% white noise mixed in
the acceleration data, the damage in mi, mo, ki, and k> cannot be located, the differences
between the estimated damage severities and designed damage severities are obvious.
However, this problem can be solved by using the Normalized Damage Index and Damage
Possibility Index. From Figure 6.50 and Figure 6.51, the estimated results matches well
with the designed results. Because the designed Damage Indices for the damage properties

are closed to each other, all the damage possibility indices for the damaged properties are
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greater than 50%. Consequently, no false negatives are reported in Table 6.16. In addition,

no false positives are found using the Damage Possibility Index.

Table 6.16. Results Evaluation for Continuous System with 5% Noise Pollution Using Integral

Method
Measured Designed
Physical Damage Damage Percentage False False
Properties Possibility Possibility Error (%)  Positive Negative
Indices, B, ; Indices, B ;
m 0.9918 0.9913 0.05 0 0
m, 0.7823 0.7611 2.78 0 0
my 0.3264 0.2611 25.00 0 0
my 0.2207 0.2611 15.49 0 0
ms 0.2643 0.2611 1.25 0 0
k, 0.7123 0.7611 6.42 0 0
k, 0.7486 0.7611 1.65 0 0
ks 0.2776 0.2611 6.32 0 0
ky 0.2514 0.2611 3.70 0 0
ks 0.1949 0.2611 25.35 0 0
ke 0.3557 0.2611 36.23 0 0

6.6.7 Evaluation of Results for Case #6.7

From Figure 6.56, only the damage in mi in System #1 was located. From Figure 6.57, the
damage severities are found to be shifted upward to the positive side. This can be seen
from the values of other damage severities. Because no properties are designed to be
strengthened in this case, thus the positive damage severities of other elements indicate the

shift of the damage severities. Consequently, the damage indices in Figure 6.56 are, in fact,

280



shifted downward and thus, not all damage were detected. However, this problem can be
solved by using the Normalized Damage Index and Damage Possibility Index. From
Figure 6.58 and Figure 6.59, the designed damage in m;, ki, and ki+1 in System #1 and mj
and ki in System #2 were successfully detected. However, according to Table 6.17, false
positives were found in System #4. The false positives in System #4 are due to the
differences of amplitudes of shift for each isolated system. This can be seen from Table
6.9: for System #3, the average value is 0.95; for System #4, the average value is 0.98; for
System #5, the average value is 0.89. Consequently, after normalization, the average value
for System #4 will be bigger than the average values of System #3 and System #5 after
normalization. The differences of amplitudes of shift for each isolated system are natural

because each isolated system is analyzed separately.
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Table 6.17. Results Evaluation for Continuous System with 1% Noise Pollution Using Isolated
Method

Measured Designed

System  Physical Damage Damage Percentage False False
Number Properties  Possibility Possibility  Error (%)  Positive  Negative
Indices, B,;  Indices, B, ;
m; 0.9946 0.9965 0.19
Isolated K
System #1 i 0.7088 0.8051 11.96 0 0
k., 0.7157 0.8051 1111 0 0
m; 0.7324 0.8051 9.03
Isolated K
System #2 i 0.7324 0.8051 9.03 0 0
ki 0.1685 0.2709 37.80 0 0
m; 0.3897 0.2709 43.85 0 0
Isolated K
System #3 i 0.3974 0.2709 46.69 0 0
ki 0.3859 0.2709 42.44 0 0
m; 0.6026 0.2709 122.40 1 0
Isolated K
System #4 i 0.5987 0.2709 120.98 1 0
ki, 0.5910 0.2709 118.12 1 0
m; 0.1057 0.2709 61.00 0 0
Isolated K
System #5 i 0.0968 0.2709 64.27 0 0
ki 0.1112 0.2709 58.94 0 0

6.6.8 Evaluation of Results for Case #6.8

From Figure 6.64 and Figure 6.65, all the Damage Indices are reduced by certain level and
all Damage Severities are shifted upward to the positive side. This is resulted from the
application of band-pass filter and the noise influence. However, this problem can be
solved by using the Normalized Damage Index and Damage Possibility Index. According
to Table 6.18, the designed damage in m;, k; and ki+ in System #1 and m; and k; in System
#2 were successfully detected. One false positive was found in Table 6.18 in ki+1 in System

#2. This false positive is resulted from the noise influence. Comparing to the previous case,
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with increased noise influence, no false positives were found in other isolated systems.
These indicate the certain instability of the isolated method, which might be resolved by

taking the average values from repeating the experiments and the analysis processes.

Table 6.18. Results Evaluation for Continuous System with 5% Noise Pollution Using Isolated
Method

Measured Designed
System  Physical Damage Damage Percentage False False
Number Properties  Possibility Possibility  Error (%) Positive  Negative
Indices, B,;  Indices, B, ;

m; 0.9732 0.9965 2.34 0 0

Isolated K
System #1 i 0.8643 0.8051 7.36 0 0
Kiyq 0.8554 0.8051 6.25 0 0
m, 0.8389 0.8051 4.20 0 0

Isolated K
System #2 i 0.8389 0.8051 4.20 0 0
Kiyy 0.6179 0.2709 128.07 1 0
m; 0.2514 0.2709 7.20 0 0

Isolated I
System #3 i 0.2578 0.2709 4.83 0 0
Kiy 0.2546 0.2709 6.02 0 0
m; 0.1075 0.2709 60.33 0 0

Isolated K

System #4 i 0.1170 0.2709 56.81

K 0.1094 0.2709 59.64 0 0
m; 0.4207 0.2709 55.29 0 0

Isolated K

System #5 i 0.4443 0.2709 64.00

Kiyq 0.3897 0.2709 43.85 0 0
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7 REANALYSIS

7.1 INTRODUCTION
In this section, three problems that are either arose in the previous numerical examples or

anticipated in the further applications will be demonstrated and the solutions are provided.

The problems will be analyzed in the following subsections are,
(1) Case #7.1: Nodes without external loads;
(2) Case #7.2: Efficiency of noise-influence reduction by repeating experiment;

(3) Case #7.3: Damage detection in Continuous structure with proportional damping;

7.2 STUDY OF NODES WITHOUT EXTERNAL LOADS (CASE #7.1)

7.2.1 Introduction

In this subsection, the problem caused by nodes without external loads will be studied and
solved. For all the numerical cases that are studied in the previous sections, external loads
had been applied at each node that was analyzed. This is not a problem for the integral
system method of the Power Method, because the power equilibrium of the integral
method can be applied if there is one node with external loads. However, for the isolated
system method, the algorithm given in the previous section will only be applicable to the
node with external load. For the node without external load, the previous algorithm for
isolated system won’t work due to the rank deficiency of the coefficient matrix for the
final linear equation groups. Under this situation, a new algorithm is proposed in

Subsection 7.2.2.
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7.2.2 Theory for Node without External Loads

In this subsection, the theory for node without external load will be provided. For
simplicity purposes, only the theory for node without external loads for plain frame will be
provided and the theory for node without external loads for other structural components

can be easily completed following the same idea and process.

According to the finite element method, one plain frame can be meshed into several

elements. Isolating two nearby plain frame elements, as shown in Figure 7.1, the modulus

of elasticity of the material for Element i is denoted as E, . The length of Elementiis L, .
The area and the moment of inertia of the cross section of Element i are denoted as 4,
and I, ,respectively. Let {P'} be the force vector at Node i, where P’ denotes the axial

force at Node i, P2’ denotes the shear force at Node i, P, denotes the bending moment at

Node i. As shown in the free body diagram of Node i in Figure 7.2, the external loads

({P'}), internal forces ({F, } and {F_}), and inertial forces {/'} form a dynamic

equilibrium condition at Node i. The dynamic equilibrium condition can be written as,

I +{F, Y +{F, =P} (7.1)

In this case, degrees of freedom in axial, transversal and rotational directions will be taken
into consideration. Thus each force vector in Eq. 7.1 is composed by three force
components: (1) Axial force; (2) shear force; (3) bending moment.

i i
]1 E,l E+1,1 Pl

1; + F;,z + E‘+1,2 = le (7.2)
L) \Fs| |Fas) |B
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Where subscript one (“1”) indicates axial force; subscript two (“2”) indicates shear force

and subscript three (“3”) indicates bending moment.

Ai} Ei’ Ii A-i+1’ Ei+15 Ii+1
i-1 i-1 i i i+l i+1
P, 3, P . & Py, 5,

| e =

- ‘ i+
Kk B3 P
L, ) () - Node i

1 1 1 (3] - Element i
pi-l’ 6i—1 pi ) 5i pm, 6i+1 ——=——Direction
2 vl 2 2 2 2 of Element

Figure 7.1. Two nearby Plane Frame Elements

I, Fois

O E /\F
=

(@) - Node i

i
L [i] - Element i

Figure 7.2. Free Body Diagram of Node i Considering Axial, Shear Forces, and Bending Moment

For this case, the external applied loads are all zeros, thus Eq. 7.1 can be written as,
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I +{F }+{F, = {0} (7.3)

Given any velocity vectors, {A’ }, the power done by the external forces can be expressed

as following,

NI A HE S+ A HE, = AP =0} (74)

Rearrange Eq. 7.4 yields,

A S+ AR, =~ (7.5)

In this case, the inertial forces for the undamaged system can be expressed using the
following lumped mass matrix, (note that the inertial effect associated with any rotational

degree of freedom is neglected)

_ _ 1 o
{]i}:Km,.zL,.j{m,ﬂszﬂ 1 oy p=m'[M;]{5"} (7.6)
0| |5

Where 7, is the linear mass of Element i; §, is the acceleration in axial direction at

Node i; 6, is the acceleration in transverse direction at Node i and &, is the acceleration

in bending rotation direction within the plain at Node i.

The force vectors (i.e. {F; } and {F,,}) in Eq. 7.5 can be computed using stiffness

matrices and node deformation vectors,
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5;]
AL’ AL’ 5
-—— 0 0 — 0 0 2
EI ] I 51'73
=K o= || 0 -2 -6L 0 12 —=6L1, (7.7)
il 0 6L 2 0 -6L 4L || "
) 5;‘,2
5.5
= ki [Kn,i]{é‘i }
5;’11,1
AL’ AL S
— 0 0 —-— 0 0 i+1.2
El | 1 ! S
{F o} =[K 10} =| = 0 12 6L 0 —12 6L .
L . 2 2 é‘i+11
il 0 6L 4L 0 —6L 2L -
il 5i+1,2
5;1,3

= ki+l [Ko,i+1 ] {6i+1}

(7.8)

Where 6, and &, are the displacement in axial direction at the positive and negative

ends of Element i, respectively; J,, and O., are the displacement in transverse
p y 2 i2 p

direction at the positive and negative ends of Element i, respectively; o6, and o, are

the node rotations in bending rotation direction at the positive and negative ends of

Element i, respectively.

Substitute Eqs. 7.6 through 7.8 into Eq. 7.5 yields,

ATk K, 8, 3+ A Y k(K 0 18,0 = (A m' [M146") (7.9)

Moving forward the property constant from each term in Eq. 7.9 yields,
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kAN TIK, 6, 3+ k(A YTIK,

140, =-m' {A } M 145"} (7.10)

i+l

Dividing each term in Eq. 7.10 by m' yields,

k.. oo o
%{A’ VK, {6, }+n’1—?{A’} (Ko ]i0i} = —A 1 [M, {6} (7.11)

Define the following coefficients,

k.
B = m_l’ (7.12)
B, =km— (7.13)

Substituting Eq. 7.12 and Eq. 7.13 to Eq. 7.11 yields,

BAN YK, 46, b+ BN VK, 146, =—(A Y M0y (7.14)

Writing the Eq. 7.14 at different time point, yields the following groups of equations,

For t=¢,,

BN YK, 6 DI, +B (A VK, 18D, = —(A Y IMIT D |, (7.15)

For t=t,,

LA YT, 46, D, +B (A Y K, 16 ) |, = —(A Y IM 16D, (7.16)
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For t=t,,

BUA YT, 146, D,y +B (A YK, 1S D |, = —(A Y IM O D, (7.17)

Arranging the above linear equation group into matrix form, yields,
Xp=Y (7.18)
Where the coefficient matrix of the linear equation group is given as following (note, due

to the limitation of the page size, the transposed form of the matrix is provided),

GAYIK,I6 D, G YK, 08,01, ]

X=| (A YK, 16D, (A VIK, 1601, (7.19)

(XK, 106D, (8K, 016,01, |

The vector of unknown and the vector of known are given as,

By
= 7.20
(s @

—((A Y IMITE D,

Y =1-({A M6, (7.21)

~(A I,

Using the Least Square Method, the vector of unknown, ‘B’, can be computed from the

following equation,

p=X"X)"(X"Y) (7.22)
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With the vector of unknown computed, the damage indices for stiffness can be computed

K ]
m_i ki L3 i ﬂl,systemi

as follows,

B =— == E (7.23)
g ki+l ki+l El ﬂZ,systemi
m' e
i+l
ki+l
i i+l
m m stem i+
ﬁm — — — — ﬁl,sy.stemt 1 (724)
m ki+l ﬁZ,systemi
mi

7.2.3 Damage Evaluation for Cantilever with External Load at Free End Only

In this subsection, a cantilever beam is used to evaluate the performance of the proposed
theory in dealing with nodes without external loads. The geometry of the cantilever and
damage scenario under consideration are indicated Figure 7.3. The geometry of the
cross-section of the beam is shown in Figure 5.19. The modulus of elasticity (E) of the

material is 29,000 ksi. The mass density of the material is 7.345x1077 kip-sec/in®.

The cantilever beam is meshed into 6 elements and has 7 equally spaced nodes. The length
of each element is 12.0 inches. For illustrative purposes, typical elements are indicated in
Figure 7.3. Two elements with damaged mass and stiffness are studied. The damage is
simulated by a ten percent (10%) reduction of the modulus of elasticity and twenty percent

(20%) reduction of the mass of the second (2"Y) and fifth (5") elements on the beam.

Only the node at the free end of the cantilever is excited by external nodal load, which is
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simulated using a white noise, 100xrandom(-1,1) and is applied in axial direction. This
external nodal load is plotted in Figure 7.4. Given the external load case, exact
accelerations, velocities and displacements of the six nodes were computed at every 1E-4

seconds (10,000 Hz) for 0.2 seconds.

In this case, the computed velocity ( x(¢) ) of each node in the undamaged case was used as
the velocity used to compute power (A) for both the undamaged and damaged cases. For
every two nearby elements, the coefficient matrices (‘X’) and known vector (‘Y’) were
constructed by substituting the acceleration ( X(¢) ), velocity ( x(¢) ), displacement ( x(¢)),
and velocity used to compute power (A) into Eq. 7.19 and Eq. 7.21. The coefficient
damage index vector, B, related to the two nearby elements was computed using Eq. 7.22.
Then the damage indices for Element stiffness and Nodal mass are computed using Eq.

7.23 and Eq. 7.24, respectively. The damage severities for stiffness are computed using

Eq. 2.13.
Damaged Element #5
l—Damaged Element #2
V /A V /A | Free End
Fixed {Node 7)
End
Element #1 Element #6
12" 48" AI, 12"

7"

Figure 7.3. Geometry and Damage Scenario for the Cantilever Beam
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Applied External Load (kips)

Applied External Load at Mode 7
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B Ll 'l |

0 0.05 0.1 0.15 0.2
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Figure 7.4. Applied External Load at the Free End of the Cantilever
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% 103 Displacement in Axial Direction at MNode 7
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Figure 7.5. Displacements in Axial Direction of Node 7 of the Cantilever under the Given
External Load: (a) Full Plot and (b) Zoomed in Plot
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Velocity in Axial Direction at Node 7
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Figure 7.6. Velocities in Axial Direction of the Node 7 of the Cantilever under the Given External

Load: (a) Full Plot and (b) Zoomed in Plot
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Acceleration in Axial Direction at Mode 7
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Figure 7.7. Accelerations in Axial Direction of Node 7 of the Cantilever under the Given External
Load: (a) Full Plot and (b) Zoomed in Plot
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Table 7.1. Damage Detection Results for the Cantilever under Axial Vibrations

Property Damage Index Damage Severity Damage Index
Comparison (B;, Esimated) (o;, Esimated) (p;, Designed)

k\k, 1.11 -0.10 1.11
ko\ks 0.90 0.11 0.90
ks\k, 1.00 0.00 1.00
k\ks 1.11 -0.10 1.11
ks\k, 0.90 0.11 0.90
m,\m, 1.00 0.00 1.00
m,\m; 0.90 0.11 0.90
m;\my, 111 -0.10 111
m,\m; 1.00 0.00 1.00

Damage Index for Cantilever with Only End Load

14 1 1 1 T T T =
44 [CIEstimated
-Designed

e e S

)
|

Damage Index

0.8 SND BEE =R ERN BEE EEN SN BN S

0.6 - SNl BEE =R ERN BEE EEN BN BN S

0.4 - SNl BEE =R ERN BEE EEN BN BN S

0.2 SNl BEE =R ERN BEE EEN BN BN S

k1/k2 k23 k3Ik4  kdkE  kSKE m1/m2 m2/m3 m3/md md/mb
Physical Property

Figure 7.8. Damage Indices (f;) for the Fixed-Fixed Beam with Proportional Damping Using
Isolated Beam Element Analysis Method
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Damage Severity for Cantilever with Only End Load
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Figure 7.9. Damage Severities (a;) for the Fixed-Fixed Beam with Proportional Damping Using
Isolated Beam Element Analysis Method

7.2.4 Summary

In Subsection 7.2, the Power Method for nodes without external loads is derived and
numerically validated. The displacements, velocities and accelerations used in the Section
7 are the exact data without noise. From the damage detection results, shown in Table 7.1,
Figure 7.8, and Figure 7.9, the designed damage in masses and stiffness were located and
evaluated accurately. Moreover, for all numerical experiments, neither false-positive

damage index nor false-negative damage index were found.
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7.3 STUDY OF EFFICIENCY OF NOISE-INFLUENCE REDUCTION BY
REPEATING THE EXPERIMENT (CASE #7.2)

7.3.1 Introduction

In this subsection, the efficiency of noise-influence reduction will be studied. According
to the damage detection results in Section 6, when the acceleration inputs are
contaminated by noise signals, the estimations of the damage severities will become less
reliable, which, for example, can be seen in Figure 6.15 and Figure 6.18. For repeatable
experiments, the noise influence can be reduced by repeating experiments and the white

noise signals can be reduced by averaging white noises.

There are mainly two ways to reduce white noise influence:

(1) Compute damage indices based on each experimental measurement and then compute
the average of the damage indices; and

(2) Compute the average inputs from the combination of all the measurements and

compute the damage indices based on the average inputs.

7.3.2 Efficiency Study of Noise-Influence Reduction Based on Averaged Damage
Detection Results

In this subsection, the efficiency of noise-influence reduction based on averaged damage
detection results will be studied using the 5-DOF spring-mass-damper system introduced

in Case #6.2 in Section 6.2.2.
The inputs will be simulated by the exact accelerations of the mass blocks directly
outputted from SAP2000 were contaminated by 5% of white noise. For illustration

purposes, the noise-polluted accelerations of Mass Block #2 in both the undamaged and
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damaged cases can be seen in Figure 6.11. The filtered accelerations, estimated velocities
and estimated displacements of Mass Block #2 are can be seen from Figure 6.12, Figure

6.13, and Figure 6.14, respectively.

For illustration purposes, the vibration test for the 5-DOF spring-mass-damper system was
assumed to be conducted ten times. The computed damage indices based on each vibration
test, the averaged damage indices and the designed damage indices are listed in Table 7.2.
The averaged damage indices and the designed damage indices are plotted in Figure 7.10.
The related damage severities are plotted in Figure 7.11. The normalized damage indices
are computed using Eq. 6.4 and are plotted in Figure 7.12. The damage possibility indices
are plotted in Figure 7.13. Comparing the averaged damage indices with the designed

damage indices, the accuracy of the damage indices are not obviously improved.
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Table 7.2. Summary of Damage Detection Results for the 5-DOF Spring-Mass-Damper System (5% Noise Pollution, Ten Tests)

Damage Index (f;, Esimated)

Damage Index

Property .
Test#1 Test#2 Test#3 Test#4 Test#5 Test#6 Test#7 Test#8 Test#9 Test#10 Averaged (B, Designed)
my 1.27 1.27 1.27 1.29 1.29 1.27 1.27 1.28 1.29 1.28 1.28 1.25
m, 1.09 1.05 1.08 1.07 1.10 1.05 1.09 1.08 1.09 1.08 1.08 1.11
my 0.99 0.94 1.00 0.97 0.99 0.95 0.97 1.00 0.99 0.98 0.98 1.00
my 0.99 0.97 1.00 0.99 1.00 0.99 1.01 1.00 0.99 0.99 0.99 1.00
ms 1.00 0.99 1.00 1.00 1.01 0.98 0.99 0.98 1.00 0.97 0.99 1.00
C 1.32 1.24 1.40 1.35 1.28 1.57 1.56 1.27 1.35 1.36 1.37 2.00
cy 1.63 1.67 1.62 1.64 1.58 1.49 1.54 1.72 1.66 1.64 1.62 2.00
C3 0.97 0.97 0.94 0.88 0.98 0.94 0.94 0.87 0.97 0.91 0.94 1.00
Cy4 0.94 0.80 0.62 0.85 0.95 0.99 0.90 1.05 0.61 0.91 0.86 1.00
Cs 0.87 0.34 0.77 0.27 0.95 0.75 0.89 0.94 0.68 0.93 0.74 1.00
Cq 1.05 1.14 1.19 1.13 0.88 1.29 1.13 1.03 1.15 1.25 1.12 1.00
k 1.14 1.15 1.15 1.16 1.17 1.16 1.16 1.15 1.17 1.16 1.16 1.11
k, 1.11 1.06 1.09 1.10 1.10 1.07 1.09 1.10 1.11 1.10 1.09 1.11
ks 1.01 0.96 1.00 0.99 0.99 0.96 0.98 1.00 1.00 1.00 0.99 1.00
ky 1.01 0.98 1.01 1.01 1.02 0.98 1.02 1.01 1.04 0.98 1.00 1.00
ks 1.04 1.01 1.03 1.05 1.04 0.97 0.99 0.98 1.04 0.96 1.01 1.00
K¢ 0.99 0.98 0.98 0.99 1.00 0.98 0.98 0.96 0.96 0.99 0.98 1.00
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Damage Index for the 5-00F Discrete System

15}
&
o
a
=
£
o 1
n
[}
=
[}
[

0.5}

|:| Estimated
- Designed

_m1m2 mImdms ¢l €2 3 cd 6 cb k1 k2 k3 kd kb kb
Physical Property

Figure 7.10. Averaged Damage Indices (f};) for S-DOF Spring-Mass-Damper System with
Noise-Polluted Accelerations (5% Noise, Ten Tests)
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Figure 7.11. Averaged Damage Severities (a;) for 5-DOF Spring-Mass-Damper System with
Noise-Polluted Accelerations (5% Noise, Ten Tests)
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Mormalized Damage Index for the 5-DOF Discrete System
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Figure 7.12. Normalized Averaged Damage Indices (Bn,) for 5-DOF Spring-Mass-Damper
System with Noise-Polluted Accelerations (5% Noise, Ten Tests)
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7.3.3 Efficiency Study of Noise-Influence Reduction Based on Averaged Inputs
In this subsection, the efficiency of noise-influence reduction based on averaged damage
detection results will be studied using the 5-DOF spring-mass-damper system introduced

in Case #6.2 in Section 6.2.2.

As introduced in the previous subsection, the numerical experiment will be simulated ten
times. Before input each noise-polluted signals into the program, the ten groups of
noise-polluted signals will be combined and averaged. The inputs for the program will be

the averaged noise-polluted signals from the ten numerical experiments.

The estimated damage indices based on the averaged inputting signals and the designed
damage indices for each physical property are listed in Table 7.3 and are plotted in Figure
7.14 and the related damage severities are plotted in Figure 7.15. The normalized damage
indices are computed using Eq. 6.4 and are plotted in Figure 7.16. The damage possibility
indices are plotted in Figure 7.17. Comparing the estimated damage indices with the
designed damage indices, the accuracy of the damage indices has been obviously

improved.
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Table 7.3. Damage Detection Results for the S-DOF Spring-Mass-Damper System Based on
Averaged Inputs (5% Noise Pollution, Ten Tests)

Damage Index Damage Severity Damage Index

Property (B;, Esimated) (o;, Esimated) (B;, Designed)
m 1.25 -0.20 1.25
m, 1.11 -0.10 111
m, 1.00 0.00 1.00
m, 1.00 0.00 1.00
m; 1.00 0.00 1.00
¢ 2.20 -0.54 2.00
¢ 1.88 -0.47 2.00
cs 0.98 0.02 1.00
cs 1.00 0.00 1.00
cs 1.04 -0.04 1.00
Ce 0.99 0.01 1.00
K, 1.12 -0.11 L1
k 1.11 -0.10 111
K, 0.99 0.01 1.00
k, 1.00 0.00 1.00
ks 1.01 -0.01 1.00
ke 1.00 0.00 1.00
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Damage Index for the 5-00F Discrete System
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Figure 7.14. Damage Indices (Bi) for 5S-DOF Spring-Mass-Damper System with Averaged

Noise-Polluted Accelerations (5% Noise, Ten Tests)
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Figure 7.15. Damage Severities (a;) for 5-DOF Spring-Mass-Damper System with Averaged
Noise-Polluted Accelerations (5% Noise, Ten Tests)
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7.3.4 Summary

In Subsection 7.3, ten numerical experiments with 5-DOF spring-mass-damper system
were conducted. The noise polluted accelerations were simulated by mixing 5% white
noise into the exact accelerations from each numerical experiment. The efficiency of
noise-influence reduction of two methods was tested. According to the damage evaluation

results, the method based on the averaged inputs had better performance.

7.4 STUDY OF DAMAGE DETECTION IN CONTINUOUS STRUCTURES WITH
PROPORTIONAL DAMPING (CASE #7.3)

7.4.1 Introduction

In this subsection, the damage detection in damped continuous structure will be studied.
For simplicity purposes, the damping of the continuous structure will be modeled using
Rayleigh Damping. In Subsection 7.4.2, the theory of Power Method for continuous
structure with Rayleigh damping will be derived. In Subsection 7.4.3, the proposed theory

will be validated using a fixed-fixed beam.

7.4.2 Theory of Damage Detection in Continuous Structures with Proportional
Damping

The objective of this subsection is to complete the algorithms that are provided in Section
4, in which the damping damage detection in the continuous systems was not taken into

consideration.

For completeness sake, both bending and axial motions will be considered in this case and

the plain frame elements will be used. According to the finite element method, one frame

structure can be meshed into several elements. From the free body diagram of Node i,
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shown in Figure 7.18, the dynamic equilibrium condition for Node i can be written as,

{Ii} + {F;z} + {Fs,i+1} + {Fcz} + {Fc,i+1} = {Pi} (7.25)
Where {I'} is the inertial force vector at Node i, {F,,} is the internal force from the
positive end of Element i due to element stiffness; {F,;} is the internal force from the

positive end of Element i due to element damping; {P'} is the applied external load at

Node i. Note that the positive end of Element i and the negative end of Element i+1 share

the same node.

I4 £

s,i+1,3+ Fc,i+1,3

0/ O @ /1t k.,
——1o [

H
—

L —

I}
(D - Node i
[i] - Element i

Figure 7.18. Free Body Diagram of Node i Considering Axial, Shear Forces, and Bending

Moment

Similarly, for the damaged case, the dynamic equilibrium condition is,
{I*i} + {Fs*z} + {F;m} + {E;*z} + {F‘:H—l} = {P*i} (7.26)

Where the asterisk (“*””) denotes the quantities from the damaged case.
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Given any velocity vectors, {A'} and {A"}, for the undamaged and damaged systems,
the power performed by the external forces in the undamaged and damaged systems can
be expressed as follows,

(AN YA+ N Y AF, 3+ (A Y HAF, A YA, AV HF, b ={A VP

(7.27)
KT+ AR UF YR (FL R L+ (BT ) = A7 (P

(7.28)

Assume that the applied external loads and the applied velocities used to compute power

at Node 7 are the same for both the undamaged and damaged systems,

Ay = (A (7.29)

{P'y={P"} (7.30)

Substituting Eq. 7.29 and Eq. 7.30 into Eq. 7.28 yields,
AT+ A F S ATy AT+ HF L = AP

(7.31)

Noticing the power done by the external load are the same for both the undamaged and
damaged system. Substituting Eq.7.31 into Eq. 7.27 yields,
(A (A Y HF S+ A YHE, L+ A HF A YHF, L)

(732)
R A Y A TR S 1 A T BT L o8 B T R O

Note, Eq. 7.32 is equivalent to Eq. 2.10.
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In this case, the inertial forces for the undamaged system can be expressed using the
following lumped mass matrix, (note that the inertial effect associated with any rotational

degree of freedom is assumed can be neglected)

iy
1

]
{Jf}z{[ml‘;’){mf“;fﬂﬂ 1 St =m' M7 (7.33)
0| [6]

l

Where 7, is the linear mass of Element #; &, is the acceleration in axial direction at

Node i; 6, is the acceleration in transverse direction at Node i and &, is the acceleration

in bending rotation direction within the plain at Node i.

Similarly, for the damaged system,

(" {{m" fJ{m’“ il ﬂ 1 o p=m"[M 146"} (7.34)
0]

)

2 2 e
o,

The internal force vectors (i.e. {F,,}, {F, .}, {F.}, {F b, {E.}, (Fa), {F.},

and {F: .1 1) in Eq. 7.32 can be computed as followings,

311



_ _ 51'?1
AL? AL 5
Y R
o
{ET,»}:[K,»]{&}:{%J 0 -12 -6L 0 12 -6L 5’5
il 0 6L 2I° 0 —-6L 4I’ "
51‘,2
0.5
=k [K,,]{0; }
(7.35)
— _ 51':—1,]
AL? AL 5
T 0 0 _T 0 0 i+1,2
o
(F.. ' =[K, 1{0.,} = 24 0 12 6L 0 -12 6L o
s,i+1 i+1 i+1 L3 5+
. 2 2 i+1,1
w1l 0 6L 4L 0 —6L 2L -
o 51'+1,2
Ouis
= ki+l [Ko,i+l ] {5i+1 }
(7.36)

312



{F.}=[C 16, } =(a,,[M, 1+a, [K, DS, } =a,,[M,1{5, } +a,,[K, 1{5, }

o
51'_2
. 00010 0]
—a, | 2=]l0 0 0 0 1 0/{7
, 2 i 51‘1
00000 Of|.
l§i,2
o
] X
AL AL §-
-— 0 0 — 0 0 2
0,
+a,{Ef] 0 -12 -6L 0 12 -6L 5’;3
0 6L 2L 0 —6L 4L ||."
) 5[,2
] 18
. 1 0 o][o)
=ai,0(m7J 0 1 0[{d5,
"0 0 0] o5
] X
AL AL $
-— 0 0 — 0 0 2
0,
+all{E3I] 0 -12 -6L 0 12 -6L 5.’;3
i 0 6L 2L 0 —6L 4L ||."
) 51‘,2
) 18

m. i - .
=d;y ?[Mo]{ai }+ ai,lki [Ko,i]{5i ¥

(7.37)

313
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For the damaged case,
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(7.42)

Where 51i is the velocity in axial direction at Node i; 52’ is the velocity in transverse
direction at Node i and 5; is the angular velocity within the plain at Node i. «,, and

a;, are the damping coefficients for the proportional damping.

317



Substitute Eqgs. 7.33 through 7.42 into Eq. 7.32 yields,

A m IMIHO S +{A YTk K, 146, 3+ A Y kK, 0 16

m

) M {0

A} a, ”;[ THSTY A Y a k, (K, 146, A Y ay,,

+{Al} az+l]k1+l[Koz+1]{ z+]}

i (7.43)
= {A Y m M) O™ A YRR, 46 YA Y kLK ] {5+1}

*

—i[M;ki]{5i*+}+{Ai} kLK O A Y ag é“ (M 1467}

*

+{A ) a

+{Al} aHll z+1[ 01+1]{§+1}

Note that the positive end of Element i, the negative end of Element i+1 and Node i shares

the same node in the structure, thus,

07 =16.)=10") (7.44)

(6 =10/} =10"} (7.45)

Substitute Eq. 7.44 and Eq. 7.45 into Eq. 7.43, yields,

AT m MOy +HA Yk K, 6+ A Y kK 0146, )

m,; m

+A Y ay, - M JHO YA Y a, ke [K, 0, A Y g, ;l[ 10"

+{Al} aH—Il z+] oz+l]{ 1+1}
={A Y m M TS A YT RTK G O+ (A Y e [K 0 146 )

T*m

*

[MIUS™ (A VT a KK 8+ (8 VT ’”;1 (M8

+{A'}Ta
+{Al} al+11 z+l[ oz+1]{5+1}

(7.46)

Rearranging the above equation yields,
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A m' IM O s+ (A Yk, K, 46, 3+ A Y k(K 014600

r QoM +a,,  ,m
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= (AT My A KT S A YT KK, 0400
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r QoM +a;, mn

+{A}

(7.47)

Note that the force vectors (i.e. {£,}, {F. .}, {F. .}, {F.,}, {E.}, U}, {F.},

{F:m} , {E*,} , {F:H} ) can be summarized as the multiplication of property coefficients,

configuration matrices and node displacement vectors. Because the designed damage are

simulated by the changes of Young’s modulus ( £), linear mass (m ) and proportional

damping coefficients a,, and g, , other parameters, for example, the length of element

(L), the cross sectional area ( 4) and the moment inertia of the cross section ( / ), are not
influenced by damage and remain the same for the undamaged and damaged elements.
Consequently, the configuration matrices for the element stiffness and element mass are

the same for both the damaged and undamaged elements. Namely,

[K,.1=[K,,] (7.48)
(K, .]=[K, ] (7.49)
[M,']=[M,] (7.50)

Substituting Eqgs. 7.48 through 7.50 into Eq. 7.47 yields,
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(7.51)

Moving forward the property constant from each term into Eq. 7.51 and rearrange the

equation yields,

m' (A MO S+ kAN TIK, 148, 3+ b A8 TTK, 0148,

l

a, m; +a,, ,m

5 TN IM "+ a kAN TR, 40, ap kg (AT TK 0 146,
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- ai*,lki* {Al }T[Ko,i] {51*} - a;+1,1k;+1 {Al }T[Ko,m ] {5;1}
=m"{A ) [M] (6"

(7.52)

Dividing Eq. 7.52 by m” yields,

320



e {A’} [M]1{5" }+

a,,m; +a,
2m’"

117

TG YT

* *
m; + a1+1 om

SAATIK, 1, L i FA YK, 0146,

A M1

—— A }T[Ko,i]{@}
m

a:lk: .
A YK, 140 -
m

={N V' [MI16™}

Define the following coefficients,

. .
“EHA K, 0 148,

1+llk1+1 i
—EEA YK, 0 10
m

2m’"

ﬁ6 — ) = i+l

321

A YIK, 6 b+ ”m' ut (A K, 01403

(7.53)

(7.54)

(7.55)

(7.56)

(7.57)

(7.58)

(7.59)

(7.60)



For t=1¢,,

*
IB _ ki+1
8 — m*i

* * * *
a; om; +a,,, (.,

By =

2m'

* *
B = i ki
1= e

m 1

Substituting Eq. 7.54 through Eq. 7.64 to Eq. 7.53 yields,

BUA Y IMITS ) |, +B, (A YK, 146, D |, +B (A Y K, 146D,

+ BN Y IMIO ) |, +B (N YK, 146, D, +Bs (A YK, 146D,
= BN YK, 6 D, =B (A Y IK, o 1S D |, =B (A IM 16" D,
= B (A YK, 1460, D, =B (A YK, 146, D |, = (A Y ML),
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(7.61)

(7.62)

(7.63)

(7.64)

BAN Y IMIHO" S + BAN YK, 146, b+ BAN YTIK, 0 18,3+ BAN Y [M 146"}
+ B AN VT [K, 140, 1+ BAN YT [K, ., 140, = BAN YT [K,, 146, }
— BAN VK, 1467 = B AN Y [MI1{8™} - B (A YT (K, 140/}
—BAN YK, 1460, = A Y M 16"}

(7.65)

Writing the Eq. 7.65 at different time point, yields the following groups of equations,

(7.66)



For t=t,,

BUA YT IMIE D, +6,(A VIK, 16, DI, +B,(A VK, .16, D),
+ BN YTIMIEE D |, +A (A VK, 16, D, +B,(8 VT K,,, 16, D],
~ B (A TR, 1 D, ~BGE YK, 160D, ~B (A T IMIE D),
~ B YLK, 18D, Al YK, 160D, = (A YT IM167 ),

(7.67)

For t=t¢,,

BN Y M D, +B (A Y IK, 146, D, +B (A VK, 146,11,
+ B (A Y IMIHO D) |, +Bs (A VTIK, 146, D, +B (A VK, 0 146, D,
— B (A YK, 6 D |, =B (A Y IK, 016D |, =By (A Y M6 D,
— BN YK, 16D, —B(A YK, {67, D |, = (A Y IMI 6™,

(7.68)

Arranging the above linear equation group into matrix form, yields,
Xp=Y (7.69)
Where the coefficient matrix of the linear equation group is given as following, (note, due

to the limitation of the page size, the transposed form of the matrix is provided)
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AT,
(A V1K, 140, D,
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The vector of unknown and the vector of known are given as,
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(A Y M6 D,

Y= (A M6 )|, (7.72)

(A M6 DI,

Using the Least Square Method, the vector of unknown, ‘B’, can be computed from the

following equation,

p=X"X)"(X"Y) (7.73)

With the vector of unknown computed, the damage indices for stiffness, mass and

damping can be computed as follows,

m
B = (7.74)
m
k
o om”
p o= DB (7.75)
Nk, k, B,
m”
ki,
ky, m"
B, = =— iy (7.76)
ki+1 ki+1 ﬂS
m"”
a;k;
a, m' ok 1
ﬂail: *’1: - *._’:&._ (7.77)
oa, agk Kk 10 ﬁki
m”
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ai+l,lki+1
m” i
g = Qv _ Kin _ Bs 1 (7.78)
av+ * * * .
M, ai+1,lki+1 ki, B ,Bkm
m’
* *
Assume a,,~a,, and a,,~a,,
a;om; +a;, ,m;,
l'* *l l'*
ﬂ ~ ﬁ _ ai+1,0 ~ ai,O _ ai,O(mi +mi+1) . m - 2m X m _ ﬂ4 . ]-
ai,0~ Qg * T T * * i« * * * PR —
Ao Qg Gig(m; +m,) m a;om; +a;, M, m By ,Bm,
=
2m’
(7.79)

7.4.3 Damage Evaluation for a Continuous System with Proportional Damping

In this subsection, a fixed-fixed beam is used to evaluate the performance of the proposed
theory in dealing with damping damage detection. The geometry of the beam under
consideration are indicated Figure 7.19. The detailed damage scenario is summarized in
Table 7.4. The geometry of the cross-section of the beam is shown in 19. The modulus of
elasticity ( E ) of the material is 29,000 ksi. The mass density of the material is 7.345x107

kip-sec?/in®.
The fixed-fixed beam is meshed into 6 elements and has 7 equally spaced nodes. The
length of each element is 12.0 inches. For illustrative purposes, typical elements are

indicated in Figure 7.19.

For each node on the beam, a white noise, 100xrandom(-1,1), is used as node force and is

applied in transverse direction. The five white-noise forces are the same as the one applied
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in the above four cases and are plotted in Figure 6.2. Given the external load case, exact
accelerations, velocities and displacements of the five nodes were computed at every 1E-4

seconds (10,000 Hz) for 0.2 seconds.

In this case, the velocity (x(¢)) of each node in the undamaged case was used as the
velocity used to compute power (A) for both the undamaged and damaged cases. For
every two nearby elements, the coefficient matrices (‘X’) and known vector (‘Y’) were
constructed by substituting the acceleration ( X(¢) ), velocity ( x(¢) ), displacement ( x(¢) ),
and velocity used to compute power (A) into Eq. 7.70 and Eq. 7.72. The coefficient
damage index vector, B, related to the two nearby elements was computed using Eq. 7.73.
Then the damage indices for nodal mass, element stiffness and element damping
coefficients are computed using Eq. 7.74 through Eq. 7.79. The damage severities for
stiffness are computed using Eq. 2.13. The damage indices for each property are shown
in Table 7.5 and are plotted in Figure 7.23. The related damage severities are plotted in

Figure 7.24
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Figure 7.19. Geometry of the Fixed-Fixed Beam with Proportional Damping

Table 7.4. Designed Damage Scenario for the Fixed-Fixed Beam

Designed Damage Severity (%)

Element Element Element Element Damping

Number Stiffness Mass a, a,
#1 0 0 0 0
#2 0 0 0 0
#3 10 20 20 10
#4 10 20 20 10
#5 0 0 10 10
#6 0 0 10 10
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Deflection at Mode 4
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Figure 7.20. Displacements in Transverse Direction of Node 4 of the Fixed-Fixed Beam under the
Given External Load: (a) Full Plot and (b) Zoomed in Plot

329



Velocity in Transverse Direction at Node 4
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Figure 7.21. Velocities in Transverse Direction of the Node 4 of the Fixed-Fixed Beam under the
Given External Load: (a) Full Plot and (b) Zoomed in Plot
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Figure 7.22. Accelerations in Transverse Direction of Node 4 of the Fixed-Fixed Beam under the

Given External Load: (a) Full Plot and (b) Zoomed in Plot
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Table 7.5. Damage Detection Results for the Fixed-Fixed Beam with Proportional Damping

Designed Damage Indices

Property System #1 System #2 System #3
m' 1.00 1.25 1.00
k; 1.00 1.11 1.00
ki 1.00 1.11 1.00
aj 1.00 1.11 1.11
CH 1.00 1.11 1.11
ai’o 1.00 1.25 1.11
8ir1.0 1.00 1.25 1.11

Estimated Damage Indices

Property System #1 System #2 System #3
m' 1.00 1.25 1.00
k; 1.00 1.11 1.00
ki 1.00 1.11 1.00
aj 1.00 1.11 1.11
a1 1.00 1.11 1.11
ai’o 1.00 1.25 1.11
8ir1.0 1.00 1.25 1.11

332



1.2

0.3
0.6
0.4
0.2

#1 System,[-‘,i

1.25

1
3
]

#2 System

0.75
0.5
0.25

1.2

0.8
0.6
04
0.2

#3 Syatem,{-‘,i

Figure 7.23. Damage Indices (B;) for the Fixed-Fixed Beam with Proportional Damping Using

Damage Index () for the Fixed-Fixed Beam with Damping
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Damage Severity (o) for the Fixed-Fixed Beam with Damping
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Figure 7.24. Damage Severities (a;) for the Fixed-Fixed Beam with Proportional Damping Using
Isolated Beam Element Analysis Method
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7.4.4 Summary

In Subsection 7.4, the Power Method was developed to be able to detect damage in
continuous system with damping, which was simulated by the proportional damping and a
fixed-fixed beam is provided to validate the proposed theory. In the numerical case,
damage in mass, stiffness, and damping were simulated and exact displacements,
velocities, and accelerations were computed. According to the damage detection results,
all the designed damage in masses, stiffness, and damping were located and evaluated
accurately and neither false-positive damage index nor false-negative damage index was

found.
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8 APPLICATION OF THE METHOD TO SHAKE TABLE TESTS

8.1 INTRODUCTION

In this section, the performance of the proposed method in the real world will be studied
using experimental data sets. The data sets were collected from a series of shake table
tests of a bridge model conducted at the Caltrans Seismic Response Modification
Devises facility at the University of California San Diego by Dr. Gianmario Benzoni, Dr.

Noemi Bonessio, and Dr. Giuseppe Lomiento (Benzoni et al. 2012).

8.2 DESCRIPTION OF THE STRUCTURE AND TEST SETUP

The bridge model tested on the shake table is a one-span steel frame composed by two
columns, one deck and additional mass. The two columns of the bridge model are
identical. The column is composed by four column portions and one cap beam which is
prepared for the later installation of the viscous dampers between column and deck.
Each of the four column portions is composed by one hollow rectangular section
(HSS8x4x1/4) with four channel section (C4%7.25) on each side. The cap beam is
composed by two 51 inches long plates with small plates in between. The height of each
column portion is 17.5 inches and the height of the cap beam is 10 inches. The
connections between two column portions and the connection between column portion
and cap beam are both bolted connections. The deck of the bridge model is composed by
two steel boxes and two longitudinal wide flange beams (W6x15) with six wide flange
beams (W4x13) in between. Each of the steel boxes is seated on the top of each cap
beam. The width of the deck is 64 inches and the length of the deck is 126 inches. Steel

plates were put on the top of the deck as the additional mass to the bridge model to
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reduce the natural frequencies of the bridge model. The total weight of the additional
mass is 3,600 Ibs. The bridge model and the global coordinate system are given in the
photograph of Figure 8.1. The detailed dimensions of the structure are given in Figure
8.2. At different locations, tri-axial, single-axial accelerometers and string pots were
installed to collect accelerations, and displacements in different directions. The locations
of the accelerometers are indicated in the photograph of Figure 8.3. The locations of the
string pots are indicated in the photograph of Figure 8.4. The acceleration and

displacement data from the bridge model were collected at 0.002 second intervals.

Three types of white noise signals were used as inputs to excite the structure in global X,
Y and Z directions. Input Type A is the reference input for X direction with frequency
band 1-10 Hz. Input Type B is the reference input for Y direction with frequency band
1-10 Hz. Input Type C is the reference input for Z direction with frequency band 5-20
Hz. If the input intensity of the base vibration is risen up to 100%, the structure will be
forced to reach its nominal capacity in the corresponding input direction of the base
vibration. In case of any damage caused by extensive base vibration, the input intensity

of the base vibration is limited up to 50%.

In the given data file, seventeen data sets were provided: Test #01, Test #03, and Test
#05 through Test #19. Since Test#05, Test#06, Test#08, Test#09, Test#12, Test#13,
Test#14, andTest#19 were not excited in the global X direction, these eight tests will not
be taken into consideration in the following damage detection process. The remaining
nine shake table tests were either excited solely in the global X direction or excited in
the global X, Y, Z directions at the same time. Among these nine tests, the first five tests

are undamaged cases and the remaining four tests are damaged cases:
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(1) Test #01 is an undamaged case and the structure is excited by 10% input Type
A in global X direction only;

(2) Test #03 is an undamaged case and the structure is excited by 25% input Type
A in global X direction;

(3) Test #07 is an undamaged case and the structure is excited by 50% input Type
A in global X direction only;

(4) Test #10 is an undamaged case and the structure is excited by 25% input Type
A in global X direction, 25% input Type B in global Y direction, 25% input
Type C in global Z direction;

(5) Test #11 1s an undamaged case and the structure is excited by 25% input Type
A in global X direction only;

(6) Test #15 is a damaged case and the structure is excited by 25% input Type A
in global X direction, 25% input Type B in global Y direction, 25% input
Type C in global Z direction. The damage is simulated by removing the south
channel section from the lowest section of the north column;

(7) Test #16 is a damaged case and the structure is excited by 25% input Type A
in global X direction, 25% input Type B in global Y direction, 25% input
Type C in global Z direction. The damage is simulated by (1) removing the
south channel section from the lowest section of the north column and (2)
removing the west channel section from the lowest section of the south
column;

(8) Test #17 is a damaged case and the structure is excited by 25% input Type A
in global X direction, 25% input Type B in global Y direction, 25% input
Type C in global Z direction. The damage in the model is simulated by (1)

removing the south channel section from the lowest section of the north
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column, (2) removing the west channel section from the lowest section of the
south column and (3) removing the bottom beam component from central
section of the west beam.

(9) Test #18 is a damaged case and the structure is excited by 25% input Type A
in global X direction. The damage is simulated by (1) removing the west
channel section from the lowest section of the south column and (2)

removing the bottom beam component from central section of the west beam.

To better illustrate the location of the damage, all the simulated damage in the structure

are indicated in Figure 8.3.

Figure 8.1. Test Setup and Global Coordinate System (Benzoni et al. 2012)
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Figure 8.2. Geometry of the Structure under Testing: (a) Geometry of Columns and (b) Geometry of Deck (Benzoni et al. 2012)
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Figure 8.3. Locations of Accelerometers and Damage Scenarios

(Note, the original figure was copied from the report written by Dr. Benzoni et al. (2012).)

Figure 8.4. Locations of String Pots (Benzoni et al. 2012)
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8.3 THEORY OF APPROACH

From Figure 8.3, the Power Method can be applied using the data collected from tri-axial
accelerometers. However, the noise level of the acceleration records from tri-axial
accelerometers is much higher comparing with the noise level of the acceleration records
from mono-axial accelerometers, which can be seen from Figure 8.5. The noise level of
the acceleration records from tri-axial accelerometers is even higher than the acceptable
noise level of the proposed method (5% to 10%). Thus, the damage detection results
using the proposed method based on the data collected from the tri-axial accelerometers

will be unstable and inaccurate.

From Figure 8.3, the Power Method can also be applied based on the data collected from
mono-axial accelerometers. The noise level of the data collected from the mono-axial
accelerometers is around 2% to 3%, which is acceptable and can be roughly seen from
Figure 8.5. However, since the author has some doubt on the locations of the mono-axial
accelerometers, the data collected from the mono-axial accelerometers will not be

considered in the following damage detection process.

From Figure 8.4, the Power Method can also be applied based on the data collected from
string pots. The noise level of the displacement records from the string pots are

acceptable, which can be seen from Figure 8.10(a) and Figure 8.11(a).

Because only the data collected from the string pots at top ends of the two columns will
be used to detect damage in the bridge model, the bridge model is simplified into the
one-bay frame shown in Figure 8.6. The element number, joint number and element

directions are also shown in Figure 8.6. Given the simplified model, the damage
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detection algorithm is developed and is shown in the following paragraphs.

Comparison of Tri-Axial and Mono-Axial Accelerometers
0.2

Tri-Axial{ACCEX)

D.15 — Mono-Axial(ACC10)

0.1

0.05

Original Acceleration i(g)

0.1

10 20 30 40 50 60

-0.15 : '
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Figure 8.5. Comparison of the Measured Accelerations from Tri-Axis and Single-Axis
Accelerometers (Test #11)
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Figure 8.7. Free Body Diagram Analysis of the Deck (Element #2)

Since only the measurements of displacements in the global X direction at both ends of

the columns in the bridge model satisfied the noise tolerance of the proposed method,
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only the translational force and torsional moment of the deck can be estimated accurately.
As shown in Figure 8.7, considering the translational force and torsional moment

balance of the deck, gives

[f1+Fl,+1+[z,1 +15, +F;; =0 (8.1)
11+,5 +Flf5 +1,,—1,,-F5=0 (8.2)

Where, the first subscript is the element number; the second subscript is the force
direction: ‘1’ represents the shear force in the global X direction and ‘5’ represents the

bending moment in the global Y direction. The superscript ‘“+’ indicates the positive end

of the element and ‘-’ indicates the negative end of the element. For example, I},

indicates the inertia force at the positive end of element #1 (north column) in shear force

in the global X direction.

To avoid using the highly noise polluted acceleration data from the tri-axis accelerometer
installed at the center of the deck, the inertia force for the deck is computed as the
combination of the inertia force at the positive end of the deck and the inertia force at the

negative end of the deck. Namely,

12,1=I£1+12:1 (8.3)
[2,5 :[2+,5 _[;,5 (8.4)

Note the above negative sign in Eq. 8.4 is due to the different positive direction defined

for Joint 2 and Joint 3 around the global Y direction.

Substituting Eq. 8.3 and Eq. 8.4 into Eq. 8.1 and Eq. 8.2, respectively, yield,

IL+FJ1+12‘,1+12*,1+13"1+F3;=0 (8.5)
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+ + - + - -
11,5 +F1,5 +12,5 _12,5 _13,5 _F3,5 =0

The above two equations can be combined as following,
11,5 Fl,s 12,5 0 -1 12,5 13,5 F3,5 0

The force components in the above expression can be computed as follows,

I7s 0 m |0
_[my0 {S;J

0 mys |

{[;1}: mil 0 {5;:1}
L] [0 ms|0)5

Fil _(EL \-12 —6L 12 —6L, ||J;
F1+5 L? 6L1 2L§ - 6L1 4Lf 51?1

Foy| (EJQ, )12 6L, —12 6L,||Jss
Fy Ly )6L, 4L} —-6L, 2L |5,

+
53,5

(8.6)

(8.7)

(8.8)

(8.9)

(8.10)

(8.11)

(8.12)

(8.13)

Where m,| and m,, represent the mass at the positive and negative ends of Element i

along the global X axis direction, respectively; m. s and m, s represents the mass
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moment of inertia at the positive and negative ends of Element i for the rotations about

the global Y axis direction, respectively; 5I+1 and 51_1 are the accelerations at the

positive and negative ends of Element i along the global X axis direction, respectively;

5:5 and 5{5 are the angular accelerations at the positive and negative ends of Element

1

i for the rotations about the global Y axis direction, respectively; J;, and J,, are the

displacements at the positive and negative ends of Element i along the global X axis

direction, respectively; s and J; are the rotations at the positive and negative ends

of Element i around the global Y axis direction, respectively.

Substituting Eq. 8.8 through Eq. 8.13 into Eq. 8.7 yields,

51?1
m;, 0 ||o] N E I )-12 -6L 12 —6L, ||J;
0 m's||o L ) 6L, 2L} -6L 4L ||
o5
my, 0 (5 o0 (67 S0 [
4 M Y H ..”}{m” ) H.i"}{mll ) H“} (8.14)
i 0 m s 52,5 0 —m, 52,5 0 — My 5 53,5
05,
N EJ, 1 0] 12 6L, -12 6L, ||d;; 0
Ly )0 -1)6L, 4L -6L, 2L ||6;,
Oy
Given the configuration of the structure, for i=1, 2 and j=1, 5,
5,+, - 5.1‘11,/ - 5;+1 (8.15)

Where 51’“ is the acceleration at Node (i+1) along the direction indicated by the

(13421

subscript “j”.
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Substituting Eq. 8.15 into Eq. 8.14, yields,

m, +m;, 0 ol (E I, \-12 -6L 12
B 5 “1 + 171 1
0 m's+mj s || 62 L )eL, 2L -6L,

+'1 0 m3, +m;, 0 52
0 -1 0 my s +ms 553

5y
—12 6L, ||5;5
—-6L, 2L:||5;,
55

EL\1 0] 12 6L,
L )0 -1]6L, 4L

Define,

+ - _ 2
m +m,, =m

+ - _ 2
m s +m,s =ms

+ - _ 3
m,, +n,, =m

+ - _ 3
m, s +ms 5 =M

~12 —6L, 12
[Ko,l]{ 1

12 6L, -12 6L3}

K =
LK) {6L3 41> —6L, 2I
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~6L,
6L, 2L -6L 4L

O
—6L, ||0,;
4L } o
Sy

|

(8.16)

(8.17)

(8.18)

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)



{0, )= 5 (8.24)
S5

ry=| " 8.25

[R;]= 0 _1 (8.25)

Substituting Eq. 8.17 through Eq. 8.25 into Eq. 8.16, yields,

{ml OH&}m [K(,,l]{dlH[&]{”;1 03}{?3}+k3[R3][K0,2]{53}=0 (8.26)

2 ] 22
0 ms |95 ms s

Ignore the mass moment of inertia in Eq. 8.26, yields,

mf 0 512 m13 0 5‘13 )
[0 OH&Q}M [K,.11i6, }+[R3][ 0 0}{55}”@ [R,1IK,,1{6,}=0  (8.27)

Define

YT 8.28
M=\ o (8.28)

Then Eq. 8.27 can be rewritten as,

mi[M, 6%} +k [K, 16} +m[RIM, {0} +k[R]IK, ;14,1 =0 (8.29)

Consider the following vector as the velocity vector used to compute power that will be

used in the Power Method analysis.
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(A) = {Aﬁ} (8.30)

Multiplying Eq. 8.29 by the velocity vector used to compute power (i.e. Eq. 8.30) yields,

m AV M, 1O+ ky {AVIK, 146, } +mi AR, 1M, 145"

_ (8.31)
+h AR K, , 14051 =0
Rearrange the Eq. 8.31 yields,
mi AL M 1O} + Ky {AV(K, 48, 3+ A (AR DK, , 1464 ) 832)
=—m} {AY[R1IM, 1467}
Dividing Eq. 8.32 by m, yields,
2 ok ks
P AN M, 1487} + =L HAVIK, 146, 1+ 2 (AHRDIK, 146, )
m; m; m, (8.33)
=—{A}R, )M, 1467}
Define the following coefficients,
p=" (8.34)
m,
B, = k_13 (8.35)
m,
B = k—33 (8.36)
m

Substituting Eq. 8.34 through Eq. 8.36 into Eq. 8.33 yields,
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BAAIM {67} + B (ALK, 146, } + BHAY IR 1K, , 1465 }
=—{A}[R,][M, 145}

(8.37)

Writing the Eq. 8.37 at different time points yields the following groups of equations,

For t=t,,

BUAIM, 16D |, +B.((AYK, 146, DI, +B, (AR IIK, . 18 D,
=—({AMR,1IM, 1167 ),

For t=t,,

BUANM 16|, +B,(IAYK, {6 DI, +B(ANRIIK, . 146, 1),
=—({A} IR IIM 167 ),

For t=t,,

BUAM 67D |, +B8,(IAMK,, 146, D, +B(AMRIIK, 148, D,
=—({A}[R,1IM, 1467 D).,

Arranging the above linear equation group into matrix form, yields,

XB=Y

Where the coefficient matrix of the linear equation group is given as followings,
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UMMM, (ALK, 16 D, (AYRIIK, 146, D)], |

X=| (AHM, 187D, (AYK, 146, D, (AR, 18611,

_({A} [M,1{6°D), (AHK, 146, D, (GAHRIK,, 145, }) oy |
(8.42)

The vector of unknown and the vector of known are given as followings,

by
B=15 (8.43)
B,

—({AMR,IM, 1{6° D),

Y =~ (AR IIM, 167D, (8.44)

~({A IR IM 1467 D),

Using the Least Square Method, the vector of unknown, ‘B’, can be computed from the

following equation,

p=X"X)"(X"Y) (8.45)

With the vector of unknown computed, the damage indices for stiffness, mass and

damping can be computed as followings,
2

B, ="L=45 (8.46)

m ml
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(8.47)

A
=~ |||_W‘
" l‘l_sw .
=

= w

8.4 EXPERIMENTAL DATA PROCESSING

8.4.1 Introduction

As stated previously, the data that will be used in the damage detection process is the
date collected from the string pots at the top ends of the two columns. The displacement
feedback from the shake table will be used as the base displacements of the two columns.
For illustration purposes, the recorded displacement time histories from Test #01, Test
#03, Test #07, and Test #16 are plotted in Figure 8.8 through Figure 8.11. From the
Figure 8.8 and Figure 8.9, it’s obvious that the displacement time histories from Test #01
and Test #03 are greatly influenced by noise. Consequently, Test #01 and Test #03 won’t
be taken into consideration for the later damage detection process. In the plotted
displacement time histories, the noise level of one record can be seen from the beginning
and ending of the plotted data, when the structure was in static situation. For example,
the noise level of the displacements measured from Test #01 can be seen from the first
fifteen seconds and the last 5 seconds in Figure 8.8(a). However, there might be other
type of noise in the measured displacement records, which can be seen from the sudden
changes of the measured displacement curve at the southeast corner of the desk in Figure
8.8(b) and Figure 8.9(b). Also from the plotted displacement time histories, the recorded
time histories are observed to be shifted up or down by a small constant, which can be
observed from Figure 8.8 (a). The constant mixed in the displacement records are

considered to be initial zero setting problems. To reduce the noise levels and eliminate
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the constant components from the measured displacement time histories, digital
bandpass filters were used to process the data. To achieve better results, the average
value will be deducted from each displacement record before the digital bandpass filter

is applied.
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Figure 8.8. Measured Displacement Time Histories by String Pots from Test #01: (a) Full Plot
and (b) Zoomed in Plot
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Figure 8.8. Continued
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Figure 8.9. Measured Displacement Time Histories by String Pots from Test #03: (a) Full Plot
and (b) Zoomed in Plot
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Figure 8.10. Measured Displacement Time Histories by String Pots from Test #11: (a) Full Plot

and (b) Zoomed in Plot
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8.4.2 Joint Motion Estimation
To compute the shear forces and moments at the ends of the two columns, the following
dynamic data at the top ends of the two columns are required: the joint rotations, joint
angular velocities, joint angular accelerations around the global Y direction and joint
translational displacements, joint translational velocities and joint translational
accelerations in global X direction. However, only the joint translational displacements
can be measured by the string pots at the northeast and southeast corners of the deck.
The other joint motions will be estimated based on the measured displacement data at
the two ends of the columns. Besides the author’s doubt on the locations of the
mono-axis accelerometers, the other reasons why the measured acceleration records are
not used here are:

(1) The locations of the accelerometers and string pots are not sufficiently close

to each other; and
(2) The noise within the measured accelerations and measured displacements are

not the same due to the difference of the measuring instruments.

Due to the above two reasons, the damage indices based on the measured displacements
and measured accelerations are not as stable as the damage indices based solely on

measured displacements.

In order to compute joint angular velocities and joint angular accelerations, the joint
translational velocities and joint translational accelerations should be estimated from
measured displacement data. The joint translational velocity time histories are estimated

based on the measured displacement time histories, using,
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e 2(8)-6(1,))
S5(t) =—0(t,)+ ‘) (8.48)

Where, the initial displacement and initial velocity are zeros for the shake table test.

Namely, 5(0)=0, 5(0)=0, (¢, —t,)=dt=0.002 sec.

The joint translational acceleration time histories are estimated based on the joint
translational velocity time histories using,
. . 2(8(t) - 5(¢
5(t1)=—5(t0)+—( (t)-5(,) (8.49)
(tl _to)
Where, the initial velocity and initial acceleration are zeros for the shake table test.

Namely, 8(0)=0, 5(0)=0, (t,—t,)=dt=0.002 sec.

Given the joint translational motions, the joint rotational motions can be estimated. In
the current study, the joint rotational motions (i.e. joint rotations, joint angular velocities
and joint angular accelerations) at the ends of the two columns are estimated using cubic
interpolation and finite difference methods. To simulate the fixed bottom joints of the
two columns, a pseudo joint, which shares the same motion (i.e. displacements,
velocities and accelerations) as the base joint, is used and is assumed two inches beneath
the base joint of each column. Given the joint translational motions at the pseudo joint,
base joint and top end joint of each column, the deflection curve of each column at each
time point is described using the cubic interpolation at each 0.05 inches. The joint
rotations, joint angular velocities and joint angular accelerations at the top of the
columns are estimated using the following finite difference equations based on the

interpolated displacements , velocities and accelerations,
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51,1 1, _51,1 z=L,~dz 2
s = dz =% (820
531 _531
_ =1, lz=Li-dz o3
53,5 =L dz =% (®31
511‘ _511
. Ry P Me=p—dz a0
S5 P dz =% (822
é“31‘ _531
. _ > z=I, Vlz=Li-dz &3
5, s - =0, (8.53)
.. 51,1 =L, ~ 0, =L-dz 2
5. - — =5 (8.54)
531‘ _531
.. ey e=p-dz 33
53,5 =L dz =% (839

Where dzis the interpolation spacing for the cubic interpolation and is set to be 0.05

inches in this case; L, is the length of the column; Oi5| » Os

, and 51.5‘ are the
z Tz

z

joint rotation, joint angular velocity, and joint angular acceleration around the global Y

direction (indicated by subscript ‘5”) of Element #i at the height of z; J,,| , 0,

, and
z

51',1

are the translational displacement, velocity, and acceleration along the global X

z

direction (indicated by subscript ‘1’) of Element #i at the height of z.

8.4.3 General Data Processing Procedures
In order to apply the proposed method to detect damage in the bridge model using only
the measured displacement records at both ends of the columns, the measured

displacement records need to be filtered and other joint motions, such as joint
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translational acceleration and joint rotations, need to be estimated. The general data
processing procedures, used in the current study, are summarized as follows,

(1) Plot the power spectrum densities of the measured joint translational
displacement time histories at both ends of each column and design the
digital bandpass filter to filter out the first bending mode, which is indicated
by the highest peak in the power spectrum densities plot;

(2) Compute the filtered displacements by applying the designed filter from Step
(1) to the measured displacement time histories;

(3) Compute joint translational velocities using Eq. 8.48 and compute joint
translational accelerations using Eq. 8.49;

(4) Compute the filtered translational velocities and filtered translational
acceleration using digital bandpass filters;

(5) Compute joint rotations, joint angular velocities and joint angular
accelerations using Eq. 8.50 to Eq. 8.55;

(6) Input the computed filtered joint translational displacements, accelerations,
joint rotations and joint angular accelerations into Eq. 8.42 and Eq. 8.44 and
compute the coefficients of the linear equation group by using Eq. 8.45; and

(7) Compute the damage indices for mass and stiffness using Eq. 8.46 and Eq.
8.47.

8.5 DAMAGE EVALUATION OF THE SHAKE TABLE TESTS

According to the general data processing procedures introduced in Section 8.4.3, the
power spectrum density for the original measured displacement time histories were
plotted and passband of the digital filter were selected. For illustration purposes, the

power spectrum densities of the measured displacement records from Test #11 are
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plotted in Figure 8.12. If the displacement time histories are filtered at the highest peak
shown in Figure 8.12, the filtered displacements at the tops of the north and south
columns will be vibrating in the same direction with similar amplitudes. Based on the
above observation, the highest peak is relative to the lateral bending mode in global X
direction. The locations of the first bending mode in global X direction based on the
displacement records for all the tests are reported in Table 8.1. The width of the pass
band of the digital filters for all the tests are also provided in Table 8.1. Based on the
observation of the frequency change of the bending modes from all tests, the frequency
of bending mode will decrease for the damaged cases. However, based solely on the
changes of the frequencies, the damage locations and damage severities cannot be
detected and evaluated. As described in Steps (2) to (4) in Section 8.4.3, the filtered joint
displacements, filtered joint velocities, filtered joint accelerations are computed. The
filtered joint rotations, filtered joint angular velocities and filtered joint angular
accelerations are computed as described in Step (5) in Section 8.4.3. For illustration
purposes, the filtered joint displacement time histories at the top ends of the two columns
for Test #11 are plotted in Figure 8.13. The filtered joint velocity time histories at the top
ends of the two columns for Test #11 are plotted in Figure 8.14. The filtered joint
acceleration time histories at the top ends of the two columns for Test #11 are plotted in

Figure 8.15.

Due to the existence of noise in the measured displacement time histories, digital
bandpass filters were adopted in: (1) filtering measured displacement time histories; (2)
filtering estimated velocities; (3) filtering estimated accelerations. However, both the
existence of noise and the filtering technique will cause a certain amount of loss of the

damage information contained in the perfect displacement time histories. According to
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experience acquired from detecting damage in noise-contained numerical models, two
key points will assure the stable performance of the proposed method to the bridge
model:

(1) Use narrow bandpass filter. The main objective of using a digital bandpass
filter is to increase the signal-to-noise ratio in the filtered displacement time
histories. By applying a narrow bandpass filter right at the peak will enable
most of the useful information to pass while most of useless noise to be
filtered. The numerical error caused by an inappropriate narrow bandpass
filter is obvious and can be modified by increase the width of the pass band
appropriately.

(2) Use relative displacements for the computation of member forces. Because
the amplitude of base vibration is smaller than the vibration amplitude at
each column top and the amplitude of noise in the base displacement time
histories is the same, the signal-to-noise ratios of base displacement records
are lower than the ones of the displacement records from column tops. By
using the relative displacements, the base displacement records will become
all zeros without any noise while the signal-to-noise ratios of the

displacement records from column tops remain the same.

The coefficient matrix and known vector can be computed by substituting the computed
joint absolute acceleration time histories and joint relative displacement time histories
into Eq. 8.42 and Eq. 8.44. Then unknown coefficient vector shown in Eq. 8.43 can be
computed using Eq. 8.45. The damage index of the joint translational masses and the
damage index of the lateral stiffness of the columns can be computed using Eq. 8.46 and

Eq. 8.47. The computed damage indices and damage severities for all the tests are listed
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in Table 8.2.
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Figure 8.12. Power Spectrum Density Analysis of Displacements from String Pots from Test#11:
(a) Full Plot and (b) Zoomed in Plot
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Figure 8.12. Continued
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Filtered Joint Translational Displacements
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Figure 8.13. Filtered Displacement Time Histories Recorded By String Pots from Test#11: (a)
Full Plot and (b) Zoomed in Plot
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Filtered Joint Translational Velocities
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Figure 8.14. Filtered Velocity Time Histories at the Locations of the String Pots from Test#11: (a)
Full Plot and (b) Zoomed in Plot
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Filtered Joint Translational Accelerations
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Figure 8.15. Filtered Acceleration Time Histories at the Locations of the String Pots from
Test#11: (a) Full Plot and (b) Zoomed in Plot
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Table 8.1. Locations of Bending Mode and Selected Pass Band of Digital Filters

Location of Bending Mode

Designed Pass Bands for

Test Num. Peak (Hz) Digital Filters (Hz)
Test #07 3.8~ 4.3 3.83 ~ 3.93
Test #10 3.8 ~ 4.05 3.84~3.95
Test #11 3.8~42 3.83 ~ 4.00
Test #15 3.8~ 4.0 3.85~ 3.98
Test #16 3.45~3.75 3.53 ~ 3.68
Test #17 3.4~38 3.56 ~ 3.66
Test #18 33~3.8 3.61 ~3.7

Table 8.2. Damage Indices and Damage Severities for the Bridge Model

Damage Index

Damage Severity

Test Num.

Bm i O Oy
Test #07 0.981 0.974 0.02 0.03
Test #10 1.000 0.994 0.00 0.01
Test #11 1.021 0.992 -0.02 0.01
Test #15 1.025 0.982 -0.02 0.02
Test#16 1.154 1.095 -0.13 -0.09
Test #17 1.195 1.109 -0.16 -0.10
Test #18 1.200 1.167 -0.17 -0.14

8.6 EVALUATION OF DESIGNED DAMAGE EXTENT

In this subsection, the designed damage extent regarding to the whole columns will be

evaluated. The designed damage indices for the damaged portion of the column are easy

to compute. However, as stated in the above analysis, each column will be treated as one
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single element, thus the damage index for the whole column need to be computed. The
computed designed damage index for the whole column will be used as a reference to
check the accuracies of the damage detection results of the damaged column using the

proposed method.

In order to compute the damage extent for the whole column, the damage extent for
lowest section of the column needs to be evaluated. The layout of the cross section of the
column is shown in Figure 8.16. The cross-sectional properties of the tube section and
channel section are provided in Table 8.3. According to the given cross-sectional
properties in Table 8.3, the moment of inertia of the undamaged column cross section

can be computed as following,

|
7] g _
HSS8x4x1/4 | | 4
= —F
| ! <
| ( [ Z7A
C4x7.25 | 1 | Oz
. 5
% \ rrzrrs =
\éﬂzﬁ R
| -1
n Lig " rf!
v 25 4|, 45 ,.|'4|'0‘5 P
10.0"

Figure 8.16. Layout of the Cross Section of the Column of the Bridge Model
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Table 8.3. Cross-Sectional Properties of the Tube and Channel Sections

i y HSS8x4x0.25
|
X _:_ X Cross-Sectional Area, Ay, (in”.) 5.24
| Moment of Inertia about Y axis, I yss (in*.) 14.4
'y Moment of Inertia about X axis, I yss (in4.) 42.5
‘ y C4x7.25
X | x Cross-Sectional Area, A (inz.) 2.13
Moment of Inertia about Y axis, I ¢ (in*)) 0.425
’ y Moment of Inertia about X axis, I ¢ (in*.) 4.58
|
I_LA_I Distance of the Paralleled Axes in Global X 5439

j} | JE 3 Direction, d, (in.)
- _+_ -
| 5

l_ Fﬁj Distance of the Paralleled Axes in Global Y 3.439

| Direction, d, (in.)

dx | dx

(Note, x, y in the above table indicate the direction of local axes.)

The moment of inertia for bending around the global Y direction (note, the global

directions are given in Figure 8.16),

I,=1, s +20 o +2(, .+ Acdj) (8.56)

y

The moment of inertia for bending around the global X direction,
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Io=1 s +20, o +2(, 0+ A.d?) (8.57)

X

The moment of inertia of the damaged column with the southern channel section
removed bending around the global Y direction can be computed as (note, the southern
channel section is the channel section on the right side of the tube section, which is

shown in Figure 8.16),

1;”"”' =1 s+ 1.0 +2(1, 0 + Acdyz) (8.58)

The moment of inertia of the damaged column with the southern channel section

removed bending around the global X direction can be computed as,

D" =1 s +21 o+ o+ A.d?) (8.59)

The moment of inertia of the damaged column with the western channel section removed
bending around the global Y direction can be computed as (note, the western channel

section is the channel section below the tube section, which is shown in Figure 8.16),

D=1 s+ 20 o+, o+ Acdj) (8.60)

The moment of inertia of the damaged column with the western channel section removed

bending around the global X direction can be computed as,

D=1 e+ 10 +2(1, 0 + A.d?) (8.61)

The computed moment of inertia from the above six cases are listed in Table 8.4. Given

the moment of inertia in all the six cases and the modulus of elasticity (i.e. £ = 29000
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ksi), six numerical cantilever models were built in SAP2000,

(1) Undamaged column bending in global Y direction;

(2) Undamaged column bending in global X direction;

(3) Damaged column with southern channel section removed bending in global Y
direction;

(4) Damaged column with southern channel section removed bending in global X
direction;

(5) Damaged column with western channel section removed bending in global Y
direction; and

(6) Damaged column with western channel section removed bending in global X

direction.

In SAP2000, one unit transverse load was added at the top ends of the cantilever beams
and the static displacements at the top ends of the cantilever beam were outputted for the
above six cases. The stiffness for each of the six cantilevers can be computed. Then the
damage indices and damage severities are computed. The static displacements (‘S’ and
‘S™), stiffness (‘k> and ‘k”*), damage indices (‘Bx’) and damage severities (‘ox’) for the

undamaged and damaged cases are listed in Table 8.5.

In Table 8.5,

(1) Case #1 compares the Y-direction bending stiffness between the damaged

column with the southern channel section removed (“ / ;0“”“ ”) and the

undamaged column (“/,*). Note that this case is relative to damage scenario

in Test #15;
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(2) Case #2 compares the Y-direction bending stiffness between damaged
column with the southern channel section removed (‘7 ;"”””) and damaged
column with the western channel section removed (‘7). Note that this

case is relative to damage scenario in Test #16 and Test #17,

(3) Case #3 compares the Y-direction bending stiffness between the undamaged
column (‘7 ’) and damaged column with the western channel section

removed (“ 7 “”). Note that this case is relative to damage scenario in Test

#18;
(4) Case #4 compares the X-direction bending stiffness between undamaged

column (‘7 ’) and damaged column with southern channel section removed

(c [;(mth a)’ and

(5) Case #5 compares the X-direction bending stiffness between the undamaged

column (‘7 ’) and damaged column with western channel section removed

(6 I)\C/VESI 3).
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Table 8.4. Moment of Inertia of the Cross Section of Column

L (in*) 74.792
I, (in*) 178.532
L5 (in*) 49.176
1, (in*,) 173.952
I west (in ) 70.212
WCSt ( ) 115.096

Table 8.5. Evaluation of Damage Indices and Damage Severities

Case (Test) S (in.) S"(in.) k (kip/in.) k" (kip/in.) By oy
Case #1 (T15) 0.0347 0.0342 28.82 29.24 0.986 0.015
Case #2 (T16,T17)  0.0347 0.044 28.82 22.73 1.268 -0.211
Case #3 (T18) 0.0342 0.044 29.24 22.73 1.287 -0.223
Case #4 0.0817 0.1037 12.24 9.64 1.269 -0.212
Case #5 0.0817 0.0844 12.24 11.85 1.033 -0.032

8.7 RESULTS DISCUSSION

According to Table 8.2, for Test #07, Test #10, and Test #11, where the tested structure is
undamaged, the damage severities for mass damage are closed to zeros and stiffness

damage are closed to zeros.

For Test #15, according to the damage index and damage severity of Case #1 in Table
8.5, due to the damage in the lower section of north column simulated by removing the
southern channel section, the bending stiffness around global Y direction of the south

column should be increased by 1.5% comparing with the damaged north column and the
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translational mass should remain approximately the same. Comparing to the damaged
north column, the computed damage severities for the stiffness is 2% increase and 2%

decrease for the mass damage.

For Test #16 and Test #17, according to Case #2 in Table 8.5, the bending stiffness of the
south column around the global Y direction is 21.1% decrease and the lumped mass of
the south column should remain approximately the same with the one of the north
column. Comparing to the north column, the computed damage severities for lumped
mass of the south column are 13% for Test #16 and 16% for Test #17. The computed
damage severities of the column bending stiftness are 9% decrease for Test #16 and 10%

decrease for Test #17.

For Test #18, according to Case #3 in Table 8.5, the bending stiffness of the south
column around the global Y direction is 22.3% decrease and the translational mass and
mass moment of inertia of the south column should remain approximately the same with
the ones of the north column. Comparing to the north column, the computed damage
severities for lumped mass of the south column is 17% decrease. The computed damage

severities of the column bending stiffness are 14% decrease.

The main reasons caused the errors in the damage detection results are,

(1) Estimation of joint rotation at the top of the two columns. According to the
analysis experience to the numerical models, the error in the estimation of
joint rotations will underestimate the damage in column bending stiffness;

(2) Estimation of joint translational accelerations. The estimation of the joint

translational accelerations will cause inaccuracy in the mass damage

378



detection;

(3) Noise in the measured displacement records. The noise in the measured
displacements will cause the overall inaccuracy of the damage detection
process; and

(4) The application of digital bandpass filter. Although the application of the
digital bandpass filter will reduce the noise influence, it will also cause the
incompatibility among displacement, velocity, and acceleration time histories,

which will cause the inaccuracy of damage detection results.

8.8 DAMAGE EVALUATION WITH ELEMENT DAMPING EFFECT

For the steel members in the bridge model, it is inappropriate to consider damping in the
level of individual structural members and it is impractical to determine the damping
matrix in the same manner as the stiffness matrix is determined. Because the damping
properties of materials are not well established and the significant amount of energy
dissipation caused by effects other than material damping properties, such as the friction
at the joint connections. The damping matrix for the structure should be determined from

its modal damping ratios.

However, for experimental purposes, the damping properties of individual structural
members will be considered in this subsection. For simplicity purposes, the Rayleigh

damping model is used.

8.8.1 Theory of Approach

According to Subsection 7.4.2, the damping forces can be computed as the Eq. 7.37. And

the power done by the damping forces can be computed as Eq. 8.62. However, since the
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displacement time histories were filtered by a narrow bandpass filter and the joint

angular velocities were computed based on the filtered displacement time histories, the
“{A}[M'1{5, " and “{A} [Ko’i]{5i }’ parts become linearly dependent to each other,
which will impact the performance of the least square method and force the damage
detection results of a,, and a,, to be ones (i.e. “1” means undamaged). To overcome

this dilemma, only the stiffness-proportional damping model will be used to simulate the

element damping, which is given in Eq. 8.63.

{F.}=[C 146, } =(a,[M, 1+ a,[K, DS, } =a,[M, 1, } +a,[K, 1{5,}

S
61‘72
_[-r o 010 0]
—a MLV 0 10 0 1 0f{%
’ 2 i 5;1
0 0 00 0 Of|.0
"0
o
) o
AL AL S
I
0,
+a, E—f 0 -12 —-6L 0 12 —6L|< 7
’ L . 2 2 5i+l
|0 6L 2I* 0 —6L 4L*||.
, 51',2
) 195
m. ; . .
=diy j[Mo]{@ f+a ki [K,;1{6; } (7.37)
(P, ={0F,,} ={AC {0, } = a;, 7 {AYIM 16, § +a, k; {AVK, 115, } (8.62)
{F,}=[C 16} =a, k [K,,]{5, } (8.63)
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Substituting Eq. 8.63 into Eq. 8.29 yields,

mI[M, 1467+ [K, 16, } + ay bk, [K,, 16, ) +mi[R,][M,1{67)

) (8.64)
+k; [R3][Ka,2] {01+ a3,1k3 [R3][Ko,2] 10,1=0

Multiplying Eq. 8.64 by the velocity vector used to compute power (i.e. Eq. 8.30) yields,

mi (AN M 1467} + by {AYK, 146, } + ay,k, {AYK, 146, }

. . . i ) (8.65)
+ m13 {AR M, ] {53} +k; {A} [R][K, ] {01+ a3,1k3 1A} [R;][K, ] 10,1=0
Rearranging Eq. 8.65 yields,
m {AYIM, 107} + K {AYK, 146, } + ay k {AYK, 146, } (5.66)
+h AR IK, 16, )+ ay s (AR DK, , 100, } = —m {AY R IIM, 1{67) '
Dividing Eq. 8.66 by m, yields,
m s kg ak, :
—SNM {7+ = ALK, G, + =5 1AV K, 1O §
m m m
. (8.67)
k. . ko : ) o
+ m—% {AMR (K, 1405 3 + QT AR [K, 1405 § = AR ][M, 1467}
Define the following coefficients,
p="0 (8.68)
m
B, = k_13 (8.69)
m,
By = k—33 (8.70)
m,
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B.=—5 (8.71)
m,
k

B, =1 (8.72)
m,

Substituting Eq. 8.68 through Eq. 8.72 into Eq. 8.67 yields,

BAAIM, {7+ BAAMIK, 146, } + BAAK, 146, }

) ) ) . } (8.73)
+ BAAR[K, 146, } + BAAMR (K, , 146, } = ~{A}[R,][M, {67}

Writing the Eq. 8.73 at different time point, yields the following groups of equations,

For t=1,,

BUAIM, ™), +B (MK, 146, D |, +B. (MK, 146 D),
+ B UM RIK, . 16, ) |, +Bs(ANIRIK, . 146, 1) |, = —((AN R, IIM, {67 D),

(8.74)

For t=t,,

BUAIM, S |, +B UMK, 16 D, +A, (MK, 116, D],
+AUMIRK, 16, D), +AUARIK, 16,1, = ~(AVRIIM,16°))],

(8.75)
For t=¢,,
BUANM, 07|, +B, (A K, 146, D, +B,({AK,, 140, DI,
+ B GAMRIIK, 146, D |, +B (AR IK, 11405 D |, = —({AF R 1M, 145"} |,
(8.76)
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Arranging the above linear equation group into matrix form, yields,

XB=Y

(8.77)

Where the coefficient matrix of the linear equation group is given as following

X" =
[ (AYM, 17D, ({A}IM, 1487}, (A M, 18D, ]
({AYIK,, 146, D), ({AYK,, {6, D), ({AMK,, 1{6, DI,
UMRIK, G D, - (AR HEDL - (AIRIIK, 16D,
({A}IK, 146, DI, ({A}IK, 146, DI, ({AVK, 146, DI,
_({A} [RS][K0,2]{53 })’to ’ ({A} [R3][K0,2]{53 })|tj ’ ({A} [RS][K0,2]{53 })’tNJ
(8.78)
The vector of unknown and the vector of known are given as follows,
By
s,
B=15 (8.79)
B,
Ps
~({AVR,IIM 146 D),
Y =1 -({ANRIM, 1{6° D), (8.80)

~({A IR IIM, 1467 D),

Using the Least Square Method, the vector of unknown, ‘B’, can be computed from the

following equation,

B=X"X)"(X"Y)
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With the vector of unknown computed, the damage indices for stiffness, mass and

damping can be computed as follows,

p, ="i-p (8.82)
m,
ko
k 3 p
p =—L=—"L="2 (8.83)
ok kB
m;
al,lkl

L R L (8.84)

8.8.2 Damage Evaluation Results

According to Section 8.4.3, the filtered joint translational displacements, velocities,
accelerations and the filtered joint rotations, angular velocities, angular accelerations are
computed. Then the coefficient matrix is computed using Eq. 8.78 and the known vector
is computed using Eq. 8.80. As stated in Section 8.5, the damping forces of columns are
also computed using relative velocities. The unknown coefficient vector shown in Eq.
8.79 can be computed using Eq. 8.81. The damage indices of the joint translational
masses, lateral stiffness of the columns and damping coefficients of the columns can be
computed using Eq. 8.82 through Eq. 8.84. The computed damage indices and damage

severities for all the tests are listed in Table 8.6.
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Table 8.6. Damage Indices and Damage Severities for the Bridge Model with Element Damping

Effects
Damage Index Damage Severity
Test Num.
Bu,shear i B O, shear Oy U1
Test #07 0.980 0.979 1.064 0.02 0.02 -0.06
Test #10 0.966 0.976 0.975 0.04 0.02 0.03
Test #11 0.958 0.960 1.165 0.04 0.04 -0.14
Test #15 0.937 0.952 0.972 0.07 0.05 0.03
Test #16 1.091 1.095 0.902 -0.08 -0.09 0.11
Test #17 1.163 1.204 0.829 -0.14 -0.17 0.21
Test #18 1.256 1.209 0.937 -0.20 -0.17 0.07

8.8.3 Results Discussion

According to Table 8.6, for Test #07, Test #10 and Test #11, where the tested structure is
undamaged, the damage severities for mass and stiffness damage are closed to zeros.
The damage severities for damping damage are not as stable as the ones for stiffness and

mass damage.

For Test #15, according to Table 8.5, the designed damage severity for stiffness damage
is +1.5%. From Table 8.6, the detected stiffness damage is +5%, which is higher than the
ones from the undamaged cases (i.e. Test #07, Test #10 and Test #11). As expected, the
damage severity for damping damage is around zero. This is because, as stated in
Section 8.6, the damage in the north column has very small impact on the bending
stiffness. Thus, the amplitudes of vibration velocities of the north and south columns are

very similar.
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For Test #16, Test #17 and Test #18, the designed damage severities for stiffness,
according to Table 8.5, are around 20%. From Table 8.6, the detected damage severities
for stiffness damage are 9% for Test #16 and 17% for both Test #17 and Test #18. The
error in the estimation of the joint rotations, joint angular velocities, and joint angular
accelerations contributed to the underestimation of the stiffness damage for Test #16,
Test #17, and Test #18. According to Table 8.6, the damping effects for the south column
are increased after damage for Test #16, Test #17 and Test #18. The increase of the
damping effect can be explained by the increase of vibration amplitude of the damaged

column.

The main reasons caused the errors in the damage detection results are,

(1) Estimation of joint rotation at the top of the two columns. According to the
analysis experience to the numerical models, the error in the estimation of
joint rotations will underestimate the damage in column bending stiffness;

(2) Estimation of joint translational accelerations. The estimation of the joint
translational accelerations will cause inaccuracy in the mass damage
detection;

(3) Noise in the measured displacement records. The noise in the measured
displacements will cause the overall inaccuracy of the damage detection
process;

(4) The application of digital bandpass filter. Although the application of the
digital bandpass filter will reduce the noise influence, it will also cause the
incompatibility among displacement, velocity, and acceleration time histories,
which will cause the inaccuracy of damage detection results;

(5) The application of the Rayleigh Damping as the element damping model. The
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method in computing damping force in this section may cause the inaccuracy
and instability in the damping damage detection; and

(6) Estimation of the joint translational velocities and joint angular velocities.
These two factors will also contribute to the inaccuracy of the damping
damage detection and will cause a certain influence to the damage detection

results to mass and stiffness.

8.9 CONCLUSION

According to the above analysis, the proposed theory could locate the damaged column
and provide a close estimation the damage severities regarding to the whole column. And
the accuracy of the estimation of the damage severities can be improved by providing

more useful and less noise-polluted structural vibration measurements.

Note, the proposed method could locate and estimate the original designed damage in
the lower portion of the column if less noise-polluted data could have been collected
from the tri-axial accelerometers distributed on the north and south columns. Namely,

more dense distribution of sensors is required in order to locate damage more accurately.
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9 SUMMARY AND CONCLUSIONS

9.1 SUMMARY

In this dissertation, a new non-destructive evaluation method, named as the Power Method,
was developed. The Power Method can be used to detect damage in both isolated
structural components and the integral structures. To validate the proposed method, the
method has been applied to different types of structures and the following sections were

introduced,

In Section 2, the general form of the Power Method was developed. And also, the specific
form of the proposed method for the 1-DOF, 2-DOF, N-DOF, and isolated

spring-mass-damper systems were developed.

In Section 3, numerical examples for 1-DOF, 2-DOF, N-DOF, and isolated
spring-mass-damper systems were developed and were used to validate the theories
developed in Section 2. All the designed damage in masses, springs and dampers were

located and evaluated accurately in each numerical model.

In Section 4, the specific form of the Power Method for rod, Euler-Bernoulli beam, plane

frame, and space truss were developed.

In Section 5, numerical models of rod under axial and torsional vibrations, rod under axial

vibration only, beam under bending vibration, plane frame under axial and bending

vibrations, and space truss under axial vibration were simulated. All the designed damage
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in masses and stiffness were located and evaluated accurately in each numerical

experiment.

In Section 6, the performance of the proposed method to noise polluted inputs were
evaluated for both the discrete and continuous systems. Two noise levels were considered
for each numerical case. The proposed method was found to be able to accurately locate
and evaluate multiple damage under the lower noise level (1% noise) and to be able to
accurately locate damage and roughly evaluate damage under higher noise level (5%

noise).

In Section 7, three possible technical issues were studied and solved. The three possible
issues studied in this section are, (1) no external loads were applied within the structural
components that were under damage detection; (2) the efficiency study of the two methods
to reduce noise influence for the repeatable damage detection process; (3) the damping

damage detection in continuous structures.

In Section 8, the proposed method was validated using experimental data from a shake
table test made in University of California, San Diego. By using the displacement records
at the top ends of the two columns, the designed damage in south column was detected and

evaluated.

9.2 FINDINGS

After finishing all the studies related to the Power Method, the followings were found,

From Section 2 and 3, the new findings are,
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(1) The Power Method can be applied to all kinds of linear discrete systems. For
example, 1-DOF, 2DOF, and 5-DOF spring-mass-damper systems;

(2) The Power Method can be applied to the whole discrete system and evaluate
multiple structural components at one time, which makes the Power Method
very efficient and economical;

(3) The Power Method can be applied to isolated discrete systems and detect
damage in the structural components that are within the isolated system; and

(4) The advantages of the isolated system method is that it requires less motion
information since fewer structural needs to be evaluated. Also, by using the
isolated system method, the possibility of encountering a singularity problem
during the application stage of least square method will become smaller. This

is because less unknowns will be considered and solved.

From Section 4 and 5, the new findings are,

(1) The Power Method can be applied to all kinds of linear continuous structural
components. For example, rod, beam, frame and truss;

(2) The Power Method can be applied to the whole continuous system and
evaluate multiple structural components at one time;

(3) The Power Method can be applied to isolated continuous systems and
evaluate only the structural components within the isolated system;

(4) When the Power Method is applied to the isolated system, dynamic
information from different type of vibrations can be combined; and

(5) Comparing to the static damage evaluation method based on structural
curvatures, such as, Element Strain Energy method, the Power Method won’t

be influenced by the singularity problem caused by zero bending curvature
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and force redistribution (secondary effect) of the statically indeterminate
structures. This advantage makes the Power Method become superior to the

damage detection methods based on static structural deformation.

From Section 6, the new findings are,

(1) With 1% white noise, accurate damage evaluation can still be achieved by
applying the proposed method;

(2) With 5% white noise, the Power Method can accurately locate multiple
damage. But the computed damage severities will become less reliable;

(3) The Power Method requires only acceleration data. The velocity and
displacement data can be computed based the given acceleration data; and

(4) Comparing to the isolated system method, the integral system method will
provide less false positives. This is because the integral system method will
take all the dynamic inputs into consideration, the damage indices for all the
undamaged elements will share similar values. Consequently, less damage
indices for the undamaged elements will become false positives after the

normalization process (i.e. defined in Eq. 6.4).

From Section 7, the new findings are,
(1) The Power Method remains effective even no external loads are applied in the
structural components that are under consideration;
(2) For repeatable experiments, the proposed method based on the averaged
inputs will yield better damage detection results; and
(3) The Power Method can be used to detect damping damage in the continuous

structural components.
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From Section 8, the new findings are,
(1) The Power Method can be used to detect damage in real structures; and
(2) Because the Power Method requires only the structural vibration data, the
damage detection process won’t be restricted by the time and location of the
engineers. After the recorded structural vibration data is uploaded online,
with limited programming effort, the computer will be able to download the

data and run the damage detection program automatically.

9.3 ORIGINALITY OF THIS WORK
The originalities of the proposed method includes, but is not limited to,

(1) The proposed method can be used to evaluate damage in mass, stiffness and
damping simultaneously, while most of existing non-destructive evaluation
methods will only be able to detect damage in stiffness, and a handful of
non-destructive evaluation methods can be used to detect either damage in
stiffness and mass or damage in stiffness and damping;

(2) The proposed method can be used to evaluate damage in single structural
component, multiple structural components, and the integral structure at one
time;

(3) The proposed method allows measurements from different types of vibration
to be inputted in, the structural properties related to different vibrations will
be analyzed at the same time;

(4) The proposed method uses only the dynamic measurement directly from the
structure. Thus, the proposed method can be easily applied to the real-world

damage detection;
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(5) Because the proposed method is based on dynamic measurements not the
modal or physical curvatures of the structure, singularity problems caused by
zero bending curvatures will be out of concern;

(6) This work introduced the procedures to detect damage in different discrete
and continuous systems;

(7) This work introduced the procedures to deal with the noise pollution within
the real-world measurements and along with other approaches to handle
some of the unfavorable situations; and

(8) The damage detection process introduced in Section 8 set an example in the
application of the proposed method and other similar methods to real-world

data.

9.4 CONTRIBUTION OF THIS WORK

The dissertation will contribute to the following areas. Firstly, a new and powerful level 11
damage detection method is established and validated. As mentioned in the previous
section, the Power Method is able to detect and evaluate damage in mass, stiffness and
damping simultaneously. Moreover, the proposed method can not only detect damage in
the whole system at one time but also evaluate damage using information from multiple
types of vibrations. Secondly, the work recorded in this dissertation will be a good
guidance for further studies and applications to help to reduce property losses and the
maintenance cost of critical structures. The theories of the proposed method for various
types of discrete and continuous systems were developed and validated using numerical
examples and solutions for several unfavorable situations were provided as well. Finally,
the idea of the Power Method which introduces new approaches to establish relationships

between the undamaged and damaged structures will contribute to the developments of
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other static and dynamic non-destructive evaluation methods.

9.5 CONCLUSION
Most NDE methods proposed to date are only classified as Level I or Level 11
methods, which means only the presences of the damage, or at most, the locations of the
damage can be detected. Moreover, most of these methods are limited in the detection of
stiffness damage only and are not able to locate or evaluate mass damage and damping
damage. The damage detection algorithm proposed in this work is a Level III method that
has the following features:
(1) It detects damage in local stiffness, mass and damping;
(2) It provides clear indications to locate damage;
(3) It locates tiny and obscure damage;
(4) It provides accurate quantitative values of damage severities;
(5) No analytical model of the structure is required,
(6) The data from the field experiment can be directly used to complete the
analyses;
(7) The proposed method will still be able to accurately locate damage and
provide referable estimations of damage severities with 5% noise;
(8) The method is applicable to nearly all types of structures and cases with
multiple damage locations; and

(9) The computation process is straight-forward.

9.6 FUTURE WORK
Although the Power Method is well developed and validated in this dissertation, the

following issues are remain to be unsolved,
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(1)

2)

G)

4

How to choose the velocity vector used to compute power to achieve better
results. During the research process, the author found that, for the pure
numerical cases, using the computed nodal velocity as the velocity vector
used to compute power will yield better results than the results from using a
constant vector as the velocity vector used to compute power. However, for
the noise-polluted cases, the results from using a constant vector as the
velocity vector used to compute power will be more stable and generally more
accurate than the results from using the computed nodal velocity as the
velocity vector used to compute power;

Extend the Power Method to solve for the structural components with
unknown stiffness and mass matrices. For the current study cases, the
stiffness, mass, and damping properties of one element can be expressed with
well-known matrices. However, for the complex structural components and
with limited number of sensors, the element matrices of the stiffness, mass,
and damping might be unknown;

Development of the specific form of the Power Method for Timoshenko
Beams. The proposed method can be easily applied to the damage detection in
Timoshenko beams if the stiffness matrix of the Timoshenko beam is given.
The detailed expression of the stiffness matrix of the Timoshenko beam can be
found in relevant chapter in books related to finite element analysis. If only
the differential equations were given, good ways to compute the partial
differentiations of nodal displacements and nodal rotations should be found;
Development of the specific form of the Power Method for Kirchhoff-Love
plates. Similarly, the proposed method can be applied to the damage detection

in Kirchhoft-Love plates, if the stiffness matrix of the plate member is ready at
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©)

hand; and

Improve the noise tolerance capacity of the Power Method. Currently, the
noise tolerance capacity of the proposed method is less than 10% of white
noise. Although the noise in the input data is reduced using digital filters and
the application of the least square method is also helpful in finding a good
estimation of the real damage severities, the applications of the digital filters
will introduce errors into the input data and the least square method is
sensitive to input errors. Thus, more advanced techniques are needed to make

the proposed method more robust to noise in the inputs.
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APPENDIX

NUMERICAL VALIDATION OF THE PROPOSED THEORY

A.1 INTRODUCTION
The objective of the Appendix A is to verify the proposed process that was used to detect
damage in the UCSD shake table tests. To verify this proposed process, a group of data

was generated from the finite element model of the bridge model.

A.2 DESCRIPTION OF THE FINITE ELEMENT MODEL

In SAP2000, a one-bay frame was built and the properties of the cross sections of the
frame were adjusted to simulate the real structure. The one-bay frame is plotted in Figure
8.6. The height of each column is 81 inches. The beam of the one-bay frame is designed
to simulate the steel deck in the real structure and the length of the beam is 108 inches.
In the finite element model, the moment of inertia of the cross section of the undamaged
column is 178.532 in* in X-direction and 74.792 in* in Y-direction. The moment of inertia
of cross section of the damaged portion in the south column is simulated as 115.096 in*
(around 35.5% reduction for the damaged section) in X-direction bending and 70.212 in*
(around 6.1% reduction for the damaged section) in Y-direction bending. The
cross-sectional area of the undamaged column is 13.76 in?. The cross-sectional area of
the damaged portion of the south column is 11.63 in? (around 15.5% reduction for the
damaged section). The mass per unit length of the undamaged column is adjusted so that
the total weight for the undamaged north column is around 0.891 kips. The total weight
of the damaged south column is around 0.88 kips. The mass difference between the north

column and the south column is caused by the removal of the lower west channel section
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from the south column. The damping coefficients in the finite element model are
assumed. The damping coefficients for the undamaged column portion are 0.025 for ‘Cy’
and 0.015 for ‘Cy’. The damping coefficients for the damaged column portion are 0.03

for ‘Cw’ and 0.02 for ‘Cx’.

The moment of inertia of the beam element in X direction bending is 116. 64 in* and the
moment of inertia of the beam element in Z direction bending is 12533.9 in*. The moment
of inertia of the beam element is set according to the equivalent moment of inertia of the
steel deck in the real bridge model. The cross-sectional area of the beam is 8.86 in®. The
total weight of the beam element is 5.835 kips (2.24 kips from the self-weight of the steel

deck and 3.6 kips from the steel plates on the top of the steel deck).

Because the designed damage scenario is similar to the damage scenario of Test #18
from the shake table tests, the finite element model is excited using the base
accelerations from Test #18 (i.e. Accelerations in the global X direction). Using the
linear direction integration method within SAP2000, the displacement records at the top

ends of the two columns can be outputted.

According to the modal analysis using the SAP2000, the first mode of the finite element
model is the bending mode in the global X direction at 8.40 Hz; the second mode of the
finite element model is the torsional mode around the global Z direction at 9.47 Hz; the
third mode is the bending mode in the global Y direction at 10.26 Hz. The natural
frequencies detected for the finite element model are larger than the real bridge model.
The natural frequencies detected for the real bridge model by researchers in UCSD are:

(1) around 3.5 Hz for the bending mode in the global X direction; (2) around 3.9 Hz for
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the bending mode in the global Y direction; (3) around 7.5 Hz for the torsional mode
around the global Z direction. The differences between the natural frequencies from the
finite element model and the natural frequencies from the real bridge model might be
caused by the following factors:
(1) The finite element model built within SAP2000 is a simplified equivalent
bar-joint model instead of a detailed 3D model with shell elements.
(2) The parts in real bridge model are connected with bolts. However, it is hard to
simulate these bolted connections even in the very detailed finite element

model.

A.3 NOISE SIMULATION

One of the main objectives of the Appendix A is to test the noise-tolerant capacity of the
proposed process. According to the computation in Section 8, the noise levels in the
displacement records from shake table tests are around 3%. To simulate the noise in the
displacement records, 6% of white noise was superimposed into the exact displacement

records which are directly outputted from SAP2000.

The noise-polluted displacements are computed using the following equation,

Std(S ,,,.) A

Sooict) =8 &) +w) p-—
nozse( l) plﬂ’é’( l) ( l) p Std(w)

Where §,,..(¢,) is the noise-polluted displacement at time /;; §,,.(¢,) is the exact

noise

displacement at time ¢,; w(z,) is the random white noise at time ¢,; p is the percent of

noise selected to add into the pure acceleration data; std(x) indicates the standard

deviation of vector Xx.
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However, due to the limitation of the capacity of the personal computer, only the
behavior of the model within the first 8.58 seconds was computed. The displacements at
the top ends of the two columns are closed to parabolas and are quite close to each other,
which are given in Figure A.1. If the 6% white noise is directly superimposed onto the
absolute displacement records, the noise level will be too big comparing to the real case,
which is shown in Figure A.2. However, if we add the 6% white noise into the relative
displacement records, which is shown in Figure A.3, then numerical case will match the
real case better. Thus two groups of 6% white noise were superimposed onto the relative
displacement records at the two top ends of the north and south columns. For
comparison purposes, the relative displacement records from the real bridge model

measured from Test #18 are plotted in Figure A.4.
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White Noise from Finite Element Model: (a) Full Plot and (b) Zoomed in Plot
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Note that the sudden changes shown in Figure A.4(b) will only appears at limited peaks
of the displacement records, thus, the influence of these sudden changes can be reduced

by the application of the digital bandpass filters.

A.4 DAMAGE EVALUATION RESULTS

Firstly, the theory of approach introduced in Section 8.3 and data processing techniques
introduced in Section 8.4 were used to detect damage in the finite element model
described in Section A.2. When the white noise level is 6%, ten groups of results are

computed and are shown in Table A.1.

Secondly, the theory of approach introduced in Section 8.8.1 and data processing
techniques introduced in Section 8.4 were used to detect damage in the finite element
model described in Section A.2. When the white noise level is 6%, ten groups of results

are computed and are shown in Table A.2.

411



Table A.1. Damage Detection Results without Considering Element Damping

Damage Index

Damage Severity

Expr. Num
B i O Oy
Expr. 1 1.021 1.269 -0.02 -0.21
Expr. 2 1.012 1.245 -0.01 -0.20
Expr. 3 1.019 1.268 -0.02 -0.21
Expr. 4 1.009 1.231 -0.01 -0.19
Expr. 5 1.020 1.264 -0.02 -0.21
Expr. 6 1.017 1.253 -0.02 -0.20
Expr. 7 1.017 1.253 -0.02 -0.20
Expr. 8 1.019 1.270 -0.02 -0.21
Expr. 9 1.018 1.265 -0.02 -0.21
Expr. 10 1.015 1.255 -0.02 -0.20

Table A.2. Damage Detection Results with Element Damping

Damage Index

Damage Severity

Expr. Num

Pm P Pax Oy Oy O,k
Expr. 1 1.022 1.301 0.958 -0.02 -0.23 0.04
Expr. 2 1.016 1.284 0.958 -0.02 -0.22 0.04
Expr. 3 1.017 1.279 0.943 -0.02 -0.22 0.06
Expr. 4 1.016 1.291 0.979 -0.02 -0.23 0.02
Expr. 5 1.019 1.279 0.947 -0.02 -0.22 0.06
Expr. 6 1.022 1.297 0.960 -0.02 -0.23 0.04
Expr. 7 1.022 1.297 0.960 -0.02 -0.23 0.04
Expr. 8 1.022 1.302 0.953 -0.02 -0.23 0.05
Expr. 9 1.020 1.307 0.969 -0.02 -0.24 0.03
Expr. 10 1.020 1.295 0.954 -0.02 -0.23 0.05
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A.5 RESULTS DISCUSSION

According to Table A.1, the damage severity of the stiffness of the right column is stable
at 20% to 21% decrease and the damage severity of the mass of the right column is
stable at 1% to 2% decrease. According to the third row in Table 8.5, the designed
damage severity of the stiffness of the right column is 22.3% decrease. The results from

Table A.1 provide an accurate estimation to the designed damage.

According to Table A.2, the damage severity of the stiffness of the right column is stable
at 22% to 23% decrease, the damage severity of the mass of the right column is stable at
2% decrease and the damage severity of the damping of the right column is stable at 4%
to 6% increase. According to the third row in Table 8.5, the designed damage severity of
the stiffness of the right column is 22.3%. The influence of the designed damage to the
mass of right column can be ignored. According to the settings of the physical properties
of the frame in Section A.2, the damping coefficient related to column stiffness (Cx) is
increased from 0.15 to 0.2 after damage. Thus the designed damage severity for the
damaged portion of the column is a 33.3% increase. However, since the theory
introduced in Section 8.8.1 considers the damping damage for the whole south column,
the designed damping damage severity of the whole column should be smaller than
33.3%. Also the noise superimposed into the displacement data may also contribute to
the reduction of the damage severity of damping coefficient. Thus, the detected damping
damage, which is 4% to 6%, can be reasonable. Thus, the results from Table A.2 provide

an accurate estimation to the designed damage.

A.6 SENSITIVITY ANALYSIS

In this subsection, the sensitivity of the proposed method to white noise will be studied.
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For the given numerical model, the exact displacement time histories will be computed
from SAP2000. By mixing with different white noise, the noise-polluted displacement

data is generated. The white noise level varies from 2% to 20% with 2% increment.

Then the theory of approach introduced in Section 8.3 and data processing techniques
introduced in Section 8.4 were used to detect damage using the noise-polluted
displacement data. For each noise level, damage detection results from ten numerical
experiments were collected. Under the designed different noise level, the damage
detection results using a constant combination velocity vector (i.e. [1,1,1] in this case)
are reported in Table A.3. Under the designed different noise level, the damage detection
results using a variable combination velocity vector (i.e. [1, transverse velocity at the top
of the north column, transverse velocity at the top of the south column] in this case) are
reported in Table A.4. According to the summary of the damage detection results from

Table A.5 and Table A.6, the following noise sensitivity figure is plotted.
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Table A.7. Damage Detection Results with Different Noise Level Using Constant Velocity Vector

Noise Level 2% 4% 6% 8% 10%
Expr. Num. B By B By i B B Bi B By
Expr. 1 0.9698  1.3112 0.9747  1.3020 0.9717  1.3063 0.9920  1.2344 1.0048  1.1813
Expr. 2 0.9723  1.3035 0.9749  1.2966 0.9733  1.3061 0.9948  1.2356 1.0073 1.1683
Expr. 3 0.9759  1.2959 0.9721 1.3064 0.9730  1.3047 0.9951 1.2291 0.9997  1.2069
Expr. 4 0.9725  1.3061 0.9706  1.3100 0.9743  1.3027 0.9984  1.2179 1.0114  1.1769
Expr. 5 0.9727  1.3063 0.9699  1.3115 0.9711 1.3076 0.9915  1.2425 1.0125  1.1352
Expr. 6 0.9744  1.2986 0.9721 1.3075 0.9710  1.3075 0.9740  1.3021 0.9717  1.3067
Expr. 7 0.9706  1.3087 0.9733 1.3059 0.9721 1.3077 0.9703  1.3104 0.9709  1.3103
Expr. 8 0.9697  1.3132 0.9729  1.3045 0.9715  1.3099 0.9699  1.3103 0.9707  1.3077
Expr. 9 0.9727  1.3059 0.9727  1.3067 0.9735  1.3052 0.9746  1.3007 0.9699  1.3107
Expr. 10 0.9720  1.3054 0.9704  1.3090 0.9744  1.3028 0.9720  1.3070 0.9758  1.2992
Damage Detectable Rate 10/10 10/10 10/10 10/10 10/10
Noise Level 12% 14% 16% 18% 20%
Expr. Num. B B B B Bm B B B B B
Expr. 1 1.0237  1.0138 1.0336  0.8608 1.0338  0.9644 1.0593  0.2975 1.0718  0.4899
Expr. 2 1.0187  1.0845 1.0285  1.0036 1.0365  0.8249 1.0398  0.9928 1.0557  0.7335
Expr. 3 1.0253  0.9845 1.0218  1.0836 1.0346  0.9450 1.0674  1.7576 1.0786  4.3967
Expr. 4 1.0238  0.9452 1.0228  1.0615 1.0386  0.7957 1.0534  0.4363 1.0515  0.8548
Expr. 5 1.0122  1.1569 1.0295  0.9228 1.0376  0.9708 1.0553  0.4099 1.0519  0.7644
Expr. 6 1.0184  1.0874 1.0243 1.1019 1.0258  1.0788 1.0489  0.6487 1.0508  0.8908
Expr. 7 1.0196  1.0681 1.0351  0.8412 1.0327  1.0690 1.0448  0.8948 1.0607  0.2352
Expr. 8 1.0207  1.0712 1.0267  1.0046 1.0260  1.0630 1.0647  0.3579 1.0586  0.5737
Expr. 9 1.0090  1.1619 1.0249  1.0346 1.0392  0.8565 1.0517  0.7059 1.0623  0.6329
Expr. 10 1.0138  1.1150 1.0252  1.0104 1.0402  0.7298 1.0511  0.7313 1.0542  0.6612
Damage Detectable Rate 8/10 7/10 3/10 1/10 1/10
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Table A.8. Damage Detection Results with Different Noise Level Using Variable Velocity Vector

Noise Level 2% 4% 6% 8% 10%
Expr. Num. B By B By i B B Bi B By
Expr. 1 0.9736  1.2871 09774  1.2784 0.9738  1.2864 0.9798  1.2598 1.0013  1.1846
Expr. 2 0.9754  1.2811 0.9781 1.2720 0.9766  1.2810 0.9867  1.2475 0.9981 1.1931
Expr. 3 0.9794  1.2712 0.9741 1.2851 0.9747  1.2857 0.9962  1.2016 0.9887  1.2383
Expr. 4 0.9749  1.2851 0.9736  1.2859 0.9775  1.2788 0.9865  1.2507 1.0067  1.1707
Expr. 5 0.9752  1.2845 0.9734  1.2879 0.9743  1.2850 0.9875  1.2394 1.0067  1.1538
Expr. 6 0.9759  1.2808 0.9752  1.2841 0.9751 1.2823 0.9765  1.2798 0.9759  1.2802
Expr. 7 0.9735  1.2872 09773  1.2795 0.9744  1.2872 0.9747  1.2841 0.9735  1.2889
Expr. 8 0.9750  1.2849 0.9738  1.2877 0.9741 1.2876 0.9758  1.2800 0.9738  1.2857
Expr. 9 0.9745  1.2870 0.9755  1.2836 0.9757  1.2834 0.9781 1.2767 0.9740  1.2856
Expr. 10 0.9758  1.2806 0.9745  1.2848 0.9761 1.2829 0.9755  1.2827 0.9768  1.2807
Damage Detectable Rate 10/10 10/10 10/10 10/10 10/10
Noise Level 12% 14% 16% 18% 20%
Expr. Num. B B B B Bm B B B B B
Expr. 1 1.0164  1.0719 1.0189  1.0499 1.0209  1.0629 1.0391  0.8471 1.0592  0.1266
Expr. 2 1.0061 1.1580 1.0105  1.1296 1.0204  1.0434 1.0305  1.0312 1.0349  0.9918
Expr. 3 1.0036  1.1718 1.0094  1.1453 1.0241 1.0170 1.0482  0.4292 1.0397  0.7989
Expr. 4 1.0091 1.1185 1.0118  1.1381 1.0296  0.9339 1.0454  0.5464 1.0389  0.9230
Expr. 5 1.0007  1.1988 1.0100  1.1239 1.0152  1.1230 1.0335  0.9308 1.0340  0.9436
Expr. 6 1.0110  1.1305 1.0149  1.1177 1.0106  1.1540 1.0311  0.9585 1.0361 1.0003
Expr. 7 1.0054  1.1691 1.0239  1.0199 1.0280  1.0867 1.0210  1.0897 1.0221  1.0165
Expr. 8 1.0135  1.1098 1.0143  1.1077 1.0137  1.1268 1.0414  0.7777 1.0316  0.9528
Expr. 9 1.0022  1.1738 1.0187  1.0647 1.0238  1.0203 1.0364  0.9481 1.0421 09113
Expr. 10 1.0047  1.1631 1.0002  1.1821 1.0197  1.0503 1.0263  1.0280 1.0436  0.7512
Damage Detectable Rate 10/10 10/10 9/10 3/10 2/10
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A.7 CONCLUSION

According to the analysis in Subsection A.4 and Subsection A.5, the proposed theory in
Section 8 can be used to locate the damaged column and provide a close estimation the
damage severities regarding to the whole column in the finite element model of the

bridge model with 6% noise.

According to the analysis in Subsection A.6, the proposed theory will be able to locate
damages under the given conditions up to 10% to 14% white noise depending the
selected combination velocity vector, which is used to compute power. However, the
sensitivity plot in Figure A.6 may not be generally ture for each situation. The sensitivity
of the proposed method may vary from case to case. To find the general sensitivity of the

proposed method, futher study is needed.
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