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Executive Summary 

The purpose of this project was to update and deploy a tool for analyzing accident risk. This project was 
a continuation of a project that developed the core elements of the tool. Updating the tool meant using 
more recent data to re-estimate the models of how traffic flow variables influenced the safety of the highway. 
Deploying the tool meant setting up a database backend to store the raw and computed variables; a data 
processing system to process new data; and a web site and related web services that expose the intermediate 
results and safety probability predictions to authenticated and authorized users. 

The tool was estimated and deployed only for Caltrans District 12, but the techniques can be applied to 
other Caltrans Districts.. 

The biggest obstacle overcome was handling the large volume of data. One of the innovations of the 
prior research was the development of 27 variables that capture the temporal and spatial dynamics of traffic 
flow, using only the raw 30-second volume and occupancy values for each lane. For each time step at each of 
Caltrans’ vehicle detection system (VDS) stations, the prior twenty minutes of raw data (forty sets of 30-sec-
ond observations) are used to compute measures of central tendency, statistical dispersion, autocorrelation, 
and correlation across lanes. 

As a point of reference, Caltrans’ Performance Measurement System (PeMS) limits raw loop data to the 
“bulk download” section of its website. This project deliberately adds 27 more data points to each raw obser-
vation, and then allows that data to be queried directly. The working (but flawed) solution from the previous 
project was to store the computed values in a relational database, and then periodically purge the results 
tables when they became too large. The new solution uses a combination of flat files and CouchDB data-
bases to store and expose all project data and results. CouchDB’s map-reduce functionality was leveraged 
to evaluate the different safety models in an efficient, distributed manner. 

The models were estimated using 2007 accident data, coupled with a large random sample of non-ac-
cident data. The newer accident and loop detector data, improved data processing techniques, and a more 
uniformly distributed sampling approach resulted in estimated models that were different from the previous 
project’s models. In particular, fewer variables were found to be significant on their own, but more two-way 
interaction terms were significant. 

The primary application area for the freeway accident risk analysis tool should be to evaluate safety 
impacts of roadway changes over time. As noted in the discussion of the modeling effort in Section 7 of 
this report, the models should not be expected to predict whether or not an accident will occur in the near 
future. The true root causes of accidents—for example a sudden tire blow out—are random and unobservable 
using loop detectors. The safety prediction models are only modeling the impact of traffic flow dynamics 
on accident risk. They should be interpreted as predicting when random incidents (a flat tire, etc) are more 
likely to cause an accident and what kind of accident might occur, given the current traffic flow dynamics. 

By using this tool, Caltrans will be able to evaluate the safety impacts of roadway changes over time by 
looking at the aggregate risk of accidents before and after some new system is deployed. The tool allows the 
cumulative accident probabilities to be estimated with real conditions over any given time period. 

The project’s deliverables include all source code and databases. The freeway accident risk analysis 
tool is currently live as part of the California Traffic Management Labs website at UC Irvine (http://www 
.ctmlabs.net). A key value-added component of the website is that it exposes the data and model outputs 
directly via standard URL addresses. Any modern device or program that understands how to access web 
data using HTTP can access the output of this project and incorporate the information into new projects and 
data “mashups”. 
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Section 1: Introduction 

The purpose of this project was to update and deploy a freeway accident risk analysis tool. This project was a 
continuation of an earlier project that developed the core elements of the tool, with the intended application 
being measuring the impacts of intelligent transportation systems (ITS) on the safety of California’s free-
ways. Updating the prior project’s results meant using newer, more recent data to re-estimate the different 
models of how traffic flow variables influenced the safety of the highway. Deploying the tool meant set-
ting up a database backend to store the raw and computed variables; setting up a data processing system to 
process new data; and setting up a web site and related web services that expose the intermediate results as 
well as the final safety probability predictions to the public. 

The previous project laid the groundwork for this one by researching methods to model how observable 
traffic characteristics influence observable measures of safety. The most common tool used to measure traffic 
flow is the inductive loop detector (ILD) stations in Caltrans’ vehicle detection system (VDS). The best 
measure of safety is to look at accidents that have been stored in Caltrans’ traffic accident database, which is 
made available to the public via the Federal Highway Safety Information System (HSIS) multistate database 
(Council and Mohamedshah, 2007). The previous project devised a modeling system using binomial and 
multinomial logit to relate the VDS data with the accident characteristics. 

There were two technical issues that limited the applicability of the previous work. First, the accident data 
used was older, and the loop detector data was limited by missing periods and by the need to avoid detector 
errors. Second, only six months of data were used for the earlier study. This project used accident data from 
all of 2007, and estimated models based on 30 second loop data downloaded from Caltrans’ Performance 
Measurement System (PeMS) (Varaiya, 2001). This was done so as to facilitate transferring this work to 
other Caltrans Districts. 

The biggest obstacle that had to be overcome by this project was handling the large volume of data, both 
raw and processed. The previous solution was to store the computed probabilities in a database, and then 
periodically purge the results tables when they became too large to serve requests. The ultimate solution, 
described in detail in Section 3, was to use a combination of flat files and CouchDB databases to store and 
expose the raw data and the intermediate results. The flat files were generated in a preliminary step to get 
the files downloaded from PeMS ready to use (see Section 4). The raw data for each mainline detector was 
processed into 27 variables, and these plus the corresponding raw observation were stored in a CouchDB 
database, using one database per detector per year. This system provided a data store that could be drawn 
upon to match up loop data with accident events, and to sample non-accident data. Once the safety mod-
els were estimated, they were applied to the intermediate data (the computed 27 variables) by leveraging 
CouchDB’s map-reduce functionality. 

The models were re-estimated using 2007 accident data along with an entire year of loop detector data. 
The accident data is described in Section 5. Binomial and multinomial logit models were applied to estimate 
how observed traffic flow conditions influence the likelihood of whether or not an accident would occur (the 
binomial case), and the different types of accidents that might occur (the multinomial cases). Once the data 
storage and retrieval issues were solved, it was a simple matter to program a sampling scheme (as discussed 
in Section 6) that generated a representative sample of arbitrary size consisting of the 27 computed variables, 
and then apply the estimated models to new data by creating a map-reduce view in CouchDB. 

The modeling output is discussed in Section 7. Whether it was the newer accident and loop detector data, 
improved data processing techniques, a more uniformly distributed sampling approach, or a much larger 
sample of non-accident data, the newly estimated models were different from the previous project’s models. 

2 
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In particular, fewer variables were found to be significant on their own, but more variables were found to be 
significant when they interacted with other variables. Section 7 contains subsections that present each model 
along with detailed plots that show the impact of each significant variable on the predicted probabilities. 

The data storage and retrieval system forms the core elements of the final implementation of the freeway 
accident risk analysis tool. As described in Section 9, a web server was programmed to fetch data in response 
to well-formed requests, following the Representational State Transfer (REST) (Fielding, 2000) approach. In 
addition to the server development, a client website was programmed with a map-based interface to the data 
that shows the raw and processed data upon request using on a time-series plot. The website also provides 
an example of how to query and use the data for other applications to follow. 

The primary application area for this tool should be to evaluate safety impacts of roadway changes over 
time. As noted in the discussion of the modeling effort in Section 7 of this report, the models should not 
be expected to predict whether or not an accident will occur in the next 5 minutes. The root causes of 
accidents—for example a sudden tire blow out—are random and unobservable using loop detectors. Instead 
the models should be understood to predict when random incidents (such as a flat tire) are more likely to 
cause an accident (and what kind of accident might occur) due to the current traffic flow dynamics in effect 
at that time. 

Using this tool, Caltrans will be able to evaluate the safety impacts of roadway changes over time by 
looking at the aggregate risk of accidents before and after some new system is deployed. Specifically, it is 
anticipated that new deployments of intelligent transportation systems elements can be evaluated for their 
safety impacts by comparing the cumulative risk of different kinds of accidents before and after deployment. 
This tool could also be used in near real time, for example as a driver alert tool. One idea is to use the cur-
rent predictions of accident probability to choose from a set of messages to broadcast to travelers that will 
encourage behavior to counteract the current risky conditions. For example, excessive fluctuation in speeds 
might be countered by a message to drivers that recommends limiting lane-changing to emergency situa-
tions only. In fact, no message needs to be sent; a modern smartphone could query the safety performance 
measurement tool directly to provide the driver with risk reduction advice. 

The tool is not well suited to identifying impending accidents. The probabilities predicted by the models 
are very small, as would be expected by the low risk of an accident at any given time and place. Discussions 
with Caltrans District 12 employees about the possibility of deploying the safety performance tool as a 
traffic control device indicated that unless the system was very good at predicting accidents, too many “false 
positives” would cause Caltrans staff to ignore the tool’s information and devote their time and attention 
to other data inputs. Thus our recommendation is for Caltrans to expose the tool’s outputs to anyone who 
might be interested, and to use the output of the tool internally to evaluate the cumulative probabilities of an 
accident over time before and after some change to the freeway is implemented. 

After a short background section, the remainder of this report documents the steps taken to update the 
safety models and to operationalize and deploy the freeway safety performance measurement tool in Caltrans 
District 12. In addition to this final report, the project’s deliverables include the source code, the databases, 
and the live website. The website is currently operating as part of the California Traffic Management Labo-
ratories (CTMLabs) at UC Irvine, and is available to all CTMLabs users who have logged in properly. The 
server exposes the results of this project to any modern device or program that understands how to access 
web data using HTTP—websites, web browsers, statistical programs and spreadsheets, smart phones, and 
so on. The hope is that other researchers may use the data produced by this project in new applications and 
data “mashups” that haven’t been thought of yet. 

The next section presents some background on the approach used, with a description of the 27 variables 
that form the basis of the analytical work discussed throughout this report. Then Section 3 documents how 
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the raw data is handled, providing details on how we solved storing this very large data set in such a way that 
it could be used in a flexible manner both by analysis tools and by website queries. Section 4 describes the 
process of generating and storing the 27 variables, and Section 5 describes the accident data. Then Section 6 
presents the approached used to draw uniform samples of non-accident data from the loop detector sites. 
Section 7 makes up the bulk of this report, containing a short discussion of the modeling approach, and then 
detailed discussion of the four models that were estimated. The model validation results are presented in 
Section 8. Then the web server and the website are discussed in Section 9. The body of the reports concludes 
with final thoughts on the implementation and some recommendations for future work. 
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Section 2: Background 

This project work built upon previous work by the investigators. The bulk of the earlier research was 
part of Partners for Advanced Transit and Highways (PATH) project 5307 (Golob et al., 2007). Other 
aspects of the project are documented in related papers (Golob and Recker, 2003,2004 and Golob et al., 
2002,2004a,2004b,2008). The premise of the research is that it is possible to design a set of statistical vari-
ables that capture as many aspects of traffic flow as possible using only 30-second loop detector data. The 
inductive loop detector stations in Caltrans’ vehicle detection system (VDS) detect inductance changes in a 
loop of wire embedded in the roadway surface. A current is passed through the loop, generating a magnetic 
field above the loop. When a vehicle passes over the loop, the magnetic field is disturbed and the voltage 
levels in the loop fluctuate. Every 30 seconds, each mainline detector site counts the number of cars in 
each lane (volume) and records the fraction of that 30 seconds during which the detector was occupied by a 
vehicle (occupancy) by monitoring the voltage fluctuations induced by the passing vehicles. 

The traditional approach to using VDS data is to aggregate the raw, lane-by-lane 30-second data into 
5-minute, section-wide counts and occupancies. For example, Abdel-Aty and Pande, 2005 and Abdel-Aty 
et al., 2005 use aggregated 5 minute data for safety research, and Caltrans’ PeMS (Caltrans and BTS, 2012, 
Varaiya, 2001,2005 and Choe et al., 2002) uses 5 minute imputed aggregates to evaluate freeway perfor-
mance. 

There are some problems with using 30-second data directly. First of all, the data can be erratic and 
therefore somewhat difficult to handle. For example, an influx of vehicles from an on-ramp could spike the 
occupancy values for a particular 30 second period in the right lane. A platoon of vehicles might drive up the 
volume and occupancy values for a period across all lanes. These fluctuations can be misleading, especially 
if one is merely interested in hourly flow rates or prevailing speed estimates. The second problem with raw 
data is that data can be missing with no explanation whatsoever. PeMS solves this problem by imputing the 
missing data. If, say, four time periods in a 5-minute period are missing, the remaining 6 observations, plus 
past history of the detector, and so on, could be used to impute the missing observations. By aggregating the 
raw plus imputed values to 5 minute periods, any errors introduced by the imputations can be smoothed over 
somewhat. A third problem with using raw data directly is that there is a lot of it. Ordinary relational database 
usage is difficult with really large tables when the table index is larger than can fit into the process-specific 
memory limits. Under those circumstances, simple queries take longer than expected because the database 
process must swap data in and out of memory. A study of the PeMS approach is instructive. From using 
PeMS and extensive reading of their published documentation, it appears that the raw data is loaded into an 
Oracle database, accessed once to generate imputations, and then dumped to a daily, district-wide flat file 
for long term storage. While PeMS may internally access the raw data for research work, they do not directly 
access the raw data in any of the final products available on the PeMS website. 

In contrast to the usual way of doing things, this project focuses on the 30-second raw data precisely 
because it comes closest to capturing the real-time variability of traffic. The 27 variables that were developed 
are designed to characterize variation over time, as well as variations between lanes. In addition to the 
observed volume (vehicle counts) and occupancy, the ratio of volume to occupancy is also used, as that ratio 
is proportional to the prevailing time-mean speed of traffic for that period. Note that if occupancy is zero, 
then the volume should also be zero, and the ratio is undefined (coded NA). If occupancy is zero and volume 
is not, then the observation is discarded. 

The 27 variables used are presented in Table 1, reproduced from Golob et al., 2007, and each kind of 
variable will be discussed below. 
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Table 1 The twenty-seven traffic flow variables derived from raw loop detector observations 

Variable type Measurement Lanes Variable Abbreviation 

Central 
Tendencies Volume 

left (1) 
middle (M) 

mean 
mean 

volume 
volume 

lane 
lane 

1 
M 

mean.vol.1 
mean.vol.m 

right (R) mean volume lane R mean.vol.r 

Standard 
Deviations Volume 

1 
M 

standard 
standard 

deviation 
deviation 

volume 
volume 

lane 
lane 

1 
M 

sd.vol.1 
sd.vol.m 

R standard deviation volume lane R sd.vol.r 
1 coef. of var. occupancy lane 1 cv.occ.1 

Occupancy M coef. of var. occupancy lane M cv.occ.m 
Coefficients 
of Variation 

R coef. of var. occupancy lane R cv.occ.r 

Volume / 
Occupancy 

1 
M 
R 

coef. 
coef. 
coef. 

of 
of 
of 

var. 
var. 
var. 

vol./occ. lane 1 
vol./occ. lane M 
vol./occ. lane R 

cv.volocc.1 
cv.volocc.m 
cv.volocc.r 

1 vs M correlation volume lane 1 vs M cor.vol.1.m 
Volume 1 vs R correlation volume lane 1 vs R cor.vol.1.r 

Correlations 
Across Lanes 

M vs R correlation volume lane M vs R cor.vol.m.r 

Occupancy 
1 vs M 
1 vs R 

correlation 
correlation 

occupancy lane 1 vs M 
occupancy lane 1 vs R 

cor.occ.1.m 
cor.occ.1.r 

M vs R correlation occupancy lane M vs R cor.occ.m.r 

Volume / 
Occupancy 

1 vs M 
1 vs R 
M vs R 

correlation 
correlation 
correlation 

vol./occ. lane 1 vs M 
vol./occ. lane 1 vs R 
vol./occ. lane M vs R 

cor.volocc.1.m 
cor.volocc.1.r 
cor.volocc.m.r 

1 autocorrelation volume lane 1 autocor.vol.1 
Volume M autocorrelation volume lane M autocor.vol.m 

Autocorrelation R autocorrelation volume lane R autocor.vol.r 
1 autocorrelation occupancy lane 1 autocor.occ.1 

Occupancy M autocorrelation occupancy lane M autocor.occ.m 
R autocorrelation occupancy lane R autocor.occ.r 

To establish the temporal variation over time, a 20 minute window of observations is used, giving 40 
observations total. Out of that window, the computations allow at most 10 missing observations total, or 15 
minutes or more of good observations. If there are less than 30 data points, then no result is computed, the 
time period is not used, and the computation program advances the 20 minute window one time step and 
continues processing. A minimum volume rule was also applied to the data, with a requirement that the 
mean volume over a 20 minute period should be at least 0.5, or 20 vehicles in 20 minutes. This eliminated 
most of the early morning periods in which very few vehicles are on the roads. 

Lanes are identified by lane groups. Every site has a number 1 lane, the left-lane in the direction of travel. 
The right-most lane was then labeled as lane R, and one of the middle lanes was chosen as lane M. In the 
previous project, the choice of the middle lane also took into consideration which of the middle lanes had 
the most data available. For this project, using PeMS-supplied raw data, there were no cases in which just 
some of the lanes had no data. Therefore, the rule was simplified to choose the middle-most lane, breaking 
ties by choosing the lane closest to the right. For example, at a four-lane location, lane 3 would be chosen 
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as lane M. The prior project established that the characteristics of all middle lanes are highly correlated, and 
so the most important concern for this study was to make a consistent choice. 

The first three rows in Table 1 are central tendency variables. The only one of the three traffic flow 
parameters for which we have a true scale is volume, and so this is the only variable for which mean values are 
computed over each 20 minute period of observation. Statistical dispersion is captured for lane volumes by 
the standard deviation computation over the 20 minute period. Dispersion is also captured by the calculation 
of the coefficient of variation for the scale-free values of occupancy, and the ratio of volume to occupancy. 

Cross-lane correlations of traffic conditions measure the synchronization (or lack thereof) of traffic 
between lanes. Cross lane correlations were computed for volumes, occupancies, and the ratio of the two 
for each of the three pairings of the lanes (1 vs. M, 1 vs. R, and M vs. R). And finally autocorrelations of 
volume and occupancy are computed for each lane. Rather than being a true autocorrelation over the entire 
20 minute period, we instead computed a simple lagged difference, comparing how each variable changed 
relative to its value in the preceding 30-second period. Tests during the course of the earlier research project 
showed that the autocorrelation value for the ratio of volume to occupancy was unstable, not illuminating, 
and not helpful to the modeling process. 
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Section 3: Storing loop detector data in a usable form 

The bulk of the data used for this project are the raw, 30 second observations from mainline loop detectors. In 
2007, Caltrans District 12 collected data from 587 mainline inductive loop detectors. If all 587 detectors were 
active for the entire year, this would amount to over half a billion records of 30s volume and occupancy counts 
for each lane at each detector. This total doesn’t even include the on- and off-ramps, freeway-to-freeway 
connectors, high-occupancy vehicle (HOV) lanes, and other locations where Caltrans collects data. 

Until very recently, this volume of information was far greater than computers and disk drives could 
handle comfortably. As an example, the PeMS system processes the raw data once, aggregating up to 5 
minute periods, and then puts the data into storage. Modern computers can handle the load, but the sheer 
size of the data set will still present problems and requires special care. This project requires that the raw 
data be available for processing. The modeling step requires the ability to sample a single observation at 
random from the entire data set, while the web interface requires the ability to pull all of the data to apply 
the estimated models. 

In the preliminary phase of this project, a few test cases of detectors were loaded into PostgreSQL tables. 
For up to a hundred or so detectors for a single year, the performance of queries was reasonably fast. But 
as we added more detectors and more years (we attempted to load all District 12 detector data from 2007 
through 2009) simple queries became unacceptably slow. The problem was that the table index generated by 
the database was too big to fit into the amount of computer memory allocated to the database session, and 
so processing the query required swapping the index back and forth from memory to disk. Most people are 
familiar with this phenomenon with their desktop computers when processing a really large spreadsheet or 
a document with lots of large images, and it is exactly the same situation on the server. While we could have 
increased the memory allocated to each database session, this would have reduced the number of concurrent 
database sessions to just one or two at a time. This situation won’t work for a database backing a web server. 

Note that so far the issues reported only related to the raw data. One of the unique features of this project 
is that, by design, 27 more variables are added to each 30s observation. For the most common case, where a 
roadway has 4 or 5 lanes and is reporting 8 to 10 variables each 30s (volume and occupancy for each lane) 
this project will triple the storage space required. 

One approach recommended by relational database documentation is to partition very large tables along 
natural boundaries, so that individual queries only have to work on part of the data to get their answer. For 
example, the data might be partitioned into months or by detector, which in turn would allow the query 
planner to look at just a part of the complete table to answer queries. However, after only an admittedly 
modest amount of effort, our attempts to partition the data were unsuccessful. 

There were other problems with PostgreSQL (indeed with all relational databases). Our early attempt 
with PostgreSQL showed us a single query could use up all of the memory, but only use a single processor 
core. Tying up one eight-core server machine to process a single query is very inefficient, especially when a 
webserver is likely blocking its thread waiting for the database to answer the query. The idea of partitioning 
the data also spawned the idea of splitting the data up among multiple servers (either real or virtual machines). 
This sort of multi-machine partitioning isn’t easy to do with PostgreSQL. 

At the same time we were confronting these issues, several non-relational database technologies were 
becoming popular, following in the footsteps of Google’s proprietary map-reduce database and file system 
(Dean and Ghemawat, 2008). Most of these were variations of a simple key–value store. We tested out a 
few of these with sample data as well as flat file storage. Our tests were not scientifically rigorous, but rather 
were oriented towards results. The three fundamental questions were whether we could get the database 
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running, whether we could load the raw data into the database, and then whether we could use the database 
to process queries faster than in our standard relational database, PostgreSQL. 

The databases we tried included Tokyo Tyrant, Redis, MongoDB, Cassandra, Hadoop, and CouchDB. 
We also added flat files as a “NoDB” option. Of these, we could not easily get Hadoop set up and running, 
and MongoDB was a bit immature at the time. Redis worked really well for small data sets that fit in memory, 
but is unsuitable for the data we were processing. More extensive tests were performed with Tokyo Tyrant, 
Cassandra, and CouchDB. At the time of our tests, only CouchDB performed well enough to be used, and 
better than PostgreSQL. To be fair, all of the database technologies, especially MongoDB and Hadoop, have 
improved dramatically since the time we first considered them. For example, Hadoop is used in production 
by Yahoo, and has spawned multiple projects and companies devoted to deploying and supporting it for 
smaller companies. 

3.1 CouchDB 

CouchDB was chosen as the primary data storage technology for this project. Because it is a new technology 
and probably unfamiliar to Caltrans, we have added a special subsection describing it use and key features. 

CouchDB was easy to set up, and it was indeed easy to replicate data between machines. One could 
easily partition the data over several servers, with collating servers replicating from all of the partitioned 
servers. Another inherent advantage of CouchDB is that it was written in Erlang, which was designed for 
highly concurrent environments like telecommunications. Having just run into problems with a database 
that wanted to stop everything to process one query, we were attracted to the idea of concurrency out of the 
box. 

3.1.1 CouchDB deployment and use 

The barrier to installing CouchDB is getting Erlang compiled and installed. After that, CouchDB installs 
fairly easily in most modern Linux distributions. While the CouchDB server is written in Erlang, one of 
its primary selling points is that it understands HTTP natively, contains a built-in HTTP server, and its 
internal query language is actually server-side JavaScript running on Mozilla’s SpiderMonkey engine. Most 
web developers are familiar with JavaScript from writing website interfaces, and JavaScript is easy for a 
programmer to learn (unlike SQL). It is easy to write very complicated queries right away. Loading data 
was easy as well, consisting of simple POST or PUT operations over HTTP. A short Perl script was written 
for this purpose and used to start testing storing the raw VDS data. 

While the start was quick and easy, the problem once again was the fact that the database was really big. 
Loading the data into a single database proved to be unworkable, as the database file grew too large. We 
stored all of the data for District 12 from 2007 in a single database, but found that computing a simple view 
over the data took several days. Any change or correction to the view would take another several days to 
recompute. 

On further reading and from consulting the CouchDB user mailing list, it became apparent that one 
monolithic database isn’t the best approach to using CouchDB. CouchDB works just as well with thousands 
of little databases as with one giant one. The databases are organized in a logical way, similar to how 
one might organize files in a tree of directories. Each database holds the raw and processed data from 

9 



Final Report #UCI-280 December 2011 

one detector for one year (see Section 4 for details). This produces hundreds of databases per year, and 
will produce thousands of databases if we expand this project to other districts. While this is a different 
approach than traditional relational databases, CouchDB performs better with many databases than with 
just one. Computing views over the databases uses available memory and computer processing power quite 
efficiently, as the CouchDB server assigns resources to jobs so as to maximize the computer processor usage. 

3.1.2 CouchDB views 

CouchDB has a distinct version of Map-Reduce that it calls “views”. The Map-Reduce concept is as follows. 
Given a heap of data, a map function iterates over the data and produces an output set, consisting of a key 
and a value, both of which can be arbitrary JavaScript objects or arrays. Very importantly, the map operation 
should be idempotent. No matter the order of the operations, the result should always be the same, and if 
any document “A” should change, the result of running the map over any other document “B” should always 
be the same. Coming from the SQL world this is a difficult concept to master. SQL encourages pulling lots 
of records from lots of tables into a single query. CouchDB’s map function requires that only one document 
be used at a time. 

After the map function is run on the heap of data, the output is collected in a B-Tree. A query on the 
view is really a request to collect a range or specific values from that view, based on the keys output from the 
map function. If requested, the query can be run through the second part of the view, the “reduce” function. 

As with the map function, the reduce function must also produce the same output given the same input. 
That said, the reduce function offers a little more flexibility as its purpose is to apply some cumulative 
function to big list of key value pairs produced by the view. For example, the simplest reduce function is 
just to count up the numbers of input data. For this project, a common reduce function is to compute the 
minimum, maximum, mean, and count of some variable of interest like volume. 

CouchDB views are an analog to a SQL query, with one important difference. Relational databases 
like PostgreSQL allow the analyst to write exploratory queries, and each of these queries tries to leverage 
whatever indices exist for the tables involved in the query. 

CouchDB’s views offer a similar notion of being able to prepare ad hoc queries using JavaScript as 
the query language. However, a production instance of a view should be stored as a permanent view. The 
CouchDB engine will then compute a full B-Tree index over the keys in the view for all of the data in the 
database. Once this is done, querying the view over arbitrary ranges of the view’s keys is very fast—on the 
order of fractions of a second compared to minutes for SQL queries. The view is both a query and a custom 
index. In contrast, a relational database is slightly more “general purpose”, and always recomputes each 
query to the best of its abilities with each new session. 

When a view is queried the first time, CouchDB processes the entire database through the view, and then 
writes out a checkpoint for the data processed so far. If new record is added to a database, only that new 
record needs to be run through the view. When a query is sent to the view, CouchDB assembles the result 
from the B-Tree containing the individual output of each document. For example, if the view outputs a key 
containing the year, month, and day, and a value containing the total volume and average occupancy across 
all lanes, then the view process will create a B-Tree containing these keys. If a query requests all data in a 
particular month of a particular year, then the result is computed by combining just that part of the B-Tree. 

The wrinkle is that the views need to be set up properly to serve the intended queries. If a database is 
serving lots of interesting use-cases, the database will need an equal number of views, which will in turn 
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increase the storage space requirements of the database. For this project, the primary use case is to store and 
serve data by time and by detector, and to apply the estimated models to the stored data. These simple views 
are handled fairly easily. A small program was written to copy the view into each of the databases, and then 
trigger each view in turn to build each view’s B-Tree in advance. 

We started evaluating CouchDB at version 0.4. Currently CouchDB stable is in the 1.1.x generation, 
and the development version is 1.2.x. We are finding 1.2 to be a significant improvement over the earlier 
versions, and are using it in production. The biggest improvements of version 1.2 for this project are a much 
more compact data and view storage, and a more robust server-to-server replication engine. The storage 
requirements for District 12 data dropped by a factor of 7 between the initial and the current versions. 

The early versions of CouchDB provided usable, workable data storage technology, whereas the other 
databases—when tested—were not well suited to our needs or required too much effort. Over time other 
projects have matured significantly. If the same examination of data storage technologies were to be done 
again, the leading contenders should be CouchDB, MongoDB, Cassandra, and Hadoop, and another Er-
lang-based database called Riak. Relational databases would not be tried at all, given how much better the 
non-relational databases are able to perform this task. 
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Section 4: Generating 27 variables for all of the available 
VDS data 

The process of generating the 27 variables requires plenty of memory and a fast computer processor, but is 
nicely parallelizable. A full year of data is processed per detector, and only that year of data is required to 
process a detector. So multiple machines can process all of the data, as long as each processor avoids the 
detectors that other machines are processing or have processed. 

This approach is important for this project because one of the project goals is to produce a web-based 
user interface to display the safety predictions. It isn’t enough to just process some of the data for the model 
estimation step. Rather all of the data for Caltrans District 12 needs to be processed and stored in advance. 

The solution we developed uses the R statistical computing language(R Development Core Team, 2011) 
to process the data to generate the 27 variables, and relies on CouchDB’s automatic master-master database 
replication to keep all of the working machines in sync. Before processing a detector, the R process first 
saves the fact that it is going to process that detector to the CouchDB tracking database. This database is set 
up to replicate between all of the machines being used, so as soon as the detector’s document is saved, the 
other processes will know to avoid it. 

Generating the 27 variables is straight forward, requiring only the application of standard functions. We 
took steps to make sure the R code runs as fast as possible, and we also set up the R script such that the amount 
of memory required to process a year of data can be reduced by processing less data in each iteration (half 
or quarter year, rather than a full year, for example). This allows the processes to run on different machines 
with different amounts of memory available. 

The results for each detector are stored in a separate CouchDB database. Producing multiple databases 
(one per detector per year) rather than one big database allows us to more easily split the data storage between 
different machines. In order to easily “discover” where the data is, the databases are stored in a standard way, 
similar to how one might store files in a directory tree. At the very top of the tree is the identifier vdsdata. 
This top level identifier is used to separate this project’s databases from other CouchDB databases. Then 
tree of databases is split on the Caltrans District, the year, and the detector id. For example, the 2007 data 
for VDS detector 1201100 would be found in the database called /vdsdata/d12/2007/1201100. For 
this project, we only stored the raw and processed data for Caltrans District 12. If the project is extended to 
other Caltrans Districts they will fit into the scheme in a logical way. 

The database naming scheme is more than just a logical name. It is also mirrored by the filesystem 
that CouchDB uses. In the previous example for detector 1201100, there will be a file holding all of the 
detector’s data stored in the CouchDB disk files on the path /vdsdata/d12/2007/1201100.couch. 
If more districts or more years are processed, then the data could be split across multiple machines by using 
CouchDB’s server-to-server replication features, or by simply moving some or all of the databases directly 
between servers. 

Because the data are processed on multiple machines, the generated 27 variables are stored first inside 
of a CouchDB database on the local machine doing the processing. Then a one-time replication job is set up 
so that the database is replicated to the central database server (lysithia). We found that writing the data 
locally and then letting CouchDB mirror the database to the central server was the most efficient approach, 
allowing CouchDB to decide when and how to pull data from the remote machines. This approach also 
allowed a safety valve of sorts. If the produced databases become too large to fit entirely on lysithia’s 
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disk drive, the 27 variable generation jobs won’t fail. The remote machines will continue to run and save 
data locally. In practice we haven’t yet run into this problem. 

Using the latest 1.2.x version of CouchDB, generating 27 variables and storing the raw (30 second) 
data as well for the years 2007, 2008, and 2009 for District 12 require just under 300 GB of disk space, so 
that is roughly 100 GB per year. CouchDB has a built in compression algorithm (using Google’s “snappy” 
library) that automatically compresses each document. In practice we found that the bigger the individual 
documents stored in the database, the better the compression achieved. In order to get the data storage 
down to the roughly 100 GB per year that we eventually achieved, we settled on storing one day of data per 
document (from midnight to midnight). This means that queries for just a single time stamp must pull the 
entire day of data and then extract the desired time stamp out of the day. The choice of one day of data per 
document also influences how we sample the data for the modeling step, as will be explained in Section 6. 

It was mentioned in the previous section that CouchDB’s queries rely upon pre-computed views. While 
storing the 27 variables for three years requires 300 GB, after the views were computed on the production 
databases, and including the tracking database that stores extra figures and plots for each detector, the total 
space required for source data plus model output is around 800 GB. While this is a lot of space, it is still a 
reasonable quantity with modern disk drive technology. 
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Section 5: Accident data 

The accident data used in this project is taken from the Highway Safety Information System (HSIS). HSIS 
collects highway safety information from each state, and makes it available to researchers in a standard 
format (Council and Mohamedshah, 2007). A data request was prepared, and the HSIS staff emailed several 
compressed files and very helpfully answered our questions regarding the data. The data were loaded into a 
PostgreSQL database. The table definitions (the database schema) are described in Appendix A. 

Each accident is identified along a highway at a particular postmile. This information along with the 
direction of travel were used to locate the nearest VDS detectors within a mile of each accident location. 
We limited the selection to detectors that are upstream of an accident, so as to capture conditions of vehicles 
approaching an incident, rather than those resulting from vehicles leaving the incident area. 

Next the accidents had to be associated with the measured data. A simple histogram of accident times 
shows that they are clearly rounded off to the nearest 5 minute period, with larger frequencies at each quarter 
hour. Therefore we kept the prior project’s approach of cutting off the detector data 2.5 minutes prior to the 
reported accident time, so as not to sample post-accident conditions. An R script was written to retrieve the 
27 variable estimate from the associated upstream detector. The ideal time would be 2.5 minutes earlier than 
the accident, but to account for the possibility that the 27 variables couldn’t be computed for that exact time 
stamp, we chose the closest existing observation between 2.5 and 5 minutes prior to the posted time of the 
accident. 

The HSIS accident data contained 10,937 accidents in District 12 that could be associated with VDS 
detectors. Of these, 7,849 could be associated with an upstream detector with valid data between 2.5 and 5 
minutes prior to the accident. However, some of these valid detectors were within 1 mile of the accident, but 
were not the closest detector. Keeping only those that can be associated with the closest upstream detector left 
just 5,647 accidents out of the original 10,937 accidents, or about 51%. This is higher than the 39% (1,712 
usable accidents) achieved by the earlier project, a fact that is most likely attributable to the better quality of 
the raw loop data compared to the data from 2001. 
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Section 6: Sampling from the non-accident data 

The original approach to sampling the data for this project was to draw a random set of 10,000 or so locations 
and times within the study area and period. Then each of those would be processed to compute the 27 
variables for the chosen time. If there wasn’t enough data to perform the calculation, then the location was 
dropped. This was continued until we had about 5,000 observations to use as non-accident cases. 

As the data storage issues were resolved, we were able to take a different approach. First, all of the years 
and sites in the project were processed to compute 27 variables wherever possible. The results were then 
stored in the appropriate CouchDB database, as discussed in Section 4. At the same time, as an outcome 
from another California Traffic Management Labs (CTMLabs) project, the average annual segment length 
associated with each loop detector became available. Therefore it became possible to directly sample known 
good data using a two step process that will be described below. For presentation purposes, we will draw 
5,000 random variables, but this number can be set much higher or much lower, as needed by the application. 

6.1 Formulate a weighted set of detectors 

The first step is to collect the total count of usable observations from each detector, which in practice means 
to count up the times that we were able to compute the 27 variables. Then the length of each detector’s 
segment is queried from the database, and the counts and the lengths are multiplied to develop a proportional 
weighting of each detector. The idea behind this weighting scheme is to draw random non-accident events 
equally from all of the freeways in the study area. By multiplying the count of usable observations by the 
length of the detector segment, each of the freeway segments are evenly distributed in the choice pool. The 
lengths are multiplied by the valid count so as to select detectors in proportion to their activity. If a detector 
is only “on” for one month out of the year but happens to have a really long segment associated with it, the 
count of observations for only the one month will downscale the higher weighting from the longer length. 

Once the relative weights are set, the standard R command sample is used to draw 5,000 detectors with 
replacement. This list of detectors is then passed along to the next step. 

6.2 Draw one observation per selected detector 

The list of 5,000 detectors only contains the detector id. The next step is to pull a random valid observation 
for each of the 5,000 detector draws. To do this, the first step is to draw a random day, again weighted by the 
numbers of usable observations for each day in the year. There are usually multiple repeats of each detector, 
so these are grouped and one draw is done for each. 

Again the R sample command is used, with replacement, to draw a number of days equal to the desired 
number of samples for each detector. As with the detector draw, each day is weighted properly. In this case, 
each day is weighted according to how many usable observations it contains. As was described in Section 4, 
each document stored in the CouchDB database holding the precomputed 27 variables consists of one day’s 
data. One cannot directly extract a single 30 second period. Instead, the proper approach is to download a 
single document from the database that contains the desired day, and then extract a single random timestamp 
from that document. 
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The sampling routine can be repeated as often as desired to build one or multiple sets of non-accident 
cases. The final step, performed during modeling, is to make sure none of the non-accident cases are the 
same time and place as an accident case. This is a rare occurrence, but it does happen and so those duplicate 
cases must be removed from the non-accident sample. 
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Section 7: Modeling accident probability as function of traffic 
flow 

This section documents the four kinds of models that were estimated as part of this project. The purpose 
of these models is to quantify how traffic flow influences the probability of an accident, as well as some of 
the more important characteristics of accidents. The primary techniques used are binomial and multinomial 
logistic regression, also known as logit modeling. 

In a binomial logistic regression, the outcome is binary. For this project, the binary outcome is whether 
an accident is observed (y = 1), or not observed (y = 0) in a certain 30 second period. In this approach 
to modeling, the natural log of the odds of the outcome being 1 is modeled as a linear combination of the 
model variables. 

ln(Odds) = xβ 

Pr(y = 1|x) ln(Odds) = ln
(1 − Pr(y = 1|x)) 
exp(xβ) Pr(y = 1|x) = 1 + exp(xβ) 

A multinomial regression starts with a similar idea of modeling the log odds of the outcome as a linear 
combination of the variables, but instead of a binary outcome, there are multiple nominal response variables. 
The denominator of the odds expression will now contain the sum of the probability of all of the outcomes. 
For example, consider the severity of an accident as a three way event with outcome y = 0 representing 
no accident, y = 1 representing a property damage only event, and y = 2 representing an injury accident. 
Then the probability of the three cases would be: 

exp(β0x) No accident: Pr(y = 0|x) = 
∑

2 
j=0 exp(βjx) 

exp(β1x) Property damage only: Pr(y = 1|x) = 
∑

2 
j=0 exp(βjx) 

exp(β2x) Injury: Pr(y = 2|x) = 
∑

2 
j=0 exp(βjx) 

The above system of equations is unidentified, so to make the system identifiable, one category is chosen as 
the reference category, and its model coefficients are set to zero. To simplify the discussion of the model 
output, we choose as the reference case the no accident case (y = 0). Since exp(0x) = 1, the above system 
simplifies to: 

1 
No accident: Pr(y = 0|x) = 

1 + ∑
2 
j=1 exp(βjx) 

exp(β1x) Property damage only: Pr(y = 1|x) = 
1 + ∑

2 
j=1 exp(βjx) 

exp(β2x) Injury: Pr(y = 2|x) = 
1 + ∑

2 
j=1 exp(βjx) 
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Then the probabilities of each of the accident outcomes can be written as ratios relative to the reference 
group as follows: 

Pr(y = 1|x) 
Property damage only: = exp(β1x) Pr(y = 0|x) 

Pr(y = 2|x) 
Injury: = exp(β2x) Pr(y = 0|x) 

The two coefficients, β1 and β2 represent the log odds of being in either group 1 (property damage only) or 
group 2 (injury accident), respectively, relative to the reference group no accident. 

In practice, the β’s and the x’s are vectors of parameters and variables. For this project, the modeling 
process involves replacing the x’s by the 27 variables we’ve developed, as well as possible interaction terms 
between those variables, and then using binomial logit and multinomial logit regression to estimate the best 
fit values for the vector of β’s. The next four subsections go over each of the models that were estimated in 
detail. 

7.1 Likelihood of any accident 

The first model explored is the likelihood of any accident, with the output shown in Table 2. All of the 
explanatory variables shown are statistically significant. The model as a whole is significantly different than 
a pure intercept model. That said, the likelihood of the model is not very different from the likelihood of 
the null model, and while the model predicts elevated probabilities for an accident for some of the observed 
accidents, the predicted probabilities are still very far from one. In short, the model is not a very good 
predictor of whether or not an accident is about to occur. 

But this conclusion that the model isn’t very good is okay, given that the model is trying to explain 
freeway accidents, which occur only 11,000 times per year, or less than 0.002% of the time. The true cause 
of most accidents most likely can never be observed—for example texting while driving or a sudden tire 
blow out. What this project’s models do is to use what we can observe—the traffic dynamics variables—to 
indicate periods when the traffic flow conditions are more likely to turn that unexpected and unobserved 
event into an accident rather than a near miss. 

The final model estimated contains 10 significant traffic flow variables, and an additional 14 interaction 
terms, indicated by the colon between the variable names. The first column in the table gives the estimated 
coefficient, and the second column gives the odds ratio. The odds ratio gives the increase in the odds of 
an accident (relative to the odds of no accident) given a one unit increase in the variable. This column 
is simply the exponential of the coefficient given in the first column. Although the odds ratio is easier to 
interpret than the coefficient, it is missing the corresponding sign indicating the directionality of the change 
in odds. Further, we found that it is difficult to interpret a notion of “one unit increase” in variables such as 
the coefficient of variation of occupancy. For this reason, the any accident model as well as all of the other 
models estimated are followed by a series of sensitivity plots that show the impact of some of the variables 
over an observed range of values. 

The third column provides the Wald z-statistic (analogous to the t-statistic) and the fourth column shows 
the probability that the variable has no effect whatsoever and the coefficient is no different than zero. Low 
p values indicate that coefficient is unlikely to be zero. For this model, all of the coefficients are significant 
at the 95% level or better, meaning there is a less than 5% chance that any of the coefficients estimated are 
actually zero. 
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Table 2 Binomial logit model of accident occurrence as a function 
of traffic flow variables (reference category = no accident) 

Explanatory variable Coefficient Odds ratio z value Pr(>z) 

mean.vol.r 0.088 1.092 6.7 1.7e-11 
sd.vol.1 -0.057 0.945 -4.4 1.1e-05 
sd.vol.m -0.173 0.841 -5.6 1.8e-08 
cv.occ.m 0.456 1.578 4.0 5.3e-05 
cv.occ.r 0.256 1.292 3.8 1.4e-04 
cor.volocc.1.m -0.377 0.686 -3.6 3.1e-04 
cor.volocc.m.r 0.405 1.499 3.7 2.3e-04 
autocor.vol.m 1.339 3.814 3.9 8.4e-05 
autocor.vol.r -0.468 0.626 -3.2 1.5e-03 
autocor.occ.m -1.000 0.368 -2.8 4.4e-03 
mean.vol.r : sd.vol.r -0.013 0.987 -4.5 8.4e-06 
autocor.vol.m : mean.vol.m -0.090 0.914 -3.6 3.2e-04 
autocor.occ.m : mean.vol.m 0.073 1.076 3.1 1.7e-03 
mean.vol.r : cv.volocc.r -0.098 0.906 -3.5 4.1e-04 
sd.vol.m : cv.volocc.r 0.460 1.585 6.6 5.4e-11 
autocor.occ.m : cv.occ.1 0.450 1.569 2.1 3.3e-02 
cv.occ.m : cv.volocc.r -1.418 0.242 -6.1 1.3e-09 
cv.occ.m : cor.volocc.1.m 0.654 1.922 3.6 2.8e-04 
cv.volocc.r : cv.volocc.1 0.719 2.053 3.0 3.0e-03 
cor.volocc.m.r : cv.volocc.m -2.437 0.087 -6.3 4.0e-10 
autocor.vol.r : cv.volocc.m 1.915 6.787 3.4 7.6e-04 
autocor.vol.m : cv.volocc.r -2.829 0.059 -4.7 2.7e-06 
autocor.occ.m : cv.volocc.r 1.526 4.598 3.0 2.9e-03 
autocor.vol.m : autocor.occ.m 1.136 3.113 4.2 2.2e-05 
(Intercept) -11.035 1.6e-05 -111.4 < 2e-16 

Interpretation of the model is explained below. Plots are used to illustrate the effect of each variable on 
the probability of an accident in a 30 second period when all other variables are held at their mean values. 
As expected, the probability of an accident is very low for any given 30 second period. 

In Figure 1, as the average volume in the right lane increases, the likelihood of an accident increases. 
This effect is the strongest of all variables. On the same plot, the effect of the mean volume in the middle 
lanes is shown to have a small but increasing effect. This variable is only used in crossed terms in the model. 

As shown in Figure 2, accident likelihood decreases as the standard deviation of the volume in either the 
left or middle lanes from one period to the next increases. A similarly scaled effect holds for the standard 
deviation of the volume in the right lane, although the effect is produced by the various interaction terms in 
the model. 

Figure 3 shows the effect of the coefficient of variation of occupancy (a measure of statistical dispersion). 
As this value tends upward in the right or middle lanes, the risk of accidents also increases. The effect of 
the left lane (green in the figure) is very small over its likely range. 

In Figure 4, the effect of increasing the coefficient of variation of volume/occupancy is both positive and 
negative. As the coefficient increases in the left lanes, the probability of an accident increases, but as the 
coefficient increases in the middle lanes, the accident probability decreases. The effect of a rise in the right 
lanes generates a slight rise in accident risk. The coefficient of variation is a measure of statistical dispersion, 
and the ratio of volume to occupancy is proportional to speed, so an increase in this variable corresponds 
to an increase in the spread of speeds. Thus the model implies that as speeds get more varied in the left 
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Figure 1 The influence of mean volumes on the probability of any accident occurring. 

Figure 2 The influence of the standard deviation 
of volumes on the probability of any accident occurring. 

lanes accident risk rises, but as speeds get more varied in the middle lanes conditions become safer. Most 
likely this is capturing the fact that the left lane is the “fast” lane, and so the rise in speed variation probably 
coincides with higher speeds and more aggressive driving. 

A slight decrease in accident risk is observed as the correlation of speeds between left and middle, and 
middle and right lanes increases, as shown in Figure 5. The risk of an accident is highest when speeds are 
perfectly uncorrelated (value of -1), while they are lowest when speeds are correlated. The implication is 
that start stop traffic flow increases the likelihood of an accident, as expected. 
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Figure 3 The influence of the coefficient of variation 
of occupancy on the probability of any accident occurring. 

Figure 4 The influence of the coefficient of variation of volume/occupancy 
(proportional to speed) on the probability of any accident occurring. 
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Figure 6 The influence of the autocorrelation of volume and 
occupancy within a lane on the probability of any accident occurring. 

Figure 5 The influence of the correlation of volume/occupancy 
(proportional to speed) on the probability of any accident occurring. 

A similar trend is shown in Figure 6 for the autocorrelation of volumes in the right and middle lanes over 
time. As the autocorrelation moves from negative one (perfectly negatively correlated) to one (perfectly cor-
related from one period to the next) the risk of an accident decreases, with the effect being more pronounced 
for the middle lanes than for the right lane. Thus as traffic from one 30 second period to the next oscillates 
strongly, the risk of an accident rises, whereas if one period has the same volume as the next, the risk of an 
accident is lower. 

The final variable that has a significant influence on the probability of any accident is the autocorrelation 
of occupancy of the middle lanes, also included in Figure 6. This effect is the reverse of that for volume. 
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As the autocorrelation increases, the risk of an accident also increases. Since occupancy is analogous to 
density, this effect means that if the freeway is equally dense from one period to the next, conditions are less 
safe. Looking at the terms in the model, this variable is significant by itself, but also shows up in several 
of the interaction terms. Thus the net effect is probably capturing the increased risk due to churning traffic 
during periods of flow breakdown. Even if the occupancy is the same from one period to the next, when 
flow is unstable the volume and speeds can be quite different. In periods of smooth flow (no congestion), 
the occupancy can change much more easily from one period to the next, but the overall conditions are 
uncongested. 

7.2 The severity of an accident 

We define severity as whether people were injured, or whether the accident only caused property damage. 
Our set of accident cases included 1,433 (about 25%) injury accidents, and 4,202 property damage only 
(PDO) accidents. The term “injury” here is quite broad, and includes the HSIS categories “Fatal”, “Severe 
Injury”, “Other Visible Injury”, and “Complaint of Pain”. These accident cases were again paired with a 
large sampled set of non-accident cases. Rather than using a binomial logit model, the three outcomes—no 
accident, PDO, or injury—call for a multinomial logit model. The results of the regression are shown in 
Table 3. The table is partitioned into two parts, the first showing the parameters for the PDO case, and the 
second showing the results for the Injury case, with the no accident case set as the reference category. To 
try to reduce the size of the tables, only the coefficient and the probability that the coefficient is zero. The 
McFadden pseudo-R2 value for the model is 0.986, which indicates that the model is much better than simply 
using the intercept values with no coefficients. 

The model includes many more crossed variables than the model of the risk of any accident. The model 
is easiest to interpret by examining plots of how the probabilities of property damage only and injury ac-
cidents vary as each variable moves through its observed range. As before, the following plots are set up 
with all of the variables held fixed at their mean values, with only the variable being examined allowed to 
change. In most cases, the probability of PDO type accidents is higher than injury accidents, as expected by 
the relative frequencies. The range of each of the changing variables is from the observed minimum to the 
observed maximum. This gives a good idea of how the variables influence the outcome, but do not capture 
the fact that all of the variables tend to move together. For example, low volumes can correspond to either 
high occupancies (traffic jam conditions) or low occupancies (very light traffic), but rarely to moderate occu-
pancies. Nevertheless, this is probably the best way to discuss the impact of the variables, as the interaction 
terms shown in the coefficients above are hard to understand. 

Figure 7 shows the effect of the autocorrelation of occupancy in the left and middle lanes. While con-
ditions get safer as the autocorrelation of occupancy goes up in the fast lane, the opposite effect is observed 
for the middle lanes. 

Figure 8 shows the effect of the autocorrelation of volumes in the left, middle, and right lanes. The 
effect of increasing autocorrelation of volume in the left lanes increases the risk of both PDO and injury 
accidents, while an increase in the middle lanes decreases the probability of both kinds of accident. The 
effect of increasing autocorrelation of volume in the right lane is pretty flat for PDO accidents, and leads to 
slightly less chance of an injury accident. 
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Table 3 Multinomial logit model of accident severity as a function 
of traffic flow variables (reference category = no accident) 

(Intercept) 

Explanatory variable 

Property damage only 

Coefficient Pr(>z) 

Injury or fat

Coefficient 

ality 

Pr(>z) 

autocor.occ.m -1.61309 0.000 -1.11005 0.190 
autocor.vol.m 3.17264 0.000 1.11154 0.268 
cv.occ.m 0.59596 0.000 0.53653 0.011 
mean.vol.r 0.08026 0.000 0.05103 0.034 
sd.vol.m -0.13007 0.000 -0.13789 0.024 
cv.occ.m : autocor.occ.1 -1.71321 0.000 -0.81710 0.269 
autocor.occ.1 : cv.volocc.m 2.44851 0.000 1.12477 0.334 
autocor.occ.m : autocor.vol.m 1.51724 0.000 1.26017 0.024 
autocor.occ.m : cv.occ.r 1.53757 0.000 1.69764 0.022 
autocor.occ.m : mean.vol.m 0.12850 0.000 0.05784 0.294 
autocor.vol.m : cor.vol.1.r -1.30151 0.003 -0.62510 0.394 
autocor.vol.m : cv.occ.r -1.98940 0.000 -0.22719 0.798 
autocor.vol.m : mean.vol.m -0.18553 0.000 -0.05161 0.422 
cor.occ.1.m : cv.occ.1 -0.46705 0.007 -0.61177 0.045 
cor.occ.1.m : mean.vol.1 -0.02166 0.007 -0.02665 0.064 
cor.vol.1.m : cor.vol.m.r -0.33368 0.183 0.93131 0.023 
cv.occ.m : autocor.vol.1 1.78180 0.000 0.56791 0.495 
cv.occ.m : cor.vol.m.r -1.18296 0.000 -1.24420 0.018 
cv.occ.m : cor.volocc.1.m 1.26187 0.000 0.03389 0.929 
cv.occ.m : cv.volocc.r -1.06144 0.000 -1.06836 0.008 
cv.occ.r : autocor.vol.r -0.69261 0.003 -1.25499 0.003 
sd.vol.m : cv.occ.r 0.14053 0.000 0.08746 0.203 
cv.volocc.m : autocor.vol.1 -2.28386 0.002 -0.93958 0.466 
cv.volocc.m : autocor.vol.r 1.73825 0.004 2.61786 0.013 
cv.volocc.m : cor.vol.m.r 2.18311 0.000 2.31632 0.017 
cv.volocc.m : cor.volocc.1.m -2.92011 0.000 0.53843 0.533 
cv.volocc.m : cor.volocc.m.r -1.98689 0.000 -4.05921 0.000 
cv.volocc.m : sd.vol.1 -0.43042 0.000 -0.68156 0.000 
cv.volocc.m : sd.vol.r 0.22139 0.022 0.40473 0.016 
autocor.vol.m : cv.volocc.r -2.07227 0.000 -2.26348 0.025 
cor.occ.1.m : cv.volocc.r 1.54393 0.000 1.26206 0.044 
cv.volocc.r : cor.volocc.m.r 1.30563 0.001 1.86823 0.008 
cv.volocc.r : cv.volocc.1 0.91641 0.001 0.04272 0.934 
mean.vol.1 : sd.vol.1 0.00199 0.001 0.00172 0.201 
mean.vol.r : sd.vol.r -0.01791 

-12.01746 
0.000 
0.000 

-0.01168 
-12.84033 

0.047 
0.000 
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Figure 7 The influence of the autocorrelation of 
occupancy on the probability of the severity of an accident. 

Figure 8 The influence of the autocorrelation of volume on the probability of the severity of an accident. 

The next two plots show the effects of inter-lane correlations. Figure 9 shows that increasing correlation 
of volume between left and middle, and middle and right lanes corresponds with a rise in the risk of an 
injury accident, and a decline in the risk of a PDO accident. Increasing correlation between the left and 
right lane volumes results in almost no effect on the probability of an injury accident, and a slight increase 
in the probability of a PDO type accident. 
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Figure 9 The influence of the correlation of volume between 
lane pairs on the probability of the severity of an accident. 

Figure 10 combines the correlation of occupancy between the left and middle lanes, with the plots of 
correlations of volume divided by occupancy. As the occupancy gets more correlated between the left and 
middle lanes, the probabilities of both types of accidents decrease. Correlations of speeds between lanes also 
has a significant effect on the severity of the accident. Figure 10 shows that increasing correlation of vol-
ume/occupancy (which is proportional to speed) between the left and middle lanes decreases the probability 
of a PDO accident and increases the risk of an injury accident. Increasing correlation of speeds between the 
middle and right lanes will decrease the probability of both kinds of accidents. 
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Figure 10 The influence of the correlation occupancy between the left 
vs. middle lanes, and the correlation of volume/occupancy between the left vs. 
middle, and middle vs. right on the probability of the severity of an accident. 

Figure 11 presents the effect of mean volumes on the severity of the accident. Mean volume in the left 
lane in has almost no noticeable effect on the probability of either an injury accident or a PDO accident, 
and is significant only when it interacts with other variables. Increasing mean volumes in the middle lanes 
has a slight increasing effect on injury accidents, and a stronger positive effect on the probability of a PDO 
accident. Finally, the mean volume in the right lane has a strong and increasing impact on the probability of 
a PDO type accident. 
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Figure 11 The influence of mean volume on the probability of the severity of an accident. 

The final three figures show the impact of the statistical dispersion measures. The effect of increasing 
standard deviation of volume is shown in Figure 12. When the standard deviation of volume in any lane 
is low, meaning the 30 second volumes in the 20 minute period are all quite close to the mean, the risk of 
both PDO and injury accidents is the highest. As the dispersion increases, the probability of both kinds 
of accident decreases. The only exception to this trend is that the risk of an injury accident shows a slight 
increase as the standard deviation of volume in the right lane rises. 

Next is the impact of the rise in the dispersion of the occupancy in each of the lanes shown in Figure 13. 
The coefficient of variation of occupancy for the left lane shows the highest risk of accidents at low values. 
In contrast, increasing dispersion of occupancy for the middle lanes produces an increase in the probability 
of PDO type accidents. An increase in the dispersion of occupancy in the right lanes leads to an increase in 
the probability of both PDO and injury accidents. 

The effect of dispersion of speeds in each lane is shown in Figure 14. The effect of increasing speed 
dispersion in the left lane is to increase PDO probability. Increasing speed variation in the middle lanes will 
decrease the likelihood of both kinds of accident. Finally, a rise in the coefficient of variation of volume/oc-
cupancy for the right lane will significantly increase the risk of both types of accident, with the risk of a 
PDO-type accident climbing sharply. 
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Figure 12 The influence of standard deviation of 
volume on the probability of the severity of an accident. 

Figure 13 The influence of coefficient of variation of 
occupancy on the probability of the severity of an accident. 
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Figure 14 The influence of coefficient of variation of 
volume/occupancy on the probability of the severity of an accident. 

7.3 The numbers of vehicle involved 

This section presents the results of a multinomial model to predict the numbers of vehicles that are involved 
in an accident. The raw data show that the majority of accidents involve two vehicles. Some accidents 
involve just one vehicle, for example when a vehicle runs off the road or collides with an obstacle in the 
roadway. And there are multi-vehicle crashes, which according to the data can involve up to 9 vehicles. 
Because most of these higher numbers of vehicles are quite infrequent, the categories have been recoded 
to 0 vehicles (the reference no accident case), 1 vehicle accidents (about 12% of the accidents), 2 vehicles 
(about 63% of the accidents), and 3+ vehicles (about 25% of the accidents). As before the accident cases 
were paired with a large sample of non-accident cases that were all coded with 0 vehicles involved. 

The McFadden pseudo-R2 value for the vehicles involved model is 0.986. As before, the pseudo-R2 
value indicates that the model is much better than simply using the intercept values with no coefficients. The 
estimated model parameters are shown in Table 4. As with the model of severity, only the coefficient and 
the probability that the coefficient is equal to zero are shown for each of the three model outcomes. If the 
probability value is 0.05 or below, that is the commonly accepted measure that a coefficient is significantly 
different than zero—as with the severity model, several of the coefficients are not significant factors in 
explaining one or more of the outcomes, but all of the variables included in the model have at least one 
significant coefficient for one of the three possible outcomes. The following series of plots help to explain the 
meaning of the model by plotting the impact of each variable on the probability of a one-vehicle, two-vehicle, 
or three-plus-vehicle accident occuring. 

In most of the plots that follow, the most probable accident case is the two-vehicle accident, as would 
be expected from the fact that over 60% of accidents involve two vehicles. What is interesting about the 

30 



Final Report #UCI-280 December 2011 

Table 4 Multinomial logit model of number of vehicles involved in an 
accident as a function of traffic flow variables (reference category = no accident) 

Explanatory variable 

1 vehicle 

Coef Pr(>z) 

2 vehicles 

Coef Pr(>z) 

3+ vehicles 

Coef Pr(>z) 

autocor.occ.m -1.7237 0.144 -1.2334 0.019 -2.1161 0.008 
autocor.vol.m 3.6234 0.010 2.1606 0.000 3.4778 0.000 
cv.occ.m -0.2139 0.567 0.6332 0.000 0.6545 0.001 
mean.vol.r 0.0090 0.791 0.0774 0.000 0.0916 0.000 
sd.vol.m 0.0047 0.957 -0.1263 0.001 -0.2247 0.000 
autocor.occ.1 : cor.occ.m.r 1.8066 0.018 0.3002 0.355 -0.4665 0.353 
cv.occ.m : autocor.occ.1 -1.3912 0.102 -1.7329 0.001 -0.7245 0.246 
autocor.occ.1 : cv.volocc.m 2.1862 0.066 2.0341 0.024 4.0164 0.002 
autocor.occ.1 : cv.volocc.r -0.8856 0.433 -0.3157 0.568 -2.3992 0.006 
autocor.occ.m : autocor.vol.m 2.5949 0.001 0.9894 0.009 1.9793 0.000 
autocor.occ.m : cv.occ.r 2.8498 0.005 1.3452 0.004 1.6124 0.014 
autocor.occ.m : mean.vol.m 0.0699 0.386 0.1053 0.002 0.1500 0.006 
autocor.occ.m : autocor.occ.r -1.5778 0.071 0.1356 0.729 -1.1138 0.066 
cor.occ.m.r : autocor.occ.r -0.2022 0.810 -0.2081 0.569 1.8122 0.001 
autocor.vol.m : cor.vol.1.r -3.4243 0.002 -1.1668 0.018 -0.0805 0.912 
autocor.vol.m : cv.occ.r -2.7150 0.031 -1.2918 0.019 -2.2194 0.005 
autocor.vol.m : mean.vol.m -0.1732 0.059 -0.1204 0.002 -0.2304 0.000 
cor.occ.1.m : cv.occ.1 -1.1085 0.051 -0.2956 0.195 -1.3281 0.000 
cor.occ.1.m : mean.vol.1 -0.0609 0.006 -0.0116 0.250 -0.0468 0.003 
cor.occ.m.r : autocor.vol.r 1.7172 0.100 -0.1069 0.807 -1.8495 0.006 
cor.vol.1.m : cor.vol.m.r -0.4141 0.526 -0.3445 0.205 1.3682 0.002 
cv.occ.m : autocor.vol.1 0.4935 0.541 1.8788 0.000 1.2869 0.060 
cv.occ.m : cor.vol.m.r 0.6530 0.424 -1.3746 0.000 -1.1363 0.030 
cv.occ.m : cor.volocc.1.m 1.2629 0.049 0.8178 0.001 1.5386 0.000 
cv.occ.m : cv.volocc.r -1.0641 0.096 -0.9825 0.000 -1.2225 0.002 
cv.occ.r : autocor.vol.r -1.1286 0.080 -0.9201 0.001 -0.6172 0.111 
sd.vol.m : cv.occ.r -0.0334 0.750 0.1238 0.003 0.2037 0.001 
cv.volocc.m : autocor.vol.1 -1.0683 0.356 -2.5401 0.002 -1.1762 0.304 
cv.volocc.m : autocor.vol.r 1.6403 0.349 1.9926 0.005 2.7864 0.009 
cv.volocc.m : cor.occ.1.m 1.1308 0.486 -0.4322 0.545 3.1076 0.004 
cv.volocc.m : cor.vol.m.r -1.0652 0.497 2.9955 0.000 0.2231 0.830 
cv.volocc.m : cor.volocc.1.m -2.3664 0.090 -1.7014 0.003 -3.7645 0.000 
cv.volocc.m : cor.volocc.m.r -2.5621 0.053 -2.9413 0.000 -2.1293 0.020 
cv.volocc.m : sd.vol.1 -0.3614 0.058 -0.4833 0.000 -0.6246 0.000 
cv.volocc.m : sd.vol.r 0.1135 0.645 0.2541 0.020 0.3375 0.037 
autocor.vol.m : cv.volocc.r -2.8959 0.038 -1.9238 0.004 -0.6093 0.554 
cv.volocc.r : cor.occ.1.m 2.2373 0.010 1.1382 0.010 1.6385 0.016 
cv.volocc.r : cor.volocc.m.r 2.3417 0.016 1.7829 0.000 0.8677 0.223 
cv.volocc.r : cv.volocc.1 0.6895 0.346 0.6733 0.043 1.3491 0.007 
cv.occ.1 : mean.vol.1 0.0775 0.013 -0.0136 0.389 0.0066 0.771 
mean.vol.1 : sd.vol.1 0.0020 0.134 0.0014 0.110 0.0032 0.002 
mean.vol.m : cv.occ.1 -0.0780 0.039 0.0113 0.436 0.0225 0.315 
mean.vol.r : sd.vol.r -0.0059 0.457 

-13.3291 0.000 
-0.0168 0.000 
-12.1556 0.000 

-0.0203 0.002 
-13.1338 0.000 (Intercept) 

figures, however, are how the probabilities of the numbers of vehicles involved change relative to one another. 
Figure 15 shows the effect of increasing autocorrelation of occupancy in the left, middle, and right lanes. As 
the autocorrelation tends towards 1, the occupancy from one 30 second period to the next tends toward the 
same value. A value of exactly 1 means that for every 30 second period in the 20 minutes used to generate 
the 27 variables, the occupancy is exactly the same. A value of zero means that the occupancy values are 
uncorrelated over time. As the autocorrelation of occupancy in the left lane increases, the risk of two vehicle 
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Figure 15 The influence of the autocorrelation of 
occupancy on the number of vehicles involved in an accident. 

accidents declines. The opposite effect occurs for autocorrelation of occupancy in the middle lanes. As the 
autocorrelation of occupancy in the right lane increases, the probability of a multi-vehicle accident increases 
relative to the 1 and 2 vehicle cases. 

The autocorrelation of volume is presented in Figure 16. The probabilities of two and three+ accidents 
rise as the autocorrelation of volume in the left lane increases. The figure also shows that the probability of 
two vehicle crashes declines with increased autocorrelation of volume in the middle lanes and the right lane, 
but the single vehicle and multi-vehicle cases go in opposite directions. Increasing autocorrelation of volume 
in the middle lanes corresponds to increasing probability of a multi-vehicle accident and decreased risk of 
single vehicle accidents, while increasing autocorrelation of volume in the right lane leads to decreased risk 
of multi-vehicle accidents but increased risk of single vehicle accidents. 

The next series of figures examine the impact of the correlation of variables between lanes. For the 
most part, the probabilities of all three kinds of accidents have the same trends for each of the variables, 
and those trends show only minor difference in probability across the range of the variables. The exception 
is the correlation of volume bewtween the left and middle lanes, shown in Figure 18. As the correlation 
increases, which means that the volumes in the left and middle lanes become more syncronized, the risk of 
multi-vehicle accidents increase, while the risk of one and two vehicle accidents decrease. It is also worth 
noting that the probabilities of all three kinds of accidents show a pronounced decline as the ratio of volume 
to occupancy between the middle and right lanes increases. So as the speeds in the middle and right lanes 
become synchronized, conditions become safer, all else being equal. 

Figure 20 shows the effect of mean volumes in each of the lanes. As the mean volume in the left lane 
increases, the probability of a single vehicle accident increases sharply, the probability of a two vehicle 
accident declines, and the probability of multi-vehicle accidents is largely unaffected. The mean volume 
in the middle lanes has almost the opposite effect. As the mean volume increases, the probability of two 
vehicle and multi-vehicle accidents increase, while the probability of a single vehicle accident drops. Finally, 
increasing mean volume in the right lane has an almost exponential impact on increasing the probability of 
two vehicle and multi-vehicle accidents. 
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Figure 16 The influence of the autocorrelation of 
volume on the number of vehicles involved in an accident. 

Figure 17 The influence of the correlation of occupancy 
between lanes on the number of vehicles involved in an accident. 

The last set of figures examine the impact of the measures of statistical dispersion. First, Figure 21 shows 
that as the standard deviaiton of volume increases, regardless of the lane, the probabilities of all kinds of 
accidents decrease. The effect of an increasing standard deviation of volume has the strongest effect on the 
risk of two vehicle accidents, and the least impact on single vehicle accidents.. 

The coefficient of variation of occupancy shown in Figure 22 has some interesting effects. As this vari-
able increases in the left lane, the probabilities of all types of outcomes decline. So more dispersion in left 
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Figure 18 The influence of the correlation of volume between 
lanes on the number of vehicles involved in an accident. 

Figure 19 The influence of the correlation of volume/occupancy between the 
left and middle lanes on the number of vehicles involved in an accident. 

lane occupancy over a 20 minute period corresponds to safer conditions across the board. However, increas-
ing dispersion of occupancy in the middle lanes will increase the probability of two vehicle and multi-vehicle 
accidents, and increasing dispersion of occupancy in the right lane has an exponential impact on increasing 
the probability of two or more vehicle accidents. These probabilities are on the same scale as the impact of 
mean right lane volume shown in Figure 20. 

The statistical dispersion of the ratio of volume to occupancy is proportional to the dispersion of speed. 
Whereas the dispersion of occupancy in the left lane was different than the others, the middle lanes stand out 
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Figure 20 The influence of the mean volume on the number of vehicles involved in an accident. 

Figure 21 The influence of the standard deviation of 
volume on the number of vehicles involved in an accident. 

for the dispersion of the speeds. Figure 23 shows an increase in the probability of all three kinds of accident 
outcomes with increasing dispersion of speeds in the left lane. In contrast, increasing dispersion of speeds 
in the middle lane leads to a decline in all accident probabilities. The other interesting feature is that the risk 
of a single vehicle accident shows a very sharp rise with increasing speed dispersion in the right lane. 

The plots of the three kinds of statistical dispersion are interesting because of how the probabilities move 
in different directions for different lanes. For example, for the dispersion of occupancy, the left lane behaves 
the opposite of the middle and right lanes, while for the dispersion of speeds the middle lane probabilities 
move in the opposite direction of the left and right lanes. The explanation probably relates to the nature 
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Figure 22 The influence of the coefficient of variation of 
occupancy on the number of vehicles involved in an accident. 

Figure 23 The influence of the coefficient of variation of 
volume/occupancy on the number of vehicles involved in an accident. 

of traffic on a freeway. The left lane typically is used by the fastest and most aggressive drivers. A wide 
dispersion of occupancies probably corresponds to free flow traffic conditions with cars freely able to get in 
and out of the fast lane on an as-needed basis. In contrast, the middle and especially the right lane are used 
by all kinds of traffic. Furthermore, the right lane must always be used by trucks and by any vehicle entering 
or exiting the freeway, whereas the left lane cannot be used by trucks and almost never has on or off ramp 
mixing. Increased variation in occupancies in the right lane imply different conditions, for example a block 
of trucks interspersed with a block of passenger cars, which in turn has different consequences for traffic 
safety. 
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7.4 The location of the accident 

The final model estimated was a multinomial logit model of the location of an accident. The HSIS coding of 
the data identifies where each vehicle is at the time of the accident. We used this information to define four 
categories of accident location: in the left lane, in the interior lanes, in the right lane, or off the road, which 
by definition is all the other locations of accidents that do not occur in the lanes but still are considered to 
occur on the highway. One further complication is that the HSIS coding identifies a location for each vehicle 
involved in the accident, and those locations might be different from each other. When there was a conflict 
between possible locations, the approach taken was to choose the location of the first vehicle identified in 
the records and use that value as the location of the accident. 

From the existing accidents in 2007, there were approximately 29% that occurred in the left lane, 36% in 
interior lanes, 16% in the right lane, and 19% of the accidents occured at off road locations. The reference 
category once again is the no accident case. The relatively even distribution of accidents among the 4 
different outcomes makes for a very interesting model. 

The estimated multinomial logit model is shown in Table 5. Once again the coefficient is shown first for 
each of the model outcomes, followed by the probability that the coefficient is zero (has no impact on the 
outcome). As with the other multinomial models, some of the coefficients have high probabilities for some 
of the model outcomes (which means the coefficient is not significant for that outcome), but are included in 
the overall model because they are significant explanatory variables for one or more of the other outcomes. 
The McFadden pseudo-R2 value for the model is 0.986. The high pseudo-R2 value indicates that the model 
is much better than simply using the intercept values with no coefficients to predict accident location. 

The first set of variables to be examined are the autocorrelation of occupancy in each of the left, middle, 
and right lanes in Figure 24. As a reminder, an autocorrelation value of 1 means that each of the 30 second 
periods in the 20 minute period used to compute an interval’s autocorrelation value has exactly the same 
occupancy. That occupancy isn’t necessarily high or low, it is just the same from period to period. An 
autocorrelation of zero means there is no correlation from timestep to timestep, and a negative correlation 
value implies that the occupancies for each 30 second period are perfectly out of sync with the previous 
period. 

The outcomes being modeled have long-run probabilities that are very close to each other. While acci-
dents in the middle lanes dominate, the other locations still have large shares overall. This fact is obvious 
from viewing the probability plots, compared with the earlier models. Instead of just the occasional changing 
of positions of the most probable accident outcome, many of the plots show crossings of probability curves. 

Figure 24 shows the effect of the autocorrelation of occupancy for each lane. As occupancy autocor-
relation in the left lane increases, the probability of interior lane and off road accidents increases, but the 
probability of a left lane accident falls. For low, negatively correlated values, left lane accidents are most 
likely, and right lane accidents are more likely than off road accidents. For the middle lanes, as the autocor-
relation of occupancy rises, so does the probability of an interior lanes accident. The other probabilities rise 
as well, but the interior lanes rises fastest. Then as the autocorrelation of occupancy in the right lane rises, 
the risk of both interior lanes and right lane accidents rises, but the probabilities of off-road and left lane 
accidents fall. 

The effect of rising autocorrelation of volume in all of the lanes, shown in Figure 25, is almost exactly 
the opposite of rising autocorrelation of occupancy. As the autocorrelation of the left lane volume moves 
towards one, the risk of a left lane accident increases and becomes the most likely accident location, and the 
probability of a right lane accident is higher than that of on off-road accident. The most likely explanation 
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Table 5 Multinomial logit model of location of an accident as 
a function of traffic flow variables (reference category = no accident) 

Explanatory variable 

off road 

Coef Pr(>z) 

left lane 

Coef Pr(>z) 

interior 

Coef 

lanes 

Pr(>z) 

right lane 

Coef Pr(>z) 

mean.vol.r 0.0247 0.469 0.1120 0.000 0.0698 0.003 0.1464 0.000 
cv.occ.r 0.6593 0.008 -0.0012 0.995 0.5434 0.001 0.2882 0.282 
cv.volocc.1 0.2847 0.728 -0.2149 0.738 0.0779 0.901 2.6082 0.003 
cv.volocc.m 0.6582 0.344 1.4952 0.006 1.1295 0.005 1.9811 0.004 
cor.vol.1.m 0.3515 0.490 -1.6926 0.000 -0.9545 0.009 -0.9031 0.077 
cor.occ.1.m 0.6700 0.331 2.4676 0.000 1.7144 0.001 1.0795 0.112 
cor.volocc.1.m -1.0746 0.041 -1.2173 0.001 -1.1655 0.000 -1.0087 0.061 
mean.vol.1 : sd.vol.m 0.0042 0.264 0.0050 0.147 -0.0019 0.535 -0.0148 0.003 
mean.vol.r : sd.vol.m 0.0121 0.091 -0.0240 0.005 -0.0050 0.436 -0.0059 0.591 
cv.occ.r : sd.vol.m -0.2481 0.037 0.1136 0.145 -0.0395 0.615 -0.1191 0.367 
cv.volocc.1 : sd.vol.m 0.1399 0.546 0.0407 0.839 -0.2322 0.274 -0.6683 0.026 
sd.vol.m : cv.volocc.r 0.3889 0.003 0.2196 0.055 0.1383 0.197 0.2168 0.185 
mean.vol.r : sd.vol.r -0.0166 0.038 -0.0135 0.023 -0.0107 0.022 -0.0215 0.013 
cv.volocc.r : cv.occ.m -1.4897 0.008 0.3216 0.391 -1.3626 0.000 -0.3082 0.534 
cv.volocc.1 : cv.volocc.m -0.9824 0.596 1.1476 0.359 0.6366 0.600 -5.0720 0.009 
cv.volocc.m : cv.volocc.r -0.1468 0.904 -1.9857 0.058 0.0632 0.902 -0.4233 0.759 
cor.vol.1.m : mean.vol.1 -0.0322 0.395 0.1280 0.000 0.0678 0.018 0.0530 0.214 
cv.volocc.r : cor.vol.m.r 0.5899 0.474 1.3708 0.029 -0.4092 0.485 0.7673 0.337 
cor.occ.1.m : mean.vol.1 -0.0403 0.342 -0.1475 0.000 -0.1022 0.002 -0.0410 0.382 
cor.occ.1.m : cv.occ.1 -0.8120 0.142 -1.1083 0.016 -1.3982 0.000 -0.1954 0.689 
cv.occ.m : cor.occ.1.r -0.1411 0.771 0.0442 0.907 0.6848 0.048 0.9789 0.030 
cv.volocc.1 : cor.occ.1.r -0.9027 0.327 0.9584 0.218 -0.9223 0.264 -2.9946 0.002 
cv.volocc.1 : cor.occ.m.r 0.5155 0.565 -0.4364 0.585 1.6788 0.021 2.1958 0.021 
cv.volocc.m : cor.occ.m.r -0.9289 0.363 1.1369 0.146 -2.4663 0.000 -2.6767 0.001 
cor.volocc.1.m : cv.occ.m 1.2118 0.028 1.0405 0.005 1.2243 0.000 0.8783 0.078 
cv.volocc.m : cor.volocc.m.r 0.0553 0.930 -1.7797 0.000 -0.2639 0.527 -0.3605 0.552 
mean.vol.m : autocor.vol.m 0.0400 0.573 -0.2364 0.000 -0.2570 0.000 -0.0271 0.769 
mean.vol.r : autocor.vol.m -0.0331 0.658 0.1278 0.031 0.2500 0.000 0.0085 0.921 
cv.volocc.r : autocor.vol.m -3.3487 0.000 0.4640 0.485 -0.6177 0.361 -1.5951 0.081 
cv.occ.r : autocor.vol.r -0.6177 0.218 -0.4075 0.302 -1.0057 0.002 -2.0628 0.000 
cv.volocc.m : autocor.vol.r 3.4562 0.010 0.8930 0.360 1.8359 0.027 3.7747 0.003 
cv.occ.m : autocor.occ.1 -0.5311 0.216 -0.8385 0.013 0.2043 0.449 -0.5403 0.205 
mean.vol.m : autocor.occ.m -0.1390 0.010 0.1045 0.008 0.1290 0.000 0.0672 0.223 
cv.occ.r : autocor.occ.m 0.7755 0.084 0.0476 0.900 0.8432 0.006 0.4859 0.296 
cv.volocc.1 : autocor.occ.m -0.4926 0.594 0.7042 0.356 -1.5619 0.041 1.5809 0.121 
cv.volocc.r : autocor.occ.r -0.9464 0.075 -0.0919 0.822 0.7539 0.042 0.4474 0.382 
cor.vol.m.r : sd.vol.1 0.3655 0.000 0.0592 0.551 -0.0622 0.478 -0.1649 0.206 
autocor.vol.m : sd.vol.1 0.0994 0.388 0.3630 0.001 0.1672 0.054 0.1378 0.419 
sd.vol.m : cor.vol.m.r -0.5188 0.000 -0.0896 0.505 0.1315 0.240 0.2288 0.166 
cor.volocc.1.m : sd.vol.r 0.2476 0.111 0.3102 0.005 0.2677 0.002 0.2439 0.143 
sd.vol.r : autocor.occ.m 0.2445 0.289 -0.3767 0.033 -0.3781 0.010 -0.1708 0.484 
cv.volocc.m : sd.vol.1 -0.5513 0.001 -0.5639 0.000 -0.3137 0.007 -0.1538 0.378 
cor.vol.m.r : cor.vol.1.r -0.1371 0.829 -0.6277 0.212 -1.1618 0.011 -0.0780 0.905 
cor.vol.m.r : autocor.vol.1 0.4575 0.546 1.8340 0.003 -0.2881 0.590 0.4965 0.529 
cor.occ.1.m : autocor.occ.m 1.2628 0.133 0.0162 0.980 -0.5300 0.344 -2.5369 0.002 
cor.occ.1.r : autocor.vol.1 -2.9459 0.002 -1.0933 0.141 -0.5847 0.426 0.6094 0.571 
cor.occ.1.r : autocor.occ.1 1.8710 0.026 0.8183 0.221 -0.1646 0.807 -0.7231 0.460 
cor.occ.1.r : autocor.occ.m 1.1853 0.199 -0.1940 0.789 0.2188 0.730 2.3648 0.011 
autocor.vol.m : autocor.vol.r -0.3827 

-12.7241 
0.688 
0.000 

-1.5516 
-12.6281 

0.039 
0.000 

2.0767 
-12.1897 

0.002 
0.000 

-1.9614 
-13.3491 

0.065 
0.000 (Intercept) 

is that the consistent volumes in the left lane will make it more likely for an errant vehicle to hit another 
vehicle in the same lane than to swerve into the middle lanes or run off the road. A similar tale can be 
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Figure 24 The influence of the autocorrelation of occupancy 
in the three lane groups on the location of an accident. 

told for the autocorrelation of volume in the middle lanes. As the volumes in the middle lanes becomes 
consistent between each 30 second period, it makes sense than a vehicle will first collide with another middle 
lane vehicle before moving to the left or right lanes, or running off the road. However the right lane has a 
different outcome. As the autocorrelation of volume in the right lanes moves towards one, the risk of a 
right lane accident declines, as does the risk of an interior lanes accident, while the probability of a left lane 
accident is unaffected. In contrast, the probability of an off-road accident location rises dramatically relative 
to the other locations. Perhaps this captures an inclination for drivers to swerve to the perceived safety of the 
right shoulder when right lane volumes are consistent, rather than swerving to the left and into the interior 
lanes. 

The next plot examines between-lane relationships. As the occupancy between the left and middle lanes 
becomes synchronized (correlation of 1), Figure 26 shows that the probability of left lane and right lane 
accidents increase sharply, with a modest increase in interior lane accidents and a decrease in off-road ac-
cidents. When the occupancy between the left and right lanes are synchronized, the probability of left and 
interior lane accidents rises with a corresponding drop in right lane and off-road accidents. Finally, when 
the occupancies in the right and middle lanes range are exactly out of sync (a correlation of almost -1), there 
is a high probability of an interior lanes accident. As the correlation moves through zero (uncorrelated) to 
being perfectly synchronized, the most probable accident location shifts to being the left lane. 

Figure 27 shows the effect of the correlation of volume between lane pairs. First, as the left and middle 
lane volumes become negatively correlated, the risk of left and interior lanes accidents is higher than when 
the volumes are positively correlated. A similar pattern holds for the correlation of volumes between the 
left and right lanes, except the off-road and right lane accident probabilties are largely unaffected by the 
correlation of left and right lane volumes. For the last lane group, middle versus right lane volumes, the shift 
from being negatively correlated to being perfectly synchronized corresponds to a shift in outcomes from 
interior lanes to right lane and left lane accidents. 
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Figure 25 The influence of the autocorrelation of volume on the location of an accident. 

Figure 26 The influence of the correlation of occupancy between lanes on the location of an accident. 

The impact of the lane to lane correlation of the ratio of volume to occupancy (which is proportional to 
speed) is shown in Figure 28. The probabilities of all of the accident locations decline gradually as the left 
and middle lane speeds move from being perfectly out of sync to being perfectly synchronized. The effect 
is almost negligible on the probability of an off-road accident, due to the fact that there are two significant 
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Figure 27 The influence of the correlation of volume between lanes on the location of an accident. 

Figure 28 The influence of the correlation of 
volume/occupancy between lanes on the location of an accident. 

terms in the off-road model involving the correlation of volume/occupancy between the left and middle lanes 
that have different signs and therefore almost cancel each other out. 

A much stronger effect is observed with the correlation of speeds between the middle and right lanes 
shown in Figure 28. The probability of an interior lanes accident is highest when the middle and right lane 
speeds are out of sync, and then drops to almost half of its highest value when speeds are synchronized. 
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Figure 29 The influence of the mean volume on the location of an accident. 

Figure 29 shows the effect of mean volume in each of the lane groups on accident location. The risk of 
a left lane accident goes up with increasing left lane volumes, as would be expected. The probabilities for 
interior lanes and right lane accidents decline at about the same rate as the mean left lane volume increases, 
all else being equal. The risk of an off-road accident declines too, but at a slower rate. 

Rising mean volumes in the middle lanes have a positive effect on both the left lane and interior lane 
probabilities. The net change of off road and right lane accidents is close to zero, with the former declining 
slightly and the latter rising. Finally, as the mean volume in the right lane rises, the probability of a right 
lane accident rises almost exponentially. The model predicts that when the mean volume in the right lane 
increases above about 50 vehicles in 30 seconds, there is a 1 in 10,000 chance of an accident in the right lane. 
While anything more than 30 vehicles in a lane in a 30 second period should be considered an unusually 
high flow rate, even at 30 vehicles in 30 seconds the probability of a right lane accident is still about 1 in 
50,000, which is very high. 

The next figure of this section examines the standard deviation of volume. Figure 30 shows that the 
probability of all accidents declines as the left lane volumes vary further and further from the mean, and 
that the likelihood of left lane and interior lanes accidents declines the fastest. As volumes become very 
dispersed, off-road accidents become the most probable type of accident. 

A slightly different outcome is observed for a rise in the standard deviation of volume in the middle 
lanes. While all of the probabilities decline, this time the likelihood of a right lane accident declines the 
sharpest, falling almost exponentially. And finally, an increasing standard deviation of volume in the right 
lane uniformly decreases the probabilities of all locations of accidents at almost identical rates. 

The effect of the coefficient of variation of occupancy in the lane groups is shown in Figure 31. As 
left lane occupancies get more spread out, conditions become safer, with all accident location probabilities 
declining. A different story is told for the other lanes, however. When the occupancy in the middle lanes 
becomes more dispersed, the risk of right lane and left lane accidents increases. The risk of middle and 
out of lanes accidents declines, but not enough to compensate for the increased risk of other accidents. 
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Figure 30 The influence of the standard deviation of volume on the location of an accident. 

Figure 31 The influence of the coefficient of variation of occupancy on the location of an accident. 

Then when the right lane occupancies become highly dispersed, the probability of an interior lanes accident 
skyrockets, and the risk of a left lane accident increases as well. The conclusion from these three plots is that 
if occupancies are dispersed uniformly across the freeway, the accident risk will probably hold steady. But 
if either the middle lanes or the right lane gets a more dispersed occupancy while the other lanes see more 
uniform occupancy from one period to the next, the risk of accidents in the undispersed lanes will increase. 
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Figure 32 The influence of the coefficient of variation 
of volume/occupancy on the location of an accident. 

The last figure describing the location model, Figure 32, explains the effect of speed dispersion in the 
different lanes. It shows that an increased spread of speeds in the left lanes from one period to the next will 
lead to a sharp rise in the probability of an off-road accident, as well as a moderate increase in left lane 
accidents that is offset by a corresponding decline in middle lanes accident probability. Because the left lane 
is the fast lane, the intuition behind this result is that when mean speeds begin to be more dispersed from 
one period to the next, most likely the dispersion is driven by very fast drivers mixed in with the usual “fast 
lane” drivers. These drivers also have the room to maneuver that will allow them to run off the road, rather 
than hit another vehicle in lanes. 

Increased dispersion of speeds in the middle lanes goes the other way. In this case, off-road accident 
decline very sharply, accompanied by slower but significant drops in the probability of left, middle, and 
right lane accidents. High speed variation in the middle lanes is therefore a very safe condition. 

Increased variance of speeds in the right lane echoes the story of the left lane, except in this case only the 
probability of a middle lane accident declines. Left lane accident probability increases almost exponentially, 
which is a surprising result. Off road and right lane accident probabilities rise in lock step. High speed 
variation in the right lanes is definitely bad for safety. It may be that high variation in speeds in the right 
lane is only possible with an excessive amount of weaving, say from aggressive drivers. If those drivers 
eventually end up cutting into the left lane at some time, then the spike in left lane accident probability 
makes some sense. 
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Section 8: Model validation 

The models described were estimated using 2007 accident and traffic data. A validation exercise was con-
ducted using 2008 accidents and traffic data. As before, each mainline highway accident in 2008 was associ-
ated with the closest detector site, so as to pair up the appropriate raw data. Then the accident observations 
were compared to the accident predictions. 

One disappointing outcome of the validation study was that the model does not capture variations over 
time. This is expected, of course, as time does not enter into any of the models. That said, it was hoped that 
the dynamics of traffic would serve as a strong proxy for time of day and day of week, since variables such as 
volume and occupancy are known to have strong temporal patterns. As an example of the poor performance, 
the models missed the spike in the frequency of property damage only accidents that were observed late at 
night. One explanation is that the methodology requires a minimum volume of traffic, and late night and 
early morning periods often do not have sufficient volume. 

In general, the more time and lane miles covered by a model prediction, the better the comparison to real 
data. This is because accidents are very rare events. A short stretch of freeway or a short period of time is 
unlikely to produce an accident, on average, but if one is observed in reality, the model predictions will be 
wrong. To see that this is the case, consider a single 30 second period over a one mile stretch of freeway. 
None of the models would ever predict that the probability of an accident would be 1 for that 30 second 
period, and yet when an accident does happen, the observed count is incremented by one. However, over 
several days or weeks, the cumulative predicted probabilities of the different outcomes of the models begin 
to look more like the observed accident characteristics. Similarly, as more and more distance is added to 
the predicted area, the cumulative probabilities add up to totals that are similar to the cumulative accident 
characteristics. 

This aspect of the models is especially noticeable for the small section (about two miles) of Interstate 
605 that is in District 12. There are only two detectors in the each direction, and two of the detectors only 
generated predictions for part of 2008. Therefore the predicted values and proportions are much worse than 
the actual when compared to other freeways. 

The tables in the following sections try to demonstrate some of these patterns. Each model is validated 
against the observed outcomes for the different freeways in Caltrans District 12. 

8.1 The location model 

The location model is adequate for all non-tolled facilities, as shown in Table 6 The I-605 freeway results 
are poor, but this is most likely due to the fact that there is only a short segment of this facility in Caltrans 
District 12. As mentioned in the introduction to this section, the validation study showed that the models 
require distance and time to counteract the skewing effects of just a few accidents on the total fractions. The 
second column in Table 6 displays the summed miles of freeway (computed from the length attribute within 
each detector’s metadata) for which at least some part of 2008 could be processed to produce accident risk 
estimates, and the third column counts up the detectors within this length. The length measurement isn’t 
exactly the same as the physical length of the roadway, since no attempt has been made to adjust for the 
amount of time that a detector is on and producing good values. For example, if Caltrans decided to replace 
every detector on a freeway with a new detector, then the simple summation of lengths done below would 
produce a length that is twice as long as the actual length of roadway. But since only a few detectors are 
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Table 6 Predicted versus observed shares of accident location 
outcomes in 2008. The model performs poorly with toll road traffic 

Fwy Length (mi) detectors Obs/Pred Off Road Left Lane Interior Lanes Right Lane 

5 85.05 193 
obs 

pred 

0.184 

0.188 

0.2466 

0.2995 

0.409 

0.348 

0.1597 

0.1649 

22 16.67 48 
obs 

pred 

0.134 

0.188 

0.2367 

0.2783 

0.456 

0.368 

0.1735 

0.1657 

55 28.93 60 
obs 

pred 

0.190 

0.190 

0.2683 

0.2808 

0.361 

0.361 

0.1810 

0.1684 

57 23.02 57 
obs 

pred 

0.179 

0.185 

0.2933 

0.2882 

0.351 

0.359 

0.1768 

0.1685 

73 (T) 33.91 100 
obs 

pred 

0.438 

0.310 

0.0883 

0.2400 

0.189 

0.303 

0.2853 

0.1475 

91 43.45 86 
obs 

pred 

0.198 

0.173 

0.2824 

0.3476 

0.363 

0.326 

0.1561 

0.1536 

133 (T) 13.88 27 
obs 

pred 

0.542 

0.179 

0.0508 

0.2732 

0.254 

0.347 

0.1525 

0.2005 

241 (T) 36.50 84 
obs 

pred 

0.535 

0.190 

0.0539 

0.2661 

0.249 

0.366 

0.1616 

0.1781 

261 (T) 10.48 32 
obs 

pred 

0.294 

0.143 

0.2353 

0.4008 

0.382 

0.346 

0.0882 

0.1110 

405 44.33 102 
obs 

pred 

0.189 

0.193 

0.2997 

0.3064 

0.355 

0.345 

0.1565 

0.1557 

605 2.31 4 
obs 

pred 

0.311 

0.191 

0.2295 

0.2845 

0.287 

0.356 

0.1721 

0.1688 

retired or replaced each year, and since most detectors that produce good data will do so for months or years 
at a time, these columns give a good indication of the size of the input data for each predicted and observed 
case. 

The tolled facilities tend to under predict the off-road accident locations and over predict left lane ac-
cidents. This effect might be due to the more rural character of these roads. Because there is open space 
surrounding the roadway, drivers in the left lane have an “escape route” to the left, rather than oncoming 
traffic. 
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Table 7 Predicted versus observed shares of numbers of vehicles involved 
outcomes in 2008. The model performs poorly with toll road traffic 

Fwy 
Obs/Pred 

1 2 3+ 

obs 
5 

pred 

0.1543 

0.1337 

0.600 

0.548 

0.2456 

0.3181 

obs 
22 

pred 

0.1097 

0.1181 

0.599 

0.547 

0.2910 

0.3346 

obs 
55 

pred 

0.1179 

0.0979 

0.643 

0.424 

0.2393 

0.4780 

obs 
57 

pred 

0.1278 

0.1136 

0.596 

0.573 

0.2762 

0.3138 

obs 
73 (T) 

pred 

0.4158 

0.1191 

0.508 

0.626 

0.0761 

0.2546 

obs 
91 

pred 

0.1486 

0.1160 

0.639 

0.421 

0.2121 

0.4630 

obs 
133 (T) 

pred 

0.4831 

0.1039 

0.441 

0.654 

0.0763 

0.2420 

obs 
241 (T) 

pred 

0.5556 

0.1069 

0.391 

0.651 

0.0539 

0.2418 

obs 
261 (T) 

pred 

0.3824 

0.0613 

0.618 

0.611 

0.0000 

0.3275 

obs 
405 

pred 

0.1196 

0.1864 

0.623 

0.414 

0.2575 

0.3996 

obs 
605 

pred 

0.2869 

0.1215 

0.566 

0.639 

0.1475 

0.2394 

8.2 The model of numbers of vehicles involved 

The vehicles involved model output is shown in Table 7. The model is adequate for all non-tolled facilities, 
with the I-605 freeway again being the exception to this. Whereas the location model for I-605 under pre-
dicted off-road accidents and over predicted interior lanes accidents, this model under predicts single vehicle 
accidents and over predicts multi-car accidents. 

The tolled facilities follow the same pattern as I-605, but the deviations are far more extreme. For two of 
the facilities, around half of the observed accidents are single vehicle incidents, while the model predicts that 
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only around 10% should be solo incidents. Again this effect might be due to the more rural character of these 
roads, but it could also be related to the lack of heavy truck traffic allowing cars more room to maneuver. 

8.3 The accident severity model 

The accident severity model validations are shown in Table 8. The model consistently under predicts injury 
accidents compared with 2008 observations, but the differences for most non-tolled freeways are just a few 
percent off. Again the I-605 results are poor (at about 10% deviation), and this time the SR-55 results are also 
poor, showing a 7% deviation from predicted. The fact that injury accidents are consistently underestimated 
implies that this model should be used with caution in any future work. The under prediction effect is even 
more pronounced for the toll roads, with injury accidents higher than predicted by between 10% to 20%. 
One explanation for higher rates of injury accidents on toll facilities is the higher prevailing speeds on these 
facilities. 
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Fwy 
Obs/Pred 

Property Only Injury 

obs 0.736 0.265 
5 

pred 0.756 0.244 

obs 0.728 0.272 
22 

pred 0.740 0.260 

obs 0.721 0.279 
55 

pred 0.800 0.200 

obs 0.743 0.257 
57 

pred 0.716 0.284 

obs 0.628 0.372 
73 (T) 

pred 0.735 0.265 

obs 0.741 0.259 
91 

pred 0.742 0.258 

obs 0.593 0.407 
133 (T) 

pred 0.736 0.264 

obs 0.630 0.370 
241 (T) 

pred 0.735 0.265 

obs 0.706 0.294 
261 (T) 

pred 0.784 0.216 

obs 0.765 0.235 
405 

pred 0.807 0.193 

obs 0.639 0.361 
605 

pred 0.737 0.263 
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Table 8 Predicted versus observed shares of accident severity 
outcomes in 2008. The model performs poorly with toll road traffic 
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Section 9: The accident risk website 

A major deliverable of this project is to revise the web-based user interface for the safety model predictions. 
The location of this website is http://ara.ctmlabs.net. The original project (PATH 5307) also developed a 
website that displayed the safety data, but after using the site for a while major design flaws became apparent. 
First of all, as previously noted, the database did not perform well after more than a few months of data 
were stored. Second, the website was built using Java and was tightly integrated into an obsolete server 
framework, and was difficult to access outside of that environment. One of the design goals of the redesign 
and reimplementation is to open up the data and results of the freeway accident risk analysis tool to other 
researchers so as to allow interesting mashups of data to occur. 

The basic design of the website is as follows. The user interface is map-centric, and has a simple an-
imation that shows the relative probabilities for any accident to occur on the highway links. Because the 
probabilities are always very small, they are scaled relative to each other on a logarithmic scale from green 
(safest) to red (least safe). Because 30 second and even hourly predictions are mostly uninteresting when 
viewed in this way, the website accesses the daily maximum probabilities for display. A simple dialog allows 
the day of the prediction to be chosen, as well as start and stop the animation over days. 

In addition to the large area animation, the user interface listens for click actions on each link. When a 
link is clicked, the current day (as shown in the dialog) is downloaded so that the user can view the complete 
set of predictions for that detector for that day, on a simple time-series plot. There is also an option to select 
an annual view of daily data, rather than a daily view of 30-second data. Multiple detectors can be selected 
and plotted via this interface. 

There is also a plotting interface in development that allows the user to select one or more of the under-
lying 27 variables to view for the selected set of detectors. These plots are rendered simultaneously with 
each other in what is known as a scatter plot matrix. 

The communication between the website and the server uses simple Asynchronous JavaScript and XML 
(AJAX) calls, in which a small query sent to the server (for example map coordinates or a detector id) 
will produce a JavaScript Object Notation (JSON) response that gets rendered by the web browser us-
ing JavaScript. Because the design goal of the project is to expose data in an organized, human-read-
able way, requests for data follow the Representational State Transfer (REST) (Fielding, 2000) approach 
of accessing a specific piece of content with a well-defined address. For example, the data for detector 
1212345 on January 16, 2007 is addressable using the URL vdsdata/1212345/2007/01/16.json. 
A user can intuit from the address that the equivalent data for detector 1254321 in 2012 should be found at 
vdsdata/1254321/2012/01/16.json. Additionally, the data are all available as comma separated 
value (CSV) files, which are loadable into spreadsheet programs, but using csv as the file type in the address 
rather than json. 

The server’s primary job is to accept requests and respond with data. The client’s primary job is to 
render or use that data. By design, the server does nothing to render output or generate graphs, leaving those 
jobs to the client requesting the data. In this way, if someone else has a new idea about how to use the data, 
all she or he has to do is send a well-formed URL to the server, get the data, and then deploy her or his great 
idea. 
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9.1 The web server 

One aspect of the website was completed by solving the data storage problems for computing the 27 variables. 
CouchDB natively offers a REST-based interface that encourages direct access to the underlying documents. 
While the decision was made to hide CouchDB behind a webserver (there are thousands of databases, after 
all), the general idea makes it very easy to pipe incoming requests from clients directly to the appropriate 
CouchDB database. 

The question then became which server technology to use to serve up the safety data to the web client. 
The following technologies were considered: 

1. A Java Spring, Perl, Ruby, or Python-based server 

2. A plug-in for the Java-based Sakai collaborative learning environment 

3. A pure CouchDB based application (CouchApp) 

4. A node.js based server 

We ended up choosing node.js. We rejected the other options for the following reasons. First, while 
Spring appears to be the de facto standard for deploying enterprise-grade Java servers, Java and Spring 
require an incredible amount of work just to wrap a simple data store. This is less true of Perl and Catalyst, 
Ruby on Rails, and Python, but most of these still seemed more focused on serving up web sites than simply 
dispatching data. Another stumbling block was the large number of databases we had created to store the data. 
Ideally the server would be able to connect to all of the databases at once and then collate the response for 
the client. In practice, each server thread will usually try to connect to each database sequentially. Although 
Java and Perl have more robust threading and non-blocking event based mechanisms, using them would 
require more work that seemed warranted for the task of piping data. 

We considered Sakai because we are already using it for an on-line learning environment, and there was 
a big development push at the time this project was starting to deploy a generic key-value type store for 
Sakai3. In practice it was difficult to map safety data onto the new Sakai data storage model. In addition, 
the Sakai3 effort fell behind its intended road map, ironically with the data storage component accounting 
for much of the development difficulties. 

CouchDB itself can be used as a webserver, but this isn’t practical with multiple CouchDB databases. 
The problem is that the map-based view would require connecting to multiple databases, one for each detector 
shown on the screen, plus another connection to get the geometry information in the first place. This would 
in turn require circumventing the web browser’s “same origin” security policy within the browser code. 
Furthermore, each client access would then have to know which database on which physical machine held 
which detector’s data. This would violate our original intent to keep the location of the data hidden from 
and irrelevant to the connecting client. 

Despite all of the drawbacks mentioned for the other web server candidates, the real reason node.js was 
chosen was that it was almost perfect for this application. Node is a new JavaScript-based server technology 
that runs on top of Google’s V8 JavaScript engine. Node.js is ideal for this project because it is a sin-
gle-threaded, non-blocking web server designed to do its job quickly and then get out of the way. When a 
request comes in for some resource (for example, safety model output for a particular time range), the server 
does not block other requests while serving that request. Instead, the server sets up the required database 
calls, and assigns a callback function to execute when those database calls are complete. A more traditional 
web server does not use this callback approach. A server like Apache or Ruby on Rails will stop all other 
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requests and wait for the results of the database call. In order to serve multiple requests at once, these kinds 
of webservers require multiple processes. Because this application can conceivably serve up very large 
amounts of data in response to a request, node.js is a perfect web server technology to use. 

9.2 Node server modules 

Node.js has two major web frameworks, Connect and Express. Express is in fact built on top of Connect. 
Because the server only needs to do very simple things, we are using the Connect framework. User au-
thentication is handled using a custom Central Authentication System (CAS) plug-in for Connect that we 
developed. Other tasks like sessions and cookies are handled using standard Connect modules. 

Serving risk model output and the raw 27-variable data is handled via a collection of node.js modules 
that are wrapped into a single package called detector_information. This module can either con-
nect an incoming request to the output of any of the safety models that has been developed so far (and that 
has been programmed as a view in the CouchDB databases), or it can serve requests for the underlying raw 
data and the derived 27 variables. The source code is available on GitHub at http://www.github.com/jmarca 
/detector_information. Alternately, the latest version is always available to users of the CTMLabs website, 
under the “Detector Information” project. 

9.3 Implementing the risk models in CouchDB 

Because the 27 variables required to “run” the estimated safety models are stored and available in CouchDB 
databases, we used CouchDB Views to store the output of applying these models to the data. A more detailed 
discussion of views was given in Section 3.1.2. Here views are discussed in the context of how they are used 
to apply the estimated models. 

A view is a combination of a map step and a reduce step. The map step usually applies some function 
to the raw input data. In our case, each document is a day’s worth of raw data. The map runs that raw 
data through one of the estimated models to obtain the relative risk of a particular kind of incident for each 
timestamp with valid estimates of the 27 variables. 

The reduce step typically works through the output of the map step to derive one quantity, for example a 
count or a sum. In our case, the reduce step computes the min, max, and mean value for the model output. 
The reduce is only run over the input range selected. If you request a day of data to be reduced, you get the 
min, max and mean for that day. If you request an entire year of data, you get those quantities for the whole 
year. 

A small program was set up to copy the views for each model to each of the CouchDB databases. After 
the initial processing is complete, each subsequent query takes almost no time at all to get an answer. We 
then reduced the output of each of these models by copying the view output to a single database and creating 
a new view on that database. 

The website then has the following ways it can connect with the CouchDB data. To get the results of 
applying one of the estimated models, it can directly query the central database that collects the output of 
the views. This collecting database also produces the min max and mean risk model estimates for all of the 
detectors in the district by applying its own version of the map and reduce model. But if the raw data for a 
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detector are required, then the server chooses the appropriate database to contact based on the district, year, 
and detector id in the request. 

9.4 The detector information URL scheme 

Throughout the above discussion, references have been made to REST-based URLs. As part of the Safety 
web server, there is a simple data retrieval interface available, directly accessible via these well-formed 
URLs. The interface provides access to raw vehicle detector system (VDS) data, as well as to the 27 dynamic 
variables that were computed by the safety project. 

The safety performance tool data server is available to anything that understands how the internet works. 
These days this includes purpose built web clients (JavaScript programs running in browser or on a smart 
phone) as well as more generic programs such as R or Excel in which a user can hand-type an internet ad-
dress and download data directly. The idea behind using a REST-based URL scheme rather than a query 
based one is that each detector’s data should be addressable from a known URL format. An example is the 
easiest way to explain it. A URL to fetch data from VDS detector 1209289 from 3 AM on January 16, 2007 
to 4 AM would look like the following: http://ara.ctmlabs.net/vdsdata/1209289/2007-01-16%2003:00/2007 
-01-16%2004:00.json (Note that there are spaces in the URL that have been URL-escaped as “%20”.) For 
any detector between any two times, the URL pattern is: 

/vdsdata/detector/start-timestamp/end-timestamp.json 

Other services, such as the “any accident risk” service, have different starts to the URL than “vdsdata”. 
The vdsdata service described here will retrieve the stored raw data plus the computed 27 variables. Other 
services correspond to the different accident models estimated by this project. These are 

risk for the probability of any accident; 

severity for the probability of a PDO or injury accident; 

involved for the probable numbers of vehicles involved in an accident; and 

location for the probable location of an accident. 

The detector portion of the URL is the Caltrans VDS ID. At the moment only District 12 detectors 
are officially available, starting with 2007 and working up through 2009, with 2010 through the present in 
the processing stages. There are also a few other sites in Caltrans Districts 7 and 10 that have raw data and 
the 27 variables stored, but no safety prediction models have yet been estimated for these Districts. 

The time stamp is in a pattern that can be easily parsed by a computer and that also has the feature that 
is sorts both alphabetically and temporally. The standard format is as follows, again noting that spaces are 
URL-escaped as “%20”: 

year-month-day%20hour:minute%20timezone 

Seconds are not used, but if they are accidentally added with a third colon they will be ignored. If you do 
not enter the timezone, the local timezone (Pacific Time) will be implied. The data is stored in the database 
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in Coordinated Universal Time (UTC), so as to avoid all ambiguities surrounding daylight savings time, and 
the data server makes that conversion transparently. 

The start and end timestamps do not need to have the time appended. That is, they can be simply dates, 
and the time of 00:00 will be appended, as will the local timezone. 

The server can’t yet retrieve anything other than continuous time ranges. You cannot ask for just the 
noon hour on a number of days. To do that you would have to string together multiple requests, for example, 
the following five requests would get the data from 11 AM to 1 PM for the first 5 days in June: 

/vdsdata/1200100/2007-06-01%2011:00/2007-06-01%2013:00 
/vdsdata/1200100/2007-06-02%2011:00/2007-06-02%2013:00 
/vdsdata/1200100/2007-06-03%2011:00/2007-06-03%2013:00 
/vdsdata/1200100/2007-06-04%2011:00/2007-06-04%2013:00 
/vdsdata/1200100/2007-06-05%2011:00/2007-06-05%2013:00 

The client would then be responsible for stitching together the 5 responses as needed. While this sounds 
tedious, a computer program in a simple loop would do this job almost instantaneously. 

9.4.1 Data formats 

The question of stitching together the responses from multiple requests brings up the subject of the data 
format. The data are returned as JavaScript Object Notation (JSON) files. JSON has the distinct advantage 
over XML in that it is easy to parse in JavaScript because it is valid JavaScript. It is also readily parsed 
by any other programming language one might care to use. A sample of JSON data follows, with arrays 
truncated for legibility: 
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{"nl1":[12,11,8,...] 
,"ol1":[0.0664,0.0655,0.0436,...] 
,"nr4":[7,6,10,...] 
,"or4":[0.0409,0.0345,0.0618,...] 
,"nr3":[6,6,11,...] 
,"or3":[0.1035,0.0504,0.0748,...] 
,"nr2":[10,8,3,...] 
,"or2":[0.1032,0.067,0.0181,...] 
,"nr1":[9,6,1,...] 
,"or1":[0.0814,0.0479,0.0096,...] 
,"ts":["2007/02/15 09:30:00 UTC","2007/02/15 09:30:30 UTC","2007/02/15 09:30:30 
UTC",...] 
,"mean.vol.1":[null,null,null,...] 
,"mean.vol.m":[null,null,null,...] 
,"mean.vol.r":[null,null,null,...] 
,"sd.vol.1":[null,null,null,...] 
,"sd.vol.m":[null,null,null,...] 
,"sd.vol.r":[null,null,null,...] 
,"cv.occ.1":[null,null,null,...] 
,"cv.occ.m":[null,null,null,...] 
,"cv.occ.r":[null,null,null,...] 
,"cv.volocc.1":[null,null,null,...] 
,"cv.volocc.m":[null,null,null,...] 
,"cv.volocc.r":[null,null,null,...] 
,"cor.vol.1.m":[null,null,null,...] 
,"cor.vol.1.r":[null,null,null,...] 
,"cor.vol.m.r":[null,null,null,...] 
,"cor.occ.1.m":[null,null,null,...] 
,"cor.occ.1.r":[null,null,null,...] 
,"cor.occ.m.r":[null,null,null,...] 
,"cor.volocc.1.m":[null,null,null,...] 
,"cor.volocc.1.r":[null,null,null,...] 
,"cor.volocc.m.r":[null,null,null,...] 
,"autocor.vol.1":[null,null,null,...] 
,"autocor.vol.m":[null,null,null,...] 
,"autocor.vol.r":[null,null,null,...] 
,"autocor.occ.1":[null,null,null,...] 
,"autocor.occ.m":[null,null,null,...] 
,"autocor.occ.r":[null,null,null,...] 
} 

The data are returned as arrays in the JSON object. Each array has the same number of entries, with 
possible null values, as shown above. Only the timestamp variable (ts) is supposed to be free from null 
values (although there might be situations in which null entries are in the ts array). Note that while the 
ts array is supposed to be free from null values, it is not likely that every 30s interval has a corresponding 
timestamp entry. Within each day the times should be continuous, but between days it might be the case that 
there is a gap in the time sequence. 

The count and occupancy data are returned in the n and o columns. The lanes are numbered differently 
from what you might expect, so as to be very clear about the lane numbering. The left-most lane, the one 
Caltrans calls lane 1, is numbered as l1. So the count data is found in column nl1, and the occupancy in 
ol1. All other lanes are numbered from the right. The count and occupancy for the right-most lane are in 
the columns nr1 and or1, respectively. The next lane from the right is numbered r2 and so on. 
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Aside from being clear about which lane is which, this approach also allows comparing data from differ-
ent sites with different numbers of lanes. Left lane data is always in lane l1, and right lane data is in r1. 
The other lane that trucks are allowed to use is always numbered r2, and so on. 

Next come the so-called 27 variables that attempt to capture the temporal and spatial dynamics of the 
data. These variables are the same as those described in Table 1, but they are described again below for 
completeness. These are computed using the preceding 20 minutes of data. If there is insufficient data to 
compute a valid quantity, then these arrays will contain null. The other thing to notice is that there are only 
three lanes used to compute these values. Earlier research indicated that when there are 4 or more lanes at a 
site, the interior lanes are highly correlated with each other. It is sufficient to choose one of them. Our rule 
is to pick the one with the most data, breaking ties by using the middle most lane, but cheating to the right. 
So on a 4 lane facility, if the number 2 and 3 lane both had equally good data, we would choose lane 3 as the 
“middle” lane. 

mean.vol.1, mean.vol.m and mean.vol.r These three variables represent the mean vol-
ume over the preceding 20 minutes. 

sd.vol.1, sd.vol.m, sd.vol.r These three variables represent the standard deviation of the 
volume for each lane over the preceding 20 minutes. 

cv.occ.1, cv.occ.m, cv.occ.r These three variables represent the coefficient of variation 
of occupancy for each lane. This is a measure of central tendency that is used because the mean of 
occupancy (a ratio) isn’t meaningful. 

cv.volocc.1, cv.volocc.m, cv.volocc.r These three variables represent the coefficient 
of variation of the ratio of volume to occupancy. Volume over occupancy is proportional to speed, but 
for a calibration constant. Thus this measure captures the same characteristic of traffic as if one were 
to measure the mean speed over the 20 minute period for each lane. 

cor.vol.1.m, cor.vol.1.r, cor.vol.m.r These three variables represent the correlation 
of volume between lanes. The first value measure the correlation between lane 1 and the middle lane; 
the second the correlation between lane 1 and the right lane; and the third the correlation between 
volumes in the middle and right lanes. 

cor.occ.1.m, cor.occ.1.r, cor.occ.m.r These three variables represent the correlation 
of occupancy between lanes over the 20 minute period. 

cor.volocc.1.m, cor.volocc.1.r, cor.volocc.m.r These three variables represent the 
correlation of the ratio of volume to occupancy between lanes for the preceding 20 minutes. For ex-
ample, a negative value for cor.volocc.1.r would indicate that the speed in the fast lane (lane 1) is 
negatively correlated with the speed in the slow lane (lane r). This might happen for example if a 
ramp is slowing up the right lane, and cars are using the left lanes to speed around the congestion. 

autocor.vol.1, autocor.vol.m, autocor.vol.r These three variables represent the au-
tocorrelation of volume within each lane. These measures capture the trend over time for the volume 
within a lane. This isn’t a true measure of autocorrelation, but rather is computed using only the 
one-time-step lag value. Other ways to compute autocorrelation can use multiple lags between times, 
but we found just using the one-time-step lag to be sufficient as well as easier to compute. 
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autocor.occ.1, autocor.occ.m, autocor.occ.r These three variables represent the au-
tocorrelation of occupancy within each lane. These capture the trend over time for the occupancy of 
a lane. 

9.4.2 Safety probability predictions format 

For ease of use, there are three kinds of probability downloads available. The first is to get every 30-second 
prediction for a single day. For example, the link: 

http://ara.ctmlabs.net/risk/1209289/2007/01/02/30s.json 

will return a JSON object containing a list of probabilities for any accident for January 2, 2009. The 
overall format follows CouchDB’s conventions for returning data from a view, with the “rows” element of 
the object containing the rows of data. Each row’s “value” element contains the timestamp and the accident 
probability predicted for that timestamp. For the three models that have multiple outcomes, the response 
rows will be arrays instead of a single number, with each object containing the predicted probability for each 
outcome. The order of each outcome is always the same, but in case one forgets or in case a new model is 
created, a special query can be made to the URL pattern /severity/header.json which will return 
the array [PDO,Injury]. Multiple days can be selected one at a time, or by requesting an entire month 
at once by not specifying the day. 

The second URL scheme for getting accident probabilities is to request daily cumulative sum values for 
a year. This URL format has the pattern: 

http://ara.ctmlabs.net/risk/1209289/2007/dailysum.json 

As the end of the URL implies, this request will return the minimum, maximum, and mean accident 
probabilities for each day in the chosen year. This request would be used to see at a glance how one detector 
compares to others over the course of a year. 

The final URL query pattern that has been implemented is to get all of the daily summed values for all 
modeled detectors (in practice, all of District 12 mainline detectors). This URL pattern takes the form: 

http://ara.ctmlabs.net/risk/all/2008/10/04/sum.json 

The URL is different than the prior ones in that the detector number has been replaced with the word 
“all”. As before, the “minmaxmean” part of the URL is a reminder that the data will be returned as rows 
containing the minimum, maximum, and mean accident probabilities for each detector. In this case, an extra 
field will be returned in the result rows indicating the detector number. As an added bonus, an entire month 
of data or even an entire year of minimum, maximum, and mean values can be downloaded all at once by 
skipping the day and month parts of the URL. This is a lot of data, however, and is useful only for an off-line 
analysis. This kind of query would slow down something like a web application. 

In all cases, in order to select a different accident probability model than any accident, the word “risk” 
in the URL should be replaced with the desired model. For example, “severity” will return the minimum, 
maximum, and mean values for the severity predictions. Because severity has two outcomes (PDO and 
Injury) and the other models also have more than one outcome, the result rows of the non-“risk” URLs are 
arrays of triplets, with each triplet giving the minimum, maximum, and mean prediction for each outcome 
in the order defined by the call to the “header.json” query mentioned above. In this case, first will be the 
“PDO” triplet, and then the “Injury” triplet giving the minimum, maximum, and mean predictions for each 
model outcome for the day. 
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Section 10: Conclusion, recommendations and deployment 

This project has updated and deployed a tool for analyzing the risk of accidents on freeways. The tool can 
be used to measure the impacts of any large scale change to the freeway (for example, a new intelligent 
transportation systems (ITS) deployment) on the aggregate safety of the roadway. The safety models were 
estimated on 2007 data, validated against 2008 accident observations, and have been deployed in a system 
that can process new data on request. Both a website and scriptable web services have been deployed. The 
website provides a map-based interface to the safety models and data, and a freeway-specific view into 
the model output. The JavaScript files included in the website also provide a working model of how new 
applications can access the tool’s web services. The web services allow other projects and tools to access 
everything from raw data, to intermediate results, to the final safety predictions so as to incorporate the 
information into new projects. 

The validation study verified that the aggregate predictions of the models are roughly in line with the 
observed accident rates and proportions. The models do not do well in predicting time of day effects on 
accident risk, which was disappointing but expected. One interesting result of the validation study is that 
the 4 toll roads in District 12 do not have the same characteristics as regular, non-tolled facilities. This is 
perhaps due to the different mix of traffic (heavy duty trucks do not use toll roads as a rule), as well as the 
more rural character of these particular tolled facilities. In the future separate models should be estimated 
for toll roads and regular facilities. 

10.1 Short term recommendations 

The tool’s elements (the website and the data services) are currently available only to properly authenticated 
users. This policy was established for all CTMLabs projects, as befits early stage deployments and research 
tools. The special concern with this project is that the output may be misunderstood by the public at large. 

But there is no special reason why the data should not eventually be made broadly available. As the 
accident probabilities change over time, the changes reflect the behavior of the drivers on the freeway. The 
purpose of providing the safety information to drivers isn’t to predict when and where an accident will 
occur. The probability of an accident at any given time is minuscule, as shown in the many figures generated 
in Section 7 of this report. Instead, providing the safety performance information to drivers is a way of 
completing the loop. Drivers react to traffic as conditions get safer or riskier. If drivers are aware of the 
possible impacts of their aggregate behavior, they might choose to drive more safely. 

The second recommendation is for Caltrans staff to attempt to use the tool in a small before and after 
study. The tool has already been integrated into the offerings of the California Traffic Management Labs 
(CTMLabs) at UC Irvine, and is available to anyone with a valid account, which would include anyone at 
Caltrans wishing to create an account. CTMLabs staff will willingly support any work by Caltrans to evaluate 
the tool’s suitability in adding a safety dimension to the evaluation of the impacts of freeway projects. 

10.2 Deployment to other Caltrans Districts 

The tool and models can be deployed to other Caltrans Districts without too much difficulty. The data storage 
framework can be adopted as is, and will scale roughly linearly with the numbers of detectors in the new 
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District. After processing 3 years of data, District 12 requires approximately 800 GB of disk storage. District 
7 would be larger, but most other Districts would probably require no more than 500 GB of storage space 
per year. Because each detector is assigned its own CouchDB database to store the 30 second data (raw 
values and computed 27 variables), these databases can easily be migrated to multiple machines if the space 
requirements or computational load on a single server becomes too great. Virtual services offered by various 
Cloud computing companies can also be used to store data, as long as the company offered CouchDB storage 
facilities. 

As part of the request to the HSIS data repository, we received accident data for all of California from 
2007 and 2008. Therefore the only new data for each new District would be the raw detector data. Once the 
raw data is downloaded from the PeMS data repository for 2007, new models can be estimated that capture 
the driving habits of each District’s drivers. We recommend that new models be estimated because we do 
not have any evidence to suggest that the models can be transferred directly to other regions. Because the 
methodology attempts to capture the behavior of drivers in relation to other drivers, any possible regional 
differences in driving styles must be taken into account. Finally, noting the poor validation results for toll 
roads, separate models should be estimated for any unique facilities in a district, such as toll roads or long 
bridges. 

The website and associated tools are largely agnostic to the District. The current tool presents data 
for just District 12, but that is only because there are only model outputs for detectors within District 12. 
CTMLabs has meta data for all detectors in California, and so the exact same website can be used to browse 
the predictions from other Districts once they are stored in the aggregate CouchDB database. 
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Appendix A: HSIS accident data database schema 

The HSIS accident data is all loaded into the hsis schema in the PostgreSQL database. Each table is defined 
below, but note that the PostgreSQL loading script issues the command SET search_path = hsis, 
pg_catalog; prior to running the CREATE TABLE commands. This means that even though it isn’t 
explicitly written, each table should be understood to have the schema identifier hsis. prepended to the 
table name. 

The primary table for all HSIS data is the cases table. This stores the primary key for accidents, and 
allows one to piece together all of the information pertaining to a single accident. 

create table hsis.cases ( 
caseno varchar(36) not null primary key); 

Accident data itself is stored in the acc table. 

CREATE TABLE hsis.acc ( 
id serial primary key, 
cntyrte varchar(20), 
milepost numeric, 
rodwycls varchar(20) references hsis.rodwycls(id) on delete restrict, 
caseno varchar(36) references hsis.cases on delete restrict, 
psmilprf varchar(20) references hsis.psmilprf(id) on delete restrict, 
psmilsuf varchar(20) references hsis.psmilsuf(id) on delete restrict, 
acctype varchar(20) references hsis.acctype(id) on delete restrict, 
acc_ts timestamp with time zone, 
hour_known boolean, 
weather1 varchar(20) references hsis.weather(id) on delete restrict, 
weather2 varchar(20) references hsis.weather(id) on delete restrict, 
loc_typ varchar(20) references hsis.loctyp(id) on delete restrict, 
sde_hwy varchar(20) references hsis.sdehwy(id) on delete restrict, 
towaway boolean, 
severity varchar(20) references hsis.severity(id) on delete restrict, 
rdsurf varchar(20) references hsis.rdsurf(id) on delete restrict, 
light varchar(20) references hsis.light(id) on delete restrict, 
trk_inv boolean, 
mtcy_inv boolean, 
distance integer, 
numvehs integer); 

The vehicle information, incluing the direction of travel of each vehicle involved in the accident, is stored 
in the hsis.veh table. The direction of travel is coded up in the hsis.dirtrvl table. Because more 
than 4 vehicles might be involved in an accident, a join on caseno might pull in more than one record from 
the vehicle table. 
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create table hsis.dirtrvl ( 
id varchar(20) not null unique primary key, 
label varchar(256) not null); 

insert into hsis.dirtrvl 
(id,label) 
values 

( 'N' , 'North, northeast, or northwest bound'), 
( 'S' , 'South, southeast, or southwest bound'), 
( 'E' , 'EASTBOUND'), 
( 'W' , 'WESTBOUND'), 
( '<' , 'NOT STATED'), 
( '-' , 'DOES NOT APPLY'), 
( 'OTHER' , 'ERROR/OTHER CODES'); 

CREATE TABLE hsis.veh ( 
id serial primary key, 
caseno varchar(36) references hsis.cases on delete restrict, 
dir_trvl varchar(20) references hsis.dirtrvl(id) on delete restrict, 
loc_typ1 varchar(20) references hsis.loctyp(id) on delete restrict, 
loc_typ2 varchar(20) references hsis.loctyp(id) on delete restrict, 
loc_typ3 varchar(20) references hsis.loctyp(id) on delete restrict, 
loc_typ4 varchar(20) references hsis.loctyp(id) on delete restrict); 

Most of the other tables related to accidents just define the values that the accident table can take. These 
are reproduced below, along with the static values stored in each table. 

create table hsis.rodwycls ( 
id varchar(20) not null unique primary key, 
label varchar(256) not null); 

insert into hsis.rodwycls 
(id,label) 
values 
('01' , 'Urban freeways'), 
('02' , 'Urban freeways < 4 lanes'), 
('03' , 'Urban two lane roads'), 
('04' , 'Urban multilane divided non-freeways'), 
('05' , 'Urban multilane undivided non-freeways'), 
('06' , 'Rural freeways'), 
('07' , 'Rural freeways < 4 lanes'), 
('08' , 'Rural two lane roads'), 
('09' , 'Rural multilane divided non-freeways'), 
('10' , 'Rural multilane undivided non-freeways'), 
('99' , 'OTHERS'); 
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create table hsis.psmilprf ( 
id varchar(20) unique not null primary key, 
label varchar (256) not null); 

insert into hsis.psmilprf 
(id,label) 
values 

(' ' , 'NO PREFIX'), 
('A' , 'REPOSTED'), 
('B' , 'BUS LANE'), 
('C' , 'COMMERCIAL'), 
('D' , 'Duplicate (meandering)'), 
('F' , 'Reposted - Commercial (C)'), 
('G' , 'Reposted - Duplicate (D)'), 
('H' , 'Realigned - Duplicate (D)'), 
('J' , 'Reposted, realigned - Duplicate'), 
('K' , 'Reposted - Overlap (L)'), 
('L' , 'Overlapping Postmiles'), 
('M' , 'Realigned realignment (R)'), 
('N' , 'Reposted, realighned realignment (M)'), 
('P' , 'Reposted realignment (R)'), 
('Q' , 'Reposted - Spur (S)'), 
('R' , 'REALIGNMENT' ), 
('S' , 'SPUR'), 
('T' , 'Temporary Connection'), 
('U' , 'Reposted - Temporary connection (T)'), 
('-' , 'INVALID DATA'), 
('+' , 'NO DATA'), 
('OTHER' , 'ERROR/OTHER CODES'); 

create table hsis.psmilsuf ( 
id varchar(20) unique not null primary key, 
label varchar (256) not null); 

insert into hsis.psmilsuf 
(id,label) 

values 
( ' ' , 'NO SUFFIX'), 
( 'E' , 'EQUATION'), 
( '-' , 'INVALID DATA'), 
( '+' , 'NO DATA'), 
( 'OTHER' , 'ERROR/OTHER CODES'), 
('L' , 'Overlapping Postmiles'), 
('R' , 'REALIGNMENT' ); 

63 



Final Report #UCI-280 December 2011 

create table hsis.acctype ( 
id varchar(20) unique not null primary key, 
label varchar (256) not null); 

insert into hsis.acctype 
(id,label) 

values 
( 'A' , 'HEAD-ON'), 
( 'B' , 'SIDESWIPE'), 
( 'C' , 'REAR END'), 
( 'D' , 'BROADSIDE'), 
( 'E' , 'HIT OBJECT'), 
( 'F' , 'OVERTURNED'), 
( 'G' , 'AUTO-PEDESTRIAN'), 
( 'H' , 'OTHER'), 
( '-' , 'NOT STATED'), 
( 'OTHER' , 'ERROR/OTHER CODES'); 

create table hsis.weather ( 
id varchar(20) unique not null primary key, 
label varchar (256) not null); 

insert into hsis.weather 
(id,label) 

values 
( 'A' , 'CLEAR'), 
( 'B' , 'CLOUDY'), 
( 'C' , 'RAINING'), 
( 'D' , 'SNOWING'), 
( 'E' , 'FOG'), 
( 'F' , 'OTHER'), 
( 'G' , 'WIND'), 
( '-' , 'NOT STATED'), 
( 'OTHER' , 'ERROR/OTHER CODES'); 
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create table hsis.loctyp ( 
id varchar(20) unique not null primary key, 
label varchar (256) not null); 

insert into hsis.loctyp 
(id,label) 

values 
( 'A' , $$Beyond median or barrier stripe - driver's left$$), 
( 'B' , $$Beyond shoulder - driver's left$$), 
( 'C' , 'Left shoulder area'), 
( 'D' , 'Left lane'), 
( 'E' , 'Interior lanes'), 
( 'F' , 'Right lane'), 
( 'G' , 'Right shoulder area'), 
( 'H' , $$Beyond shoulder - driver's right$$), 
( 'I' , 'Gore area'), 
( 'J' , 'Other'), 
( '<' , 'Not stated'), 
( 'V' , 'undefined by hsis' ), 
( 'W' , 'undefined by hsis' ), 
( '---' 'undefined by hsis' ), 
( '-' , 'Does not apply'), 
( 'OTHER' , 'ERROR/OTHER CODES'); 

create table hsis.sdehwy ( 
id varchar(20) unique not null primary key, 
label varchar (256) not null); 

insert into hsis.sdehwy 
(id,label) 

values 
( 'N' , 'NORTHBOUND'), 
( 'S' , 'SOUTHBOUND'), 
( 'E' , 'EASTBOUND'), 
( 'W' , 'WESTBOUND'), 
( 'OTHER' , 'ERROR/OTHER CODES'); 
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create table hsis.severity ( 
id varchar(20) unique not null primary key, 
label varchar (256) not null); 

insert into hsis.severity 
(id,label) 

values 
( '1' , 'FATAL'), 
( '2' , 'SEVERE INJURY'), 
( '3' , 'Other visible injury'), 
( '4' , 'Complaint of pain'), 
( '0' , 'PDO - Property damage only'), 
( 'OTHER' , 'ERROR/OTHER CODES'); 

create table hsis.rdsurf ( 
id varchar(20) unique not null primary key, 
label varchar (256) not null); 

insert into hsis.rdsurf 
(id,label) 

values 
( 'A' , 'DRY'), 
( 'B' , 'WET'), 
( 'C' , 'SNOWY, ICY'), 
( 'D' , 'SLIPPERY/MUDDY'), 
( '-' , 'NOT STATED'), 
( 'OTHER' , 'ERROR/OTHER CODES'); 

create table hsis.light ( 
id varchar(20) unique not null primary key, 
label varchar (256) not null); 

insert into hsis.light 
(id,label) 

values 
( 'A' , 'Daylight'), 
( 'B' , 'Dusk - dawn'), 
( 'C' , 'Dark - street lights'), 
( 'D' , 'Dark - no street lights'), 
( 'E' , 'Dark - street lights not functioning'), 
( 'F' , 'Dark - not stated'), 
( '-' , 'Not stated'), 
( 'OTHER' , 'ERROR/OTHER CODES'); 

HSIS also categorizes and saves the network information related to each accident it stores. The following 
tables relate to the road network data. 
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create table hsis.access ( 
id varchar(20) not null unique primary key, 
label varchar(256) not null); 

insert into hsis.access 
(id,label) 
values 

( 'C' , 'Conventional - No access control'), 
( 'E' , 'Expressway - Partial access control'), 
( 'F' , 'Freeway - Full access control'), 
( 'S' , 'One-way city street - no access control'), 
( '-' , 'INVALID DATA'), 
( '+' , 'NO DATA'), 
( 'OTHER' , 'ERROR/OTHER CODES'); 

create table hsis.rte_suf ( 
id varchar(20) not null unique primary key, 
label varchar(256) not null); 

insert into hsis.rte_suf 
(id,label) 
values 

( 'P' , 'ALIGNMENT PRIOR'), 
( 'S' , 'Supplemental alignment, partial opened for use before alignment is 

complete'), 
( 'U' , 'Unrelinquished, superseded by realignment, but not yet accepted for 

non-State-highway maintenance'), 
( 'Z' , 'Budgeted or under construction'), 
( ' ' , 'NO SUFFIX'), 
( 'OTHER' , 'ERROR/OTHER CODES'); 
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create table hsis.county ( 
id varchar(20) not null unique primary key, 
label varchar(256) not null); 

insert into hsis.county 
(id,label) 
values 

( '01' , 'ALAMEDA'), ( '02' , 'ALPINE'), ( '03' , 'AMADOR'), 
( '04' , 'BUTTE'), ( '05' , 'CALAVERAS'), ( '06' , 'COLUSA'), 
( '07' , 'CONTRA COSTA'), ( '08' , 'DEL NORTE'), 
( '09' , 'EL DORADO'), ( '10' , 'FRESNO'), ( '11' , 'GLENN'), 
( '12' , 'HUMBOLDT'), ( '13' , 'IMPERIAL'), ( '14' , 'INYO'), 
( '15' , 'KERN'), ( '16' , 'KINGS'), ( '17' , 'LAKE'), 
( '18' , 'LASSEN'), ( '19' , 'LOS ANGELES'), ( '20' , 'MADERA'), 
( '21' , 'MARIN'), ( '22' , 'MARIPOSA'), ( '23' , 'MENDOCINO'), 
( '24' , 'MERCED'), ( '25' , 'MODOC'), ( '26' , 'MONO'), 
( '27' , 'MONTEREY'), ( '28' , 'NAPA'), ( '29' , 'NEVADA'), 
( '30' , 'ORANGE'), ( '31' , 'PLACER'), ( '32' , 'PLUMAS'), 
( '33' , 'RIVERSIDE'), ( '34' , 'SACRAMENTO'), 
( '35' , 'SAN BENITO'), ( '36' , 'SAN BERNARDINO'), 
( '37' , 'SAN DIEGO'), ( '38' , 'SAN FRANCISCO'), 
( '39' , 'SAN JOAQUIN'), ( '40' , 'SAN LUIS OBISPO'), 
( '41' , 'SAN MATEO'), ( '42' , 'SANTA BARBARA'), 
( '43' , 'SANTA CLARA'), ( '44' , 'SANTA CRUZ'), 
( '45' , 'SHASTA'), ( '46' , 'SIERRA'), ( '47' , 'SISKIYHOU'), 
( '48' , 'SOLANO'), ( '49' , 'SONOMA'), ( '50' , 'STANISLAUS'), 
( '51' , 'SUTTER'), ( '52' , 'TEHAMA'), ( '53' , 'TRINITY'), 
( '54' , 'TULARE'), ( '55' , 'TUOLUME'), ( '56' , 'VENTURA'), 
( '57' , 'YOLO'), ( '58' , 'YUBA'); 

create table hsis.hwygrp ( 
id varchar(20) not null unique primary key, 
label varchar(256) not null); 

insert into hsis.hwygrp 
(id,label) 
values 

( 'R' , 'Right independent alignment'), 
( 'L' , 'Left independent alignment'), 
( 'D' , 'DIVIDED HIGHWAY'), 
( 'U' , 'UNIDIVIDED HIGHWY'), 
( 'X' , 'UNCONSTRUCTED' ), 
( 'Z' , 'OTHER'), 
( '-' , 'INVALID DATA'), 
( '+' , 'NO DATA'), 
( 'OTHER' , 'ERROR/OTHER CODES'); 
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create table hsis.dspd ( 
spd integer not null unique primary key, 
label varchar(256) not null); 

insert into hsis.dspd 
(spd,label) 
values 

( 25 , '< 30 MPH'), 
( 30 , '30 MPH'), 
( 35 , '35 MPH'), 
( 40 , '40 MPH'), 
( 45 , '45 MPH'), 
( 50 , '50 MPH'), 
( 55 , '55 MPH'), 
( 60 , '60 MPH'), 
( 65 , '65 MPH'), 
( 70 , '> 70 MPH'); 

create table hsis.numlanes ( 
id integer not null unique primary key, 
label varchar(256) not null); 

insert into hsis.numlanes 
(id,label) 
values 

( 1 , 'ONE LANE'), 
( 2 , 'TWO LANES'), 
( 3 , 'THREE LANES'), 
( 4 , '4 TO 6 LANES'), 
( 7 , '7 TO 8 LANES'), 
( 9 , '> 8 LANES'), 
( -1 , 'NOT STATED'); 
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create table hsis.road ( 
id serial primary key, 
yr integer, 
access varchar(20) references hsis.access(id) on delete restrict, 
begmp numeric, 
endmp numeric, 
city varchar(20), 
cntyrte varchar(20) not null, 
district integer, 
rte_nbr integer, 
rte_suf varchar(20) references hsis.rte_suf(id) on delete restrict, 
county varchar(2) references hsis.county(id) on delete restrict, 
psmilprf varchar(20) references hsis.psmilprf(id) on delete restrict, 
hwy_grp varchar(20) references hsis.hwygrp(id) on delete restrict, 
dspd integer references hsis.dspd(spd) on delete restrict, 
divided boolean, 
num_lane1 integer, 
num_lane2 integer, 
num_lanes integer, 
rd_desc varchar(64), 
ro_seq numeric, 
rodwycls varchar(20) references hsis.rodwycls(id) on delete restrict); 

Finally, there are join tables linking HSIS data with other tables. The caseno_vds table stores the 
linking of VDS loop detectors with each accident case number, based on the postmile and highway of the 
accident and the detector. 

CREATE TABLE caseno_vds ( 
caseno character varying(36), 
vds_id integer, 
diff numeric, 
keep boolean DEFAULT false); 
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	Executive Summary 
	The purpose of this project was to update and deploy a tool for analyzing accident risk. This project was a continuation of a project that developed the core elements of the tool. Updating the tool meant using more recent data to re-estimate the models of how traﬃc ﬂow variables inﬂuenced the safety of the highway. Deploying the tool meant setting up a database backend to store the raw and computed variables; a data processing system to process new data; and a web site and related web services that expose t
	The tool was estimated and deployed only for Caltrans District 12, but the techniques can be applied to other Caltrans Districts.. 
	The biggest obstacle overcome was handling the large volume of data. One of the innovations of the prior research was the development of 27 variables that capture the temporal and spatial dynamics of traﬃc ﬂow, using only the raw 30-second volume and occupancy values for each lane. For each time step at each of Caltrans’ vehicle detection system (VDS) stations, the prior twenty minutes of raw data (forty sets of 30-second observations) are used to compute measures of central tendency, statistical dispersion
	-

	As a point of reference, Caltrans’ Performance Measurement System (PeMS) limits raw loop data to the “bulk download” section of its website. This project deliberately adds 27 more data points to each raw observation, and then allows that data to be queried directly. The working (but ﬂawed) solution from the previous project was to store the computed values in a relational database, and then periodically purge the results tables when they became too large. The new solution uses a combination of ﬂat ﬁles and 
	-
	-

	The models were estimated using 2007 accident data, coupled with a large random sample of non-accident data. The newer accident and loop detector data, improved data processing techniques, and a more uniformly distributed sampling approach resulted in estimated models that were diﬀerent from the previous project’s models. In particular, fewer variables were found to be signiﬁcant on their own, but more two-way interaction terms were signiﬁcant. 
	-

	The primary application area for the freeway accident risk analysis tool should be to evaluate safety impacts of roadway changes over time. this report, the models should not be expected to predict whether or not an accident will occur in the near future. The true root causes of accidents—for example a sudden tire blow out—are random and unobservable using loop detectors. The safety prediction models are only modeling the impact of traﬃc ﬂow dynamics on accident risk. They should be interpreted as predictin
	As noted in the discussion of the modeling eﬀort in Section 7 of 

	By using this tool, Caltrans will be able to evaluate the safety impacts of roadway changes over time by looking at the aggregate risk of accidents before and after some new system is deployed. The tool allows the cumulative accident probabilities to be estimated with real conditions over any given time period. 
	The project’s deliverables include all source code and databases. The freeway accident risk analysis tool is currently live as part of the California Traﬃc Management Labs ). A key value-added component of the website is that it exposes the data and model outputs directly via standard URL addresses. Any modern device or program that understands how to access web data using HTTP can access the output of this project and incorporate the information into new projects and data “mashups”. 
	website at UC Irvine (http://www 
	.ctmlabs.net

	Section 1: Introduction 
	The purpose of this project was to update and deploy a freeway accident risk analysis tool. This project was a continuation of an earlier project that developed the core elements of the tool, with the intended application being measuring the impacts of intelligent transportation systems (ITS) on the safety of California’s freeways. Updating the prior project’s results meant using newer, more recent data to re-estimate the diﬀerent models of how traﬃc ﬂow variables inﬂuenced the safety of the highway. Deploy
	-
	-

	The previous project laid the groundwork for this one by researching methods to model how observable traﬃc characteristics inﬂuence observable measures of safety. The most common tool used to measure traﬃc ﬂow is the inductive loop detector (ILD) stations in Caltrans’ vehicle detection system (VDS). The best measure of safety is to look at accidents that have been stored in Caltrans’ traﬃc accident database, which is made available to the public via the Federal Highway Safety Information System (HSIS) multi
	There were two technical issues that limited the applicability of the previous work. First, the accident data used was older, and the loop detector data was limited by missing periods and by the need to avoid detector errors. Second, only six months of data were used for the earlier study. This project used accident data from all of 2007, and estimated models based on 30 second loop data downloaded from Caltrans’ Performance Measurement System (PeMS) (Varaiya, 2001). This was done so as to facilitate transf
	The biggest obstacle that had to be overcome by this project was handling the large volume of data, both raw and processed. The previous solution was to store the computed probabilities in a database, and then periodically purge the results tables when they became too large to serve requests. The ultimate solution, was to use a combination of ﬂat ﬁles and CouchDB databases to store and expose the raw data and the intermediate results. The ﬂat ﬁles were generated in a preliminary step to get processed into 2
	described in detail in Section 3, 
	the ﬁles downloaded from PeMS ready to use (see Section 4). The raw data for each mainline detector was 
	-

	The models were re-estimated using 2007 accident data along with an entire year of loop detector data. how observed traﬃc ﬂow conditions inﬂuence the likelihood of whether or not an accident would occur (the binomial case), and the diﬀerent types of accidents that might occur (the multinomial cases). Once the data storage and retrieval issues were solved, it was a simple matter to program a sampling scheme (as discussed and then apply the estimated models to new data by creating a map-reduce view in CouchDB
	The accident data is described in Section 5. Binomial and multinomial logit models were applied to estimate 
	in Section 6) that generated a representative sample of arbitrary size consisting of the 27 computed variables, 

	improved data processing techniques, a more uniformly distributed sampling approach, or a much larger sample of non-accident data, the newly estimated models were diﬀerent from the previous project’s models. 
	The modeling output is discussed in Section 7. Whether it was the newer accident and loop detector data, 

	In particular, fewer variables were found to be signiﬁcant on their own, but more variables were found to be along with detailed plots that show the impact of each signiﬁcant variable on the predicted probabilities. 
	signiﬁcant when they interacted with other variables. Section 7 contains subsections that present each model 

	The data storage and retrieval system forms the core elements of the ﬁnal implementation of the freeway to well-formed requests, following the Representational State Transfer (REST) (Fielding, 2000) approach. In addition to the server development, a client website was programmed with a map-based interface to the data that shows the raw and processed data upon request using on a time-series plot. The website also provides an example of how to query and use the data for other applications to follow. 
	accident risk analysis tool. As described in Section 9, a web server was programmed to fetch data in response 

	The primary application area for this tool should be to evaluate safety impacts of roadway changes over time. be expected to predict whether or not an accident will occur in the next 5 minutes. The root causes of accidents—for example a sudden tire blow out—are random and unobservable using loop detectors. Instead the models should be understood to predict when random incidents (such as a ﬂat tire) are more likely to cause an accident (and what kind of accident might occur) due to the current traﬃc ﬂow dyna
	As noted in the discussion of the modeling eﬀort in Section 7 of this report, the models should not 

	Using this tool, Caltrans will be able to evaluate the safety impacts of roadway changes over time by looking at the aggregate risk of accidents before and after some new system is deployed. Speciﬁcally, it is anticipated that new deployments of intelligent transportation systems elements can be evaluated for their safety impacts by comparing the cumulative risk of diﬀerent kinds of accidents before and after deployment. This tool could also be used in near real time, for example as a driver alert tool. One
	-
	-

	The tool is not well suited to identifying impending accidents. The probabilities predicted by the models are very small, as would be expected by the low risk of an accident at any given time and place. Discussions with Caltrans District 12 employees about the possibility of deploying the safety performance tool as a traﬃc control device indicated that unless the system was very good at predicting accidents, too many “false positives” would cause Caltrans staﬀ to ignore the tool’s information and devote the
	After a short background section, the remainder of this report documents the steps taken to update the safety models and to operationalize and deploy the freeway safety performance measurement tool in Caltrans District 12. In addition to this ﬁnal report, the project’s deliverables include the source code, the databases, and the live website. The website is currently operating as part of the California Traﬃc Management Laboratories (CTMLabs) at UC Irvine, and is available to all CTMLabs users who have logge
	-

	The next section presents some background on the approach used, with a description of the 27 variables that form the basis of the analytical work discussed throughout this report. 
	The next section presents some background on the approach used, with a description of the 27 variables that form the basis of the analytical work discussed throughout this report. 
	Then Section 3 documents how 

	the raw data is handled, providing details on how we solved storing this very large data set in such a way that presents the approached used to draw uniform samples of non-accident data from the loop detector sites. detailed discussion of the four models that were estimated. The model validation results are presented in with ﬁnal thoughts on the implementation and some recommendations for future work. 
	it could be used in a ﬂexible manner both by analysis tools and by website queries. Section 4 describes the 
	process of generating and storing the 27 variables, and Section 5 describes the accident data. Then Section 6 
	Section 7 makes up the bulk of this report, containing a short discussion of the modeling approach, and then 
	Section 8. Then the web server and the website are discussed in Section 9. The body of the reports concludes 


	Section 2: Background 
	This project work built upon previous work by the investigators. The bulk of the earlier research was part of Partners for Advanced Transit and Highways (PATH) project 5307 (Golob et al., 2007). Other aspects of the project are documented in related papers (Golob and Recker, 2003,2004 and Golob et al., 2002,2004a,2004b,2008). The premise of the research is that it is possible to design a set of statistical variables that capture as many aspects of traﬃc ﬂow as possible using only 30-second loop detector dat
	-

	The traditional approach to using VDS data is to aggregate the raw, lane-by-lane 30-second data into 5-minute, section-wide counts and occupancies. For example, Abdel-Aty and Pande, 2005 and Abdel-Aty et al., 2005 use aggregated 5 minute data for safety research, and Caltrans’ PeMS (Caltrans and BTS, 2012, Varaiya, 2001,2005 and Choe et al., 2002) uses 5 minute imputed aggregates to evaluate freeway performance. 
	-

	There are some problems with using 30-second data directly. First of all, the data can be erratic and therefore somewhat diﬃcult to handle. For example, an inﬂux of vehicles from an on-ramp could spike the occupancy values for a particular 30 second period in the right lane. A platoon of vehicles might drive up the volume and occupancy values for a period across all lanes. These ﬂuctuations can be misleading, especially if one is merely interested in hourly ﬂow rates or prevailing speed estimates. The secon
	In contrast to the usual way of doing things, this project focuses on the 30-second raw data precisely because it comes closest to capturing the real-time variability of traﬃc. The 27 variables that were developed are designed to characterize variation over time, as well as variations between lanes. In addition to the observed volume (vehicle counts) and occupancy, the ratio of volume to occupancy is also used, as that ratio is proportional to the prevailing time-mean speed of traﬃc for that period. Note th
	The 27 variables used are each kind of variable will be discussed below. 
	presented in Table 1, reproduced from Golob et al., 2007, and 

	Variable type 
	Variable type 
	Variable type 
	Measurement 
	Lanes 
	Variable 
	Abbreviation 

	Central Tendencies 
	Central Tendencies 
	Volume 
	left (1) middle (M) right (R) 
	mean volume lane 1 mean volume lane M mean volume lane R 
	mean.vol.1 mean.vol.m mean.vol.r 

	Standard Deviations 
	Standard Deviations 
	Volume 
	1 M R 
	standard deviation volume lane 1 standard deviation volume lane M standard deviation volume lane R 
	sd.vol.1 sd.vol.m sd.vol.r 

	Coeﬃcients of Variation 
	Coeﬃcients of Variation 
	Occupancy Volume / Occupancy 
	1 M R 1 M R 
	coef. of var. occupancy lane 1 coef. of var. occupancy lane M coef. of var. occupancy lane R coef. of var. vol./occ. lane 1 coef. of var. vol./occ. lane M coef. of var. vol./occ. lane R 
	cv.occ.1 cv.occ.m cv.occ.r cv.volocc.1 cv.volocc.m cv.volocc.r 

	TR
	1 vs M 
	correlation volume lane 1 vs M 
	cor.vol.1.m 

	TR
	Volume 
	1 vs R 
	correlation volume lane 1 vs R 
	cor.vol.1.r 

	TR
	M vs R 
	correlation volume lane M vs R 
	cor.vol.m.r 


	Correlations Across Lanes 
	Correlations Across Lanes 
	Correlations Across Lanes 
	Occupancy 
	1 vs M 1 vs R 
	correlation occupancy lane 1 vs M correlation occupancy lane 1 vs R 
	cor.occ.1.m cor.occ.1.r 

	TR
	M vs R 
	correlation occupancy lane M vs R 
	cor.occ.m.r 

	TR
	Volume / Occupancy 
	1 vs M 1 vs R 
	correlation vol./occ. lane 1 vs M correlation vol./occ. lane 1 vs R 
	cor.volocc.1.m cor.volocc.1.r 

	TR
	M vs R 
	correlation vol./occ. lane M vs R 
	cor.volocc.m.r 

	TR
	1 
	autocorrelation volume lane 1 
	autocor.vol.1 

	TR
	Volume 
	M 
	autocorrelation volume lane M 
	autocor.vol.m 

	Autocorrelation 
	Autocorrelation 
	R 
	autocorrelation volume lane R 
	autocor.vol.r 

	TR
	1 
	autocorrelation occupancy lane 1 
	autocor.occ.1 

	TR
	Occupancy 
	M 
	autocorrelation occupancy lane M 
	autocor.occ.m 

	TR
	R 
	autocorrelation occupancy lane R 
	autocor.occ.r 


	To establish the temporal variation over time, a 20 minute window of observations is used, giving 40 observations total. Out of that window, the computations allow at most 10 missing observations total, or 15 minutes or more of good observations. If there are less than 30 data points, then no result is computed, the time period is not used, and the computation program advances the 20 minute window one time step and continues processing. A minimum volume rule was also applied to the data, with a requirement 
	Lanes are identiﬁed by lane groups. Every site has a number 1 lane, the left-lane in the direction of travel. The right-most lane was then labeled as lane R, and one of the middle lanes was chosen as lane M. In the previous project, the choice of the middle lane also took into consideration which of the middle lanes had the most data available. For this project, using PeMS-supplied raw data, there were no cases in which just some of the lanes had no data. Therefore, the rule was simpliﬁed to choose the midd
	Lanes are identiﬁed by lane groups. Every site has a number 1 lane, the left-lane in the direction of travel. The right-most lane was then labeled as lane R, and one of the middle lanes was chosen as lane M. In the previous project, the choice of the middle lane also took into consideration which of the middle lanes had the most data available. For this project, using PeMS-supplied raw data, there were no cases in which just some of the lanes had no data. Therefore, the rule was simpliﬁed to choose the midd
	as lane M. The prior project established that the characteristics of all middle lanes are highly correlated, and so the most important concern for this study was to make a consistent choice. 

	The ﬁrst three rows are central tendency variables. The only one of the three traﬃc ﬂow parameters for which we have a true scale is volume, and so this is the only variable for which mean values are computed over each 20 minute period of observation. Statistical dispersion is captured for lane volumes by the standard deviation computation over the 20 minute period. Dispersion is also captured by the calculation of the coeﬃcient of variation for the scale-free values of occupancy, and the ratio of volume to
	in Table 1 

	Cross-lane correlations of traﬃc conditions measure the synchronization (or lack thereof) of traﬃc between lanes. Cross lane correlations were computed for volumes, occupancies, and the ratio of the two for each of the three pairings of the lanes (1 vs. M, 1 vs. R, and M vs. R). And ﬁnally autocorrelations of volume and occupancy are computed for each lane. Rather than being a true autocorrelation over the entire 20 minute period, we instead computed a simple lagged diﬀerence, comparing how each variable ch
	Section 3: Storing loop detector data in a usable form 
	The bulk of the data used for this project are the raw, 30 second observations from mainline loop detectors. In 2007, Caltrans District 12 collected data from 587 mainline inductive loop detectors. If all 587 detectors were active for the entire year, this would amount to over half a billion records of 30s volume and occupancy counts for each lane at each detector. This total doesn’t even include the on-and oﬀ-ramps, freeway-to-freeway connectors, high-occupancy vehicle (HOV) lanes, and other locations wher
	Until very recently, this volume of information was far greater than computers and disk drives could handle comfortably. As an example, the PeMS system processes the raw data once, aggregating up to 5 minute periods, and then puts the data into storage. Modern computers can handle the load, but the sheer size of the data set will still present problems and requires special care. This project requires that the raw data be available for processing. The modeling step requires the ability to sample a single obs
	In the preliminary phase of this project, a few test cases of detectors were loaded into PostgreSQL tables. For up to a hundred or so detectors for a single year, the performance of queries was reasonably fast. But as we added more detectors and more years (we attempted to load all District 12 detector data from 2007 through 2009) simple queries became unacceptably slow. The problem was that the table index generated by the database was too big to ﬁt into the amount of computer memory allocated to the datab
	Note that so far the issues reported only related to the raw data. One of the unique features of this project is that, by design, 27 more variables are added to each 30s observation. For the most common case, where a roadway has 4 or 5 lanes and is reporting 8 to 10 variables each 30s (volume and occupancy for each lane) this project will triple the storage space required. 
	One approach recommended by relational database documentation is to partition very large tables along natural boundaries, so that individual queries only have to work on part of the data to get their answer. For example, the data might be partitioned into months or by detector, which in turn would allow the query planner to look at just a part of the complete table to answer queries. However, after only an admittedly modest amount of eﬀort, our attempts to partition the data were unsuccessful. 
	There were other problems with PostgreSQL (indeed with all relational databases). Our early attempt with PostgreSQL showed us a single query could use up all of the memory, but only use a single processor core. Tying up one eight-core server machine to process a single query is very ineﬃcient, especially when a webserver is likely blocking its thread waiting for the database to answer the query. The idea of partitioning the data also spawned the idea of splitting the data up among multiple servers (either r
	At the same time we were confronting these issues, several non-relational database technologies were becoming popular, following in the footsteps of Google’s proprietary map-reduce database and ﬁle system (Dean and Ghemawat, 2008). Most of these were variations of a simple key–value store. We tested out a few of these with sample data as well as ﬂat ﬁle storage. Our tests were not scientiﬁcally rigorous, but rather were oriented towards results. The three fundamental questions were whether we could get the 
	At the same time we were confronting these issues, several non-relational database technologies were becoming popular, following in the footsteps of Google’s proprietary map-reduce database and ﬁle system (Dean and Ghemawat, 2008). Most of these were variations of a simple key–value store. We tested out a few of these with sample data as well as ﬂat ﬁle storage. Our tests were not scientiﬁcally rigorous, but rather were oriented towards results. The three fundamental questions were whether we could get the 
	running, whether we could load the raw data into the database, and then whether we could use the database to process queries faster than in our standard relational database, PostgreSQL. 

	The databases we tried included Tokyo Tyrant, Redis, MongoDB, Cassandra, Hadoop, and CouchDB. We also added ﬂat ﬁles as a “NoDB” option. Of these, we could not easily get Hadoop set up and running, and MongoDB was a bit immature at the time. Redis worked really well for small data sets that ﬁt in memory, but is unsuitable for the data we were processing. More extensive tests were performed with Tokyo Tyrant, Cassandra, and CouchDB. At the time of our tests, only CouchDB performed well enough to be used, and
	3.1 CouchDB 
	CouchDB was chosen as the primary data storage technology for this project. Because it is a new technology and probably unfamiliar to Caltrans, we have added a special subsection describing it use and key features. 
	CouchDB was easy to set up, and it was indeed easy to replicate data between machines. One could easily partition the data over several servers, with collating servers replicating from all of the partitioned servers. Another inherent advantage of CouchDB is that it was written in Erlang, which was designed for highly concurrent environments like telecommunications. Having just run into problems with a database that wanted to stop everything to process one query, we were attracted to the idea of concurrency 
	3.1.1 CouchDB deployment and use 
	The barrier to installing CouchDB is getting Erlang compiled and installed. After that, CouchDB installs fairly easily in most modern Linux distributions. While the CouchDB server is written in Erlang, one of its primary selling points is that it understands HTTP natively, contains a built-in HTTP server, and its internal query language is actually server-side JavaScript running on Mozilla’s SpiderMonkey engine. Most web developers are familiar with JavaScript from writing website interfaces, and JavaScript
	While the start was quick and easy, the problem once again was the fact that the database was really big. Loading the data into a single database proved to be unworkable, as the database ﬁle grew too large. We stored all of the data for District 12 from 2007 in a single database, but found that computing a simple view over the data took several days. Any change or correction to the view would take another several days to recompute. 
	On further reading and from consulting the CouchDB user mailing list, it became apparent that one monolithic database isn’t the best approach to using CouchDB. CouchDB works just as well with thousands of little databases as with one giant one. The databases are organized in a logical way, similar to how one might organize ﬁles in a tree of directories. Each database holds the raw and processed data from 
	On further reading and from consulting the CouchDB user mailing list, it became apparent that one monolithic database isn’t the best approach to using CouchDB. CouchDB works just as well with thousands of little databases as with one giant one. The databases are organized in a logical way, similar to how one might organize ﬁles in a tree of directories. Each database holds the raw and processed data from 
	one detector for one year details). This produces hundreds of databases per year, and will produce thousands of databases if we expand this project to other districts. While this is a diﬀerent approach than traditional relational databases, CouchDB performs better with many databases than with just one. Computing views over the databases uses available memory and computer processing power quite eﬃciently, as the CouchDB server assigns resources to jobs so as to maximize the computer processor usage. 
	(see Section 4 for 


	3.1.2 CouchDB views 
	CouchDB has a distinct version of Map-Reduce that it calls “views”. The Map-Reduce concept is as follows. Given a heap of data, a map function iterates over the data and produces an output set, consisting of a key and a value, both of which can be arbitrary JavaScript objects or arrays. Very importantly, the map operation should be idempotent. No matter the order of the operations, the result should always be the same, and if any document “A” should change, the result of running the map over any other docum
	After the map function is run on the heap of data, the output is collected in a B-Tree. A query on the view is really a request to collect a range or speciﬁc values from that view, based on the keys output from the map function. If requested, the query can be run through the second part of the view, the “reduce” function. 
	As with the map function, the reduce function must also produce the same output given the same input. That said, the reduce function oﬀers a little more ﬂexibility as its purpose is to apply some cumulative function to big list of key value pairs produced by the view. For example, the simplest reduce function is just to count up the numbers of input data. For this project, a common reduce function is to compute the minimum, maximum, mean, and count of some variable of interest like volume. 
	CouchDB views are an analog to a SQL query, with one important diﬀerence. Relational databases like PostgreSQL allow the analyst to write exploratory queries, and each of these queries tries to leverage whatever indices exist for the tables involved in the query. 
	CouchDB’s views oﬀer a similar notion of being able to prepare ad hoc queries using JavaScript as the query language. However, a production instance of a view should be stored as a permanent view. The CouchDB engine will then compute a full B-Tree index over the keys in the view for all of the data in the database. Once this is done, querying the view over arbitrary ranges of the view’s keys is very fast—on the order of fractions of a second compared to minutes for SQL queries. The view is both a query and 
	When a view is queried the ﬁrst time, CouchDB processes the entire database through the view, and then writes out a checkpoint for the data processed so far. If new record is added to a database, only that new record needs to be run through the view. When a query is sent to the view, CouchDB assembles the result from the B-Tree containing the individual output of each document. For example, if the view outputs a key containing the year, month, and day, and a value containing the total volume and average occ
	The wrinkle is that the views need to be set up properly to serve the intended queries. If a database is serving lots of interesting use-cases, the database will need an equal number of views, which will in turn 
	The wrinkle is that the views need to be set up properly to serve the intended queries. If a database is serving lots of interesting use-cases, the database will need an equal number of views, which will in turn 
	increase the storage space requirements of the database. For this project, the primary use case is to store and serve data by time and by detector, and to apply the estimated models to the stored data. These simple views are handled fairly easily. A small program was written to copy the view into each of the databases, and then trigger each view in turn to build each view’s B-Tree in advance. 

	We started evaluating CouchDB at version 0.4. Currently CouchDB stable is in the 1.1.x generation, and the development version is 1.2.x. We are ﬁnding 1.2 to be a signiﬁcant improvement over the earlier versions, and are using it in production. The biggest improvements of version 1.2 for this project are a much more compact data and view storage, and a more robust server-to-server replication engine. The storage requirements for District 12 data dropped by a factor of 7 between the initial and the current v
	The early versions of CouchDB provided usable, workable data storage technology, whereas the other databases—when tested—were not well suited to our needs or required too much eﬀort. Over time other projects have matured signiﬁcantly. If the same examination of data storage technologies were to be done again, the leading contenders should be CouchDB, MongoDB, Cassandra, and Hadoop, and another Erlang-based database called Riak. Relational databases would not be tried at all, given how much better the non-re
	-

	Section 4: Generating 27 variables for all of the available VDS data 
	The process of generating the 27 variables requires plenty of memory and a fast computer processor, but is nicely parallelizable. A full year of data is processed per detector, and only that year of data is required to process a detector. So multiple machines can process all of the data, as long as each processor avoids the detectors that other machines are processing or have processed. 
	This approach is important for this project because one of the project goals is to produce a web-based user interface to display the safety predictions. It isn’t enough to just process some of the data for the model estimation step. Rather all of the data for Caltrans District 12 needs to be processed and stored in advance. 
	The solution we developed uses the R statistical computing language(R Development Core Team, 2011) to process the data to generate the 27 variables, and relies on CouchDB’s automatic master-master database replication to keep all of the working machines in sync. Before processing a detector, the R process ﬁrst saves the fact that it is going to process that detector to the CouchDB tracking database. This database is set up to replicate between all of the machines being used, so as soon as the detector’s doc
	Generating the 27 variables is straight forward, requiring only the application of standard functions. We took steps to make sure the R code runs as fast as possible, and we also set up the R script such that the amount of memory required to process a year of data can be reduced by processing less data in each iteration (half or quarter year, rather than a full year, for example). This allows the processes to run on diﬀerent machines with diﬀerent amounts of memory available. 
	The results for each detector are stored in a separate CouchDB database. Producing multiple databases (one per detector per year) rather than one big database allows us to more easily split the data storage between diﬀerent machines. In order to easily “discover” where the data is, the databases are stored in a standard way, similar to how one might store ﬁles in a directory tree. At the very top of the tree is the identiﬁer vdsdata. This top level identiﬁer is used to separate this project’s databases from
	The database naming scheme is more than just a logical name. It is also mirrored by the ﬁlesystem that CouchDB uses. In the previous example for detector 1201100, there will be a ﬁle holding all of the detector’s data stored in the CouchDB disk ﬁles on the path /vdsdata/d12/2007/1201100.couch. If more districts or more years are processed, then the data could be split across multiple machines by using CouchDB’s server-to-server replication features, or by simply moving some or all of the databases directly 
	Because the data are processed on multiple machines, the generated 27 variables are stored ﬁrst inside of a CouchDB database on the local machine doing the processing. Then a one-time replication job is set up so that the database is replicated to the central database server (lysithia). We found that writing the data locally and then letting CouchDB mirror the database to the central server was the most eﬃcient approach, allowing CouchDB to decide when and how to pull data from the remote machines. This app
	Because the data are processed on multiple machines, the generated 27 variables are stored ﬁrst inside of a CouchDB database on the local machine doing the processing. Then a one-time replication job is set up so that the database is replicated to the central database server (lysithia). We found that writing the data locally and then letting CouchDB mirror the database to the central server was the most eﬃcient approach, allowing CouchDB to decide when and how to pull data from the remote machines. This app
	disk drive, the 27 variable generation jobs won’t fail. The remote machines will continue to run and save data locally. In practice we haven’t yet run into this problem. 

	Using the latest 1.2.x version of CouchDB, generating 27 variables and storing the raw (30 second) data as well for the years 2007, 2008, and 2009 for District 12 require just under 300 GB of disk space, so that is roughly 100 GB per year. CouchDB has a built in compression algorithm (using Google’s “snappy” library) that automatically compresses each document. In practice we found that the bigger the individual documents stored in the database, the better the compression achieved. In order to get the data 
	document also inﬂuences how we sample the data for the modeling step, as will be explained in Section 6. 

	It was mentioned in the previous section that CouchDB’s queries rely upon pre-computed views. While storing the 27 variables for three years requires 300 GB, after the views were computed on the production databases, and including the tracking database that stores extra ﬁgures and plots for each detector, the total space required for source data plus model output is around 800 GB. While this is a lot of space, it is still a reasonable quantity with modern disk drive technology. 
	Section 5: Accident data 
	The accident data used in this project is taken from the Highway Safety Information System (HSIS). HSIS collects highway safety information from each state, and makes it available to researchers in a standard format (Council and Mohamedshah, 2007). A data request was prepared, and the HSIS staﬀ emailed several compressed ﬁles and very helpfully answered our questions regarding the data. The data were loaded into a PostgreSQL database. The table deﬁnitions (the database schema) are described in Appendix A. 
	Each accident is identiﬁed along a highway at a particular postmile. This information along with the direction of travel were used to locate the nearest VDS detectors within a mile of each accident location. We limited the selection to detectors that are upstream of an accident, so as to capture conditions of vehicles approaching an incident, rather than those resulting from vehicles leaving the incident area. 
	Next the accidents had to be associated with the measured data. A simple histogram of accident times shows that they are clearly rounded oﬀ to the nearest 5 minute period, with larger frequencies at each quarter hour. Therefore we kept the prior project’s approach of cutting oﬀ the detector data 2.5 minutes prior to the reported accident time, so as not to sample post-accident conditions. An R script was written to retrieve the 27 variable estimate from the associated upstream detector. The ideal time would
	The HSIS accident data contained 10,937 accidents in District 12 that could be associated with VDS detectors. Of these, 7,849 could be associated with an upstream detector with valid data between 2.5 and 5 minutes prior to the accident. However, some of these valid detectors were within 1 mile of the accident, but were not the closest detector. Keeping only those that can be associated with the closest upstream detector left just 5,647 accidents out of the original 10,937 accidents, or about 51%. This is hi
	Section 6: Sampling from the non-accident data 
	The original approach to sampling the data for this project was to draw a random set of 10,000 or so locations and times within the study area and period. Then each of those would be processed to compute the 27 variables for the chosen time. If there wasn’t enough data to perform the calculation, then the location was dropped. This was continued until we had about 5,000 observations to use as non-accident cases. 
	As the data storage issues were resolved, we were able to take a diﬀerent approach. First, all of the years and sites in the project were processed to compute 27 variables wherever possible. The results were then stored in the appropriate CouchDB database, as At the same time, as an outcome from another California Traﬃc Management Labs (CTMLabs) project, the average annual segment length associated with each loop detector became available. Therefore it became possible to directly sample known good data usin
	discussed in Section 4. 

	6.1 Formulate a weighted set of detectors 
	The ﬁrst step is to collect the total count of usable observations from each detector, which in practice means to count up the times that we were able to compute the 27 variables. Then the length of each detector’s segment is queried from the database, and the counts and the lengths are multiplied to develop a proportional weighting of each detector. The idea behind this weighting scheme is to draw random non-accident events equally from all of the freeways in the study area. By multiplying the count of usa
	Once the relative weights are set, the standard R command sample is used to draw 5,000 detectors with replacement. This list of detectors is then passed along to the next step. 
	6.2 Draw one observation per selected detector 
	The list of 5,000 detectors only contains the detector id. The next step is to pull a random valid observation for each of the 5,000 detector draws. To do this, the ﬁrst step is to draw a random day, again weighted by the numbers of usable observations for each day in the year. There are usually multiple repeats of each detector, so these are grouped and one draw is done for each. 
	Again the R sample command is used, with replacement, to draw a number of days equal to the desired number of samples for each detector. As with the detector draw, each day is weighted properly. In this case, each document stored in the CouchDB database holding the precomputed 27 variables consists of one day’s data. One cannot directly extract a single 30 second period. Instead, the proper approach is to download a single document from the database that contains the desired day, and then extract a single r
	each day is weighted according to how many usable observations it contains. As was described in Section 4, 

	The sampling routine can be repeated as often as desired to build one or multiple sets of non-accident cases. The ﬁnal step, performed during modeling, is to make sure none of the non-accident cases are the same time and place as an accident case. This is a rare occurrence, but it does happen and so those duplicate cases must be removed from the non-accident sample. 
	Section 7: Modeling accident probability as function of traﬃc ﬂow 
	This section documents the four kinds of models that were estimated as part of this project. The purpose of these models is to quantify how traﬃc ﬂow inﬂuences the probability of an accident, as well as some of the more important characteristics of accidents. The primary techniques used are binomial and multinomial logistic regression, also known as logit modeling. 
	In a binomial logistic regression, the outcome is binary. For this project, the binary outcome is whether an accident is observed (y=1), or not observed (y=0) in a certain 30 second period. In this approach to modeling, the natural log of the odds of the outcome being 1 is modeled as a linear combination of the model variables. 
	ln(Odds) = xβ Pr(y = 1|x) 
	ln(Odds) = ln
	(

	) exp(xβ) 
	1 − Pr(y = 1|x)

	Pr(y = 1|x) = 
	1 + exp(xβ) 
	1 + exp(xβ) 

	A multinomial regression starts with a similar idea of modeling the log odds of the outcome as a linear combination of the variables, but instead of a binary outcome, there are multiple nominal response variables. The denominator of the odds expression will now contain the sum of the probability of all of the outcomes. For example, consider the severity of an accident as a three way event with outcome y=0 representing no accident, y=1 representing a property damage only event, and y=2 representing an injury
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	The above system of equations is unidentiﬁed, so to make the system identiﬁable, one category is chosen as the reference category, and its model coeﬃcients are set to zero. To simplify the discussion of the model output, we choose as the reference case the no accident case (y=0). Since exp(0x) = 1, the above system simpliﬁes to: 
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	Then the probabilities of each of the accident outcomes can be written as ratios relative to the reference group as follows: 
	Pr(y = 1|x) 
	Property damage only: = exp(βx) 
	1

	Pr(y = 2|x) 
	Pr(y = 0|x) 

	Injury: = exp(βx) 
	2

	Pr(y = 0|x) 
	Pr(y = 0|x) 

	The two coeﬃcients, βand βrepresent the log odds of being in either group 1 (property damage only) or group 2 (injury accident), respectively, relative to the reference group no accident. 
	1 
	2 

	In practice, the β’s and the x’s are vectors of parameters and variables. For this project, the modeling process involves replacing the x’s by the 27 variables we’ve developed, as well as possible interaction terms between those variables, and then using binomial logit and multinomial logit regression to estimate the best ﬁt values for the vector of β’s. The next four subsections go over each of the models that were estimated in detail. 
	7.1 Likelihood of any accident 
	The ﬁrst model explored is the likelihood of any accident, with the output shown All of the explanatory variables shown are statistically signiﬁcant. The model as a whole is signiﬁcantly diﬀerent than a pure intercept model. That said, the likelihood of the model is not very diﬀerent from the likelihood of the null model, and while the model predicts elevated probabilities for an accident for some of the observed accidents, the predicted probabilities are still very far from one. In short, the model is not 
	in Table 2. 

	But this conclusion that the model isn’t very good is okay, given that the model is trying to explain freeway accidents, which occur only 11,000 times per year, or less than 0.002% of the time. The true cause of most accidents most likely can never be observed—for example texting while driving or a sudden tire blow out. What this project’s models do is to use what we can observe—the traﬃc dynamics variables—to indicate periods when the traﬃc ﬂow conditions are more likely to turn that unexpected and unobser
	The ﬁnal model estimated contains 10 signiﬁcant traﬃc ﬂow variables, and an additional 14 interaction terms, indicated by the colon between the variable names. The ﬁrst column in the table gives the estimated coeﬃcient, and the second column gives the odds ratio. The odds ratio gives the increase in the odds of an accident (relative to the odds of no accident) given a one unit increase in the variable. This column is simply the exponential of the coeﬃcient given in the ﬁrst column. Although the odds ratio i
	The third column provides the Wald z-statistic (analogous to the t-statistic) and the fourth column shows the probability that the variable has no eﬀect whatsoever and the coeﬃcient is no diﬀerent than zero. Low p values indicate that coeﬃcient is unlikely to be zero. For this model, all of the coeﬃcients are signiﬁcant at the 95% level or better, meaning there is a less than 5% chance that any of the coeﬃcients estimated are actually zero. 
	Table 2 Binomial logit model of accident occurrence as a function of traﬃc ﬂow variables (reference category = no accident) 
	Explanatory variable Coeﬃcient Odds ratio z value Pr(>z) 
	mean.vol.r 0.088 1.092 6.7 1.7e-11 sd.vol.1 -0.057 0.945 -4.4 1.1e-05 sd.vol.m -0.173 0.841 -5.6 1.8e-08 cv.occ.m 0.456 1.578 4.0 5.3e-05 cv.occ.r 0.256 1.292 3.8 1.4e-04 cor.volocc.1.m -0.377 0.686 -3.6 3.1e-04 cor.volocc.m.r 0.405 1.499 3.7 2.3e-04 autocor.vol.m 1.339 3.814 3.9 8.4e-05 autocor.vol.r -0.468 0.626 -3.2 1.5e-03 autocor.occ.m -1.000 0.368 -2.8 4.4e-03 mean.vol.r : sd.vol.r -0.013 0.987 -4.5 8.4e-06 autocor.vol.m : mean.vol.m -0.090 0.914 -3.6 3.2e-04 autocor.occ.m : mean.vol.m 0.073 1.076 3.1
	Interpretation of the model is explained below. Plots are used to illustrate the eﬀect of each variable on the probability of an accident in a 30 second period when all other variables are held at their mean values. As expected, the probability of an accident is very low for any given 30 second period. 
	as the average volume in the right lane increases, the likelihood of an accident increases. This eﬀect is the strongest of all variables. On the same plot, the eﬀect of the mean volume in the middle lanes is shown to have a small but increasing eﬀect. This variable is only used in crossed terms in the model. 
	In Figure 1, 

	decreases as the standard deviation of the volume in either the left or middle lanes from one period to the next increases. A similarly scaled eﬀect holds for the standard deviation of the volume in the right lane, although the eﬀect is produced by the various interaction terms in the model. 
	As shown in Figure 2, accident likelihood 

	shows the eﬀect of the coeﬃcient of variation of occupancy (a measure of statistical dispersion). As this value tends upward in the right or middle lanes, the risk of accidents also increases. The eﬀect of the left lane (green in the ﬁgure) is very small over its likely range. 
	Figure 3 

	Inegative. As the coeﬃcient increases in the left lanes, the probability of an accident increases, but as the coeﬃcient increases in the middle lanes, the accident probability decreases. The eﬀect of a rise in the right lanes generates a slight rise in accident risk. The coeﬃcient of variation is a measure of statistical dispersion, and the ratio of volume to occupancy is proportional to speed, so an increase in this variable corresponds to an increase in the spread of speeds. Thus the model implies that as
	n Figure 4, the eﬀect of increasing the coeﬃcient of variation of volume/occupancy is both positive and 

	Figure
	Figure 1 The inﬂuence of mean volumes on the probability of any accident occurring. 
	Figure
	Figure 2 The inﬂuence of the standard deviation of volumes on the probability of any accident occurring. 
	lanes accident risk rises, but as speeds get more varied in the middle lanes conditions become safer. Most likely this is capturing the fact that the left lane is the “fast” lane, and so the rise in speed variation probably coincides with higher speeds and more aggressive driving. 
	A slight decrease in accident risk is observed as the correlation of speeds between left and middle, and middle and right lanes increases, as shown The risk of an accident is highest when speeds are perfectly uncorrelated (value of -1), while they are lowest when speeds are correlated. The implication is that start stop traﬃc ﬂow increases the likelihood of an accident, as expected. 
	in Figure 5. 

	Figure
	Figure 3 The inﬂuence of the coeﬃcient of variation of occupancy on the probability of any accident occurring. 
	Figure
	Figure 4 The inﬂuence of the coeﬃcient of variation of volume/occupancy (proportional to speed) on the probability of any accident occurring. 
	Figure
	Figure 6 The inﬂuence of the autocorrelation of volume and occupancy within a lane on the probability of any accident occurring. 
	Figure
	Figure 5 The inﬂuence of the correlation of volume/occupancy (proportional to speed) on the probability of any accident occurring. 
	time. As the autocorrelation moves from negative one (perfectly negatively correlated) to one (perfectly correlated from one period to the next) the risk of an accident decreases, with the eﬀect being more pronounced for the middle lanes than for the right lane. Thus as traﬃc from one 30 second period to the next oscillates strongly, the risk of an accident rises, whereas if one period has the same volume as the next, the risk of an accident is lower. 
	A similar trend is shown in Figure 6 for the autocorrelation of volumes in the right and middle lanes over 
	-

	The ﬁnal variable that has a signiﬁcant inﬂuence on the probability of any accident is the autocorrelation This eﬀect is the reverse of that for volume. 
	of occupancy of the middle lanes, also included in Figure 6. 

	As the autocorrelation increases, the risk of an accident also increases. Since occupancy is analogous to density, this eﬀect means that if the freeway is equally dense from one period to the next, conditions are less safe. Looking at the terms in the model, this variable is signiﬁcant by itself, but also shows up in several of the interaction terms. Thus the net eﬀect is probably capturing the increased risk due to churning traﬃc during periods of ﬂow breakdown. Even if the occupancy is the same from one p
	7.2 The severity of an accident 
	We deﬁne severity as whether people were injured, or whether the accident only caused property damage. Our set of accident cases included 1,433 (about 25%) injury accidents, and 4,202 property damage only (PDO) accidents. The term “injury” here is quite broad, and includes the HSIS categories “Fatal”, “Severe Injury”, “Other Visible Injury”, and “Complaint of Pain”. These accident cases were again paired with a large sampled set of non-accident cases. Rather than using a binomial logit model, the three outc
	Table 3. 

	The model includes many more crossed variables than the model of the risk of any accident. The model is easiest to interpret by examining plots of how the probabilities of property damage only and injury accidents vary as each variable moves through its observed range. As before, the following plots are set up with all of the variables held ﬁxed at their mean values, with only the variable being examined allowed to change. In most cases, the probability of PDO type accidents is higher than injury accidents,
	-
	-

	the eﬀect of the autocorrelation of occupancy in the left and middle lanes. While conditions get safer as the autocorrelation of occupancy goes up in the fast lane, the opposite eﬀect is observed for the middle lanes. 
	Figure 7 shows 
	-

	the eﬀect of the autocorrelation of volumes in the left, middle, and right lanes. The eﬀect of increasing autocorrelation of volume in the left lanes increases the risk of both PDO and injury accidents, while an increase in the middle lanes decreases the probability of both kinds of accident. The eﬀect of increasing autocorrelation of volume in the right lane is pretty ﬂat for PDO accidents, and leads to slightly less chance of an injury accident. 
	Figure 8 shows 

	Table 3 Multinomial logit model of accident severity as a function of traﬃc ﬂow variables (reference category = no accident) 
	(Intercept) 
	Explanatory variable 
	Explanatory variable 
	Explanatory variable 
	Property damage only Coeﬃcient 
	Pr(>z) 
	Injury or fatCoeﬃcient 
	ality Pr(>z) 

	autocor.occ.m 
	autocor.occ.m 
	-1.61309 
	0.000 
	-1.11005 
	0.190 

	autocor.vol.m 
	autocor.vol.m 
	3.17264 
	0.000 
	1.11154 
	0.268 

	cv.occ.m 
	cv.occ.m 
	0.59596 
	0.000 
	0.53653 
	0.011 

	mean.vol.r 
	mean.vol.r 
	0.08026 
	0.000 
	0.05103 
	0.034 

	sd.vol.m 
	sd.vol.m 
	-0.13007 
	0.000 
	-0.13789 
	0.024 

	cv.occ.m : autocor.occ.1 
	cv.occ.m : autocor.occ.1 
	-1.71321 
	0.000 
	-0.81710 
	0.269 

	autocor.occ.1 : cv.volocc.m 
	autocor.occ.1 : cv.volocc.m 
	2.44851 
	0.000 
	1.12477 
	0.334 

	autocor.occ.m : autocor.vol.m 
	autocor.occ.m : autocor.vol.m 
	1.51724 
	0.000 
	1.26017 
	0.024 

	autocor.occ.m : cv.occ.r 
	autocor.occ.m : cv.occ.r 
	1.53757 
	0.000 
	1.69764 
	0.022 

	autocor.occ.m : mean.vol.m 
	autocor.occ.m : mean.vol.m 
	0.12850 
	0.000 
	0.05784 
	0.294 

	autocor.vol.m : cor.vol.1.r 
	autocor.vol.m : cor.vol.1.r 
	-1.30151 
	0.003 
	-0.62510 
	0.394 

	autocor.vol.m : cv.occ.r 
	autocor.vol.m : cv.occ.r 
	-1.98940 
	0.000 
	-0.22719 
	0.798 

	autocor.vol.m : mean.vol.m 
	autocor.vol.m : mean.vol.m 
	-0.18553 
	0.000 
	-0.05161 
	0.422 

	cor.occ.1.m : cv.occ.1 
	cor.occ.1.m : cv.occ.1 
	-0.46705 
	0.007 
	-0.61177 
	0.045 

	cor.occ.1.m : mean.vol.1 
	cor.occ.1.m : mean.vol.1 
	-0.02166 
	0.007 
	-0.02665 
	0.064 

	cor.vol.1.m : cor.vol.m.r 
	cor.vol.1.m : cor.vol.m.r 
	-0.33368 
	0.183 
	0.93131 
	0.023 

	cv.occ.m : autocor.vol.1 
	cv.occ.m : autocor.vol.1 
	1.78180 
	0.000 
	0.56791 
	0.495 

	cv.occ.m : cor.vol.m.r 
	cv.occ.m : cor.vol.m.r 
	-1.18296 
	0.000 
	-1.24420 
	0.018 

	cv.occ.m : cor.volocc.1.m 
	cv.occ.m : cor.volocc.1.m 
	1.26187 
	0.000 
	0.03389 
	0.929 

	cv.occ.m : cv.volocc.r 
	cv.occ.m : cv.volocc.r 
	-1.06144 
	0.000 
	-1.06836 
	0.008 

	cv.occ.r : autocor.vol.r 
	cv.occ.r : autocor.vol.r 
	-0.69261 
	0.003 
	-1.25499 
	0.003 

	sd.vol.m : cv.occ.r 
	sd.vol.m : cv.occ.r 
	0.14053 
	0.000 
	0.08746 
	0.203 

	cv.volocc.m : autocor.vol.1 
	cv.volocc.m : autocor.vol.1 
	-2.28386 
	0.002 
	-0.93958 
	0.466 

	cv.volocc.m : autocor.vol.r 
	cv.volocc.m : autocor.vol.r 
	1.73825 
	0.004 
	2.61786 
	0.013 

	cv.volocc.m : cor.vol.m.r 
	cv.volocc.m : cor.vol.m.r 
	2.18311 
	0.000 
	2.31632 
	0.017 

	cv.volocc.m : cor.volocc.1.m 
	cv.volocc.m : cor.volocc.1.m 
	-2.92011 
	0.000 
	0.53843 
	0.533 

	cv.volocc.m : cor.volocc.m.r 
	cv.volocc.m : cor.volocc.m.r 
	-1.98689 
	0.000 
	-4.05921 
	0.000 

	cv.volocc.m : sd.vol.1 
	cv.volocc.m : sd.vol.1 
	-0.43042 
	0.000 
	-0.68156 
	0.000 

	cv.volocc.m : sd.vol.r 
	cv.volocc.m : sd.vol.r 
	0.22139 
	0.022 
	0.40473 
	0.016 

	autocor.vol.m : cv.volocc.r 
	autocor.vol.m : cv.volocc.r 
	-2.07227 
	0.000 
	-2.26348 
	0.025 

	cor.occ.1.m : cv.volocc.r 
	cor.occ.1.m : cv.volocc.r 
	1.54393 
	0.000 
	1.26206 
	0.044 

	cv.volocc.r : cor.volocc.m.r 
	cv.volocc.r : cor.volocc.m.r 
	1.30563 
	0.001 
	1.86823 
	0.008 

	cv.volocc.r : cv.volocc.1 
	cv.volocc.r : cv.volocc.1 
	0.91641 
	0.001 
	0.04272 
	0.934 

	mean.vol.1 : sd.vol.1 
	mean.vol.1 : sd.vol.1 
	0.00199 
	0.001 
	0.00172 
	0.201 

	mean.vol.r : sd.vol.r 
	mean.vol.r : sd.vol.r 
	-0.01791 -12.01746 
	0.000 0.000 
	-0.01168 -12.84033 
	0.047 0.000 


	Figure
	Figure 7 The inﬂuence of the autocorrelation of occupancy on the probability of the severity of an accident. 
	Figure
	Figure 8 The inﬂuence of the autocorrelation of volume on the probability of the severity of an accident. 
	of volume between left and middle, and middle and right lanes corresponds with a rise in the risk of an injury accident, and a decline in the risk of a PDO accident. Increasing correlation between the left and right lane volumes results in almost no eﬀect on the probability of an injury accident, and a slight increase in the probability of a PDO type accident. 
	The next two plots show the eﬀects of inter-lane correlations. Figure 9 shows that increasing correlation 

	Figure
	Figure 9 The inﬂuence of the correlation of volume between lane pairs on the probability of the severity of an accident. 
	the left and middle lanes, with the plots of correlations of volume divided by occupancy. As the occupancy gets more correlated between the left and middle lanes, the probabilities of both types of accidents decrease. Correlations of speeds between lanes also has a signiﬁcant eﬀect on the severity of the accident. that increasing correlation of volume/occupancy (which is proportional to speed) between the left and middle lanes decreases the probability of a PDO accident and increases the risk of an injury a
	Figure 10 combines the correlation of occupancy between 
	Figure 10 shows 
	-

	Figure
	Figure 10 The inﬂuence of the correlation occupancy between the left vs. middle lanes, and the correlation of volume/occupancy between the left vs. middle, and middle vs. right on the probability of the severity of an accident. 
	Figure 10 The inﬂuence of the correlation occupancy between the left vs. middle lanes, and the correlation of volume/occupancy between the left vs. middle, and middle vs. right on the probability of the severity of an accident. 


	mean volumes on the severity of the accident. Mean volume in the left lane in has almost no noticeable eﬀect on the probability of either an injury accident or a PDO accident, and is signiﬁcant only when it interacts with other variables. Increasing mean volumes in the middle lanes has a slight increasing eﬀect on injury accidents, and a stronger positive eﬀect on the probability of a PDO accident. Finally, the mean volume in the right lane has a strong and increasing impact on the probability of a PDO type
	Figure 11 presents the eﬀect of 

	Figure
	Figure 11 The inﬂuence of mean volume on the probability of the severity of an accident. 
	Figure 11 The inﬂuence of mean volume on the probability of the severity of an accident. 


	The ﬁnal three ﬁgures show the impact of the statistical dispersion measures. The eﬀect of increasing standard deviation of volume is shown When the standard deviation of volume in any lane is low, meaning the 30 second volumes in the 20 minute period are all quite close to the mean, the risk of both PDO and injury accidents is the highest. As the dispersion increases, the probability of both kinds of accident decreases. The only exception to this trend is that the risk of an injury accident shows a slight 
	in Figure 12. 

	The coeﬃcient of variation of occupancy for the left lane shows the highest risk of accidents at low values. In contrast, increasing dispersion of occupancy for the middle lanes produces an increase in the probability of PDO type accidents. An increase in the dispersion of occupancy in the right lanes leads to an increase in the probability of both PDO and injury accidents. 
	Next is the impact of the rise in the dispersion of the occupancy in each of the lanes shown in Figure 13. 

	The eﬀect of dispersion of speeds in each lane is shown The eﬀect of increasing speed dispersion in the left lane is to increase PDO probability. Increasing speed variation in the middle lanes will decrease the likelihood of both kinds of accident. Finally, a rise in the coeﬃcient of variation of volume/occupancy for the right lane will signiﬁcantly increase the risk of both types of accident, with the risk of a PDO-type accident climbing sharply. 
	in Figure 14. 
	-

	Figure
	Figure 12 The inﬂuence of standard deviation of volume on the probability of the severity of an accident. 
	Figure 12 The inﬂuence of standard deviation of volume on the probability of the severity of an accident. 


	Figure
	Figure 13 The inﬂuence of coeﬃcient of variation of occupancy on the probability of the severity of an accident. 
	Figure 13 The inﬂuence of coeﬃcient of variation of occupancy on the probability of the severity of an accident. 


	Figure
	Figure 14 The inﬂuence of coeﬃcient of variation of volume/occupancy on the probability of the severity of an accident. 
	Figure 14 The inﬂuence of coeﬃcient of variation of volume/occupancy on the probability of the severity of an accident. 


	7.3 The numbers of vehicle involved 
	This section presents the results of a multinomial model to predict the numbers of vehicles that are involved in an accident. The raw data show that the majority of accidents involve two vehicles. Some accidents involve just one vehicle, for example when a vehicle runs oﬀ the road or collides with an obstacle in the roadway. And there are multi-vehicle crashes, which according to the data can involve up to 9 vehicles. Because most of these higher numbers of vehicles are quite infrequent, the categories have
	The McFadden pseudo-R2 value for the vehicles involved model is 0.986. As before, the pseudo-R2 value indicates that the model is much better than simply using the intercept values with no coeﬃcients. The estimated model parameters are shown As with the model of severity, only the coeﬃcient and the probability that the coeﬃcient is equal to zero are shown for each of the three model outcomes. If the probability value is 0.05 or below, that is the commonly accepted measure that a coeﬃcient is signiﬁcantly di
	in Table 4. 

	In most of the plots that follow, the most probable accident case is the two-vehicle accident, as would be expected from the fact that over 60% of accidents involve two vehicles. What is interesting about the 
	Table 4 Multinomial logit model of number of vehicles involved in an accident as a function of traﬃc ﬂow variables (reference category = no accident) 
	Explanatory variable 
	Explanatory variable 
	Explanatory variable 
	1 vehicle Coef Pr(>z) 
	2 vehicles Coef Pr(>z) 
	3+ vehicles Coef Pr(>z) 

	autocor.occ.m 
	autocor.occ.m 
	-1.7237 0.144 
	-1.2334 0.019 
	-2.1161 0.008 

	autocor.vol.m 
	autocor.vol.m 
	3.6234 0.010 
	2.1606 0.000 
	3.4778 0.000 

	cv.occ.m 
	cv.occ.m 
	-0.2139 0.567 
	0.6332 0.000 
	0.6545 0.001 

	mean.vol.r 
	mean.vol.r 
	0.0090 0.791 
	0.0774 0.000 
	0.0916 0.000 

	sd.vol.m 
	sd.vol.m 
	0.0047 0.957 
	-0.1263 0.001 
	-0.2247 0.000 

	autocor.occ.1 : cor.occ.m.r 
	autocor.occ.1 : cor.occ.m.r 
	1.8066 0.018 
	0.3002 0.355 
	-0.4665 0.353 

	cv.occ.m : autocor.occ.1 
	cv.occ.m : autocor.occ.1 
	-1.3912 0.102 
	-1.7329 0.001 
	-0.7245 0.246 

	autocor.occ.1 : cv.volocc.m 
	autocor.occ.1 : cv.volocc.m 
	2.1862 0.066 
	2.0341 0.024 
	4.0164 0.002 

	autocor.occ.1 : cv.volocc.r 
	autocor.occ.1 : cv.volocc.r 
	-0.8856 0.433 
	-0.3157 0.568 
	-2.3992 0.006 

	autocor.occ.m : autocor.vol.m 
	autocor.occ.m : autocor.vol.m 
	2.5949 0.001 
	0.9894 0.009 
	1.9793 0.000 

	autocor.occ.m : cv.occ.r 
	autocor.occ.m : cv.occ.r 
	2.8498 0.005 
	1.3452 0.004 
	1.6124 0.014 

	autocor.occ.m : mean.vol.m 
	autocor.occ.m : mean.vol.m 
	0.0699 0.386 
	0.1053 0.002 
	0.1500 0.006 

	autocor.occ.m : autocor.occ.r 
	autocor.occ.m : autocor.occ.r 
	-1.5778 0.071 
	0.1356 0.729 
	-1.1138 0.066 

	cor.occ.m.r : autocor.occ.r 
	cor.occ.m.r : autocor.occ.r 
	-0.2022 0.810 
	-0.2081 0.569 
	1.8122 0.001 

	autocor.vol.m : cor.vol.1.r 
	autocor.vol.m : cor.vol.1.r 
	-3.4243 0.002 
	-1.1668 0.018 
	-0.0805 0.912 

	autocor.vol.m : cv.occ.r 
	autocor.vol.m : cv.occ.r 
	-2.7150 0.031 
	-1.2918 0.019 
	-2.2194 0.005 

	autocor.vol.m : mean.vol.m 
	autocor.vol.m : mean.vol.m 
	-0.1732 0.059 
	-0.1204 0.002 
	-0.2304 0.000 

	cor.occ.1.m : cv.occ.1 
	cor.occ.1.m : cv.occ.1 
	-1.1085 0.051 
	-0.2956 0.195 
	-1.3281 0.000 

	cor.occ.1.m : mean.vol.1 
	cor.occ.1.m : mean.vol.1 
	-0.0609 0.006 
	-0.0116 0.250 
	-0.0468 0.003 

	cor.occ.m.r : autocor.vol.r 
	cor.occ.m.r : autocor.vol.r 
	1.7172 0.100 
	-0.1069 0.807 
	-1.8495 0.006 

	cor.vol.1.m : cor.vol.m.r 
	cor.vol.1.m : cor.vol.m.r 
	-0.4141 0.526 
	-0.3445 0.205 
	1.3682 0.002 

	cv.occ.m : autocor.vol.1 
	cv.occ.m : autocor.vol.1 
	0.4935 0.541 
	1.8788 0.000 
	1.2869 0.060 

	cv.occ.m : cor.vol.m.r 
	cv.occ.m : cor.vol.m.r 
	0.6530 0.424 
	-1.3746 0.000 
	-1.1363 0.030 

	cv.occ.m : cor.volocc.1.m 
	cv.occ.m : cor.volocc.1.m 
	1.2629 0.049 
	0.8178 0.001 
	1.5386 0.000 

	cv.occ.m : cv.volocc.r 
	cv.occ.m : cv.volocc.r 
	-1.0641 0.096 
	-0.9825 0.000 
	-1.2225 0.002 

	cv.occ.r : autocor.vol.r 
	cv.occ.r : autocor.vol.r 
	-1.1286 0.080 
	-0.9201 0.001 
	-0.6172 0.111 

	sd.vol.m : cv.occ.r 
	sd.vol.m : cv.occ.r 
	-0.0334 0.750 
	0.1238 0.003 
	0.2037 0.001 

	cv.volocc.m : autocor.vol.1 
	cv.volocc.m : autocor.vol.1 
	-1.0683 0.356 
	-2.5401 0.002 
	-1.1762 0.304 

	cv.volocc.m : autocor.vol.r 
	cv.volocc.m : autocor.vol.r 
	1.6403 0.349 
	1.9926 0.005 
	2.7864 0.009 

	cv.volocc.m : cor.occ.1.m 
	cv.volocc.m : cor.occ.1.m 
	1.1308 0.486 
	-0.4322 0.545 
	3.1076 0.004 

	cv.volocc.m : cor.vol.m.r 
	cv.volocc.m : cor.vol.m.r 
	-1.0652 0.497 
	2.9955 0.000 
	0.2231 0.830 

	cv.volocc.m : cor.volocc.1.m 
	cv.volocc.m : cor.volocc.1.m 
	-2.3664 0.090 
	-1.7014 0.003 
	-3.7645 0.000 

	cv.volocc.m : cor.volocc.m.r 
	cv.volocc.m : cor.volocc.m.r 
	-2.5621 0.053 
	-2.9413 0.000 
	-2.1293 0.020 

	cv.volocc.m : sd.vol.1 
	cv.volocc.m : sd.vol.1 
	-0.3614 0.058 
	-0.4833 0.000 
	-0.6246 0.000 

	cv.volocc.m : sd.vol.r 
	cv.volocc.m : sd.vol.r 
	0.1135 0.645 
	0.2541 0.020 
	0.3375 0.037 

	autocor.vol.m : cv.volocc.r 
	autocor.vol.m : cv.volocc.r 
	-2.8959 0.038 
	-1.9238 0.004 
	-0.6093 0.554 

	cv.volocc.r : cor.occ.1.m 
	cv.volocc.r : cor.occ.1.m 
	2.2373 0.010 
	1.1382 0.010 
	1.6385 0.016 

	cv.volocc.r : cor.volocc.m.r 
	cv.volocc.r : cor.volocc.m.r 
	2.3417 0.016 
	1.7829 0.000 
	0.8677 0.223 

	cv.volocc.r : cv.volocc.1 
	cv.volocc.r : cv.volocc.1 
	0.6895 0.346 
	0.6733 0.043 
	1.3491 0.007 

	cv.occ.1 : mean.vol.1 
	cv.occ.1 : mean.vol.1 
	0.0775 0.013 
	-0.0136 0.389 
	0.0066 0.771 

	mean.vol.1 : sd.vol.1 
	mean.vol.1 : sd.vol.1 
	0.0020 0.134 
	0.0014 0.110 
	0.0032 0.002 

	mean.vol.m : cv.occ.1 
	mean.vol.m : cv.occ.1 
	-0.0780 0.039 
	0.0113 0.436 
	0.0225 0.315 

	mean.vol.r : sd.vol.r 
	mean.vol.r : sd.vol.r 
	-0.0059 0.457 -13.3291 0.000 
	-0.0168 0.000 -12.1556 0.000 
	-0.0203 0.002 -13.1338 0.000 


	(Intercept) 
	ﬁgures, however, are how the probabilities of the numbers of vehicles involved change relative to one another. the autocorrelation tends towards 1, the occupancy from one 30 second period to the next tends toward the same value. A value of exactly 1 means that for every 30 second period in the 20 minutes used to generate the 27 variables, the occupancy is exactly the same. A value of zero means that the occupancy values are uncorrelated over time. As the autocorrelation of occupancy in the left lane increas
	ﬁgures, however, are how the probabilities of the numbers of vehicles involved change relative to one another. the autocorrelation tends towards 1, the occupancy from one 30 second period to the next tends toward the same value. A value of exactly 1 means that for every 30 second period in the 20 minutes used to generate the 27 variables, the occupancy is exactly the same. A value of zero means that the occupancy values are uncorrelated over time. As the autocorrelation of occupancy in the left lane increas
	Figure 15 shows the eﬀect of increasing autocorrelation of occupancy in the left, middle, and right lanes. As 

	accidents declines. The opposite eﬀect occurs for autocorrelation of occupancy in the middle lanes. As the autocorrelation of occupancy in the right lane increases, the probability of a multi-vehicle accident increases relative to the 1 and 2 vehicle cases. 

	Figure
	Figure 15 The inﬂuence of the autocorrelation of occupancy on the number of vehicles involved in an accident. 
	Figure 15 The inﬂuence of the autocorrelation of occupancy on the number of vehicles involved in an accident. 


	The autocorrelation of rise as the autocorrelation of volume in the left lane increases. The ﬁgure also shows that the probability of two vehicle crashes declines with increased autocorrelation of volume in the middle lanes and the right lane, but the single vehicle and multi-vehicle cases go in opposite directions. Increasing autocorrelation of volume in the middle lanes corresponds to increasing probability of a multi-vehicle accident and decreased risk of single vehicle accidents, while increasing autoco
	volume is presented in Figure 16. The probabilities of two and three+ accidents 

	The next series of ﬁgures examine the impact of the correlation of variables between lanes. For the most part, the probabilities of all three kinds of accidents have the same trends for each of the variables, and those trends show only minor diﬀerence in probability across the range of the variables. The exception is the correlation of volume bewtween the left and middle lanes, shown As the correlation increases, which means that the volumes in the left and middle lanes become more syncronized, the risk of 
	in Figure 18. 

	the eﬀect of mean volumes in each of the lanes. As the mean volume in the left lane increases, the probability of a single vehicle accident increases sharply, the probability of a two vehicle accident declines, and the probability of multi-vehicle accidents is largely unaﬀected. The mean volume in the middle lanes has almost the opposite eﬀect. As the mean volume increases, the probability of two vehicle and multi-vehicle accidents increase, while the probability of a single vehicle accident drops. Finally,
	Figure 20 shows 

	Figure
	Figure 16 The inﬂuence of the autocorrelation of volume on the number of vehicles involved in an accident. 
	Figure 16 The inﬂuence of the autocorrelation of volume on the number of vehicles involved in an accident. 


	Figure
	Figure 17 The inﬂuence of the correlation of occupancy between lanes on the number of vehicles involved in an accident. 
	Figure 17 The inﬂuence of the correlation of occupancy between lanes on the number of vehicles involved in an accident. 


	that as the standard deviaiton of volume increases, regardless of the lane, the probabilities of all kinds of accidents decrease. The eﬀect of an increasing standard deviation of volume has the strongest eﬀect on the risk of two vehicle accidents, and the least impact on single vehicle accidents.. 
	The last set of ﬁgures examine the impact of the measures of statistical dispersion. First, Figure 21 shows 

	able increases in the left lane, the probabilities of all types of outcomes decline. So more dispersion in left 
	able increases in the left lane, the probabilities of all types of outcomes decline. So more dispersion in left 
	The coeﬃcient of variation of occupancy shown in Figure 22 has some interesting eﬀects. As this vari
	-


	lane occupancy over a 20 minute period corresponds to safer conditions across the board. However, increasing dispersion of occupancy in the middle lanes will increase the probability of two vehicle and multi-vehicle accidents, and increasing dispersion of occupancy in the right lane has an exponential impact on increasing the probability of two or more vehicle accidents. These probabilities are on the same scale as the impact of 
	-
	mean right lane volume shown in Figure 20. 


	Figure
	Figure 18 The inﬂuence of the correlation of volume between lanes on the number of vehicles involved in an accident. 
	Figure 18 The inﬂuence of the correlation of volume between lanes on the number of vehicles involved in an accident. 


	Figure
	Figure 19 The inﬂuence of the correlation of volume/occupancy between the left and middle lanes on the number of vehicles involved in an accident. 
	Figure 19 The inﬂuence of the correlation of volume/occupancy between the left and middle lanes on the number of vehicles involved in an accident. 


	The statistical dispersion of the ratio of volume to occupancy is proportional to the dispersion of speed. Whereas the dispersion of occupancy in the left lane was diﬀerent than the others, the middle lanes stand out 
	The statistical dispersion of the ratio of volume to occupancy is proportional to the dispersion of speed. Whereas the dispersion of occupancy in the left lane was diﬀerent than the others, the middle lanes stand out 
	outcomes with increasing dispersion of speeds in the left lane. In contrast, increasing dispersion of speeds in the middle lane leads to a decline in all accident probabilities. The other interesting feature is that the risk of a single vehicle accident shows a very sharp rise with increasing speed dispersion in the right lane. 
	for the dispersion of the speeds. Figure 23 shows an increase in the probability of all three kinds of accident 


	Figure
	Figure 20 The inﬂuence of the mean volume on the number of vehicles involved in an accident. 
	Figure 20 The inﬂuence of the mean volume on the number of vehicles involved in an accident. 


	Figure
	Figure 21 The inﬂuence of the standard deviation of volume on the number of vehicles involved in an accident. 
	Figure 21 The inﬂuence of the standard deviation of volume on the number of vehicles involved in an accident. 


	The plots of the three kinds of statistical dispersion are interesting because of how the probabilities move in diﬀerent directions for diﬀerent lanes. For example, for the dispersion of occupancy, the left lane behaves the opposite of the middle and right lanes, while for the dispersion of speeds the middle lane probabilities move in the opposite direction of the left and right lanes. The explanation probably relates to the nature 
	The plots of the three kinds of statistical dispersion are interesting because of how the probabilities move in diﬀerent directions for diﬀerent lanes. For example, for the dispersion of occupancy, the left lane behaves the opposite of the middle and right lanes, while for the dispersion of speeds the middle lane probabilities move in the opposite direction of the left and right lanes. The explanation probably relates to the nature 
	of traﬃc on a freeway. The left lane typically is used by the fastest and most aggressive drivers. A wide dispersion of occupancies probably corresponds to free ﬂow traﬃc conditions with cars freely able to get in and out of the fast lane on an as-needed basis. In contrast, the middle and especially the right lane are used by all kinds of traﬃc. Furthermore, the right lane must always be used by trucks and by any vehicle entering or exiting the freeway, whereas the left lane cannot be used by trucks and alm

	Figure
	Figure 22 The inﬂuence of the coeﬃcient of variation of occupancy on the number of vehicles involved in an accident. 
	Figure 22 The inﬂuence of the coeﬃcient of variation of occupancy on the number of vehicles involved in an accident. 


	Figure
	Figure 23 The inﬂuence of the coeﬃcient of variation of volume/occupancy on the number of vehicles involved in an accident. 
	Figure 23 The inﬂuence of the coeﬃcient of variation of volume/occupancy on the number of vehicles involved in an accident. 


	7.4 The location of the accident 
	The ﬁnal model estimated was a multinomial logit model of the location of an accident. The HSIS coding of the data identiﬁes where each vehicle is at the time of the accident. We used this information to deﬁne four categories of accident location: in the left lane, in the interior lanes, in the right lane, or oﬀ the road, which by deﬁnition is all the other locations of accidents that do not occur in the lanes but still are considered to occur on the highway. One further complication is that the HSIS coding
	From the existing accidents in 2007, there were approximately 29% that occurred in the left lane, 36% in interior lanes, 16% in the right lane, and 19% of the accidents occured at oﬀ road locations. The reference category once again is the no accident case. The relatively even distribution of accidents among the 4 diﬀerent outcomes makes for a very interesting model. 
	each of the model outcomes, followed by the probability that the coeﬃcient is zero (has no impact on the outcome). As with the other multinomial models, some of the coeﬃcients have high probabilities for some of the model outcomes (which means the coeﬃcient is not signiﬁcant for that outcome), but are included in the overall model because they are signiﬁcant explanatory variables for one or more of the other outcomes. The McFadden pseudo-R2 value for the model is 0.986. The high pseudo-R2 value indicates th
	The estimated multinomial logit model is shown in Table 5. Once again the coeﬃcient is shown ﬁrst for 

	The ﬁrst set of variables to be examined are the autocorrelation of occupancy in each of the left, middle, periods in the 20 minute period used to compute an interval’s autocorrelation value has exactly the same occupancy. That occupancy isn’t necessarily high or low, it is just the same from period to period. An autocorrelation of zero means there is no correlation from timestep to timestep, and a negative correlation value implies that the occupancies for each 30 second period are perfectly out of sync wi
	and right lanes in Figure 24. As a reminder, an autocorrelation value of 1 means that each of the 30 second 

	The outcomes being modeled have long-run probabilities that are very close to each other. While accidents in the middle lanes dominate, the other locations still have large shares overall. This fact is obvious from viewing the probability plots, compared with the earlier models. Instead of just the occasional changing of positions of the most probable accident outcome, many of the plots show crossings of probability curves. 
	-

	the eﬀect of the autocorrelation of occupancy for each lane. As occupancy autocorrelation in the left lane increases, the probability of interior lane and oﬀ road accidents increases, but the probability of a left lane accident falls. For low, negatively correlated values, left lane accidents are most likely, and right lane accidents are more likely than oﬀ road accidents. For the middle lanes, as the autocorrelation of occupancy rises, so does the probability of an interior lanes accident. The other probab
	Figure 24 shows 
	-
	-

	The eﬀect of rising autocorrelation of volume in all of the lanes, shown exactly the opposite of rising autocorrelation of occupancy. As the autocorrelation of the left lane volume moves towards one, the risk of a left lane accident increases and becomes the most likely accident location, and the probability of a right lane accident is higher than that of on oﬀ-road accident. The most likely explanation 
	in Figure 25, is almost 

	Table 5 Multinomial logit model of location of an accident as a function of traﬃc ﬂow variables (reference category = no accident) 
	Explanatory variable 
	Explanatory variable 
	Explanatory variable 
	oﬀ road Coef 
	Pr(>z) 
	left lane Coef 
	Pr(>z) 
	interior Coef 
	lanes Pr(>z) 
	right lane Coef 
	Pr(>z) 

	mean.vol.r 
	mean.vol.r 
	0.0247 
	0.469 
	0.1120 
	0.000 
	0.0698 
	0.003 
	0.1464 
	0.000 

	cv.occ.r 
	cv.occ.r 
	0.6593 
	0.008 
	-0.0012 
	0.995 
	0.5434 
	0.001 
	0.2882 
	0.282 

	cv.volocc.1 
	cv.volocc.1 
	0.2847 
	0.728 
	-0.2149 
	0.738 
	0.0779 
	0.901 
	2.6082 
	0.003 

	cv.volocc.m 
	cv.volocc.m 
	0.6582 
	0.344 
	1.4952 
	0.006 
	1.1295 
	0.005 
	1.9811 
	0.004 

	cor.vol.1.m 
	cor.vol.1.m 
	0.3515 
	0.490 
	-1.6926 
	0.000 
	-0.9545 
	0.009 
	-0.9031 
	0.077 

	cor.occ.1.m 
	cor.occ.1.m 
	0.6700 
	0.331 
	2.4676 
	0.000 
	1.7144 
	0.001 
	1.0795 
	0.112 

	cor.volocc.1.m 
	cor.volocc.1.m 
	-1.0746 
	0.041 
	-1.2173 
	0.001 
	-1.1655 
	0.000 
	-1.0087 
	0.061 

	mean.vol.1 : sd.vol.m 
	mean.vol.1 : sd.vol.m 
	0.0042 
	0.264 
	0.0050 
	0.147 
	-0.0019 
	0.535 
	-0.0148 
	0.003 

	mean.vol.r : sd.vol.m 
	mean.vol.r : sd.vol.m 
	0.0121 
	0.091 
	-0.0240 
	0.005 
	-0.0050 
	0.436 
	-0.0059 
	0.591 

	cv.occ.r : sd.vol.m 
	cv.occ.r : sd.vol.m 
	-0.2481 
	0.037 
	0.1136 
	0.145 
	-0.0395 
	0.615 
	-0.1191 
	0.367 

	cv.volocc.1 : sd.vol.m 
	cv.volocc.1 : sd.vol.m 
	0.1399 
	0.546 
	0.0407 
	0.839 
	-0.2322 
	0.274 
	-0.6683 
	0.026 

	sd.vol.m : cv.volocc.r 
	sd.vol.m : cv.volocc.r 
	0.3889 
	0.003 
	0.2196 
	0.055 
	0.1383 
	0.197 
	0.2168 
	0.185 

	mean.vol.r : sd.vol.r 
	mean.vol.r : sd.vol.r 
	-0.0166 
	0.038 
	-0.0135 
	0.023 
	-0.0107 
	0.022 
	-0.0215 
	0.013 

	cv.volocc.r : cv.occ.m 
	cv.volocc.r : cv.occ.m 
	-1.4897 
	0.008 
	0.3216 
	0.391 
	-1.3626 
	0.000 
	-0.3082 
	0.534 

	cv.volocc.1 : cv.volocc.m 
	cv.volocc.1 : cv.volocc.m 
	-0.9824 
	0.596 
	1.1476 
	0.359 
	0.6366 
	0.600 
	-5.0720 
	0.009 

	cv.volocc.m : cv.volocc.r 
	cv.volocc.m : cv.volocc.r 
	-0.1468 
	0.904 
	-1.9857 
	0.058 
	0.0632 
	0.902 
	-0.4233 
	0.759 

	cor.vol.1.m : mean.vol.1 
	cor.vol.1.m : mean.vol.1 
	-0.0322 
	0.395 
	0.1280 
	0.000 
	0.0678 
	0.018 
	0.0530 
	0.214 

	cv.volocc.r : cor.vol.m.r 
	cv.volocc.r : cor.vol.m.r 
	0.5899 
	0.474 
	1.3708 
	0.029 
	-0.4092 
	0.485 
	0.7673 
	0.337 

	cor.occ.1.m : mean.vol.1 
	cor.occ.1.m : mean.vol.1 
	-0.0403 
	0.342 
	-0.1475 
	0.000 
	-0.1022 
	0.002 
	-0.0410 
	0.382 

	cor.occ.1.m : cv.occ.1 
	cor.occ.1.m : cv.occ.1 
	-0.8120 
	0.142 
	-1.1083 
	0.016 
	-1.3982 
	0.000 
	-0.1954 
	0.689 

	cv.occ.m : cor.occ.1.r 
	cv.occ.m : cor.occ.1.r 
	-0.1411 
	0.771 
	0.0442 
	0.907 
	0.6848 
	0.048 
	0.9789 
	0.030 

	cv.volocc.1 : cor.occ.1.r 
	cv.volocc.1 : cor.occ.1.r 
	-0.9027 
	0.327 
	0.9584 
	0.218 
	-0.9223 
	0.264 
	-2.9946 
	0.002 

	cv.volocc.1 : cor.occ.m.r 
	cv.volocc.1 : cor.occ.m.r 
	0.5155 
	0.565 
	-0.4364 
	0.585 
	1.6788 
	0.021 
	2.1958 
	0.021 

	cv.volocc.m : cor.occ.m.r 
	cv.volocc.m : cor.occ.m.r 
	-0.9289 
	0.363 
	1.1369 
	0.146 
	-2.4663 
	0.000 
	-2.6767 
	0.001 

	cor.volocc.1.m : cv.occ.m 
	cor.volocc.1.m : cv.occ.m 
	1.2118 
	0.028 
	1.0405 
	0.005 
	1.2243 
	0.000 
	0.8783 
	0.078 

	cv.volocc.m : cor.volocc.m.r 
	cv.volocc.m : cor.volocc.m.r 
	0.0553 
	0.930 
	-1.7797 
	0.000 
	-0.2639 
	0.527 
	-0.3605 
	0.552 

	mean.vol.m : autocor.vol.m 
	mean.vol.m : autocor.vol.m 
	0.0400 
	0.573 
	-0.2364 
	0.000 
	-0.2570 
	0.000 
	-0.0271 
	0.769 

	mean.vol.r : autocor.vol.m 
	mean.vol.r : autocor.vol.m 
	-0.0331 
	0.658 
	0.1278 
	0.031 
	0.2500 
	0.000 
	0.0085 
	0.921 

	cv.volocc.r : autocor.vol.m 
	cv.volocc.r : autocor.vol.m 
	-3.3487 
	0.000 
	0.4640 
	0.485 
	-0.6177 
	0.361 
	-1.5951 
	0.081 

	cv.occ.r : autocor.vol.r 
	cv.occ.r : autocor.vol.r 
	-0.6177 
	0.218 
	-0.4075 
	0.302 
	-1.0057 
	0.002 
	-2.0628 
	0.000 

	cv.volocc.m : autocor.vol.r 
	cv.volocc.m : autocor.vol.r 
	3.4562 
	0.010 
	0.8930 
	0.360 
	1.8359 
	0.027 
	3.7747 
	0.003 

	cv.occ.m : autocor.occ.1 
	cv.occ.m : autocor.occ.1 
	-0.5311 
	0.216 
	-0.8385 
	0.013 
	0.2043 
	0.449 
	-0.5403 
	0.205 

	mean.vol.m : autocor.occ.m 
	mean.vol.m : autocor.occ.m 
	-0.1390 
	0.010 
	0.1045 
	0.008 
	0.1290 
	0.000 
	0.0672 
	0.223 

	cv.occ.r : autocor.occ.m 
	cv.occ.r : autocor.occ.m 
	0.7755 
	0.084 
	0.0476 
	0.900 
	0.8432 
	0.006 
	0.4859 
	0.296 

	cv.volocc.1 : autocor.occ.m 
	cv.volocc.1 : autocor.occ.m 
	-0.4926 
	0.594 
	0.7042 
	0.356 
	-1.5619 
	0.041 
	1.5809 
	0.121 

	cv.volocc.r : autocor.occ.r 
	cv.volocc.r : autocor.occ.r 
	-0.9464 
	0.075 
	-0.0919 
	0.822 
	0.7539 
	0.042 
	0.4474 
	0.382 

	cor.vol.m.r : sd.vol.1 
	cor.vol.m.r : sd.vol.1 
	0.3655 
	0.000 
	0.0592 
	0.551 
	-0.0622 
	0.478 
	-0.1649 
	0.206 

	autocor.vol.m : sd.vol.1 
	autocor.vol.m : sd.vol.1 
	0.0994 
	0.388 
	0.3630 
	0.001 
	0.1672 
	0.054 
	0.1378 
	0.419 

	sd.vol.m : cor.vol.m.r 
	sd.vol.m : cor.vol.m.r 
	-0.5188 
	0.000 
	-0.0896 
	0.505 
	0.1315 
	0.240 
	0.2288 
	0.166 

	cor.volocc.1.m : sd.vol.r 
	cor.volocc.1.m : sd.vol.r 
	0.2476 
	0.111 
	0.3102 
	0.005 
	0.2677 
	0.002 
	0.2439 
	0.143 

	sd.vol.r : autocor.occ.m 
	sd.vol.r : autocor.occ.m 
	0.2445 
	0.289 
	-0.3767 
	0.033 
	-0.3781 
	0.010 
	-0.1708 
	0.484 

	cv.volocc.m : sd.vol.1 
	cv.volocc.m : sd.vol.1 
	-0.5513 
	0.001 
	-0.5639 
	0.000 
	-0.3137 
	0.007 
	-0.1538 
	0.378 

	cor.vol.m.r : cor.vol.1.r 
	cor.vol.m.r : cor.vol.1.r 
	-0.1371 
	0.829 
	-0.6277 
	0.212 
	-1.1618 
	0.011 
	-0.0780 
	0.905 

	cor.vol.m.r : autocor.vol.1 
	cor.vol.m.r : autocor.vol.1 
	0.4575 
	0.546 
	1.8340 
	0.003 
	-0.2881 
	0.590 
	0.4965 
	0.529 

	cor.occ.1.m : autocor.occ.m 
	cor.occ.1.m : autocor.occ.m 
	1.2628 
	0.133 
	0.0162 
	0.980 
	-0.5300 
	0.344 
	-2.5369 
	0.002 

	cor.occ.1.r : autocor.vol.1 
	cor.occ.1.r : autocor.vol.1 
	-2.9459 
	0.002 
	-1.0933 
	0.141 
	-0.5847 
	0.426 
	0.6094 
	0.571 

	cor.occ.1.r : autocor.occ.1 
	cor.occ.1.r : autocor.occ.1 
	1.8710 
	0.026 
	0.8183 
	0.221 
	-0.1646 
	0.807 
	-0.7231 
	0.460 

	cor.occ.1.r : autocor.occ.m 
	cor.occ.1.r : autocor.occ.m 
	1.1853 
	0.199 
	-0.1940 
	0.789 
	0.2188 
	0.730 
	2.3648 
	0.011 

	autocor.vol.m : autocor.vol.r 
	autocor.vol.m : autocor.vol.r 
	-0.3827 -12.7241 
	0.688 0.000 
	-1.5516 -12.6281 
	0.039 0.000 
	2.0767 -12.1897 
	0.002 0.000 
	-1.9614 -13.3491 
	0.065 0.000 


	(Intercept) 
	is that the consistent volumes in the left lane will make it more likely for an errant vehicle to hit another vehicle in the same lane than to swerve into the middle lanes or run oﬀ the road. A similar tale can be 
	Figure
	Figure 24 The inﬂuence of the autocorrelation of occupancy in the three lane groups on the location of an accident. 
	Figure 24 The inﬂuence of the autocorrelation of occupancy in the three lane groups on the location of an accident. 


	told for the autocorrelation of volume in the middle lanes. As the volumes in the middle lanes becomes consistent between each 30 second period, it makes sense than a vehicle will ﬁrst collide with another middle lane vehicle before moving to the left or right lanes, or running oﬀ the road. However the right lane has a diﬀerent outcome. As the autocorrelation of volume in the right lanes moves towards one, the risk of a right lane accident declines, as does the risk of an interior lanes accident, while the 
	The next plot examines between-lane relationships. As the occupancy between the left and middle lanes that the probability of left lane and right lane accidents increase sharply, with a modest increase in interior lane accidents and a decrease in oﬀ-road accidents. When the occupancy between the left and right lanes are synchronized, the probability of left and interior lane accidents rises with a corresponding drop in right lane and oﬀ-road accidents. Finally, when the occupancies in the right and middle l
	becomes synchronized (correlation of 1), Figure 26 shows 
	-

	volume between lane pairs. First, as the left and middle lane volumes become negatively correlated, the risk of left and interior lanes accidents is higher than when the volumes are positively correlated. A similar pattern holds for the correlation of volumes between the left and right lanes, except the oﬀ-road and right lane accident probabilties are largely unaﬀected by the correlation of left and right lane volumes. For the last lane group, middle versus right lane volumes, the shift from being negativel
	Figure 27 shows the eﬀect of the correlation of 

	Figure
	Figure 25 The inﬂuence of the autocorrelation of volume on the location of an accident. 
	Figure 25 The inﬂuence of the autocorrelation of volume on the location of an accident. 


	Figure
	Figure 26 The inﬂuence of the correlation of occupancy between lanes on the location of an accident. 
	Figure 26 The inﬂuence of the correlation of occupancy between lanes on the location of an accident. 


	The impact of the lane to lane correlation of the ratio of volume to occupancy (which is proportional to and middle lane speeds move from being perfectly out of sync to being perfectly synchronized. The eﬀect is almost negligible on the probability of an oﬀ-road accident, due to the fact that there are two signiﬁcant 
	speed) is shown in Figure 28. The probabilities of all of the accident locations decline gradually as the left 

	Figure
	Figure 27 The inﬂuence of the correlation of volume between lanes on the location of an accident. 
	Figure 27 The inﬂuence of the correlation of volume between lanes on the location of an accident. 


	Figure
	Figure 28 The inﬂuence of the correlation of 
	Figure 28 The inﬂuence of the correlation of 


	volume/occupancy between lanes on the location of an accident. terms in the oﬀ-road model involving the correlation of volume/occupancy between the left and middle lanes that have diﬀerent signs and therefore almost cancel each other out. 
	A much stronger eﬀect is observed with the correlation of speeds between the middle and right lanes speeds are out of sync, and then drops to almost half of its highest value when speeds are synchronized. 
	shown in Figure 28. The probability of an interior lanes accident is highest when the middle and right lane 

	Figure
	Figure 29 The inﬂuence of the mean volume on the location of an accident. 
	Figure 29 The inﬂuence of the mean volume on the location of an accident. 


	a left lane accident goes up with increasing left lane volumes, as would be expected. The probabilities for interior lanes and right lane accidents decline at about the same rate as the mean left lane volume increases, all else being equal. The risk of an oﬀ-road accident declines too, but at a slower rate. 
	Figure 29 shows the eﬀect of mean volume in each of the lane groups on accident location. The risk of 

	Rising mean volumes in the middle lanes have a positive eﬀect on both the left lane and interior lane probabilities. The net change of oﬀ road and right lane accidents is close to zero, with the former declining slightly and the latter rising. Finally, as the mean volume in the right lane rises, the probability of a right lane accident rises almost exponentially. The model predicts that when the mean volume in the right lane increases above about 50 vehicles in 30 seconds, there is a 1 in 10,000 chance of a
	The next ﬁgure of this section examines the standard deviation of volume. that the probability of all accidents declines as the left lane volumes vary further and further from the mean, and that the likelihood of left lane and interior lanes accidents declines the fastest. As volumes become very dispersed, oﬀ-road accidents become the most probable type of accident. 
	Figure 30 shows 

	A slightly diﬀerent outcome is observed for a rise in the standard deviation of volume in the middle lanes. While all of the probabilities decline, this time the likelihood of a right lane accident declines the sharpest, falling almost exponentially. And ﬁnally, an increasing standard deviation of volume in the right lane uniformly decreases the probabilities of all locations of accidents at almost identical rates. 
	The eﬀect of the coeﬃcient of variation of occupancy in the lane groups is shown As left lane occupancies get more spread out, conditions become safer, with all accident location probabilities declining. A diﬀerent story is told for the other lanes, however. When the occupancy in the middle lanes becomes more dispersed, the risk of right lane and left lane accidents increases. The risk of middle and out of lanes accidents declines, but not enough to compensate for the increased risk of other accidents. 
	in Figure 31. 

	Figure
	Figure 30 The inﬂuence of the standard deviation of volume on the location of an accident. 
	Figure 30 The inﬂuence of the standard deviation of volume on the location of an accident. 


	Figure
	Figure 31 The inﬂuence of the coeﬃcient of variation of occupancy on the location of an accident. 
	Figure 31 The inﬂuence of the coeﬃcient of variation of occupancy on the location of an accident. 


	Then when the right lane occupancies become highly dispersed, the probability of an interior lanes accident skyrockets, and the risk of a left lane accident increases as well. The conclusion from these three plots is that if occupancies are dispersed uniformly across the freeway, the accident risk will probably hold steady. But if either the middle lanes or the right lane gets a more dispersed occupancy while the other lanes see more uniform occupancy from one period to the next, the risk of accidents in th
	Figure
	Figure 32 The inﬂuence of the coeﬃcient of variation of volume/occupancy on the location of an accident. 
	Figure 32 The inﬂuence of the coeﬃcient of variation of volume/occupancy on the location of an accident. 


	explains the eﬀect of speed dispersion in the diﬀerent lanes. It shows that an increased spread of speeds in the left lanes from one period to the next will lead to a sharp rise in the probability of an oﬀ-road accident, as well as a moderate increase in left lane accidents that is oﬀset by a corresponding decline in middle lanes accident probability. Because the left lane is the fast lane, the intuition behind this result is that when mean speeds begin to be more dispersed from one period to the next, most
	The last ﬁgure describing the location model, Figure 32, 

	Increased dispersion of speeds in the middle lanes goes the other way. In this case, oﬀ-road accident decline very sharply, accompanied by slower but signiﬁcant drops in the probability of left, middle, and right lane accidents. High speed variation in the middle lanes is therefore a very safe condition. 
	Increased variance of speeds in the right lane echoes the story of the left lane, except in this case only the probability of a middle lane accident declines. Left lane accident probability increases almost exponentially, which is a surprising result. Oﬀ road and right lane accident probabilities rise in lock step. High speed variation in the right lanes is deﬁnitely bad for safety. It may be that high variation in speeds in the right lane is only possible with an excessive amount of weaving, say from aggre
	Section 8: Model validation 
	The models described were estimated using 2007 accident and traﬃc data. A validation exercise was conducted using 2008 accidents and traﬃc data. As before, each mainline highway accident in 2008 was associated with the closest detector site, so as to pair up the appropriate raw data. Then the accident observations were compared to the accident predictions. 
	-
	-

	One disappointing outcome of the validation study was that the model does not capture variations over time. This is expected, of course, as time does not enter into any of the models. That said, it was hoped that the dynamics of traﬃc would serve as a strong proxy for time of day and day of week, since variables such as volume and occupancy are known to have strong temporal patterns. As an example of the poor performance, the models missed the spike in the frequency of property damage only accidents that we
	In general, the more time and lane miles covered by a model prediction, the better the comparison to real data. This is because accidents are very rare events. A short stretch of freeway or a short period of time is unlikely to produce an accident, on average, but if one is observed in reality, the model predictions will be wrong. To see that this is the case, consider a single 30 second period over a one mile stretch of freeway. None of the models would ever predict that the probability of an accident woul
	This aspect of the models is especially noticeable for the small section (about two miles) of Interstate 605 that is in District 12. There are only two detectors in the each direction, and two of the detectors only generated predictions for part of 2008. Therefore the predicted values and proportions are much worse than the actual when compared to other freeways. 
	The tables in the following sections try to demonstrate some of these patterns. Each model is validated against the observed outcomes for the diﬀerent freeways in Caltrans District 12. 
	8.1 The location model 
	The location model is adequate for all non-tolled facilities, as shown are poor, but this is most likely due to the fact that there is only a short segment of this facility in Caltrans District 12. As mentioned in the introduction to this section, the validation study showed that the models require distance and time to counteract the skewing eﬀects of just a few accidents on the total fractions. The each detector’s metadata) for which at least some part of 2008 could be processed to produce accident risk es
	in Table 6 The I-605 freeway results 
	second column in Table 6 displays the summed miles of freeway (computed from the length attribute within 

	Table 6 Predicted versus observed shares of accident location outcomes in 2008. The model performs poorly with toll road traﬃc 
	Fwy Le
	Fwy Le
	Fwy Le
	ngth (mi) de
	tectors 
	Obs/Pred 
	Oﬀ Road 
	Left Lane 
	Interior Lanes 
	Right Lane 

	5 
	5 
	85.05 
	193 
	obs pred 
	0.184 0.188 
	0.2466 0.2995 
	0.409 0.348 
	0.1597 0.1649 

	22 
	22 
	16.67 
	48 
	obs pred 
	0.134 0.188 
	0.2367 0.2783 
	0.456 0.368 
	0.1735 0.1657 

	55 
	55 
	28.93 
	60 
	obs pred 
	0.190 0.190 
	0.2683 0.2808 
	0.361 0.361 
	0.1810 0.1684 

	57 
	57 
	23.02 
	57 
	obs pred 
	0.179 0.185 
	0.2933 0.2882 
	0.351 0.359 
	0.1768 0.1685 

	73 (T) 
	73 (T) 
	33.91 
	100 
	obs pred 
	0.438 0.310 
	0.0883 0.2400 
	0.189 0.303 
	0.2853 0.1475 

	91 
	91 
	43.45 
	86 
	obs pred 
	0.198 0.173 
	0.2824 0.3476 
	0.363 0.326 
	0.1561 0.1536 

	133 (T) 
	133 (T) 
	13.88 
	27 
	obs pred 
	0.542 0.179 
	0.0508 0.2732 
	0.254 0.347 
	0.1525 0.2005 

	241 (T) 
	241 (T) 
	36.50 
	84 
	obs pred 
	0.535 0.190 
	0.0539 0.2661 
	0.249 0.366 
	0.1616 0.1781 

	261 (T) 
	261 (T) 
	10.48 
	32 
	obs pred 
	0.294 0.143 
	0.2353 0.4008 
	0.382 0.346 
	0.0882 0.1110 

	405 
	405 
	44.33 
	102 
	obs pred 
	0.189 0.193 
	0.2997 0.3064 
	0.355 0.345 
	0.1565 0.1557 

	605 
	605 
	2.31 
	4 
	obs pred 
	0.311 0.191 
	0.2295 0.2845 
	0.287 0.356 
	0.1721 0.1688 


	retired or replaced each year, and since most detectors that produce good data will do so for months or years at a time, these columns give a good indication of the size of the input data for each predicted and observed case. 
	The tolled facilities tend to under predict the oﬀ-road accident locations and over predict left lane accidents. This eﬀect might be due to the more rural character of these roads. Because there is open space surrounding the roadway, drivers in the left lane have an “escape route” to the left, rather than oncoming traﬃc. 
	-

	Table 7 Predicted versus observed shares of numbers of vehicles involved outcomes in 2008. The model performs poorly with toll road traﬃc 
	Fwy Obs/Pred 
	Fwy Obs/Pred 
	Fwy Obs/Pred 
	1 
	2 
	3+ 

	obs 5 pred 
	obs 5 pred 
	0.1543 0.1337 
	0.600 0.548 
	0.2456 0.3181 

	obs 22 pred 
	obs 22 pred 
	0.1097 0.1181 
	0.599 0.547 
	0.2910 0.3346 

	obs 55 pred 
	obs 55 pred 
	0.1179 0.0979 
	0.643 0.424 
	0.2393 0.4780 

	obs 57 pred 
	obs 57 pred 
	0.1278 0.1136 
	0.596 0.573 
	0.2762 0.3138 

	obs 73 (T) pred 
	obs 73 (T) pred 
	0.4158 0.1191 
	0.508 0.626 
	0.0761 0.2546 

	obs 91 pred 
	obs 91 pred 
	0.1486 0.1160 
	0.639 0.421 
	0.2121 0.4630 

	obs 133 (T) pred 
	obs 133 (T) pred 
	0.4831 0.1039 
	0.441 0.654 
	0.0763 0.2420 

	obs 241 (T) pred 
	obs 241 (T) pred 
	0.5556 0.1069 
	0.391 0.651 
	0.0539 0.2418 

	obs 261 (T) pred 
	obs 261 (T) pred 
	0.3824 0.0613 
	0.618 0.611 
	0.0000 0.3275 

	obs 405 pred 
	obs 405 pred 
	0.1196 0.1864 
	0.623 0.414 
	0.2575 0.3996 

	obs 605 pred 
	obs 605 pred 
	0.2869 0.1215 
	0.566 0.639 
	0.1475 0.2394 


	8.2 The model of numbers of vehicles involved 
	with the I-605 freeway again being the exception to this. Whereas the location model for I-605 under predicted oﬀ-road accidents and over predicted interior lanes accidents, this model under predicts single vehicle accidents and over predicts multi-car accidents. 
	The vehicles involved model output is shown in Table 7. The model is adequate for all non-tolled facilities, 
	-

	The tolled facilities follow the same pattern as I-605, but the deviations are far more extreme. For two of the facilities, around half of the observed accidents are single vehicle incidents, while the model predicts that 
	The tolled facilities follow the same pattern as I-605, but the deviations are far more extreme. For two of the facilities, around half of the observed accidents are single vehicle incidents, while the model predicts that 
	only around 10% should be solo incidents. Again this eﬀect might be due to the more rural character of these roads, but it could also be related to the lack of heavy truck traﬃc allowing cars more room to maneuver. 

	8.3 The accident severity model 
	accidents compared with 2008 observations, but the diﬀerences for most non-tolled freeways are just a few percent oﬀ. Again the I-605 results are poor (at about 10% deviation), and this time the SR-55 results are also poor, showing a 7% deviation from predicted. The fact that injury accidents are consistently underestimated implies that this model should be used with caution in any future work. The under prediction eﬀect is even more pronounced for the toll roads, with injury accidents higher than predicted
	The accident severity model validations are shown in Table 8. The model consistently under predicts injury 

	Table 8 Predicted versus observed shares of accident severity outcomes in 2008. The model performs poorly with toll road traﬃc 
	Fwy Obs/Pred 
	Fwy Obs/Pred 
	Fwy Obs/Pred 
	Property Only 
	Injury 

	obs 
	obs 
	0.736 
	0.265 

	5 
	5 

	pred 
	pred 
	0.756 
	0.244 

	obs 
	obs 
	0.728 
	0.272 

	22 
	22 

	pred 
	pred 
	0.740 
	0.260 

	obs 
	obs 
	0.721 
	0.279 

	55 
	55 

	pred 
	pred 
	0.800 
	0.200 

	obs 
	obs 
	0.743 
	0.257 

	57 
	57 

	pred 
	pred 
	0.716 
	0.284 

	obs 
	obs 
	0.628 
	0.372 

	73 (T) pred 
	73 (T) pred 
	0.735 
	0.265 

	obs 
	obs 
	0.741 
	0.259 

	91 
	91 

	pred 
	pred 
	0.742 
	0.258 

	obs 
	obs 
	0.593 
	0.407 

	133 (T) pred 
	133 (T) pred 
	0.736 
	0.264 

	obs 
	obs 
	0.630 
	0.370 

	241 (T) pred 
	241 (T) pred 
	0.735 
	0.265 

	obs 
	obs 
	0.706 
	0.294 

	261 (T) pred 
	261 (T) pred 
	0.784 
	0.216 

	obs 
	obs 
	0.765 
	0.235 

	405 
	405 

	pred 
	pred 
	0.807 
	0.193 

	obs 
	obs 
	0.639 
	0.361 

	605 
	605 

	pred 
	pred 
	0.737 
	0.263 


	Section 9: The accident risk website 
	A major deliverable of this project is to revise the web-based user interface for the safety model predictions. The location of this The original project (PATH 5307) also developed a website that displayed the safety data, but after using the site for a while major design ﬂaws became apparent. First of all, as previously noted, the database did not perform well after more than a few months of data were stored. Second, the website was built using Java and was tightly integrated into an obsolete server framew
	website is http://ara.ctmlabs.net. 

	The basic design of the website is as follows. The user interface is map-centric, and has a simple animation that shows the relative probabilities for any accident to occur on the highway links. Because the probabilities are always very small, they are scaled relative to each other on a logarithmic scale from green (safest) to red (least safe). Because 30 second and even hourly predictions are mostly uninteresting when viewed in this way, the website accesses the daily maximum probabilities for display. A s
	-

	In addition to the large area animation, the user interface listens for click actions on each link. When a link is clicked, the current day (as shown in the dialog) is downloaded so that the user can view the complete set of predictions for that detector for that day, on a simple time-series plot. There is also an option to select an annual view of daily data, rather than a daily view of 30-second data. Multiple detectors can be selected and plotted via this interface. 
	There is also a plotting interface in development that allows the user to select one or more of the underlying 27 variables to view for the selected set of detectors. These plots are rendered simultaneously with each other in what is known as a scatter plot matrix. 
	-

	The communication between the website and the server uses simple Asynchronous JavaScript and XML (AJAX) calls, in which a small query sent to the server (for example map coordinates or a detector id) will produce a that gets rendered by the web browser using JavaScript. Because the design goal of the project is to expose data in an organized, human-readable way, requests for data follow the Representational State Transfer (REST) (Fielding, 2000) approach of accessing a speciﬁc piece of content with a well-d
	JavaScript Object Notation (JSON) response 
	-
	-

	The server’s primary job is to accept requests and respond with data. The client’s primary job is to render or use that data. By design, the server does nothing to render output or generate graphs, leaving those jobs to the client requesting the data. In this way, if someone else has a new idea about how to use the data, all she or he has to do is send a well-formed URL to the server, get the data, and then deploy her or his great idea. 
	9.1 The web server 
	One aspect of the website was completed by solving the data storage problems for computing the 27 variables. CouchDB natively oﬀers a REST-based interface that encourages direct access to the underlying documents. While the decision was made to hide CouchDB behind a webserver (there are thousands of databases, after all), the general idea makes it very easy to pipe incoming requests from clients directly to the appropriate CouchDB database. 
	The question then became which server technology to use to serve up the safety data to the web client. The following technologies were considered: 
	1. 
	1. 
	1. 
	A Java Spring, Perl, Ruby, or Python-based server 

	2. 
	2. 
	A plug-in for the Java-based Sakai collaborative learning environment 

	3. 
	3. 
	A pure CouchDB based application (CouchApp) 

	4. 
	4. 
	A node.js based server 


	We ended up choosing node.js. We rejected the other options for the following reasons. First, while Spring appears to be the de facto standard for deploying enterprise-grade Java servers, Java and Spring require an incredible amount of work just to wrap a simple data store. This is less true of Perl and Catalyst, Ruby on Rails, and Python, but most of these still seemed more focused on serving up web sites than simply dispatching data. Another stumbling block was the large number of databases we had created
	We considered Sakai because we are already using it for an on-line learning environment, and there was a big development push at the time this project was starting to deploy a generic key-value type store for Sakai3. In practice it was diﬃcult to map safety data onto the new Sakai data storage model. In addition, the Sakai3 eﬀort fell behind its intended road map, ironically with the data storage component accounting for much of the development diﬃculties. 
	CouchDB itself can be used as a webserver, but this isn’t practical with multiple CouchDB databases. The problem is that the map-based view would require connecting to multiple databases, one for each detector shown on the screen, plus another connection to get the geometry information in the ﬁrst place. This would in turn require circumventing the web browser’s “same origin” security policy within the browser code. Furthermore, each client access would then have to know which database on which physical mac
	Despite all of the drawbacks mentioned for the other web server candidates, the real reason node.js was chosen was that it was almost perfect for this application. Node is a new JavaScript-based server technology that runs on top of Google’s V8 JavaScript engine. Node.js is ideal for this project because it is a single-threaded, non-blocking web server designed to do its job quickly and then get out of the way. When a request comes in for some resource (for example, safety model output for a particular time
	Despite all of the drawbacks mentioned for the other web server candidates, the real reason node.js was chosen was that it was almost perfect for this application. Node is a new JavaScript-based server technology that runs on top of Google’s V8 JavaScript engine. Node.js is ideal for this project because it is a single-threaded, non-blocking web server designed to do its job quickly and then get out of the way. When a request comes in for some resource (for example, safety model output for a particular time
	-

	requests and wait for the results of the database call. In order to serve multiple requests at once, these kinds of webservers require multiple processes. Because this application can conceivably serve up very large amounts of data in response to a request, node.js is a perfect web server technology to use. 

	9.2 Node server modules 
	Node.js has two major web frameworks, Connect and Express. Express is in fact built on top of Connect. Because the server only needs to do very simple things, we are using the Connect framework. User authentication is handled using a custom Central Authentication System (CAS) plug-in for Connect that we developed. Other tasks like sessions and cookies are handled using standard Connect modules. 
	-

	Serving risk model output and the raw 27-variable data is handled via a collection of node.js modules that are wrapped into a single package called detector_information. This module can either connect an incoming request to the output of any of the safety models that has been developed so far (and that has been programmed as a view in the CouchDB databases), or it can serve requests for the underlying raw . Alternately, the latest version is always available to users of the CTMLabs website, under the “Detec
	-
	data and the derived 27 variables. The source code is available on GitHub at http://www.github.com/jmarca 
	/detector_information

	9.3 Implementing the risk models in CouchDB 
	Because the 27 variables required to “run” the estimated safety models are stored and available in CouchDB databases, we used CouchDB Views to store the output of applying these models to the data. A more detailed to apply the estimated models. 
	discussion of views was given in Section 3.1.2. Here views are discussed in the context of how they are used 

	A view is a combination of a map step and a reduce step. The map step usually applies some function to the raw input data. In our case, each document is a day’s worth of raw data. The map runs that raw data through one of the estimated models to obtain the relative risk of a particular kind of incident for each timestamp with valid estimates of the 27 variables. 
	The reduce step typically works through the output of the map step to derive one quantity, for example a count or a sum. In our case, the reduce step computes the min, max, and mean value for the model output. The reduce is only run over the input range selected. If you request a day of data to be reduced, you get the min, max and mean for that day. If you request an entire year of data, you get those quantities for the whole year. 
	A small program was set up to copy the views for each model to each of the CouchDB databases. After the initial processing is complete, each subsequent query takes almost no time at all to get an answer. We then reduced the output of each of these models by copying the view output to a single database and creating a new view on that database. 
	The website then has the following ways it can connect with the CouchDB data. To get the results of applying one of the estimated models, it can directly query the central database that collects the output of the views. This collecting database also produces the min max and mean risk model estimates for all of the detectors in the district by applying its own version of the map and reduce model. But if the raw data for a 
	The website then has the following ways it can connect with the CouchDB data. To get the results of applying one of the estimated models, it can directly query the central database that collects the output of the views. This collecting database also produces the min max and mean risk model estimates for all of the detectors in the district by applying its own version of the map and reduce model. But if the raw data for a 
	detector are required, then the server chooses the appropriate database to contact based on the district, year, and detector id in the request. 

	9.4 The detector information URL scheme 
	Throughout the above discussion, references have been made to REST-based URLs. As part of the Safety web server, there is a simple data retrieval interface available, directly accessible via these well-formed URLs. The interface provides access to raw vehicle detector system (VDS) data, as well as to the 27 dynamic variables that were computed by the safety project. 
	The safety performance tool data server is available to anything that understands how the internet works. These days this includes purpose built web clients (JavaScript programs running in browser or on a smart phone) as well as more generic programs such as R or Excel in which a user can hand-type an internet address and download data directly. The idea behind using a REST-based URL scheme rather than a query based one is that each detector’s data should be addressable from a known URL format. An example i
	-
	to 4 AM would look like the following: http://ara.ctmlabs.net/vdsdata/1209289/2007-01-16%2003:00/2007 
	-01-16%2004:00.json (Note that there are 

	/vdsdata/detector/start-timestamp/end-timestamp.json 
	Other services, such as the “any accident risk” service, have diﬀerent starts to the URL than “vdsdata”. The vdsdata service described here will retrieve the stored raw data plus the computed 27 variables. Other services correspond to the diﬀerent accident models estimated by this project. These are 
	risk for the probability of any accident; 
	severity for the probability of a PDO or injury accident; 
	involved for the probable numbers of vehicles involved in an accident; and 
	location for the probable location of an accident. 
	The detector portion of the URL is the Caltrans VDS ID. At the moment only District 12 detectors are oﬃcially available, starting with 2007 and working up through 2009, with 2010 through the present in the processing stages. There are also a few other sites in Caltrans Districts 7 and 10 that have raw data and the 27 variables stored, but no safety prediction models have yet been estimated for these Districts. 
	The time stamp is in a pattern that can be easily parsed by a computer and that also has the feature that is sorts both alphabetically and temporally. The standard format is as follows, again noting that spaces are URL-escaped as “%20”: 
	year-month-day%20hour:minute%20timezone 
	Seconds are not used, but if they are accidentally added with a third colon they will be ignored. If you do not enter the timezone, the local timezone (Paciﬁc Time) will be implied. The data is stored in the database 
	Seconds are not used, but if they are accidentally added with a third colon they will be ignored. If you do not enter the timezone, the local timezone (Paciﬁc Time) will be implied. The data is stored in the database 
	in Coordinated Universal Time (UTC), so as to avoid all ambiguities surrounding daylight savings time, and the data server makes that conversion transparently. 

	The start and end timestamps do not need to have the time appended. That is, they can be simply dates, and the time of 00:00 will be appended, as will the local timezone. 
	The server can’t yet retrieve anything other than continuous time ranges. You cannot ask for just the noon hour on a number of days. To do that you would have to string together multiple requests, for example, the following ﬁve requests would get the data from 11 AM to 1 PM for the ﬁrst 5 days in June: 
	/vdsdata/1200100/2007-06-01%2011:00/2007-06-01%2013:00 /vdsdata/1200100/2007-06-02%2011:00/2007-06-02%2013:00 /vdsdata/1200100/2007-06-03%2011:00/2007-06-03%2013:00 /vdsdata/1200100/2007-06-04%2011:00/2007-06-04%2013:00 /vdsdata/1200100/2007-06-05%2011:00/2007-06-05%2013:00 
	The client would then be responsible for stitching together the 5 responses as needed. While this sounds tedious, a computer program in a simple loop would do this job almost instantaneously. 
	9.4.1 Data formats 
	The question of stitching together the responses from multiple requests brings up the subject of the data format. over XML in that it is easy to parse in JavaScript because it is valid JavaScript. It is also readily parsed by any other programming language one might care to use. A sample of JSON data follows, with arrays truncated for legibility: 
	The data are returned as JavaScript Object Notation (JSON) ﬁles. JSON has the distinct advantage 

	{"nl1":[12,11,8,...] ,"ol1":[0.0664,0.0655,0.0436,...] ,"nr4":[7,6,10,...] ,"or4":[0.0409,0.0345,0.0618,...] ,"nr3":[6,6,11,...] ,"or3":[0.1035,0.0504,0.0748,...] ,"nr2":[10,8,3,...] ,"or2":[0.1032,0.067,0.0181,...] ,"nr1":[9,6,1,...] ,"or1":[0.0814,0.0479,0.0096,...] ,"ts":["2007/02/15 09:30:00 UTC","2007/02/15 09:30:30 UTC","2007/02/15 09:30:30 UTC",...] ,"mean.vol.1":[null,null,null,...] ,"mean.vol.m":[null,null,null,...] ,"mean.vol.r":[null,null,null,...] ,"sd.vol.1":[null,null,null,...] ,"sd.vol.m":[nu
	The data are returned as arrays in the JSON object. Each array has the same number of entries, with possible null values, as shown above. Only the timestamp variable (ts) is supposed to be free from null values (although there might be situations in which null entries are in the ts array). Note that while the ts array is supposed to be free from null values, it is not likely that every 30s interval has a corresponding timestamp entry. Within each day the times should be continuous, but between days it might
	The count and occupancy data are returned in the n and o columns. The lanes are numbered diﬀerently from what you might expect, so as to be very clear about the lane numbering. The left-most lane, the one Caltrans calls lane 1, is numbered as l1. So the count data is found in column nl1, and the occupancy in ol1. All other lanes are numbered from the right. The count and occupancy for the right-most lane are in the columns nr1 and or1, respectively. The next lane from the right is numbered r2 and so on. 
	Aside from being clear about which lane is which, this approach also allows comparing data from diﬀerent sites with diﬀerent numbers of lanes. Left lane data is always in lane l1, and right lane data is in r1. The other lane that trucks are allowed to use is always numbered r2, and so on. 
	-

	Next come the so-called 27 variables that attempt to capture the temporal and spatial dynamics of the data. These variables are the same as are described again below for completeness. These are computed using the preceding 20 minutes of data. If there is insuﬃcient data to compute a valid quantity, then these arrays will contain null. The other thing to notice is that there are only three lanes used to compute these values. Earlier research indicated that when there are 4 or more lanes at a site, the interi
	those described in Table 1, but they 

	mean.vol.1, mean.vol.m and mean.vol.r These three variables represent the mean volume over the preceding 20 minutes. 
	-

	sd.vol.1, sd.vol.m, sd.vol.r These three variables represent the standard deviation of the volume for each lane over the preceding 20 minutes. 
	cv.occ.1, cv.occ.m, cv.occ.r These three variables represent the coeﬃcient of variation of occupancy for each lane. This is a measure of central tendency that is used because the mean of occupancy (a ratio) isn’t meaningful. 
	cv.volocc.1, cv.volocc.m, cv.volocc.r These three variables represent the coeﬃcient of variation of the ratio of volume to occupancy. Volume over occupancy is proportional to speed, but for a calibration constant. Thus this measure captures the same characteristic of traﬃc as if one were to measure the mean speed over the 20 minute period for each lane. 
	cor.vol.1.m, cor.vol.1.r, cor.vol.m.r These three variables represent the correlation of volume between lanes. The ﬁrst value measure the correlation between lane 1 and the middle lane; the second the correlation between lane 1 and the right lane; and the third the correlation between volumes in the middle and right lanes. 
	cor.occ.1.m, cor.occ.1.r, cor.occ.m.r These three variables represent the correlation of occupancy between lanes over the 20 minute period. 
	cor.volocc.1.m, cor.volocc.1.r, cor.volocc.m.r These three variables represent the correlation of the ratio of volume to occupancy between lanes for the preceding 20 minutes. For example, a negative value for cor.volocc.1.r would indicate that the speed in the fast lane (lane 1) is negatively correlated with the speed in the slow lane (lane r). This might happen for example if a ramp is slowing up the right lane, and cars are using the left lanes to speed around the congestion. 
	-

	autocor.vol.1, autocor.vol.m, autocor.vol.r These three variables represent the autocorrelation of volume within each lane. These measures capture the trend over time for the volume within a lane. This isn’t a true measure of autocorrelation, but rather is computed using only the one-time-step lag value. Other ways to compute autocorrelation can use multiple lags between times, but we found just using the one-time-step lag to be suﬃcient as well as easier to compute. 
	-

	autocor.occ.1, autocor.occ.m, autocor.occ.r These three variables represent the au
	-

	tocorrelation of occupancy within each lane. These capture the trend over time for the occupancy of 
	a lane. 
	9.4.2 Safety probability predictions format 
	For ease of use, there are three kinds of probability downloads available. The ﬁrst is to get every 30-second prediction for a single day. For example, the link: 
	http://ara.ctmlabs.net/risk/1209289/2007/01/02/30s.json 
	http://ara.ctmlabs.net/risk/1209289/2007/01/02/30s.json 

	will return a JSON object containing a list of probabilities for any accident for January 2, 2009. The overall format follows CouchDB’s conventions for returning data from a view, with the “rows” element of the object containing the rows of data. Each row’s “value” element contains the timestamp and the accident probability predicted for that timestamp. For the three models that have multiple outcomes, the response rows will be arrays instead of a single number, with each object containing the predicted pro
	The second URL scheme for getting accident probabilities is to request daily cumulative sum values for a year. This URL format has the pattern: 
	http://ara.ctmlabs.net/risk/1209289/2007/dailysum.json 
	http://ara.ctmlabs.net/risk/1209289/2007/dailysum.json 

	As the end of the URL implies, this request will return the minimum, maximum, and mean accident probabilities for each day in the chosen year. This request would be used to see at a glance how one detector compares to others over the course of a year. 
	The ﬁnal URL query pattern that has been implemented is to get all of the daily summed values for all modeled detectors (in practice, all of District 12 mainline detectors). This URL pattern takes the form: 
	http://ara.ctmlabs.net/risk/all/2008/10/04/sum.json 
	http://ara.ctmlabs.net/risk/all/2008/10/04/sum.json 

	The URL is diﬀerent than the prior ones in that the detector number has been replaced with the word “all”. As before, the “minmaxmean” part of the URL is a reminder that the data will be returned as rows containing the minimum, maximum, and mean accident probabilities for each detector. In this case, an extra ﬁeld will be returned in the result rows indicating the detector number. As an added bonus, an entire month of data or even an entire year of minimum, maximum, and mean values can be downloaded all at 
	In all cases, in order to select a diﬀerent accident probability model than any accident, the word “risk” in the URL should be replaced with the desired model. For example, “severity” will return the minimum, maximum, and mean values for the severity predictions. Because severity has two outcomes (PDO and Injury) and the other models also have more than one outcome, the result rows of the non-“risk” URLs are arrays of triplets, with each triplet giving the minimum, maximum, and mean prediction for each outc
	Section 10: Conclusion, recommendations and deployment 
	This project has updated and deployed a tool for analyzing the risk of accidents on freeways. The tool can be used to measure the impacts of any large scale change to the freeway (for example, a new intelligent transportation systems (ITS) deployment) on the aggregate safety of the roadway. The safety models were estimated on 2007 data, validated against 2008 accident observations, and have been deployed in a system that can process new data on request. Both a website and scriptable web services have been d
	The validation study veriﬁed that the aggregate predictions of the models are roughly in line with the observed accident rates and proportions. The models do not do well in predicting time of day eﬀects on accident risk, which was disappointing but expected. One interesting result of the validation study is that the 4 toll roads in District 12 do not have the same characteristics as regular, non-tolled facilities. This is perhaps due to the diﬀerent mix of traﬃc (heavy duty trucks do not use toll roads as a
	10.1 Short term recommendations 
	The tool’s elements (the website and the data services) are currently available only to properly authenticated users. This policy was established for all CTMLabs projects, as beﬁts early stage deployments and research tools. The special concern with this project is that the output may be misunderstood by the public at large. 
	But there is no special reason why the data should not eventually be made broadly available. As the accident probabilities change over time, the changes reﬂect the behavior of the drivers on the freeway. The purpose of providing the safety information to drivers isn’t to predict when and where an accident will occur. The probability of an accident at any given time is minuscule, as shown in the many ﬁgures generated Instead, providing the safety performance information to drivers is a way of completing the 
	in Section 7 of this report. 

	The second recommendation is for Caltrans staﬀ to attempt to use the tool in a small before and after study. The tool has already been integrated into the oﬀerings of the California Traﬃc Management Labs (CTMLabs) at UC Irvine, and is available to anyone with a valid account, which would include anyone at Caltrans wishing to create an account. CTMLabs staﬀ will willingly support any work by Caltrans to evaluate the tool’s suitability in adding a safety dimension to the evaluation of the impacts of freeway p
	10.2 Deployment to other Caltrans Districts 
	The tool and models can be deployed to other Caltrans Districts without too much diﬃculty. The data storage framework can be adopted as is, and will scale roughly linearly with the numbers of detectors in the new 
	District. After processing 3 years of data, District 12 requires approximately 800 GB of disk storage. District 7 would be larger, but most other Districts would probably require no more than 500 GB of storage space per year. Because each detector is assigned its own CouchDB database to store the 30 second data (raw values and computed 27 variables), these databases can easily be migrated to multiple machines if the space requirements or computational load on a single server becomes too great. Virtual servi
	As part of the request to the HSIS data repository, we received accident data for all of California from 2007 and 2008. Therefore the only new data for each new District would be the raw detector data. Once the raw data is downloaded from the PeMS data repository for 2007, new models can be estimated that capture the driving habits of each District’s drivers. We recommend that new models be estimated because we do not have any evidence to suggest that the models can be transferred directly to other regions.
	The website and associated tools are largely agnostic to the District. The current tool presents data for just District 12, but that is only because there are only model outputs for detectors within District 12. CTMLabs has meta data for all detectors in California, and so the exact same website can be used to browse the predictions from other Districts once they are stored in the aggregate CouchDB database. 
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	Appendix A: HSIS accident data database schema 
	The HSIS accident data is all loaded into the hsis schema in the PostgreSQL database. Each table is deﬁned below, but note that the PostgreSQL loading script issues the command SET search_path = hsis, pg_catalog; prior to running the CREATE TABLE commands. This means that even though it isn’t explicitly written, each table should be understood to have the schema identiﬁer hsis. prepended to the table name. 
	The primary table for all HSIS data is the cases table. This stores the primary key for accidents, and allows one to piece together all of the information pertaining to a single accident. 
	create table hsis.cases ( caseno varchar(36) not null primary key); 
	Accident data itself is stored in the acc table. 
	CREATE TABLE hsis.acc ( id serial primary key, cntyrte varchar(20), milepost numeric, rodwycls varchar(20) references hsis.rodwycls(id) on delete restrict, caseno varchar(36) references hsis.cases on delete restrict, psmilprf varchar(20) references hsis.psmilprf(id) on delete restrict, psmilsuf varchar(20) references hsis.psmilsuf(id) on delete restrict, acctype varchar(20) references hsis.acctype(id) on delete restrict, acc_ts timestamp with time zone, hour_known boolean, weather1 varchar(20) references hs
	The vehicle information, incluing the direction of travel of each vehicle involved in the accident, is stored in the hsis.veh table. The direction of travel is coded up in the hsis.dirtrvl table. Because more than 4 vehicles might be involved in an accident, a join on caseno might pull in more than one record from the vehicle table. 
	create table hsis.dirtrvl ( id varchar(20) not null unique primary key, label varchar(256) not null); 
	insert into hsis.dirtrvl (id,label) 
	values 
	( 'N' , 'North, northeast, or northwest bound'), ( 'S' , 'South, southeast, or southwest bound'), ( 'E' , 'EASTBOUND'), ( 'W' , 'WESTBOUND'), ( '<' , 'NOT STATED'), ( '-' , 'DOES NOT APPLY'), ( 'OTHER' , 'ERROR/OTHER CODES'); 
	CREATE TABLE hsis.veh ( id serial primary key, caseno varchar(36) references hsis.cases on delete restrict, dir_trvl varchar(20) references hsis.dirtrvl(id) on delete restrict, loc_typ1 varchar(20) references hsis.loctyp(id) on delete restrict, loc_typ2 varchar(20) references hsis.loctyp(id) on delete restrict, loc_typ3 varchar(20) references hsis.loctyp(id) on delete restrict, loc_typ4 varchar(20) references hsis.loctyp(id) on delete restrict); 
	Most of the other tables related to accidents just deﬁne the values that the accident table can take. These are reproduced below, along with the static values stored in each table. 
	create table hsis.rodwycls ( id varchar(20) not null unique primary key, label varchar(256) not null); 
	insert into hsis.rodwycls (id,label) 
	values 
	('01' , 'Urban freeways'), ('02' , 'Urban freeways < 4 lanes'), ('03' , 'Urban two lane roads'), ('04' , 'Urban multilane divided non-freeways'), ('05' , 'Urban multilane undivided non-freeways'), ('06' , 'Rural freeways'), ('07' , 'Rural freeways < 4 lanes'), ('08' , 'Rural two lane roads'), ('09' , 'Rural multilane divided non-freeways'), ('10' , 'Rural multilane undivided non-freeways'), ('99' , 'OTHERS'); 
	create table hsis.psmilprf ( id varchar(20) unique not null primary key, label varchar (256) not null); 
	insert into hsis.psmilprf 
	(id,label) 
	values (' ' , 'NO PREFIX'), ('A' , 'REPOSTED'), ('B' , 'BUS LANE'), ('C' , 'COMMERCIAL'), ('D' , 'Duplicate (meandering)'), ('F' , 'Reposted -Commercial (C)'), ('G' , 'Reposted -Duplicate (D)'), ('H' , 'Realigned -Duplicate (D)'), ('J' , 'Reposted, realigned -Duplicate'), ('K' , 'Reposted -Overlap (L)'), ('L' , 'Overlapping Postmiles'), ('M' , 'Realigned realignment (R)'), ('N' , 'Reposted, realighned realignment (M)'), ('P' , 'Reposted realignment (R)'), ('Q' , 'Reposted -Spur (S)'), ('R' , 'REALIGNMENT' )
	create table hsis.psmilsuf ( id varchar(20) unique not null primary key, label varchar (256) not null); 
	insert into hsis.psmilsuf (id,label) 
	values 
	( ' ' , 'NO SUFFIX'), ( 'E' , 'EQUATION'), ( '-' , 'INVALID DATA'), ( '+' , 'NO DATA'), ( 'OTHER' , 'ERROR/OTHER CODES'), ('L' , 'Overlapping Postmiles'), ('R' , 'REALIGNMENT' ); 
	create table hsis.acctype ( id varchar(20) unique not null primary key, label varchar (256) not null); 
	insert into hsis.acctype (id,label) 
	values ( 'A' , 'HEAD-ON'), ( 'B' , 'SIDESWIPE'), ( 'C' , 'REAR END'), ( 'D' , 'BROADSIDE'), ( 'E' , 'HIT OBJECT'), ( 'F' , 'OVERTURNED'), ( 'G' , 'AUTO-PEDESTRIAN'), ( 'H' , 'OTHER'), ( '-' , 'NOT STATED'), ( 'OTHER' , 'ERROR/OTHER CODES'); 
	create table hsis.weather ( id varchar(20) unique not null primary key, label varchar (256) not null); 
	insert into hsis.weather (id,label) 
	values ( 'A' , 'CLEAR'), ( 'B' , 'CLOUDY'), ( 'C' , 'RAINING'), ( 'D' , 'SNOWING'), ( 'E' , 'FOG'), ( 'F' , 'OTHER'), ( 'G' , 'WIND'), ( '-' , 'NOT STATED'), ( 'OTHER' , 'ERROR/OTHER CODES'); 
	create table hsis.loctyp ( id varchar(20) unique not null primary key, label varchar (256) not null); 
	insert into hsis.loctyp (id,label) 
	values ( 'A' , $$Beyond median or barrier stripe -driver's left$$), ( 'B' , $$Beyond shoulder -driver's left$$), ( 'C' , 'Left shoulder area'), ( 'D' , 'Left lane'), ( 'E' , 'Interior lanes'), ( 'F' , 'Right lane'), ( 'G' , 'Right shoulder area'), ( 'H' , $$Beyond shoulder -driver's right$$), ( 'I' , 'Gore area'), ( 'J' , 'Other'), ( '<' , 'Not stated'), ( 'V' , 'undefined by hsis' ), ( 'W' , 'undefined by hsis' ), ( '---' 'undefined by hsis' ), ( '-' , 'Does not apply'), ( 'OTHER' , 'ERROR/OTHER CODES'); 
	create table hsis.sdehwy ( id varchar(20) unique not null primary key, label varchar (256) not null); 
	insert into hsis.sdehwy (id,label) 
	values 
	( 'N' , 'NORTHBOUND'), ( 'S' , 'SOUTHBOUND'), ( 'E' , 'EASTBOUND'), ( 'W' , 'WESTBOUND'), ( 'OTHER' , 'ERROR/OTHER CODES'); 
	create table hsis.severity ( id varchar(20) unique not null primary key, label varchar (256) not null); 
	insert into hsis.severity (id,label) 
	values 
	( '1' , 'FATAL'), ( '2' , 'SEVERE INJURY'), ( '3' , 'Other visible injury'), ( '4' , 'Complaint of pain'), ( '0' , 'PDO -Property damage only'), ( 'OTHER' , 'ERROR/OTHER CODES'); 
	create table hsis.rdsurf ( id varchar(20) unique not null primary key, label varchar (256) not null); 
	insert into hsis.rdsurf (id,label) 
	values ( 'A' , 'DRY'), ( 'B' , 'WET'), ( 'C' , 'SNOWY, ICY'), ( 'D' , 'SLIPPERY/MUDDY'), ( '-' , 'NOT STATED'), ( 'OTHER' , 'ERROR/OTHER CODES'); 
	create table hsis.light ( id varchar(20) unique not null primary key, label varchar (256) not null); 
	insert into hsis.light (id,label) 
	values 
	( 'A' , 'Daylight'), ( 'B' , 'Dusk -dawn'), ( 'C' , 'Dark -street lights'), ( 'D' , 'Dark -no street lights'), ( 'E' , 'Dark -street lights not functioning'), ( 'F' , 'Dark -not stated'), ( '-' , 'Not stated'), ( 'OTHER' , 'ERROR/OTHER CODES'); 
	HSIS also categorizes and saves the network information related to each accident it stores. The following tables relate to the road network data. 
	create table hsis.access ( id varchar(20) not null unique primary key, label varchar(256) not null); 
	insert into hsis.access (id,label) 
	values 
	( 'C' , 'Conventional -No access control'), ( 'E' , 'Expressway -Partial access control'), ( 'F' , 'Freeway -Full access control'), ( 'S' , 'One-way city street -no access control'), ( '-' , 'INVALID DATA'), ( '+' , 'NO DATA'), ( 'OTHER' , 'ERROR/OTHER CODES'); 
	create table hsis.rte_suf ( id varchar(20) not null unique primary key, label varchar(256) not null); 
	insert into hsis.rte_suf (id,label) 
	values 
	( 'P' , 'ALIGNMENT PRIOR'), ( 'S' , 'Supplemental alignment, partial opened for use before alignment is complete'), ( 'U' , 'Unrelinquished, superseded by realignment, but not yet accepted for 
	non-State-highway maintenance'), ( 'Z' , 'Budgeted or under construction'), ( ' ' , 'NO SUFFIX'), ( 'OTHER' , 'ERROR/OTHER CODES'); 
	create table hsis.county ( id varchar(20) not null unique primary key, label varchar(256) not null); 
	insert into hsis.county 
	(id,label) 
	values ( '01' , 'ALAMEDA'), ( '02' , 'ALPINE'), ( '03' , 'AMADOR'), ( '04' , 'BUTTE'), ( '05' , 'CALAVERAS'), ( '06' , 'COLUSA'), ( '07' , 'CONTRA COSTA'), ( '08' , 'DEL NORTE'), ( '09' , 'EL DORADO'), ( '10' , 'FRESNO'), ( '11' , 'GLENN'), ( '12' , 'HUMBOLDT'), ( '13' , 'IMPERIAL'), ( '14' , 'INYO'), ( '15' , 'KERN'), ( '16' , 'KINGS'), ( '17' , 'LAKE'), ( '18' , 'LASSEN'), ( '19' , 'LOS ANGELES'), ( '20' , 'MADERA'), ( '21' , 'MARIN'), ( '22' , 'MARIPOSA'), ( '23' , 'MENDOCINO'), ( '24' , 'MERCED'), ( '25
	create table hsis.hwygrp ( id varchar(20) not null unique primary key, label varchar(256) not null); 
	insert into hsis.hwygrp (id,label) 
	values 
	( 'R' , 'Right independent alignment'), ( 'L' , 'Left independent alignment'), ( 'D' , 'DIVIDED HIGHWAY'), ( 'U' , 'UNIDIVIDED HIGHWY'), ( 'X' , 'UNCONSTRUCTED' ), ( 'Z' , 'OTHER'), ( '-' , 'INVALID DATA'), ( '+' , 'NO DATA'), ( 'OTHER' , 'ERROR/OTHER CODES'); 
	create table hsis.dspd ( spd integer not null unique primary key, label varchar(256) not null); 
	insert into hsis.dspd 
	(spd,label) 
	values ( 25 , '< 30 MPH'), ( 30 , '30 MPH'), ( 35 , '35 MPH'), ( 40 , '40 MPH'), ( 45 , '45 MPH'), ( 50 , '50 MPH'), ( 55 , '55 MPH'), ( 60 , '60 MPH'), ( 65 , '65 MPH'), ( 70 , '> 70 MPH'); 
	create table hsis.numlanes ( id integer not null unique primary key, label varchar(256) not null); 
	insert into hsis.numlanes (id,label) 
	values 
	( 1 
	( 1 
	( 1 
	, 
	'ONE LANE'), 

	( 2 
	( 2 
	, 
	'TWO LANES'), 

	( 3 
	( 3 
	, 
	'THREE LANES'), 


	( 4 , '4 TO 6 LANES'), ( 7 , '7 TO 8 LANES'), ( 9 , '> 8 LANES'), ( -1 , 'NOT STATED'); 
	create table hsis.road ( id serial primary key, yr integer, access varchar(20) references hsis.access(id) on delete restrict, begmp numeric, endmp numeric, city varchar(20), cntyrte varchar(20) not null, district integer, rte_nbr integer, rte_suf varchar(20) references hsis.rte_suf(id) on delete restrict, county varchar(2) references hsis.county(id) on delete restrict, psmilprf varchar(20) references hsis.psmilprf(id) on delete restrict, hwy_grp varchar(20) references hsis.hwygrp(id) on delete restrict, dsp
	Finally, there are join tables linking HSIS data with other tables. The caseno_vds table stores the linking of VDS loop detectors with each accident case number, based on the postmile and highway of the accident and the detector. 
	CREATE TABLE caseno_vds ( caseno character varying(36), vds_id integer, diff numeric, keep boolean DEFAULT false); 
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