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ABSTRACT

Strain wedge (SW) model formulation has been used, in previous work, to evaluate the response of a single
pile or a group of piles (including its pile cap) in layered soils to lateral loading. The SW model approach
provides appropriate prediction for the behavior of an isolated pile and pile group under lateral static loading
in layered soil (sand and/or clay). The SW model analysis covers the entire range of soil strain or pile
deflection that may be encountered in practice. The method allows development of p-y curves for the single
pile based on soil-pile interaction by considering the effect of both soil and pile properties (i.e. pile size,

shape, bending stiffness, and pile head fixity condition) on the nature of the p-y curve.

This study has extended the capability of the SW model in order to predict the response of laterally loaded
large diameter shafts considering 1) the influence of shaft type (long, intermediate or short) on the lateral
shaft response; 2) the nonlinear behavior of shaft material (steel and/or concrete) and its effect on the soil-
shaft-interaction; 3) developing (partial or complete) liquefaction in the surrounding soil profile based on far-
and near-field induced porewater pressure; and 4) vertical side shear resistance along the shaft wall that has

a significant contribution to the lateral shaft response.

The incorporation of the nonlinear behavior of shaft material, soil liquefaction and vertical side shear
resistance has a significant influence on the nature of the calculated p-y curves and the associated t-z curves.
Contrary to the traditional Matlock-Reese p-y curve that was established for small diameter long (slender)
piles and does not account for soil liquefaction and the variation in the shaft bending stiffness, the current
approach for large diameter shafts can provide the p-y curve based on varying liquefaction conditions,
vertical and horizontal shear resistance along the shaft, and the degradation in shaft flexural stiffness. In
addition, the technique presented allows the classification and the analysis of the shaft as long, intermediate

or short based on soil-shaft interaction.
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CHAPTER 1

INTRODUCTION

The problem of a laterally loaded large diameter shafts has been under investigation and
research for the last decade. At present, the p-y method developed by Matlock (1970)
and Reese (1977) for slender piles is the most commonly used procedure for the analysis
of laterally loaded piles/shafts. The confidence in this method is derived from the fact
that the p-y curves employed have been obtained (back calculated) from a few full-scale
field tests. Many researchers since have attempted to improve the performance of the p-y
method by evaluating the p-y curve based on the results of the pressuremeter test or

dilatometer test.

The main drawback with the p-y approach is that p-y curves are not unique. Instead the p-
y relationships for a given soil can be significantly influenced by pile properties and soil
continuity and are not properly considered in the p-y approach. In addition, the p-y curve
has been used with large diameter long/intermediate/short shafts, which is a compromise.
The SW model proposed by Norris (1986) analyzes the response of laterally loaded piles
based on a representative soil-pile interaction that incorporates pile and soil properties
(Ashour et al. 1998). The SW model does not require p-y curves as input but instead
predicts the p-y curve at any point along the deflected part of the loaded pile using a
laterally loaded soil-pile interaction model. The effect of pile properties and surrounding
soil profile on the nature of the p-y curve has been presented by Ashour and Norris
(2000). However, the current SW model still lack the incorporation of the vertical side
shear resistance that has growing effect on the lateral response of large diameter
piles/shafts. In addition, many of the large diameter shafts could be designed as long
shafts and in reality they behave as intermediate shafts. Compared to the long shaft
characteristics, the intermediate shaft should maintain softer response. It is customary to
use the traditional p-y curves for the analysis of all types of piles/shafts

(short/intermediate/long) which carries significant comprise.
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The lateral response of piles/shafts in liquefied soil using the p-y method is based on the
use of traditional p-y curve shape for soft clay corresponding to the undrained residual
strength (S;) of liquefied sand. Typically S, is estimated using the standard penetration
test (SPT) corrected blowcount, (N)s0, versus residual strength developed by Seed and
Harder (1990). For a given (N)eo value, the estimated values of S, associated with the
lower and upper bounds of this relationship vary considerably. Even if a reasonable
estimate of S; is made, the use of S, with the clay curve shape does not correctly reflect
the level of strain in a liquefied dilative sandy material. The p-y relationship for a
liquefied soil should be representative of a realistic undrained stress-strain relationship of
the soil in the soil-pile interaction model for developing or liquefied soil. Because the
traditional p-y curve approach is based on static field load tests, it has been adapted to the
liquefaction condition by using the soft clay p-y shapes with liquefied sand strength

values.

In the last several years, the SW model has been improved and modified through a

number of research phases with Caltrans to accommodate:

e a laterally loaded pile with different head conditions that is embedded in multiple soil
layers (report to Caltrans, Ashour et al. 1996)

e nonlinear modeling of pile materials (report to Caltrans, Ashour and Norris 2001);

e pile in liquefiable soil (report to Caltrans, Ashour and Norris 2000); and

e pile group with or without cap (report to Caltrans, Ashour and Norris 1999)

The current report focuses on the analysis of large diameter shafts under lateral loading
and the additional influential parameters, such as vertical side shear resistance, compared
to piles. It also addresses the case of complete liquefaction and how the completely
liquefied soil rebuilds significant resistance due to its dilative nature after losing its whole
strength. The assessment of the t-z curve along the length of shaft and its effect on the

shaft lateral response is one of the contributions addressed in this report
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The classification of the shaft type whether it behaves as short, intermediate or long shaft
has a crucial effect on the analysis implemented. The mechanism of shaft deformation
and soil reaction is governed by shaft type (geometry, stiffness and head conditions) as

presented in Chapter 2.

The assessment of the vertical side shear due to the shaft vertical movement induced by
either axial or lateral loading is presented in Chapter 3 and 4. New approach for the
prediction of the t-z curve in sand and clay is also presented. Since the lateral resistance
of the shaft base has growing effect on the short/intermediate shaft lateral response, a
methodology to evaluate the shaft base resistance in clay/sand is also presented in

Chapters 3 and 4.

The SW model relates one-dimensional BEF analysis (p-y response) to a three-
dimensional soil pile interaction response. Because of this relation, the SW model is also
capable of determining the maximum moment and developing p-y curves for a pile under
consideration since the pile load and deflection at any depth along the pile can be
determined. The SW model has been upgraded to deal with short, intermediate and long
shafts using varying mechanism. The degradation in pile/shaft bending stiffness and the
effect of vertical side shear resistance are also integrated in the assessed p-y curve. A
detailed summary of the theory incorporated into the SW model is presented in Chapter
5.

Soil (complete and partial) liquefaction and the variation in soil resistance around the
shaft due to the lateral load from the superstructure are presented in Chapter 6. Based on
the results obtained from the Treasure Island field test (sponsored by Caltrans), it is
obvious that none of the current techniques used to analyze piles/shafts in liquefied soils
reflects the actual behavior of shafts under developing liquefaction. New approach is
presented in Chapter 6 to assess the behavior of liquefied soil and will be incorporated in

the SW model analysis as seen in Chapter 8.
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The nonlinear behavior of shaft material (steel and concrete) is a major issue in the
analysis of large diameter shafts. Such nonlinear behavior of shaft material should be
reflected on the nature of the p-y curve and the formation of a plastic hinge as presented

in Chapter 7.

Several case studies are presented in this study to exhibit the capability of the SW model
and how the shaft classification, shaft material modeling (steel and/or concrete) and soil
liquefaction can be all implemented in the SW model analysis. Comparisons with field

results and other techniques also are presented in Chapter 8.
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CHAPTER 2

CLASSIFICATION AND CHARACTERIZATION OF
LARGE DIAMETER SHAFTS

2.1 SHAFT CLASSIFICATION

The lateral load analysis procedures differ for short, intermediate and long shafts. The short,
intermediate and long shaft classifications are based on shaft properties (i.e. length, diameter and
bending stiffness) and the soil conditions described as follows. A shaft is considered “short” so
long as it maintains a lateral deflection pattern close to a straight line. A shaft classified as
“intermediate” under a given combination of applied loads and soil conditions may respond as a
“short” shaft for the same soil profile for a different combination of applied loads and degraded

soil properties (e. g. a result of soil liquefaction).

The shaft is defined as “long” when L/T = 4. L is the shaft length below ground surface and T
is the relative stiffness defined as T = (EI/f** where f is the coefficient of subgrade reaction
(F/L%). The computer Shaft treats the given shaft as a short shaft. The value of relative stiffness,
T, varies with EI and f. For a short shaft, the bending stiffness (EI) in the analysis could have a
fixed value (linear elastic). The coefficient of subgrade reaction, f, varies with level of deflection
and decreases with increasing lateral load. The chart (Fig. 2-1) attributable to Terzaghi (DM 7.2,
NAVFAC 1982) and modified by Norris (1986) provides average values of f as a function of soil
properties only (independent of pile shape, EI, head fixity, etc).

The shaft behaves as an “intermediate” shaft when [4 > (L/T) > 2]. When an intermediate shaft
is analyzed as a long shaft it results in overestimated lateral response. It should be noted that the
classification of the shaft type in the present study (i.e. evaluation of its relative stiffness, T) is
based on the initial bending stiffness of the shaft and an average of the coefficient of subgrade

reaction (f) including the free-field liquefaction effect.
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The shaft classification for the same shaft my change according to the level loading and the
conditions (e.g. liquefied or non-liquefied) of the surrounding soils. In addition, shaft stiffness
also varies with level of loading and the induced bending moment along the shaft. Therefore, the
criterion mentioned above is not accurate and does not reflect the actual type of shaft with the
progressive state of loading. For example, a shaft could behave as a long shaft under static
loading and then respond as an intermediate shaft under developing liquefaction. Such response
is due to the changing conditions of the surrounding soil. The analysis carried out in this study

changes according to the type of shafts.

2.2 FOUNDATION STIFFNESS MATRIX

The structural engineer targets the shaft-head stiffness (at the base of the column) in 6 degrees of
freedom as seen in Figs. 2-2 through and 2-4. In reality, the bending stiffness (EI) of the cross
section varies with moment. In order to deal with an equivalent linear elastic behavior, a
constant reduced bending stiffness (El;) for the shaft cross section can be used to account for the
effect of the cracked concrete section under applied loads. However, it is very difficult to
identify the appropriate reduction ratio for the shaft stiffness at a particular level of loading. The
technique presented in this report allows the assessment of the displacement and rotational
stiffness based on the varying bending stiffness of the shaft loaded. Such nonlinear modeling of
shaft material reflects a realistic representation for the shaft behavior according to the level of
loading, and the nonlinear response of shaft material and the surrounding soil The structural
engineer can also replace the nonlinear shaft-head stiffnesses shown in Figs. 2-3 and 2-4 by
using the shaft foundation and the p-y curve resulting from the presented technique along with

the superstructure (complete solution) to model the superstructure-soil-shaft behavior as shown
in Fig 2-6.

2.3 LARGE DIAMETER SHAFT

The computer programs LPILE/COM624P have been developed using lateral load tests
performed on long slender piles. The Vertical Shear Resistance (Vy) acting along the pile or
shaft perimeter has no significant influence on the lateral response of shafts and piles of
diameters less than 3 feet. However, V, contributes significantly to the capacity of large

diameter shafts. The shaft analysis presented in this report accounts for the Horizontal and
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Vertical Shear Resistance (Vi and V,) acting along the sides of large diameter shafts in addition
to base resistance (Fig. 2-7). The t-z curve for soil (sand, clay, c-¢ soil and rock) is evaluated

and employed in the analysis to account for the vertical shear resistance.

It should be noted herein that there are basic differences between the traditional p-y curves used
with LPILE/COM624P and the Strain Wedge (SW) model technique employed in the current
Shaft analysis.

e The traditional p-y relationships used in LPILE/COM624P do not account for the vertical
side shear (Vy) acting along the sides of large diameter shafts because these relationships
were developed for piles with small diameters where side shear is not significant.

e The traditional p-y relationships used in LPILE/COM624P were developed for long piles
and not for intermediate/short shafts or piles. The p-y relationships for long piles are
stiffer than those of short piles/shafts and their direct use in the analysis of short shafts is
not realistic.

e The traditional p-y relationships for sand used in LPILE/COM624P are multiplied,
without any explanation, by an empirical correction factor of 1.55 (Morrison and Reese,
1986)

e The bending stiffness of the pile/shaft has a marked effect on the nature of the resulting
p-y curve relationship. The traditional p-y relationships used in LPILE/COM624P do not
consider this effect. That is, the traditional p-y relationships used in LPILE/COM624P
were developed for piles with diameters less than 3 feet that have much lower values of
bending stiffness (EI) than the large diameter shafts.

e The traditional p-y curves for sand, developed about 30 years ago, is based on a static
load test of a 2-ft diameter long steel pipe pile. They do not consider soil liquefaction.

e The traditional p-y curves have no direct link with the stress-strain relationship of the
soil. Therefore, it is not feasible to incorporate the actual stress-strain behavior of
liquefied soil in the traditional p-y curve formula.

e The traditional p-y curve cannot account for the varying pore water pressure in liquefied
soil. It can only consider the pore water pressure ratio (ry) in the free field (away from

the shaft) by reducing the effective unit weight of soil by a ratio equal to r,. Because of
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this limitation, the traditional p-y curve, even after modification via r,, is incapable of
modeling the increase in pore water pressure around the shaft from the added

superstructure loading.

Fig. 2-1 fvs. q, for Fine Grained Soil and f vs. D, for Coarse Grained Soils
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CHAPTER 3

VERTICAL SIDE SHAER AND PILE POINT TIP RESISTANCE OF
A PILE / SHAFT IN CLAY

3.1 INTRODUCTION

The primary focus of this chapter is the evaluation of the vertical side shear induced by
the vertical displacement accompanying the deflection of a laterally loaded shaft. The
prediction of the vertical side shear of a laterally loaded shaft is not feasible unless a
relationship between the vertical shaft displacement and the associated shear resistance is
first established. The most common means to date is the t-z curve method proposed by
Seed and Reese (1957). The associated curves were developed using experimental data
from the vane shear test to represent the relationship between the induced shear stress
(due to load transfer) and vertical movement (z) along the side of the pile shaft (Fig. 3-1).
Other procedures are available to generate the t-z curve along the pile shaft (Coyle and
Reese 1966; Grosch and Reese 1980; Holmquist and Matlock 1976 etc.). Most of these
procedures are empirical and based on field and experimental data. Others are based on
theoretical concepts such as the methods presented by Randolph and Worth (1978), Kraft
et al. (1981) in addition to the numerical techniques adopted by Poulos and Davis (1968),
Butterfield and Banerjee (1971), and the finite element method.

It should be noted that any developed t-z relationship is a function of the pile/shaft and
soil properties (such as shaft diameter, cross section shape and material, axial stiffness,
method of installation and clay shear stress-strain-strength).  This requires the
incorporation of as many soil and pile properties as useful and practical in the suggested

analysis.

Coyle and Reese (1966) presented an analytical method to assess the load transfer
relationship for piles in clay. The method is addressed in this chapter and requires the
use of a t-z curve such as those curves suggested by Seed and Reese (1957), and Coyle

and Reese (1966) shown in Figs. 3-1 and 3-2. However, the t-z curve presented by Seed
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and Reese (1957) is based on the vane shear test, and the t-z curve developed by Coyle
and Reese (1966) is based on data obtained from a number of pile load tests from the

field (Fig. 3-2).

The current chapter presents a procedure for evaluating the change in the axial load with
depth for piles in clay called “friction” piles since most of the axial load is carried by the
shaft (as opposed to the pile point). The load transfer mechanism presented by Coyle and
Reese (1966) is used in the proposed analysis in association with the t-z curve developed
herein. In fact, the axially loaded pile analysis is just a means to develop the nonlinear t-
z curves for clay that will be used later to assess the vertical side shear resistance of a
laterally loaded large diameter shaft undergoing vertical movement at its edges as it

rotates from vertical.

3.2 LOAD TRANSFER AND PILE SETTLEMENT

In order to construct the load transfer and pile-head movement in clay under vertical load,
the t-z curve for that particular soil should be assessed. The load transferred from shaft
skin to the surrounding clay soil is a function of the diameter and the surface roughness
of the shaft, clay properties (cohesion, type of consolidation and level of disturbance) in
addition to the shaft base resistance. The development of a representative procedure
allows the assessment of the t-z curve in soil (sand and/or clay) that leads to the
prediction of a nonlinear vertical load-settlement response at the shaft head. Such a
relationship provides the mobilized shaft-head settlement under axial load and the ration

of load displacement or vertical pile head stiffness.

The procedure developed by Coyle and Reese (1966) to assess the load-settlement curve
is employed in this section. However, such a procedure requires knowledge of the t-z
curves (theoretical or experimental) that represent the load transfer to the surrounding soil

at a particular depth for the pile movement (z).

The following steps present the procedure that is employed to assess the load transfer and

pile movement in clay soil:
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Based on Skempton assumptions (1951), assume a small shaft base resistance, qp
(small percentage of quet =9 C).

qr =9 Cn =9 C SL =SL qpet (3-1)
Qp = dp Abase = SL qnet Abase (3-2)

C is equal to the clay undrained shear strength, S,. Apase 1s the area of the pile tip
(shaft base).

Using the SL evaluated above and the stress-strain relationship presented in
Chapter 5 [Norris (1986) and Ashour et al. (1998)], compute the induced axial

(deviatoric) soil strain, gp and the shaft base displacement, zp
Zp = €p B (3-3)
where B the diameter of the shaft base. See Section 3-3 for more details.

Divide the pile length into segments equal in length (hs). Take the load Qg at the
base of the bottom segment as (Qp) and movement at its base (zz) equal to (zp).
Estimate a midpoint movement for the bottom segment (segment 4 as seen in Fig.
3-3). For the first trial, the midpoint movement can be assumed equal to the shaft

base movement.

Calculate the elastic axial deformation of the bottom half of this segment,

_hJ2 (3-4)

V4 :
elastic
EA

base

The total movement of the midpoint in the bottom segment (segment 4) is equal to

z =z, +z (3-5)

elastic

Based on the soil properties of the surrounding soil (S, and €50), use a Ramberg-

Osgood formula (Eqn. 3-6) to characterize the backbone response (Richart 1975).
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R-1
9_t |, (L) (3-6)
r gr t ult t ult 7

z = total midpoint movement of a pile/shaft segment

v = average shear strain in soil adjacent to the shaft segment

T = average shear stress in soil adjacent to the shaft segment

vr 18 the reference strain, as shown in Fig. 3-4, and equals to Gj / Ty

7. = shaft segment movement associated to y,

€50 = axial strain at SL = 0.5 (i.e. 54 = S,). €50 can be obtained from the chart
provided in Chapter 5 using the value of S,.

B and R-1 are the fitting parameters of the a Ramberg-Osgood model given in

Eqn. 3-7. These parameters are evaluated in section 3.2.1.

6. Using Eqn. 3-6 which is rewritten in the form of Eqn. 3-7, the average shear stress

level (SL; =t / tyr) in clay around the shaft segment can be obtained iteratively based

on movement z evaluated in Eqn. 3-5.

Z_9_ g, [i+b(sL)y] (Solved for SLy) (3-7)
z, 9

7. Shear stress at clay-shaft contact surface is then calculated, i.e.
T=SL: Tu or t=SLaC (3-8)

where o is the ratio of Ca/C that expresses the variation in the cohesion of the
disturbed clay (C4) due to pile installation and freeze, as seen in Fig. 3-5 (DM7.2
, 1986). It should be noted that the drop in soil cohesion is accompanied by a
drop in the initial shear modulus (G;j) of the clay
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10.

11.

12.

13.

14.

15.

The axial load carried by the shaft segment in skin friction / adhesion (Qs) is

expressed as
Qs=n BHst (3-9)
Calculate the total axial load (Q;) carried at the top of the bottom segment (i = 4).

Qi=Qs+ Qs (3-10)

Determine the elastic deformation in the bottom half of the bottom segment

assuming a linear variation of the load distribution along the segment.

Qmia = (Qi + Qp) /2 (3-11)

Clastic:(MHVl/ EA=(Q1+ QB) s
2 ") SEA

(3-12)

Compute the new midpoint movement of the bottom segment.
Z=7p T Zelastic (3'13)

Compare the z value calculated from step 11 with the previously evaluated
estimated movement of the midpoint from step 4 and check the tolerance.
Repeat steps 4 through 12 using the new values of z and Qu,igq until convergence is

achieved

Calculate the movement at the top of the segment i= 4 as

4+ H
Zl-:ZB‘f'Ql 2QBA_E

The load at the base (Qp) of segment 1 = 3 is taken equal to Q4 (i.e. Qj+1) while zp
of segment 3 is taken equal to z and steps 4-13 are repeated until convergence for
segment 3 is obtained. This procedure is repeated for successive segments going

up until reaching the top of the pile where pile head load Q is Q; and pile top
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movement O is z;. Based on presented procedure, a set of pile-head load-
settlement coordinate values (Q - 0) can be obtained on coordinate pair for each
assumed value of Q. As a result the load transferred to the soil along the length
of the pile can be calculated for any load increment.

16. Knowing the shear stress (t) and the associated displacement at each depth (i.e.
the midpoint of the pile segment), points on the t-z curve can be assessed at each

new load.

3.3 DEVELOPED t-z CURVE RELATIONSHIP
For a given displacement (z), the mobilized shear stress (t) at the shaft-soil interface can

be expressed as a function of the ultimate shear strength (ty;) via the shear stress level

(SLy).

SL =1/ ture (3-14)

The shear displacement of the soil around the pile decreases with increasing distance
from the pile wall (Fig. 3-6). Based on a model study (Robinsky and Morrison 1964) of
the soil displacement pattern adjacent to a vertically loaded pile, it has been estimated
(Norris, 1986) that the average shear strain, y, within a zone of B/2 wide adjacent to the
pile accounts for 75% of the shear displacement, z, as shown in Fig. 3-7. A linear shear

strain, v, in the influenced zone (B/2) can be expressed as

075z 1.5z

= = 3-15
9 B/2 B ( )
Therefore,
gB
7= 3-16
1.5 ( )

As seen in Fig. 3-7 and because z is directly related to y based on shaft diameter (Eqn.3-

16), note that
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Zso G (3-17)
Zy 9

where 7 and ys¢ are the shaft displacement and the associated shear strain in the soil at

SL; = 0.5 (i.e. T=10.5 tut). zr and yr are the shaft displacement and the associated shear

strain at failure where SL; = 1.0 (i.e. T = ty). Therefore, the variation in the shear strain

(y) occurs in concert with the variation in shaft displacement z (Fig. 3-4). It should be

noted that soil shear modulus (G) exhibits its lowest value next to the pile skin and

increases with distance away from the pile to reach it is maximum value (Gj) at y and z =

0 (Fig. 3-6). Contrary to the shear modulus, the vertical displacement (z) and the shear

strain (y) reach their maximum value in the soil adjacent to the pile face and decrease

with increasing radial distance from the pile.

3.3.1 Ramberg-Osgood Model for Clay
With the above mentioned transformation of the t-z curves to t-y curves, a Ramberg-

Osgood model represented by Eqn. 3-6 can be used to characterize the t-z curve.

t t )"
Z_9_t l+b(—% (3-18)
z, g. tu]t tult]—

At t/ty; = 1 then

b _ (3-19)
9.
At t/tyr = 0.5 and y = vs50, then
2 G0 _ 1\+ 2 elr} l\~
g + 9. +
1= ) _ g, 7 (3-20)
log (0.5) log (0.5)
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The initial shear modulus (G;) and the shear modulus (Gsp) at SL = 0.5 can be determined

via their direct relationship with the normal stress-strain relationship and Poisson’s ratio

v)

E. E.
= : = — v for clay = 0.5 (3-21)
2(1+n) 3
and
E E
Gy=7r— = — = % (3-22)
2(1+n) 3 3e,
As seen in Fig. 3-4,
S t,
— u — uit 3-23
g, G G, (3-23)
058
_ u 3-24
9% = (3-24)

The shear strain at failure (yr) is determined in terms of the normal strain at failure Eg),

1.€.
e e
f f
9 (1+n) 1.5 (3-23)

The normal stress-strain relationship of clay (o4 - €) is assessed based on the procedure
presented in Chapter 5 that utilizes 5o and S, of clay. The initial Young’s modulus of
clay (E;) is determined at a very small value of the normal strain (g) or stress level (SL).

In the same fashion, &¢ is evaluated at SL = 1 or the normal strength G4 = 28S,.
3.4 PILE TIP (SHAFT BASE) RESISTANCE IN CLAY

In regard to the pile tip resistance (Qr — zr) response, the concept of Skempton’s

characterization (1951) is used as follows,
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QT = Qnet Abase = 9 C Abase

where clay cohesion, C, represents the undrained shear strength, S,. The stress level (SL
= 04/ o¢r) in clay is proportional to the pressure level (PL = q/qnet). Different from the
strain-deflection relationship established by Skempton (1951) for strip footing (yso = 2.5

€so B), the vertical soil strain (€) beneath the base of the shaft is expressed as

As, As, As,
= — 4+ n + N
E E E

for 6, = o3 and v = 0.5, then

_ Asias, g pn8ss
E

E

As, —As, As ,

G = E - E

Therefore, for a constant Young’s modulus (E) with depth, the strain or €; profile has the
same shape as the elastic (Ac; - Ac3) variation or Schmertmann’s I, factor (Schmertmann
1970, Schmertmann et al. 1979 and Norris 1986). Taking &, at depth B/2 below the shaft
base (the peak of the I, curve), the shaft base displacement (zr) is a function of the area of

the triangular variation (Fig. 3-9), or

z, = €eB (3-26)
Dealing with different values for the pile tip resistance, the associated deviatoric stress (g)
and base movement (a function of strain, €) can be determined (given the stress-strain, G4
- ¢ relationship of the clay immediately below pile tip) in order to construct the pile point

load-point displacement curve.

3.5 PROCEDURE VALIDATION

3.5.1 Comparison with the Seed-Reese t-z Curve in Soft Clay (California Test)
The test reported by Seed and Reese (1957) was conducted in the San Francisco Bay area

of California. As shown in Fig. 3-10, the soil conditions at that site consisted of 4 ft of
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fill, 5 ft of sandy clay, and around 21 ft of organic soft clay “bay mud”. The water table

was approximately 4 ft below ground.

Several 6-in.-diameter pipe piles (20 to 22 ft long) were driven into the above soil profile.
The pipe pile had a coned tip and maximum load of 6000 Ib. The top 9 ft of the

nonhemogeneous soil was cased leaving an embedment in clay of 13 ft.

A number of disturbed and undisturbed unconfined compression tests were conducted to
determine the unconfined compressive strength of clay (Fig. 3-11). Seven loading tests
were performed on the same pile at different periods of time that ranged from 3 hours to
33 days. As shown in Fig. 3-12, the ultimate bearing capacity of the clay reached a stable
and constant value (6200 1b) by the time of the seventh test. As a result, Coyle and Reese
(1966) considered the results of the seventh load test as representative for stable load

transfer-pile movement response.

Coyle and Reese (1966) used the data obtained from the current field test conducted by
Seed and Reese (1957) to compute the values of the load transfer response and pile
movement at different depths as seen in Fig. 3-13. Figure 3-14 exhibits an equivalent set
of the t-z curves at the same depths that are constructed by using the procedure presented
herein and based on the undrained compressive strength of clay that is described by the
dashed line shown in Fig. 3-11. The good agreement between the experimental and
predicted t-z curves can be seen in the comparison presented in Fig. 3-15. Such
agreement speaks to capability of the technique presented. The predicted t-z curve at the
deepest two points (20 and 22 feet below ground) and seen in Fig. 3-15 can be improved

by a slight increase in the undrained compressive strength utilized.

The good agreement between the predicted and experimental t-z curves resulted in an
excellent assessment for load distribution (due to shear resistance) along the pile. Fig. 3-
16 shows the assessed load distribution and tip resistance that are based on the procedure

presented and induced in 1000-Ib axial load increments up to an axial load of 6000 Ib. A
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comparison between the measured and predicted load distributions along the pile is

shown in Fig. 3-17.

The measured pile head load-settlement curves under seven cases of axial loads are
shown in Fig. 3-18. The loading tests were performed at different periods of time after
driving the pile. As mentioned earlier, the seventh test (after 33 days of driving the pile)
is considered for the validation of the procedure presented. Reasonable agreement can be

observed between the predicted and measured pile head load-settlement curve (Fig. 3-

18).

It should be noted that Seed and Reese (1957) established a procedure that allows the
assessment of the pile load-settlement curve and the distribution of the pile skin
resistance based on the data collected from vane shear test shown in Fig. 3-1. In addition,
some assumptions should be made for the point load movement in order to get good
agreement with the actual pile response. Seed and Reese (1957) presented explanation for
the lack of agreement between their calculated and measured data. The undrained
compressive strength collected using the vane shear test was the major source of that

disagreement.

3.6 SUMMARY

The procedure to evaluate the t-z and load-settlement curves for a pile in clay presented
here is based on elastic theory and Ramberg-Osgood characterization of the stress-strain
behavior of soil. This procedure allows the assessment of the mobilized resistance of the
pile using the developed t-z curve and the pile point load-displacement relationship. The
results obtained in comparison with the field data show the capability and the flexible
nature of the suggested technique. Based on the comparison study presented in this
chapter, the good agreement between the measured and predicted load transfer along the
pile, pile movement, pile-head settlement and pile tip resistance shows the consistency of
the technique’s assumptions. The findings in this chapter will be employed in Chapter 5
to evaluate the vertical side shear resistance induced by the lateral deflection of a large

diameter shaft and its contribution to the lateral resistance of the shaft.
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Fig. 3-7 Idealized Relationship Between Shear Strain in Soil (y)
and Pile Displacement (Z) (Norris, 1986)
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CHAPTER 4

VERTICAL SIDE SHAER AND POINT RESISTANCE OF
PILE/SHAFT IN SAND

4.1 INTRODUCTION

The friction pile in cohesionless soil gains its support from the pile tip resistance and the transfer
of load via the pile wall along its length. It has been suggested that the load transferred by skin
friction pile can be neglected which is not always the case. The load transferred via the pile wall
depends on the diameter and length of the pile, the surface roughness, and soil properties. It

should also be mentioned that both pile point and skin resistances are interdependent.

The assessment of the mobilized load transfer of a pile in sand depends on the success in
developing a representative t-z relationship. This can be achieved via empirical relationships
(Kraft et al. 1981) or numerical methods (Randolph and Worth, 1978). The semi-empirical
procedure presented in this chapter employs the stress-strain relationship of sand and findings
from experimental tests. The t-z curve obtained based on the current study will be used in
Chapter 5 to account for the vertical side shear resistance that develops with the laterally loaded

large diameter shafts.

The method of slices presented in this chapter reflects the analytical portion of this technique that
allows the assessment of the attenuating shear stress/strain and vertical displacement within the
vicinity of the driven pile. As a result, the load transfer and the t-z curve can be assessed using a

combination between the tip and side resistances of the pile.

PILE POINT (SHAFT BASE) RESISTANCE AND SETTLEMENT

(Qp — zp) IN SAND
It is evident that the associated pile tip resistance manipulates the side resistance of the pile shaft.
As presented in the analysis procedure, the pile tip resistance should be assumed at the first step.

As a result, the shear resistance and displacement of the upper segments of the pile can be
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computed based on the assumed pile tip movement. This indicates the need for a practical
technique that allows the assessment of the pile tip load-displacement relationship under a
mobilized or developing state. Most of the available techniques provide the ultimate pile tip
resistance that is independent of the specified settlement. In other words, the pile tip settlement
at the ultimate tip resistance is a function of the pile diameter (e.g. 5 to 10% of pile tip diameter).
Thereafter, a hyperbolic curve is used to describe the load-settlement curve based on the

estimated ultimate resistance and settlement of the pile tip.

Elfass (2001) developed an approach that allows the assessment of the mobilized pile tip
resistance in sand and the accompanying settlement over the whole range of soil strain up to and
beyond soil failure. In association with the pile side shear resistance technique presented in
Section 4-2, the approach established by Elfass (2001) will be employed in the current study to

compute the pile tip load-settlement in sand.

The failure mechanism developed by Elfass (2001) assumes four failure zones represented by
four Mohr circles as shown in Fig. 4.1. This mechanism yields the bearing capacity (q) and its

relationship with the deviatoric stress (c4) of the last (fourth Mohr circle) as shown in Fig 4-2. .
s, = 06g¢g 4-1)

The pile tip resistance (Qp ) is given as,

S_d Aha\‘e
0.6

where Apse 1S the cross sectional area of the pile tip (shaft base).

QP = q Abase = (4-2)

As seen in Fig. 4-1, the Mohr Columb strength envelope is nonlinear and requires the evaluation
of the secant angle of the fourth circle (¢rv) tangent to the curvilinear envelope. The angle of the
secant line tangent to first circle (¢p) at effective overburden pressure can be obtained from the

field blow data count (SPT test) or a laboratory triaxial test at approximately 1 tsf (100 kPa)

confining pressure. Due to the increase in the confining pressure (Ss3) from one circle to the
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next, the friction angle (¢) decreases from @; at (S 5) , to oy at (§3) ,» based on the following

Bolton (1986) relationship modified by Elfass (2001) (Fig. 4-3)

= J min +j diff (4-3)

J peak

i = 31, = 3D, {10-mK2+tan2(345+j /2)%53” -1 (4-4)

s is in kPa. Omin 1S the lowest friction angle that ¢ may reach at high confining pressure, as

shown in Fig. 4-4 and Dr is inputted as its decimal value.

Knowing the sand relative density (D;) and the associated friction angle under the original
confining pressure (S; =S ., ), the reduction in the friction angle (A@) due to the increase of the

confining pressure from S, to (ga) ,» can be evaluated based on Eqns. 4-3 and 4-4, as

described in the following steps:

1. Based on Eqn. 4-4, calculate (@) at the original confining pressure (S3 =S v )
2 .

(), =3D, J10-m|[2ren W54 2) )8 L (4-5)

2. Assume a value for the deviatoric stress (G4) of the fourth circle (Fig. 4-2). As a result,
S d
=—= 4-6

=06 (4-6)

(§3)1V =gvo +q _Sd = gva +04q (4-7)
3. Assume a reduction (Ag = 3 or 4 degrees) in the sand friction angle at (S5 =S 1)

due to the increase in the confining pressure from S to (gg) v » as seen in Fig. 4-4.

Therefore,

OV =01 - A@ (4-8)
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As presented by Elfass (2001) and shown in Fig. 4-4, ¢ changes in a linear pattern with
the logarithmic increase of S;. The friction angle v associated with the confining

pressure (ss) ,» can be calculated as

N I
=i, —Af log—L (4-9)

Vo

According to the computed friction angle (@1v), use Eqn. 4-4 to evaluate (Qgisf)rv-

G ) =3D, {10—1{(2“”2(435” ’”2)\}(53)”“ g (4-10)

Having the values of (@gie)1 and (@aisf)rv, a revised value for Ag can be obtained.

AQ = (@i - (Pair)rv (4-11)

Compare the value of A obtained in step 6 with the assumed A¢ in step3. If they are
different, take the new value and repeat the steps 3 through 7 until the value of ¢rv

converges and the difference in A reached is within the targeted tolerance.

Using the calculated values of ¢; and @1y, the deviatoric stress at failure can be expressed

as
S, =(Ss), (an® (45+j ,,/2)-1) (4-12)

The current stress level (SL) in soil (Zone 4 below pile tip) is evaluated as

_tan’(45+j ,/2)-1 s,

SL= = : s,=SLs 4-13
tan’ (45+j , /2)-1 s, ¢ v (-13)
where
i, =sin | =222 \— (4-14)
(S$3), +s,/27
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4.2.1 Pile Tip Settlement

As presented in Chapter 3 with clay soil, the pile tip displacement in sand can be determined
based on the drained stress-strain relationship presented in Chapter 5 (Norris 1986 and Ashour et
al. 1998). The soil strain (g) below the pile tip is evaluated according to the following equations:

Corresponding to a triaxial test at a given confining pressure (g 3) at a deviator stress (oq) and

stress level (SL) as given by Eqns. 4-12 through 4-14.

SL e& 707 SL

e-—— ey (4-15)

The value 3.707 and A represent the fitting parameters of the power function relationship, and €59

symbolizes the soil strain at 50 percent stress level. A is equal to 3.19 for SL less than 0.5 and A

decreases linearly with SL from 3.19 at 0.5 to 2.14 at SL equal to 0.8.

Equation 4-16 represents the final loading zone which extends from 80 percent to 100 percent

stress level. The following equation is used to assess the strain (¢) in this range:

100 e

SL =exp[1n 0.2+(—)} ;. SL >20.80 (4-16)
me+gq

where m=59.0 and q=95.4 €50 are the required values of the fitting parameters.
The two relationships mentioned above are developed based on unpublished experimental results

(Norris 1977).

For a constant Young’s modulus (E) with depth, the strain or € profile has the same shape as the
elastic (Ao - Acs) variation or Schmertmann’s I, factor (Schmertmann 1970, Schmertmann et al.

1979 and Norris 1986). Taking €; at depth B/2 below the shaft base (the peak of the I, curve),

the shaft base displacement (zp) is a function of the area of the triangular variation (Fig. 3-9).
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z, = €eB (4-17)
where B is the diameter of the pile point (shaft base). Dealing with different values for pile tip
resistance (Eqn. 4-2), the associated deviatoric stress (Eqn. 4-1), stress level Eqn. 4-13) and
principal strain €) (Eqns. 4-15 and 4-16) can be used to assess base movement in order to

construct the pile tip load-settlement (Qp — zp) curve.

4.2 LOAD TRANSFER ALONG THE PILE/SHAFT SIDE
(VERTICAL SIDE SHEAR)

4.3.1 Method of Slices for Calculating the Shear Deformation and
Vertical Displacement in Cohesionless Soil

The methodology presented in this chapter is called the method of slices. The soil around the
pile/shaft is modeled as soil horizontal slices that deform vertically as shown in Fig. 4-5. The
shear stress/strain caused by the shaft settlement (z) at a particular depth gradually decreases
along the radial distance (r) from the pile wall. As seen in Fig. 4-6, the shear stress (t) and strain
(y) experience their largest values (tTmax and ymax) just at the contact surface between the shaft and
the adjacent sand. Due to the shear resistance of sand, the induced shear stress/ strain decreases

to zero and large radial distance (r).

Randolph and Worth (1978) and Kraft et al. (1981) assume the shear stress decreases with
distance such that t r = 1,1, in which 7, is the shear stress (tmax) at the pile wall (t,); and 1 is the
shear stress angular ring at distance r. However, Randolph and Worth (1978) argued this
assumption and indicated that the shear stress decreases rapidly with the distance r. Based on
this assumption, Terzaghi (1943) showed a more decreasing parabolic pattern (similar to the one
shown in Fig. 4-7) for the horizontal variation of the shear stress caused by the axially loaded
sheet pile embedded in a homogenous mass of soil. Robinsky and Morrison (1964) performed
experimental tests on model piles embedded in sand that exhibited the parabolic deflection

pattern seen in Fig. 4-7. The following relationship describes the attenuation in the shear stress

(7) in soil with the distance r for such a parabolic pattern.
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— =l (4-18)

In order to understand the slice method, the stress-strain conditions of a small soil element at the
contact surface with the pile shaft is analyzed. Figure 4-8 shows the induced shear stress on the

soil-pile contact surface.

The lateral earth pressure coefficient (K) varies, with the radial distance, from 1 at the pile wall
(due to pile installation) to K = K, =1 —sin ¢ in the free-field where the z-movement-induced

shear stress (t) reaches zero. Therefore, the horizontal effective stress at the pile wall after

installation (prior to loading of the pile) just equals the vertical effective overburden, S v (ie.

lateral earth pressure coefficient K = 1). It should be noted that t, represents the Tm.x induced at

the pile wall. Accordingly, a Mohr circle with a center at S ., and a diameter of 21, (Tmax = To)

develops at r =1,, as shown in Fig. 4-8. With radial distance from the pile, the horizontal normal
stress (o) and the deviator stress (64) continue to drop from S o and 2Tmax at o 10 S v (1-sinj )
and S ., (1-K,) or S, sinj in the far-field (where t due to z is 0). The corresponding shear

strain (Y = Ymax) Causes a major normal strain €,
er=(1+v)y (4-19)

In addition, the shear modulus (G) is related to the Young’s modulus (E) at the given effective

confining pressure (S ;) and normal strain (g1), 1.e.

E

T 20 +n) (320

The method of slices described in Fig. 4-10, is based on the shear stress variation concepts
presented above. The proposed method of slices provides the radius of the soil ring (radial

distance, r) over which the induced shear stress diminishes, as shown in Fig. 4-7.
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As shown in Fig. 4-11 for soil ring 1, the horizontal stress (©n) on the soil-pile interface (inner

surface of the first soil slice) is equal to S.. At the same time, the horizontal stress (on) on the

outer surface is expressed as

Sh =gv0 _At (4-21)
The horizontal (radial and tangential) equilibrium is based on the ring action for the whole ring
of soil (2nr) around the pile. The vertical equilibrium is also conducted on a full ring of soil.

The vertical equilibrium of the first soil ring (slice) adjacent to the pile wall is expressed by the

following equations:

dF =0 (4-22)

R,cosj , — R, cosj , —AT -W, =0 (4-23)
Therefore,

Rycosj , —R,cosj , —AT-W, =0 (4-24)
and

W, =R, cosj , —R,cosj , —AT (4-25)

where AT represents the reduction in the vertical shear force along the radial width (Ar) of the

horizontal soil ring.
The following steps explain the implementation of the method of slices:

I. Divide the pile length into a number of segments that are equal in length (Hs). Note that

the effective stress (g v ) (i.e. the initial confining stress) increases with depth for each
pile segment.

2. Assume a shear stress developed at the soil-pile interface (r = 1,) equal to that at soil

failure or ty. It should be noted that there might be a slip condition (e.g. Tiimit = K S

tand) at the soil pile interface that limits to a value Tjimi less than tyy.
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Determine the developing confining pressure S5 due 0 Timax (Fig. 4-11)
Sy=K,S., =1—-sinj (4-26)

where ¢ the friction angle at failure.

Increase the radial distance (r) from 1, to r; by a small incremental amount (Ar). As a

result, the vertical shear stress on the face of the slice at ; will drop to T as expressed in

Eqn. 4-21.

The horizontal stress (on) on the vertical face of the soil slice decreases with the
attenuating shear stress (t) as shown in Fig. 4-9 until it reaches the value of s, given in
Eqn. 4-26. The Mohr circles shown in Fig. 4 describe the decrease in horizontal stress
(on) and the mobilized friction angle (pm) in association to the attenuation in the shear

stress (1) (and the vertical shear force, T, on a vertical unit length) acting on the vertical

face of the soil ring, i.e.

AT; =Ty —T) =27 (1oTo - 11T1) (4-27)
R, =—2 p(’-1,>) (4-28)
cosJ
. gvo 2 2
Ry=——p -r,) (4-29)
Cos|

It should be noted that S v 18 the effective stress at the middle of the slice which is used
as an average effective stress for the whole slice (i.e. with More circle). The angles ¢t

and @g at the top and bottom of the first soil ring, respectively, are determined as follows,

i, =sin e (4-30)
SVU
. . t
j,=sin" —1— where At =t -t 4-31
T A o 1
S vo t
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¢p equals @t of the next slice (soil ring 2) where t; and 1, are the vertical shear stresses at

radii r; and rp, respectively (Fig. 4-12).

6. Based on the induced shear stress (1,) on the inner face of the current soil ring (first ring)
and its Mohr circle, calculate the associated shear strain (y) that develop over the width
(Ar) of the current soil ring. For each horizontal soil slice i (soil ring with a width Ar) and
based on the induced shear stress (t) as seen in Fig. 4-10, the normal strain and stress (¢

and 64), and v will be evaluated. Thereafter, determine the associating shear strain y; and

vertical displacement z; as follows,

g =—— (4-32)

where

n =0.1+04 SL

z, =0, Ar, (4-33)

7. Repeat steps 1 through 6 for larger values of r (i.e. an additional soil ring) and calculate z

for each soil slice (ring) until the induced vertical shear stress approaches zero at r = 1y.

8. Assess the total vertical displacement at the soil-pile contact (T = Tpax OF To) as follows,
t=0
z, =)z (4-34)
t=t,

z¢ represents the elastic vertical displacement at failure at the soil-pile contact that is

needed to construct the Ramberg-Osgood model in the next sections.

It would be noticed that the soil ring is always in horizontal equilibrium. For example, the

horizontal equilibrium for the first ring of soil can be expressed as

Y F =0
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E +R,sinj , —E, —Rysinj , =0

(4-35)

where,
E =s. 2p, H, (4-37)
E =S, 2o H, (4-38)

S, varies from S ., at the sand-pile contact surface to S, (1 —sinj ) at ry where the induced

shear stress (1) = 0, as shown in Fig. 4-7.

4.3.2 Ramberg-Osgood Model for Sand

As presented in Chapter 3 with the clay soil, Ramberg-Osgood model represented by Eqn. 4-39
can be used to characterize the t-z curve.

t t )"
z_9_1 1+ b(—%
Zr gr t ult t ult 7

(4-39)
At t/ty: = 1 then
b= g—f — (4-40)
g,
At t/tyr = 0.5 and y = vs0, then
2% ) 29 ;]
g + 9. +
b = 9 i
R_1= ) _ g, 7 (4-41)
log (0.5) log (0.5)

The initial shear modulus (G;j) at a very low SL and the shear modulus (Gso) at SL = 0.5 can be

determined via their direct relationship with the normal stress-strain relationship and Poisson’s
ration (V)
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E E

G=——— = . v for sand = 0.1 (4-42)
2(1+n) 2.2
and
E E s, /2
s — 50 — 50 — df (4_43)
2(1+n) 3 3e,
Therefore,
t, Sy /2
= L = — 4-44
g, ) ) (4-44)

1 1

The Poisson’s ratio (v) for sand varies 0.1 to 0.5 with the increasing values of SL as follows,

n =0.1+04SL (4-45)

The shear strain at failure (yr) is determined in terms of the normal strain at failure (gf).

€ € (4-46)
9T Uin T 15 )

The normal stress-strain relationship of sand (o4 - €) is assessed based on the procedure

presented in Chapter 5. The initial Young’s modulus of clay (E;) is determined at a very small
value of the normal strain () or stress level (SL). In the same fashion, & is evaluated at SL = 1
or the normal strength 4. By knowing the values of y,, yso and y¢, the constants 3 and R of the

Ramberg-Osgood model shown in Eqn. 4-39 can be evaluated.

The Ramberg-Osgood model given in Eqn. 4-39 allows the assessment of the elastic vertical
displacement that occurs at the soil-pile contact surface based on zs obtained in Section 4-3-1.

Equation 4-39 can be rewritten as follows,

z t \Rl
B {” b( i } e

where,
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== ie. z =z, — (4-48)

4.3.3 Procedure Steps to Assess Load Transfer and Pile Settlement
in Sand (t-z Curve)

The assessment of the load transfer and associated settlement of a pile embedded in sand requires
the employment of t-z curve for that particular soil. The load transferred from pile shaft to the
surrounding sand is a function of the diameter and the surface roughness of the pile skin and
sand properties (effective unit weight, friction angle, relative density and confining pressure) in
addition to the pile tip resistance. The development of a representative procedure allows the
assessment of the t-z curve in soil (sand and/or clay) that leads to the prediction of a nonlinear
load-settlement curve at the pile/shaft head. Such a relationship provides the mobilized pile-head

settlement under axial load and vertical shear resistance.

A new procedure is developed in this chapter to assess pile/shaft skin resistance in sand in a
mobilized fashion. The proposed procedure provides the deformation in sand around the pile in
the radial zone affected by the pile movement (Fig. 4-1). At the same time, the horizontal
degradation (attenuation) of the shear stress away from the pile is evaluated by the suggested
analysis. As a result, the varying shear stress/strain, shear modulus and deformation in the radial

distance away from the pile can be predicted based on reasonable assumptions.
The presented t-z curve is developed according to the induced displacement along the pile. The
following steps present the procedure that is employed to assess the load transfer and pile

movement in sand soil:

1. Based on the approach presented in Section 4-2 for the pile tip resistance, assume a small

pile tip resistance, Qp as given in Eqns (4-1 and 4-2)
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Using the SL evaluated above and the stress-strain relationship presented in Eqns. 4-13
through 4-16, compute the induced axial (deviatoric) soil strain, €p and the shaft base

displacement, zp = ep B. B is the diameter of the shaft base.

Divide the pile length into segments equal in length (hs). Take the load Qg at the base of
the bottom segment as (Qp) and movement at its base (zg) equal to (@p). Estimate a
midpoint movement for the bottom segment (segment 4 as seen in Fig. 4-13). For the

first trial, the midpoint movement can be assumed equal to the shaft base movement.

Calculate the elastic axial deformation of the bottom half of this segment,

z elastic — QB hS / 2 (4-49)
EAbase

The total movement of the midpoint in the bottom segment (segment 4) is equal to

z = ZT + Zelastic (4-50)

Based on the soil properties of the surrounding sand, use a Ramberg-Osgood formula to

characterize the backbone response (Richart 1975).

igt_[Hb[t_l ] (4-51)
z g. tult t 7

r ult

z = total midpoint movement of a pile/shaft segment

v = average shear strain in soil adjacent to the shaft segment

T = average shear stress in soil adjacent to the shaft segment

vr 1s the reference strain, as shown in Fig. 3-4, and given by Eqn. 4-44
7, = shaft segment movement associated to y;

€50 = axial strain at SL. = 0.5. €59 can be obtained from the chart provided in Chapter 5.
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10.

11.

B and R-1 are the fitting parameters of the Ramberg-Osgood model given in Eqn. 4-52.

These parameters are evaluated in section 4.2.1.

Using Eqn. 4-51 which is rewritten in the form of Eqn. 4-52, the average shear stress
level SL;) in sand around the shaft segment can be obtained iteratively based on

movement z evaluated in Eqn. 4-50.

V4

=51, [1+b(s,)] (Solved for SLy) (4-52)

_9
z g.

Shear stress at soil-shaft contact surface is then calculated, i.e.
©=SL 642 (4-53)

The axial load carried by the shaft segment in skin friction / adhesion (Qs) is

expressed as
Qs=mBhgt (4-54)
Calculate the total axial load (Q;) carried at the top of the bottom segment (i = 4).

Qi=Qs+ Qs (4-55)

Determine the elastic deformation in the bottom half of the bottom segment

assuming a linear variation of the load distribution along the segment.

Qmia = (Qi +Qg) /2 (4-56)
_(Qmid 2+ QB hj\ / EA — (Ql +3 QB) hs (4_57)

elastic — 3

) 8EA

Compute the new midpoint movement of the bottom segment.

4-15



12.

14.

15.

16.

17.

4.4

2= 7p 1 Zelastic (4_58)

Compare the z value calculated from step 11 with the previously evaluated estimated
movement of the midpoint from step 4 and check the tolerance.

Repeat steps 4 through 12 using the new values of z and Qmi¢ until convergence is
achieved

Calculate the movement at the top of the segment i= 4 as

The load at the base (Qg) of segment i = 3 is taken equal to Q (i.e. Q) while zg of
segment 3 is taken equal to z and steps 4-13 are repeated until convergence for segment
3 is obtained. This procedure is repeated for successive segments going up until reaching
the top of the pile where pile head load Q is Q; and pile top movement 6 is z. Based on
presented procedure, a set of pile-head load-settlement coordinate values (Q - d) can be

obtained on coordinate pair for each assumed value of Qr. As a result the load

transferred to the soil along the length of the pile can be calculated for any load
increment.
Knowing the shear stress ) and the associated displacement at each depth (i.e. the

midpoint of the pile segment), points on the t-z curve can be assessed at each new load.

PROCEDURE VALIDATION

As reported by Vesic (1970), an 18-inch diameter steel pipe pile with 0.5-inch-thick walls was

driven and tested in five stages. The bottom section has a 2-in thick flat steel plate at the base of

the pile. Tests with this pile were performed at driving depths of 10, 20, 30, 40 and 50 ft.

Figure, 4-14 shows the results of the standard penetration tests (SPT) at different locations at the

test site. Figure 4-15 the particle size distribution curves of two different types of sands. The
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fine sand curves in this figure refer to the material found mostly at the top 5 ft of the soil profile.
It should be noted that the frictions angles shown in Table 4-1 is a little bit relatively high

compared to the associated (N )s0.

Table 4-1 — Suggested Soil Data for Current Soil Profile

Soil Soil type Thickness | v (pcf) (N1)so ¢ (deg.) €50™*
layer # (ft)

1 Sand 10 110 9 30 0.009

2 Sand 10 60 15 32 0.007

3 Sand 10 60 19 35 .006

4 Sand 10 66 24 39 .004

5 Sand 10 66 32 42 0.003

Figure 4-16 exhibits a comparison between the measured and computed data at the depths 20, 40
and 50 ft below ground. Good agreement between the measured and computed axial pile load

can be seen in Fig. 4-16.

45 SUMMARY

This Chapter presents a procedure that allows the assessment of the t-z and load-settlement
curves for a pile in sand. The methodology employed is based on the elastic theory, stress-strain
relationship, and the method of slices for the vertical equilibrium. The results obtained
incorporate the pile tip and side resistance in a mobilized fashion. The results obtained in
comparison with the field data show the capability of the suggested technique. The findings of
this chapter will be employed in Chapter 5 to evaluate the vertical side shear resistance induced

by the lateral deflection of a large diameter shaft and its contribution to the lateral resistance of
the shaft.
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Fig. 4-1 Failure Mechanism of Sand Around Pile Tip (Elfass, 2001)
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Fig. 4-2 Relationship Between Bearing Capacity (qnet) of Pile Tip in Sand and the Deviatoric
Stress (oq) (after Elfass, 2001)
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Fig. 4-3 Degradation in the Secant Friction Angles of Circles Tangent to a Curvilinear

Envelope of Sand Due to the Increase in the Confining Pressure (Elfass, 2001)
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Fig. 4-4 Changes of Friction Angle (¢) with the Confining Pressure
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Fig. 4-5 Soil Deformation in the Vicinity of Axially Loaded Pile.
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Fig. 4-11 Forces and Stresses Applied on the Soil Ring (Slice) Number 1
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CHAPTER 5

LATERAL LOADING OF A SHAFT IN LAYERED SOIL
USING THE STRAIN WEDGE MODEL

5.1 INTRODUCTION

The strain wedge (SW) model is an approach that has been developed to predict the response of a
flexible pile under lateral loading (Norris 1986, Ashour et al. 1996 and Ashour et al. 1998). The
main concept associated with the SW model is that traditional one-dimensional Beam on Elastic
Foundation (BEF) pile response parameters can be characterized in terms of three-dimensional
soil-pile interaction behavior. The SW model was initially established to analyze a free-head
pile embedded in one type of uniform soil (sand or clay). However, the SW model has been
improved and modified through additional research to accommodate a laterally loaded pile
embedded in multiple soil layers (sand and clay). The SW model has been further modified to
include the effect of pile head conditions on soil-pile behavior. The main objective behind the
development of the SW model is to solve the BEF problem of a laterally loaded pile based on the

envisioned soil-pile interaction and its dependence on both soil and pile properties.

The problem of a laterally loaded pile in layered soil has been solved by Reese (1977) as a BEF
based on modeling the soil response by p-y curves. However, as mentioned by Reese (1983), the
nonlinear p-y curve employed does not account for soil continuity and pile properties such as

pile stiffness, pile cross-section shape and pile head conditions.

The SW model was initially developed to assess the response of a laterally loaded long (slender)
pile (diameter < 3 ft). As a result, the effect of the vertical side shear (Vv) along the side of a
large diameter shaft should be integrated in the SW model analysis to account for such a
significant parameter in the analysis of large diameter shafts (Fig. 5-1). In addition, the
characterization of the intermediate and short shafts should be incorporated in the SW model

analysis to cover broader aspects of the shaft/pile analysis.
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5.2 THE THEORETICAL BASIS OF STRAIN WEDGE MODEL
CHARACTERIZATION

The SW model parameters are related to an envisioned three-dimensional passive wedge of soil
developing in front of the pile. The basic purpose of the SW model is to relate stress-strain-
strength behavior of the soil in the wedge to one-dimensional BEF parameters. The SW model
is, therefore, able to provide a theoretical link between the more complex three-dimensional soil-
pile interaction and the simpler one-dimensional BEF characterization. The previously noted
correlation between the SW model response and BEF characterization reflects the following

interdependence:

o the horizontal soil strain (¢) in the developing passive wedge in front of the pile to the
deflection pattern (y versus depth, x) of the pile;

o the horizontal soil stress change (Acy) in the developing passive wedge to the soil-pile
reaction (p) associated with BEF behavior; and

o the nonlinear variation in the Young's modulus (E = Acp/e) of the soil to the nonlinear
variation in the modulus of soil subgrade reaction (E; = p/y) associated with BEF

characterization.

The analytical relations presented above reflect soil-pile interaction response characterized by
the SW model that will be illustrated later. The reason for linking the SW model to BEF analysis
is to allow the appropriate selection of BEF parameters to solve the following fourth-order

ordinary differential equation to proceed.

El(d4y\++Es(x)y+Px( 0 (5-1)

dzyl_'_ dzMR l_
d'x] '

d’x] d*x j'_

where My is the resisting bending moment per unit length induced along the shaft length (x) due
to the vertical side shear (Vv) (Fig. 5-1). The closed form solution of the basic form of the above
equation has been obtained by Matlock and Reese (1961) for the case of uniform soil. In order
to appreciate the SW model’s enhancement of BEF analysis, one should first consider the

governing analytical formulations related to the passive wedge in front of the shaft, the soil’s
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stress-strain and the vertical side shear (t-z curve) formulations, and the related soil-pile

interaction.

5.3  SOIL PASSIVE WEDGE CONFIGURATION

The SW model represents the mobilized passive wedge in front of the pile which is characterized
by base angles, ¢, and B, the current passive wedge depth h, and the spread of the wedge fan
angle, ¢ n (the mobilized friction angle of soil). The horizontal stress change at the passive
wedge face, Aoy, and side shear, 1, act as shown in Fig. 5-2. One of the main assumptions
associated with the SW model is that the deflection pattern of the pile is taken to be linear over
the controlling depth of the soil near the pile top resulting in a linearized deflection angle, J, as

seen in Fig. 5-3.

The SW model makes the analysis simpler because forces (F;) on the opposite faces cancel, but
the real zone of stress is like the dashed outline shown in Fig. 5-4b which includes side shear
influence (6) on the shape of the strained zone. However, the 6 perpendicular to the face of the
pile is still considered in the SW model analysis. As seen in Fig. 5-4c, the horizontal equilibrium
in the SW wedge model is based on the concepts of the conventional triaxial test. The soil at the

face of the passive wedge is represented by a soil sample in the conventional triaxial test where

S, (ie. K= 1) and the horizontal stress change, Adyp, (from pile loading) are the confining and

deviatoric stresses in the triaxial test, respectively.

The relationship between the actual (closed form solution) and linearized deflection patterns of
long pile/shaft has been established by Norris (1986) (h/X, = 0.69). As seen in 5-5, the
relationship (h/X,) between the actual and linearized deflection for the short shaft is equal to 1,
and varies for the intermediate shafts from 0.69 at (L/T =4) to 1 at (L/T = 2). As presented in
Chapter 2, L is the embedded length of the shaft and T is the initial relative shaft stiffness.

It should be noted that the idea of the change in the full passive wedge (mobilized passive wedge

at different levels of deflection) employed in the SW model has been shown experimentally by
Hughes and Goldsmith (1978) and previously established by Rowe (1956).

5-3



Changes in the shape and depth of the upper passive wedge, along with changes in the state of
loading and shaft/pile deflection, occur with change in the uniform strain €) in the developing
passive wedge. As seen in Fig. 5-6, two mobilized (tip to tip) passive wedges are developed in
soil in front of the short shaft. Because of the shaft straight-line deflection pattern with a
deflection angle 6, the uniform soil strain €) will be the same in both (i.e. upper and lower)

passive wedges.

As shown in Figs. 5-5 and 5-6, the deflection pattern is no longer a straight line for the
intermediate shaft, and the lower passive wedge has a curved shape that is similar to the
deflection pattern. Accordingly, the soil strain (€x) at depth x below the zero crossing will not be
uniform and will be evaluated in an iterative method based on the associated deflection at that

depth (Fig. 5-6¢)

The lateral response of the short shaft is governed by both (upper and lower) developed passive
wedges (Fig. 5-6). However, with the intermediate shaft, less soil strain (i.e. stress on soil)
develops in the lower passive soil wedge (the inverted wedge below the point of zero crossing)
compared to the upper one (Fig. 5-6). The non-uniform soil strain (gy) in the lower passive soil
wedge (Fig. 5-6¢) becomes much smaller compared to the strain in the upper soil wedge when
the shaft deflection approaches the deflection pattern of the long shaft. Since the lateral
deflection of the long pile/shaft below the zero crossing is always very small, the associated soil
strain and developing passive wedge will be very small as well. Consequently, the developing
upper passive soil wedge (and uniform strain therein) dominates the lateral response of the long

pile/shaft; hence the adopted name “strain wedge” (SW).

As seen in Figs. 5-3 and 5-6, the configuration of the wedge at any instant of load and,

therefore,base angle

J
e, =45-= 5-2

mobilized friction angle, ¢, and wedge depth, h, is given by the following equation:

or its complement
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b, =45+l (5-3)

The width, BC , of the wedge face at any depth is

BC=D+(h-x)2tanb_tanj (5-4)
where x denotes the depth below the top of the studied passive wedge, and D symbolizes the
width of the pile cross-section. It should be noted that the SW model is based upon an effective

stress analysis of both sand and clay soils. As a result, the mobilized fanning angle, ¢, is not

zero in clay soil as assumed by Reese (1958, 1983).

The above equations are applied to the upper and lower passive wedges in the case of short and
intermediate shafts where x for any point on the lower passive wedge (Fig. 5-6¢) is measured

downward from the zero crossing and replaces the term (h - x) in Eqn. 5-4. Therefore,

e-ev./m/d = e (5-5)

where € and & are the uniform soil strain and linearized shaft deflection angle of the upper

passive wedge, respectively. yx and Oy are the shaft deflection and secant deflection angle at

depth x below the zero crossing (Fig. 5-6¢).

54  STRAIN WEDGE MODEL IN LAYERED SOIL

The SW model can handle the problem of multiple soil layers of different types. The approach
employed, which is called the multi- sublayer technique, is based upon dividing the soil profile
and the loaded pile into sublayers and segments of constant thickness, respectively, as shown in
Fig. 5-7. Each sublayer of soil is considered to behave as a uniform soil and have its own
properties according to the sublayer location and soil type. In addition, the multi-sublayer
technique depends on the deflection pattern of the embedded pile being continuous regardless of
the variation of soil types. However, the depth, h, of the deflected portion of the pile is
controlled by the stability analysis of the pile under the conditions of soil-pile interaction. The

effects of the soil and pile properties are associated with the soil reaction along the pile by the
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Young's modulus of the soil, the stress level in the soil, the pile deflection, and the modulus of
subgrade reaction between the pile segment and each soil sublayer. To account for the
interaction between the soil and the pile, the deflected part of the pile is considered to respond as
a continuous beam loaded with different short segments of uniform load and supported by
nonlinear elastic supports along soil sublayers, as shown in Fig. 5-8. At the same time, the point
of zero deflection (X, in Fig. 5-5) for a pile in a particular layered soil varies according to the

applied load and the soil strain level.

The SW model in layered soil provides a means for distinguishing layers of different soil types
as well as sublayers within each layer where conditions (€50, SL, ¢n) vary even though the soil
and its properties ( vy, e or Dy, @ , etc.) remain the same. As shown in Fig. 5-9 , there may be
different soil layers and a transition in wedge shape from one layer to the next, with all
components of the compound wedge having in common the same depth h. In fact, there may be
a continuous change over a given sublayer; but the values of stress level (SL) and mobilized
friction angle (¢n) at the middle of each sublayer of height, H, are treated as the values for the

entire sublayer.

As shown in Fig. 5-9, the geometry of the compound passive wedge depends on the properties
and the number of soil types in the soil profile, and the global equilibrium between the soil layers
and the loaded pile. An iterative process is performed to satisfy the equilibrium between the
mobilized geometry of the passive wedge of the layered soil and the deflected pattern of the pile

for any level of loading.

While the shape of the wedge in any soil layer depends upon the properties of that layer and,
therefore, satisfies the nature of a Winkler foundation of independent “soil” springs in BEF
analysis, realize that there is forced interdependence given that all components of the compound
wedge have the same depth (h) in common. Therefore, the mobilized depth (h) of the compound
wedge at any time is a function of the various soils (and their stress levels), the bending stiffness
(EI), and head fixity conditions (fixed, free, or other) of the pile. In fact, the developing depth of
the compound wedge can be thought of as a retaining wall of changing height, h. Therefore, the

resultant “soil” reaction, p, from any soil layer is really a “soil-pile” reaction that depends upon
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the neighboring soil layers and the pile properties as they, in turn, influence the current depth, h.
In other words, the p-y response of a given soil layer is not unique. The governing equations of
the mobilized passive wedge shape are applied within each one- or two-foot sublayer 1 (of a

given soil layer I) and can be written as follows:

(@, )=45-= (5-6)
(b, )=45 +(J—2m) (5-7)
(BC )=D+(h-x)2(tanb, ) (tanj ) (5-8)

where h symbolizes the entire depth of the compound passive wedge in front of the pile and x;
represents the depth from the top of the pile or compound passive wedge to the middle of the
sublayer under consideration. Equations 5-6 through 5-8 are applied at the middle of each
sublayer. In the case of short and intermediate shafts, x; is measured downward from the point of
zero crossing and replaces the term (h - x;) in Eqn 5-8, as shown in Fig. 5-6, for analysis of the

lower wedge.

5.5 SOIL STRESS-STRAIN RELATIONSHIP

The horizontal strain (g) in the soil in the passive wedge in front of the pile is the predominant

parameter in the SW model; hence, the name “strain wedge”. Consequently, the horizontal stress

change (o) is constant across the width of the rectangle BCLM (of face width BC of the

passive wedge ), as shown in Fig. 5-4. The stress-strain relationship is defined based on the

results of the isotropically consolidated drained (sand) or undrained (clay) triaxial test. These

properties are summarized as follows:

o The major principle stress change (Acy) in the wedge is in the direction of pile
movement, and it is equivalent to the deviatoric stress in the triaxial test as shown in Fig.
5-4 (assuming that the horizontal direction in the field is taken as the axial direction in the
triaxial test).

o The vertical stress change (Acy) and the perpendicular horizontal stress change (Acpn)

equal zero, corresponding to the standard triaxial compression test where deviatoric stress
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is increased while confining pressure remains constant.

° The initial horizontal effective stress is taken as

sw=Ks.=s.
where K=1 due to pile installation effects. Therefore, the isotropic confining pressure in
the triaxial test is taken as the vertical effective stress ( EVO) at the associated depth.

o The horizontal stress change in the direction of pile movement is related to the current
level of horizontal strain (g) and the associated Young's modulus in the soil, as are the
deviatoric stress and the axial strain, to the secant Young’s modulus (E = Acyp/e) in the
triaxial test.

o Both the vertical strain (g, ) and the horizontal strain perpendicular to pile movement (gpn)
are equal and are given as
€ =Eph=-VE

where v is the Poisson’s ratio of the soil.

It can be demonstrated from a Mohr’s circle of soil strain, as shown in Fig. 5-10, that shear
strain, vy, 1s defined as

1 ) .
%=E(e—ev)sm2®m=ée(1+n)sm2®m (5-9)

The corresponding stress level (SL) in sand (see Fig. 5-11) is

As, _tan’(45+j ,/2)-1

SL= .
As, tan’(45+] /2)-1

(5-10)

where the horizontal stress change at failure (or the deviatoric stress at failure in the triaxial test)

1S
I i)
AShf_Sva tan 454‘37—] (5-11)
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In clay,

sL=AS: . As =28, (5.12)

Asy

where S, represents the undrained shear strength which may vary with depth. Determination of

the values of SL and ¢, in clay requires the involvement of an effective stress analysis which is

presented later in this chapter.

The relationships above show clearly that the passive wedge response and configuration change
with the change of the mobilized friction angle () or stress level (SL) in the soil. Such
behavior provides the flexibility and the accuracy for the strain wedge model to accommodate
both small and large strain cases. The above equations are applied for each soil sublayer along
the shaft in order to evaluate the varying stress level in the soil and the geometry of the passive

wedges.

A power function stress-strain relationship is employed in SW model analysis for both sand and
clay soils. It reflects the nonlinear variation in stress level (SL) with axial strain €) for the
condition of constant confining pressure. To be applicable over the entire range of soil strain, it
takes on a form that varies in stages as shown in Fig. 5-12. The advantage of this technique is
that it allows the three stages of horizontal stress, described in the next section, to occur

simultaneously in different sublayers within the passive wedge.

5.5.1 Horizontal Stress Level (SL)
Stage I (e£es,)
The relationship between stress level and strain at each sublayer (i) in the first stage is assessed

using the following equation,

. e

(950 )i

SL= exp (- 3.707 SL, ) (5.13)

where 3.707 and A ( A= 3.19) represent the fitting parameters of the power function relationship,

and €50 symbolizes the soil strain at 50 percent stress level at the associated confining pressure.
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Stage Il (€50, £€£€590, )
In the second stage of the stress-strain relationship, Eqn. 5.13 is still applicable. However, the
value of the fitting parameter A is taken to vary in a linear manner with SL from 3.19 at the 50

percent stress level to 2.14 at the 80 percent stress level as shown in Fig. 5-12b.

Stage III (e 3 ez, )
This stage represents the final loading zone which extends from 80 percent to 100 percent stress

level. The following equation is used to assess the stress-strain relationship in this range,

100e,

SLi=exp[an.2+ } ; SL;20.80 (5-14)
i me, +q,; )

where m=59.0 and q=95.4 €5 are the required values of the fitting parameters.
The three stages mentioned above are developed based on unpublished experimental results

(Norris 1977). In addition, the continuity of the stress-strain relationship is maintained along the

SL-¢ curve at the merging points between the mentioned stages.

As shown in Fig. 5-13, if €50 of the soil is constant with depth (x), then, for a given horizontal
strain (¢), SL from Eqns 5-13 or 5-14 will be constant with x. On the other hand, since strength,
Aopf, varies with depth (e.g., see Eqns. 5-11 and 5-12), Ao (= SL Acyr ) will vary in a like
fashion. However, €5 is affected by confining pressure ( SVO) in sand and S, in clay. Therefore,

SL for a given ¢ will vary somewhat with depth.

The Young’s modulus of the soil from both the shear loading phase of the triaxial test and the

strain wedge model is

(As,) _ SL(As ),-
e e

= (5.15)
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It can be seen from the previous equations that stress level, strain and Young's modulus at each
sublayer (i) depend on each other, which results in the need for an iterative solution technique to

satisfy the equilibrium between the three variables.

5.6 SHEAR STRESS ALONG THE PILE SIDES (SLy)
Shear stress (t) along the pile sides in the SW model (see Fig. 5-4) is defined according to the
soil type (sand or clay).

5.6.1 Pile Side Shear in Sand
In the case of sand, the shear stress along the pile sides depends on the effective stress (Gy,) at the
depth in question and the mobilized angle of friction between the sand and the pile (ps). The

mobilized side shear depends on the stress level and is given by the following equation,

t,=(s,, /) tan (j i ), where tan (j \ )l.=2tan (j . )l. (5-16)

In Eqn. 5-16, note that mobilized side shear angle, tanps, is taken to develop at twice the rate of
the mobilized friction angle (tanp,) in the mobilized wedge. Of course, @5 is limited to the fully

developed friction angle (¢) of the soil.

5.6.2 Pile Side Shear Stress in Clay

The shear stress along the pile sides in clay depends on the clay’s undrained shear strength. The
stress level of shear along the pile sides (SL;) differs from that in the wedge in front of the pile.
The side shear stress level is function of the shear movement, equal to the pile deflection (y) at
depth x from the ground surface. This implies a connection between the stress level (SL) in the
wedge and the pile side shear stress level (SL;). Using the Coyle-Reese (1966) “t-z” shear stress
transfer curves (Fig. 5-14), values for SL; can be determined. The shear stress transfer curves
represent the relationship between the shear stress level experienced by a one-foot diameter pile
embedded in clay with a peak undrained strength, S, and side resistance, Ty (equal to C times
the adhesional strength oS,), for shear movement, y. The shear stress load transfer curves of

Coyle-Reese can be normalized by dividing curve A (0 <x <3 m) by £ =0.53, curve B 3 <x <



6 m) by £ =0.85, and curve C (x> 6 m) by = 1.0. These three values of normalization (0.53,
0.85, 1.0) represent the peaks of the curves A, B, and C, respectively, in Fig. 5-15a. Figure 5-
15b shows the resultant normalized curves. Knowing pile deflection (y), one can assess the

value of the mobilized pile side shear stress (t) as

t,=(SL ) (t.u) (5-17)
where
(tu);=Z(@Sy), (5-18)

and a indicates the adhesion value after Tomlinson (1957).

The normalized shear stress load transfer curves can be represented by the following equations.

For the normalized curves A (x <3 m) and B (3 <x <6 m),

SL,=12.9yD-40.5 " p? (5-19)

For the normalized curve C (x > 6 m)

SL,=323yD-255y'p? (5-20)

where y is in cm and D in m.

From the discussion above, it is obvious that SL; varies nonlinearly with the pile deflection, y, at
a given soil depth, x. Also, SL; changes nonlinearly with soil depth for a given value of soil

displacement/strain (see Fig. 5-15). These concepts are employed in each sublayer of clay.

5.7  SOIL PROPERTY CHARACTERIZATION IN THE STRAIN WEDGE MODEL

One of the main advantages of the SW model approach is the simplicity of the required soil
properties necessary to analyze the problem of a laterally loaded pile. The properties required
represent the basic and the most common properties of soil, such as the effective unit weight and

the angle of internal friction or undrained strength.
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The soil profile is divided into one or two foot sublayers, and each sublayer is treated as an
independent entity with its own properties. In this fashion, the variation in soil properties or
response (such as €so and ¢ in the case of sand, or Syand @ in the case of clay) at each sublayer
of soil can be explored. It is obvious that soil properties should not be averaged at the midheight
of the passive wedge in front of the pile for a uniform soil profile (as in the earlier work of Norris

1986), or averaged for all sublayers of a single uniform soil layer of a multiple layer soil profile.

5.7.1 Properties Employed for Sand Soil

o Effective unit weight (total above water table, buoyant below), v
° Void ratio, e, or relative density, D

o Angle of internal friction, ¢

° Soil strain at 50% stress level, €3¢

While standard subsurface exploration techniques and available correlations may be used to

evaluate or estimate vy, e or D, and ¢, some guidance may be required to assess €so.

The €50 represents the axial strain €; ) at a stress level equal to 50 percent in the €;-SL
relationship that would result from a standard drained (CD) triaxial test. The confining
(consolidation) pressure for such tests should reflect the effective overburden pressure ( Gyo) at
the depth (x) of interest. The €59 changes from one sand to another and also changes with density
state. In order to obtain &5 for a particular sand, one can use the group of curves shown in Fig.
5-16 (Norris 1986) which show a variation based upon the uniformity coefficient, G, and void
ratio, e. These curves have been assessed from sand samples tested with “frictionless” ends in
CD tests at a confining pressure equal to 42.5 kPa (Norris 1977). Since the confining pressure
changes with soil depth, €5, as obtained from Fig. 5-16, should be modified to match the existing

pressure as follows:

_ (s.))
(e5o ),-—(em )42,5 (Wj_ (5-21)
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(as,)=(5,, ),-{tanz[ 541 }z} (5-22)

where SVO should be in kPa.

5.7.2 The Properties Employed for Clay

o Effective unit weight y

J Plasticity index, PI

o Effective angle of friction, ¢

° Undrained shear strength, S,

. Soil strain at 50% stress level, €3¢

Plasticity index, PI, and undrained shear strength, S,, are considered the governing properties
because the effective angle of internal friction, ¢, can be estimated from the PI based on Fig. 5-

17. The €50 from an undrained triaxial test (UU at depth x or CU with o3 = EVO) can be

estimated based on S, as indicated in Fig. 5-18.

An effective stress (ES) analysis is employed with clay soil as well as with sand soil. The reason
behind using the ES analysis with clay, which includes the development of excess porewater
pressure with undrained loading, is to define the three-dimensional strain wedge geometry based

upon the more appropriate effective stress friction angle, @. The relationship between the

normally consolidated clay undrained shear strength, Sy, and oy, is taken as

5,=0.335, (5-23)

assuming that S, is the equivalent undrained standard triaxial test strength. The effective stress
analysis relies upon the evaluation of the developing excess porewater pressure based upon
Skempton's equation (1954), i.e.

Au:B[AS3+Au(AS1' AS3)] (5-24)
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where B equals 1 for saturated soil. Accordingly,

Au=As;+4,(As,;- As;) (5-25)

Note that Acs =0 both in the shear phase of the triaxial test and in the strain wedge. Therefore,

the mobilized excess porewater pressure is

Au= 4,As, (5-26)

where Ao represents the deviatoric stress change in the triaxial test and Aoy, in the field, i.e.

Au= 4,As, (5-27)

Therefore, using the previous relationships, the Skempton equation can be rewritten for any

sublayer (i) as follows:

(Au )i:(Au ),' SLi(AShf),':(Au ),SLzz(Su), (5_28)

The initial value of parameter A, is 0.333 and occurs at very small strain for elastic soil response.
In addition, the value of parameter Ayr that occurs at failure at any sublayer (i) is given by the

following relationship

(4, )=+ (5-29)

(1+1N&A_ 1)
2

(S_vn )i Sin j_j 7
after Wu (1966) as indicated in Fig. 5-19.

In Eqn. 5.29, ¢ symbolizes the effective stress angle of internal friction; and, based on Eqn. 5-

23, Sy oy, equals 0.33. However, A, is taken to change with stress level in a linear fashion as

( 4,).=0.333+SL[( 4, )-0333] (5-30)
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By evaluating the value of A,, one can effectively calculate the excess porewater pressure, and
then can determine the value of the effective horizontal stress, (Gyo + Aoy - Au), and the effective
confining pressure, (Gy, - Au) at each sublayer, as shown in Fig. 5-19. Note that the mobilized

effective stress friction angle, @, can be obtained from the following relationship.
(J_m )l\_ (§v0+ASh_Au)

2 - i -
tan [45+ 3 7_ (§vo-Au),. (5-31)

The targeted values of @i and SL; in a clay sublayer and at a particular level of strain (¢) can be

obtained by using an iterative solution that includes Eqns 5-12 through 5-14, and 5-28 through 5-
31.

5.8  SOIL-PILE INTERACTION IN THE STRAIN WEDGE MODEL
The strain wedge model relies on calculating the modulus of subgrade reaction, E;, which
reflects the soil-pile interaction at any level of soil strain during pile loading. E also represents

the secant slope at any point on the p-y curve, i.e.

Sy (5-32)

Note that p represents the force per unit length of the pile or the BEF soil-pile reaction, and y
symbolizes the pile deflection at that soil depth. In the SW model, E is related to the soil’s
Young's modulus, E, by two linking parameters, A and y;. It should be mentioned here that the
SW model establishes its own Es from the Young's modulus of the strained soil, and therefore,
one can assess the p-y curve using the strain wedge model analysis. Therefore, E should first be

calculated using the strain wedge model analysis to identify the p and y values.

Corresponding to the horizontal slice (a soil sublayer) of the passive wedge at depth x (see Figs.

5-2 and 5-4), the horizontal equilibrium of horizontal and shear stresses is expressed as

pi:(ASh)iB_GS1+2tiDS2 (5-33)
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where S; and S, equal to 0.75 and 0.5, respectively, for a circular pile cross section, and equal to
1.0 each for a square pile (Briaud et al. 1984). Alternatively, one can write the above equation as

follows:

/D BC, .
A= )2 =BC,S1+ 2t: S, (5-34)

(Ash)i D (Ash)i

where A symbolizes the ratio between the equivalent pile face stress, p/D, and the horizontal
stress change, Aoy, in the soil. (In essence, it is the multiplier that, when taken times the
horizontal stress change, gives the equivalent face stress.) From a different perspective, it
represents a normalized width (that includes side shear and shape effects) that, when multiplied
by Aoy yields p/D. By combining the equations of the passive wedge geometry and the stress

level with the above relationship, one finds that

AI=S1[1+(h_xl)2(tanbmtan.lm)l \T_’_ZSZ(SVU),(tanfs); Znsand (5_35)
D 7 (Ash)i
h-x.)2 b T
o e (rx) (tan ,,,tanjm)iﬁsxsg)i i clay 536
D T osL

Here the parameter A is a function of pile and wedge dimensions, applied stresses, and soil

properties. However, given that Aoy = Ee in Eqn. 2.33,
p=4D(As,)=4DEe (5-37)

For the upper passive wedge, ¢ represents the uniform soil strain and is replaced by & for soil
sublayers of the lower passive wedge. The second linking parameter, W, relates the soil strain in
the SW model to the linearized pile deflection angle, &. Referring to the normalized pile

deflection shape shown in Figs. 5-3 and 5-5

d=9 (5-38)
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% — gmax Sin 2 @m (5-39)

2
and
’ e- I+n)e
g;dx _ Zev :( : ) (5-40)

where y denotes the shear strain in the developing passive wedge. Using Eqns. 5-39 and 5.40,

Eqn. 5-38 can be rewritten as

d:e(1+n;sin2@m (5-41)

Based on Eqn. 5-41, the relationship between ¢ and 6 can expressed as
=— (5-42)

or

2
Y = 5-43
(71+n)sin 2@, =)

The parameter y varies with the Poisson's ratio of the soil and the soil's mobilized angle of

internal friction (¢m) and the mobilized passive wedge angle (Or,).

Poisson's ratio for sand can vary from 0.1 at a very small strain to 0.5 or lager (due to dilatancy)
at failure, while the base angle, ®,, can vary between 45° (for ¢, = 0 at &= 0) and 25° (for, say,

¢Om = 40° at failure), respectively. For this range in variation for v and ¢y, the parameter ¥ for

sand varies between 1.81 and 1.74 with an average value of 1.77. In clay soil, Poisson's ratio is
assumed to be 0.5 (undrained behavior) and the value of the passive wedge base angle, ®y, can
vary between 45° (for o= 0 at & = 0) and 32.5° (for, say, @n = 25° at failure). Therefore, the

value of the parameter ¢ will vary from 1.47 to 1.33, with an average value of 1.4.

It is clear from the equations above that employing the multi-sublayer technique greatly

influences the values of soil-pile interaction as characterized by the parameter, A;, which is
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affected by the changing effective stress and soil strength from one sublayer to another. The

final form of the modulus of subgrade reaction can be expressed as

p. A DeE, A
E,)=—"== = —DVY E, (5-44)
) d ) Gir)
It should be mentioned that the SW model develops its own set of non-unique p-y curves which
are function of both soil and pile properties, and are affected by soil continuity (layering) as
presented by Ashour et al. (1996). For the lower passive wedge, (h — x;) will be replaced by x;

that is measured downward from the point of zero crossing (Fig. 5-6).

5.9 PILE HEAD DEFLECTION

As mentioned previously, the deflection pattern of the pile in the SW model is continuous and
linear. Based on this concept, pile deflection can be assessed using a simplified technique which
provides an estimation for the linearized pile deflection, especially y, at the pile head. By using
the multi- sublayer technique, the deflection of the pile can be calculated starting with the base of
the mobilized passive wedge and moving upward along the pile, accumulating the deflection
values at each sublayer as shown in the following relationships and Fig. 5-20.

e
yi:Hidi:H,-\P— (5'45)

s

y, =2y, i=Iton (5-46)

where the y value changes according to the soil type (sand or clay), and H; indicates the
thickness of sublayer i and n symbolizes the current number of sublayers in the mobilized

passive wedge.

The main point of interest is the pile head deflection which is a function of not only the soil
strain but also of the depth of the compound passive wedge that varies with soil and pile
properties and the level of soil strain.

5.10 ULTIMATE RESISTANCE CRITERIA IN STRAIN WEDGE MODEL
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The mobilized passive wedge in front of a laterally loaded pile is limited by certain constraint
criteria in the SW model analysis. Those criteria differ from one soil to another and are applied
to each sublayer. Ultimate resistance criteria govern the shape and the load capacity of the
wedge in any sublayer in SW model analysis. The progressive development of the ultimate

resistance with depth is difficult to implement without employing the multi- sublayer technique.

5.10.1 Ultimate Resistance Criterion of Sand Soil

The mobilization of the passive wedge in sand soil depends on the horizontal stress level, SL,
and the pile side shear resistance, t. The side shear stress is a function of the mobilized side
shear friction angle, s, as mentioned previously, and reaches its ultimate value (ps = @) earlier
than the mobilized friction angle, @, in the wedge (i.e. SLy > SL). This causes a decrease in the
rate of growth of sand resistance and the fanning of the passive wedge as characterized by the

second term in Eqns 5-33 and 5-35, respectively.

Once the stress level in the soil of a sublayer of the wedge reaches unity SL; = 1), the stress
change and wedge fan angle in that sublayer cease to grow. However, the width BC of the face
of the wedge can continue to increase as long as ¢ (and, therefore, h in Eqn. 5-8) increases.
Consequently, soil-pile resistance, p, will continue to grow more slowly until a condition of
initial soil failure (SL; = 1) develops in that sublayer. At this instance, p = pu: Where pyi in sand,

given as

(pu)=(As, ) BC, s,+2(t, ) Ds, (5.47)

puit 1S “a temporary” ultimate condition, i.e. the fanning angle of the sublayer is fixed and equal
to ¢;, but the depth of the passive wedge and, hence, BC continue to grow. The formulation
above reflects that the near-surface “failure” wedge does not stop growing when all such
sublayers reach their ultimate resistance at SL. = 1 because the value of h at this time is not
limited. Additional load applied at the pile head will merely cause the point at zero deflection

and, therefore, h to move down the pile. More soil at full strength (SL = 1) will be mobilized to
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the deepening wedge as BC, therefore, pu: will increase until either flow around failure or a

plastic hinge in the pile occurs.

Recognize that flow around failure occurs in any sublayer when it is easier for the sand at that
depth to flow around the pile in a local bearing capacity failure than for additional sand to be
brought to failure and added to the already developed wedge. However, the value at which flow
failure occurs [A; = (Auk)i , (Puir)i = (Acne)i (Aur)i D] in sand is so large that it is not discussed
here. Alternatively, a plastic hinge can develop in the pile when the pile material reaches its
ultimate resistance at a time when SL; < 1 and A; < (Aur)i. In this case, h becomes fixed, and ﬁ:i

and p; will be limited when SL; becomes equal to 1.

5.10.2 Ultimate Resistance Criterion of Clay Soil
The situation in clay soil differs from that in sand and is given by Gowda (1991) as a function of
the undrained strength (S,); of the clay sublayer.

(pu)=10(s.)D5,+2(5,)Ds> (5-48)

Consequently,

(pult )l

— D — (pulr),' — _
(Ault)i (Ashf),- D2(Su),' 58,t8S, (5-49)

Ay indicates the limited development of the sublayer wedge geometry for eventual development
of flow around failure (SL; = 1) and, consequently, the maximum fanning angle in that sublayer
becomes fixed, possibly at a value ¢ < ¢. If a plastic hinge develops in the pile at SL; less
than 1, then h will be limited, but BC, and pi will continue to grow until A; is equal to Ay or p; is

equal to (pui)i.
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5.11 VERTICAL SIDE SHEAR RESISTANCE
As seen in Fig. 5-21, the vertical side shear stress distribution around the shaft cross section is
assumed to follow a cosine function. It is assumed that there is no contact (active pressure) on

the backside of the shaft due to the lateral deflection. The peak (q) of side shear stress develops

at angle © = 0 and decreases to zero at angle 6 = 90°. The total vertical side shear force (Vy)

induced along a unit length of the shaft is expressed as

VV:2E/2qrcosqdq = 2¢(rsinq)P’? = Dg (5-50)

and the induced moment (My_x) per unit length of the shaft is given as

p/2 p/2

M, _ =2 j(qr cosqdq)(rcosq) = 2gr’ Icoszq dq
0 0
p/2

=2qr’ J. %(coqu +1)dq
0

o (5-51)
=qr I (cos2g + 1) dq

p/2

2
:qrz(%(sinm +0+ gD p

Jy 8

M.« represents the term My in Eqn. 5-1.

5.12 SHAFT BASE RESISTANCE
The soil shear resistance at the base of the shaft (Vi) that is shown in Fig. 5-1 is a function of the
soil shear stress (tp) induced at the contact surface between the soil and shaft base. The shear

stress (tp) varies with lateral deflection of the shaft base and the axial load delivered at the shaft
base. Based on the failure mechanism at the shaft base for sand and clay that are presented in
Chapter 3 and 4, Fig. 5-22 shows the shear tress (1) that develops at the shaft base embedded in
sand or clay soil. Unlike the clay case, the ultimate shear resistance at the base of the shaft

increases with the axial load carried by the shaft base (Figs. 4-1 and 5-22).
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The shear resistance at the shaft base can be determined as follows,

1.

Using the lateral deflection at the shaft base (y») that is obtained from the lateral shaft

analysis with no shaft base resistance, the soil shear strain at the base (yp) is calculated as,

Wy
= b 5-52
g, D (5-52)

where D is the shaft diameter, and the effective depth of the shear deformation is

assumed to be equal to 2D

In the first step of analysis, assume the normal strain (ep) equal to the shear strain (yp).

Based on the normal stress strain relationship presented in Section 5.5.1, the stress level

(SL) can be evaluated and the associated Poisson’s ratio (v) is calculated as follows,

N=0.1+04SL (5-53)

It should be noted the Acprused in Eqns. 5-10 through 5-12 is constant with clay (Acps =
28S,) and varies with the load carried by the shaft base in the case of sand (Figs. 4-1 and
5-22), i.e.

AS h (S_'3)1V {tanz( 45 +j3 }- 1 :| (5-54)

In sand soil, the increase of the shaft base load (Fy = 0.6 qnet Ap = 64 Ap = SL Achr Ayp)

results in the increase of the accompanying confining pressure (g,),, -

The induced normal strain (gp) is recalculated as follows,

- o (5-55)

Repeat steps 2 and 3 to refine the value of €, by averaging the new and old values of ¢

until reaching the desired convergence.

Compute the associated soil shear stress that develops on the shaft base (1) as follows:
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t, =SLS, (Clay) (5-56a)
t, =0.55L As,, (Sand) (5-56b)

v, =t, 4, (5-57)
where Fy, and Vy, are the axial load (as calculated in Chapter 4) and the shear resistance

carried by the shaft base.

6. Analyze the laterally loaded shaft as a Beam on Elastic Foundations (Section 5-13)
considering the effect of the base resistance. The base shear resistance is evaluated in

each trial according to the lateral deflection induced at the shaft base.

5.13 STABILITY ANALYSIS IN THE STRAIN WEDGE MODEL

The objective of the SW model is to establish the soil response as well as model the soil-pile
interaction through the modulus of subgrade reaction, E;. The shape and the dimensions of the
passive wedge in front of the pile basically depend on two types of stability which are the local
stability of the soil sublayer and the global stability of the pile and the passive wedge. However,
the global stability of the passive wedge depends, in turn, on the local stability of the soil

sublayers.

5.13.1 Local Stability of a Soil Sublayer in the Strain Wedge Model

The local stability analysis in the strain wedge model satisfies equilibrium and compatibility
among the pile segment deflection, soil strain, and soil resistance for the soil sublayer under
consideration. Such analysis allows the correct development of the actual horizontal stress
change, Aoy, pile side shear stress, 1, and soil-pile reaction, p, associated with that soil sublayer
(see Figs. 5-2 and 5-4). It is obvious that the key parameters of local stability analysis are soil

strain, soil properties, and pile properties.

5.13.2 Global Stability in the Strain Wedge Model
The global stability, as analyzed by the strain wedge model, satisfies the general compatibility
among soil reaction, pile deformations, and pile stiffness along the entire depth of the developing

passive wedge in front of the pile. Therefore, the depth of the passive wedge depends on the
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global equilibrium between the loaded pile and the developed passive wedge. This requires a

solution for Eqn. 5-1.

The global stability is an iterative beam on elastic foundation (BEF) problem that determines the
correct dimensions of the passive wedge, the corresponding straining actions (deflection, slope,
moment, and shear) in the pile, and the external loads on the pile. Satisfying global stability
conditions is the purpose of linking the three-dimensional strain wedge model to the BEF
approach. The major parameters in the global pile stability problem are pile stiffness, EI, and the
modulus of subgrade reaction profile, E, as determined from local stability in the strain wedge
analysis. Since these parameters are determined for the applied soil strain, the stability problem
is no longer a soil interaction problem but a one-dimensional BEF problem. Any available
numerical technique, such as the finite element or the finite difference method, can be employed
to solve the global stability problem. The modeled problem, shown in Fig. 5-8c, is a BEF and
can be solved to identify the depth, X, of zero pile deflection.

5.14 SUMMARY

The SW model approach presented here provides an effective method for solving the problem of
a laterally loaded pile/shaft in layered soil. This approach assesses its own nonlinear variation in
modulus of subgrade reaction or p-y curves. The SW model allows the assessment of the
nonlinear p-y curve response of a laterally loaded pile based on the envisioned relationship
between the three-dimensional response of a flexible pile in the soil to its one-dimensional beam
on elastic foundation parameters. In addition, the SW model employs stress-strain-strength
behavior of the soil as established from the triaxial test in an effective stress analysis to evaluate

mobilized soil behavior.

The SW model accounts for the vertical side shear resistance that develops effectively with large
diameter shafts. Such resistance enhances the performance of the large diameter shafts and
increases with progressive lateral deflection. The evaluation of the vertical side shear resistance
is based on the assessed t-z curve and affects the shape of the predicted p-y curve. The
formulations of the t-z curve presented in Chapters 3 and 4 are employed in the SW model

analysis and coupled with the shaft deformations.
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Compared to empirically based approaches which rely upon a limited number of field tests, the
SW approach depends on well known or accepted principles of soil mechanics (the stress-strain-
strength relationship) in conjunction with effective stress analysis. Moreover, the required
parameters to solve the problem of the laterally loaded pile are a function of basic soil properties

that are typically available to the designer.
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CHAPTER 6

SHAFTS IN LIQUEFIABLE SOILS

6.1 INTRODUCTION

This chapter presents the procedure developed to assess the response of the partially and completely
liquefied granular soil as a post-liquefaction analysis. The SW model, initially developed to assess the
relationship between one-dimensional beam on elastic foundation (BEF) or so called “p-y” curve behavior
and three dimensional soil pile interaction, has been extended to include laterally loaded piles/shafts in
liquefiable soil. Because the SW model relies on the undrained stress-strain characterization of the soil as
occurs in the triaxial test, it is capable of treating one or more layers of soils that experience limited or full
liquefaction. This chapter provides a methodology to assess the post-liquefaction response of an isolated
pile/shaft in sand under an applied pile/shaft head load/moment combination assuming undrained conditions
in the sand. The degradation in soil strength due to the free-field excess porewater (uysg), generated by the
earthquake that results in developing or full liquefaction, is considered along with the near-field excess

porewater pressure (Uys, o) generated by lateral loading from the superstructure.

Current design procedures assume slight or no resistance for the lateral movement of the pile in the liquefied
soil which is a conservative practice. Alternatively, if liquefaction is assessed not to occur, some
practitioners take no account of the increased uy g, and none consider the additional uys, ¢ due to inertial
interaction loading from the superstructure; a practice that is unsafe in loose sands. The paper characterizes
the reduction in pile response and the changes in the associated p-y curves due to a drop in sand strength
and Young’s modulus as a result of developing liquefaction in the sand followed by inertial interaction

loading from the superstructure.

The potential of soil to liquefy is one of the critical research topics of the last few decades. Several studies
and experimental tests have been conducted for better understanding on the potential of soil to liquefy in

both the free- and/or near-field soil regions. However, predicting the response of pile foundations in
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liquefied soil or soil approaching liquefaction is very complex.

The procedure presented predicts the post-liquefaction behavior of laterally loaded piles in sand under
developing or fully liquefied conditions. Due to the shaking from the earthquake and the associated lateral
load from the superstructure, the free field vy and near-field uy; nrdevelop and reduce the strength of loose
to medium dense sand around a pile. The soil is considered partially liquefied or experiencing developing
liquefaction if the excess porewater pressure ratio (r,) induced by the earthquake shaking (i.e. uys g) is less
than 1, and fully liquefied if r, = 1. Therefore, the stress-strain response of the soil due to the lateral push
from the pile as the result of superstructure load (and s »f) can be as shown in Fig. 6-1. Full-scale load
tests on the post-liquefaction response of isolated piles and a pile group, performed at the Treasure Island
and Cooper River Bridge (Ashford and Rollins 1999; and S&ME Inc. 2000) presented in Chapter 8, are
the most significant related tests. However, the profession still lacks a realistic procedure for the design of

pile foundations in liquefying or liquefied soil.

The most common practice employed is that presented by (Wang and Reese 1998) in which The traditional
p-y curve for clay is used but based on the undrained residual strength (S,) of the sand. As seen in Fig. 6-2
(Seed and Harder, 1990), S; can be related to the standard penetration test (SPT) corrected blowcount,
(N1)s0. However, a very large difference between values at the upper and lower limits at a particular (N ;)0
value affects the assessment of S, tremendously. Even if an accurate value of S, is available, S, occurs at
a large value of soil strain. In addition, a higher peak of undrained resistance is ignored in the case of the
partially liquefied sand, while greater resistance at lower strain is attributed to the sand in the case of
complete liquefaction. Such clay-type modeling can, therefore, be either too conservative (if r, < 1) or
unsafe (if r, = 1). Furthermore, the p-y curve reflects soil-pile-interaction, not just soil behavior. Therefore,
the effect of soil liquefaction (i.e. degradation in soil resistance) does not reflect a one-to-one change in soil-

pile or p-y curve response.

The post-liquefaction stress-strain characterization of a fully or partially liquefied soil is still under

investigation by several researchers. The current assessment of the resistance of a liquefied soil carries a
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lot of uncertainty. This issue is addressed experimentally (Seed 1979; and Vaid and Thomas 1995)
showing the varying resistance of saturated sands under undrained monotonic loading after being liquefied

under cyclic loading corresponding to the free-field shaking of the earthquake (Fig. 6-3).

With lateral loading from the superstructure with a significant drop in the confining pressure following full
liquefaction or partial liquefaction, the sand responds in a dilative fashion. However, a partially liquefied
sand with a small drop in confining pressure may experience contactive behavior followed by dilative
behavior under compressive monotonic loading. The post cyclic response of sand, particularly after full
liquefaction, reflects a stiffening response, regardless of its initial (static) conditions (density or confining
pressure). As seen in Fig. 6-4, there is no particular technique that allows the assessment of the p-y curve
and its varying pattern in a partially or fully liquefied sand. Instead, the soil’s undrained stress-strain
relationship should be used in a true soil-pile interaction model to assess the corresponding p-y curve
behavior. Because the traditional p-y curve is based on field data, a very large number of field tests for
different pile types in liquefying sand would be required to develop a realistic, empirically based, p-y

characterization.

6.2 METHOD OF ANALYSIS

Due to cyclic loading, excess porewater pressure (Au. = uyg) develops and reduces the effective
consolidation confining pressure from 830 = 8\,0) to 8300. As given in Eqn. 6-1, if Au, is less than 830,
sand will be “partially” liquefied and 63 > 0. Once Au, is equal to o3, the sand is completely liquefied

(r,=1) and G =0. Oseis the post-cyclic effective confining stress.

S_Scc = 530 - A Uc (6-1)

The degradation in soil resistance due to earthquake shaking and the induced uy g is based on the
procedures proposed in (Seed et al. 1983). This uy, ¢ reduces the effective stress and, therefore, the

corresponding soil resistance for subsequent (post cyclic) undrained load application. This is followed by
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the assessment of the uys, ¢ in the near-field soil region induced by the lateral load from the superstructure.
The variation in soil resistance (undrained stress-strain relationship) around the pile (near-field zone) is

evaluated based on the undrained formulation for saturated sand presented in Ashour and Norris (2000).

The assessed value of the free-field excess porewater pressure ratio, r,, induced by the earthquake is
obtained using Seed’s method (Seed et al. 1983). uy ¢ is calculated conservatively at the end of
earthquake shaking corresponding to the number of equivalent uniform cycles produced over the full
duration of the earthquake. Thereafter, the lateral load (from the superstructure) is applied at the pile head
that generates additional porewater pressure (Uys, o) in the soil immediately around the pile, given the
degradation in soil strength already caused by uy_ ¢ Note that u,, ¢is taken to reduce the vertical effective
stress from its pre-earthquake state ( 6\,0), to 8\, =(1-1,) 6\,0. Thereafter, the behavior due to an
inertial induced lateral load is assessed using the undrained stress-strain formulation presented in this chapter

with the SW model (Ashour and Norris 1999 and 2001; and Ashour et al. 1998).

6.2.1 Free-Field Excess Pore Water Pressure, uy,, ¢

A simplified procedure for evaluating the liquefaction potential of sand for level ground conditions (Seed
et al. 1998) is developed based on the sand’s corrected SPT blow count, (N )s. The uy in sand or silty
sand soils due to the equivalent history of earthquake shaking can likewise be assessed. The procedure
requires knowledge of the total and effective overburden pressure (o, and 6, respectively) in the sand
layer under consideration, the magnitude of the earthquake (M), the associated maximum ground surface
acceleration (anm,y) at the site, and the percentage of fines in the sand. The cyclic stress ratio, CSR [(Th)ave
/Gy, induced by the earthquake at any depth is computed. If N cycles of CSR are induced, but N
cycles are required to liquefy the sand at this same stress ratio, then the excess porewater pressure ratio
(r,) generated is given as a function of N/N;. Given r,, the u, ¢ generated and the resulting reduced

vertical effective stress are expressed as

Uy=rus, and S =(l-r,)s (6-2)
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It should be noted that the effect of the pore water pressure in the free field will be considered in the

assessment of the t-z curve. As a result, the axial and lateral resistance of the shaft will be affected.

6.2.2 Near-Field Excess Pore Water Pressure, u .
The technique developed by Norris et al. (1997) and formulated by Ashour and Norris (1999) employs

a series of drained tests, with volume change measurements, on samples isotropically consolidated to the
same confining pressure, s 3¢, and void ratio, ., to which the undrained test is to be subjected. However,
the drained tests are rebounded to different lower values of effective confining pressure, o3, before being
sheared. Such a technique allows the assessment of undrained behavior of isotropically consolidated sand
at o3 and subjected to compressive monotonic loading (Fig. 6-5, no cyclic loading). During an
isotopically consolidated undrained (ICU) test, the application of a deviatoric stress, G4, in compressive
monotonic loading causes an additional porewater pressure, Aug = Uys, o that results in a lower effective
confining pressure (Fig. 6-5¢), o3, i.c.

s;=s;- Au, (No cyclic loading, near-field pore water pressure only) (6-3)

and an associated isotropic expansive volumetric strain, €50, the same as recorded in an isotropically
rebounded drained triaxial test. However, in the undrained test, the volumetric change or volumetric strain
must be zero. Therefore, there must be a compressive volumetric strain component, €., shear, due to the
deviatoric stress, 4. This shear induced volumetric strain, €, sear, must be equal and opposite to €y, iso,
so that the total volumetric strain, €, = €y iso + €y, shear, N Undrained response is zero. In the isotropically
rebounded drained shear test, €, i, and then &, gear (to match €, is) are obtained separately and

sequentially; in the undrained test, they occur simultaneously (Figs. 6-5a and 6-5b).

ev, shear — = ev, iso (6-4)
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During drained isotropic expansion, the resulting axial strain, €, is

1
e],isa = eZ,isu = ej',iso = § ev iso (6-5)

Based on Hooke’s Law and effective stress concepts (Norris et al. 1998), the undrained axial strain due

to shear (o4) and effective stress ( 03) changes can be related to the drained or effective stress strains as

1
( &) )undrained = (el )S J + ( (S )AS_3 = (el )drained + e],is() = ( (S)] )drained + E ev. iso (6-6)

Therefore, with isotropically consolidated-rebounded drained triaxial tests available for different o3,
one can assume a value of 83, find €, 5o (Fig. 6-5b), enter the €,-¢,; drained shear curves (Fig. 6-5a)
at €y shear €quAl t0 €y, i50, and find the drained &, and o4 on the same confining pressure ( 83) £,-¢; and
€1-G4 curves. Then (€1)undrained 18 €stablished according to Eqn. 6-6, and one point on the undrained c4-
g, curve can be plotted. The corresponding effective stress path ( p= o3 + o4 /2 versus q = 64 /2)

can also plotted as shown in Fig. 6-5c.

This technique is extended in this paper to incorporate the free-field excess porewater pressure induced by
cyclic loading (Au,) and its influence on the undrained behavior of sands under the compressive monotonic
loading whether the sand is partially or completely liquefied (Fig. 6-1). The following equations account

for the pore water pressure in the free- and near-field (uys, fand Uy nf)

S_3:(§30-Au0)_Aud = g.?cc_Aud

( 83cc >0 and r, <1 partial liquefaction) (6-7)

S_3=S_3C-Auc—Aud = —Au,

( ?530 = Au,, 1.e. 83CC =0and r, =1 complete liquefaction) (6-8)

If uys, £is equal to S (i.e. r, = 1), the sand will experience a fully liquefied state (g 3 = 0) due to the
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earthquake shaking . However, the sand is subjected to limited liquefaction when r, < 1.

Based on experimental data obtained by several researchers for different sands, Ashour and Norris
(1999) established a set of formulations that allows the assessment of the relationships seen in Figs. 6-
5a and 6-5b. These formulations depend on the basic properties of sand and have been modified in this
chapter to incorporate the initial effect of cyclic loading and the induced Au, on the post-liquefaction

behavior of partially or completely liquefied sands.

A. Post-liquefaction Behavior of Partially Liquefied Sands

( Siec>00r Du.<" s; becauser, <1)
From ABC on the €, sear-€1 curve (Fig. 6-8) and for 83 < 83CC (associated with point r and the path r-
s - rin Figs. 6-6a and 6-6b), the initial slope (Sa), (1) and (¢ v.shear)max @t point B, and (g1)c and (g,)c at
point C are assessed based on Eqns. 6-9 through 6-14 (Ashour and Norris 1999).

1
L 6-9
a5, exp(r’+Dr.) -
6250
car Jp=. — \ ©shear e 2 omr ) o
(ev. she )B,s 3ce ( e’ " )max,s e |: exp (Dl”c) :| S_j ( )
6 ( ev, shear )max s
o >S 3cc 611
(e )B'S * exp(r Dr.) o
( (S] )B,s_jcc N
©,, shear Cs. =\ Cusnear max, s (e )= s -
( Jor = ( Joon 5. (o) [1+(s )z (6-12)
1 )Cs s
( e )Cs_g“»: 6 ( ev,sheai‘ )max, 5_3“, eXp (tan2J ) (6-13)
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(S;)- = -1" Drctan’] (6-14)

Note that Dr, (the relative density of consolidation in these equations) is a decimal value.

The empirically calculated slopes and coordinates at points A, B, and C on the €;-¢&, ghear Curve (Fig. 6-8)
at 83 < 8300 (OCR = 83cc/ 83) are used in the determination of the constants (Eqns. 6-15 through 20
by Ashour and Norris 1999) of the binomial equation that describes the isotropically consolidated
rebounded €;-¢€y, snear curve. The following equations are associated with the path r-s- I as seen in Fig. 6-

6a.

0.25
( SA )S_;cc ( €, shear )max,s_g
(84);=—=5 ' (6-15)
OCR ( ev,shear )max,s_jcc
( ev,shear )max s
(ev shear )max,_ = m —e (6'16)
s7 OCR
Drr
e ex 6-17
P [ OCR } (17
_ gﬁ‘c - — . _ g\? ~ —
where OCR=—=—=%* for  S3<g,. OCR == for s3> g,
S3; S 3ce
(€ ez, |
€, shear max,s ;
(e)sz,=(€)s, . (6-18)
( ev,sheur )max,s__m
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( ev,shear )C'S_? = ( ev,shear )max,3_7

(e )B,S__g } .

(e)es,=(e ) ;M{ (&),

( Sf )S—]: ( Sf )S_m

( ev,shear )C,S 3
( ev,shear )max,s 3¢

(6-19)

(6-20)

(6-21)

As seen in the above equations, 83CC is undertaken as a reference value for OCR. p is the sand grain

roundness parameter.

¢ Isotropically Rebounded and Consolidated Volume Change

of Partially Liquefied Sand (" S; - €,,5)

The ( 83 - €y, iso) Telationship seen in Fig. 6-5b is modified to assess the ( 83 - €y, iso) relationship for sand

that has developed partial (limited) liquefaction as the result of cyclic loading (at point r) and been

rebounded to point s in Figs. 6-6a and 6-6b. The value of (g,). located on the backbone isotropic curve

is calculated by Eqn. 6-22.

(ev )L,:| 7= €59 CXP [Drc(]+r )]

(e ).
OCR’

ev,isoz(ev )c_

0.1

where h= rTexp(OJ r Dr.) ,and
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OCR=33¢ for  s3<g,.; OCR==%  for s;>s
S3 S3cc

3cc

The above procedure can be applied as long the excess porewater pressure ratio (r,) induced by cyclic
loading is less than 1 and the residual confining pressure ( o) is greater than zero at point r (partially
liquefied soil). Under monotonic loading, the partially liquefied sand may then experience a contractive
response associated with a reduction in o5 (from point r to point s in Figs. 6-6a and 6-6b) to reach the
lowest value of o3, and then rebound (dilate) with increasing o3 until 63 = o3 again (point r in Figs.
6-6a and 6-6b). Sand continues to dilate beyond 8300 (Figs. 6-6a and 6-6b) with increasing 83 and net
negative porewater pressure. It should be noted that when 63 < 63CC, €v.iso Tebounds to point s and then
recompresses. This is associated with an equal net compressive € gheor. However, when o3> 83CC, €y,
iso moves from rto sandan equal dilative & ghear develops simatanuously. In the undrained test, the

volume change or volumetric strain must be zero such that at all times € iso = - €y shear-

As applied in Fig. 6-5a, €, associated with AS_ 3 and &, gnear represents the current drained axial strain.
Based on Eqns. 6-5 and 6-6, the drained ¢; is converted to the undrained €,. The associated deviator

stress (04) is determined as follows,

s =SL(s, )f: g{tanz( 45 +j— 1-1} (6-24)

2)

The varying stress level (SL) is a function of €1, €5, and o5 as presented by Ashour and Norris (1999).

B. Post-liquefaction Behavior of Completely (Fully) Liquefied Sands

CSsc=00r u.="Ssandr,=1)
Once the soil is completely liquefied (i.e. r, =1, o3 and o4 are equal to zero) due to cyclic loading, the
above procedure must be modified in order to handle a different type of behavior. As seen in Fig. 6-3, the

completely liquefied soil loses its strength when the excess porewater pressure due to cyclic loading is equal
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to the effective confining pressure (s = A = 3.) and the porewater pressure ratio (r,) = 1. By applying
monotonic loading thereafter, u,s decreases and causes a growth in confining pressure (effective stress).

This will be accompanied by a growth in sand resistance (G ).

As seen in Fig. 6-3 beyond a certain value of strain (g, = x,; X, = 20% in the figure), u, decreases to zero
and then to negative values. At uy, =0, sand exhibits resistance that is equal to that of initial loading at the
same zero porewater pressure. Once u,s becomes negative, 63 will be larger than 830 and the undrained

resistance will be greater than the drained strength.

Based on its Dr,, the completely liquefied sand may experience a zero-strength transition zone with soil
strain (g1 < Xo) and 1, = 1 before it starts to show some resistance, confining pressure ( o3) and dilative
response (Fig. 6-3). This value of x) decreases with the increase of the sand relative density (D,) and

becomes approximately zero for dense sand.

As a result of the development of complete liquefaction by cyclic loading and the subsequent dilative
response under an isotopically consolidated undrained (ICU) loading, two equal and opposite components
of volume change (strain) develop in sand. In the undrained test, the total volumetric change or volumetric
strain must be zero. Therefore, the shear induced volumetric strain, €, snear, must be equal and opposite to
€v. iso (Eqn. 6-4). In the isotropically rebounded drained shear test, €_is, and then &, gheor (to match €, io)

are obtained separately and sequentially; in the undrained test, they occur simultaneously.

Figure 6-7 shows the drained dilative response of sand when € g 1S €Xpansive and €, is, 1S compressive
starting with 3 =0. As a result of the complete liquefaction under cyclic loading, 63= 63, =0 (point
r in Figs. 6-7a and 6-7b) and the associated & i, at the start of undrained monotonic loading (point r in
Figs. 6-7a and 6-7b). The change in the volumetric strain €, 5, due the increase in 83 is represented by
the variation in €., is, (Fig. 6-7a) associated with (& shear)net dilative 1N Fig. 6-7c. Equation 6-23 for €, js, 18

modified as follows:
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(e ),

ev, iso OC’Rh - (ev iso) a (6_25)
and
(ev,iso)u = # Whel"e OCR = S_SC
(OCR )at Point r S;

It should be noted that o3 at point () is approximately equal to zero. As observed experimentally and
based on its relative density, the liquefied sand may experience a zero-resistance zone ( o3 =0 and 64 =
0) with a progressive axial strain (up to €1 = Xo) under the compressive monotonic loading. x; is determined
from the drained rebounded & -&, shear relationship at very small values of 83 =0 (Fig. 6-7). xo defines
the end of complete liquefaction zone (Au.= o3 ) and indicates the subsequent growth in o3 and o4, the
degradation in the excess porewater pressure (Fig. 6-7a), and the development of dilative response (Fig.
6-7c). It should be noted that €, e, for the dilative sand represents the suppressed volume increase

beyond the original volume of sand.

As seen in Fig. 6-7b, the resistance of completely liquefied sand under compressive monotonic loading lies
on the failure envelope with stress level (SL) equal to 1. The variation of sand resistance after complete

liquefaction due to its dilative response is a function of the varying o3 and the full friction angle ¢.

s, =SL(s,),= g{tanz( 45%}-1} (6-26)

It should be noted that the values of the post-liquefaction response of sand depend on the magnitude of o3

remaining after cyclic loading (Vaid and Thomas 1995).

6.3 CASE STUDIES
The approach developed here to assess the post-liquefaction behavior of liquefied sands has been verified

through various comparisons to experimental results of different types of sands under monotonic loading
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after being completely or partially liquefied by cyclic loading. The properties of these sands are presented
in Table 6-1.

6.3.1 Post-Liquefaction Response of Completely Liquefied Nevada Sand

Figure 6-9 shows the good agreement between the measured and predicted post liquefaction resistance of

Nevada sand under compressive monotonic loading. The sample tested was isotropically consolidated to
83C = 400 kPa at Dr. = 15% and exhibited a drained ¢ = 32° and €50 = 0.0065. The sample was

completely liquefied by cyclic loading and then the undrained response shown in Fig. 6-9 was obtained

(Nguyen 2002).

6.3.2 Post-Liquefaction Response of Completely Liquefied Ione Sand

Figure 6-10 shows the observed and predicted post-liquefaction response of lone sand. Dr, = 30%, for
an isotropic consolidation pressure ( c_sgc) of 800 kPa and ¢ =29° and &5 = 0.008 in drained tests. Similar
to Nevada sand, Ione sand was completely liquefied by cyclic loading and then subject to compressive

monotonic loading (Nguyen 2002).

6.3.3 Post-liquefaction Response of Partially and Completely Liquefied Fraser River Sand

Vaid and Thomas (1995) performed a set of cyclic and then compressive monotonic loading tests to study
the effect of residual confining pressure ( 3) on the post liquefaction behavior of a completely ( o5 = 0)
and partially liquefied ( o3 > 0) Fraser sand. There is very good agreement between observed and
predicted results in Fig. 6-11. The results shown in Fig. 6-11 for Fraser sand were obtained based on the

completely liquefied status ( o5 = 0) for different Dr, (Vaid and Thomas 1995).

Figure 6-12 shows the influence of partial or limited liquefaction induced by cyclic loading ( o3 > 0) on
the post liquefaction behavior of 40% relative density samples of Fraser sand. The pre-cyclic consolidation
pressure ( 630 was 400 kPa, and the residual confining pressures induced by cyclic loading were 105 and

45 kPa, respectively.
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6.4  UNDRAINED STRAIN WEDGE MODEL FOR LIQUEFIED SAND

The basic purpose of the SW model is to relate stress-strain-strength behavior of the soil in the wedge to
one-dimensional Beam on Elastic Foundations (BEF) parameters. The SW model is, therefore, able to
provide a theoretical link between the more complex three-dimensional soil-pile interaction and the simpler
one-dimensional BEF characterization. As presented in Chapter 5, the SWM is based on the mobilized
passive wedge in front of the pile (Fig. 6-13) which is characterized by base angle, [3,,, the current passive
wedge depth, h, and the spread of the wedge via the fan angle, ¢,,, (the mobilized effective stress friction
angle). The horizontal stress change at the passive wedge face, Aoy, and side shear, T, act as shown in Fig.

6-13.

The varying depth, h, of the deflected portion of the pile is controlled by the stability analysis of the pile
under the conditions of soil-pile interaction. The effects of the soil and pile properties are associated with
the soil-pile reaction along the pile via the Young's modulus of the soil (E), the stress level in the soil (SL),
the pile deflection (y), and the modulus of subgrade reaction (E;) between the pile segment and each soil
sublayer (Chapter 5).

The shape of the wedge in any soil layer depends upon the properties of that layer and, therefore, would
seem to satisfy the nature of a set of independent Winkler soil springs in BEF analysis. However, the
mobilized depth (h) of the passive wedge at any time is a function of the various soils (and their stress levels)
and the bending stiffhess (EI) and head fixity condition of the pile. This, in turn, affects the resulting p-y
response in a given soil layer; therefore, the p-y response is not a unique function of the soil alone. The
governing equations of the mobilized passive wedge shape are applied within each soil sublayer (i) of a given
deposit. The configuration of the wedge (Fig. 6-13) at any instant of load is a function of the stress level

in the sublayer of sand and, therefore, its mobilized friction angle, ¢,,. Note that

(bm)i=45+—(j2’”)i, and
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(B )=D+(h-x)2(tanb,) (tanj ) (6-27)

where BC is the width of the wedge face at any depth. h symbolizes the current full depth of the passive
wedge in front of the pile; x; represents the depth from the top of the pile or passive wedge to the middle
of the sublayer under consideration; and D indicates the width of the pile cross-section (Fig. 6-13). As
presented in Chapter5, the geometry of the passive wedge(s) (short, intermediate or long shafts) is a
function of the state of the soil. Consequently, the developing passive wedge in the liquefiable soil will be

different from its original (as-is conditions) case under drained conditions.

Under undrained conditions, the major principal stress change (Acy,) in the wedge is in the direction of pile
movement, and it is equivalent to the deviatoric stress (G4) in the isotropically consolidated undrained (ICU)
triaxial test. Assuming that the horizontal direction in the field is taken as the axial direction in the triaxial test,
the vertical stress change (Acy) is zero and the perpendicular horizontal stress change (Ac,) is taken to
be the same. Corresponding to the (ICU) triaxial compression test, the deviatoric stress is increased, while
the effective confining pressure decreases due to the positive induced excess porewater pressure, Aug.

Note that Auy represents Uy o in the near-field region. The cycles of earthquake loading will generate
excess porewater pressure in the free-field (uys, g that will reduce the effective stress in sand (Eqns. 6-1 and
6-2) according to its location below ground surface. Once the excess porewater pressure (Us,f) increases

due to the pile loading, the confining pressure in the sand around the pile reduces to
S_V :§3 :(S3c_uxs,ff)_uxs,nf Where gh:§v+ASh (6-28)

Uy, nf (= Aly) is a function of stress level. Therefore, the assessment of the mobilized resistance of the sand
(o4 = Aocy) as a function of the axial strain (major strain) under undrained conditions allows the
determination of the sand resistance and pile deformation at the associated undrained horizontal strain, €.
The current value of undrained Young’s modulus in sand sublayer (i) which is associated with g, is given

as
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(E){Ai} {S—} (6-29)
e |, Lel,

As, _ (s, )

SL; = = -
A _ —
sz, (sg)i[tan2(45+‘—2f}-1}

: (6-30)
tanz( 45 +M l— 1

tan{ g5+l L 1
2

The major principal effective stress change, Acy, in the passive wedge is in the direction of pile movement
and is equivalent to the deviatoric stress change in the undrained triaxial test, 64 (assuming that the horizontal
direction in the field is taken as the axial direction in the triaxial test). The mobilized effective stress fanning
angle, @, of the passive wedge is related to the stress level or the strain in the sand. Knowing the soil
strain, €, the deviatoric stress, G4, and the associated instant effective confining pressure, o3 ¢Om can be
determined from the associated effective stress-strain curve and effective stress path. Based on the
approach presented in (Ashour and Norris 1999 and 2001), both the stress level, SL, and the mobilized
angle of internal friction, ¢,,, associated with the effective stress, c 3, and soil strain, &,, under undrained

conditions can be calculated. Stress level (SL) relates 64 (= Acy) to 64r(= Acw); Where Acyyis the peak

of the associated drained (i.e. current o3) effective stress-strain curve.

The initial and subsequent values of confining pressure are not equal along the depth of the passive wedge

of sand in front of the pile. Therefore, at the same value of horizontal soil strain (,), the undrained

resistance of the sand surrounding the pile varies throughout the depth of the passive wedge of sand

providing different values of stress level. Such behavior requires the determination of the mobilized

undrained resistance of the sand along the depth of the passive wedge. The SW model provides the means

to divide the sand layer into equal-thickness sublayers in order to calculate the undrained sand response of
each sublayer (i) according to the location and the properties of sand of that sublayer.
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6.5  SOIL-PILE INTERACTION IN THE SW MODEL UNDER UNDRAINED
CONDITIONS

By applying the drained SW model procedures for granular soil (Chapter 5), the modulus of subgarde

reaction of sand under undrained conditions (Ey,) at any sublayer (i) can be determined based on the

associated values of E, and SL. The SW model relies on calculating Eg,, which reflects the soil-pile

interaction at any level during pile loading or soil strain. By comparison with the drained E,, in drained sand

(Ashour et al. 1998), Ey, is given in any sublayer (i) as

_p,‘_D(AeuEU)i_(AEM)i -
(Esu)i_z_ d(l’l-xi) _(/’l-x,-)D(\Pu) (6 31)

Corresponding to a horizontal slice of (a soil sublayer) at a depth x (Fig. 6-13) under horizontal
equilibrium, the soil-pile reaction, the undrained p; (line load) is expressed as a function of Acy, where

Aoy, represents the mobilized undrained resistance in sand sublayer (1).
p,=(As,) BC,s,+2t,Ds, (6-32)

Shape factors S; and S, are equal to 0.75 and 0.5, respectively, for a circular pile cross section, and equal
to 1.0 for a square pile; 7 is shear stress along the sides of the pile. A is a parameter that governs the
growth of the passive soil wedge and based on the concepts presented in Chapter 5. ,, is equal to 1.55
where the total stress Poisson's ratio for undrained sand is equal to 0.5. Equation 6-31 is based upon the
undrained response of sand using the undrained stress-strain relationship (e, o4 and E,). Once the values
of E, at any level of loading along the length of the deflected portion of the pile are calculated, the laterally
loaded pile and the three-dimensional passive wedge in front of the pile can be transformed into a BEF
problem and solved using a numerical technique such as the finite element method. The evaluation of Eg,
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as a function of soil and pile properties is the key point to the SW model analysis.

6.6 SUMMARY

The procedure presented yields the undrained lateral response of a laterally loaded pile/shaft in liquefiable
soil incorporating the influence of both the developing excess porewater pressure in the free-field vy, «(due
to ground acceleration) and the additional uy o (due to the lateral load from the superstructure). The
technique reflects the effect of soil liquefaction on the assessed (soil-pile reaction) p-y curves based on the
reduced soil-pile interaction response (modulus of subgrade reaction). The capability of this procedure will
(1) reduce the uncertainty of dealing with the behavior of laterally loaded piles in liquefiable soils and (2)
allow estimation of realistic responses of laterally loaded piles in liquefiable soils based that properly account
for local site conditions and shaft properties as demonstrated by the predictions for the Treasure Island and

Cooper River Bridge load tests presented in Chapter 8.
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Table 6-1. The properties of sands employed to demonstrate the approach presented

Material Roundness | €pax Cmin Cy Ref.

(p)
Nevada Sand 0.45 0.856 | 0.548 | 1.6 | Norris et al. (1995,
(subrounded, clean, fine, 1997)
white quartz, foundry
sand)
Ione Sand 0.29 1.00 | 0.717 | 1.4 | Norris et al. (1995,
(subangular, clean, 1997)
minerals, quartz, glass
sand)
Fraser River Sand
(subangular to 0.4 1.00 | 0.68 1.5 Fukushima and
subrounded well graded Tatsuoka. (1984)
quartz and feldspar sand)
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CHAPTER 7

FAILURE CRITERIA OF SHAFT MATERIAL

7.1  INTRODUCTION

Deformations in any structural element depend upon the characteristics of the load, the element shape and
its material properties. With laterally loaded shafts and shafts, the flexural deformations are based on the
applied moment and the flexural stiffness of the shaft at the cross section in question. In addition, the flexural
stiffness (EI) of the shaft is a function of the Young’s modulus (E), moment of inertia (I) of the shaft cross
section and the properties of the surrounding soil. Given the type of material, concrete and/or steel, the

properties of shaft material vary according to the level of the applied stresses.

Behavior of shafts under lateral loading is basically influenced by the properties of both the soil and shaft
(shaft material and shape). The nonlinear modeling of shaft material, whether it is steel and/or concrete,
should be employed in order to predict the value of the lateral load and the realistic associated bending
moment and shaft deflection especially at large values of shaft-head deflection and the onset of shaft material
failure. It is known that the variation in the bending stiffness (EI) of a laterally loaded shaft is a function of
the bending moment distribution along the shaft (moment-curvature, M-®, relationship) as seen in Fig. 7-1.
Consequently, some of the shaft cross sections which are subjected to high bending moment experience
a reduction in bending stiffness and softer interaction with the surrounding soil. Such behavior is observed
with drilled shafts and steel shafts at advanced levels of loading and has an impact on the lateral response
and capacity of the loaded shaft. The shaft bending stiffhesses along the deflected shaft change with the
level of loading, the M-® relationship of the shaft material, and the soil reaction which affects the pattern
of shaft deflection. Therefore, the equilibrium among the distributions of shaft deflection, bending moment,

bending stifthess, and soil reaction along the shaft should be maintained.
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In the case of a steel shaft, the Young’s modulus remains constant (elastic zone) until reaching the yield
stress, f; (indicating the initial yielding), at which time the steel starts to behave elastic-plastically with
different values of the secant Young’s modulus. Once a plastic hinge develops, the shaft cross section
responds in plastic fashion under a constant plastic moment. But, in the case of a concrete shaft, the stress-
strain relationship varies in a nonlinear fashion producing a simultaneous reduction in Young’s modulus and,
in turn, the stiffness of the shaft cross section. Furthermore, once it reaches a critical value of strain, the

concrete ruptures catastrophically.

The technique suggested by Reese (1984), which employs the Matlock-Reese p-y curves, requires
separate evaluation of the M-® relationship of the shaft cross section and then adoption of a reduced
bending stiffhess (EIL) to replace the original shaft bending stiffness (EI). The suggested procedure utilizes
this reduced bending stiffness (EI;) over the full length of the shaft at all levels of loading. Assuming a
reasonable reduction in bending stifthess, particularly with drilled shafts, is a critical matter that requires
guidance from the literature which has only limited experimental data. At the same time, the use of one
constant reduced bending stiffness for the shaft does not reflect the real progressive deformations and forces
associated with the steps of lateral loading. However, this technique may work quite well with the steel H-
pile which fails approximately once the shaft flange reaches the yielding stage (occurs rapidly). In general,
the response of the shaft (shaft-head load vs. deflection, and shaft-head load vs. maximum moment) is
assessed based on a constant bending stiffness (EI;) and is truncated at the ultimate bending moment of the
original shaft/drilled shaft cross section. The moment-curvature relationship, and thus the maximum bending

moment carried by the shaft cross section should be evaluated first.

Reese and Wang (1994) enhanced the technique presented above by computing the bending moment
distribution along the shaft and the associated value of EI at each increment of loading. Reese and Wang
(1994) concluded that the bending moment along the shaft does not depend strongly on structural
characteristics and that the moment differences due to EI variations are small. It should be noted that the

effect of the varying EI on the bending moment values along the drilled shaft was not obvious because the
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EI of the drilled shaft had no effect on the p-y curves (i.e. modulus of subgrade reaction) employed in their
procedure. Therefore, it was recommended that a single value of EI of the cracked section (constant value)
be used for the upper portion of the shaft throughout the analysis. Contrary to Reese and Wang’s
assumption, the variation in the value of EI has a significant effect on the nature of the p-y curve and
modulus of subgrade reaction [Ashour and Norris (2000); Yoshida and Yoshinaka (1972); and Vesic

(1961)] especially in the case of large diameter shafts.

The main purpose in this chapter is to assess the moment-curvature relationship (M-¢) of the loaded shaft
in a convenient and simplified fashion considering the soil-shaft interaction. The prediction of the moment-
curvature curve allows one to realistically determine the variation of shaft stiffness (EI) as a function of

bending moment.

The SW model allows the designer to include the nonlinear behavior of the shaft material and, as a result,
to find out the effect of material types on the shaft response and its ultimate capacity based on the concepts

of soil-shaft interaction.

7.2  COMBINATION OF MATERIAL MODELING WITH THE STRAIN WEDGE
MODEL
The bending moment distribution along the deflected length of a laterally loaded shaft varies as shown in Fig.
7-1. This profile of moment indicates the associated variation of shaft stiffness with depth if the stress-strain
relationship of shaft material is nonlinear. The strain wedge model is capable of handling the nonlinear
behavior of shaft material as well as the surrounding soil. The multi-sublayer technique, presented in
Chapter 5, allows one to provide an independent description for each soil sublayer and the associated shaft
segment. The effect of shaft material is considered with the global stability of the loaded shaft and the shape
of the developing passive wedge of soil in front of the shaft. During the iteration process using the SW
model, the stiffness of each shaft segment, which has a length equal to the depth of the soil sublayer, is a

function of the calculated bending moment at the associated shaft segment, as seen in Fig. 7-1. Therefore,
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the shaft is divided into a number of segments of different values of flexural stiffness under a particular lateral

load.

In order to incorporate the effect of material non-linearity, numerical material models should be employed
with the SW model. A unified stress-strain approach for confined concrete has been employed with the
reinforced concrete shaft as well as the steel pipe shaft filled with concrete. In addition, steel is modeled
using an elastic perfectly plastic uniaxial stress-strain relationship which is commonly used to describe steel
behavior. The procedure presented provides the implementation of soil-shaft interaction in a fashion more

sophisticated than that followed in the linear analysis with the SW model presented in Chapter 5.

The approach developed will allow one to load the shaft to its actual ultimate capacity for the desired lateral

load and bending moment according to the variation of shaft material properties along the shaft length.

7.2.1 Material Modeling of Concre te Strength and Failure Criteria

Based upon a unified stress-strain approach for the confined concrete proposed by Mander et al. (1984
and 1988), a concrete model is employed with circular and rectangular concrete sections. The proposed
model, which is shown in Fig. 7-2, has been employed for a slow strain rate and monotonic loading. The

longitudinal compressive concrete stress f; is given by

fczu (7_1)

V—]+xr

where f.. symbolizes the compressive strength of confined concrete.
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= (7-2)

where €. indicates the axial compressive strain of concrete.

ecc=eco[l+5(%-];%:| (7-3)

where € is the axial strain at the peak stress. f, and ¢, represent the unconfined (uniaxial) concrete

strength and the corresponding strain, respectively. Generally, €., can be assumed equal to 0.002, and

e EE (7-4)
where

E.=57,000( f,,)° (s (7-5)
and
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Fu=te (7-6)

E. denotes the initial modulus of elasticity of the concrete under slowly applied compression load.

As mentioned by Paulay and Priestly (1992), the strain at peak stress given by Eqn. 7-3 does not represent
the maximum useful strain for design purposes. The concrete strain limits occur when transverse confining

steel fractures. A conservative estimate for ultimate compression strain (€,) is given by

1.4r5fyhesm

cc

e, =0.004+ (7-7)

where &, 1s the steel strain at maximum tensile stress (ranges from 0.1 to 0.15), and p is the volumetric
ratio of confining steel. Typical values for €., range from 0.012 to 0.05. £, represents the yield stress of

the transverse reinforcement.

In order to determine the compressive strength of the confined concrete (), a constitutive model (Mander
et al. 1988) is directly related to the effective confining stress (fi) that can be developed at the yield of the

transverse reinforcement.

79471 27, } -8)

= -1.254+2.254| 1 :
/. fc{ ( fu T fa
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For circular and square section of concrete, f is given by

fi=095r 1, (7-9)

o Monotonic tensile loading

Although concrete tension strength is ignored in flexural strength calculation, due to the effect of concrete
confinement it would be more realistic if it were considered in the calculation. As suggested by Mander et
al. (1988), a linear stress-strain relationship is assumed in tension up to the tensile strength (f;,). The tensile

stress 1s given by

f.=E.e for f,<f, (7-10)

and

eff’“ (7-11)
E.

where

fu=90f, )" (psi) (7-12)

If tensile strain €, is greater than the ultimate tensile strain (g,), f is assumed to be equal to zero.

7.2.2 Material Modeling of Steel Strength
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There are different numerical models to represent the stress-strain relationship of steel. The model
employed for steel in this study is linearly elastic-perfectly plastic, as shown in Fig. 7-3. The complexity of
this numerical model is located in the plastic portion of the model which dose not include any strain

hardening (perfectly plastic).

The elastic behavior of the steel is limited by the linearly elastic zone of this model at which the strain is less

than the yield strain
S (7-13)
ESO

where f; is the yield stress of steel, and € is the value of the steel strain at the end of the elastic zone where

the stress is equal to . Es, is the elastic Young’s modulus of steel which is equal to 29,000 kips/inch2 )

When the value of steel stress (f;) at any point on the cross section reaches the yield stress, the Young’s
modulus becomes less than E;, of the elastic zone. The initial yielding takes place when the stress at the
farthest point from the neutral axis on the steel cross section (point A) becomes equal to the yield stress (f;),

as shown in Fig. 7-4a.

The initial yielding indicates the beginning of the elastic-plastic response of the steel section. By increasing
the load, other internal points on the cross section will satisfy the yield stress to respond plastically under
a constant yield stress (f;), as seen in Figure 7-4b. Once all points on the steel section satisfy a normal
stress (f;) equal to the yield stress (f)) or a strain value larger than the yield strain (gy), the steel section
responds as a plastic hinge with an ultimate plastic moment (M,) indicating the complete yielding of the steel

section, as presented in Fig. 7-4c.
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During the elastic-plastic stage (after the initial yielding and before complete yielding) some points on the
steel section respond elastically (£< f;) and the others respond plastically (f = £;) with different values of
Young’s modulus (E;) , as presented in Fig. 7-3. The values of normal strain are assumed to vary linearly

over the deformed cross section of steel.

If the strain at any point on the steel cross section is larger than the yield strain (g), the plastic behavior will
be governed by the flow of the steel under a constant stress (f;) at the point in question. Regardless of
whether the section is under elastic, elastic-plastic or plastic states, the strain is linearly distributed over the
whole steel section. In addition, the strain at any point is controlled by the values of strain at other locations
in order to keep the strain distribution linear. Generally, the external and internal moments over the steel

section should be in a state of equilibrium.

7.3  MOMENT-CURVATURE (M-F ) RELATIONSHIP
The aim of developing the moment-curvature relationship of the shaft material is to determine the variation
of the flexural stiffness (EI) at every level of loading. The normal stress (o) at any cross section along the

shaft length is linked to the bending moment (M) and curvature (¢) by the following equations:

2
Erd Y-y (7-14)

prf=E_y (7-15)
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f:zll yf; (7-16)

X

e =-— (7-17)
rO

where

s.=FEe=Ef:z (7-18)

z = the distance from the neutral axis to the longitudinal fiber in question
po = the radius of curvature of the deflected axis of the shaft

g, = the normal strain at the fiber located z-distance from the neutral axis.

The above equations are based on the assumption of a linear variation of strain across the shaft cross
section. In addition, the shaft cross section is assumed to remain perpendicular to the shaft axis before and

after deforming, as shown in Fig. 7-5.

74  ANALYSIS PROCEDURE

The analysis procedure adopted consists of calculating the value of bending moment (M;) at each cross
section associated with a profile of the soil modulus of subgrade reaction which is induced by the applied
load at the shaft top. Then, the associated curvature (¢), stiffness (EI), normal stress () and normal strain

(ex) can be obtained. This procedure depends on the shaft material. The profile of moment distribution
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along the deflected portion of the shaft is modified in an iterative fashion along with the values of the strain,
stress, bending stiffness and curvature to satisfy the equilibrium among the applied load and the associated
responses of the soil and shaft. Based on the concepts of the SW model, the modulus of subgrade reaction
(i.e. p-y curve) is influenced by the variations in the shaft bending stiffness at every shaft segment. This
procedure guarantees the incorporation of soil-shaft interaction with the material modeling. The technique
presented strives for a more realistic assessment of the shaft deflection pattern under lateral loading and due

to the nonlinear response of shaft material and soil resistance.

7.4.1 Steel Shaft

Steel shafts involved in this study have circular cross sections, as seen in Fig. 7-6. The cross section of the
steel shaft is divided into a number of horizontal strips (equal to a total of 2m) parallel to the neutral axis.
Each strip has a depth equal to the thickness of the pipe shaft skin, as seen in Fig. 7-7. The moment applied

over the cross section of the shaft segment (i) is M;, and the normal stress at a strip (n) is (£), (1 <n < m).

Using Eqns. 7-17 and 7-18, the stress and strain distributions over the cross section of each shaft segment

can be determined as

f =— (7-19)

(e ) =zf, I<n<m (7-20)
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(£,)=(E), (&),
(7-21)

where E; < Es,; 0; is the curvature at shaft segment (i) which is constant over the steel cross section at the
current level of loading; z, indicates the distance from the neutral axis to the midpoint of strip n; (€s),
represents the strain at strip n; (EI); represents the initial stiffness of the shaft segment (i); I is the moment
of inertia of the steel cross section of the shaft segment (1) which is always constant; and Es, symbolizes the

elastic Young’s modulus of the steel.

1. Elastic Stage

The Young’s modulus of any strip of the steel section (i) is equal to the steel elastic modulus (29x10° psi)
as long as the stress (&), 1s less or equal to the yield strain. Consequently, there is no change in the stiffness
value of the shaft segment (i) if & at the outer strip (n = 1) is less than or equal to &,. This stage is similar

to the linear analysis (constant EI) of the SW model presented in Chapter 5.

2. The Elastic-Plastic Stage

Once the calculated strain at the outer strip based on Eqn. 7-20 is larger than €, the stress (f), determined
at the outer strip (n = 1) using Eqn. 7-21 will be equal to the yield stress. Therefore, initial yielding occurs
and the elastic-plastic stage begins. During the elastic-plastic stage, the strips of the steel cross section
experience a combination of elastic and plastic responses with different values of the secant Young’s
modulus (Es). Some strips behave elastically (¢, < €, and £ < f;) , and the others behave plastically (¢, >
ey and £ = £;) with different values of the secant Young’s modulus (Ey), as shown in Figs. 7-3, 7-4 and 7-8.
The normal stresses on the steel cross section are redistributed in order to generate a resisting moment

(MR); that balances the applied moment (M;) and satisfies the following equation:



Mi=(Mr)=(p)+ (M) (7-22)

where (M.); and (My); represent the internal elastic and plastic moments induced over the steel cross

section (1).

The internal elastic moment (M,); represents the internal moment exerted by the strips (m;) which behave

elastically and can be obtained as

(M. )=2(1,) 4,z (1<j<m,) (7-23)

The internal plastic moment (My); is the moment generated by the yielded strips (m,) which respond

plastically and can be calculated using the following equation:

(M, )=2f, Az (I1<k<m,) (7-24)

where A is the area of the steel strip, and

2m:m1+m2 (425)

For the first iteration of the solution in this stage, the steel cross section experiences a resisting internal
moment (Mg); less than the external moment (M;). Therefore, the steel cross section of the shaft segment
(1) should maintain a modified stiffhess value for the shaft segment in question, i.e. (EI); 0. This reduced

value of stiffness at shaft segment (i) is associated with an increase in the value of curvature such that the

(F =t 5 713 (7-26)



new value of curvature, (¢;)mod, 1

The modified stiffness value at shaft segment (i) can be computed using the following equation,

(Er),,,=—-2L (7-27)

i, mod -
(f i )mod

The above procedure should be performed with all the unbalanced segments along the deflected portion

of the loaded shaft at each step of loading.

The global stability problem of the laterally loaded shaft is resolved under the same level of loading and soil
resistance using the modified values of stiffness of the shaft segments (Eqn. 7-27). Consequently, the new
moment distribution (M;) along the shaft length is assessed during each iteration. The modification for shaft
curvature and, therefore, stiffness values at the unbalanced segments continues until Eqn. 7-22 is satisfied

over all the defelcted segments of the shaft.

3. Plastic Stage

The elastic-plastic stage continues until the steel cross section reaches a condition of complete yield.
Thereafter, all strips of the steel section will be subjected to the yield stress () and strain values lager than
gy , as presented in Fig. 7-9. At this level of shaft head load, the steel section exhibits a plastic moment
(M,) which represents the ultimate moment that can be carried by the steel section. Once the steel section
reaches the plastic moment, a plastic hinge develops to indicate the beginning of the plastic stage at the shaft

segment in question. The plastic moment is expressed as
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M,=Xf, 4,z (7-28)

Equations 7-26 and 7-27 are employed in order to obtain the desired values of curvature and the

associated stiffhess at the plastic section is

M
El) .= u
( )1, d (f i )mOd

(7-29)

During the plastic stage, the moment capacity and the stress over the steel section are restricted to the
plastic moment (M,)) and the yield stress (f;), respectively. However, the strain and curvature values are

free to increase in order to produce reduced stiffhesses with the higher level of loading.

The resisting moment of the completely yielded section (plastic hinge) is always equal to M,,. If the external
moment (M;) which is calculated from the global stability is larger than M,,, Eqns. 7-26, 7-28 and 7-.29 will
be employed. The iteration process continues until satisfying an external moment value equal to the plastic

moment at the shaft segment in question.

The development of the plastic hinge on the shaft does not mean the failure of the shaft but leads to a
limitation for the shaft-head load. After the formation of the plastic hinge, the shaft deflects at a higher rate
producing larger curvatures and smaller stiffnesses to balance the applied load. Therefore, another plastic
hinge may develop at another location on the shaft. If the soil has not failed at the development of the plastic
hinge, the shaft may exhibit a lateral load capacity slightly larger than the load associated with the plastic
hinge formation due to increase in soil resistance. The laterally loaded shaft is assumed to fail when the

outer strip at any shaft segment experiences a strain value larger than 0.15.

7.4.2 Reinforced Concrete Shaft
The reinforced concrete shaft has a circular cross section and to be divided into a total number of horizontal

7-15



strips of (2m) as seen in Fig. 7-10. Unlike the cross section of a steel shaft, the cross section of the
reiforced concrete shaft is not symmetrical around the neutral axis as a result of the different behavior of
concrete under tensile and compressive stresses. The incorporation of concrete tensile strength reflects the
actual response of the reinforced concrete shaft. As presented in Section 7.2.1, the employment of

concrete confinement has a significant influence on the concrete behavior (strength and strain values).

The resistance of the concrete cover (outside the confined core of concrete) is neglected. Therefore, the
initial stiffness of the whole concrete cross section (EI); represents the effective concrete section which is
the confined concrete core. The curvature (¢;) at the concrete section (i) is initially determined based on

the applied external moment M; and the initial stiffness of the reinforced concrete cross section (EI),, i.e.

f = (7-30)

Based on a linear distribution of strain (&) over the reinforced concrete cross section, the strain at any strip

(n) can be obtained using Eqn. 7-20 and is expressed as

(e) =zf, I<n<m (7-31)

Eqns. 7-1 and 7-21, which represent the numerical models of the compressive stress of confined concrete
and tensile stress of steel, respectively, are used to calculate the associated concrete stress (f;) and steel
stress (f;) at each strip (n). In this study, the tensile stress (f,) is assumed to be equal to the compressive
stress (f;) if the tensile strain (g,), is less than &,, which is more conservative than Eqn. 7-10. Therefore,
the reinforced concrete cross section remains symmetric (the centerline represents the neutral axis) as long
as g, at the outer strip (n = 1) is less than &,,. Under the conditions of a symmetric reinforced concrete

section, the moment equilibrium and stiffhess modification at any shaft segment (i) can be expressed as
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(Me)=22[(f. 4 ), 2a+( [, 4:), 2] (I1<n<m) (7-32)

Once the value of the tensile strain at the outer strip of any shaft cross section exceeds €, the outer strip
on the tension side fails and the cross section becomes unsymmetric. Thereafter, the neutral axis is shifted
towards the compression side as shown in Fig. 7-10. In order to accurately estimate the new position of

the neutral axis, the cross section should be in equilibrium under the compressive and tensile forces (Fcom

and Fy,) or

(Feon )= (Fren), (7-33)
where

(Fen )=Z(ASf 4 f,), I1<n<p, (7-34)
and

(Fun )=2(A S, + A T,), I<n<p, (7-35)

n; and np are the numbers of strips in the compression and tension zones of the concrete cross section,

respectively. At any strip in the tension zone, f; is equal to zero when the tensile strain is greater than &y,.

Having the values of ny and n, (2m =n, + n,) and using Eqns. 7-33 through 7-35, the location of the neutral
axis can be identified, and the resisting moment can be determined as

where
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(MR )iZ(MCOIn+Mt6n ),' (7'36)

(M) =S[(foa ~f 4,).(z) ] (I1<n<n,) (7-37)

(M )=2[(S 4 +f. 4 ),(2) ] (1<n<n,) (7-38)

where z and z are the distance from the neutral axis to the strip in question in the compression and tension

zones, respectively.

In addition, the behavior of steel bars in the compressive and tensile zones is subjected to the steel model
presented in Section 7.2.2. Once the strain of any steel bar is greater than or equal to €y, f will be equal
to £, in Eqns. 7-34 through 7-38. The equations above are influenced by the ultimate values of concrete

strength and strain (g, and f;.) that are associated with concrete confinement as presented in Section 7.2.1.

If the calculated moment (Mg); is less than the external moment M;, the cross section curvature will be

modified to obtain new values for the curvature and stiffness to balance the applied moment, i.e.

M,
f )a=fi—— 7-39
( i )mod I(MR )i ( )

The modified stiffness value at shaft segment (1) can be computed using the following equation,
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(Er),,,=—-2L (7-40)

i, mod -
(f i )mod

By iteration, Eqns. 7-33 through 7-40 are emlpoyed to obtain the desired values of the curvature and the
stiffness of the shaft segment (i) in order to generate a resisting moment (Mg ); equal to the external moment
(M;). The above procedure should be performed with all unbalanced segments along the deflected portion
of the loaded shaft at each level of loading.

The global stability problem of the laterally loaded shatt is solved again under the same level of loading and
using the modified values of stiffhess of the shaft segments. Consequently, the bending moment (M;) is
redistributed along the shaft length.

Once any concrete strip under compressive stress reaches the ultimate strain €., (Eqn. 7-7), the strip fails
and is excluded from the resisting moment. The steel bars fail when the steel strain reaches a value of 0.15.
The strength of a failed strip is assumed to be equal to zero in Eqn. 7-28. However, the shaft fails when
the stiffness of any shaft segment diminishes to a small value that does not provide equilibrium between the
external and the resisting moments. Therefore, the plastic moment of a concrete shaft represents the largest

mduced moment in the shaft that can be sustained before failure.

7.4.3 Concrete Shaft with Steel Case (Cast in Steel Shell, CISS)

In the current case, the shaft cross section is treated as a composite section similar to the reinforced
concrete shaft. The shaft cross section (steel and concrete) is divided into a number of strips (equal to 2m)
as shown in Fig. 7-9. The thickness of each strip is equal to the thickness of the steel shell (t;). Both
numerical material models presented in Section 7.2 are employed here using an iterative technique governed

by the deformation criteria of the numerical models.

The normal strain is assumed to vary linearly over the shaft cross section which is perpendicular to the shaft
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axis, as shown in Fig. 7-11. Therefore, the curvature is constant over the whole composite section. The
applied bending moment (M;) at shaft segment (i) generates initial values for curvature, stresses and strains
in both the steel pipe and the concrete section as described in Section 4.2. Similar to the reinforced
concrete section, the concrete resistance in the tension zone is considered. It should be noted that the steel

pipe provides large concrete confinement resulting in large values of concrete strength and strain.

The composite cross section of shaft behaves symmetrically as long as the tensile strain at the outer strip
of concrete (n = 2) is less than g,,. The strain values of steel and concrete are obtained using Eqns. 7-30
and 7-31. Then the associated stress values of concrete and steel are calculated based on Eqns. 7-1 and
7-21. Generally, the stiffness the composite cross section is modified according to the equilibrium between

the external and internal moments as expressed by Eqn. 7-32 for the symmetric section.

When the tensile strain of the outer strip of concrete (n = 2) exceeds &4,, the composite cross section in no
longer symmetric and the neutral axis location is shifted towards the compression zone and should be
determined by using an iterative technique which includes Eqns. 7-36 through 7-39. It should be noted that
the concrete tensile stress (f) at any failed strip in the tension zone is equal to zero. In addition, at any strip,
the steel stress is equal to £, if the strain is equal to or larger than &,. If the calculated resisting moment
(MR); does not match the external moment (M;), the stiffhess of the shaft segment in question is modified

using Eqn. 7-40.

The above procedure is performed with all shaft segments under the same level of loading. This procedure
is repeated in an iterative way using the modified stiffhess values to solve the problem of the laterally loaded
shaft (global stability). The iteration process continues until there is equilibrium between the external and
resisting moments at all shaft segments. The distribution of bending moment (M;), along the length of the
shaft, and the deflection pattern is based on the modified shaft stiffnesses and the resistance of the

surrounding soil.
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It should be noted that the concrete section will not fail before a plastic hinge develops. This occurs
because the steel yields at a strain (e,) much less than the ultimate strain of concrete (€.,). However, the
failed strips of concrete (in either the tension or compression zones) are subtracted from the composite
section resulting in a faster drop in the stiffness of the shaft segment in question. It should be emphasized

that there is no sudden failure for the concrete portion of the composite section because of the steel shell.

The stiffhess of the loaded shaft and the effective area of the deflected shaft cross section vary according
to the level of loading. Therefore, the actual moment-curvature relationship and the ultimate moment carried
by a reinforced concrete shaft or a steel pipe shaft filled with concrete should be calculated using the

technique presented.

7.4.4 Reinforced Concrete Shaft with Steel Case (Cast in Steel Shell, CISS)

Similar to the shaft cross section presented in Section 4.4.3, the shaft cross section is treated as a composite
section. The shaft cross section (steel and reinforced concrete) is divided into a number of strips (equal to
2m) as shown in Fig. 7-12. The thickness of each strip is equal to the combined thickness of the steel shell
(t;) and the thickness equivalent to the longitudinal reinforcement, A [t, = A; / 3.14 / (Zs - t)]. Both
numerical material models presented in Section 7.2 are employed here using an iterative technique governed

by the deformation criteria of the numerical models.

The normal strain is assumed to vary linearly over the shaft cross section which is perpendicular to the shaft
axis, as shown in Fig. 7-12. Therefore, the curvature is constant over the whole composite section. The
applied bending moment (M;) at shaft segment (i) generates initial values for curvature, stresses and strains
in both the steel pipe and the concrete section as described in Section 7-2. The current shaft cross section

(Fig. 7-12) is analyzed by following the procedure applied to the CISS section presented in Section 7.4.3.

7.5 SUMMARY

A technique for the inclusion of nonlinear material modeling for steel, concrete, and composite steel concrete
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shafts has been developed and demonstrated in this chapter. The strain wedge model exhibits the capability
of predicting the response of a laterally loaded shaft based on the nonlinear behavior of shaft material. The
technique presented allows the designer to evaluate the location of a plastic hinge developed in the shaft,
and to determine the realistic values of the ultimate capacity and the associated deflection of the loaded

shaft.

The nonlinear behavior of the shaft material has an influence on the lateral response and capacity of the
shaft/shaft. This effect is dependent on the values of bending moment (level of loading). In turn, the
modulus of subgrade reaction (i.e. the p-y curve) is affected by the changed bending moment, the reduced
bending stiffnesses, and the changed deflection pattern of the shaft/shaft. =~ Without the appropriate
implementation of material modeling, the shaft/shaft capacity, and the associated deflection pattern and

bending moment distribution will be difficult to predict with any degree of certainty.

7-22



Y M,
P, ;D 0

oo
T 0
8 ] M
é’ a Max
a
< [
E
w M
e O
o H
€ 0
o |
o |
3 \
o
o

Deflection Moment Distribution

Fig. 7-1 Deflection and Moment Distributions in a Laterally Loaded Shaft

7-23



\
H=u fcc
p | Ee
2 |/ /|
o o |
> |/ S |
o E
sy | |
E // | |
|8°° | -
Compressive Straln, &, Eeu

Fig. 7-2  Stress-Strain Model for Confined Concrete in Compression
(Mander et al. 1984 and 1988)

Stress ‘

Yield Stress (fy)
Es E Es

SO

&y = Strain

Cs
Fig. 7-3  Elastic-Plastic Numerical Model for Steel

7-24



8|BjS alsb|d "2

SIRIS JlSRId—2ISP|3 9

SC-L

UO0I)I9§ [99)S ¥ JIAO0 SISSII)S [eULION] JO mvw&am JURIJJIq

Buip|e|A 1PL4Ul ‘D

$-L 81

8|ild adid |22}s Jo UO|oDS SsoI] ¥

|

(0) 4e48wn)g 18iNQ

yery 4 = L& L4=4 3%
25
»m lnmw
|||||IIMIII ||||| | exy jpunen
a2 (51) sseuxajyy
e alid sdid
A af) 1= Lo Per, Ap=ey 3%



_ £
W f%ﬂml Axls
5 Nowral A

Normal Strain Distribution

A Cross sectlon of a Concrete Flle Under Bending Momaent

Fig. 7-5 Flexural Deformations of a Pile Segment subjected to Bending Moment

7-26



Fig. 7-6 A Cross Sections of Steel Shaft
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CHAPTER 8

VERIFICATIONS WITH FIELD LOAD TESTS

This chapter presents a number of example problems that reflect real applications for existing
test projects. The SW model program input and output data will be summarized in tables. The
data input will include the following sets of shaft and soil properties, shaft group geometry, and

loads (shear and axial forces, and moment) applied at the top of the shaft.

8.1 INPUT DATA
8.1.1 Shaft Properties
e Shaft-head conditions (free head, fixed head, zero rotation or zero
deflection)
e Behavior of shaft material (linear or nonlinear analysis)
e Shaft-head location above or below ground surface
e Shaft length
e Number of shaft segments (> 1)
e Length of shaft segment
e Diameter of shaft segment
e Uniaxial strength of concrete after 28 days (f;)
e Longitudinal steel ratio(s) (As/Ac)
o Steel yield stress
e Thickness of steel casing, if present
e Steel yield stress of steel casing

e Thickness of concrete cover

Based on the ACI formula, the bending stiffness (EI) of the shaft cross-section is determined

internally by the program S-Shatft.

8.1.2 Soil Properties

e Number of soil layers (starting from ground surface)
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8.1.3

K3k

8.14

8.1.5

e Uniform surcharge at the ground surface (additional uniform loads at ground

surface)
e Location of water table below ground surface
e Soil type of each soil layer
e Thickness of soil layer
e Effective unit weight of soil (y)
e Friction angle (¢) for sand
e Undrained shear strength for clay (S,)
e Unconfined compressive strength of rock mass (q,)
e &50** of sand, clay, C-o soil or rock (charts provided and can be determined by the

program for default =0)

Liquefaction Analysis (for Saturated Sand)
e Corrected number of blowcounts, (N)so
e Percentage of fines in sand

e Shape parameter (roundness) of sand grains

€50 = axial strain of soil at 50% of stress level (i.e. 50% of soil strength). €50 can be
calculated internally in the shaft program by typing 0 (program default). Also, a chart is
provided in the program help to allow the designer to check the values of £59. However,
it is recommended that the chart be used for sand if the uniformity coefficient (C,) > 2
(from sieve analysis data). For the case of rock mass, the curve of S, vs. €5 is

extrapolated to cover the rock mass strength (q, =2 Sy).

Loads (shear force, moment and axial load)
e Axial load at shaft head
e Bending moment at shaft head

e Desired lateral load (shear force) at shaft head

Earthquake Excitation (Liquefaction)

8-2



e Magnitude of earthquake (M)

e Peak ground acceleration (amax)

8.2  LAS VEGAS FIELD TEST (SHORT SHAFT)

The Las Vegas test for large 8-foot diameter shaft represents an excellent case study for a short
shaft (Zafir and Vanderpool, 1998). The soil data input for use with the programs
FLPIER/COM®624 was evaluated by the University of Florida team. The same soil data input has
been used in the SW model program. The nonlinear modeling of shaft material (concrete and

steel) is employed in both the FLPIER/COM624 and SW Model analyses.

The reinforced concrete drilled shaft tested was 8 feet in diameter and 32 feet in length with 1%
longitudinal steel reinforcement. The uniaxial strength of concrete after 28 days (f) is assumed
to be 5.0 ksi. Table 8-1 summarizes the detailed information for the soil profile as reported by

the University of Florida team.

Table 8-1 - Soil Profile for the Las Vegas Test

Soil layer | Soil type | Thickness (ft) | y (pcf) ¢ (deg.) k (pci)
Layer 1 Sand 2.5 120 33 15
Layer 2 Sand 6.5 120 37 30
Layer 3 Sand 3.0 120 32 11

Layer 4 Sand 1.5 120 36 26
Layer 5 Sand 7.5 120 45 62
Layer 6 Sand 2.0 120 40 43
Layer 7 Sand 3.5 120 45 63
Layer 8 Sand 6.0 120 40 44
Layer 9 Sand 1.0 120 32 10

Layer 10 Sand 2.0 120 37 32

y = effective unit weight of soil

k = coefficient of subgrade reaction (F/L*)
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Compared to COM624/FLPIER, the SW model program provides very good prediction for the
laterally loaded large diameter short shaft of the Las Vegas test (see Table 8-2 and Figs. 8-1
through 8-4). The nonlinear modeling of shaft material is used to show the program capability of

predicting the response of a large diameter short shaft.

Table 8-2 Comparison of Measured Shaft Head Deflection and SW model and
FLPIER/COMG624P Predictions for Las Vegas Test

Load Actual Shaft-Head SW Model FLPIER/COM624
(kips) Deflection, Deflection, Deflection,
Yo, in Yo, in Yo, in
50 0.02 0.02 0.201
100 0.04 .05 0.402
150 0.07 .08 0.603
200 0.125 0.11 0.804
300 0.235 0.22 1.27
400 0.40 0.38 1.89
500 0.61 0.58 2.76
600 0.88 0.88 3.9
700 1.21 1.25 5.75
750 1.36 1.45 7.15
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8.3 SOUTHERN CALIFORNIA FIELD TEST (SHORT SHAFT)

A number of cast-in-place drilled piers were constructed and tested in Southern California and
reported by Bhushan et al. (1978). The piers were constructed at five different sites. One of
these piers is an ideal short shaft with which to compare the predictive capability and reliability
of computer programs such as LPILE/COM624P/FLPIER and SW model. Regardless of the
predicted results, it should be mentioned again that the p-y curves employed in the programs
LPILE, COM624P or FLPIER were established based on long small diameter piles that are not

representative of large diameter shafts.

In short shaft case reported here, the pier tested was 4 feet in diameter and 16 feet in length. The
pier was constructed in stiff clay with undrained shear strength (S,) of 5500 psf and €50 of 0.94%
(Table 8-3). This data was reported by Bhushan et al. (1978) and used with COM624 by Reese
(1983) [the developer of the program COM624 and LPILE]. Reese (1983) reported the results
provided by the program COM624 and presented in Fig. 8-5 and Table 8-4. Compared to the
measured data, COM624 provides very soft response. The results assessed using the SW model
program are in good agreement with the field data. Figures 8-6 through 8-8 show the lateral

response of the tested shaft using the SW model technique.

Table 8-3 - Soil Data for Southern California Test

Soil Layer | Soil Type | Thickness (ft) | y (pcf) ¢ (deg.) Su (psf) €50**
Layer 1 Clay 22 130 34 5500 0.0095

Table 8-4 Comparison of Measured Shaft Head Deflection and SW model
and COM624P Predictions for Southern California Test

Load | Actual shaft-head deflection, | SW model Deflection, | COM624 Deflection,
(kips) Yo, in Yo, in Yo, in

50 0.1 0.094 0.20

100 0.25 0.2275 0.35

200 0.67 0.59 1.50

300 1.10 1.00 4.40

400 1.85 1.55 15.0
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84  TREASURE ISLAND FULL-SCALE LOAD TEST
ON PILE IN LIQUEFIED SOIL

A series of full-scale field tests in liquefied soil was performed at Treasure Island in San
Francisco Bay (Ashford and Rollins 1999). The soil properties employed in the SWM analysis
for the test site based on the reported data (Weaver et al. 2001) are described in Table 8-5. Soil
and pile properties can be also seen in Fig. 8-9. In this analysis, the sand is assumed to contain
5% fines. The soil was liquefied by carrying out controlled blasts at that site without densifying
the soil in the test area. Drained and undrained lateral loading tests were performed on a long
isolated pipe pile filled with concrete (CISS) of 0.61 m diameter. The tested pile exhibited free-
head conditions and was laterally loaded 1.0 m above ground surface. The test pile had bending

stiffness EI = 448320 kN-n?.

The observed and SW model predicted drained response of the pile compares favorably as seen
in Fig. 8-10. Procedures followed in the Treasure Island test (liquefying the soil around the pile
and then loading the pile laterally) subsequent to the static drained test are similar to those
employed with the SW model analysis. The assessed undrained post-liquefaction behavior of the
tested pile is based on the procedures presented herein, and includes the effect of free-field and
near-field excess pore pressure (Ugsfr + Ugsnr). The pile head response shown in Fig. 8-10 is

based on a peak ground acceleration (amax) of 0.11g, and an earthquake magnitude (M) of 6.5.

The piles were cyclically loaded after the first blast at the site. The observed (field) undrained
points (Ashford and Rollins 1999), which are shown in Fig. 8-10, represent the peaks of the
cyclic undrained response of these piles. It should be mentioned that the good agreement
between the measured and predicted undrained response is based on an assumed maximum
ground acceleration, amax, of 0.11g. This value of any,x generates high excess porewater pressures
(uxs, 1) in most of the sand layers. It should be noted that the value of amax employed in the
analysis causes an excess porewater pressure ratio (r,) equal to 0.95 in most of the sand and the
best match with the measured free-field excess porewater pressure pattern induced in the field

(Ashford and Rollins 1999).
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Table 8-5. Soil Properties Employed in the SWM Analysis for the Treasure Island Test

Soil Layer Soil Type Unit Weight, | (N1)eo 0 aso Su
Thick. (m) Sy (KN/m) (degree) | % |KN/m
2
0.5 Brown, loose sand (SP) 18.0 16 33 0.45
4.0 Brown, loose sand (SP) 8.0 11 31 0.6
3.7 Gray clay (CL) 7.0 4 1.5 20
4.5 Gray, loose sand (SP) 7.0 5 28 1.0
5.5 Gray clay (CL) 7.0 4 1.5 20

The p-y curve comparisons in Fig. 8-11 show the capability of the SW model for predicting the
p-y curves of a pile/shaft in fully or partially liquefied soils. The back-calculated (measured) p-y
curves at different depths for the 0.61-m cast-in steel-shell (CISS) pile are from Weaver et al.

(2001). Other techniques, such as the traditional p-y curve approach with a reduction multiplier,

do not show the concave-upward pattern of the back-calculated p-y curves.

It was obvious from the uys ¢ distribution measured along the depth of the pile right after the
blast that the upper 4.6 m was almost fully liquefied. The back-calculated (field) p-y curves
shown in Fig. 8-11 were assessed after a few cycles of loading. As a result, the porewater
pressure in the upper 45 m of soil reached 1.0. By increasing the peak ground acceleration
(amax) used in the SW model analysis from 0.11g to 0.15g, the whole soil profile completely

liquefies and the pile head response (load-deflection curve) follows the concave-up shape

(increasing slope) as seen in Fig. 8-12.
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8.5 COOPER RIVER BRIDGE TEST AT THE MOUNT PLEASANT SITE,

SOUTH CAROLINA SITE
Cyclic lateral load tests were performed on two large diameter long shafts at the Mount Pleasant

site. Shaft MP-1 (Cast-in-Steel-Shell, CISS, bending stiffness (EI) = 2 x 10® kip-ft*) was 8.33 ft
in diameter while the shaft MP-2 (Cast-in-Drilled Hole, CIDH, EI = 1.38 x 10® kip-ft?) was 8.5 ft
in diameter, each with a one-inch thick steel shell. The lateral load in both cases was applied at a
point 43-inches above the ground surface. The Mount Pleasant site soil profile consists of 40 ft
of loose to medium dense, clean or silty or clayey sands overlaying a thick layer of the Cooper
Marl (S & ME 2000). Table 8-6 summarizes the basic soil properties of the soil profile at the
Mount Pleasant site used in the SW model analysis. Lateral static load tests were carried out on
as-is conditions, and liquefied conditions induced by controlled blasting (Figs. 8-13 and 14) (S &
ME). The blast successfully generated high porewater pressure (r, =1) within most of the upper
38 ft as indicated by the piezometer data.

LPILE analyses for the load test for the project were carried out using (1) the traditional p-y
curve for the 38 feet thick overburden consisting of sandy deposits of ¢ = 35° and y = 60 pcfand
(2) back calculated p-y curves for the Cooper Marl from O-cell tests as no traditional p-y curves
representative of the Cooper Marl conditions were available. The LPILE results for pre- and
post-liquefaction conditions based on the back-calculated p-y curve from the O-cell tests are
shown in Figs. 8-13 and 14. In contrast, SW model predicted p-y curves for the Cooper Marl
showed good agreement with the back-calculated p-y curve from the O-cell tests. The SW
model results shown in Figs. 8-13 and 14 are based on the p-y curves predicted from the SW

model analysis.
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Table 8-6 Soil Properties Employed in the SW Model Analysis
for the Cooper River Bridge Tests at Mt. Pleasant

Soil Layer Soil Type Unit Weight, | (N1)s0 o) aso Su
Thick. (ft) v (pcf) (degree) % psf
4 Slightly clay 120 19 34 0.004
sand (SP-SC)
9 Sandy clay 62 7 30 0.008
(CH)
16 Very clayey 62 10 32 0.006
sand (SC-CL)
9 Silty sand 62 7 30 0.008
(SM)
80 Cooper Marl 65 20 0.002 | 4300

LPILE shaft responses for liquefied conditions were computed for various trial values of ry
different from the measured value in order to come up with a reasonable agreement of shaft
response with the field test results. A constant value for r, =0.7 for the upper 38 ft of overburden
used in the LPILE analysis (for shaft MP-1) yields reasonable agreement with the field results
Fig. 8-13). It should be noted that (1) r, measured in the field was very close or equal to one and
(2) use of r, in the LPILE analysis only reduces the buoyant (effective) unit weight of soil
thereby producing a softer shaft responses. 1, used with shaft MP-2 in LPILE analysis was not
defined in the report (SM&E 2000).

The SW model analysis for a shaft in liquefied soil depends on several factors: earthquake
magnitude (M); peak ground acceleration (amax); and the soil properties to determine the values
of r, and the additional excess porewater pressure resulting from the superstructure lateral
loading. An earthquake magnitude of 6.5 and amax of 0.1g and 0.3g were used in the SW model
analysis to obtain the shaft responses shown in Figs. 8-13 and 14. It should be noted that any,x of
0.3g develops complete liquefaction in the upper 38 ft of soil. Despite the diameter and EI of
shaft MP-1, larger than those of shaft MP-2, shaft MP-2 experienced a post-liquefaction lateral
response stiffer than that of shaft MP-1, as observed in the field test (Figs. 8-13 and 14). The use
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of different values of amax in the SWM analysis is to exhibit the varying shaft response.
Knowing the seismic zone (i.e. M and an,x) and soil and shaft properties at a particular site, the
designer will be able to assess the lateral response of a shaft/pile in liquefiable soils using the
SW model computer program. No attempt was made by SM&E 2000 to back calculate the p-y

curves.
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8.6  UNIVERSITY OF CALIFORNIA, LOS ANGELES (UCLA) FULL-SCALE

LOAD TEST ON LARGE DIAMETER SHAFT
A full-scale load test funded by Caltrans on a cast-in-drilled-hole (CIDH) shaft/column was
conducted by UCLA (Janoyan et al. 2001). The 88-ft long shaft/column tested was 6.0 ft in
diameter for the 40 ft above ground and 6.5 ft in diameter for the 48 ft below ground surface.
The configuration of the tested shaft and its material (concrete/steel) properties are shown in Fig.
8-15. The testing was performed at a site with deep alluvial soils consisting of silty clay and
silty, clayey sand. The soil properties employed in the SW model analysis are reported in Table.
8-7. The shaft/column tested was pushed laterally up to failure (the formation of a plastic hinge).
It should be noted that the field results indicate that the shaft responded as an intermediate shaft

which is consistent with the SW model program description.

Figure 8-16 provides a comparison between the experimental and computed moment curvature
response for the 6-ft-diameter shaft cross section. Compared to the results of the X-Section
program (used by Caltrans), the moment-curvature relationship assessed using the SW model

program shows better agreement with the experimental results.

Table 8-7 - Soil Data for the UCLA Test

Soil Soil type Thickness | v (pcf) Su (psf) €50
layer (ft)
Layer 1 Stiff Clay 6 130 4000 0.003
Layer 2 Stiff Clay 18 130 2500 0.005
Layer 3 Stiff Clay 40 130 3000 0.004

Figure 8-17 shows a comparison between the measured shaft response and the computed one
using LPILE, SWM&6.0 and the current shaft program. To obtain good match with field data, a
sand soil profile was used with LPILE (as reported by Caltrans). The data obtained using LPILE
based on the original soil profile shown in Table 8-7 and given in the UCLA report did not

provide good agreement with the measured data. As seen in Fig. 8-16, the same column/shaft



was previously analyzed using the older SW model program (SWM6.0) for a long piles/shaft that

does not account for the vertical side shear resistance and shaft classification.
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8.7 FULL-SCALE LOAD TEST ON A BORED PILE IN LAYERED
SAND AND CLAY SOIL

A bored 1.5-m-diameter reinforced concrete pile was installed to a depth 34 m below ground
surface in the town of Chaiyi in the west central coastal plain of Taiwan (Fig. 8-18 by Brown et
al. 2001). The pile tested with free-head conditions was laterally loaded at 0.5 m above ground.
As reported by Brown et al (2001), relatively poor comparisons with the measured results were
obtained using the traditional p-y curves for sand Reese et al. 1974) and clay (Matlock 1970)
with the program FLPIER (McVay et al. 1996). The traditional p-y curves were modified to a
very large extent in the upper 12 m (see the modified p-y curves by Brown et al. 2001 in Fig. 8-

19) in order to obtain good agreement with the measured data for the isolated pile.

Using the original soil properties given by Brown et al. (2001) shown in Fig. 8-18, the SW model
provides an assessed response in good agreement with the measured response of the single free
head pile (Fig. 8-20). A nonlinear model for pile material behavior (reinforced concrete)
incorporated in the SW model analysis is employed in this analysis. It should be noted that none

of the given (original) soil and pile properties was modified for the SW model analysis.

As presented by Brown et al. (2001) FLPIER (McVay et al. 1996) provides excellent agreement
with the measured response by using deduced (adjusted) (site specific) modified p-y curves
shown in Fig. 8-19. The nonlinear modeling of pile material played an important role in the
results obtained by FLPIER and the SW model analyses. Significant recommendations and
comments were made by Brown et al. (2001) relative to a p-multiplier to be used with the

traditional p-y curves.

8.8 SUMMARY

This chapter has demonstrated via comparison with field test results, the capability of the SW
model shaft analysis relative to various applications. The SW model analyses were undertaken
using the unmodified soil and pile properties reported in the literature. = Comparable
LPILE/COM24/FLPIER assessments using the traditional p-y curves required moderate to
significant modifications of such data in order to obtain reasonable agreement with overall field

test results. Even so, traditional p-y curves for liquefied sand do not show the concave-upward
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shape that is predicted by the SW model analysis and noted back-calculated curves from the

Treasure Island tests.
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