Diamond Grinding Asphalt Pavement for Improved Performance

A Beginners Guide to the Diamond Grinding Process

SMOOTH PAVEMENTS LAST LONGER!

Rough Pavement

Smooth Profile

Diamond Grinding

The Origins of Diamond Grinding

➤ Diamond grinding was first used as part of an engineered system to preserve PCC Pavement in 1965.

Diamond Grinding Asphalt Pavement

Asphalt pavement can be ground and grooved just like concrete pavement.

Diamond Ground Asphalt Surface

What is Diamond Grinding?

- Removal of thin surface layer of pavement surface using closely spaced diamond saw blades
- > Results in smooth, level pavement surface
- Provides a longitudinal texture with desirable friction and low noise characteristics
- ➤ Frequently performed on pavements to improve smoothness, increase friction, repair profile/drainage and reduce tire/pavement noise

Blades and Spacers

Typical Conventional Diamond Grinding (CDG) Blade Configuration

Diamond Grinding Equipment

Diamond Grinding Process

Diamond Grinding Final Surface

Operating Grinding Machine

Important Aspects of Operation:

- ➤ Grinding head blade setup
- ➤ Grinding head power
- ➤ Machine speed
- ➤ Steering

Diamond Grinding Texture Dimensions

Diamond Grinding

Blade Spacing Affects Fin Height

11/9/2015

International Grooving & Grinding
Association

60 Blades vs 52 Blades per Foot

Basic Components

Tracing Profile Only Gives Uniform Depth Cut

Should Remove High Spots

Cutting Through Bumps

- ➤ Machine weight is ballast
- To cut bumps must control:
 - Forward speed
 - Grinding head depth
 - Down pressure

Cutting Through Bumps

To Verify Check for:

- ➤ Variation in cut depth along longitudinal cut line
- > Vertical cut depth match from pass to pass

Checking Vertical Match of Passes

Poor Match Between Passes

Dog tails

- > Result from no horizontal overlap
- > Requires steady steering of grinder
- ➤ Attempt to maintain 25-50 mm horizontal overlap

Poor Overlap Between Passes

Evaluate Rideability

- ➤ California profilograph (or similar)
- > Take traces before and after grinding
- ➤ Should be able to provide 65% improvement over pre-grind profile
- ➤ Verify profile index against specification requirement

Special Conditions

- > Expansion Joints
- ➤ Deflecting slabs

Dipping into an Expansion Joint

Composite Pavement or Bridge Approach

Deflecting Slabs Under Grinding Machine Composite Pavement

Weight of Grinding Machine
Deflects Joint and Pushes Down
Any Faulting at the Joint

Costs

- > Typically done on an hourly basis
 - ➤ Ranges \$700.00 \$1000.00 per hour
- > Additional mobilization costs are standard
 - > \$2.50 \$3.50 per mile per unit
- ➤ Not uncommon to eliminate \$50,000 \$100,000 in penalty

Production Rates

- Depends on location and severity
- ➤ Mark out bumps in advance of grinding operation
- Measure smoothness immediately after grind
- ➤ Average production ranges from 30 to 60 bumps per 10 hour shift

Visit Us on the Web

International Grooving and Grinding Association

at

igga.net

THANK YOU!