The use of the HSIP Analyzer is required for all applications for Highway Safety Improvement Program (HSIP) Cycle 11 Call for Projects. The completed HSIP Analyzer is one of the required attachments to the HSIP Application Form.

There are two HSIP application categories: Benefit Cost Ratio (BCR) and Funding Set-asides. This manual provides instructions for using the HSIP Analyzer to prepare a BCR application. Please use the other manual for Funding Set-aside Applications.

The HSIP Analyzer (for BCR applications) is a PDF form that streamlines the process of cost estimate, safety improvement countermeasure evaluation, crash data input and Benefit Cost Ratio (BCR) calculation. Please review these instructions thoroughly before you start to prepare a BCR application.

For more information regarding the HSIP program, please review the HSIP Guidelines, Local Roadway Safety Manual for California Local Road Owners and other related information at https://dot.ca.gov/programs/local-assistance/fed-and-state-programs/highway-safety-improvement-program.

Table of Contents

SECTION I: GENERAL INFORMATION .. 2
SECTION II: PROJECT SCHEDULE ... 4
SECTION III: SAFETY COUNTERMEASURES, CRASH DATA AND PROJECT BENEFIT CALCULATION 5
SECTION IV: CONSTRUCTION COST ESTIMATE AND COST BREAKDOWN .. 10
SECTION V: PROJECT COST ESTIMATE .. 11
SECTION VI: SUMMARY ... 12
APPENDIX A: LIST OF COUNTERMEASURES .. 13
APPENDIX B: DETAILED TABLES OF COUNTERMEASURES .. 18
The HSIP Analyzer (for BCR Applications) consists of the below sections:

- **Section I: General Information**
 This section is for providing Application ID, Project Location, Project Description, and other general information.

- **Section II: Project Schedule**
 In this section, applicants are required to provide an estimated project schedule.

- **Section III. Safety Countermeasures, Crash Data and Project Benefit Calculation**
 In this section, applicants are required to identify safety countermeasures, provide a list of locations, and enter crash data. The project benefit is calculated in this section.

- **Section IV: Construction Cost Estimate and Cost Breakdown**
 This section is for providing an estimate for construction items and determining the project’s maximum Funding Reimbursement Ratio (FRR).

- **Section V: Project Cost Estimate**
 This section is for providing the cost estimate for the entire project, including all phases (Preliminary Engineering, Right-of-Way, Construction and Construction Engineering).

- **Section VI. Summary**
 This section provides a summary of data that are to be transferred to the application form.
Section I: General Information

Application ID:
Enter the exact Application ID from the Application Form, e.g. 03-Sacramento-1.
Save the completed HSIP Analyzer using file name as “HA” + Application ID (e.g. ”HA03-Sacramento-1.pdf”). Attach the completed file to the last page of the Application Form.

Project Location:
Enter (copy & paste) the exact Project Location from the Application Form.

Project Description:
Enter (copy & paste) the exact Project Description from the Application Form.

Number of Intersections:
Enter number of intersections included in this project.

Miles of Roadways:
Enter miles of roadways included in this project. Do not include the length of the intersections that have been accounted for in the above “Number of Intersections” field.

Most of the information requested below is required for Caltrans to meet its annual safety program reporting requirements to the FHWA. Responses to these questions will NOT be used in the project selection process. The responses will be incorporated into statewide and national safety program assessments and used to determine the health of the overall program and potential areas of focus for future program improvements.

Some questions are self-explanatory so not all questions are explained here.

Functional Classification (FC):
Visit https://dot.ca.gov/programs/research-innovation-system-information/office-of-highway-system-information-performance, click “California Road System (CRS) maps” in the middle of the webpage, and determine the Functional Classification (FC) of the road(s) where most of the work will be constructed. If the amounts of work are equal among multiple FCs, use the highest FC. Select the FC from the drop-down list.

Urban/Rural Area:
Select “Urban” or “Rural” from the drop-down list when most of the proposed work is in urban or rural area.

What is the approximate total cost percentage that is HR3 eligible?
Work in rural area and associated with roads functionally classified as “Major Collector”, “Minor Collector” and/or “Local”, is High-Risk-Rural-Roads (HR3) eligible. HR3 eligible projects, when selected for funding, will be tracked separately due to the FHWA’s special requirements. Provide an approximate total cost percentage that is HR3 eligible (rounded to the nearest ten percent).
Annual Average Daily Traffic and Year Collected:
Indicate the existing (and most current) Annual Average Daily Traffic (AADT) volume at the project location and the year the data were collected.

- If the proposed improvement is on a road segment, the AADT is the number of vehicles that use that section of roadway, in both directions, on an average day. You may enter the same number for the Major Road and Minor Road.
- If the proposed improvement is at an intersection, separate the AADT volumes approaching the intersection into Major Road and Minor Road.
- If the proposed improvements span a large distance and/or are spread out over several routes/locations, provide the range of AADT volumes with the high-end input in the "Major Road" field and the low-end input in the "Minor Road" field.

Posted Speed Limit (mph):
Input the highest posted speed within the project limits.

SHSP Challenge Areas:
The goal of this question is to tie the improvements to California’s Strategy Highway Safety Plan (SHSP). Multiple Challenge Areas may be checked. For example, if this project is for pedestrian safety at intersections, both "Intersections" and "Pedestrians" should be checked. Visit https://dot.ca.gov/programs/safety-programs/shsp for more details on the California SHSP Challenge Areas.

Is the project focused primarily on “spot location(s)” or “systemic” improvements?
The Local Roadway Safety Manual includes a detailed description of these two approaches. When more than one type of systemic improvements are proposed in one application, applicants need to select a single “primary type”.

Approximate percentage of project cost going to improvements related to motorized travel:
HSIP projects benefit a mix of roadway users and modes of travel. For statewide tracking purposes, Caltrans needs to approximate the percent of the overall project costs going to improvements for motorized vs. non-motorized roadway users. Please make the best approximation of the percentage related to motorized travel based on the estimated project cost and the primary objectives of the project.
Section II: Project Schedule

The local agency is expected to deliver the project per the HSIP Program Delivery requirements. The delivery requirements for HSIP Cycle 11 projects are: (1) Preliminary Engineering (PE) Authorization by 9/30/2023; and (2) Construction (CON) Authorization by 12/31/2025.

The exceptions are:
- The milestone of PE authorization does not apply if the project will not use the HSIP funds for PE;
- For a project that a consultant is used for the PE work, an additional time of 6 months is allowed for meeting the CON Authorization milestone. The additional time is for the agency to advertise and select the consultant for the work of the PE phase.

Please answer the below two questions:
- Will this project use HSIP funds for Preliminary Engineering (PE) Phase?
- Will an external consultant be hired to do the PE work?

Then specific delivery requirements for your proposed project, if selected for funding, will be displayed.

Please provide your best estimated dates for the following implementation milestones (leave blank if not applicable). Please make sure the proposed schedule will meet the above delivery requirements; if not, please explain in answer to question no. 3 in the application form.

- PE Authorization Date;
- Environmental Clearance Date;
- Right of Way Clearance Date;
- Final PS&E Date;
- CON Authorization Date;
- Construction Contract Award Date;
- Construction Completion Date; and
- Project Close-Out Date.
Section III: Safety Countermeasures, Crash Data and Project Benefit Calculation

The benefit of an HSIP safety project is achieved by reducing potential future crashes due to the implementation of the proposed safety countermeasures (CMs). In this section, you will need to provide information regarding the proposed CMs and the historical crash data at the project sites.

Please read the below information and explanations regarding CMs and crash data, and make sure the data provided are correct. Past HSIP calls for projects indicated that the most flaws found in disqualified applications are related to misinterpretation and misapplication of CMs and miscounting of crash data.

Safety CMs available for use in HSIP Analyzer

A total of 82 CMs are available for the use in the HSIP Analyzer. The available CMs are grouped into three categories: “Signalized Intersection (SI)” CMs, “Non-signalized Intersection (NS)” CMs, and “Roadway (R)” CMs. Appendix A of this document provides a complete list of the CMs. Review Section 4.0 and Appendix B of the California Local Roadway Safety Manual (also included in this manual as Appendix B) before making the final selection of CMs that are utilized in the Benefit Cost Ratio (BCR) calculations. The detailed description of the CMs and guidance on how they can be applied will help applicants ensure utilizing the most appropriate CMs for the project.

Up to three CMs in each category may be used in a single project. When a CM of a major safety improvement is selected, other incidental elements of the major CM should not be used as separate CMs together with the major one. For example: A project location that proposes a new signal shall not include CMs for lighting, signing, striping, or minor median improvements as these are incidental elements of the new signal and do not represent stand-alone improvements.

Safety CMs vs. Crash Data Tables

For the use in the HSIP Analysis, there are 5 different crash types: “All” (any type), “Night” (night time), “Ped & Bike” (pedestrians and/or bicyclists involved), “Emergency Vehicle” (emergency vehicle involved) and “Animal” (animal involved). The later four are sub-datasets of the “All” dataset. Different CMs target at different crash types. For example, installing a new signal at an intersection intends to reduce crashes of all types, while installing pedestrian countdown signal heads only reduces crashes related to pedestrians and bicyclists, and adding intersection lighting targets at night crashes only. Among the 82 CMs listed in Appendix A, 59 are for crashes of all types, 18 for Ped & Bike crashes, 3 for night crashes, 1 for crashes with emergency vehicles, and 1 for crashes with animals involved.

Depending on the entire set of the CMs that are proposed for the project, you will be required to fill in one or more crash data tables: "All", "Night", "Ped& Bike", "Emergency Vehicle", and "Animal".

Specific rules for some particular CMs

Please pay attention to the specific rules and requirements pertaining to CMs NS03, NS23PB and R14 (Refer to Appendix B of the California Local Roadway Safety Manual for more details):

1) NS03, Install signals:
 All new signals must meet CA MUTCD "safety" warrants: 4, 5 or 7;
 No other intersection CMs can be applied to the intersection crashes in conjunction with this CM.

2) NS23PB, Install Pedestrian Signal (including Pedestrian Hybrid Beacon (HAWK)):
 For HAWK or other pedestrian signals, the justification may be Warrant 4, 5 and/or 7, or passing the test in Figure 4F-1/4F-2 in Chapter 4F of CA MUTCD. Please refer to Chapter 4F of CA MUTCD for more details.

3) R14, Road Diet (Reduce travel lanes and add a two way left-turn and bike lanes):
This CM only applies to crashes occurring within the limits of the new lane striping. Intersection crashes can only be applied when they resulted from turning movements that had no designated turn lanes/phases in the existing condition and the Road Diet will provide turn lanes/phases for these movements. This CM does not apply to roadway sections with left turn lanes or two-way left turn lanes at its existing condition. New bike lanes are also expected to be part of this CM.

In this section, the below two questions are to be answered prior to the CM selection and the crash data entry:

- Please indicate the sources of the crash data. Typical sources include Statewide Integrated Traffic Records System (SWITRS), UCBerkeley SafeTREC TIMS, your locally preferred mapping software (such as Crossroads) or any other data sources.
- Please explain how “incremental approach” has been pursued if CM R15, R16, R17 or R18 is proposed. Please skip this question of none of these CMs are being proposed.

Countermeasure R15 (Widen shoulder), R16 (Curve shoulder widening (outside only)), R17 (Improve horizontal alignment (flatten curves)) and R18 (Flatten crest vertical curve) are not eligible unless they are done as the last step of an “incremental approach”. Applicants need to document they have already installed lower cost and lower impact CMs but the crash rate is unacceptably high. What safety improvements have been pursued and installed at the project sites within the last ten years?

Applicants need to demonstrate the use of “incremental approach”, i.e. lower cost and lower impact CMs have already installed, such as signing/striping upgrades to MUTCD standards/recommendations, rumble strips, improving pavement friction (High Friction Surface Treatment, or HFST), etc. You have already monitored the crash occurrences after these improvements were installed, and the ‘after’ crash rate is still unacceptably high. In addition, a summary of the ‘before’ and ‘after’ crash analysis is preferred and provided as the last attachment to the HSIP Application Form.

If “incremental approach” has not been pursued while CM R15, R16, R17 or R18 is proposed, please explain why a special exception should be made to your application.

Step 1: Select safety countermeasures

Indicate if the application includes:

- Signalized Intersections (SI);
- Non-signalized Intersections (NS); and
- Roadway Segments (R).

If the answer is “Yes” for any location type, a table of all safety CMs for this location type displays. Up to 3 CMs may be selected for each location type. Once the CMs have been selected, click “Hide unselected countermeasures” button to save space. Click “View all countermeasures” button if you need to revisit the entire list.

Step 2: Enter the project locations and select countermeasures for each location

Enter all the project locations in the table. The table is divided into 3 sub-tables for the 3 categories: Signalized Intersections; Non-signalized Intersections and Roadway Segments. Any category that has been selected in Step 1 has a corresponding sub-table in this section. Enter the locations into their particular sub-tables. Click “+” button to add a new line or click “-” to delete an existing line.

For each location line, enter a location description and check the CMs that apply. The CMs selected in Step 1 are available in this table. Location No. is auto-generated, i.e. SI_1, SI_2, ... for signalized intersections, NSI_1, NSI_2, ... for non-signalized intersections, and R_1, R_2, ... for roadway segments.

The table only allows a maximum of 50 rows. If needed, please combine some locations and enter them into one row, e.g. 10 stop controlled intersections, 5 horizontal curves, etc., as long as they have similar features and the same CMs apply.

If any error messages are displayed in the last column, they must be resolved prior to proceeding to the next step. The possible errors are:

- “No description entered”: location description must be entered.
“No CMs selected”: at least one CM must be selected.

“S02 cannot be with S08”: CMs S08 and S02 should not be used together.

The work of S02 (“Improve signal hardware”) is considered as part of CM S08 (“Convert signal to mast arm”).

“NS03 must be the only CM”: CM NS3 should not be used with any other CM.

CM NS3 (“Install signals”) should cover any other intersection improvements.

“S16 must be the only CM” or “NS04 must be the only CM” or “NS05 must be the only CM”:

Roundabout, when selected, should be the only CM.

The benefit calculation for a roundabout is unique. It is not allowed to have roundabout and any other safety CMs together for any location.

Step 3: Provide crash data.

1) **Crash data time period:**

The crash data time period must be **a minimum of 3 years and a maximum of 5 years** and the most recent available crash data should be used.

Note: COVID pandemic may have impacted traffic volumes and crash patterns at project sites. Applicants are allowed to use crash data prior to COVID pandemic if desired.

2) Depending on the entries in Step 2, a maximum of 5 crash data tables may be displayed for data entry:

- All;
- Night;
- Ped & Bike;
- Emergency Vehicle; and
- Animal.

The location No. and Description are populated from the data entered in Step 2. Please enter crash data in line with the locations.

Example: Crash Data Table for Crash Type: Pedestrians and Bicyclists Involved (P&B)

<table>
<thead>
<tr>
<th>Location No : Description (from Step 2)</th>
<th>Fatality (P&B)</th>
<th>Severe Injury (P&B)</th>
<th>Other Visible Injury (P&B)</th>
<th>Complaint of Pain (P&B)</th>
<th>PDO (P&B)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI_1: Intersection of A St. & B St.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>SI_2: Intersection of A St. & C St.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>SI_3: Intersection of A St. & D St.</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>18</td>
<td>34</td>
</tr>
</tbody>
</table>

3) In each crash data table, there are 5 crash severities: “Fatal”, “Severe Injury”, “Other Visible Injury”, “Complaint of Pain” and “(PDO)” (Property Damage Only).

For the three sub-severities of injury crashes: “Severe Injury”, “Other Visible Injury” and “Complaint of Pain”: if the injury crashes in your agency’s crash database do not have more detailed sub-severities, all the injury crashes must be entered as “Other Visible Injury”.
4) If a “roundabout” CM, i.e. S16, NS04 or NS05 (CM ID), is used, the below information is required as the benefit calculation for roundabouts is different from the other CMs.

- Project location: “Urban” or “Rural” (select from dropdown list)
- Intersection type: “Four-leg Intersection” or “T intersection” (select from dropdown list)
- Roundabout: “1 lane” or “2 lanes” (select from dropdown list)
- Average Daily Traffic (ADT), Major Road: ADT on the major road of the intersection
- Average Daily Traffic (ADT), Minor Road: ADT on the cross road of the intersection

Important notes for crash data:

1) Every occurrence of crash applied to the CMs is counted as one crash, regardless of the number of vehicles and the number of people involved in the crash. For example, if there is one crash which involved three vehicles and caused two injuries and one fatality, the crash would be entered as 1 fatal crash.

2) Collision Diagrams and Collision lists:

 Applicants are required to provide Collision Diagrams and Collision Lists as supporting documents (attachments) to the application. The Collision Diagrams and the Collision Lists should be organized so application reviewers can easily identify the collision data and their corresponding project locations.

3) **All crashes applied to a given CM must be within the CM’s influence-area.** The following are some general criteria to guide the applicants in determining appropriate influence-areas for CMs. Before applying these general criteria, it is the applicant’s responsibility to ensure that they are reasonable for their particular application. (More guidance relating to each specific CM is included in Section 4 and Appendix B of the California Local Roadway Safety Manual).

 b. For intersection improvements, collisions that occurred within 250 feet of the intersection in all directions affected by the improvement may be used. If the distance to the nearest intersection is less than 500 feet, only those collisions that occurred from mid-block may be used.
 c. Longitudinal Improvements (guardrail, raised median, turn pockets, etc): All crashes potentially effected by the CM and within the limits of the improvement.
 d. Signage, striping, delineators, or other warning devices: All crashes potentially effected by and within the limits of the driver’s potential reaction to the improvements.
 e. The influence-area may be extended beyond the physical improvements and/or the limits if standard traffic engineering principles, as documented in Caltrans, American Association of State Highway and Transportation Officials (AASHTO) or FHWA publications, suggest it would be appropriate to do so. When the influence-area of the project is not obvious and judgment has been used in identifying the influence-area, it is the applicant’s responsibility to provide additional documentation showing the reasonableness of the judgment.

4) Do not include collisions unreported by law enforcement. Collision summary reports that corroborate the collision numbers must be attached to the application. Do not attach the actual collision reports prepared by the law enforcement officer. For applicants using TIMS Query & Map tool to analyze and summarize SWITRS crash data, applicants may find it necessary to add in known crashes that were not included in the TIMS summaries. These crashes may be added manually as long as the agency’s safety managers include supporting documentation and a comment and/or signature attesting to the source of these crashes and the accuracy of the total crash data.

5) The safety CMs constructed by the project will not eliminate 100% of the safety risks and future crashes. This is especially true for lower-cost systemic improvements, such as signing and striping projects. Based on
this, it is often reasonable for an agency to construct follow-up improvements along a corridor or at a location that has already had an HSIP project constructed. (Example: an agency has completed a striping upgrade project on a corridor. In a later HSIP cycle, the agency proposes a signing project on the same corridor based on an overlapping set of crashes.) For this reason, Caltrans allows agencies to reuse crashes in a current call for projects that have been used in a prior call for projects. It is the agency’s responsibility to verify this and document it in the application in answers to the narrative questions or a separate backup documentation.

Step 4: Calculate the project benefit.

Click to perform benefit calculation. Errors in crash data entered in Step 3 will be displayed if detected, which must be fixed prior to the next calculation attempt. Possible errors in crash data are:

- Crash data period is not between 3 and 5 years.
- Num of crashes in a sub-dataset > the num in All dataset.

 For at least one of the severities, the number of crashes in a subset (“Night”, “Ped & Bike”, “Emergency Vehicle”, or “Animal”) is more than that of the corresponding severity in “All” crashes.

- Additional information for Roundabout is not complete.

 Roundabout is the proposed CM, but roundabout information is not provided.

If the benefit calculation is successful, two tables will show the calculation results:

- Benefit by Locations
- Benefit by Countermeasures
Section IV: Construction Cost Estimate and Cost Breakdown

The purpose of this section is to:

- Provide a detailed engineer's estimate for construction items. The costs for other phases i.e. Preliminary Engineering (PE), Right of Way (ROW), and Construction Engineering (CE) will be accounted for in the next section.
- Determine the maximum Funding Reimbursement Ratio (FRR) of the project.

IV.1 Detailed Engineer’s Estimate for Construction Items:

- **Table for Detailed Engineer’s Estimate:**

 Each line is for one construction item. Click + or – buttons to add a new line or delete an existing line.

 The gray fields are calculated and read-only. In each line, enter the construction item description, unit, quantity, unit cost, and cost percentages for this project’s safety countermeasures (CMs) and "Other Safety (OS)" respectively (e.g. enter 10 for 10%). The percentage for "Non-safety (NS)" is then calculated as 100% - CMs % - OS %. If an item is a general one (such as traffic control, mobilization, etc.), check the "General Item" box and the cost breakdown is not needed. **A general item will NOT be used in determining the project’s overall percentages of countermeasures, other safety and non-safety costs.**

 At the bottom of the table, an overall cost percentage will be calculated for CMs, OS and NS.

- **Contingencies:**

 In general, not all project construction costs are well defined at the time when the application is being prepared. For this reason, applicants are allowed to include Construction Item Contingencies as a percentage of the known construction costs. This is the only project contingencies allowed in an HSIP application. When applicants calculate their Preliminary Engineering (PE) and Construction Engineering (CE) costs as a percentage of the Total Construction Cost, contingencies should be built within the PE and CE costs.

- **Total Construction Cost:**

 The total construction cost is the sum of the construction item costs and the contingencies, rounded up to the nearest hundreds.

IV.2 Funding Reimbursement Ratio

The project’s maximum Funding Reimbursement Ratio (FRR) is calculated as the smaller of 90% and (100%-NS %). For example, if the non-safety cost percentage is 5%, the project’s maximum FRR is 90%; if the non-safety cost percentage is 35%, then the project’s maximum FRR is then 100% - 35% = 65%. This is the maximum value allowed to be entered in "HSIP/Total (%)” column in Section II (Project Cost Estimate).

Exception: If CM S03 (Improve signal timing) is used in the project, the project’s maximum FRR is 50%.

After the completion of this section, the following data will be transferred to Section V (Project Cost Estimate) automatically: (1) Total Construction Cost; and (2) Maximum FRR. The maximum FRR will be used as the maximum "HSIP/Total” percentage allowed in Section V.
Section V: Project Cost Estimate

This section is used for the overall project cost estimate including all applicable phases, i.e. Preliminary Engineering (PE), Right of Way (ROW), Construction (CON), and Construction Engineering (CE). All project costs (all phases and funding sources) must be accounted for in this section.

The costs included in the application represent the total project cost necessary to fully construct the proposed scope. The Total Project Cost from this section will be used in the later Benefit Cost Ratio (BCR) calculation.

The following data are transferred to this section from Section IV:

- Total Construction Cost;
- Maximum Funding Reimbursement Ratio (FRR), i.e. Maximum "HSIP/Total" percentage allowed for this project.

All the grey fields contain formulas and are read-only.

For each line in the table, enter the total cost (rounded up to the nearest hundred dollars) and the desired HSIP/Total Cost ratio. The desired HSIP/Total ratio cannot be more than the project’s maximum FRR. You may click the “Set” button on top of the table to set all "HSIP/Total" percentages to the project’s maximum FRR. The amounts of HSIP Funds and Local/Other Funds will be calculated by the form.

Check Box indicating Agency does NOT request HSIP funds for PE Phase:

If no HSIP funds for the PE Phase are requested, this Check Box will be checked automatically. This information will be used for project delivery tracking.

Automatic Data Validation:

Once all costs and ratios are entered, a message will appear if errors are detected, based on the below criteria. Please fix the errors unless justification for exceptions is provided in narrative question no. 3 in the Application Form.

1) The “HSIP Funds” for Construction Items must not be zero.

2) "HSIP Funds" for Preliminary Engineering may not exceed 25% of the HSIP Construction Cost.

 Exception: for low-cost systematic projects such as Roadway Safety Signing Audits (RSSA), Caltrans anticipates approving PE costs over 25%. For more information on this type of project, see the example document at the HSIP website.

3) "HSIP Funds" for Right of Way may not exceed 10% of the HSIP Construction Cost.

4) "HSIP Funds" for Construction Engineering may not exceed 15% of the HSIP Construction Cost.

5) "HSIP Funds" may not exceed $10,000,000.

6) To maintain efficiencies in the overall Program and Project Management, the "Total HSIP Funds" must be $100,000 or more. If needed, agencies should consider extending the project limits and /or adding another safety improvement in order to increase both the total project Benefits and Costs.

 Exception: (1) Caltrans recognizes that for some rural agencies with extremely small numbers of crashes, this $100,000 minimum HSIP funding requirement may not be achievable without lowering the BCRs, which may not be fundable. If an agency believes their jurisdiction falls into this category, they may request an exception to this $100,000 minimum funding requirement through their District Local Assistance Engineer; (2) You may combine multiple applications (if selected for funding) in implementation, so the combined project has more than $100,000 of HSIP funds.

After the completion of the project cost estimate, “Total Project Cost” will be automatically transferred to Section V (Summary).
Section VI: Summary

This section provides a project summary, including the Total Project Cost, the HSIP Funds Requested, the project’s maximum Funding Reimbursement Ratio (FRR), the Total Expected Benefit, and the Benefit Cost Ratio (BCR).
Appendix A: List of Countermeasures
(From Local Roadway Safety Manual – Section 4.2)

The list of countermeasures is from Section 4.2 of the Local Roadway Safety Manual.

The countermeasures listed in the following three tables have been sorted into 3 categories: Signalized Intersection (S), Non-Signalized Intersection (NS), and Roadway Segment (R). Pedestrian and bicycle related countermeasures have been included in each of these categories, as the consideration of non-motorized travel is important for all roadway classifications and locations. The countermeasures included in these tables are used in the HSIP Analyzer. When selecting countermeasures and CRFs to apply to their specific safety needs, local agency safety practitioners should consider the availability, applicability, and quality of CMFs, as discussed in section 4.1 of the Local Roadway Safety Manual.

Only Crash Types, CRFs, Expected Lives, and Funding Eligibility of the countermeasures for use in Caltrans local HSIP program are provided. Fields in the countermeasure tables are:

- **CRF** - Crash Reduction Factor used for HSIP calls-for-projects.
- **Expected Life** - 10 years or 20 years.
- **Funding Eligibility** – the maximum HSIP funding reimbursement ratio for HSIP Cycle 11 Call-for-projects.
 - Eighty-one (81) countermeasures: 90%
 - One (1) countermeasure: 50% (CM No. S03: Improve signal timing, as this CM will improve the signal operation rather than merely the safety.)
Table 1. Countermeasures for Signalized Intersections

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Countermeasure Name</th>
<th>Crash Type</th>
<th>CRF</th>
<th>Expected Life (Years)</th>
<th>HSIP Funding Eligibility</th>
<th>Systemic Approach Opportunity?</th>
</tr>
</thead>
<tbody>
<tr>
<td>S01</td>
<td>Lighting</td>
<td>Add intersection lighting (S.I.)</td>
<td>Night</td>
<td>40%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>S02</td>
<td>Signal Mod.</td>
<td>Improve signal hardware: lenses, back-plates with retroreflective borders, mounting, size, and number</td>
<td>All</td>
<td>15%</td>
<td>10</td>
<td>90%</td>
<td>Very High</td>
</tr>
<tr>
<td>S03</td>
<td>Signal Mod.</td>
<td>Improve signal timing (coordination, phases, red, yellow, or operation)</td>
<td>All</td>
<td>15%</td>
<td>10</td>
<td>50%</td>
<td>Very High</td>
</tr>
<tr>
<td>S04</td>
<td>Signal Mod.</td>
<td>Provide Advanced Dilemma Zone Detection for high-speed approaches</td>
<td>All</td>
<td>40%</td>
<td>10</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>S05</td>
<td>Signal Mod.</td>
<td>Install emergency vehicle pre-emption systems</td>
<td>Emergency Vehicle</td>
<td>70%</td>
<td>10</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>S06</td>
<td>Signal Mod.</td>
<td>Install left-turn lane and add turn phase (signal has no left-turn lane or phase before)</td>
<td>All</td>
<td>55%</td>
<td>20</td>
<td>90%</td>
<td>Low</td>
</tr>
<tr>
<td>S07</td>
<td>Signal Mod.</td>
<td>Provide protected left turn phase (left turn lane already exists)</td>
<td>All</td>
<td>30%</td>
<td>20</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>S08</td>
<td>Signal Mod.</td>
<td>Convert signal to mast arm (from pedestal-mounted)</td>
<td>All</td>
<td>30%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>S09</td>
<td>Operation/Warning</td>
<td>Install raised pavement markers and striping (Through Intersection)</td>
<td>All</td>
<td>10%</td>
<td>10</td>
<td>90%</td>
<td>Very High</td>
</tr>
<tr>
<td>S10</td>
<td>Operation/Warning</td>
<td>Install flashing beacons as advance warning (S.I.)</td>
<td>All</td>
<td>30%</td>
<td>10</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>S11</td>
<td>Operation/Warning</td>
<td>Improve pavement friction (High Friction Surface Treatments)</td>
<td>All</td>
<td>55%</td>
<td>10</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>S12</td>
<td>Geometric Mod.</td>
<td>Install raised median on approaches (S.I.)</td>
<td>All</td>
<td>25%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>S13PB</td>
<td>Geometric Mod.</td>
<td>Install pedestrian median fencing on approaches</td>
<td>P & B</td>
<td>35%</td>
<td>20</td>
<td>90%</td>
<td>Low</td>
</tr>
<tr>
<td>S14</td>
<td>Geometric Mod.</td>
<td>Create directional median openings to allow (and restrict) left-turns and u-turns (S.I.)</td>
<td>All</td>
<td>50%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>S15</td>
<td>Geometric Mod.</td>
<td>Reduced Left-Turn Conflict Intersections (S.I.)</td>
<td>All</td>
<td>50%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>S16</td>
<td>Geometric Mod.</td>
<td>Convert intersection to roundabout (from signal)</td>
<td>All</td>
<td>Varies</td>
<td>20</td>
<td>90%</td>
<td>Low</td>
</tr>
<tr>
<td>S17PB</td>
<td>Ped and Bike</td>
<td>Install pedestrian countdown signal heads</td>
<td>P & B</td>
<td>25%</td>
<td>20</td>
<td>90%</td>
<td>Very High</td>
</tr>
<tr>
<td>S18PB</td>
<td>Ped and Bike</td>
<td>Install pedestrian crossing (S.I.)</td>
<td>P & B</td>
<td>25%</td>
<td>20</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>S19PB</td>
<td>Ped and Bike</td>
<td>Pedestrian Scramble</td>
<td>P & B</td>
<td>40%</td>
<td>20</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>S20PB</td>
<td>Ped and Bike</td>
<td>Install advance stop bar before crosswalk (Bicycle Box)</td>
<td>P & B</td>
<td>15%</td>
<td>10</td>
<td>90%</td>
<td>Very High</td>
</tr>
<tr>
<td>S21PB</td>
<td>Ped and Bike</td>
<td>Modify signal phasing to implement a Leading Pedestrian Interval (LPI)</td>
<td>P & B</td>
<td>60%</td>
<td>10</td>
<td>90%</td>
<td>Very High</td>
</tr>
</tbody>
</table>

* CM S04 has been deleted in HSIP Cycle 11 Call-for-projects.
Table 2. Countermeasures for Non-Signalized Intersections

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Countermeasure Name</th>
<th>Crash Type</th>
<th>CRF</th>
<th>Expected Life (Years)</th>
<th>HSIP Funding Eligibility</th>
<th>Systemic Approach Opportunity?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS01</td>
<td>Lighting</td>
<td>Add intersection lighting (NS.I.)</td>
<td>Night</td>
<td>40%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>NS02</td>
<td>Control</td>
<td>Convert to all-way STOP control (from 2-way or Yield control)</td>
<td>All</td>
<td>50%</td>
<td>10</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>NS03</td>
<td>Control</td>
<td>Install signals</td>
<td>All</td>
<td>30%</td>
<td>20</td>
<td>90%</td>
<td>Low</td>
</tr>
<tr>
<td>NS04</td>
<td>Control</td>
<td>Convert intersection to roundabout (from all way stop)</td>
<td>All</td>
<td>Varies</td>
<td>20</td>
<td>90%</td>
<td>Low</td>
</tr>
<tr>
<td>NS05</td>
<td>Control</td>
<td>Convert intersection to roundabout (from stop or yield control on minor road)</td>
<td>All</td>
<td>Varies</td>
<td>20</td>
<td>90%</td>
<td>Low</td>
</tr>
<tr>
<td>NS05mr*</td>
<td>Control</td>
<td>Convert intersection to mini-roundabout</td>
<td>All</td>
<td>30%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>NS06</td>
<td>Operation/ Warning</td>
<td>Install/upgrade larger or additional stop signs or other intersection warning/regulatory signs</td>
<td>All</td>
<td>15%</td>
<td>10</td>
<td>90%</td>
<td>Very High</td>
</tr>
<tr>
<td>NS07</td>
<td>Operation/ Warning</td>
<td>Upgrade intersection pavement markings (NS.I.)</td>
<td>All</td>
<td>25%</td>
<td>10</td>
<td>90%</td>
<td>Very High</td>
</tr>
<tr>
<td>NS08</td>
<td>Operation/ Warning</td>
<td>Install Flashing Beacons at Stop-Controlled Intersections</td>
<td>All</td>
<td>15%</td>
<td>10</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>NS09</td>
<td>Operation/ Warning</td>
<td>Install flashing beacons as advance warning (NS.I.)</td>
<td>All</td>
<td>30%</td>
<td>10</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>NS10</td>
<td>Operation/ Warning</td>
<td>Install transverse rumble strips on approaches</td>
<td>All</td>
<td>20%</td>
<td>10</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>NS11</td>
<td>Operation/ Warning</td>
<td>Improve sight distance to intersection (Clear Sight Triangles)</td>
<td>All</td>
<td>20%</td>
<td>10</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>NS12</td>
<td>Operation/ Warning</td>
<td>Improve pavement friction (High Friction Surface Treatments)</td>
<td>All</td>
<td>55%</td>
<td>10</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>NS13</td>
<td>Geometric Mod.</td>
<td>Install splitter-islands on the minor road approaches</td>
<td>All</td>
<td>40%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>NS14</td>
<td>Geometric Mod.</td>
<td>Install raised median on approaches (NS.I.)</td>
<td>All</td>
<td>25%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>NS15</td>
<td>Geometric Mod.</td>
<td>Create directional median openings to allow (and restrict) left-turns and u-turns (NS.I.)</td>
<td>All</td>
<td>50%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>NS16</td>
<td>Geometric Mod.</td>
<td>Reduced Left-Turn Conflict Intersections (NS.I.)</td>
<td>All</td>
<td>50%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>NS17</td>
<td>Geometric Mod.</td>
<td>Install right-turn lane (NS.I.)</td>
<td>All</td>
<td>20%</td>
<td>20</td>
<td>90%</td>
<td>Low</td>
</tr>
<tr>
<td>NS18</td>
<td>Geometric Mod.</td>
<td>Install left-turn lane (where no left-turn lane exists)</td>
<td>All</td>
<td>35%</td>
<td>20</td>
<td>90%</td>
<td>Low</td>
</tr>
<tr>
<td>NS19PB</td>
<td>Ped and Bike</td>
<td>Install raised medians / refuge islands (NS.I.)</td>
<td>Ped and Bike</td>
<td>45%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>NS20PB</td>
<td>Ped and Bike</td>
<td>Install pedestrian crossing at uncontrolled locations (new signs and markings only)</td>
<td>Ped and Bike</td>
<td>25%</td>
<td>10</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>NS21PB</td>
<td>Ped and Bike</td>
<td>Install/upgrade pedestrian crossing at uncontrolled locations (with enhanced safety features)</td>
<td>Ped and Bike</td>
<td>35%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>NS22PB</td>
<td>Ped and Bike</td>
<td>Install Rectangular Rapid Flashing Beacon (RRFB)</td>
<td>Ped and Bike</td>
<td>35%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>NS23PB</td>
<td>Ped and Bike</td>
<td>Install Pedestrian Signal (including Pedestrian Hybrid Beacon (HAWK))</td>
<td>Ped and Bike</td>
<td>55%</td>
<td>20</td>
<td>90%</td>
<td>Low</td>
</tr>
</tbody>
</table>

* CM NS05mr is a new countermeasure added for HSIP Cycle 11 Call-for-projects.
Table 3. Countermeasures for Roadways

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Countermeasure Name</th>
<th>Crash Type</th>
<th>CRF</th>
<th>Expected Life (Years)</th>
<th>HSIP Funding Eligibility</th>
<th>Systemic Approach Opportunity?</th>
</tr>
</thead>
<tbody>
<tr>
<td>R01</td>
<td>Lighting</td>
<td>Add segment lighting</td>
<td>Night</td>
<td>35%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R02</td>
<td>Remove/ Shield Obstacles</td>
<td>Remove or relocate fixed objects outside of Clear Recovery Zone</td>
<td>All</td>
<td>35%</td>
<td>20</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>R03</td>
<td>Remove/ Shield Obstacles</td>
<td>Install Median Barrier</td>
<td>All</td>
<td>25%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R04</td>
<td>Remove/ Shield Obstacles</td>
<td>Install Guardrail</td>
<td>All</td>
<td>25%</td>
<td>20</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>R05</td>
<td>Remove/ Shield Obstacles</td>
<td>Install impact attenuators</td>
<td>All</td>
<td>25%</td>
<td>10</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>R06</td>
<td>Remove/ Shield Obstacles</td>
<td>Flatten side slopes</td>
<td>All</td>
<td>30%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R07</td>
<td>Remove/ Shield Obstacles</td>
<td>Flatten side slopes and remove guardrail</td>
<td>All</td>
<td>40%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R08</td>
<td>Geometric Mod.</td>
<td>Install raised median</td>
<td>All</td>
<td>25%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R09</td>
<td>Geometric Mod.</td>
<td>Install median (flush)</td>
<td>All</td>
<td>15%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R10PB</td>
<td>Geometric Mod.</td>
<td>Install pedestrian median fencing on approaches</td>
<td>P & B</td>
<td>35%</td>
<td>20</td>
<td>90%</td>
<td>Low</td>
</tr>
<tr>
<td>R11</td>
<td>Geometric Mod.</td>
<td>Install acceleration/ deceleration lanes</td>
<td>All</td>
<td>25%</td>
<td>20</td>
<td>90%</td>
<td>Low</td>
</tr>
<tr>
<td>R12</td>
<td>Geometric Mod.</td>
<td>Widen lane (initially less than 10 ft)</td>
<td>All</td>
<td>25%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R13</td>
<td>Geometric Mod.</td>
<td>Add two-way left-turn lane</td>
<td>All</td>
<td>30%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R14</td>
<td>Geometric Mod.</td>
<td>Road Diet (Reduce travel lanes and add a two way left-turn and bike lanes)</td>
<td>All</td>
<td>35%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R15</td>
<td>Geometric Mod.</td>
<td>Widen shoulder</td>
<td>All</td>
<td>30%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R16</td>
<td>Geometric Mod.</td>
<td>Curve Shoulder widening (Outside Only)</td>
<td>All</td>
<td>45%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R17</td>
<td>Geometric Mod.</td>
<td>Improve horizontal alignment (flatten curves)</td>
<td>All</td>
<td>50%</td>
<td>20</td>
<td>90%</td>
<td>Low</td>
</tr>
<tr>
<td>R18</td>
<td>Geometric Mod.</td>
<td>Flatten crest vertical curve</td>
<td>All</td>
<td>25%</td>
<td>20</td>
<td>90%</td>
<td>Low</td>
</tr>
<tr>
<td>R19</td>
<td>Geometric Mod.</td>
<td>Improve curve superelevation</td>
<td>All</td>
<td>45%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R20</td>
<td>Geometric Mod.</td>
<td>Convert from two-way to one-way traffic</td>
<td>All</td>
<td>35%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R21</td>
<td>Geometric Mod.</td>
<td>Improve pavement friction (High Friction Surface Treatments)</td>
<td>All</td>
<td>55%</td>
<td>10</td>
<td>90%</td>
<td>High</td>
</tr>
</tbody>
</table>
Table 3. Countermeasures for Roadways (Continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Countermeasure Name</th>
<th>Crash Type</th>
<th>CRF</th>
<th>Expected Life (Years)</th>
<th>HSIP Funding Eligibility</th>
<th>Systemic Approach Opportunity?</th>
</tr>
</thead>
<tbody>
<tr>
<td>R22</td>
<td>Operation/ Warning</td>
<td>Install/Upgrade signs with new fluorescent sheeting (regulatory or warning)</td>
<td>All</td>
<td>15%</td>
<td>10</td>
<td>90%</td>
<td>Very High</td>
</tr>
<tr>
<td>R23</td>
<td>Operation/ Warning</td>
<td>Install chevron signs on horizontal curves</td>
<td>All</td>
<td>40%</td>
<td>10</td>
<td>90%</td>
<td>Very High</td>
</tr>
<tr>
<td>R24</td>
<td>Operation/ Warning</td>
<td>Install curve advance warning signs</td>
<td>All</td>
<td>25%</td>
<td>10</td>
<td>90%</td>
<td>Very High</td>
</tr>
<tr>
<td>R25</td>
<td>Operation/ Warning</td>
<td>Install curve advance warning signs (flashing beacon)</td>
<td>All</td>
<td>30%</td>
<td>10</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>R26</td>
<td>Operation/ Warning</td>
<td>Install dynamic/variable speed warning signs</td>
<td>All</td>
<td>30%</td>
<td>10</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>R27</td>
<td>Operation/ Warning</td>
<td>Install delineators, reflectors and/or object markers</td>
<td>All</td>
<td>15%</td>
<td>10</td>
<td>90%</td>
<td>Very High</td>
</tr>
<tr>
<td>R28</td>
<td>Operation/ Warning</td>
<td>Install edge-lines and centerlines</td>
<td>All</td>
<td>25%</td>
<td>10</td>
<td>90%</td>
<td>Very High</td>
</tr>
<tr>
<td>R29</td>
<td>Operation/ Warning</td>
<td>Install no-passing line</td>
<td>All</td>
<td>45%</td>
<td>10</td>
<td>90%</td>
<td>Very High</td>
</tr>
<tr>
<td>R30</td>
<td>Operation/ Warning</td>
<td>Install centerline rumble strips/stripes</td>
<td>All</td>
<td>20%</td>
<td>10</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>R31</td>
<td>Operation/ Warning</td>
<td>Install edgeline rumble strips/stripes</td>
<td>All</td>
<td>15%</td>
<td>10</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>R32PB</td>
<td>Ped and Bike</td>
<td>Install bike lanes</td>
<td>P & B</td>
<td>35%</td>
<td>20</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>R33PB</td>
<td>Ped and Bike</td>
<td>Install Separated Bike Lanes</td>
<td>P & B</td>
<td>45%</td>
<td>20</td>
<td>90%</td>
<td>High</td>
</tr>
<tr>
<td>R34PB</td>
<td>Ped and Bike</td>
<td>Install sidewalk/pathway (to avoid walking along roadway)</td>
<td>P & B</td>
<td>80%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R35PB</td>
<td>Ped & Bike</td>
<td>Install/upgrade pedestrian crossing (with enhanced safety features)</td>
<td>P & B</td>
<td>35%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R36PB</td>
<td>Ped and Bike</td>
<td>Install raised pedestrian crossing</td>
<td>P & B</td>
<td>35%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R37PB</td>
<td>Ped and Bike</td>
<td>Install Rectangular Rapid Flashing Beacon (RRFB)</td>
<td>P & B</td>
<td>35%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
<tr>
<td>R38</td>
<td>Animal</td>
<td>Install animal fencing</td>
<td>Animal</td>
<td>80%</td>
<td>20</td>
<td>90%</td>
<td>Medium</td>
</tr>
</tbody>
</table>
Appendix B: Detailed Tables of Countermeasures
(From Local Roadway Safety Manual)
Appendix B: Detailed Tables of Countermeasures

The intent of the information contained in this appendix is to provide local agency safety practitioners with a list of effective countermeasures that are appropriate remedies to many common safety issues. The tables in Section 4.2 present a quick summary of the specific values that the Caltrans Division of Local Assistance uses to assess and select projects for its calls-for-projects. In addition to the same information as in Section 4.2, this appendix also includes notes for Caltrans HSIP calls-for-projects and “General information” regarding where the countermeasure should be used, why it works, the general qualities that can be used to suggest the potential complexity of installation, and information from FHWA CMF Clearinghouse on the type of crashes where the countermeasure is best used and a range of their expected overall effectiveness.

The countermeasures have been sorted into 3 categories: Signalized Intersection, Non-Signalized Intersection, and Roadway Segment. Pedestrian and bicycle related countermeasures have been included in each of these categories.

Caltrans gives careful consideration to the fair application of its calls-for-projects process. Starting in 2012, the award of safety funding has been solely based on a determined benefit-to-cost ratio for each project. The fixed set of countermeasures and CRFs included in these tables are intended to allow for all projects to be evaluated consistently and fairly throughout the project selection process. However, at this time, there are no CRFs/CMFs available for several safety improvements, such as: "dynamic/variable speed regulatory signs", "non-motorized signs and markings (regulatory and warning)", "Square-up (reduce curve radius) turn lanes" and non-infrastructure elements. These safety improvement items can be included in project applications, but they will not be included into the B/C ratio calculations, unless the safety improvements meet the intent of other separate countermeasures included in the attached lists. Caltrans is interested in adding these countermeasures (and many others) to these tables once CRFs/CMFs have been established. Caltrans will continue to periodically update this list of allowable countermeasures and CRFs as new safety research data becomes available. With this in mind, Caltrans is interested in feedback and suggestions from local agency safety practitioners on the overall countermeasure list as well as specific details of individual countermeasures, including locally developed safety effectiveness information.

Caltrans used the following references to assist its team in developing the information shown in the following tables. Safety Practitioners are encouraged to utilize these references for a more expansive list of countermeasures and CRFs / CMFs.

The Crash Modification Factors Clearinghouse
https://www.cmfclearinghouse.org/

NCHRP Report 500 Series: Volumes 4, 5, 6, 7, 10, 12, 13, and others
https://www.trb.org/Main/Blurbs/152868.aspx
For each countermeasure (CM):

(Title) CM No., CM Name
- CM No. is
 - S01 through S21PB for Intersection Countermeasures – Signalized,
 - NS01 through NS23PB for Intersection Countermeasures – Unsignalized,
 - R01 through R38 for Roadway Countermeasures.

For HSIP Calls-for-projects:
- **Funding Eligibility** - 90% or 50%.
- **Crash Types Addressed** - “All”, “Pedestrian and Bicycle”, “Night”, “Emergency Vehicle”, or “Animal”.
- **CRF** - Crash Reduction Factor used for HSIP calls-for-projects.
- **Expected Life** - 10 years or 20 years.
- **Notes** - Specific requirements are provided for utilizing the countermeasure on applications for Caltrans statewide calls-for-projects.

General Information:
- **Where to use** – Roadway segments and intersections with specific common characteristics can be addressed with similar countermeasures that are most effective.
- **Why it works** – A discussion of the benefit of a countermeasure is important to determine its appropriateness in addressing certain roadway crash types at areas with specific issues as determined by the data and roadway features.
- **General Qualities (Time, Cost and Effectiveness)** – This category is more subjective and can vary substantially. ‘Time’ refers to the approximate relative time it can take to implement the countermeasure. Costs can vary considerably due to local conditions, so ‘cost’ represents the relative cost of applying a countermeasure. A relative overall ‘effectiveness’ is also provided for some countermeasures. All of this subjective information may not be applicable to the unique circumstances for the agency and should not be utilized without verification by the safety practitioner.

- FHWA CMF Clearinghouse
- **Crash Types Addressed** – In order to effectively reduce the number and severity of roadway crashes, it is necessary to match countermeasures to the crash types they are intended to address. Depending on the type of problem, one or more of a range of countermeasures could be the most effective way to reduce the number and severity of future crashes.

- **Crash Reduction Factor** – The crash reduction factor (CRF) is an indication of the effectiveness of a particular treatment, measured by the percentage of crashes it is expected to reduce. Note: As mentioned earlier in this section, the effectiveness of a countermeasure can also be expressed as a Crash Modification Factor (CMF), which is defined mathematically as $1 - CRF$. However, this document uses CRFs as they can be more insightful when analyzing roadways for potential “reductions” in crashes. There is a range of CRF values that exist for each of the countermeasures (or similar countermeasures). The range of CRFs is provided to give local safety practitioners a clear understanding that they may need to go to the FHWA CMF Clearinghouse to find the most appropriate countermeasure and CRF for their specific projects and local prioritization.
B.1 Intersection Countermeasures – Signalized

S01, Add intersection lighting (Signalized Intersection => S.I.)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>"night" crashes</td>
<td>40%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "night" crashes (all types) occurring within limits of the proposed roadway lighting ‘engineered’ area.

General information

Where to use:
Signalized intersections that have a disproportionate number of night-time crashes and do not currently provide lighting at the intersection or at its approaches. Crash data should be studied to ensure that safety at the intersection could be improved by providing lighting (this strategy would be supported by a significant number of crashes that occur at night).

Why it works:
Providing lighting at the intersection itself, or both at the intersection and on its approaches, improves the safety of an intersection during nighttime conditions by (1) making drivers more aware of the surroundings at an intersection, which improves drivers’ perception-reaction times, (2) enhancing drivers’ available sight distances, and (3) improving the visibility of non-motorists. Intersection lighting is of particular benefit to non-motorized users. Lighting not only helps them navigate the intersection, but also helps drivers see them better.

General Qualities (Time, Cost and Effectiveness):
A lighting project can usually be completed relatively quickly, but generally requires at least 1 year to implement because the lighting system must be designed and the provision of electrical power must be arranged. The provision of lighting involves both a fixed cost for lighting installation and an ongoing maintenance and power cost which results in a moderate to high cost. Some locations can result in high B/C ratios, but due to higher costs, these projects often result in medium to low B/C ratios.

FHWA CMF Clearinghouse: | Crash Types Addressed: | Night, All | CRF: 20-74% |

S02, Improve signal hardware: lenses, back-plates with retroreflective borders, mounting, size, and number

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>15%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring on the approaches / influence area of the upgraded signals. This CM does not apply to improvements like "battery backup systems", which do not provide better intersection/signal visibility or help drivers negotiate the intersection (unless applying past crashes that occurred when the signal lost power). If new signal mast arms are part of the proposed project, CM "S2" should not be used and the signal improvements would be included under CM "S7".

General information

Where to use:
Signalized intersections with a high frequency of right-angle and rear-end crashes occurring because drivers are unable to see traffic signals sufficiently in advance to safely negotiate the intersection being approached. Signal intersection improvements include new LED lighting, signal back plates, retro-reflective tape outlining the back plates, or visors to increase signal visibility, larger signal heads, relocation of the signal heads, or additional signal heads.

Why it works:
Providing better visibility of intersection signals aids the drivers’ advance perception of the upcoming intersection. Visibility and clarity of the signal should be improved without creating additional confusion for drivers.

General Qualities (Time, Cost and Effectiveness):
Installation costs and time should be minimal as these type strategies are classified as low cost and implementation does not typically require the approval process normally associated with more complex projects. When considered at a single location, these low cost improvements are usually funded through local funding by local maintenance crews. However, This CM can be effectively and efficiently implemented using a systematic approach with numerous locations, resulting in low to moderate cost projects that are more appropriate to seek state or federal funding.

FHWA CMF Clearinghouse: | Crash Types Addressed: | Rear-End, Angle | CRF: 0-46% |
S03, Improve signal timing (coordination, phases, red, yellow, or operation)

<table>
<thead>
<tr>
<th>For HSIP Cycle 11 Call-for-projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Eligibility</td>
</tr>
<tr>
<td>50%</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring on the approaches / influence area of the new signal timing. For projects coordination signals along a corridor, the crashes related to side-street movements should not be applied. This CM does not apply to projects that only 'study' the signal network and do not make physical timing changes, including corridor operational studies and improvements to Traffic Operation Centers (TOCs). In Caltrans calls for projects, this CM has a HSIP reimbursement ratio of 50%, considering that it will improve the signal operation rather than merely the safety.

General information

Where to use: Locations that have a crash history at multiple signalized intersections. Signalization improvements may include adding phases, lengthening clearance intervals, eliminating or restricting higher-risk movements, and coordinating signals at multiple locations. Understanding the corridor or roadway’s crash history can provide insight into the most appropriate strategy for improving safety.

Why it works: Certain timing, phasing, and control strategies can produce multiple safety benefits. Sometimes capacity improvements come along with the safety improvements and other times adverse effects on delay or capacity occur. Corridor improvements often have the highest benefit but may take longer to implement. Projects focused on capacity improvements (without a separate focus on signal timing safety needs) may not result in a reduction in future crashes.

General Qualities (Time, Cost and Effectiveness):

In general, these low-cost improvements to multiple signalized intersections can be implemented in a short time. Typically these low cost improvements are funded through local funding by local maintenance crews. However, some projects requiring new interconnect infrastructure can have moderate to high costs making them more appropriate to seek state or federal funding. The expected effectiveness of this CM must be assessed for each individual project.

<table>
<thead>
<tr>
<th>FHWA CMF Clearinghouse:</th>
<th>Crash Types Addressed:</th>
<th>CRF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash Types Addressed: All</td>
<td>CRF: 0 - 41%</td>
<td></td>
</tr>
</tbody>
</table>

S04, Provide Advanced Dilemma Zone Detection for high speed approaches

<table>
<thead>
<tr>
<th>For HSIP Cycle 11 Call-for-projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Eligibility</td>
</tr>
<tr>
<td>90%</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring on the approaches / influence area of the new detection and signal timing.

General information

Where to use: More rural/remote areas that have a high frequency of right-angle and rear-end crashes. The Advanced Dilemma Zone Detection system enhances safety at signalized intersections by modifying traffic control signal timing to reduce the number of drivers that may have difficulty deciding whether to stop or proceed during a yellow phase. This may reduce rear-end crashes associated with unsafe stopping and angle crashes due to illegally continuing into the intersection during the red phase.

Why it works: Clearance times provide safe, orderly transitions in ROW assignment between conflicting streams of traffic. An Advanced Dilemma Zone Detection system has several benefits relative to traditional multiple detector systems, which have upstream detection for vehicles in the dilemma zone but do not take the speed or size of individual vehicles into account. These benefits include: Reducing the frequency of red-light violations; Reducing the frequency of crashes associated with the traffic signal phase change (for example, rear-end and angle crashes); Reducing delay and stop frequency on the major read and a reduction in overall intersection delay.

General Qualities (Time, Cost and Effectiveness): Installation costs should be low and the time to implement short. Additional modifications to the traffic signal controller may also be necessary. In general, this CM can be very effective and can be considered on a systematic approach. Video detection equipment is now available for this purpose, making installation and maintenance more efficient.

<table>
<thead>
<tr>
<th>FHWA CMF Clearinghouse:</th>
<th>Crash Types Addressed:</th>
<th>CRF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash Types Addressed: All</td>
<td>CRF: 90%</td>
<td></td>
</tr>
</tbody>
</table>
S05, Install emergency vehicle pre-emption systems

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Emergency Vehicle - only</td>
<td>70%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "E.V." crashes occurring on the approaches / influence area of the new pre-emption system.

General information

Where to use:
Corridors that have a history of crashes involving emergency response vehicles. The target of this strategy is signalized intersections where normal traffic operations impede emergency vehicles and where traffic conditions create a potential for conflicts between emergency and nonemergency vehicles. These conflicts could lead to almost any type of crash, due to the potential for erratic maneuvers of vehicles moving out of the path of emergency vehicles.

Why it works:
Providing emergency vehicle preemption capability at a signal or along a corridor can be a highly effective strategy in two ways; any type of crash could occur as emergency vehicles try to navigate through intersections and as other vehicles try to maneuver out of the path of the emergency vehicles. In addition, a signal preemption system can decrease emergency vehicle response times therefore decreasing the time in receiving emergency medical attention, which is critical in the outcome of any crash. When data is not available for past crashes with emergency vehicles, an agency may consider combining the E.V. pre-emption improvements into a comprehensive project that also makes significant signal hardware and/or signal timing improvements.

General Qualities (Time, Cost and Effectiveness):
Costs for installation of a signal preemption system will vary from medium to high, based upon the number of signalized intersections at which preemption will be installed and the number of emergency vehicles to be outfitted with the technology. The number of detectors, a requirement for new signal controllers, and the intricacy of the preemption system could increase costs. This CM is considered systemic as it is usually implemented on a corridor-basis.

FHWA CMF Clearinghouse: Crash Types Addressed: Emergency Vehicle - only CRF: 70%

S06, Install left-turn lane and add turn phase (signal has no left-turn lane or phase before)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>55%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring on the approaches / influence area of the new left turn lanes. This CM does NOT apply to converting a single-left into double-left turn.

General information

Where to use:
Intersections that do not currently have a left-turn lane or a related left-turn phase that are experiencing a large number of crashes. Many intersection safety problems can be traced to difficulties in accommodating left-turning vehicles, in particular where there is currently no accommodation for left turning traffic. A key strategy for minimizing collisions related to left-turning vehicles (angle, rear-end, sideswipe) is to provide exclusive left-turn lanes and the appropriate signal phasing, particularly on high-volume and high-speed major road approaches. Agencies need to document their consideration of the MUTCD, Section 4D.19 guidelines; the section on implementing protected left-turn phases.

Why it works:
Left-turn lanes allow separation of left-turn and through traffic streams, thus reducing the potential for rear-end collisions. Left-turn phasing also provides a safer opportunity for drivers to make a left-turn. The combination of left-turn storage and a left turn signal has the potential to reduce many collisions between left-turning vehicles and through vehicles and/or non-motorized road users.

General Qualities (Time, Cost and Effectiveness):
Implementation time may vary from months to years. At some locations, left-turn lanes can be quickly installed simply by restriping the roadway. At other locations, widening of the roadway, acquisition of additional right-of-way, and extensive environmental processes may be needed. Such projects require a substantial time for development and construction. Costs are highly variable and range from very low to high. Installing a protected left turn lane and phase where none exists results in a high Crash Reduction Factor and is often highly effective.

FHWA CMF Clearinghouse: Crash Types Addressed: All CRF: 17 - 58 %

4/8/2022 Local Roadway Safety Page | 49
S07, Provide protected left turn phase (left turn lane already exists)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>30%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring on the approaches / influence area of the new left turn phases. This CM does NOT apply to converting a single-left into double-left turn (unless the single left is unprotected and the proposed double left will be protected).

General information

Where to use:
Signaled intersections (with existing left turns pockets) that currently have a permissive left-turn or no left-turn protection that have a high frequency of angle crashes involving left turning, opposing through vehicles, and non-motorized road users. A properly timed protected left-turn phase can also help reduce rear-end and sideswipe crashes between left-turning vehicles and the through vehicles as well as vehicles behind them. Protected left-turn phases are warranted based on such factors as turning volumes, delay, visibility, opposing vehicle speed, distance to travel through the intersection, presence of non-motorized road users, and safety experience of the intersections. Agencies need to document their consideration of the MUTCD, Section 4D.19 guidelines; the section on implementing protected left-turn phases.

Why it works:
Left turns are widely recognized as the highest-risk movements at signalized intersections. Providing Protected left-turn phases (i.e., the provision for a specific phase for a turning movement) for signalized intersections with existing left turn pockets significantly improve the safety for left-turn maneuvers by removing the need for the drivers to navigate through gaps in oncoming/opposing through vehicles. Where left turn pockets are not protected, the pedestrian and bicyclist crossing phase often conflicts with these left turn maneuvers. Drivers focused on navigating the gaps of oncoming cars may not anticipate and/or perceive the non-motorized road users.

General Qualities (Time, Cost and Effectiveness):
If the existing traffic signal only requires a minor modification to allow for a protected left-turn phase, then the cost would also be low. The time to implement this countermeasure is short because there is no actual construction that has to take place. In-house signal maintainers can perform this operation once the proper signal phasing is determined so the cost is low. In addition, the countermeasure is tried and proven to be effective. Has the potential of being applied on a systemic/systematic approach.

FHWA CMF Clearinghouse: Crash Types Addressed: Rear-End, Sideswipe, Broadside CRF: 16 - 99%

S08, Convert signal to mast arm (from pedestal-mounted)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>30%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring on the approaches / influence area of the converted signal heads that are relocated from median and/or outside shoulder pedestals to signal heads on master arms over the travel-lanes. Projects using CM "S7" should not also apply "S2" in the B/C calc.

General information

Where to use:
Intersections currently controlled by pedestal mounted traffic signals (in medians and/or on outside shoulder) that have a high frequency of right-angle and rear-end crashes occurring because drivers are unable to see traffic signals in advance to safely negotiate the intersection. Intersections that have pedestal-mounted signals may have poor visibility and can result in vehicles not being able to stop in time for a signal change. Care should be taken to place the new signal heads (with back plates) as close to directly over the center of the travel lanes as possible.

Why it works:
Providing better visibility of intersection signs and signals aids the drivers’ advance perception of the upcoming intersection. Visibility and clarity of the signal should be improved without creating additional confusion or distraction for drivers.

General Qualities (Time, Cost and Effectiveness):
Dependent on the scope of the project. Costs are generally moderate for this type of project. There is usually no right-of-way costs, minimal roadway reconstruction costs, and a shorter project development timeline. At the same time, new mast arms can be expensive. Some locations can result in high B/C ratios, but due to moderate costs, some locations may result in medium to low B/C ratios.

FHWA CMF Clearinghouse: Crash Types Addressed: Rear-End, Angle CRF: 12 - 74%
S09, Install raised pavement markers and striping (Through Intersection)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>10%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring in the intersection and influence areas of the new pavement markers and/or markings.

General information

Where to use:
Intersections where the lane designations are not clearly visible to approaching motorists and/or intersections noted as being complex and experiencing crashes that could be attributed to a driver’s unsuccessful attempt to navigate the intersection. Driver confusion can exist in regard to choosing the proper turn path or where through-lanes do not line up. This is especially relevant at intersections where the overall pavement area of the intersection is large, and multiple turning lanes are involved or other unfamiliar elements are presented to the driver.

Why it works:
Adding clear pavement markings can guide motorists through complex intersections. When drivers approach and traverse through complex intersections, drivers may be required to perform unusual or unexpected maneuvers. Providing more effective guidance through an intersection will minimize the likelihood of a vehicle leaving its appropriate lane and encroaching upon an adjacent lane.

General Qualities (Time, Cost and Effectiveness):
Costs of implementing this strategy will vary based on the scope and number of applications. Applying raised pavement markers is relatively low cost but can be variable and determined largely by the material used for pavement markings (paint, thermoplastic, epoxy, RPMs etc.). When using this type delineators, an issue of concern is the cost-to-service-life of the material. (Note: When HSIP safety funding is used for these installations in high-wear-locations, the local agency is expected to maintain the improvement for a minimum of 10 years.) When considered at a single location, these low cost improvements are usually funded through local funding by local maintenance crews. However, This CM can be effectively and efficiently implemented using a systematic approach with numerous locations, resulting in moderate cost projects that are more appropriate to seek state or federal funding.

FHWA CMF Clearinghouse: Crash Types Addressed: Wet, Night, All CRF: 10 - 33%

S10, Install flashing beacons as advance warning (S.I.)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>30%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring on the approaches / influence area of the new flashing beacons.

General information

Where to use:
At signalized intersections with crashes that are a result of drivers being unaware of the intersection or are unable to see the traffic control device in time to comply.

Why it works:
Increased driver awareness of an approaching signalized intersection and an increase in the driver’s time to react. Driver awareness of both downstream intersections and traffic control devices is critical to intersection safety. Crashes often occur when the driver is unable to perceive an intersection, signal head or the back of a stopped queue in time to react. Advance flashing beacons can be used to supplement and call driver attention to intersection control signs. Most advance warning flashing beacons can be powered by solar, thus reducing the issues relating to power source.

General Qualities (Time, Cost and Effectiveness):
Before choosing this CM, the agency needs to confirm the ability to provide power to the site (solar may be an option). Flashing beacons can be constructed with minimal design, environmental and right-of-way issues and have relatively low costs. This combined with a relatively high CRF, can result in high B/Cs for locations with a history of crashes and lead to a high effectiveness.

FHWA CMF Clearinghouse: Crash Types Addressed: Rear End, Angle CRF: 36 - 62%
S11, Improve pavement friction (High Friction Surface Treatments)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>55%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits of the improved friction overlay. This CM is not intended to apply to standard chip-seal or open-graded maintenance projects for long segments of corridors or structure repaving projects intended to fix failed pavement.

General information
- Nationally, this countermeasure is referred to as "High Friction Surface Treatments" or HFST. Signalized Intersections noted as having crashes on wet pavements or under dry conditions when the pavement friction available is significantly less than needed for the actual roadway approach speeds. This treatment is intended to target locations where skidding and failure to stop is determined to be a problem in wet or dry conditions and the target vehicle is unable to stop due to insufficient skid resistance.
- Improving the skid resistance at locations with high frequencies of wet-road crashes and/or failure to stop crashes can result in reductions of 50 percent for wet-road crashes and 20 percent for total crashes. Applying HFST can double friction numbers, e.g., low 40s to high 80s. This CM represents a special focus area for both FHWA and Caltrans, which means there are extra resources available for agencies interested in more details on High Friction Surface Treatment projects.
- **General Qualities (Time, Cost and Effectiveness):**
 - This strategy can be relatively inexpensive and implemented in a short timeframe. The installation would be done by either agency personnel or contractors and can be done by hand or machine. In general, this CM can be very effective and can be considered on a systematic approach.

<table>
<thead>
<tr>
<th>FHWA CMF Clearinghouse:</th>
<th>Crash Types Addressed:</th>
<th>CRF:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wet, Night, ALL</td>
<td>10 - 62 %</td>
</tr>
</tbody>
</table>

S12, Install raised median on approaches (S.I.)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>25%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring on the approaches / influence area of the new raised median. All new raised medians funded with HSIP funding should not include the removal of the existing roadway structural section and should be dowelled into the existing roadway surface. This requirement is being implemented to maximize the safety-effectiveness of the limited HSIP funding and to minimize project impacts. Landscaping, if included in the project, is considered non-participating.

General information
- Intersections noted as having turning movement crashes near the intersection as a result of insufficient access control. Application of this CM should be based on current crash data and a clearly defined need to restrict or accommodate the movement.
- **Why it works:**
 - Raised medians next to left-turn lanes at intersections offer a cost-effective means for reducing crashes and improving operations at higher volume intersections. The raised medians prohibit left turns into and out of driveways that may be located too close to the functional area of the intersection.

<table>
<thead>
<tr>
<th>FHWA CMF Clearinghouse:</th>
<th>Crash Types Addressed:</th>
<th>CRF:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Angle</td>
<td>21 -55 %</td>
</tr>
</tbody>
</table>
S13PB, Install pedestrian median fencing on approaches

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Pedestrian and Bicycle</td>
<td>35%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "Ped & Bike" crashes occurring on the approaches/influence area of the new pedestrian median fencing.

General information

Where to use:
Signalized Intersections with high pedestrian-generators nearby (e.g. transit stops) may experience a high volumes of pedestrians J-walking across the travel lanes at mid-block locations instead of walking to the intersection and waiting to cross during the walk-phase. When this safety issue cannot be mitigated with signal timing and shoulder/sidewalk treatments, then installing a continuous pedestrian barrier in the median may be a viable solution.

Why it works:
Adding pedestrian median fencing has the opportunity to enhance pedestrian safety at locations noted as being problematic involving pedestrians running/darting across the roadway outside the intersection crossings. Pedestrian median fencing can significantly reduce this safety issue by creating a positive barrier, forcing pedestrians to the designated pedestrian crossing.

General Qualities (Time, Cost and Effectiveness):
Costs associated with this strategy will vary widely depending on the type and placement of the median fencing. Impacts to transit and other land uses may need to be considered and controversy can delay the implementation. In general, this CM can be effective as a spot-location approach.

FHWA CMF Clearinghouse: Crash Types Addressed: Pedestrian, Bicycle CRF: 25-40%

S14, Create directional median openings to allow (and restrict) left-turns and U-turns (S.I.)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>50%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring in the intersection / influence area of the new directional openings.

General information

Where to use:
Crashes related to turning maneuvers include angle, rear-end, pedestrian, and sideswipe (involving opposing left turns) type crashes. If any of these crash types are an issue at an intersection, restriction or elimination of the turning maneuver may be the best way to improve the safety of the intersection.

Why it works:
Restricting turning movement into and out of an intersection can help reduce conflicts between through and turning traffic. The number of access points, coupled with the speed differential between vehicles traveling along the roadway, contributes to crashes. Affecting turning movements by either allowing them or restricting them, based on the application, can ensure safe movement of traffic.

General Qualities (Time, Cost and Effectiveness):
Turn prohibitions that are implemented by closing a median opening can be implemented quickly. The cost of this strategy will depend on the treatment. Impacts to businesses and other land uses must be considered and controversy can delay the implementation. In general, This CM can be very effective and can be considered on a systematic approach.

FHWA CMF Clearinghouse: Crash Types Addressed: All CRF: 51%
S15, Reduced Left-Turn Conflict Intersections (S.I.)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>50%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring in the intersection / influence area of the new Reduced Left-Turn Conflict.

General information

Where to use and Why it works:
Reduced left-turn conflict intersections are geometric designs that alter how left-turn movements occur in order to simplify decisions and minimize the potential for related crashes. Two highly effective designs that rely on U-turns to complete certain left-turn movements are known as the restricted crossing U-turn (RCUT) and the median U-turn (MUT).

Restricted Crossing U-turn (RCUT):
The RCUT intersection modifies the direct left-turn and through movements from cross-street approaches. Minor road traffic makes a right turn followed by a U-turn at a designated location (either signalized or unsignalized) to continue in the desired direction.

The RCUT is suitable for a variety of circumstances, including along rural, high-speed, four-lane, divided highways or signalized routes. It also can be used as an alternative to signalization or constructing an interchange. RCUTs work well when consistently used along a corridor, but also can be used effectively at individual intersections.

Median U-turn (MUT):
The MUT intersection modifies direct left turns from the major approaches. Vehicles proceed through the main intersection, make a U-turn a short distance downstream, followed by a right turn at the main intersection. The U-turns can also be used for modifying the cross-street left turns.

The MUT is an excellent choice for heavily traveled intersections with moderate left-turn volumes. When implemented at multiple intersections along a corridor, the efficient two-phase signal operation of the MUT can reduce delay, improve travel times, and create more crossing opportunities for pedestrians and bicyclists.

![MUT and RCUT Can Reduce Conflict Points by 50%](image)

General Qualities (Time, Cost and Effectiveness):
Implementing this strategy may take from months to years, depending on whether additional R/W is required. Such projects require a substantial time for development and construction. Costs are highly variable and range from very low to high. The expected effectiveness of this CM must be assessed for each individual location.

| FHWA CMF Clearinghouse: | Crash Types Addressed: Angle/Left-turn/Rear-End/All | CRF: 34.8-100% |
S16, Convert intersection to roundabout (from signal)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>Varies</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes:

This CM only applies to crashes occurring in influence area of the new roundabout. This CM is not intended for mini-roundabouts. The benefit of this CM is calculated using Caltrans procedure. The CRF is dependent on the ADT, project location (Rural/Urban) and the roundabout type (1 lane or 2 lanes). The benefit comes from both the reduction in the number and the severity of the crashes.

General information

Where to use:

Signalized intersections that have a significant crash problem and the only alternative is to change the nature of the intersection itself. Roundabouts can also be very effective at intersections with complex geometry and intersections with frequent left-turn movements.

Why it works:

The types of conflicts that occur at roundabouts are different from those occurring at conventional intersections; namely, conflicts from crossing and left-turn movements are not present in a roundabout. The geometry of a roundabout forces drivers to reduce speeds as they proceed through the intersection. This helps keep the range of vehicle speed narrow, which helps reduce the severity of crashes when they do occur. Pedestrians only have to cross one direction of traffic at a time at roundabouts, thus reducing their potential for conflicts.

General Qualities (Time, Cost and Effectiveness):

Provision of a roundabout requires substantial project development. The need to acquire right-of-way is likely and will vary from site to site and depends upon the geometric design. These activities may require up to 4 years or longer to implement. Costs are variable, but construction of a roundabout to replace an existing signalized intersection are relatively high. The result is this CM may have reduced relative-effectiveness compared to other CMs.

FHWA CMF Clearinghouse:

<table>
<thead>
<tr>
<th>Crash Types Addressed</th>
<th>CRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>35 - 67%</td>
</tr>
</tbody>
</table>

S17PB, Install pedestrian countdown signal heads

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Pedestrian and Bicycle</td>
<td>25%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes:

This CM only applies to "Ped & Bike" crashes occurring in the intersection/crossing with the new countdown heads.

General information

Where to use:

Signals that have signalized pedestrian crossing with walk/don’t walk indicators and where there have been pedestrian vs. vehicle crashes.

Why it works:

A pedestrian countdown signal contains a timer display and counts down the number of seconds left to finish crossing the street. Countdown signals can reassure pedestrians who are in the crosswalk when the flashing "DON’T WALK" interval appears that they still have time to finish crossing. Countdown signals begin counting down either when the "WALK" or when the flashing "DON’T WALK" interval appears and stop at the beginning of the steady "DON’T WALK" interval. These signals also have been shown to encourage more pedestrians to use the pushbutton rather than jaywalk.

General Qualities (Time, Cost and Effectiveness):

Costs and time of installation will vary based on the number of intersections included in this strategy and if it requires new signal controllers capable of accommodating the enhancement. When considered at a single location, these low cost improvements are usually funded through local funding by local crews. However, This CM can be effectively and efficiently implemented using a systematic approach with numerous locations, resulting in moderate cost projects that are more appropriate to seek state or federal funding.

FHWA CMF Clearinghouse:

<table>
<thead>
<tr>
<th>Crash Types Addressed</th>
<th>CRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian, Bicycle</td>
<td>25%</td>
</tr>
</tbody>
</table>
S18PB, Install pedestrian crossing (S.I.)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Pedestrian and Bicycle</td>
<td>25%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "Ped & Bike" crashes occurring in the intersection/crossing with the new crossing. This CM is not intended to be used for high-cost aesthetic enhancements to intersection crosswalks (i.e. stamped concrete or stamped asphalt).

General information

Where to use:

Signalized intersections with no marked crossing and pedestrian signal heads, where pedestrians are known to be crossing intersections that involve significant turning movements. They are especially important at intersections with (1) multiphase traffic signals, such as left-turn arrows and split phases, (2) school crossings, and (3) double-right or double-left turns. At signalized intersections, pedestrian crossings are often safer when the left turns have protected phases that do not overlap the pedestrian walk phase.

Why it works:

Adding pedestrian crossings has the opportunity to enhance pedestrian safety at locations noted as being problematic. Nearly one-third of all pedestrian-related crashes occur at or within 50 feet of an intersection. Of these, 30 percent may involve a turning vehicle. Another 22 percent of pedestrian crashes involve a pedestrian either running across the intersection or darting out in front of a vehicle whose view was blocked just prior to the impact. Finally, 16 percent of these intersection-related crashes occur because of a driver violation (e.g., failure to yield right-of-way). When agencies opt to install aesthetic enhancement to intersection crosswalks like stamped concrete/asphalt, the project design and construction costs can significantly increase. For HSIP applications, these costs must be accounted for in the B/C calculation, but these costs (over standard crosswalk markings) must be tracked separately and are not federally reimbursable and will increase the agency's local-funding share for the project costs.

General Qualities (Time, Cost and Effectiveness):

Costs associated with this strategy will vary widely, depending if curb ramps and sidewalk modifications are required with the crossing. When considered at a single location, these low cost improvements may be funded through local funding by local crews. However, This CM can be effectively and efficiently implemented using a systematic approach with numerous locations, resulting in moderate to high cost projects that are appropriate to seek state or federal funding.

FHWA CMF Clearinghouse: Crash Types Addressed: Pedestrian, Bicycle | CRF: 25%

S19PB, Pedestrian Scramble

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Pedestrian and Bicycle</td>
<td>40%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "Ped & Bike" crashes occurring in the intersection with the new pedestrian crossing.

General information

Where to use:

Pedestrian Scramble is a form of pedestrian "WALK" phase at a signalized intersection in which all vehicular traffic is required to stop, allowing pedestrians/bicyclists to safely cross through the intersection in any direction, including diagonally. Pedestrian Scramble may be considered at signalized intersections with very high pedestrian/bicycle volumes, e.g. in an urban business district.

Why it works:

Pedestrian Scramble has been shown to reduce injury risk and increase bicycle ridership due to its perceived safety and comfort.

General Qualities (Time, Cost and Effectiveness):

Not involving any additional R/W, Pedestrian Scramble should not require a long development process and should be implemented reasonably soon. A systemic approach may be used in implementing this CM, resulting in cost efficiency with low to moderate cost.

FHWA CMF Clearinghouse: Crash Types Addressed: Pedestrian, Bicycle | CRF: -10% to 51%
S20PB, Install advance stop bar before crosswalk (Bicycle Box)

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Pedestrian and Bicycle</td>
<td>15%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "Ped & Bike" crashes occurring in the intersection-crossing with the new advanced stop bars.

General information

Where to use:
Signalized intersections with a marked crossing, where significant bicycle and/or pedestrians volumes are known to occur.

Why it works:
Adding advance stop bar before the striped crosswalk has the opportunity to enhance both pedestrian and bicycle safety. Stopping cars well before the crosswalk provides a buffer between the vehicles and the crossing pedestrians. It also allows for a dedicated space for cyclists, making them more visible to drivers (This dedicated space is often referred to as a bike-box.)

General Qualities (Time, Cost and Effectiveness):
Costs and time of installation will vary based on the number of intersections included in this strategy and if it requires new signal controllers capable of accommodating the enhancement. When considered at a single location, these low cost improvements are usually funded through local funding by local crews. However, This CM can be effectively and efficiently implemented using a systematic approach with numerous locations, resulting in moderate cost projects that are more appropriate to seek state or federal funding.

<table>
<thead>
<tr>
<th>FHWA CMF Clearinghouse:</th>
<th>Crash Types Addressed:</th>
<th>Pedestrian, Bicycle</th>
<th>CRF:</th>
</tr>
</thead>
</table>

S21PB, Modify signal phasing to implement a Leading Pedestrian Interval (LPI)

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Pedestrian and Bicycle</td>
<td>60%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "Ped & Bike" crashes occurring in the intersections with signalized pedestrian crossing with the newly implemented Leading Pedestrian Interval (LPI).

General information

Where to use:
Intersections with signalized pedestrian crossing that have high turning vehicles volumes and have had pedestrian vs. vehicle crashes.

Why it works:
A leading pedestrian interval (LPI) gives pedestrians the opportunity to enter an intersection 3-7 seconds before vehicles are given a green indication. With this head start, pedestrians can better establish their presence in the crosswalk before vehicles have priority to turn left. LPIs provide (1) increased visibility of crossing pedestrians; (2) reduced conflicts between pedestrians and vehicles; (3) increased likelihood of motorists yielding to pedestrians; and (4) enhanced safety for pedestrians who may be slower to start into the intersection.

General Qualities (Time, Cost and Effectiveness):
Costs for implementing LPIs are very low, since only minor signal timing alteration is required. This makes it an easy and inexpensive countermeasure that can be incorporated into pedestrian safety action plans or policies and can become routine agency practice. When considered at a single location, the LPI is usually local-funded. However, This CM can be effectively and efficiently implemented using a systematic approach with numerous locations, resulting in moderate cost projects that are more appropriate to seek state or federal funding.

<table>
<thead>
<tr>
<th>FHWA CMF Clearinghouse:</th>
<th>Crash Types Addressed:</th>
<th>Pedestrian, Bicycle</th>
<th>CRF:</th>
</tr>
</thead>
</table>
B.2 Intersection Countermeasures – Non-signalized

NS01, Add intersection lighting (NS.I.)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Night</td>
<td>40%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "night" crashes (all types) occurring within limits of the proposed roadway lighting 'engineered' area.

General information

Where to use:
Non-signalized intersections that have a disproportionate number of night-time crashes and do not currently provide lighting at the intersection or at its approaches. Crash data should be studied to ensure that safety at the intersection could be improved by providing lighting (this strategy would be supported by a significant number of crashes that occur at night).

Why it works:
Providing lighting at the intersection itself, or both at the intersection and on its approaches, improves the safety of an intersection during nighttime conditions by (1) making drivers more aware of the surroundings at an intersection, which improves drivers’ perception-reaction times, (2) enhancing drivers' available sight distances, and (3) improving the visibility of non-motorists. Intersection lighting is of particular benefit to non-motorized users as lighting not only helps them navigate the intersection, but also helps drivers see them better.

General Qualities (Time, Cost and Effectiveness):
A lighting project can usually be completed relatively quickly, but generally requires at least 1 year to implement because the lighting system must be designed and the provision of electrical power must be arranged. The provision of lighting involves both a fixed cost for lighting installation and an ongoing maintenance and power cost. For rural intersections, studies have shown the installation of streetlights reduced nighttime crashes at unlit intersections and can be more effective in reducing nighttime crashes than either rumble strips or overhead flashing beacons. Some locations can result in high B/C ratios, but due to higher costs, these projects often result in medium to low B/C ratios.

<table>
<thead>
<tr>
<th>FHWA CMF Clearinghouse:</th>
<th>Crash Types Addressed:</th>
<th>CRF:</th>
<th>25–50%</th>
</tr>
</thead>
</table>

NS02, Convert to all-way STOP control (from 2-way or Yield control)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>50%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring in the intersection and/or influence area of the new control. CA-MUTCD warrant must be met.

General information

Where to use:
Unsignalized intersection locations that have a crash history and have no controls on the major roadway approaches. However, all-way stop control is suitable only at intersections with moderate and relatively balanced volume levels on the intersection approaches. Under other conditions, the use of all-way stop control may create unnecessary delays and aggressive driver behavior. MUTCD warrants should always be followed.

Why it works:
All-way stop control can reduce right-angle and turning collisions at unsignalized intersections by providing more orderly movement at an intersection, reducing through and turning speeds, and minimizing the safety effect of any sight distance restrictions that may be present. Advance public notification of the change is critical in assuring compliance and reducing collisions.

General Qualities (Time, Cost and Effectiveness):
The costs involved in converting to all-way stop control are relatively low. All-way stop control can normally be implemented at multiple intersections with just a change in signing on intersection approaches, and typically are very quick to implement. When considered at a single location, these low cost improvements are usually funded through local funding by local maintenance crews. However, this CM can be effectively and efficiently implemented using a systematic approach with numerous locations, resulting in moderate cost projects that are more appropriate to seek state or federal funding.

<table>
<thead>
<tr>
<th>FHWA CMF Clearinghouse:</th>
<th>Crash Types Addressed:</th>
<th>CRF:</th>
<th>6 - 80%</th>
</tr>
</thead>
</table>
NS03, Install signals

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>30%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring in the intersection and/or influence area of the new signals. **All new signals must meet MUTCD "safety" warrants: 4, 5 or 7.** Given the over-arching operational changes that occur when an intersection is signalized, no other intersection CMs can be applied to the intersection crashes in conjunction with this CM.

General information

Where to use:
Traffic signals can be used to prevent the most severe type crashes (right-angle, left-turn). Consideration to signalize an unsignalized intersection should only be given after (1) less restrictive forms of traffic control have been utilized as the installation of a traffic signal often leads to an increased frequency of crashes (rear-end) on major roadways and introduces congestion and (2) signal warrants have been met. Refer to the CA MUTCD, Section 4C.01, Studies and Factors for Justifying Traffic Control Signals.

Why it works:
Traffic signals have the potential to reduce the most severe type crashes but will likely cause an increase in rear-end collisions. A reduction in overall injury severity is likely the largest benefit of traffic signal installation.

General Qualities (Time, Cost and Effectiveness):
Typical traffic signal costs fall in the medium to high category and are affected by application, type of signal and right-of-away considerations. Projects of this magnitude should only be considered after alternate and lesser means of correction have been evaluated. Some locations can result in high B/C ratios, but due to higher costs, these projects often result in medium to low B/C ratios.

<table>
<thead>
<tr>
<th>FHWA CMF Clearinghouse:</th>
<th>Crash Types Addressed:</th>
<th>CRF:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>0 - 74%</td>
</tr>
</tbody>
</table>

NS04, Convert intersection to roundabout (from all way stop)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>Varies</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring in the intersection and/or influence area of the new control. The benefit of this CM is calculated using Caltrans procedure. The CRF is dependent on the ADT, project location (Rural/Urban) and the roundabout type (1 lane or 2 lanes). The benefit comes from both the reduction in the number and the severity of the crashes.

General information

Where to use:
Intersections that have a high frequency of right-angle and left-turn type crashes. Whether such intersections have existing crash patterns or not, a roundabout provides an alternative to signalization. The primary target locations for roundabouts should be moderate-volume unsignalized intersections. Roundabouts may not be a viable alternative in many suburban and urban settings where right-of-way is limited.

Why it works:
Roundabouts provide an important alternative to signalized and all-way stop-controlled intersections. Modern roundabouts differ from traditional traffic circles in that they operate in such a manner that traffic entering the roundabout must yield the right-of-way to traffic already in it. Roundabouts can serve moderate traffic volumes with less delay than all-way stop-controlled intersections and provide fewer conflict points. Crashes at roundabouts tend to be less severe because of the speed constraints and elimination of left-turn and right-angle movements.

General Qualities (Time, Cost and Effectiveness):
Construction of roundabouts are usually relatively costly and major projects, requiring the environmental process, right-of-way acquisition, and implementation under an agency's long-term capital improvement program. (For this reason, roundabouts may not be appropriate for California’s Federal Safety Programs that have relatively short delivery requirements.) Even with roundabouts higher costs, they still can have a relatively high effectiveness.

<table>
<thead>
<tr>
<th>FHWA CMF Clearinghouse:</th>
<th>Crash Types Addressed:</th>
<th>CRF:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left-turn, Angle</td>
<td>12 - 78%</td>
</tr>
</tbody>
</table>
NS05, Convert intersection to roundabout (from 2-way stop or Yield control)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>Varies</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring in the intersection and/or influence area of the new control.

The benefit of this CM is calculated using Caltrans procedure. The CRF is dependent on the ADT, project location (Rural/Urban) and the roundabout type (1 lane or 2 lanes). The benefit comes from both the reduction in the number and the severity of the crashes.

<table>
<thead>
<tr>
<th>General information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersections that have a high frequency of right-angle and left-turn type crashes. Whether such intersections have existing crash patterns or not, a roundabout provides an alternative to signalization. The primary target locations for roundabouts should be moderate-volume unsignalized intersections. Roundabouts may not be a viable alternative in many suburban and urban settings where right-of-way is limited.</td>
</tr>
</tbody>
</table>

Why it works:

Roundabouts provide an important alternative to signalized and all-way stop-controlled intersections. Modern roundabouts differ from traditional traffic circles in that they operate in such a manner that traffic entering the roundabout must yield the right-of-way to traffic already in it. Roundabouts can serve moderate traffic volumes with less delay than all-way stop-controlled intersections and provide fewer conflict points. Crashes at roundabouts tend to be less severe because of the speed constraints and elimination of left-turn and right-angle movements.

General Qualities (Time, Cost and Effectiveness):

Construction of roundabouts are usually relatively costly and major projects, requiring the environmental process, right-of-way acquisition, and implementation under an agency’s long-term capital improvement program. (For this reason, roundabouts may not be appropriate for California’s Federal Safety Programs that have relatively short delivery requirements.) Even with roundabouts higher costs, they still can have a relatively high effectiveness.

FHWA CMF Clearinghouse: Crash Types Addressed: [Left-turn, Angle] CRF: [12 - 78 %]

NS05mr, Convert intersection to mini-roundabout

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>30%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring in the intersection and/or influence area of the new control.

<table>
<thead>
<tr>
<th>General information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini-roundabouts are characterized by a small diameter (45-90 ft) and traversable islands (central island and splitter islands). Mini-roundabouts offer most of the benefits of regular roundabouts with the added benefit of a smaller footprint. They are best suited to environments where speeds are already low and environmental constraints would preclude the use of a larger roundabout. Mini-roundabouts are most effective in lower speed environments in which all approaching roadways have posted speed of 30 mph or less and an 85th-percentile speed of less than 35 mph near the proposed yield and/or entrance line. For any location with an 85th-percentile speed above 35 mph, the mini-roundabout can be included as part of a broader system of traffic calming measures to achieve an appropriate speed environment.</td>
</tr>
</tbody>
</table>

Why it works:

Mini-roundabouts may be an optimal solution for a safety or operational issue at an existing intersection where there is insufficient right-of-way for a standard roundabout installation. The benefits of mini-roundabouts are the Compact size, operational efficiency, traffic safety improvement and traffic Calming.

General Qualities (Time, Cost and Effectiveness):

Construction costs for mini-roundabouts vary widely depending upon the extent of sidewalk modifications or other geometric improvements and the types of materials used. In most cases, mini-roundabouts have been installed with little or no pavement widening and with only minor changes to curbs and sidewalks. Construction costs can be minimum for an installation consisting entirely of pavement markings and signage or moderate for mini-roundabouts that include raised islands and pedestrian improvements.

FHWA CMF Clearinghouse: Crash Types Addressed: NA CRF: NA
NS06, Install/upgrade larger or additional stop signs or other intersection warning/regulatory signs

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>15%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring in the influence area of the new signs. The influence area must be determined on a location by location basis.

General information

Where to use:
The target for this strategy should be approaches to unsignalized intersections with patterns of rear-end, right-angle, or turning collisions related to lack of driver awareness of the presence of the intersection.

Why it works:
The visibility of intersections and, thus, the ability of approaching drivers to perceive them can be enhanced by installing larger regulatory and warning signs at or prior to intersections. A key to success in applying this strategy is to select a combination of regulatory and warning sign techniques appropriate for the conditions on a particular unsignalized intersection approach.

General Qualities (Time, Cost and Effectiveness):

Signing improvements do not require a long development process and can typically be implemented quickly. Costs for implementing this strategy are nominal and depend on the number of signs. When considered at a single location, these low cost improvements are usually funded through local funding by local maintenance crews. However, This CM can be effectively and efficiently implemented using a systematic approach with numerous locations, resulting in moderate cost projects that are more appropriate to seek state or federal funding.

FHWA CMF Clearinghouse: Crash Types Addressed: All CRF: 11 - 55%

NS07, Upgrade intersection pavement markings (NS.1)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>25%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring on the approaches / influence area of the new pavement markings. This CM is not intended to be used for general maintenance activities (i.e. the replacement of existing pavement markings in-kind) and must include upgraded safety features over the existing pavement markings and striping.

General information

Where to use:
Unsignalized intersections that are not clearly visible to approaching motorists, particularly approaching motorists on the major road. The strategy is particularly appropriate for intersections with patterns of rear-end, right-angle, or turning crashes related to lack of driver awareness of the presence of the intersection. Also at minor road approaches where conditions allow the stop bar to be seen by an approaching driver at a significant distance from the intersection. Typical improvements include “Stop Ahead” markings and the addition of Centerlines and Stop Bars.

Why it works:
The visibility of intersections and, thus, the ability of approaching drivers to perceive them can be enhanced by installing appropriate pavement delineation in advance of and at intersections will provide approaching motorists with additional information at these locations. Providing visible stop bars on minor road approaches to unsignalized intersections can help direct the attention of drivers to the presence of the intersection. Drivers should be more aware that the intersection is coming up, and therefore make safer decisions as they approach the intersection.

General Qualities (Time, Cost and Effectiveness):
Pavement marking improvements do not require a long development process and can typically be implemented quickly. Costs for implementing this strategy are nominal and depend on the number of markings. When considered at a single location, these low cost improvements are usually funded through local funding by local maintenance crews. However, This CM can be effectively and efficiently implemented using a systematic approach with numerous locations, resulting in moderate cost projects that are more appropriate to seek state or federal funding. Note: When federal safety funding is used for these installations in high-wear-locations, the local agency is expected to maintain the improvement for a minimum of 10 years.

FHWA CMF Clearinghouse: Crash Types Addressed: All CRF: 13 - 60%
NS08, Install Flashing Beacons at Stop-Controlled Intersections

For HSIP Cycle 11 Call-for-Projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>15%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring on the stop-controlled approaches / influence area of the new beacons.

General information

Where to use:
Flashing beacons can reinforce driver awareness of the Non-Signalized intersection control and can help mitigate patterns of right-angle crashes related to stop sign violations. Post-mounted advanced flashing beacons or overhead flashing beacons can be used at stop-controlled intersections to supplement and call driver attention to stop signs.

Why it works:
Flashing beacons provide a visible signal to the presence of an intersection and can be very effective in rural areas where there may be long stretches between intersections as well as locations where night-time visibility of intersections is an issue.

General Qualities (Time, Cost and Effectiveness):
Flashing beacons can be constructed with minimal design, environmental and right-of-way issues and have relatively low costs. Before choosing this CM, the agency needs to confirm the ability to provide power to the site (solar may be an option). In general, This CM can be very effective and can be considered on a systematic approach.

FHWA CMF Clearinghouse: Crash Types Addressed: Angle, Rear-End CRF: 5-34%

NS09, Install flashing beacons as advance warning (NS.I.)

For HSIP Cycle 11 Call-for-Projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>30%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring on the approaches / influence area of the new beacons placed in advance of the intersection.

General information

Where to use:
Non-Signalized Intersections with patterns of crashes that could be related to lack of a driver’s awareness of approaching intersection or controls at a downstream intersection.

Why it works:
Advance flashing beacons can be used to supplement and call driver attention to intersection control signs. Flashing beacons are intended to reinforce driver awareness of the stop or yield signs and to help mitigate patterns of crashes related to intersection regulatory sign violations. Most advance warning flashing beacons can be powered by solar, thus reducing the issues relating to power source.

General Qualities (Time, Cost and Effectiveness):
Use of flashing beacons requires minimal development process, allowing flashing beacons to be installed within a short time period. Before choosing this CM, the agency needs to confirm the ability to provide power to the site (solar may be an option). In general, This CM can be very effective and can be considered on a systematic approach.

FHWA CMF Clearinghouse: Crash Types Addressed: Angle, Rear-End CRF: 36 - 62%
NS10, Install transverse rumble strips on approaches

| For HSIP Cycle 11 Call-for-projects |
|-----------------|------------------|
| Funding Eligibility | Crash Types Addressed | CRF | Expected Life |
| 90% | All | 20% | 10 years |

Notes: This CM only applies to crashes occurring on the approaches / influence area of the new rumble strips.

General information

Where to use:
Transverse rumble strips are installed in the travel lane for the purposes of providing an auditory and tactile sensation for each motorist approaching the intersection. They can be used at any stop or yield approach intersection, often in combination with advance signing to warn of the intersection ahead. Due to the noise generated by vehicles driving over the rumble strips, care must be taken to minimize disruption to nearby residences and businesses.

Why it works:
When motorists are traveling along the roadway, they are sometimes unaware they are approaching an intersection. This is especially true on rural roads, as there may be fewer clues indicating an intersection ahead. Transverse rumble strips warn motorists that something unexpected is ahead that they need to pay attention to.

General Qualities (Time, Cost and Effectiveness):
Use of transverse rumble strips requires minimal development process, allowing transverse rumble strips to be installed within a short time period. In general, This CM can be very effective and can be considered on a systematic approach, although care should be taken to not over-use this CM. Note: When federal safety funding is used for these installations in high-wear-locations, the local agency is expected to maintain the improvement for a minimum of 10 years.

FHWA CMF Clearinghouse: Crash Types Addressed: All | CRF: 0 - 35%

NS11, Improve sight distance to intersection (Clear Sight Triangles)

| For HSIP Cycle 11 Call-for-projects |
|-----------------|------------------|
| Funding Eligibility | Crash Types Addressed | CRF | Expected Life |
| 90% | All | 20% | 10 years |

Notes: This CM only applies to crashes occurring on the approaches / influence area of the significantly improved new sight distance. Minor/incidental improvements to sight distance would not likely result in the CRF shown below.

General information

Where to use:
Unsignalized intersections with restricted sight distance and patterns of crashes related to lack of sight distance where sight distance can be improved by clearing roadside obstructions without major reconstruction of the roadway.

Why it works:
Adequate sight distance for drivers at stop or yield-controlled approaches to intersections has long been recognized as among the most important factors contributing to overall safety at unsignalized intersections. By removing sight distance restrictions (e.g., vegetation, parked vehicles, signs, buildings) from the sight triangles at stop or yield-controlled intersection approaches, drivers will be able see approaching vehicles on the main line, without obstruction and therefore make better decisions about entering the intersection safely.

General Qualities (Time, Cost and Effectiveness):
Projects involving clearing sight obstructions on the highway right-of-way can typically be accomplished quickly, assuming the objects are readily moveable. Clearing sight obstructions on private property requires more time for discussions with the property owner. Costs will generally be low, assuming that in most cases the objects to be removed are within the right-of-way. In general, this CMs can be very effective and can be implemented by agencies' maintenance staff and/or implemented on a systematic approach. Usually only high-cost removals would be good candidates for Caltrans Federal Safety Funding. Note: When federal safety funding is used to remove vegetation that has the potential to grow back, the local agency is expected to maintain the improvement for a minimum of 10 years.

FHWA CMF Clearinghouse: Crash Types Addressed: All | CRF: 11 - 56%
NS12, Improve pavement friction (High Friction Surface Treatments)

<table>
<thead>
<tr>
<th>For HSIP Cycle 11 Call-for-projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Eligibility</td>
</tr>
<tr>
<td>90%</td>
</tr>
<tr>
<td>Notes:</td>
</tr>
</tbody>
</table>

General information

Where to use:
Nationally, this countermeasure is referred to as "High Friction Surface Treatments" or HFST. Non-signalized Intersections noted as having crashes on wet pavements or under dry conditions when the pavement friction available is significantly less than needed for the actual roadway approach speeds. This treatment is intended to target locations where skidding and failure to stop is determined to be a problem in wet or dry conditions and the target vehicle is unable to stop due to insufficient skid resistance.

Why it works:
Improving the skid resistance at locations with high frequencies of wet-road crashes and/or failure to stop crashes can result in reductions of 50 percent for wet-road crashes and 20 percent for total crashes. Applying HFST can double friction numbers, e.g. low 40s to high 80s. This CM represents a special focus area for both FHWA and Caltrans, which means there are extra resources available for agencies interested in more details on High Friction Surface Treatment projects.

General Qualities (Time, Cost and Effectiveness):
This strategy can be relatively inexpensive and implemented in a short timeframe. The installation would be done by either agency personnel or contractors and can be done by hand or machine. In general, This CM can be very effective and can be considered on a systematic approach.

| FHWA CMF Clearinghouse: Crash Types Addressed: Wet, Night, ALL | CRF: 10 - 62 % |

NS13, Install splitter-islands on the minor road approaches

<table>
<thead>
<tr>
<th>For HSIP Cycle 11 Call-for-projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Eligibility</td>
</tr>
<tr>
<td>90%</td>
</tr>
<tr>
<td>Notes:</td>
</tr>
</tbody>
</table>

General information

Where to use:
Minor road approaches to unsignalized intersections where the presence of the intersection or the stop sign is not readily visible to approaching motorists. The strategy is particularly appropriate for intersections where the speeds on the minor road are high. In creation of a splitter island allows for an additional stop sign to be placed in the median for the minor approach.

Why it works:
The installation of splitter islands allows for the addition of a stop sign in the median to make the intersection more conspicuous. Additionally, the splitter island on the minor-road provides for a positive separation between turning vehicles on the through road and vehicles stopped on the minor road approach.

General Qualities (Time, Cost and Effectiveness):
Splitter islands at non-signalized intersections can usually be installed with minimal roadway reconstruction and relatively quickly. In general, This CM can be very effective and can be considered on a systematic approach.

| FHWA CMF Clearinghouse: Crash Types Addressed: Angle, Rear-End | CRF: 35 - 100 % |
NS14, Install raised median on approaches (NS.I.)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>25%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring on the approaches / influence area of the new raised median. All new raised medians funded with federal HSIP funding should not include the removal of the existing roadway structural section and should be doweled into the existing roadway surface. This requirement is being implemented to maximize the safety-effectiveness of the limited HSIP funding and to minimize project impacts. Landscaping, if included in the project, is considered non-participating.

General information

Where to use:
Where related or nearby turning movements affect the safety and operation of an intersection. Effective access management is key to improving safety at, and adjacent to, intersections. The number of intersection access points coupled with the speed differential between vehicles traveling along the roadway often contributes to crashes. Any access points within 250 feet upstream and downstream of an intersection are generally undesirable.

Why it works:
Raised medians with left-turn lanes at intersections offer a cost-effective means for reducing crashes and improving operations at higher volume intersections. The raised medians also prohibit left turns into and out of driveways that may be located too close to the functional area of the intersection.

General Qualities (Time, Cost and Effectiveness):
Raised medians at intersections may be most effective in retrofit situations where high volumes of turning vehicles have degraded operations and safety, and where more extensive approaches would be too expensive because of limited right-of-way and the constraints of the built environment. Because raised medians limit property access to right turns only, the need for providing alternative access ways should be considered. In general, This CM can be very effective and can be considered on a systematic approach. When agencies opt to install landscaping in conjunction with new raised medians, the portion of the cost for landscaping and other non-safety related items that exceeds 10% of the project total cost is not federally participated and must be funded by the applicant.

FHWA CMF Clearinghouse: Crash Types Addressed: All CRF: 20 - 39 %

NS15, Create directional median openings to allow (and restrict) left-turns and u-turns (NS.I.)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>50%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring in the intersection / influence area of the new directional openings.

General information

Where to use:
Crashes related to turning maneuvers include angle, rear-end, pedestrian, and sideswipe (involving opposing left turns) type crashes. If any of these crash types are an issue at an intersection, restriction or elimination of the turning maneuver may be the best way to improve the safety of the intersection. Because raised medians limit property access to right turns only, they should be used in conjunction with efforts to provide alternative access ways and promote driveway spacing objectives.

Why it works:
Agencies are increasingly using access management techniques on urban and suburban arterials to manage the number of conflicts experienced at an intersection. A key element of access management is to restrict certain movements, create directional median openings, or close median openings that are deemed too close to an intersection.

General Qualities (Time, Cost and Effectiveness):
Turn prohibitions that are implemented by closing a median opening can usually be implemented quickly. Costs are highly variable but in many cases could be considered low. In some cases this strategy may involve acquiring access or constructing replacement access; those actions will significantly increase the cost of the project. Impacts to businesses and other land uses must be considered and controversy can delay the implementation. In general, This CM can be very effective and can be considered on a systematic approach.

FHWA CMF Clearinghouse: Crash Types Addressed: All CRF: 51%
Notes: This CM only applies to crashes occurring in the intersection / influence area of the new Reduced Left-Turn Conflict.

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>50%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Where to use and Why it works:
Reduced left-turn conflict intersections are geometric designs that alter how left-turn movements occur in order to simplify decisions and minimize the potential for related crashes. Two highly effective designs that rely on U-turns to complete certain left-turn movements are known as the restricted crossing U-turn (RCUT) and the median U-turn (MUT).

Restricted Crossing U-turn (RCUT):
The RCUT intersection modifies the direct left-turn and through movements from cross-street approaches. Minor road traffic makes a right turn followed by a U-turn at a designated location (either signalized or unsignalized) to continue in the desired direction.

The RCUT is suitable for a variety of circumstances, including along rural, high-speed, four-lane, divided highways or signalized routes. It also can be used as an alternative to signalization or constructing an interchange. RCUTs work well when consistently used along a corridor, but also can be used effectively at individual intersections.

Median U-turn (MUT):
The MUT intersection modifies direct left turns from the major approaches. Vehicles proceed through the main intersection, make a U-turn a short distance downstream, followed by a right turn at the main intersection. The U-turns can also be used for modifying the cross-street left turns.

The MUT is an excellent choice for heavily traveled intersections with moderate left-turn volumes. When implemented at multiple intersections along a corridor, the efficient two-phase signal operation of the MUT can reduce delay, improve travel times, and create more crossing opportunities for pedestrians and bicyclists.

General Qualities (Time, Cost and Effectiveness):
Implementing this strategy may take from months to years, depending on whether additional R/W is required. Such projects require a substantial time for development and construction. Costs are highly variable and range from very low to high. The expected effectiveness of this CM must be assessed for each individual location.

| FHWA CMF Clearinghouse: | Crash Types Addressed: | Angle/Left-turn/Rear-End/All | CRF: | 34.8-100% |
NS17, Install right-turn lane (NS.I.)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>20%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring on the approaches / influence area of the new right-turn lanes. This CM is not eligible for use at existing all-way stop intersections.

General information

Where to use:
Many collisions at unsignalized intersections are related to right-turn maneuvers. A key strategy for minimizing such collisions is to provide exclusive right-turn lanes, particularly on high-volume and high-speed major-road approaches. When considering new right-turn lanes, potential impacts to non-motorized users should be considered and mitigated as appropriate. When considering new right-turn lanes, potential impacts to non-motorized users should be considered and mitigated as appropriate.

Why it works:
The strategy is targeted to reduce the frequency of rear-end collisions resulting from conflicts between vehicles turning right and following vehicles and vehicles turning right and through vehicles coming from the left on the cross street. Right-turn lanes also remove slow vehicles that are decelerating to turn right from the through-traffic stream, thus reducing the potential for rear-end collisions. Right-turn lanes can increase the length of the intersection crossing and create an additional potential conflict point for non-motorized users.

General Qualities (Time, Cost and Effectiveness):
Implementing this strategy may take from months to years. At some locations, right-turn lanes can be quickly and simply installed by restriping the roadway. At other locations, widening of the roadway, acquisition of additional right-of-way, and extensive environmental processes may be needed. Such projects require a substantial time for development and construction. Costs are highly variable and range from very low to high. The expected effectiveness of this CM must be assessed for each individual location.

FHWA CMF Clearinghouse: Crash Types Addressed: All CRF: 14 - 26 %

NS18, Install left-turn lane (where no left-turn lane exists)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>35%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring on the approaches / influence area of the new left-turn lanes. This CM does NOT apply to converting a single-left into double-left turn. This CM is not eligible for use at existing all-way stop intersections.

General information

Where to use:
Many collisions at unsignalized intersections are related to left-turn maneuvers. A key strategy for minimizing such collisions is to provide exclusive left-turn lanes, particularly on high-volume and high-speed major-road approaches. When considering new left-turn lanes, potential impacts to non-motorized users should be considered and mitigated as appropriate.

Why it works:
Adding left-turn lanes remove vehicles waiting to turn left from the through-traffic stream, thus reducing the potential for rear-end collisions. Because they provide a sheltered location for drivers waiting for a gap in opposing traffic, left-turn lanes may encourage drivers to be more selective in choosing a gap to complete the left-turn maneuver. This strategy may reduce the potential for collisions between left-turn and opposing through vehicles.

General Qualities (Time, Cost and Effectiveness):
Implementing this strategy may take from months to years. At some locations, left-turn lanes can be quickly and simply installed by restriping the roadway. At other locations, widening of the roadway, acquisition of additional right-of-way, and extensive environmental processes may be needed. Such projects require a substantial time for development and construction. Costs are highly variable and range from very low to high. The expected effectiveness of this CM must be assessed for each individual location.

FHWA CMF Clearinghouse: Crash Types Addressed: All CRF: 9 - 55 %
NS19PB, Install raised medians (refuge islands)

<table>
<thead>
<tr>
<th>For HSIP Cycle 11 Call-for-projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Eligibility</td>
</tr>
<tr>
<td>90%</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "Ped & Bike" crashes occurring in the crossing with the new islands. All new raised medians funded with federal HSIP funding should not include the removal of the existing roadway structural section and should be dowelled into the existing roadway surface. This requirement is being implemented to maximize the safety-effectiveness of the limited HSIP funding and to minimize project impacts. Landscaping, if included in the project, is considered non-participating.

General Information

Where to use:

Intersections that have a long pedestrian crossing distance, a higher number of pedestrians, or a crash history. Raised medians decrease the level of exposure for pedestrians and allow pedestrians to concentrate on (or cross) only one direction of traffic at a time.

Why it works:

Raised pedestrian refuge islands, or medians at crossing locations along roadways, are another strategy to reduce exposure between pedestrians and motor vehicles. Refuge islands and medians that are raised (i.e., not just painted) provide pedestrians more secure places of refuge during the street crossing. They can stop partway across the street and wait for an adequate gap in traffic before completing their crossing.

General Qualities (Time, Cost and Effectiveness):

Median and pedestrian refuge areas are a low-cost countermeasure to implement. This cost can be applied to retrofit improvements or if it is a new construction project, implementing this countermeasure is even more cost-effective. In general, this CM can be very effective and can be considered on a systematic approach. When agencies opt to install landscaping in conjunction with new raised medians, the portion of the cost for landscaping and other non-safety related items that exceeds 10% of the project total cost is not federally participated and must be funded by the applicant.

FHWA CMF Clearinghouse: Crash Types Addressed: Pedestrian and Bicycle CRF: 30 - 56 %

NS20PB, Install pedestrian crossing at uncontrolled locations (signs and markings only)

<table>
<thead>
<tr>
<th>For HSIP Cycle 11 Call-for-projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Eligibility</td>
</tr>
<tr>
<td>90%</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "Ped & Bike" crashes occurring in the intersection/crossing with the new crossing. This CM is not intended to be used for high-cost aesthetic enhancements to intersection crosswalks (i.e. stamped concrete or stamped asphalt).

General Information

Where to use:

Non-signaled intersections without a marked crossing, where pedestrians are known to be crossing intersections that involve significant vehicular traffic. They are especially important at school crossings and intersections with right and/or left turns pockets. See Zegeer study (Safety Effects of Marked vs. Unmarked Crosswalks at Uncontrolled Locations) for additional guidance regarding when to install a marked crosswalk.

Why it works:

Adding pedestrian crossings has the opportunity to enhance pedestrian safety at locations noted as being problematic. Pavement markings delineate a portion of the roadway that is designated for pedestrian crossing. These markings will often be different for controlled verses uncontrolled locations. The use of "ladder", "zebra" or other enhanced markings at uncontrolled crossings can increase both pedestrian and driver awareness to the increased exposure at the crossing. Incorporating advanced "stop" or "yield" markings provides an extra safety buffer and can be effective in reducing the 'multiple-threat' danger to pedestrians. Nearly one-third of all pedestrian-related crashes occur at or within 50 feet of an intersection. Of these, 30 percent may involve a turning vehicle. There are several types of pedestrian crosswalks, including: continental, ladder, zebra, and standard. When agencies opt to install aesthetic enhancement to intersection crosswalks like stamped concrete/asphalt, the project design and construction costs can significantly increase. For HSIP applications, these costs must be accounted for in the B/C calculation, but these costs (over standard crosswalk markings) must be tracked separately and are not federally reimbursable and will increase the agency's local-funding share for the project costs.

General Qualities (Time, Cost and Effectiveness):

Costs associated with this strategy will vary widely, depending upon if curb ramps and sidewalk modifications are required with the crossing. When considered at a single location, these low cost improvements are usually funded through local funding by local crews. However, This CM can be effectively and efficiently implemented using a systematic approach with numerous locations, resulting in moderate cost projects that are more appropriate to seek state or federal funding.

FHWA CMF Clearinghouse: Crash Types Addressed: Pedestrian and Bicycle CRF: 25 %
NS21PB, Install/upgrade pedestrian crossing at uncontrolled locations (with enhanced safety features)

<table>
<thead>
<tr>
<th>For HSIP Cycle 11 Call-for-projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Eligibility</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>90%</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "Ped & Bike" crashes occurring in the new crossing (influence area) with enhanced safety features. This CM is not intended to be used for high-cost aesthetic enhancements to intersection crosswalks (i.e. stamped concrete or stamped asphalt).

General information

Where to use:
Non-signalized intersections where pedestrians are known to be crossing intersections that involve significant vehicular traffic. They are especially important at school crossings and intersections with turn pockets. Based on the Zegeer study (Safety Effects of Marked vs. Unmarked Crosswalks at Uncontrolled Locations) at many locations, a marked crosswalk alone may not be sufficient to adequately protect non-motorized users. In these cases, flashing beacons, curb extensions, advanced "stop" or "yield" markings, and other safety features should be added to complement the standard crossing elements.

Why it works:
Adding pedestrian crossings that include enhances safety features has the opportunity to enhance pedestrian safety at locations noted as being especially problematic. The enhanced safety elements help delineate a portion of the roadway that is designated for pedestrian crossing. Incorporating advanced "yield" markings provide an extra safety buffer and can be effective in reducing the 'multiple-threat' danger to pedestrians. Nearly one-third of all pedestrian-related crashes occur at or within 50 feet of an intersection. When agencies opt to install aesthetic enhancement to intersection crosswalks like stamped concrete/asphalt, the project design and construction costs can significantly increase. For HSIP applications, these costs must be accounted for in the B/C calculation, but these costs (over standard crosswalk markings) must be tracked separately and are not federally reimbursable and will increase the agency's local-funding share for the project costs.

General Qualities (Time, Cost and Effectiveness):
Costs associated with this strategy will vary widely, depending upon the types of enhanced features that will be combined with the standard crossing improvements. The need for new curb ramps and sidewalk modifications will also be a factor. This CM may be effectively and efficiently implemented using a systematic approach with more than one location and can have relatively high B/C ratios based on past non-motorized crash history.

FHWA CMF Clearinghouse: Crash Types Addressed: Pedestrian and Bicycle CRF: 37%

NS22PB, Install Rectangular Rapid Flashing Beacon (RRFB)

<table>
<thead>
<tr>
<th>For HSIP Cycle 11 Call-for-projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Eligibility</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>90%</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "Ped & Bike" crashes occurring in the influence area (expected to be a maximum of within 250') of the crossing which includes the RRFB.

General information

Where to use:
Rectangular Rapid Flashing Beacon (RRFB) includes pedestrian-activated flashing lights and additional signage that enhance the visibility of marked crosswalks and alert motorists to pedestrian crossings. It uses an irregular flash pattern that is similar to emergency flashers on police vehicles. RRFBs are installed at unsignalized intersections and mid-block pedestrian crossings.

Why it works:
RRFBs can enhance safety by increasing driver awareness of potential pedestrian conflicts and reducing crashes between vehicles and pedestrians at unsignalized intersections and mid-block pedestrian crossings. The addition of RRFB may also increase the safety effectiveness of other treatments, such as crossing warning signs and markings.

General Qualities (Time, Cost and Effectiveness):
RRFBs are a lower cost alternative to traffic signals and hybrid signals. This CM can often be effectively and efficiently implemented using a systematic approach with numerous locations.

FHWA CMF Clearinghouse: Crash Types Addressed: Pedestrian, Bicycle CRF: 7 – 47.4%
NS23PB, Install Pedestrian Signal (including Pedestrian Hybrid Beacon (HAWK))

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Pedestrian and Bicycle</td>
<td>55%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "Ped & Bike" crashes occurring in the intersection/crossing with the new signal. For HAWK or other pedestrian signals, the justification may be Warrant 4, 5 and/or 7, or passing the test in Figure 4F-1/4F-2 in Chapter 4F of CA MUTCD. Please refer to Chapter 4F of CA MUTCD for more details.

General Information

Where to use:

Intersections noted as having a history of pedestrian vs. vehicle crashes and in areas where the likelihood of the pedestrian presence is high. Corridors should also be assessed to determine if there are adequate safe opportunities for non-motorists to cross and if a pedestrian signal, or a Pedestrian Hybrid Beacon (PHB) (also called High-Intensity Activated crossWalk beacon (HAWK)) are needed to provide an active warning to motorists when a pedestrian is in the crosswalk.

Why it works:

Adding a pedestrian signal has the opportunity to greatly enhance pedestrian safety at locations noted as being problematic. Nearly one-third of all pedestrian-related crashes occur at or within 50 feet of an intersection. In combination with this CM, better guidance signs and markings for non-motorized and motorized roadway users should be considered, including: sign and markings directing pedestrians and cyclists on appropriate/legal travel paths and signs and markings warning motorists of non-motorized uses of the roadway that should be expected.

General Qualities (Time, Cost and Effectiveness):

The cost of improvements are generally high, but can vary dependent on the type of signal and overall scope of the project. In most cases the project duration can be short. The expected effectiveness of this CM must be assessed for each individual location.

FHWA CMF Clearinghouse:

| Crash Types Addressed: | Pedestrian and Bicycle | CRF: | 15 - 69% |

For HSIP Cycle 11 Call-for-projects
B.3 Roadway Countermeasures

R01, Add Segment Lighting

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Night</td>
<td>35%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "night" crashes (all types) occurring within limits of the proposed roadway lighting 'engineered' area.

General information

Where to use:
Noted substantial patterns of nighttime crashes. In particular, patterns of rear-end, right-angle, turning or roadway departure collisions on the roadways may indicate that night-time drivers can be unaware of the roadway characteristics.

Why it works:
Providing roadway lighting improves the safety during nighttime conditions by (1) making drivers more aware of the surroundings, which improves drivers' perception-reaction times, (2) enhancing drivers' available sight distances to perceive roadway characteristic in advance of the change, and (3) improving non-motorist's visibility and navigation.

General Qualities (Time, Cost and Effectiveness):
It is expected that projects of this type may be constructed in a year or two and are relatively costly. There are several types of costs associated with providing lighting, including the cost of providing a permanent source of power to the location, the cost for the luminaire supports (i.e., poles), and the cost for the most common replacement of the bulb and the maintenance of the luminaire supports. Some locations can result in high B/C ratios, but due to higher costs, these projects often result in medium to low B/C ratios.

FHWA CMF Clearinghouse: Crash Types Addressed: Night, All CRF: 18 - 69 %

R02, Remove or relocate fixed objects outside of Clear Recovery Zone

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>35%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits of the new clear recovery zone (per Caltrans' HDM).

General information

Where to use:
Known locations or roadway segments prone to collisions with fixed objects such as utility poles, drainage structures, trees, and other fixed objects, such as the outside of a curve, end of lane drops, and in traffic islands. A clear recovery zone should be developed on every roadway, as space is available. In situations where public right-of-way is limited, steps should be taken to request assistance from property owners, as appropriate.

Why it works:
While this strategy does not prevent the vehicle leaving the roadway, it does provide a mechanism to reduce the severity of a resulting crash. A clear zone is an unobstructed, traversable roadside area that allows a driver to stop safely or regain control of a vehicle that has left the roadway. Removing or moving fixed objects, flattening slopes, or providing recovery areas reduces the likelihood of a crash.

General Qualities (Time, Cost and Effectiveness):
Projects involving removing fixed objects from highway right-of-way can typically be accomplished quickly, assuming the objects are readily moveable. Clearing objects on private property requires more time for discussions with the property owner. Costs will generally be low, assuming that in most cases the objects to be removed are within the right-of-way. This CMs can be very effective and can be implemented by agencies' maintenance staff and/or implemented on a systematic approach. High-cost removals or removals implemented using a systematic approach would be good candidates for Caltrans Federal Safety Funding.

FHWA CMF Clearinghouse: Crash Types Addressed: Fixed Object CRF: 17 - 100 %
R03, Install Median Barrier

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>25%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: Note: For Caltrans statewide Calls-for-Projects, this CM only applies to crashes occurring within the limits of the new barrier.

General information

Where to use:
Areas where crash history indicates drivers are unintentionally crossing the median and the cross-overs are resulting in high severity crashes. The installation of median barriers can increase the number of PDO and non-severe injuries. The net result in safety from this countermeasure is connected more to reducing the severity of crashes not the number of crashes. It is recommended to review the warrants as outlined in Chapter 7 of the Caltrans Traffic Manual when considering whether to install median barriers.

Why it works:
This strategy is designed to prevent head-on collisions by providing a barrier between opposing lanes of traffic. The variety of median barriers available makes it easier to choose a site-specific solution. The main advantage is the reduction of the severity of the crashes. The key to success would be in selecting an appropriate barrier based on the site, previous crash history, maintenance needs, and median width.

General Qualities (Time, Cost and Effectiveness):
This strategy would in many cases be possible to implement within a short period after site selection. Costs will vary depending on the type of median barrier selected and whether the strategy is implemented as a stand-alone project or incorporated as part of a reconstruction or resurfacing effort. Maintenance costs and worker exposure will also vary depending on the type of barrier selected. The expected effectiveness of this CM must be assessed for each individual location.

FHWA CMF Clearinghouse: Crash Types Addressed: Head-on CRF: 0 - 94%

R04, Install Guardrail

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>25%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits of the new guardrail. This CM is not intended to be used for general maintenance activities (i.e. the replacement of existing damaged rail). For projects proposing to upgrade existing guardrail to current standards, this CM and corresponding CRF should only be applied to locations where past crash data or engineering judgment applied to the existing rail conditions suggests the upgraded guardrail may result in fewer or less severe crashes (justifying the use of the 25% CRF for this CM).

General information

Where to use:
Guardrail is installed to reduce the severity of lane departure crashes. However, guardrail can reduce crash severity only for those conditions where striking the guardrail is less severe than going down an embankment or striking a fixed object. Guardrail should only be installed where it is clear that crash severity will be reduced, or there is a history of run-off-the-road crashes at a given location that have resulted in severe crashes. New and upgraded guardrail and end-treatments must meet current safety standards; see Method for Assessing Safety Hardware (MASH) for more information. Caltrans (or other national accepted guidance) slope/height criteria need to be considered and documented.

Why it works:
Guardrail redirects a vehicle away from embankment slopes or fixed objects and dissipates the energy of an errant vehicle.

General Qualities (Time, Cost and Effectiveness):
Strategies range from relatively inexpensive to too costly. Costly projects may include those that upgrade existing guardrail applications to more semi-rigid and rigid barrier systems over extended distances. In general, this CMs can be effective and can be implemented by agencies’ maintenance staff and/or implemented on a systematic approach.

FHWA CMF Clearinghouse: Crash Types Addressed: Fixed Object, Run-off Road CRF: 11 - 78%
R05, Install impact attenuators

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>25%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits of the new attenuators. This CM is not intended to be used for general maintenance activities (i.e. the replacement of existing damaged attenuators). For projects proposing to upgrade existing attenuators to current standards, this CM and corresponding CRF should only be applied to locations where past crash data or engineering judgment applied to the existing attenuator conditions suggests the upgraded attenuators may result in fewer or less severe crashes (justifying the use of the 25% CRF for this CM).

General information

- **Where to use:** Impact attenuators are typically used to shield rigid roadside objects such as concrete barrier ends, steel guardrail ends and bridge pillars from oncoming automobiles. Attenuators should only be installed where it is impractical for the objects to be removed. New and upgraded barrier end-treatments must meet current safety standards; see MASH for more information.

- **Why it works:** Attenuators bring an errant vehicle to a more-controlled stop or redirect the vehicle away from a rigid object. Attenuators are effective at absorbing impact energy and increasing occupant safety. They also tend to draw attention to the fixed object, which helps drivers steer clear of the fixed objects.

- **General Qualities (Time, Cost and Effectiveness):** Costs depending on the scope of the project, type(s) used, and associated ongoing maintenance costs. Time to install is fairly quick once site is identified.

- **FHWA CMF Clearinghouse:** Crash Types Addressed: Fixed Object, Run-off Road CRF: 5 - 50%

R06, Flatten side slopes

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>30%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits of the new side slopes. Minor/incidental flattening of side slopes would not likely result in the CRF shown below and may not be appropriate for use in Caltrans B/C calculations.

General information

- **Where to use:** Roadways experiencing frequent lane departure crashes that result in roll-over type crashes as a result of the roadway slope being so severe as to not accommodate a reasonable degree of driver correction. When there is a need to reduce the severity of lane departure crashes without installing a barrier system that could result in increased numbers of crashes.

- **Why it works:** Flattened slopes provide a greater area for a driver to regain control of a vehicle. Steep slopes, ditches or unprotected hazardous drops-offs adjacent to a travel lane offer little opportunities to correct an inappropriate action by a driver and can result in sever crashes.

- **General Qualities (Time, Cost and Effectiveness):** Roadside modifications range from relatively inexpensive to very costly. Strategies that include creating safer side slopes where none exists can be moderately expensive based on the scope of the project and the associated clearing, grading, etc. The potential for high environmental and right-of-way impacts is high which can take several years to clear. In other cases This CM can be effective and can be implemented by agencies’ maintenance staff and/or implemented on a systematic approach.

- **FHWA CMF Clearinghouse:** Crash Types Addressed: Fixed Object, Run-off Road CRF: 5 - 62%
R07, Flatten side slopes and remove guardrail

<table>
<thead>
<tr>
<th>For HSIP Cycle 11 Call-for-projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Eligibility</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>90%</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits of both the removed guardrail and the new side slopes.

General information

Where to use:
Locations where high number of crashes originate as a lane departure and result in collision with guardrail or a fixed object located on the side slope shielded by guardrail. The guardrail may or may not meet current standards. Even though guardrails are generally installed to reduce the severity of departure crashes, they still can result in severe crashes in some locations.

Why it works:
Flattened side slopes and an unobstructed clear zone provide a greater area for a driver to regain control of a vehicle. The existing guardrail may help protect the steep slopes, fixed objects, or unprotected hazardous drops-offs adjacent to a travel lane, but removing all of these obstacles generally improves safety.

General Qualities (Time, Cost and Effectiveness):
Roadside modifications range from relatively inexpensive to very costly. Strategies that include creating safer side slopes where none exists can be moderately expensive based on the scope of the project and the associated clearing, grading, etc. The potential for high environmental and right-of-way impacts is high which can take several years to clear.

R08, Install raised median

<table>
<thead>
<tr>
<th>For HSIP Cycle 11 Call-for-projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Eligibility</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>90%</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits of the new raised median. All new raised medians funded with federal HSIP funding should not include the removal of the existing roadway structural section and should be dowelled into the existing roadway surface. This requirement is implemented to maximize the safety-effectiveness of the limited HSIP funding and to minimize project impacts. Landscaping, if included in the project, is considered non-participating.

General information

Where to use:
Areas experiencing head-on collisions that may be affected by both the number of vehicles that cross the centerline and by the speed of oncoming vehicles. Installing a raised median is a more restrictive approach in that it represents a more rigid barrier between opposing traffic. Application of raised medians on roadways with higher speeds is not advised - instead a median barrier should be considered. Including landscaping in new raised medians can be counterproductive to the HSIP safety goals and should only be done in ways that do not increase drivers’ exposure to fixed objects and that will maintain driver’s sight distance needs throughout the life of the proposed landscaping. Agencies need to consider and document impacts of additional turning movements at nearby intersections.

Why it works:
Adding raised medians is a particularly effective strategy as it adds to or reallocates the existing cross section to incorporate a buffer between the opposing travel lanes and reinforces the limits of the travel lane. Raised median may also be used to limit unsafe turning movements along a roadway.

General Qualities (Time, Cost and Effectiveness):
In some cases this strategy may be a retrofit into the existing roadway by utilizing a portion of the existing paved shoulder. These raised medians can be installed directly over the existing pavement. Cost and time to implement could significantly increase if the paved area is not sufficient to include a median. The surface treatment of the raised median also significantly affects their cost-effectiveness: standard concrete or other hardscape surfaces are usually more cost effective than landscaped medians. When agencies opt to install landscaping in conjunction with new raised medians, the project design and construction costs can significantly increase due to excavation, backfill/top-soil, water-connection, irrigation, planting, maintenance needed for the landscaping. When agencies opt to install landscaping in conjunction with new raised medians, the portion of the cost for landscaping and other non-safety related items that exceeds 10% of the project total cost is not federally participated and must be funded by the applicant.

FHWA CMF Clearinghouse: Crash Types Addressed: Head-on CRF: 20 - 75 %
R09, Install median (flush)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>15%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits of the new flush median. The new median must be a minimum of 4 feet wide (or "wider" if a narrow median exists before the proposed project).

General information

Where to use:

Areas experiencing head-on collisions that may be affected by both the number of vehicles that cross the centerline and by the speed of oncoming vehicles. Roadways with oversized lanes offer an opportunity to restripe the roadway to reduce the lanes to standard widths and use the extra width for the median.

Why it works:

Adding medians is a particularly effective strategy as it adds to or reallocates the existing cross section to incorporate a narrow buffer median between opposing flows, thereby providing a greater opportunity to correct an errant maneuver and further reinforce the limits of the travel lane. Application widths can vary based on the available cross section and intended application. Additional safety can be provided by combining this CM with rumble strips.

General Qualities (Time, Cost and Effectiveness):

In some cases this strategy may be retrofitted into the existing roadway by utilizing a portion of the existing paved shoulder and can ultimately be as simple as restriping the roadway. Costs and time to implement could significantly increase if the paved area is not sufficient to include a median.

FHWA CMF Clearinghouse: Crash Types Addressed: All CRF: 15 - 78%

R10PB, Install pedestrian median fencing

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Pedestrian and Bicycle</td>
<td>35%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "Ped & Bike" crashes occurring on the approaches/influence area of the new pedestrian median fencing.

General information

Where to use:

Roadway segments with high pedestrian-generators and pedestrian-destinations nearby (e.g. transit stops) may experience a high volume of pedestrians J-walking across the travel lanes at mid-block locations instead of walking to the nearest intersection or designated mid-block crossing. When this safety issue cannot be mitigated with shoulder, sidewalk and/or crossing treatments, then installing a continuous pedestrian barrier in the median may be a viable solution.

Why it works:

Adding pedestrian median fencing has the opportunity to enhance pedestrian safety at locations noted as being problematic involving pedestrians running/darting across the roadway outside designated pedestrian crossings. Pedestrian median fencing can significantly reduce this safety issue by creating a positive barrier, forcing pedestrians to the designated pedestrian crossing.

General Qualities (Time, Cost and Effectiveness):

Costs associated with this strategy will vary widely depending on the type and placement of the median fencing. Impacts to transit and other land uses may need to be considered and controversy can delay the implementation. In general, this CM can be effective as a spot-location approach.

FHWA CMF Clearinghouse: Crash Types Addressed: Pedestrian, Bicycle CRF: 25 - 40%
R11, Install acceleration/ deceleration lanes

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>25%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits of the new accel/decel lanes on high speed roadways. Significant improvements to the merge length for lane-drop locations is also an acceptable use of this CM.

General information

Where to use:
Areas proven to have crashes that are the result of drivers not being able to turn onto a high speed roadway to accelerate until the desired roadway speed is reached and areas that do not provide the opportunity to safety deaccelerate to negotiate a turning movement. This CM can also be used to improve the safety of merging vehicles at a lane-drop location.

Why it works:
A lane that does not provide enough deceleration length and storage space for turning traffic may cause the turn queue to back up into the adjacent through lane. This can contribute to rear-end and sideswipe crashes. An acceleration lane is an auxiliary or speed-change lane that allows vehicles to accelerate to highway speeds (high speed roadways) before entering the through-traffic lanes of a highway. Additionally, if acceleration by entering traffic takes place directly on the traveled way, it may disrupt the flow of through-traffic and cause rear-end and sideswipe collisions.

General Qualities (Time, Cost and Effectiveness):
Costs are highly variable. Where sufficient median or shoulder space exists it may be possible to provide acceleration/deceleration lanes at a moderate cost. Where the roadway must be widened and additional right-of-way must be acquired, higher costs and a lengthy time-to-construct are likely. The expected effectiveness of this CM must be assessed for each individual location.

FHWA CMF Clearinghouse: Crash Types Addressed: Sideswipe, Rear-End | CRF: 10 - 75 %

R12, Widen lane (initially less than 10 ft)

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>25%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: Note: For Caltrans' statewide Calls-for-Projects, this CM only applies to crashes occurring within the limits of the widened lanes. Widening must a minimum of 1 foot.

General information

Where to use:
Horizontal curves or tangents and low speed or high speed roadways identified as having lane departure crashes, sideswipe or head-on crashes that can be attributed to an existing pavement width less than 10 feet.

Why it works:
Increasing pavement width can affect almost all crash types. A common practice is to widen the traveled way on horizontal curves to make operating conditions on curves comparable to those on tangents. Speed is a primary consideration when evaluating potential adverse impacts of lane width on safety. On high-speed, rural two-lane highways, an increased risk of cross-centerline head-on or cross-centerline sideswipe crashes is a concern because drivers may have more difficulty staying within the travel lane.

General Qualities (Time, Cost and Effectiveness):
Costs will depend on the amount of reconstruction necessary and on whether additional right-of-way is required. In general, this is one of the higher-cost strategies recommended, but it can also be very beneficial. Since this is a relatively expensive treatment, one of the keys to creating a cost effective project with at least a medium B/C ratio is targeting higher-hazard roadways.

FHWA CMF Clearinghouse: Crash Types Addressed: All | CRF: 5 - 70 %

4/8/2022 Local Roadway Safety Page | 76
R13, Add two-way left-turn lane

<table>
<thead>
<tr>
<th>For HSIP Cycle 11 Call-for-projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Eligibility</td>
</tr>
<tr>
<td>90%</td>
</tr>
<tr>
<td>Notes:</td>
</tr>
</tbody>
</table>

General information

Where to use:
Roadways having a high frequency of drivers being rear-ended while attempting to make a left turn across oncoming traffic. Also can be effective for drivers crossing the centerline of an undivided multilane roadway inadvertently.

Why it works:
Two-way left-turn lanes provide a buffer between opposing directions of travel and separate left turn traffic from through traffic. They can also help to allow vehicles to begin to accelerate before entering the through-traffic lanes. They reduce the disruption of flow of through-traffic and reducing rear-end and sideswipe collisions. For some roadways the option of converting a four-lane undivided arterials to two-vehicle-lane roadways with a center left-turn lane and bike lanes should be considered (see "Road Diet" CM.)

General Qualities (Time, Cost and Effectiveness):
In some cases this strategy may be retrofitted into the existing roadway by utilizing a portion of the existing paved shoulder and can ultimately be as simple as restriping the roadway. Costs and time to implement could significantly increase if the paved area is not sufficient to include a median, requiring new right-of-way, and having significant environmental impacts. The expected effectiveness of this CM must be assessed for each individual location as the B/C ratios will vary from low to high.

FHWA CMF Clearinghouse:

<table>
<thead>
<tr>
<th>Crash Types Addressed</th>
<th>CRF: 8 - 50%</th>
</tr>
</thead>
</table>

R14, Road Diet (Reduce travel lanes and add a two way left-turn and bike lanes)

<table>
<thead>
<tr>
<th>For HSIP Cycle 11 Call-for-projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Eligibility</td>
</tr>
<tr>
<td>90%</td>
</tr>
<tr>
<td>Notes:</td>
</tr>
</tbody>
</table>

General information

Where to use:
Areas noted as having a higher frequency of head-on, left-turn, and rear-end crashes with traffic volumes that can be handled by only 2 free flowing lanes. Using this strategy in locations with traffic volumes that are too high could result in diversion of traffic to routes less safe than the original four-lane design. It may also result in congestion levels that contribute to other crashes.

Why it works:
The application of this strategy usually reduces the roadway segment speeds and serious head-on crashes. In many cases the extra pavement width can be used for the installation of bike lanes. In addition to increasing bicycle safety, these bike lanes can improve the safety of on-street parking.

General Qualities (Time, Cost and Effectiveness):
Implementation would require more time than in other low-cost treatments to complete environmental analyses, traffic studies and public input. Projects that only require new lane markings and minor signalization modifications will have relatively low cost and can be very effective and can be considered on a systematic approach. These striping and signal modification costs should be considered part of this CM and not an additional CM. (If additional signal hardware improvements are being made, over what is needed for the road diet, then the Improve Signal Hardware CM may also be used.) Often road diet projects need a seal-coat placed on the roadway to fully remove the old striping. These seal coats are considered part of the proper installation of this CM. In contrast, structural-overlays should not be considered part of this CM and are not considered eligible for funding in the California Local HSIP.

FHWA CMF Clearinghouse:

<table>
<thead>
<tr>
<th>Crash Types Addressed</th>
<th>CRF: 26 - 43%</th>
</tr>
</thead>
</table>
R15, Widen shoulder

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>30%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits of the new paved shoulder. A minimum of 2 feet width must be added and the new/resulting shoulders must be a minimum of 4 feet wide. This CM is not eligible unless it is done as the last step of an "incremental approach", for which the agency documents that: 1) they have already pursued and installed lower cost and lower impact CMs (i.e. signing/striping upgrades to MUTCD standards/recommendations, rumble strips, etc.), 2) they have already monitored the crash occurrences after these improvements were installed, and 3) the 'after' crash rate is still unacceptably high. This 'incremental approach' (or a special exception from the HSIP program manager) must be documented in the Narrative Questions in the application and a summary of the 'before' and 'after' crash analysis must be attached to the application.

General information

Where to use:
Roadways that have a frequent incidence of vehicles leaving the travel lane resulting in an unsuccessful attempt to reenter the roadway. The probability of a safe recovery is increased if an errant vehicle is provided with an increased paved area in which to initiate such a recovery.

Why it works:
Based on the best available research, adding shoulder or widening an existing shoulder provides a greater area to regain control of a vehicle, as well as lateral clearance to roadside objects such as guardrail, signs and poles. They may also provide space for disabled vehicles to stop or drive slowly, provide increased sight distance for through vehicles and for vehicles entering the roadway, and in some cases reduce passing conflicts between motor vehicles and bicyclists and pedestrians. The likely safety benefits for adding or widening an existing shoulder generally increase as the widening width increases - practitioners should refer to NCHRP Report 500 Series, the CMF Clearinghouse or other references for more details.

General Qualities (Time, Cost and Effectiveness):
Shoulder widening costs would depend on whether new right-of-way is required and whether extensive roadside modification is needed. Since shoulder widening can be a relatively expensive treatment, one of the keys to creating a cost effective project with at least a medium B/C ratio is targeting higher-hazard roadways.

FHWA CMF Clearinghouse: Crash Types Addressed: Fixed Object, Run-off Road, Sideswipe CRF: 15 - 75 %

R16, Curve Shoulder widening (Outside Only)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>45%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits (or influence area) of the new shoulder widening at curves. A minimum of 2-4 feet width must be added to the outside of horizontal curves and the new traversable shoulder must be a minimum of 4 feet wide.

General information

Where to use:
Roadway curves noted as having frequent lane departure crashes due to inadequate or no shoulders, resulting in an unsuccessful attempt to reenter the roadway.

Why it works:
Adding shoulders (outside only) creates a recovery area in which a driver can regain control of a vehicle, as well as lateral clearance to roadside objects.

General Qualities (Time, Cost and Effectiveness):
To minimize the R/W needs and the cost, only outside shoulder at curves is to be widened. This CM can be implemented in a relatively short timeframe.

FHWA CMF Clearinghouse: NA
R17, Improve horizontal alignment (flatten curves)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>50%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits (or influence area) of the improved alignment. **This CM is not eligible unless** it is done as the last step of an "incremental approach", including: the agency documents that: 1) they have already pursued and installed lower cost and lower impact CMs (i.e. signing/striping upgrades to MUTCD standards/recommendations, rumble strips, etc.), 2) they have already monitored the crash occurrences after these improvements were installed, and 3) the 'after' crash rate is still unacceptably high. This 'incremental approach' (or a special exception from the HSIP program manager) must be documented in the Narrative Questions in the application and a summary of the agency's 'before' and 'after' crash analysis must be attached to the application.

General information

Where to use:
Roadways with horizontal curves that have experienced lane departure crashes as a result of a roadway segment having compound curves or a severe radius. This strategy should generally be considered only when less expensive strategies involving clearing of specific sight obstructions or modifying traffic control devices have been tried and have failed to ameliorate the crash patterns.

Why it works:
Increasing the radius of a horizontal curve can be very effective in improving the safety performance of the curve. Curve modification reduces the likelihood of a vehicle leaving its lane, crossing the roadway centerline, or leaving the roadway at a horizontal curve; and minimizes the adverse consequences of leaving the roadway. Horizontal alignment improvement projects are expected to include standard/improved superelevation elements, which should be considered part of this CM and not an additional CM.

General Qualities (Time, Cost and Effectiveness):
This strategy is a long-term, higher-cost alternative for improving the safety of a horizontal curve because it usually involves total reconstruction of the roadway. It may also require acquisition of additional right-of-way and an environmental review. This strategy, albeit costly, has shown that increasing the radius of curvature can significantly reduce total curve-related crashes by up to 80 percent. The expected effectiveness of this CM must be assessed for each individual location.

<table>
<thead>
<tr>
<th>FHWA CMF Clearinghouse:</th>
<th>Crash Types Addressed:</th>
<th>CRF:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>24 - 90%</td>
</tr>
</tbody>
</table>
R18, Flatten crest vertical curve

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>25%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits (or influence area) of the improved alignment. This CM is not eligible unless it is done as the last step of an "incremental approach", including: the agency documents that: 1) they have already pursued and installed lower cost and lower impact CMs (i.e. signing/striping upgrades to MUTCD standards/recommendations, rumble strips, etc.), 2) they have already monitored the crash occurrences after these improvements were installed, and 3) the 'after' crash rate is still unacceptably high. This 'incremental approach' (or a special exception from the HSIP program manager) must be documented in the Narrative Questions in the application and a summary of the agency's 'before' and 'after' crash analysis must be attached to the application.

General information

Where to use:
The target for this strategy is usually unsignalized intersections with restricted sight distance due to vertical geometry and with patterns of crashes related to that lack of sight distance that cannot be ameliorated by less expensive methods. This strategy should generally be considered only when less expensive strategies involving clearing of specific sight obstructions or modifying traffic control devices have been tried and have failed to ameliorate the crash patterns.

Why it works:
Adequate sight distance for drivers at stopped approaches to intersections has long been recognized as among the most important factors contributing to overall intersection safety. Vertical alignment improvement projects are expected to include standard/improved superelevation elements, which should be considered part of this CM and not an additional CM.

General Qualities (Time, Cost and Effectiveness):
Projects involving changing the horizontal and/or vertical alignment to provide more sight distance are quite extensive and usually take several years to accomplish. If additional right-of-way is required or environmental impacts are expected, these projects will require a substantial period of time. Since this is usually an expensive treatment, one of the keys to creating a cost effective project with at least a medium B/C ratio is targeting higher-hazard locations.

FHWA CMF Clearinghouse: Crash Types Addressed: All CRF: 20 - 51 %

R19, Improve curve superelevation

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>45%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits (or influence area) of the improved superelevation. This CM does not apply to sections of roadways where the horizontal or vertical alignments are changing via another CM.

General information

Where to use:
Roadways noted as having frequent lane departure crashes and inadequate or no superelevation. Safety can be enhanced when the superelevation is improved or restored along curves where the actual superelevation is less than the optimal.

Why it works:
Superelevation works with friction between the tires and pavement to counteract the forces on the vehicle associated with cornering. Many curves may have inadequate superelevation because of vehicles traveling at higher speeds than were originally designed for, because of loss of effective superelevation after resurfacing, or because of changes in design policy after the curve was originally constructed.

General Qualities (Time, Cost and Effectiveness):
This strategy can be a higher-cost alternative for improving the safety of a curve because it involves reconstruction to some degree. Other projects may be able to be constructed by simple overlays and minimal reconstruction of roadways features. When simple overlay fixes are pursued, a systematic installation approach may be appropriate. The expected effectiveness of this CM must be assessed for each individual location.

FHWA CMF Clearinghouse: Crash Types Addressed: Run-off Road, All CRF: 40 - 50 %
R20, Convert from two-way to one-way traffic

<table>
<thead>
<tr>
<th>For HSIP Cycle 11 Call-for-projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Eligibility</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>90%</td>
</tr>
<tr>
<td>Notes:</td>
</tr>
</tbody>
</table>

General information

Where to use:

One-way streets can offer improved signal timing and accommodate odd-spaced signals. One-way streets can simplify crossings for pedestrians, who must look for traffic in only one direction. While studies have shown that conversion of two-way streets to one-way generally reduces pedestrian crashes and the number of conflict points, one-way streets tend to have higher speeds which creates new problems. Care must be taken not to create conditions that cause driver confusion and erratic maneuvers.

Why it works:

Studies have shown a 10 to 50-percent reduction in total crashes after conversion of a two-way street to one-way operation. While studies have shown that con-version of two-way streets to one-way generally reduces pedestrian crashes, one-way streets tend to have higher speeds which creates new problems. At the same time, this strategy (1) increases capacity significantly and (2) can have safety-related drawbacks including pedestrian confusion and minor sideswipe crashes.

General Qualities (Time, Cost and Effectiveness):

The costs will vary depending on length of treatment and if the conversion requires modification to signals. Conversion costs can be high to build “crossovers” where the one-way streets convert back to two-way streets and to rebuild traffic signals. It's also likely that these types of modifications will require public involvement and could significantly add to the time it takes to complete the project. The expected effectiveness of this CM must be assessed for each individual location.

FHWA CMF Clearinghouse: Crash Types Addressed: All | CRF: 26 - 43 %

R21, Improve pavement friction (High Friction Surface Treatments)

<table>
<thead>
<tr>
<th>For HSIP Cycle 11 Call-for-projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Eligibility</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>90%</td>
</tr>
<tr>
<td>Notes:</td>
</tr>
</tbody>
</table>

General information

Where to use:

Nationally, this countermeasure is referred to as “High Friction Surface Treatments” or HFST. Areas as noted having crashes on wet pavements or under dry conditions when the pavement friction available is significantly less than actual roadway speeds; including but not limited to curves, loop ramps, intersections, and areas with short stopping or weaving distances. This treatment is intended to target locations where skidding is determined to be a problem, in wet or dry conditions and the target vehicle is one that runs (skids) off the road or is unable to stop due to insufficient skid resistance.

Why it works:

Improving the skid resistance at locations with high frequencies of wet-road crashes and/or failure to stop crashes can result in a reduction of 50 percent for wet-road crashes and 20 percent for total crashes. Applying HFST can double friction numbers, e.g. low 40s to high 80s. This CM represents a special focus area for both FHWA and Caltrans, which means there are extra resources available for agencies interested in more details on High Friction Surface Treatment projects.

General Qualities (Time, Cost and Effectiveness):

This strategy can be relatively inexpensive and implemented in a short timeframe. The installation would be done by either agency personnel or contractors and can be done by hand or machine. In general, This CM can be very effective and can be considered on a systematic approach.

FHWA CMF Clearinghouse: Crash Types Addressed: Wet, Rear-End, All | CRF: 17 - 68 %
R22, Install/Upgrade signs with new fluorescent sheeting (regulatory or warning)

<table>
<thead>
<tr>
<th>For HSIP Cycle 11 Call-for-projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Eligibility</td>
</tr>
<tr>
<td>90%</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the influence area of the new/upgraded signs. This CM is not intended for maintenance upgrades of street-name, parking, guide, or any other signs without a primary focus on roadway safety. **This CM is not eligible unless** it is done as part of a larger sign audit project, including the study of: 1) the existing signs' locations, sizes and information per MUTCD standards, 2) missing signs per MUTCD standards, and 3) sign retroreflectivity. The overall sign audit scope (or a special exception from the HSIP program manager) must be documented in the Narrative Questions in the application. Based on the scope of the project/audit, it may be appropriate to combine other CMs in the B/C calculation.

General information

Where to use:
The target for this strategy should be on roadway segments with patterns of head on, nighttime, non-intersection, run-off road, and sideswipe crashes related to lack of driver awareness of the presence of a specific roadway feature or regulatory requirement. Ideally this type of safety CM would be combined with other sign evaluations and upgrades (install chevrons, warning signs, delineators, markers, beacons, and relocation of existing signs per MUTCD standards.)

Why it works:
This strategy primarily addresses crashes caused by lack of driver awareness (or compliance) roadway signing. It is intended to get the drivers attention and give them a visual warning by using fluorescent yellow sheeting (or other retroreflective material).

General Qualities (Time, Cost and Effectiveness):
Signing improvements do not require a long development process and can typically be implemented quickly. Costs for implementing this strategy are nominal and depend on the number of signs. When considered at a single location, these low cost improvements are usually funded through local funding by local maintenance crews. However, This CM can be effectively and efficiently implemented using a systematic approach with numerous locations, resulting in moderate cost projects that are more appropriate to seek state or federal funding. When considering any type of federally funded sign upgrade project, California local agencies are encouraged to consider "Roadway Safety Signing Audit (RSSA) and Upgrade Projects". Including RSSAs in the development phase of sign projects are expected to identify non-standard (per MUTCD) sign features and missing signs that may otherwise go unnoticed. More information on RSSA is available on the Local Assistance HSIP webpage.

FHWA CMF Clearinghouse:

| Crash Types Addressed: Head on, Run-off road, Sideswipe, Night | CRF: 18 - 35% |
R23, Install chevron signs on horizontal curves

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>40%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the influence area of the new signs. (i.e. only through the curve).

General information

Where to use:
Roadways that have an unacceptable level of crashes on relatively sharp curves during periods of light and darkness. Ideally this type of safety CM would be combined with other sign evaluations and upgrades (install warning signs, delineators, markers, beacons, and relocation of existing signs per MUTCD standards.)

Why it works:
Post-mounted chevrons are intended to warn drivers of an approaching curve and provide tracking information and guidance to the drivers. While they are intended to act as a warning, it should also be remembered that the posts, placed along the roadside, represent a possible object with which an errant vehicle can crash into. Design of posts to minimize damage and injury is an important part of the considerations to be made when selecting these treatments.

General Qualities (Time, Cost and Effectiveness):
Signing improvements do not require a long development process and can typically be implemented quickly. Costs for implementing this strategy are nominal and depend on the number of signs. When considered at a single location, these low cost improvements are usually funded through local funding by local maintenance crews. However, This CM can be effectively and efficiently implemented using a systematic approach with numerous locations, resulting in moderate cost projects that are more appropriate to seek state or federal funding. When considering any type of federally funded sign upgrade project, California local agencies are encouraged to consider “Roadway Safety Signing Audit (RSSA) and Upgrade Projects”. Including RSSAs in the development phase of sign projects are expected to identify non-standard (per MUTCD) sign features and missing signs that may otherwise go unnoticed. More information on RSSA is available on the Local Assistance HSIP webpage.

FHWA CMF Clearinghouse: Crash Types Addressed: Run-off Road, All CRF: 6 - 64 %

R24, Install curve advance warning signs

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>25%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the influence area of the new signs. (i.e. only through the curve)

General information

Where to use:
Roadways that have an unacceptable level of crashes on relatively sharp curves during periods of light and darkness. This countermeasure may also include horizontal alignment and/or advisory speed warning signs. Ideally this type of safety CM would be combined with other sign evaluations and upgrades (install warning signs, chevrons, delineators, markers, beacons, and relocation of existing signs per MUTCD standards.)

Why it works:
This strategy primarily addresses problem curves, and serves as an advance warning of an unexpected or sharp curve. It provides advance information and gives drivers a visual warning that their added attention is needed.

General Qualities (Time, Cost and Effectiveness):
Signing improvements do not require a long development process and can typically be implemented quickly. Costs for implementing this strategy are nominal and depend on the number of signs. When considered at a single location, these low cost improvements are usually funded through local funding by local maintenance crews. However, This CM can be effectively and efficiently implemented using a systematic approach with numerous locations, resulting in moderate cost projects that are more appropriate to seek state or federal funding. When considering any type of federally funded sign upgrade project, California local agencies are encouraged to consider “Roadway Safety Signing Audit (RSSA) and Upgrade Projects”. Including RSSAs in the development phase of sign projects are expected to identify non-standard (per MUTCD) sign features and missing signs that may otherwise go unnoticed. More information on RSSA is available on the Local Assistance HSIP webpage.

FHWA CMF Clearinghouse: Crash Types Addressed: Run-off Road, All CRF: 20 - 30 %
R25, Install curve advance warning signs (flashing beacon)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>30%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the influence area of the new signs. (i.e. only through the curve)

General information

Where to use:
Roadways that have an unacceptable level of crashes on relatively sharp curves. Flashing beacons in conjunction with warning signs should only be used on horizontal curves that have an established severe crash history to help maintain their effectiveness.

Why it works:
This strategy primarily addresses problem curves, and serves as an enhanced advance warning of an unexpected or sharp curve. It provides advance information and gives drivers a visual warning that their added attention is needed. Flashing beacons are an added indication that a curve may be particularly challenging.

General Qualities (Time, Cost and Effectiveness):
Use of flashing beacons requires minimal development process, allowing flashing beacons to be installed within a short time period. Before choosing this CM, the agency needs to confirm the ability to provide power to the site (solar may be an option).

In general, This CM can be very effective and can be considered on a systematic approach.

FHWA CMF Clearinghouse:
Crash Types Addressed: All
CRF: 30 %

R26, Install dynamic/variable speed warning signs

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>30%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the influence area of the new signs. (i.e. through the curve) *(This CM does not apply to dynamic regulatory speed warning signs. There are currently no nationally accepted CRFs for dynamic regulatory signs (also known as Radar Speed Feedback Signs). CRFs are being developed and Caltrans hopes to include these CMs and CRFs in future calls for projects.)*

General information

Where to use:
Curvilinear roadways that have an unacceptable level of crashes due to excessive speeds on relatively sharp curves.

Why it works:
This strategy primarily addresses crashes caused by motorists traveling too fast around sharp curves. It is intended to get the drivers attention and give them a visual warning that they may be traveling over the recommended speed for the approaching curve. Care should be taken to limit the placement of these signs to help maintain their effectiveness.

General Qualities (Time, Cost and Effectiveness):
Use of dynamic speed warning signs requires minimal development process, allowing them to be installed within a short time period. Before choosing this CM, the agency needs to confirm the ability to provide power to the site (solar may be an option).

In general, This CM can be very effective and can be considered on a systematic approach.

FHWA CMF Clearinghouse:
Crash Types Addressed: All
CRF: 0 - 41 %
R27, Install delineators, reflectors and/or object markers

<table>
<thead>
<tr>
<th>For HSIP Cycle 11 Call-for-projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Eligibility</td>
</tr>
<tr>
<td>90%</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits / influence area of the new features. (This is not a striping-related CM)

General information

Where to use:
Roadways that have an unacceptable level of crashes on curves (relatively flat to sharp) during periods of light and darkness. Any road with a history of fixed object crashes is a candidate for this treatment, as are roadways with similar fixed objects along the roadside that have yet to experience crashes. If a fixed object cannot be relocated or made break-away, placing an object marker can provide additional information to motorists. Ideally this type of safety CM would be combined with other sign evaluations and upgrades (install warning signs, chevrons, beacons, and relocation of existing signs per MUTCD standards.)

Why it works:
Delineators, reflectors and/or object markers are intended to warn drivers of an approaching curve or fixed object that cannot easily be removed. They are intended to provide tracking information and guidance to the drivers. They are generally less costly than Chevron Signs as they don't require posts to place along the roadside, avoiding an additional object with which an errant vehicle can crash into.

General Qualities (Time, Cost and Effectiveness):
These improvements do not require a long development process and can typically be implemented quickly. Costs for implementing this strategy are nominal and depend on the number of locations. When considered at a single location, these low cost improvements are usually funded through local funding by local maintenance crews. However, This CM can be effectively and efficiently implemented using a systematic approach with numerous locations, resulting in low to moderate cost projects that are more appropriate to seek state or federal funding. When considering any type of federally funded sign upgrade project, California local agencies are encouraged to consider "Roadway Safety Signing Audit (RSSA) and Upgrade Projects". Including RSSAs in the development phase of sign projects are expected to identify non-standard (per MUTCD) sign features and missing signs that may otherwise go unnoticed. More information on RSSA is available on the Local Assistance HSIP webpage.

| FHWA CMF Clearinghouse: Crash Types Addressed: | All | CRF: 0 - 30% |
R28, Install edge-lines and centerlines

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>25%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits of the new centerlines and/or edge-lines. This CM is not intended to be used for general maintenance activities (i.e. the replacement of existing striping and RPMs in-kind) and must include upgraded safety features over the existing striping. For two lane roadways allowing passing, a striping audit must be done to ensure the passing limits meeting the MUTCD standards. Both the centerline and edge-lines are expected to be upgraded, unless prior approval is granted by Caltrans staff in writing and attached to application.

General information

Where to use: Any road with a history of run-off-road right, head-on, opposite-direction-sideswipe, or run-off-road-left crashes is a candidate for this treatment - install where the existing lane delineation is not sufficient to assist the motorist in understanding the existing limits of the roadway. Depending on the width of the roadway, various combinations of edge line and/or center line pavement markings may be the most appropriate. Incorporating raised/reflective pavement markers (RPMs) into centerlines (and edge-lines) should be considered as it has been shown to improve safety.

Why it works: Installing edge-lines and centerlines where none exists or making significant upgrades to existing lines (paint to thermoplastic, adding audible disks/bumps in the thermoplastic stripes, or adding RPMs) are intended/designed to help drivers who might leave the roadway because of their inability to see the edge of the roadway along the horizontal edge of the pavement or cross-over the centerline of the roadway into oncoming traffic. New pavement marking products tend to be more durable, are all-weather, more visible, and have a higher retroreflectivity than traditional pavement markings.

General Qualities (Time, Cost and Effectiveness): These improvements do not require a long development process and can typically be implemented quickly. Costs for implementing this strategy are nominal and depend on the number and length of locations. This CM can be effectively and efficiently implemented using a systematic approach with numerous and long locations, resulting in low to moderate cost projects that are more appropriate to seek state or federal funding. When considering any type of federally funded striping upgrade project, California local agencies are encouraged to consider "Roadway Safety Striping Audit and Upgrade Projects". Including wide-scale striping audits in the development phase of striping projects are expected to identify non-standard (per MUTCD) striping/marketing features, no-passing zone limits needing adjustment, and missing striping/markings that may otherwise go unnoticed. More information on this concepts is available on the Local Assistance HSIP webpage under an RSSA example document. Note: When federal safety funding is used for these installations in high-wear-locations, the local agency is expected to maintain the improvement for a minimum of 10 years.

FHWA CMF Clearinghouse: Crash Types Addressed: Head-on, Run-off Road, All | CRF: 0 - 44 %
R29, Install no-passing line

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>45%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits of the new or extended no-passing zones.

General information

Where to use:
Roadways that have a high percentage of head-on crashes suggesting that many head-on crashes may relate to failed passing maneuvers. No-passing lines should be installed where drivers "passing sight distance" is not available due to horizontal or vertical obstructions. General restriping projects can be good opportunities to reevaluate and incorporate new no-passing zones limits. The incorporation 'No Passing Zone' pennants should also be considered when reevaluating the limits of no-passing zones. Installing no-passing limits in areas that are not warranted may reduce the overall safety of the corridor as drivers may become frustrated and attempt passing maneuvers at other locations without the necessary sight distance.

Why it works:
When the centerline markings do not differentiate between passing and no-passing areas, drivers may have difficulty determining where passing maneuvers can be completed safely. Providing clear and engineered passing and no-passing areas can encourage drivers to wait patiently for safe passing areas and avoid aggressively looking for passing opportunities.

General Qualities (Time, Cost and Effectiveness):
These improvements do not require a long development process and can typically be implemented quickly. Costs for implementing this strategy are nominal and depend on the number and length of locations. When considered at a single location, these low cost improvements are usually funded through local funding by local maintenance crews. However, This CM can be effectively and efficiently implemented using a systematic approach with numerous and long locations, resulting in low to moderate cost projects that are more appropriate to seek state or federal funding.

FHWA CMF Clearinghouse: Crash Types Addressed: Head-on, Side-swipe | CRF: 40 - 53%

R30, Install centerline rumble strips/stripes

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>20%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits of the new rumble strips/stripes.

General information

Where to use:
Center Line rumble strips/stripes can be used on virtually any roadway – especially those with a history of head-on crashes. It is recommended that rumble strips/stripes be applied systematically along an entire route instead of only at spot locations. For all rumble strips/stripes, pavement condition should be sufficient to accept milled rumble strips. Care should be taken when considering installing rumble strips in locations with residential land uses or in areas with high bicycle volumes.

Why it works:
Rumble strips provide an auditory indication and tactile rumble when driven on, alerting drivers that they are drifting out of their travel lane, giving them time to recover before they depart the roadway or cross the center line. Additionally, rumble strips (pavement marking in the rumble itself) provide an enhanced marking, especially in wet dark conditions.

General Qualities (Time, Cost and Effectiveness):
These improvements do not require a long development process and can typically be implemented quickly. Costs for implementing this strategy are nominal and depend on the number and length of locations. This CM can be effectively and efficiently implemented using a systematic approach with numerous and long locations, resulting in moderate cost projects that are more appropriate to seek state or federal funding.

FHWA CMF Clearinghouse: Crash Types Addressed: Head-on, Side-swipe, All | CRF: 15 - 68%
R31, Install edgeline rumble strips/stripes

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>All</td>
<td>15%</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to crashes occurring within the limits of the new rumble strips/stripes.

General information
- **Where to use:** Shoulder and edge line milled rumble strips/stripes should be used on roads with a history of roadway departure crashes. It is recommended that rumble strips/stripes be applied systematically along an entire route instead of only at spot locations. For all rumble strips/stripes, pavement condition should be sufficient to accept milled rumble strips. Special requirements may apply and care should be taken when considering installing rumble strips in locations with residential land uses or in areas with high bicycle volumes.
- **Why it works:** Rumble strips provide an auditory indication and tactile rumble when driven on, alerting drivers that they are drifting out of their travel lane, giving them time to recover before they depart the roadway or cross the center line. Additionally, rumble strips (pavement marking in the rumble itself) provide an enhanced marking, especially in wet dark conditions.
- **General Qualities (Time, Cost and Effectiveness):** These improvements do not require a long development process and can typically be implemented quickly. Costs for implementing this strategy are nominal and depend on the number and length of locations. This CM can be effectively and efficiently implemented using a systematic approach with numerous and long locations, resulting in moderate cost projects that are more appropriate to seek state or federal funding.

FHWA CMF Clearinghouse: Crash Types Addressed: Run-off Road CRF: 10 - 41%

R32PB, Install bike lanes

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Pedestrian and Bicycle</td>
<td>35%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "Ped & Bike" crashes occurring within the limits of the Class II (not Class III) bike lanes. When an off-street bike-path is proposed that is not adjacent to the roadway, the applicant must document the engineering judgment used to determine which "Ped & Bike" crashes to apply.

General information
- **Where to use:** Roadway segments noted as having crashes between bicycles and vehicles or crashes that may be preventable with a buffer/shoulder. Most studies suggest that bicycle lanes may provide protection against bicycle/motor vehicle collisions. Striped bike lanes can be incorporated into a roadway when is desirable to delineate which available road space is for exclusive or preferential use by bicyclists.
- **Why it works:** Most studies present evidence that bicycle lanes provide protection against bicycle/motor vehicle collisions. Bicycle lanes provide marked areas for bicyclist to travel along the roadway and provide for more predictable movements for both bicyclist and motorist. Evidence also shows that riding with the flow of vehicular traffic reduces bicyclists’ chances of collision with a motor vehicle. Locations with bicycle lanes have lower rates of wrong-way riding. In combination with this CM, better guidance signs and markings for non-motorized and motorized roadway users should be considered, including: sign and markings directing cyclists on appropriate/legal travel paths and signs and markings warning motorists of non-motorized uses of the roadway that should be expected.
- **General Qualities (Time, Cost and Effectiveness):** Adding striped bicycle lanes can range from the simply restriping the roadway and minor signing to projects that require roadway widening, right-of-way, and environmental impacts. It is most cost efficient to create bike lanes during street reconstruction, street resurfacing, or at the time of original construction. The expected effectiveness of this CM must be assessed for each individual location. For simple installation scenarios, This CM can be very effective and can be considered on a systematic approach.

FHWA CMF Clearinghouse: Crash Types Addressed: Pedestrian, Bicycle CRF: 0 - 53 %
R33PB, Install Separated Bike Lanes

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Pedestrian and Bicycle</td>
<td>45%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "Ped & Bike" crashes occurring within the limits of the separated bike lanes. When an off-street bike-path is proposed that is not adjacent to the roadway, the applicant must document the engineering judgment used to determine which "Ped & Bike" crashes to apply.

General information

Where to use:
Separated bikeways are most appropriate on streets with high volumes of bike traffic and/or high bike-vehicle collisions, presumably in an urban or suburban area. Separation types range from simple, painted buffers and flexible delineators, to more substantial separation measures including raised curbs, grade separation, bollards, planters, and parking lanes. These options range in feasibility due to roadway characteristics, available space, and cost. In some cases, it may be possible to provide additional space in areas where pedestrian and bicyclists may interact, such as the parking buffer, or loading zones, or extra bike lane width for cyclists to pass one another.

Why it works:
Separated bike lanes provide increased safety and comfort for bicyclists beyond conventional bicycle lanes. By separating bicyclists from motor traffic, “protected” or physically separated bike lanes can offer a higher level of comfort and are attractive to a wider spectrum of the public. Intersections and approaches must be carefully designed to promote safety and facilitate left-turns for bicyclists from the primary corridor to cross street.

In combination with this CM, better guidance signs and markings for non-motorized and motorized roadway users should be considered, including: sign and markings directing cyclists on appropriate/legal travel paths and signs and markings warning motorists of non-motorized uses of the roadway that should be expected.

General Qualities (Time, Cost and Effectiveness):

The cost of installing separated bike lanes can be low to medium or high, depending on whether roadway widening, right-of-way and environmental impacts are involved. It is most cost efficient to create bike lanes during street reconstruction, street resurfacing, or at the time of original construction. The expected effectiveness of this CM must be assessed for each individual location.

<table>
<thead>
<tr>
<th>FHWA CMF Clearinghouse</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pedestrian, Bicycle</td>
<td>3.7 - 100 %</td>
</tr>
</tbody>
</table>

R34PB, Install sidewalk/pathway (to avoid walking along roadway)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Pedestrian and Bicycle</td>
<td>80%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "Ped & Bike" crashes occurring within the limits of the new walkway. This CM is not intended to be used where an existing sidewalk is being replaced with a wider one, unless prior Caltrans approval is included in the application. When an off-street multi-use path is proposed that is not adjacent to the roadway, the applicant must document the engineering judgment used to determine which "Ped & Bike" crashes to apply.

General information

Where to use:
Areas noted as not having adequate or no sidewalks and a history of walking along roadway pedestrian crashes. In rural areas asphalt curbs and/or separated walkways may be appropriate.

Why it works:
Sidewalks and walkways provide people with space to travel within the public right-of-way that is separated from roadway vehicles. The presence of sidewalks on both sides of the street has been found to be related to significant reductions in the “walking along roadway” pedestrian crash risk compared to locations where no sidewalks or walkways exist. Reductions of 50 to 90 percent of these types of pedestrian crashes. In combination with this CM, better guidance signs and markings for non-motorized and motorized roadway users should be considered, including: sign and markings directing pedestrians and cyclists on appropriate/legal travel paths and signs and markings warning motorists of non-motorized uses of the roadway that should be expected.

General Qualities (Time, Cost and Effectiveness):
Costs for sidewalks will vary, depending upon factors such as width, materials, and existing of curb, gutter and drainage. Asphalt curbs and walkways are less expensive, but require more maintenance. The expected effectiveness of this CM must be assessed for each individual location. These projects can be very effective in areas of high-pedestrian volumes with a past history of crashes involving pedestrians.

FHWA CMF Clearinghouse:	Crash Types Addressed:	Pedestrian, Bicycle	CRF: 65 - 89%
R3SPB, Install/upgrade pedestrian crossing (with enhanced safety features)

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Pedestrian and Bicycle</td>
<td>35%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "Ped & Bike" crashes occurring in the influence area (expected to be a maximum of within 250') of the new crossing which includes new enhanced safety features. Note: This CM is not intended to be combined with the "Install raised pedestrian crossing" when calculating the improvement's B/C ratio. This CM is not intended to be used for high-cost aesthetic enhancements (i.e. stamped concrete or stamped asphalt).

For HSIP Cycle 11 Call-for-projects

General information

Where to use:
Roadway segments with no controlled crossing for a significant distance in high-use midblock crossing areas and/or multiline roads locations. Based on the Zegeer study (Safety Effects of Marked vs. Unmarked Crosswalks at Uncontrolled Locations) at many locations, a marked crosswalk alone may not be sufficient to adequately protect non-motorized users. In these cases, flashing beacons, curb extensions, medians and pedestrian crossing islands and/or other safety features should be added to complement the standard crossing elements. For multi-lane roadways, advance "yield" markings can be effective in reducing the 'multiple-threat' danger to pedestrians.

Why it works:
Adding pedestrian crossings has the opportunity to greatly enhance pedestrian safety at locations noted as being problematic. The enhanced safety elements, which may include curb extensions, medians and pedestrian crossing islands, beacons, and lighting, combined with pavement markings delineating a portion of the roadway that is designated for pedestrian crossing, Care must be taken to warn drivers of the potential for pedestrians crossing the roadway and enhanced improvements added to the crossing increase the likelihood of pedestrians crossing in a safe manner. In combination with this CM, better guidance signs and markings for non-motorized and motorized roadway users should be considered, including: sign and markings directing pedestrians and cyclists on appropriate/legal travel paths and signs. When agencies opt to install aesthetic enhancement to crossing like stamped concrete/asphalt, the project design and construction costs can significantly increase. For HSIP applications, these costs must be accounted for in the B/C calculation, but these costs (over standard crosswalk markings) must be tracked separately and are not federally reimbursable and will increase the agency's local-funding share for the project costs.

General Qualities (Time, Cost and Effectiveness):
Costs associated with this strategy will vary widely, depending on the extent of the curb extensions, raised medians, flashing beacons, and other pedestrian safety elements that are needed with the crossing. When considered at a single location, these improvements can sometimes be low cost and funded through local funding by local crews. This CM can often be effectively and efficiently implemented using a systematic approach with numerous locations, resulting in moderate to high cost projects that are appropriate to seek state or federal funding.

FHWA CMF Clearinghouse:	Crash Types Addressed:	Pedestrian, Bicycle	CRF: 8 - 56%
R36PB, Install raised pedestrian crossing

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Pedestrian and Bicycle</td>
<td>35%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes:
This CM only applies to “Ped & Bike” crashes occurring in the area with the new raised crossing. Note: This CM is not intended to be combined with the "Install pedestrian crossing (with enhanced safety features)" when calculating the improvement's B/C ratio.

General information

Where to use:
On lower-speed roadways, where pedestrians are known to be crossing roadways that involve significant vehicular traffic. Based on the Zegeer study (Safety Effects of Marked vs. Unmarked Crosswalks at Uncontrolled Locations) at many locations, a marked crosswalk alone, may not be sufficient to adequately protect non-motorized users. In these cases, raised crossings can be added to complement the standard crossing elements. Special requirements may apply and extra care should be taken when considering installing raised crossings to ensure unintended safety issues are not created, such as: emergency vehicle access or truck route issues.

Why it works:
Adding a raised pedestrian crossing has the opportunity to enhance pedestrian safety at locations noted as being especially problematic. The raised crossing encourages motorists to reduce their speed and provides improved delineation for the portion of the roadway that is designated for pedestrian crossing. In combination with this CM, better guidance signs and markings for non-motorized and motorized roadway users should be considered, including: sign and markings directing pedestrians and cyclists on appropriate/legal travel paths.

General Qualities (Time, Cost and Effectiveness):
Costs associated with this strategy will vary widely, depending upon the elements of the raised crossing and the need for new curb ramps and sidewalk modifications. This CM may be effectively and efficiently implemented using a systematic approach with more than one location and can have medium to high B/C ratios based on past non-motorized crash history.

FHWA CMF Clearinghouse:
| Crash Types Addressed: | Pedestrian, Bicycle | CRF: | 30 - 46% |

R37PB, Install Rectangular Rapid Flashing Beacon (RRFB)

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Pedestrian and Bicycle</td>
<td>35%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes:
This CM only applies to "Ped & Bike" crashes occurring in the influence area (expected to be a maximum of within 250') of the crossing which includes the RRFB.

General information

Where to use:
Rectangular Rapid Flashing Beacon (RRFB) includes pedestrian-activated flashing lights and additional signage that enhance the visibility of marked crosswalks and alert motorists to pedestrian crossings. It uses an irregular flash pattern that is similar to emergency flashers on police vehicles. RRFBs are installed at unsignalized intersections and mid-block pedestrian crossings.

Why it works:
RRFBs can enhance safety by increasing driver awareness of potential pedestrian conflicts and reducing crashes between vehicles and pedestrians at unsignalized intersections and mid-block pedestrian crossings. The addition of RRFB may also increase the safety effectiveness of other treatments, such as crossing warning signs and markings.

General Qualities (Time, Cost and Effectiveness):
RRFBs are a lower cost alternative to traffic signals and hybrid signals. This CM can often be effectively and efficiently implemented using a systematic approach with numerous locations.

FHWA CMF Clearinghouse:
| Crash Types Addressed: | Pedestrian, Bicycle | CRF: | 7 – 47.4% |
R38, Install Animal Fencing

For HSIP Cycle 11 Call-for-projects

<table>
<thead>
<tr>
<th>Funding Eligibility</th>
<th>Crash Types Addressed</th>
<th>CRF</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Animal</td>
<td>80%</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Notes: This CM only applies to "animal" crashes occurring within the limits of the new fencing.

General information

Where to use:
At locations with high percent of vehicular/animal crashes (reactive) or where there is a known high percent of animals crossing due to migratory patterns (proactive).

Why it works:
Animal fencing helps to channelize the identified animals to a natural or man-made crossing, eliminating the conflict between vehicles and animals on the same place. Animal fencing is typically installed at a bridge location with its "run of need" dependent on the surrounding terrain.

General Qualities (Time, Cost and Effectiveness):
Time to install fencing can be moderate to lengthy depending on the environmental commitments and agreed upon solution to mitigating project impacts. Costs will be fairly low and depend on the "run of need" length. There will be minimal reoccurring maintenance costs on keeping the fence intact. The expected effectiveness of this CM must be assessed for each individual location.

<table>
<thead>
<tr>
<th>FHWA CMF Clearinghouse:</th>
<th>Crash Types Addressed:</th>
<th>CRF:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Animal</td>
<td>70 - 90 %</td>
</tr>
</tbody>
</table>