<table>
<thead>
<tr>
<th>Countermeasure</th>
<th>Description</th>
<th>Contact</th>
<th>Cost Range</th>
<th>Data, Benefits and Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 Enhanced Delineation and Friction for Horizontal Curves</td>
<td>Installing chevron signs, curve warning signs, sequential flashing beacons, advisory speed signs or high friction surface treatments can have a positive effect on reducing vehicles from leaving the roadway on horizontal curves.</td>
<td>Ken</td>
<td>Low cost: Safety treatments vary by the number of traffic control devices (TCD) or amount of HFST placed. Typical costs of TCDs range from $30 to $160 and HFST range from $20 to $40 /SY.</td>
<td>Recent data shows that 28% of all fatal crashes occur on horizontal curves and about three times as many crashes occur on curves than in tangential sections of roadways. The listed countermeasures can reduce crashes from 12% 74%. More information can be found at: http://safety.fhwa.dot.gov/provencountermeasures/fhwa_sa_12_009.htm</td>
</tr>
<tr>
<td>#2 Pedestrian Hybrid Beacon</td>
<td>A pedestrian activated warning device located on the roadside or on mast arms over midblock pedestrian crossings. (Flashing light intervals and sequences, i.e. red, yellow lights indicate to drivers and pedestrians their clearance time to cross the roadway)</td>
<td>Kevin</td>
<td>Low to Medium cost: The equipment for a pedestrian hybrid beacon for a spot treatment typically costs about $35,000 to $40,000. Preliminary engineering, labor, and maintenance agreement costs could increase cost.</td>
<td>This is a specialized traffic signal for pedestrian safety. At the local level, community outreach is required to educate and familiarize the public with the new traffic control device. Safety benefits include up to a 69% reduction in pedestrian crashes at midblock crossings, and up to a 29% reduction in total roadway crashes. More information can be found at: http://safety.fhwa.dot.gov/ped_bike/tools_solve/fhwasa14014/</td>
</tr>
<tr>
<td>#3 Backplates with Retroreflective Borders</td>
<td>Backplates and retroreflective borders are added to a traffic signal head to improve visibility of the illuminated face of the signal.</td>
<td>Steve</td>
<td>Low cost: Adding backplates or a retroreflective border to an existing signal backplate can be a very low cost safety improvement.</td>
<td>Allowable practice through Section 4D.12 of the CA MUTCD. May result in a 15% reduction in all crashes at urban, signalized intersections. Increases road user awareness of traffic signal during power outage. Installation time is about two hours per intersection. More information can be found at: http://safety.fhwa.dot.gov/intersection/conventional/signalized/backplates/exec, http://safety.fhwa.dot.gov/provencountermeasures/fhwa_sa_12_007.cfm</td>
</tr>
<tr>
<td>#4 Longitudinal Rumble Strips and Stripes On Two Lane Roads</td>
<td>Most rumble strips and stripes are ground into the pavement and are mainly installed along the centerline or shoulder. The latter are painted over with retroreflective striping to increase visibility.</td>
<td>Steve</td>
<td>Low cost: Cost varies based on the application. Prices range between $0.20 and $3.00 per linear foot.</td>
<td>Over 50% of California’s fatal crashes are a result of roadway departure. This application provides an audible warning and physical vibration to alert drivers they are leaving the roadway. The application of rumble strips or stripes has shown good results in reducing run off the road (ROR) crashes. Bicycle conscious designs are available. More information can be found at: http://safety.fhwa.dot.gov/roadway_dept/pavement/rumble_strips/</td>
</tr>
</tbody>
</table>
Shoulder and center line rumble strips

Figure 3J-1. Examples of Longitudinal Rumble Strip Markings

A - Edge line not on rumble strip
B - Edge line on rumble strip
C - Center line on rumble strip

Note: Edge line may be located alongside the rumble strip (Option A) or on the rumble strip (Option B). Center line markings may also be located on a center line rumble strip (Option C).

Legend
- Direction of travel
- Rumble strip
Shoulder and center line rumble strips

SR 84 in bay area
Courtesy of Google
Shoulder and center line rumble strips

- Low-cost: Cost varies based on the application. Prices range between $0.20 and $3.00 per linear foot.
- >250 Crash Modification Factors (CMFs) for longitudinal rumble strips. Range from 0.9 – 0.5.
 - www.cmfclearinghouse.org

- Ex: Centerline rumble strip
 - rural head on/sideswipe; fatal/injury
 - Segment
 - $A: 20 \text{ [crashes/yr]} \times 0.55 = 11 \text{ crashes/yr}$
“Mumble” strip: 14” O.C., sinusoidal profile, p-p depth 5/16”

Caltrans (patent pending) Mumble Strip Evaluation

Conventional ground rumble strip: 12” O.C.,

4” Dia Dots: 12” O.C.,
Overall Pass-by Noise Levels

- Ford Expedition: 90.0, 93.6, 96.7
- Honda Civic: 91.3, 92.6
- Chevy Malibu: 88.6, 93.8, 93.4
- 4 Yard Dump: 85.2, 90.5, 92.0

Bar graph showing pass-by sound pressure levels in dBA for different conditions and vehicles.
Overall Interior Noise Levels

- Off Mumble Strips
- Mumble Strips
- Off Ground Rumble Strips
- Ground Rumble Strips

<table>
<thead>
<tr>
<th>Model</th>
<th>Off Mumble Strips</th>
<th>Mumble Strips</th>
<th>Off Ground Rumble Strips</th>
<th>Ground Rumble Strips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ford Expedition</td>
<td>67.8</td>
<td>67.8</td>
<td>67.8</td>
<td>67.8</td>
</tr>
<tr>
<td>Honda Civic</td>
<td>72.8</td>
<td>72.8</td>
<td>73.0</td>
<td>73.0</td>
</tr>
<tr>
<td>Chevy Malibu</td>
<td>71.5</td>
<td>71.1</td>
<td>71.1</td>
<td>71.1</td>
</tr>
<tr>
<td>4 Yard Dump</td>
<td>78.0</td>
<td>76.3</td>
<td>76.3</td>
<td>83.9</td>
</tr>
</tbody>
</table>
Conclusions

• Rumble strips can help reduce sideswipe, head-on collisions, and run-off-road crashes

• Caltrans mumble strips achieved goals
 ➢ Lower exterior dB A-weighted levels
 ➢ Provide sufficient driver warning input

• Interior noise & vibration response varied with vehicle type
News Alert

- Caltrans moving to 6” striping July 17, 2017

- Both Rt and Lf lane lines

- Better visibility and less maintenance = reduced worker exposure

- CRF of 20 – 30 %
What Is the Safety Edge?

When used on asphalt pavement, the extruded shape can improve pavement edge durability and reduce crashes.
Key Message

- **Saves Lives**
 - Allows vehicles to safely return to the travel lane

- **Improves Durability**
 - Reduces edge raveling

- **Low Cost**
 - Minor change to paving operations
Basic Principle

Without a Safety Edge
Basic Principle

With Safety Edge
Locations at High-Risk for Drop-Offs

- Horizontal Curves
- Near Roadside Mailboxes
- Turnarounds/Unpaved Pull-Outs
- Shaded Areas
- Eroded Areas
- Edge ruts
- Asphalt Pavement Overlays
Where We Are: Safety Edge®

Considered Universally
Site Analysis/Systematic
Not at all/case by case
No Baseline Score

Alternative design

2014
The Hardware
Costs of the Safety Edge

• Hardware
 – Approximately $1400-$4500 per device
 – Reusable
• Material
 – Minor additional asphalt (depends on shoulder condition)

• Paving Process
 – No change in paving speed or rolling patterns
 – No additional operation
 – Minimal monitoring
• Surface Details
 – No change in smoothness/ride quality
Enhanced Delineation for Horizontal Curves

- Data collected from states of Connecticut and Washington
- Delineation improvements for horizontal curves on two-lane rural roads
- 117 mile/years of before and after data (228 sites total)
- Chevron, curve ahead, horizontal or suggested speed limit signs
- Fluorescent sheeting, increased size or additional signs
Example of Enhanced Delineation
Results from Study

Table 3. Summary of crash reduction factors.

<table>
<thead>
<tr>
<th>Crash Type</th>
<th>Recommended Crash Reduction Factors (Point Estimate)</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury and fatal curve crashes</td>
<td>18</td>
<td>8.6</td>
</tr>
<tr>
<td>Curve crashes during dark conditions</td>
<td>27.5</td>
<td>7.3</td>
</tr>
<tr>
<td>Lane departure crashes on curves during dark conditions</td>
<td>25.4</td>
<td>7.8</td>
</tr>
</tbody>
</table>

* Improving curve delineation with signing improvements, is a very cost-effective treatment with a B/C exceeding 8:1. The greatest enhancements can be seen at locations with more hazardous roadsides, higher volumes and smaller curve radii.
High Friction Surface Treatments
Conceptual Relationship Between Friction Demand, Speed and Friction Availability

Source NCHRP 108
Key Messages

- HFSTs reduce crashes -> Reduce injuries and fatalities
- Additional messages include:
 - the durability and longevity of the pavement surface 8 – 10 years
 - $20 - $40 / yd2
 - minimal impact to traffic during construction
 - negligible environmental impact
Case Study: DN-199

• All 28 collisions in 3 years occurred under wet pavement conditions.

• District had used many low cost countermeasures with little change in collision pattern.

• District proposed curve realignment.
Case Study: DN-199

- Initial proposed project was to realign curve
 - $14 M project; approx. 5 years for environmental, design and construction

- Realignment project put on hold to install HFST
 - $250 K project; approx. 6 months for environmental, design and construction

- No crashes since installation (Summer 2012)
Case Study: Hwy. 17 at Laurel Canyon
SR-17, Laurel Curve near Santa Cruz (July 2012)
Study: Hwy. 17 at Laurel Canyon

94.8% collision reduction!!
B/C – 183 to 1