

Appendix D Example 4 – Wind Loads on Conventional Falsework

This example demonstrates how to perform wind load calculations on conventional falsework. Refer to *Falsework Manual*, Section 3-3, *Horizontal Load*.

Given Information

Conventional Falsework

Transverse width of falsework = 58' (into paper)

Determine the Wind Load

Determine the Horizontal Design Wind Load for Bents A and B

- 1. Determine the width of the falsework system in the wind direction. W = 58'.
- 2. Calculate the drag coefficient Q.

Q = 1+0.2W = 1+0.2(58) =12.6 > 10

$$\therefore$$
 Q = 10 max.

3. Calculate the wind pressure value for each height zone using the wind velocity coefficient for each height zone listed in *Standard Specifications*, Section 48-2.02B(2), *Falsework – Design Criteria – Loads:*

Height Zone	Bent A	Bent B
	All other locations	Adjacent to traffic locations
0-30	1.5Q = 1.5(10) = 15 psf	2.0Q = 2.0(10) = 20 psf
30-32	2.0Q = 2.0(10) = 20 psf	2.5Q = 2.5(10) = 25 psf
32-34.5	2.0Q = 2.0(10) = 20 psf	2.5Q = 2.5(10) = 25 psf

4. Calculate the wind impact area for each height zone:

Height	Bent A	Bent B
Zone		
0-30	$30 \text{ft x} \frac{15 \text{ ft}}{2} = 225 \text{ sqft}$	$30 \text{ft x} \frac{15 \text{ ft}}{2} = 225 \text{ sqft}$
30-32	$2 \text{ft x} \frac{15 \text{ ft}}{2} = 15 \text{ sqft}$	$2 \text{ft x } \frac{15 \text{ ft}}{2} = 15 \text{ sqft}$
32- 34.5	2.5 ft x $\left(\frac{15 \text{ ft}}{2} + \frac{60 \text{ ft}}{2}\right)$ = 93.75 sqft	$2.5 \text{ft x} \left(\frac{15 \text{ ft}}{2} + \frac{50 \text{ ft}}{2} \right) = 81.25 \text{ sqft}$

5. Calculate the total wind load for each height zone:

Height	Bent A	Bent B
Zone		
0-30	15 psf x 225 sqft = 3375 lb	20 psf x 225 sqft = 4500 lb
30-32	20 psf x 15 sqft = 300 lb	25 psf x 15 sqft = 375 lb
32-34.5	20 psf x 93.75 sqft = 1875 lb	25 psf x 81.25 sqft = 203 1 lb

6. Calculate overturning moment.

Height	Bent A	Bent B
Zone		
0-30	3375 lb x 14ft = 47250 ft-lb	4500 lb x 14ft = 63000 ft-lb
30-32	300 lb x 30ft = 9000 ft-lb	375 lb x 30ft = 11250 ft-lb
32-34.5	1875 lb x 32.25ft = <u>60469</u> ft-lb	2031lb x 32.25ft = <u>65500</u> ft-lb
Total	116719 ft-lb	139750 ft-lb

7. Calculate the horizontal design wind load applied at top of post (bottom of top cap)

Height Zone	Bent A	Bent B
	$\frac{116719 \text{ ft} - \text{lb}}{31 \text{ft}} = 3765 \text{ lbs}$	$\frac{139750 \text{ft} - \text{lb}}{31 \text{ft}} = \frac{4508 \text{ lbs}}{31 \text{ ft}}$