

Appendix D Example 22 – Continuous Pads – Two or More Corbels

Refer to *Falsework Manual*, Section 8-2.05, *Continuous Pad with Two or More Corbels*. This example demonstrates how to analyze a continuous falsework pad with multiple corbels.

Given Information

Figure D-22-1. Continuous Pad with Two Corbels

Timber pads:

Three 6 x 16 Rough Douglas Fir-Larch #2 (G=0.50)

Corbel:

12 x 12 Rough Douglas Fir-Larch #1 (G=0.50)

Post:

12 x 12 Douglas Fir-Larch #1 (G=0.50)

Allowable soil pressure = 4000 psf

Post A:

<u>Check Pad</u>

1. Calculate allowable bending stress

Reference design value in bending F_b = 875 psi (NDS supplement table 4D)

Adjustment factors from NDS table 4.3.1:

C _D = 1.25	Duration Factor
C _M = 1.0	Wet Service Factor NDS table 4D (Assume < 19% moisture content)
Ct = 1.0	Temperature Factor NDS table 2.3.3 (Temp up to 100°F)
C _L = 1.0	Beam Stability Factor NDS 4.4.1
C _F = 1.0	Size Factor NDS Table 4D
C _{fu} = 1.0	Flat Use Factor NDS table 4D
C _i = 1.0	Incising Factor NDS 4.3.8
Cr = 1.0	Repetitive Member Factor NDS 4.3.9

Adjusted design value $F_b' = F_b (C_D)(C_M)(C_t)(C_L)(C_F)(C_i)(C_fu)(C_r) = 1094 \text{ psi}$

2. Calculate effective length of pad

$$L_{e} = L_{SYM} = \frac{1}{12} \left(\frac{8F_{b}^{'}S}{1000P} + t \right) = \frac{1}{12} \left(\frac{8(1094)(288)}{1000(70)} + 12 \right) = 4.00 \text{ ft}$$
$$S = \frac{bh^{2}}{6} = \frac{3(16)(6)^{2}}{6} = 288 \text{ in}^{3}$$

3. Find limiting length of outside of post

Compare $\frac{1}{2}$ of effective length and edge distance

$$\frac{1}{2}$$
 (4.0) = 2.00 ft

Edge distance = 2.50 ft

 $L_1 = 2$ ft (min. from above)

4. Find limiting length on inside of post

Compare $\frac{1}{2}$ of effective length and $\frac{1}{2}$ corbel spacing $\frac{1}{2}$ L_e = $\frac{1}{2}$ (4.0) = 2.00 ft $\frac{1}{2}$ (corbel spacing) = $\frac{1}{2}$ (6.0) = 3.00 ft

 $L_2 = 2.00$ ft (min. from above)

5. Calculate soil pressure

Bearing length = $L_1 + m + L_2 = 2.00 + 2.00 + 2.00 = 6.00$ ft

Soil pressure = $\frac{P}{A} = \frac{70000}{4(6.0)} = 2917 \text{ psf}$

2917 < 4000 allowable **OK**

6. Calculate horizontal shear on long side of pad

Reference design value in shear $F_v = 170$ psi (NDS supplement table 4D)

Adjustment factors from NDS table 4.3.1:

C _D = 1.25	Duration Factor
См = 1.0	Wet Service Factor NDS table 4D (Assume < 19% moisture content)
Ct = 1.0	Temperature Factor NDS table 2.3.3 (Temp up to 100°F)
C _i = 1.0	Incising Factor NDS table 4.3.8

Adjusted design value F_v ' = $F_v (C_D)(C_M)(C_t)(C_i)$ = 213 psi

Figure D-22-2. Exterior Post A Continuous Pad Shear Dimension

Check Corbels

Assume total vertical load is distributed equally to the two corbels.

Figure D-22-3. Post A Timber Corbel Flexure and Shear Dimensions

1. Calculate compression perpendicular to grain

Reference design value $Fc \perp = 625 \text{ psi}$

Adjustment factors from NDS table 4.3.1:

См = 1.0	Wet Service Factor NDS table 4D (Assume < 19% moisture content)
Ct = 1.0	Temperature Factor NDS table 2.3.3 (Temp up to 100°F)
C _i = 1.0	Incising Factor NDS table 4.3.8
C _b = 1.0	Bearing Area Factor NDS 3.10.4

Adjusted design value $F_{c\perp} = Fc_{\perp}(C_M)(C_i)(C_i)(C_b) = 625 \text{ psi}$

$$F_{c} = \frac{P}{A} = \frac{35000}{12(12)} = 243 \text{ psi}$$

243 psi < 625 psi allow <u>OK</u>

2. Calculate horizontal shear stress in corbel

$$f_{V} = \frac{3V}{2A} - \frac{3(4375)}{2(144)} = 46 \text{ psi}$$

46 psi < 213 psi allow <u>**OK**</u>

3. Calculate bending stress

$$M = \frac{WL^2}{2} = \frac{(8750)(1.75)^2}{2} = 13398 \text{ ft-lb}$$

$$f_b = \frac{M}{S} = \frac{(13398)(12)}{288} = 558 \text{ psi}$$

Reference design value in bending F_b = 1350 psi (NDS supplement table 4D)

Adjusted design value $F_b' = F_b (C_D)(C_M)(C_t)(C_L)(C_F)(C_i)(C_fu)(C_r) = 1688 \text{ psi}$ (see "Pad Check" step 1 for adjustment factors)

558 psi < 1688 psi allowable OK

Post B:

<u>Check Pad</u>

1. Calculate effective length of pad

$$L_{e} = L_{SYM} = \frac{1}{12} \left(\frac{8F_{b}'S}{1000P} + t \right) = \frac{1}{12} \left(\frac{8(1094)(288)}{1000(75)} + 12 \right) = 3.80 \text{ ft}$$
$$S = \frac{bh^{2}}{6} = \frac{3(16)(6)^{2}}{6} = 288 \text{ in}^{3}$$

2. Find limiting length of short (right) side

Compare
$$\frac{1}{2}$$
 of effective length and $\frac{1}{2}$ corbel spacing
 $\frac{1}{2}$ (3.80) =1.90 ft
 $\frac{1}{2}$ (corbel spacing) = $\frac{1}{2}$ (4.50) = 2.25 ft
L₁ = 1.90 ft (min. from above)

3. Find limiting length on long side

Compare $\frac{1}{2}$ of effective length and $\frac{1}{2}$ corbel spacing $\frac{1}{2}$ (3.80) = 1.90 ft $\frac{1}{2}$ (corbel spacing) = $\frac{1}{2}$ (6.00) = 3.00 ft L₂ = 1.90 ft (min. from above)

4. Calculate soil pressure

Bearing length = $L_1 + m + L_2 = 1.90 + 2.00 + 1.90 = 5.80$ ft

Soil pressure= $\frac{P}{A} = \frac{75000}{4(5.80)} = 3233 \text{ psf}$

3233 psf < 4000 psf allowable <u>OK</u>

5. Calculate horizontal shear stress on long side of pad

Check Corbels

Post B corbel is same as Post A corbel; therefore, stress is proportional to the applied load.

$$f_{c} = \frac{75}{70} (243) = 260 \text{ psi} < 625 \text{ psi allowable}$$

$$f_{v} = \frac{75}{70} (46) = 49 \text{ psi} < 213 \text{ psi allowable}$$

$$f_{b} = \frac{75}{70} (558) = 598 \text{ psi} < 1688 \text{ psi allowable} \qquad \underline{OK}$$

Post C:

<u>Check Pad</u>

1. Calculate effective length of pad

$$L_{e} = L_{SYM} = \frac{1}{12} \left(\frac{8F_{b}^{'}S}{1000P} + t \right) = \frac{1}{12} \left(\frac{8(1094)(288)}{1000(85)} + 12 \right) = 3.47 \text{ ft}$$

2. Find limiting length

Compare $\frac{1}{2}$ of effective length and $\frac{1}{2}$ corbel spacing $\frac{1}{2}$ (3.47) = 1.74 ft $\frac{1}{2}$ (corbel spacing) = $\frac{1}{2}$ (4.5) = 2.25 ft L₁ = L₂ = 1.74 ft (min. from above)

3. Calculate soil pressure

Bearing length = $L_1 + m + L_2 = 1.74 + 2.00 + 1.74 = 5.48$ ft

Soil pressure =
$$\frac{P}{A} = \frac{85000}{4(5.48)} = 3878 \text{ psf}$$

3878 psf < 4000 psf allowable **OK**

4. Calculate horizontal shear stress

$$H = 1.74 - \frac{12/12}{2} - \frac{6}{12} = 0.74 \text{ ft}$$

V = 4(3878)(0.74) = 11479 lb

$$f_v = \frac{3V}{2A} = \frac{3(11479)}{2(6)(16)(3)} = 60 \text{ psi}$$

60 psi < 213 psi allowable **OK**

Figure D-22-5. Interior Post C Continuous Pad Shear Dimension

Check Corbels

Post C corbel is same as Post A corbel; therefore, stress is proportional to the applied load.

$$\begin{split} f_c &= \frac{85}{70} \,(243) = 295 \text{ psi} < 625 \text{ psi allowable} \\ f_v &= \frac{85}{70} \,(46) = 56 \text{ psi} < 213 \text{ psi allowable} \\ f_b &= \frac{85}{70} \,(558) = 678 \text{ psi} < 1688 \text{ psi allowable} \\ \end{split}$$