

Appendix D Example 21 – Continuous Pads – Individual Corbels

Refer to *Falsework Manual*, Section 8-2.04, *Continuous Pad with Single Corbel*. This example demonstrates how to analyze a continuous falsework pad with single corbels.

Given Information

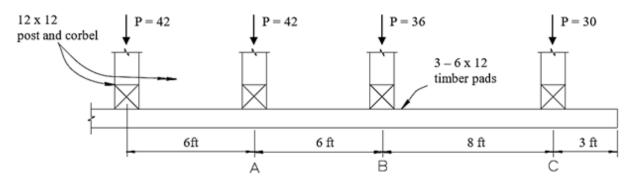


Figure D-21-1. Continuous Pad with Single Corbels

Timber pads:

Three 6 x 12 Rough Douglas Fir-Larch #2 (G=0.50)

Corbel:

12 x 12 Rough Douglas Fir-Larch #1 (G=0.50)

Post:

12 x 12 Douglas Fir-Larch #1 (G=0.50)

Allowable soil pressure = 3000 psf

Post A:

Check Pad

1. Calculate allowable bending stress

Reference design value in bending $F_b = 875$ psi (NDS supplement table 4D)

Adjustment factors from NDS table 4.3.1:

$C_D = 1.25$	Duration Factor
$C_{M} = 1.0$	Wet Service Factor NDS table 4D (Assume < 19% moisture content)
$C_t = 1.0$	Temperature Factor NDS table 2.3.3 (Temp up to 100°F)
$C_L = 1.0$	Beam Stability Factor NDS 4.4.1
$C_F = 1.0$	Size Factor NDS Table 4D
$C_{fu} = 1.0$	Flat Use Factor NDS table 4D
$C_i = 1.0$	Incising Factor NDS 4.3.8
$C_r = 1.0$	Repetitive Member Factor NDS 4.3.9

Adjusted design value Fb' = Fb $(C_D)(C_M)(C_t)(C_L)(C_F)(C_i)(C_f)(C_f)$ = 1094 psi

2. Calculate effective length

$$L_e = L_{SYM} = \frac{1}{12} \left(\frac{8F_b'S}{1000P} + t \right) = \frac{1}{12} \left(\frac{8(1094)(216)}{1000(42)} + 12 \right) = 4.75 \text{ ft}$$

$$S = \frac{bh^2}{6} = \frac{3(12)(6)^2}{6} = 216 \text{ in}^3$$

3. Find the limiting length

Compare effective length and post spacing 4.75 ft < 6.0 ft; Use effective length

4. Calculate soil pressure

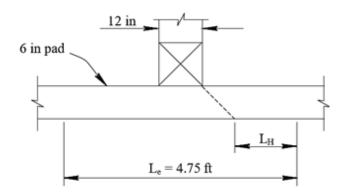
Soil pressure =
$$\frac{P}{A} = \frac{42000}{3.0(4.75)} = 2947 \text{ psf}$$

2947 psf < 3000 psf allowable **OK**

5. Calculate horizontal shear stress

Reference design value in shear $F_v = 170$ psi (NDS supplement table 4D)

Adjustment factors from NDS table 4.3.1:


C_D = 1.25 Duration Factor

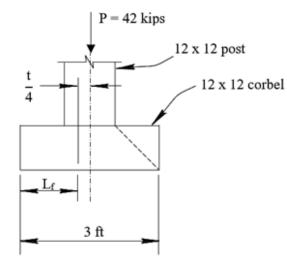
C_M = 1.0 Wet Service Factor NDS table 4D (Assume < 19% moisture content)

C_t = 1.0 Temperature Factor NDS table 2.3.3 (Temp up to 100°F)

C_i = 1.0 Incising Factor NDS table 4.3.8

Adjusted design value $F_{V}' = F_{V}(C_{D})(C_{M})(C_{t})(C_{i}) = 213 \text{ psi}$

$$L_{H} = \frac{4.75}{2} - \frac{12/12}{2} - \frac{6}{12} = 1.38 \text{ ft}$$


$$V = (2947)(1.38)(3.0) = 12201$$
 lbs

$$f_V = \frac{3V}{2A} = \frac{3(12201)}{2(6)(12)(3)} = 85 \text{ psi}$$

85 psi < 213 psi allowable **OK**

Figure D-21-2. Post A Continuous Pad Shear Dimension

Check corbel

$$W = \frac{42000}{3} = 14000 \text{ plf}$$

$$S = \frac{bh^2}{b} = \frac{12(12)^2}{6} = 288 \text{ in}^3$$

$$A = bh = 12(12) = 144 in^2$$

$$L_f = \frac{3.0}{2} - \frac{12/12}{4} = 1.25 \text{ ft}$$

$$L_{H} = \frac{3.0}{2} - \frac{12/12}{2} - \frac{12}{12} = 0 \text{ ft}$$

Figure D-21-3. Post A Timber Corbel Flexure and Shear Dimensions

1. Calculate compression perpendicular to grain

Reference design value Fc⊥ = 625 psi

Adjustment factors from NDS table 4.3.1:

C_M = 1.0 Wet Service Factor NDS table 4D (Assume < 19% moisture content)

C_t = 1.0 Temperature Factor NDS table 2.3.3 (Temp up to 100°F)

C_i = 1.0 Incising Factor NDS table 4.3.8

C_b = 1.0 Bearing Area Factor NDS 3.10.4

Adjusted design value $F_{c}\perp' = F_{c}\perp(C_{M})(C_{t})(C_{i})(C_{b}) = 625 \text{ psi}$

$$f_c = \frac{P}{A} = \frac{42000}{144} = 292 \text{ psi}$$

292 psi < 625 psi allowable OK

2. Calculate horizontal shear stress

V = 0(14000) = 0 lbs.

$$f_{V} = \frac{3V}{2A} = 0 \text{ psi } < 213 \text{ psi } \underline{\mathbf{OK}}$$

3. Calculate bending stress

$$M = \frac{WL^2}{2} = \frac{(14000)(1.25)^2}{2} = 10938 \text{ ft-lbs}$$

$$f_b = \frac{M}{S} = \frac{10938(12)}{288} = 456 \text{ psi}$$

Reference design value in bending F_b = 1350 psi (NDS supplement table 4D)

Adjusted design value Fb' = Fb $(C_D)(C_M)(C_t)(C_L)(C_F)(C_i)(C_f)$ = 1688 psi (see "Pad Check" step 1 for adjustment factors)

$$f_b = 456 \text{ psi} < F_b = 1688 \text{ psi allowable}$$
 OK

Post B:

Check Pad

1. Calculate effective length of pad short side

$$L_{\text{SYM}} = \frac{1}{12} \left(\frac{8F_b'S}{1000P} + t \right) = \frac{1}{12} \left(\frac{8(1094)(216)}{1000(36)} + 12 \right) = 5.38 \text{ ft}$$

$$S = \frac{bh^2}{6} = \frac{3(12)(6)^2}{6} = 216 \text{ in}^3$$

2. Find limiting length on short side

Compare $\frac{1}{2}$ of effective length and $\frac{1}{2}$ post spacing

$$\frac{1}{2}$$
 (5.38 ft) = 2.69 ft

$$\frac{\text{post spacing}}{2} = \frac{6.00}{2} = 3.00$$

 $L_1 = 2.69$ ft (min. from above)

3. Find limiting length on long side

Compare $\frac{1}{2}$ of effective length and $\frac{1}{2}$ post spacing

$$\frac{1}{2}$$
 (5.38) = 2.69 ft

$$\frac{\text{post spacing}}{2} = \frac{8.0}{2} = 4.00 \text{ ft}$$

 $L_2 = 2.69$ ft (min. from above)

4. Calculate soil pressure

Bearing length = $L_1 + L_2 = 2.69 + 2.69 = 5.38$ ft

Soil pressure =
$$\frac{P}{A} = \frac{36000}{3(5.38)} = 2230 \text{ psf}$$

2230 psf < 3000 allowable **OK**

5. Calculate horizontal shear in pad on long side

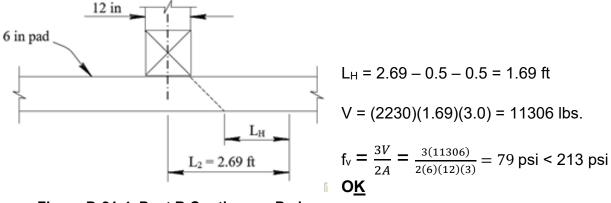


Figure D-21-4. Post B Continuous Pad Shear Dimension

Check Corbel

Corbel is **OK** by inspection (Post load at B < post load at A)

Post C:

Check Pad

1. Calculate effective length of pad

$$L_{\text{SYM}} = \frac{1}{12} \left(\frac{8F_b'S}{1000P} + t \right) = \frac{1}{12} \left(\frac{8(1094)(216)}{1000(30)} + 12 \right) = 6.25 \text{ ft}$$

2. Find limiting length on outside of post

Compare $\frac{1}{2}$ of effective length and edge distance

$$\frac{1}{2}$$
 (6.25) = 3.13 ft

Edge distance = 3.00 ft

 $L_1 = 3.0$ ft (min. from above)

3. Find limiting length on inside of post

Compare $\frac{1}{2}$ of effective length and $\frac{1}{2}$ post spacing

$$\frac{1}{2}$$
 (6.25) = 3.13 ft

$$\frac{\text{post spacing}}{2} = \frac{8.00}{2} = 4.00 \text{ ft}$$

 $L_2 = 3.13$ ft (min. from above)

4. Calculate soil pressure

Bearing length =
$$L_1 + L_2 = 3.00 + 3.13 = 6.13$$
 ft

Soil pressure =
$$\frac{P}{A} = \frac{30000}{3(6.13)} = 1631 \text{ psf}$$

1631 psf < 3000 psf allowable **OK**

5. Calculate horizontal shear stress on long side

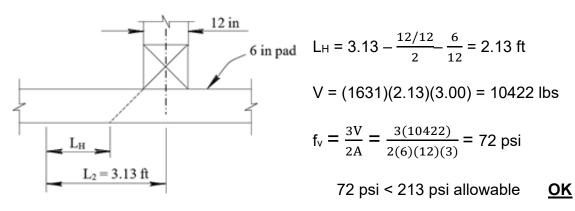


Figure D-21-5. Post C Continuous Pad Shear Dimension

Check Corbel

Corbel is **OK** by inspection (Post load at C < post load at A)